Sample records for highly efficient fluorescence

  1. Highly efficient phosphorescent, TADF, and fluorescent OLEDs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Jang-Joo; Kim, Kwon-Hyeon; Moon, Chang-Ki; Shin, Hyun

    2016-09-01

    High efficiency OLEDs based on phosphorescent, thermally activated delayed fluorescent (TADF) and fluorescent emitters will be presented. We will show that EQEs over 60% is achievable if OLEDs are fabricated using organic semiconductors with the refractive indices of 1.5 and fully horizontal emitting dipoles without any extra light extracting structure. We will also show that reverse intersystem crossing RISC rate plays an important role to reduce the efficiency roll-off in efficient TADF and fluorescent OLEDs and a couple to methods will be presented to increase the RISC rate in the devices.

  2. Prediction and design of efficient exciplex emitters for high-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes.

    PubMed

    Liu, Xiao-Ke; Chen, Zhan; Zheng, Cai-Jun; Liu, Chuan-Lin; Lee, Chun-Sing; Li, Fan; Ou, Xue-Mei; Zhang, Xiao-Hong

    2015-04-08

    High-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes based on exciplex emitters are demonstrated. The best device, based on a TAPC:DPTPCz emitter, shows a high external quantum efficiency of 15.4%. Strategies for predicting and designing efficient exciplex emitters are also provided. This approach allow prediction and design of efficient exciplex emitters for achieving high-efficiency organic light-emitting diodes, for future use in displays and lighting applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Efficient triplet harvesting by fluorescent molecules through exciplexes for high efficiency organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Park, Young-Seo; Kim, Kwon-Hyeon; Kim, Jang-Joo

    2013-04-01

    Efficient triplet harvesting from exciplexes by reverse intersystem crossing (RISC) is reported using a fluorescent molecular system composed of the 4,4',4″-tris(N-carbazolyl)-triphenylamine and bis-4,6-(3,5-di-3-pyridylphenyl)-2-methylpyrimidine. The exciplex forming material system shows the efficient delayed fluorescence emission. As a result, almost 100% PL efficiency at 35 K and 10% external quantum efficiency at 195 K are achieved from the exciplex. The delayed fluorescence of the exciplex clearly demonstrates that a significant proportion of the triplet exciplexes is harvested through the RISC.

  4. Blocking Energy-Loss Pathways for Ideal Fluorescent Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescent Sensitizers.

    PubMed

    Zhang, Dongdong; Song, Xiaozeng; Cai, Minghan; Duan, Lian

    2018-02-01

    Organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence-sensitized fluorescence (TSF) offer the possibility of attaining an ultimate high efficiency with low roll-off utilizing noble-metal free, easy-to-synthesize, pure organic fluorescent emitters. However, the performances of TSF-OLEDs are still unsatisfactory. Here, TSF-OLEDs with breakthrough efficiencies even at high brightnesses by suppressing the competitive deactivation processes, including direct charge recombination on conventional fluorescent dopants (CFDs) and Dexter energy transfer from the host to the CFDs, are demonstrated. On the one hand, electronically inert terminal-substituents are introduced to protect the electronically active core of the CFDs; on the other hand, delicate device structures are designed to provide multiple energy-funneling paths. As a result, unprecedentedly high maximum external quantum efficiency/power efficiency of 24%/71.4 lm W -1 in a green TSF-OLED are demonstrated, which remain at 22.6%/52.3 lm W -1 even at a high luminance of 5000 cd m -2 . The work unlocks the potential of TSF-OLEDs, paving the way toward practical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host.

    PubMed

    Zhao, Bo; Zhang, Tianyou; Chu, Bei; Li, Wenlian; Su, Zisheng; Wu, Hairuo; Yan, Xingwu; Jin, Fangming; Gao, Yuan; Liu, Chengyuan

    2015-05-29

    In this manuscript, we demonstrated a highly efficient DCJTB emission with delayed fluorescent exciplex TCTA:3P-T2T as the host. For the 1.0% DCJTB doped concentration, a maximum luminance, current efficiency, power efficiency and EQE of 22,767 cd m(-2), 22.7 cd A(-1), 21.5 lm W(-1) and 10.15% were achieved, respectively. The device performance is the best compared to either red OLEDs with traditional fluorescent emitter or traditional red phosphor of Ir(piq)3 doped into CBP host. The extraction of so high efficiency can be explained as the efficient triplet excitons up-conversion of TCTA:3P-T2T and the energy transfer from exciplex host singlet state to DCJTB singlet state.

  6. Metal–Dielectric Waveguides for High Efficiency Fluorescence Imaging

    PubMed Central

    Zhu, Liangfu; Zhang, Douguo; Wang, Ruxue; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Du, Luping; Yuan, Xiaocong; Lakowicz, Joseph R.

    2015-01-01

    We demonstrate that Metal–Dielectric Waveguide structures (MDWs) with high efficiency of fluorescence coupling can be suitable as substrates for fluorescence imaging. This hybrid MDWs consists of a continuous metal film and a dielectric top layer. The optical modes sustaining inside this structure can be excited with a high numerical aperture (N.A) objective, and then focused into a virtual optical probe with high intensity, leading to efficient excitation of fluorophores deposited on top of the MDWs. The emitted fluorophores couple with the optical modes thus enabling the directional emission, which is verified by the back focal plane (BFP) imaging. These unique properties of MDWs have been adopted in a scanning laser confocal optical microscopy, and show the merit of high efficiency fluorescence imaging. MDWs can be easily fabricated by vapor deposition and/or spin coating, the silica surface of the MDWs is suitable for biomolecule tethering, and will offer new opportunities for cell biology and biophysics research. PMID:26525494

  7. Rare Earth Fluorescent Nanomaterials for Enhanced Development of Latent Fingerprints.

    PubMed

    Wang, Meng; Li, Ming; Yu, Aoyang; Wu, Jian; Mao, Chuanbin

    2015-12-30

    The most commonly found fingerprints at crime scenes are latent and, thus, an efficient method for detecting latent fingerprints is very important. However, traditional developing techniques have drawbacks such as low developing sensitivity, high background interference, complicated operation, and high toxicity. To tackle this challenge, we have synthesized two kinds of rare earth fluorescent nanomaterials, including the fluoresce red-emitting YVO4:Eu nanocrystals and green-emitting LaPO4:Ce,Tb nanobelts, and then used them as fluorescent labels for the development of latent fingerprints with high sensitivity, high contrast, high selectivity, high efficiency, and low background interference, on various substrates including noninfiltrating materials, semi-infiltrating materials, and infiltrating materials.

  8. Ligand Assisted Stabilization of Fluorescence Nanoparticles; an Insight on the Fluorescence Characteristics, Dispersion Stability and DNA Loading Efficiency of Nanoparticles.

    PubMed

    Rhouati, Amina; Hayat, Akhtar; Mishra, Rupesh K; Bueno, Diana; Shahid, Shakir Ahmad; Muñoz, Roberto; Marty, Jean Louis

    2016-07-01

    This work reports on the ligand assisted stabilization of Fluospheres® carboxylate modified nanoparticles (FCMNPs), and subsequently investigation on the DNA loading capacity and fluorescence response of the modified particles. The designed fluorescence bioconjugate was characterized with enhanced fluorescence characteristics, good stability and large surface area with high DNA loading efficiency. For comparison purpose, bovine serum albumin (BSA) and polyethylene glycol (PEG) with three different length strands were used as cross linkers to modify the particles, and their DNA loading capacity and fluorescence characteristics were investigated. By comparing the performance of the particles, we found that the most improved fluorescence characteristics, enhanced DNA loading and high dispersion stability were obtained, when employing PEG of long spacer arm length. The designed fluorescence bioconjugate was observed to maintain all its characteristics under varying pH over an extended period of time. These types of bioconjugates are in great demand for fluorescence imaging and in vivo fluorescence biomedical application, especially when most of the as synthesized fluorescence particles cannot withstand to varying in vivo physiological conditions with decreases in fluorescence response and DNA loading efficiency.

  9. Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host

    PubMed Central

    Zhao, Bo; Zhang, Tianyou; Chu, Bei; Li, Wenlian; Su, Zisheng; Wu, Hairuo; Yan, Xingwu; Jin, Fangming; Gao, Yuan; Liu, Chengyuan

    2015-01-01

    In this manuscript, we demonstrated a highly efficient DCJTB emission with delayed fluorescent exciplex TCTA:3P-T2T as the host. For the 1.0% DCJTB doped concentration, a maximum luminance, current efficiency, power efficiency and EQE of 22,767 cd m−2, 22.7 cd A−1, 21.5 lm W−1 and 10.15% were achieved, respectively. The device performance is the best compared to either red OLEDs with traditional fluorescent emitter or traditional red phosphor of Ir(piq)3 doped into CBP host. The extraction of so high efficiency can be explained as the efficient triplet excitons up-conversion of TCTA:3P-T2T and the energy transfer from exciplex host singlet state to DCJTB singlet state. PMID:26023882

  10. Thermally Activated Delayed Fluorescence in Polymers: A New Route toward Highly Efficient Solution Processable OLEDs.

    PubMed

    Nikolaenko, Andrey E; Cass, Michael; Bourcet, Florence; Mohamad, David; Roberts, Matthew

    2015-11-25

    Efficient intermonomer thermally activated delayed fluorescence is demonstrated for the first time, opening a new route to achieving high-efficiency solution processable polymer light-emitting device materials. External quantum efficiency (EQE) of up to 10% is achieved in a simple fully solution-processed device structure, and routes for further EQE improvement identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thioflavin T as an efficient fluorescence sensor for selective recognition of RNA G-quadruplexes

    NASA Astrophysics Data System (ADS)

    Xu, Shujuan; Li, Qian; Xiang, Junfeng; Yang, Qianfan; Sun, Hongxia; Guan, Aijiao; Wang, Lixia; Liu, Yan; Yu, Lijia; Shi, Yunhua; Chen, Hongbo; Tang, Yalin

    2016-04-01

    RNA G-quadruplexes (G4s) play important roles in translational regulation, mRNA processing events and gene expression. Therefore, a fluorescent probe that is capable of efficiently recognizing RNA G-quadruplex structures among other RNA forms is highly desirable. In this study, a water-soluble fluorogenic dye (i.e., Thioflavin T (ThT)) was employed to recognize RNA G-quadruplex structures using UV-Vis absorption spectra, fluorescence spectra and emission lifetime experiments. By stacking on the G-tetrad, the ThT probe exhibited highly specific recognition of RNA G-quadruplex structures with striking fluorescence enhancement compared with other RNA forms. The specific binding demonstrates that ThT is an efficient fluorescence sensor that can distinguish G4 and non-G4 RNA structures.

  12. Development of Highly Fluorescent Materials Based on Thiophenylimidazole Dyes

    NASA Technical Reports Server (NTRS)

    Santos, Javier; Bu, Xiu R.; Mintz, Eric A.; Meador, Michael A. (Technical Monitor)

    2000-01-01

    Organic fluorescent materials are expected to find many potential applications in optical devices and photo-functionalized materials. Although many investigations have been focused on heterocyclic compounds such as coumarins, bipyridines, rhodamines, and pyrrole derivatives, little is known for fluorescent imidazole materials. We discovered that one particular class of imidazole derivatives is highly fluorescent. A series of monomeric and polymeric based fluorescent dyes were prepared containing a thiophene unit at the second position of the imidazole ring. Dependence of fluorescence efficiency on parameters such as solvent polarity and substituent groups has been investigated. It was found that a formyl group at the 2-position of the thiophene ring dramatically enhance fluorescence properties. Ion recognition probes indicated their potential as sensor materials. These fluorophores have flexibility for introduction of versatile substituent groups that could improve the fluorescence efficiency and sensor properties.

  13. A simple but highly efficient multi-formyl phenol-amine system for fluorescence detection of peroxide explosive vapour.

    PubMed

    Xu, Wei; Fu, Yanyan; Gao, Yixun; Yao, Junjun; Fan, Tianchi; Zhu, Defeng; He, Qingguo; Cao, Huimin; Cheng, Jiangong

    2015-07-11

    A simple, highly stable, sensitive and selective fluorescent system for peroxide explosives was developed via an aromatic aldehyde oxidation reaction. The high efficiency arises from its higher HOMO level and multiple H-bonding. The sensitivity is obtained to be 0.1 ppt for H2O2 and 0.2 ppb for TATP.

  14. Triplet-triplet annihilation in highly efficient fluorescent organic light-emitting diodes: current state and future outlook.

    PubMed

    Kondakov, Denis Y

    2015-06-28

    Studies of delayed electroluminescence in highly efficient fluorescent organic light-emitting diodes (OLEDs) of many dissimilar architectures indicate that the triplet-triplet annihilation (TTA) significantly increases yield of excited singlet states-emitting molecules in this type of device thereby contributes substantially to their efficiency. Towards the end of the 2000s, the essential role of TTA in realizing highly efficient fluorescent devices was widely recognized. Analysis of a diverse set of fluorescent OLEDs shows that high efficiencies are often cor-related to TTA extents. It is therefore likely that it is the long-term empirical optimization of OLED efficiencies that has resulted in fortuitous emergence of TTA as a large and ubiquitous contributor to efficiency. TTA contributions as high as 20-30% are common in the state-of-the-art OLEDs, and even become dominant in special cases, where TTA is shown to substantially exceed the spin-statistical limit. The fundamental features of OLED efficiency enhancement via TTA-molecular structure-dependent contributions, current density-dependent intensities in practical devices and frequently observed antagonistic relationships between TTA extent and OLED lifetime-came to be understood over the course of the next few years. More recently, however, there was much less reported progress with respect to all-important quantitative details of the TTA mechanism. It should be emphasized that, to this day and despite the decades of work on improving blue phosphorescent OLEDs as well as the recent advent of thermally activated delayed fluorescence OLEDs, the majority of practical blue OLEDs still rely on TTA. Considering such practical importance of fluorescent blue OLEDs, the design of blue OLED-compatible materials capable of substantially exceeding the spin-statistical limit in TTA, elimination of the antagonistic relationship between TTA-related efficiency gains and lifetime losses, and designing devices with an extended range of current densities producing near-maximum TTA electroluminescence are the areas where future improvements would be most beneficial. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Maximizing fluorescence collection efficiency in multiphoton microscopy

    PubMed Central

    Zinter, Joseph P.; Levene, Michael J.

    2011-01-01

    Understanding fluorescence propagation through a multiphoton microscope is of critical importance in designing high performance systems capable of deep tissue imaging. Optical models of a scattering tissue sample and the Olympus 20X 0.95NA microscope objective were used to simulate fluorescence propagation as a function of imaging depth for physiologically relevant scattering parameters. The spatio-angular distribution of fluorescence at the objective back aperture derived from these simulations was used to design a simple, maximally efficient post-objective fluorescence collection system. Monte Carlo simulations corroborated by data from experimental tissue phantoms demonstrate collection efficiency improvements of 50% – 90% over conventional, non-optimized fluorescence collection geometries at large imaging depths. Imaging performance was verified by imaging layer V neurons in mouse cortex to a depth of 850 μm. PMID:21934897

  16. Energy efficient fluorescent ballasts. Phase I, final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens Luminoptics Corporation

    1978-06-21

    The development of a high-frequency electronic (Stevens) ballast for fluorescent lamps is described. It is claimed that use of this ballast could reduce use energy consumption by 1.2 to 2.5 percent. The Stevens ballast has a basic efficiency of 29 percent when used with conventional lamps. With the more efficient lamps, the efficiency increases drastically. The conventional ballast and lamp has an efficiacy of approximately 60 to 63 lumens per watt (LPW). With the Stevens ballast the efficiacy raises to between 75 and 80 lumens per watt. When the Stevens ballast is utilized with the newer high efficiency lamps themore » efficiacy increases to 90 to 95 lumens per watt or a full 51 percent improvement over conventional coil and core ballasts and 25 percent over the best high efficiency premium coil and core ballasts. In addition to its energy savings capabilities, this high frequency fluorescent lamp ballast has the advantages that it is a true retrofit device that is directly interchangeable with the conventional coil core ballast, and it is dimmable over a wide and continuous range. (LCLC)« less

  17. Highly selective fluorescent and colorimetric chemosensor for detection of Hg2 + ion in aqueous media

    NASA Astrophysics Data System (ADS)

    Zareh Jonaghani, Mohammad; Zali-Boeini, Hassan

    2017-05-01

    A highly efficient and selective fluorescent and colorimetric chemosensor based on naphthothiazole skeleton was synthesized and its colorimetric and fluorescent properties were investigated. The sensor displays a rapid and highly selective colorimetric and fluorescence response toward Hg2 + without interference with other metal ions in CH3CN/H2O mixture (50/50, v/v). The detection limit for the fluorescent chemosensor S1 toward Hg2 + was 3.42 × 10- 8 M.

  18. Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.

  19. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching

    PubMed Central

    Wientjes, Emilie; Renger, Jan; Curto, Alberto G.; Cogdell, Richard; van Hulst, Niek F.

    2014-01-01

    The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~\

  20. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching

    NASA Astrophysics Data System (ADS)

    Wientjes, Emilie; Renger, Jan; Curto, Alberto G.; Cogdell, Richard; van Hulst, Niek F.

    2014-06-01

    The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~\

  1. High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion

    DOEpatents

    Forrest, Stephen; Zhang, Yifan

    2015-02-10

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include an organic host compound and at least one organic emitting compound capable of fluorescent emission at room temperature. Various configurations are described for providing a range of current densities in which T-T fusion dominates over S-T annihilation, leading to very high efficiency fluorescent OLEDs.

  2. Far-Red Fluorescent Lipid-Polymer Probes for an Efficient Labeling of Enveloped Viruses.

    PubMed

    Lacour, William; Adjili, Salim; Blaising, Julie; Favier, Arnaud; Monier, Karine; Mezhoud, Sarra; Ladavière, Catherine; Place, Christophe; Pécheur, Eve-Isabelle; Charreyre, Marie-Thérèse

    2016-08-01

    Far-red emitting fluorescent lipid probes are desirable to label enveloped viruses, for their efficient tracking by optical microscopy inside autofluorescent cells. Most used probes are rapidly released from membranes, leading to fluorescence signal decay and loss of contrast. Here, water-soluble lipid-polymer probes are synthesized harboring hydrophilic or hydrophobic far-red emitting dyes, and exhibiting enhanced brightness. They efficiently label Hepatitis C Virus pseudotyped particles (HCVpp), more stably and reproducibly than commercial probes, and a strong fluorescence signal is observed with a high contrast. Labeling with such probes do not alter virion morphology, integrity, nor infectivity. Finally, it is shown by fluorescence microscopy that these probes enable efficient tracking of labeled HCVpp inside hepatocarcinoma cells used as model hepatocytes, in spite of their autofluorescence up to 700 nm. These novel fluorescent lipid-polymer probes should therefore enable a better characterization of early stages of infection of autofluorescent cells by enveloped viruses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip.

    PubMed

    Wang, Chen; Ouyang, Jun; Ye, De-Kai; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua

    2012-08-07

    Fluorescence analysis has proved to be a powerful detection technique for achieving single molecule analysis. However, it usually requires the labeling of targets with bright fluorescent tags since most chemicals and biomolecules lack fluorescence. Conventional fluorescence labeling methods require a considerable quantity of biomolecule samples, long reaction times and extensive chromatographic purification procedures. Herein, a micro/nanofluidics device integrating a nanochannel in a microfluidics chip has been designed and fabricated, which achieves rapid protein concentration, fluorescence labeling, and efficient purification of product in a miniaturized and continuous manner. As a demonstration, labeling of the proteins bovine serum albumin (BSA) and IgG with fluorescein isothiocyanate (FITC) is presented. Compared to conventional methods, the present micro/nanofluidics device performs about 10(4)-10(6) times faster BSA labeling with 1.6 times higher yields due to the efficient nanoconfinement effect, improved mass, and heat transfer in the chip device. The results demonstrate that the present micro/nanofluidics device promises rapid and facile fluorescence labeling of small amount of reagents such as proteins, nucleic acids and other biomolecules with high efficiency.

  4. New anthracene derivatives as triplet acceptors for efficient green-to-blue low-power upconversion.

    PubMed

    Liang, Zuo-Qin; Sun, Bin; Ye, Chang-Qing; Wang, Xiao-Mei; Tao, Xu-Tang; Wang, Qin-Hua; Ding, Ping; Wang, Bao; Wang, Jing-Jing

    2013-10-21

    Three new anthracene derivatives [2-chloro-9,10-dip-tolylanthracene (DTACl), 9,10-dip-tolylanthracene-2-carbonitrile (DTACN), and 9,10-di(naphthalen-1-yl)anthracene-2-carbonitrile (DNACN)] were synthesized as triplet acceptors for low-power upconversion. Their linear absorption, single-photon-excited fluorescence, and upconversion fluorescence properties were studied. The acceptors exhibit high fluorescence yields in DMF. Selective excitation of the sensitizer Pd(II)octaethylporphyrin (PdOEP) in solution containing DTACl, DTACN, or DNA-CN at 532 nm with an ultralow excitation power density of 0.5 W cm(-2) results in anti-Stokes blue emission. The maximum upconversion quantum yield (Φ(UC) =17.4%) was obtained for the couple PdOEP/DTACl. In addition, the efficiency of the triplet-triplet energy transfer process was quantitatively studied by quenching experiments. Experimental results revealed that a highly effective acceptor for upconversion should combine high fluorescence quantum yields with efficient quenching of the sensitizer triplet. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.

    PubMed

    Shi, Junwei; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-09-15

    For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.

  6. White organic light-emitting diodes with fluorescent tube efficiency.

    PubMed

    Reineke, Sebastian; Lindner, Frank; Schwartz, Gregor; Seidler, Nico; Walzer, Karsten; Lüssem, Björn; Leo, Karl

    2009-05-14

    The development of white organic light-emitting diodes (OLEDs) holds great promise for the production of highly efficient large-area light sources. High internal quantum efficiencies for the conversion of electrical energy to light have been realized. Nevertheless, the overall device power efficiencies are still considerably below the 60-70 lumens per watt of fluorescent tubes, which is the current benchmark for novel light sources. Although some reports about highly power-efficient white OLEDs exist, details about structure and the measurement conditions of these structures have not been fully disclosed: the highest power efficiency reported in the scientific literature is 44 lm W(-1) (ref. 7). Here we report an improved OLED structure which reaches fluorescent tube efficiency. By combining a carefully chosen emitter layer with high-refractive-index substrates, and using a periodic outcoupling structure, we achieve a device power efficiency of 90 lm W(-1) at 1,000 candelas per square metre. This efficiency has the potential to be raised to 124 lm W(-1) if the light outcoupling can be further improved. Besides approaching internal quantum efficiency values of one, we have also focused on reducing energetic and ohmic losses that occur during electron-photon conversion. We anticipate that our results will be a starting point for further research, leading to white OLEDs having efficiencies beyond 100 lm W(-1). This could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.

  7. Highly efficient deep-blue organic light emitting diode with a carbazole based fluorescent emitter

    NASA Astrophysics Data System (ADS)

    Sahoo, Snehasis; Dubey, Deepak Kumar; Singh, Meenu; Joseph, Vellaichamy; Thomas, K. R. Justin; Jou, Jwo-Huei

    2018-04-01

    High efficiency deep-blue emission is essential to realize energy-saving, high-quality display and lighting applications. We demonstrate here a deep-blue organic light emitting diode using a novel carbazole based fluorescent emitter 7-[4-(diphenylamino)phenyl]-9-(2-ethylhexyl)-9H-carbazole-2-carbonitrile (JV234). The solution processed resultant device shows a maximum luminance above 1,750 cd m-2 and CIE coordinates (0.15,0.06) with a 1.3 lm W-1 power efficiency, 2.0 cd A-1 current efficiency, and 4.1% external quantum efficiency at 100 cd m-2. The resulting deep-blue emission enables a greater than 100% color saturation. The high efficiency may be attributed to the effective host-to-guest energy transfer, suitable device architecture facilitating balanced carrier injection and low doping concentration preventing efficiency roll-off caused by concentration quenching.

  8. Multicolor fluorescent biosensor for multiplexed detection of DNA.

    PubMed

    Hu, Rong; Liu, Tao; Zhang, Xiao-Bing; Huan, Shuang-Yan; Wu, Cuichen; Fu, Ting; Tan, Weihong

    2014-05-20

    Development of efficient methods for highly sensitive and rapid screening of specific oligonucleotide sequences is essential to the early diagnosis of serious diseases. In this work, an aggregated cationic perylene diimide (PDI) derivative was found to efficiently quench the fluorescence emission of a variety of anionic oligonucleotide-labeled fluorophores that emit at wavelengths from the visible to NIR region. This broad-spectrum quencher was then adopted to develop a multicolor biosensor via a label-free approach for multiplexed fluorescent detection of DNA. The aggregated perylene derivative exhibits a very high quenching efficiency on all ssDNA-labeled dyes associated with biosensor detection, having efficiency values of 98.3 ± 0.9%, 97 ± 1.1%, and 98.2 ± 0.6% for FAM, TAMRA, and Cy5, respectively. An exonuclease-assisted autocatalytic target recycling amplification was also integrated into the sensing system. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity toward target DNA, resulting in a detection limit of 20 pM, which is about 50-fold lower than that of traditional unamplified homogeneous fluorescent assay methods. The quencher did not interfere with the catalytic activity of nuclease, and the biosensor could be manipulated in either preaddition or postaddition manner with similar sensitivity. Moreover, the proposed sensing system allows for simultaneous and multicolor analysis of several oligonucleotides in homogeneous solution, demonstrating its potential application in the rapid screening of multiple biotargets.

  9. Efficient genome editing by FACS enrichment of paired D10A Cas9 nickases coupled with fluorescent proteins.

    PubMed

    Gopalappa, Ramu; Song, Myungjae; Chandrasekaran, Arun Pandian; Das, Soumyadip; Haq, Saba; Koh, Hyun Chul; Ramakrishna, Suresh

    2018-05-31

    Targeted genome editing by clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) raised concerns over off-target effects. The use of double-nicking strategy using paired Cas9 nickase has been developed to minimize off-target effects. However, it was reported that the efficiency of paired nickases were comparable or lower than that of either corresponding nuclease alone. Recently, we conducted a systematic comparison of the efficiencies of several paired Cas9 with their corresponding Cas9 nucleases and showed that paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. However, sometimes the designed paired Cas9 nickases exhibited significantly lower mutation frequencies than nucleases, hampering the generation of cells containing paired Cas9 nickase-induced mutations. Here we implemented IRES peptide-conjugation of fluorescent protein to Cas9 nickase and subjected for fluorescence-activated cell sorting. The sorted cell populations are highly enriched with cells containing paired Cas9 nickase-induced mutations, by a factor of up to 40-fold as compared with the unsorted population. Furthermore, gene-disrupted single cell clones using paired nickases followed by FACS sorting strategy were generated highly efficiently, without compromising with its low off-target effects. We envision that our fluorescent protein coupled paired nickase-mediated gene disruption, facilitating efficient and highly specific genome editing in medical research.

  10. Carbon "Quantum" Dots for Fluorescence Labeling of Cells.

    PubMed

    Liu, Jia-Hui; Cao, Li; LeCroy, Gregory E; Wang, Ping; Meziani, Mohammed J; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G; Sun, Ya-Ping

    2015-09-02

    The specifically synthesized and selected carbon dots of relatively high fluorescence quantum yields were evaluated in their fluorescence labeling of cells. For the cancer cell lines, the cellular uptake of the carbon dots was generally efficient, resulting in the labeling of the cells with bright fluorescence emissions for both one- and two-photon excitations from predominantly the cell membrane and cytoplasm. In the exploration on labeling the live stem cells, the cellular uptake of the carbon dots was relatively less efficient, though fluorescence emissions could still be adequately detected in the labeled cells, with the emissions again predominantly from the cell membrane and cytoplasm. This combined with the observed more efficient internalization of the same carbon dots by the fixed stem cells might suggest some significant selectivity of the stem cells toward surface functionalities of the carbon dots. The needs and possible strategies for more systematic and comparative studies on the fluorescence labeling of different cells, including especially live stem cells, by carbon dots as a new class of brightly fluorescent probes are discussed.

  11. Amyloid-β Deposits Target Efficient Near-Infrared Fluorescent Probes: Synthesis, in Vitro Evaluation, and in Vivo Imaging.

    PubMed

    Fu, Hualong; Tu, Peiyu; Zhao, Liu; Dai, Jiapei; Liu, Boli; Cui, Mengchao

    2016-02-02

    The formation of extracellular amyloid-β (Aβ) plaques is a common molecular change that underlies several debilitating human conditions, including Alzheimer's disease (AD); however, the existing near-infrared (NIR) fluorescent probes for the in vivo detection of Aβ plaques are limited by undesirable fluorescent properties and poor brain kinetics. In this work, we designed, synthesized, and evaluated a new family of efficient NIR probes that target Aβ plaques by incorporating hydroxyethyl groups into the ligand structure. Among these probes, DANIR 8c showed excellent fluorescent properties with an emission maximum above 670 nm upon binding to Aβ aggregates and also displayed a high sensitivity (a 629-fold increase in fluorescence intensity) and affinity (Kd = 14.5 nM). Because of the improved hydrophilicity that was induced by hydroxyls, 8c displayed increased initial brain uptake and a fast washout from the brain, as well as an acceptable biostability in the brain. In vivo NIR fluorescent imaging revealed that 8c could efficiently distinguish between AD transgenic model mice and normal controls. Overall, 8c is an efficient and veritable NIR fluorescent probe for the in vivo detection of Aβ plaques in the brain.

  12. Heavy Atom Effect of Bromine Significantly Enhances Exciton Utilization of Delayed Fluorescence Luminogens.

    PubMed

    Gan, Shifeng; Hu, Shimin; Li, Xiang-Long; Zeng, Jiajie; Zhang, Dongdong; Huang, Tianyu; Luo, Wenwen; Zhao, Zujin; Duan, Lian; Su, Shi-Jian; Tang, Ben Zhong

    2018-05-23

    Raising triplet exciton utilization of pure organic luminescent materials is of significant importance for efficiency advancement of organic light-emitting diodes (OLEDs). Herein, by introducing bromine atom(s) onto a typical molecule (bis(carbazol-9-yl)-4,5-dicyanobenzene) with thermally activated delayed fluorescence, we demonstrate that the heavy atom effect of bromine can increase spin-orbit coupling and promote the reverse intersystem crossing, which endow the molecules with more distinct delayed fluorescence. In consequence, the triplet exciton utilization is improved greatly with the increase of bromine atoms, affording apparently advanced external quantum efficiencies of OLEDs. Utilizing the enhancement effect of bromine atoms on delayed fluorescence should be a simple and promising design concept for efficient organic luminogens with high exciton utilization.

  13. Fluorescent vancomycin and terephthalate comodified europium-doped layered double hydroxides nanoparticles: synthesis and application for bacteria labelling

    NASA Astrophysics Data System (ADS)

    Sun, Jianchao; Fan, Hai; Wang, Nan; Ai, Shiyun

    2014-09-01

    Vancomycin (Van)- and terephthalate (TA)-comodified europium-doped layered double hydroxides (Van-TA-Eu-LDHs) nanoparticles were successfully prepared by a two-step method, in which, TA acted as a sensitizer to enhance the fluorescent property and Van was modified on the surface of LDH to act as an affinity reagent to bacteria. The obtained products were characterized by X-ray diffraction, transmission electron microscope and fluorescent spectroscopy. The results demonstrated that the prepared Van- and TA-comodified europium-doped layered double hydroxides (Van-TA-Eu-LDHs) nanoparticles with diameter of 50 nm in size showed highly efficient fluorescent property. Furthermore, due to the high affinity of Van to bacteria, the prepared Van-TA-Eu-LDHs nanoparticles showed efficient bacteria labelling by fluorescent property. The prepared nanoparticles may have wide applications in the biological fields, such as biomolecular labelling and cell imaging.

  14. A novel near-infrared nanomaterial with high quantum efficiency and its applications in real time in vivo imaging

    NASA Astrophysics Data System (ADS)

    Cui, X. X.; Fan, Q.; Shi, S. J.; Wen, W. H.; Chen, D. F.; Guo, H. T.; Xu, Y. T.; Gao, F.; Nie, R. Z.; Ford, Harold D.; Tang, Gordon H.; Hou, C. Q.; Peng, B.

    2018-05-01

    Fluorescence imaging signal is severely limited by the quantum efficiency and emission wavelength. To overcome these challenges, novel NIR-emitting K5NdLi2F10 nanoparticles under NIR excitation was introduced as fluorescence imaging probe for the first time. The photostability of K5NdLi2F10 nanoparticles in the water, phosphate buffer saline, fetal bovine serum and living mice was investigated. The fluorescence signal was detected with depths of 3.5 and 2.0 cm in phantom and pork tissue, respectively. Fluorescence spectrum with a significant signal-to-background ratio of 10:1 was captured in living mice. Moreover, clear NIR images were virtualized for the living mice after intravenous injection. The imaging ability of nanoparticles in tumor-beard mice were evaluated, the enrichment of K5NdLi2F10 nanoparticles in tumor site due to the enhanced permeability and retention effect was confirmed. The systematic studies of toxicity, bio-distribution and in-vivo dynamic imaging suggest that these materials give high biocompatibility and low toxicity. These NIR-emitting nanoparticles with high quantum efficiency, high penetration and low toxicity might facilitate tumor identification in deep tissues more sensitively.

  15. A novel near-infrared nanomaterial with high quantum efficiency and its applications in real time in vivo imaging.

    PubMed

    Cui, X X; Fan, Q; Shi, S J; Wen, W H; Chen, D F; Guo, H T; Xu, Y T; Gao, F; Nie, R Z; Ford, Harold D; Tang, Gordon H; Hou, C Q; Peng, B

    2018-05-18

    Fluorescence imaging signal is severely limited by the quantum efficiency and emission wavelength. To overcome these challenges, novel NIR-emitting K 5 NdLi 2 F 10 nanoparticles under NIR excitation was introduced as fluorescence imaging probe for the first time. The photostability of K 5 NdLi 2 F 10 nanoparticles in the water, phosphate buffer saline, fetal bovine serum and living mice was investigated. The fluorescence signal was detected with depths of 3.5 and 2.0 cm in phantom and pork tissue, respectively. Fluorescence spectrum with a significant signal-to-background ratio of 10:1 was captured in living mice. Moreover, clear NIR images were virtualized for the living mice after intravenous injection. The imaging ability of nanoparticles in tumor-beard mice were evaluated, the enrichment of K 5 NdLi 2 F 10 nanoparticles in tumor site due to the enhanced permeability and retention effect was confirmed. The systematic studies of toxicity, bio-distribution and in-vivo dynamic imaging suggest that these materials give high biocompatibility and low toxicity. These NIR-emitting nanoparticles with high quantum efficiency, high penetration and low toxicity might facilitate tumor identification in deep tissues more sensitively.

  16. Highly Efficient Nondoped Green Organic Light-Emitting Diodes with Combination of High Photoluminescence and High Exciton Utilization.

    PubMed

    Wang, Chu; Li, Xianglong; Pan, Yuyu; Zhang, Shitong; Yao, Liang; Bai, Qing; Li, Weijun; Lu, Ping; Yang, Bing; Su, Shijian; Ma, Yuguang

    2016-02-10

    Photoluminescence (PL) efficiency and exciton utilization efficiency are two key parameters to harvest high-efficiency electroluminescence (EL) in organic light-emitting diodes (OLEDs). But it is not easy to simultaneously combine these two characteristics (high PL efficiency and high exciton utilization) into a fluorescent material. In this work, an efficient combination was achieved through two concepts of hybridized local and charge-transfer (CT) state (HLCT) and "hot exciton", in which the former is responsible for high PL efficiency while the latter contributes to high exciton utilization. On the basis of a tiny chemical modification in TPA-BZP, a green-light donor-acceptor molecule, we designed and synthesized CzP-BZP with this efficeient combination of high PL efficiency of η(PL) = 75% in the solid state and maximal exciton utilization efficiency up to 48% (especially, the internal quantum efficiency of η(IQE) = 35% substantially exceed 25% of spin statistics limit) in OLED. The nondoped OLED of CzP-BZP exhibited an excellent performance: a green emission with a CIE coordinate of (0.34, 0.60), a maximum current efficiency of 23.99 cd A(-1), and a maximum external quantum efficiency (EQE, η(EQE)) of 6.95%. This combined HLCT state and "hot exciton" strategy should be a practical way to design next-generation, low-cost, high-efficiency fluorescent OLED materials.

  17. Highly Efficient Multiple-Anchored Fluorescent Probe for the Detection of Aniline Vapor Based on Synergistic Effect: Chemical Reaction and PET.

    PubMed

    Jiao, Zinuo; Zhang, Yu; Xu, Wei; Zhang, Xiangtao; Jiang, Haibo; Wu, Pengcheng; Fu, Yanyan; He, Qingguo; Cao, Huimin; Cheng, Jiangong

    2017-05-26

    A multiple-anchored fluorescent probe ((((hexane-1,6-diylbis(2,7-bis(4-formyl)-phenyl)-9H-fluorine-9,9-diyl))-bis(hexane-6,1-diyl))-bis(9H-carbazole-9,3,6-triyl))-tetrakis(benzene-4,1-diyl))-tetraformyl-(8FP-2F) with eight aldehyde groups was designed and synthesized. The molecule has four branches and highly twisted structure. Furthermore, it tends to self-assemble into nanospheres, which is beneficial for gaseous analyte penetration and high fluorescence quantum efficiency. Among gaseous analytes, detection of aniline vapor is extraordinarily important in the control of environmental issues and human diseases. Herein, 8FP-2F was introduced to detect aniline vapor with distinguished sensitivity and selectivity via simple Schiff base reaction at room temperature. After exposure to saturate aniline vapor, the 89% fluorescence of 8FP-2F was quenched in 50 s and the detection limit was as low as 3 ppb. Further study showed the suitable HOMO/LUMO energy levels and matched orbital symmetry between probe and aniline molecules ensured chemical reaction and PET process work together. The synergistic effect resulted in a significant sensing performance and fluorescence quenching toward aniline vapor. Moreover, the multiple active sites structure of 8FP-2F means it could be applied for constructing many interesting structures and highly efficient organic optoelectronic functional materials.

  18. Highly Efficient Thermally Activated Delayed Fluorescence from an Excited-State Intramolecular Proton Transfer System

    PubMed Central

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials have shown great potential for highly efficient organic light-emitting diodes (OLEDs). While the current molecular design of TADF materials primarily focuses on combining donor and acceptor units, we present a novel system based on the use of excited-state intramolecular proton transfer (ESIPT) to achieve efficient TADF without relying on the well-established donor–acceptor scheme. In an appropriately designed acridone-based compound with intramolecular hydrogen bonding, ESIPT leads to separation of the highest occupied and lowest unoccupied molecular orbitals, resulting in TADF emission with a photoluminescence quantum yield of nearly 60%. High external electroluminescence quantum efficiencies of up to 14% in OLEDs using this emitter prove that efficient triplet harvesting is possible with ESIPT-based TADF materials. This work will expand and accelerate the development of a wide variety of TADF materials for high performance OLEDs. PMID:28776019

  19. Inkjet printed fluorescent nanorod layers exhibit superior optical performance over quantum dots

    NASA Astrophysics Data System (ADS)

    Halivni, Shira; Shemesh, Shay; Waiskopf, Nir; Vinetsky, Yelena; Magdassi, Shlomo; Banin, Uri

    2015-11-01

    Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays.Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06248a

  20. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, Alexander M.; Benson, Scott C.

    1999-01-01

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.

  1. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, Alexander M.; Benson, Scott C.

    1998-01-01

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.

  2. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    1995-01-01

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.

  3. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    1997-01-01

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.

  4. Pyrimidine-based twisted donor-acceptor delayed fluorescence molecules: a new universal platform for highly efficient blue electroluminescence.

    PubMed

    Park, In Seob; Komiyama, Hideaki; Yasuda, Takuma

    2017-02-01

    Deep-blue emitters that can harvest both singlet and triplet excited states to give high electron-to-photon conversion efficiencies are highly desired for applications in full-color displays and white lighting devices based on organic light-emitting diodes (OLEDs). Thermally activated delayed fluorescence (TADF) molecules based on highly twisted donor-acceptor (D-A) configurations are promising emitting dopants for the construction of efficient deep-blue OLEDs. In this study, a simple and versatile D-A system combining acridan-based donors and pyrimidine-based acceptors has been developed as a new platform for high-efficiency deep-blue TADF emitters. The designed pre-twisted acridan-pyrimidine D-A molecules exhibit small singlet-triplet energy splitting and high photoluminescence quantum yields, functioning as efficient deep-blue TADF emitters. The OLEDs utilizing these TADF emitters display bright blue electroluminescence with external quantum efficiencies of up to 20.4%, maximum current efficiencies of 41.7 cd A -1 , maximum power efficiencies of 37.2 lm W -1 , and color coordinates of (0.16, 0.23). The design strategy featuring such acridan-pyrimidine D-A motifs can offer great prospects for further developing high-performance deep-blue TADF emitters and TADF-OLEDs.

  5. Guidelines for application of fluorescent lamps in high-performance avionic backlight systems

    NASA Astrophysics Data System (ADS)

    Syroid, Daniel D.

    1997-07-01

    Fluorescent lamps have proven to be well suited for use in high performance avionic backlight systems as demonstrated by numerous production applications for both commercial and military cockpit displays. Cockpit display applications include: Boeing 777, new 737s, F-15, F-16, F-18, F-22, C- 130, Navy P3, NASA Space Shuttle and many others. Fluorescent lamp based backlights provide high luminance, high lumen efficiency, precision chromaticity and long life for avionic active matrix liquid crystal display applications. Lamps have been produced in many sizes and shapes. Lamp diameters range from 2.6 mm to over 20 mm and lengths for the larger diameter lamps range to over one meter. Highly convoluted serpentine lamp configurations are common as are both hot and cold cathode electrode designs. This paper will review fluorescent lamp operating principles, discuss typical requirements for avionic grade lamps, compare avionic and laptop backlight designs and provide guidelines for the proper application of lamps and performance choices that must be made to attain optimum system performance considering high luminance output, system efficiency, dimming range and cost.

  6. Designing an anion-functionalized fluorescent ionic liquid as an efficient and reversible turn-off sensor for detecting SO2.

    PubMed

    Che, Siying; Dao, Rina; Zhang, Weidong; Lv, Xiaoyu; Li, Haoran; Wang, Congmin

    2017-03-30

    A novel anion-functionalized fluorescent ionic liquid was designed and prepared, which was capable of capturing sulphur dioxide with high capacity and could also be used as a good colorimetric and fluorescent SO 2 sensor. Compared to conventional fluorescent sensors, this fluorescent ionic liquid did not undergo aggregation-caused quenching or aggregation-induced emission, and the fluorescence was quenched when exposed to SO 2 , and the fluorescence would quench when exposed to SO 2 . The experimental absorption, spectroscopic investigation, and quantum chemical calculations indicated that the quenching of the fluorescence originated from SO 2 physical absorption, not chemical absorption. Furthermore, this fluorescent ionic liquid exhibited high selectivity, good quantification, and excellent reversibility for SO 2 detection, and showed potential for an excellent liquid sensor.

  7. Structure-matched Phthalocyanine Ion Pair as a Red-emitting Fluorescent Optical Probe for the Analysis of Sodium Dodecylbenzenesulfonate with High Specificity and Sensitivity.

    PubMed

    Yu, Fei; Guo, Menglin; Deng, Yabin; Lu, Yin; Chen, Lin; Huang, Ping; Li, Donghui

    2016-01-01

    We have found that a positively charged cationic copper phthalocyanine, Alcian blue (Alcian blue 8GX), can efficiently quench the fluorescence of an oppositely charged red fluorescent phthalocyanine compound with a matched molecular structure, tetrasulfonated aluminum phthalocyanine (AlS4Pc), because of the formation of an ion pair complex (AlS4Pc-Alcian blue 8GX) that exhibits almost no fluorescence. An investigation was carried out on the fluorescence recovery of AlS4Pc-Alcian blue 8GX caused by a series of anionic surfactants containing a sulfonic group (sodium dodecylbenzenesulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfate (SDS)). The results showed that SDBS exhibited a significant response, and the highest sensitivity among the surfactants. Due to its high efficiency of fluorescence quenching and the high level of fluorescence recovery, direct observes can even be performed by the naked eye. The results revealed that the Alcian blue 8GX-AlS4Pc ion-pair complex fluorescent probe only responded to SDBS in the low-concentration range. Based on the new founding, this study proposed a novel principle and method of fluorescence enhancement to specifically measure the concentration of SDBS, thereby achieving a highly sensitive and highly specific determination of SDBS. Under the optimal conditions, the fluorescence intensity (I(f)) of the system and the concentration of SDBS in the range of 1 × 10(-7) - 1 × 10(-5) mol/dm(3) exhibited a good linear relationship. This method is highly sensitive, and the operation is simple and rapid. It had been applied for the quantitative analysis of SDBS in environmental water, while achieving satisfactory results compared with those of the standard method. This study developed a new application of the fluorescent phthalocyanine compounds used as molecular probes in analytical sciences.

  8. Efficient fluorescence/phosphorescence white organic light-emitting diodes with ultra high color stability and mild efficiency roll-off

    NASA Astrophysics Data System (ADS)

    Du, Xiaoyang; Tao, Silu; Huang, Yun; Yang, Xiaoxia; Ding, Xulin; Zhang, Xiaohong

    2015-11-01

    Efficient fluorescence/phosphorescence hybrid white organic light-emitting diodes (OLEDs) with single doped co-host structure have been fabricated. Device using 9-Naphthyl-10 -(4-triphenylamine)anthrancene as the fluorescent dopant and Ir(ppy)3 and Ir(2-phq)3 as the green and orange phosphorescent dopants show the luminous efficiency of 12.4% (17.6 lm/W, 27.5 cd/A) at 1000 cd/m2. Most important to note that the efficiency-brightness roll-off of the device was very mild. With the brightness rising up to 5000 and 10 000 cd/m2, the efficiency could be kept at 11.8% (14.0 lm/W, 26.5 cd/A) and 11.0% (11.8 lm/W, 25.0 cd/A). The Commission Internationale de L'Eclairage (CIE) coordinates and color rending index (CRI) were measured to be (0.45, 0.48) and 65, respectively, and remained the same in a large range of brightness (1000-10 000 cd/m2), which is scarce in the reported white OLEDs. The performance of the device at high luminance (5000 and 10 000 cd/m2) was among the best reported results including fluorescence/phosphorescence hybrid and all-phosphorescent white OLEDs. Moreover, the CRI of the white OLED can be improved to 83 by using a yellow-green emitter (Ir(ppy)2bop) in the device.

  9. Creation of High Efficient Firefly Luciferase

    NASA Astrophysics Data System (ADS)

    Nakatsu, Toru

    Firefly emits visible yellow-green light. The bioluminescence reaction is carried out by the enzyme luciferase. The bioluminescence of luciferase is widely used as an excellent tool for monitoring gene expression, the measurement of the amount of ATP and in vivo imaging. Recently a study of the cancer metastasis is carried out by in vivo luminescence imaging system, because luminescence imaging is less toxic and more useful for long-term assay than fluorescence imaging by GFP. However the luminescence is much dimmer than fluorescence. Then bioluminescence imaging in living organisms demands the high efficient luciferase which emits near infrared lights or enhances the emission intensity. Here I introduce an idea for creating the high efficient luciferase based on the crystal structure.

  10. Highly fluorescent and superparamagnetic nanosystem for biomedical applications

    NASA Astrophysics Data System (ADS)

    Cabrera, Mariana P.; E Cabral Filho, Paulo; Silva, Camila M. C. M.; Oliveira, Rita M.; Geraldes, Carlos F. G. C.; Castro, M. Margarida C. A.; Costa, Benilde F. O.; Henriques, Marta S. C.; Paixão, José A.; Carvalho, Luiz B., Jr.; Santos, Beate S.; Hallwass, Fernando; Fontes, Adriana; Pereira, Giovannia A. L.

    2017-07-01

    This work reports on highly fluorescent and superparamagnetic bimodal nanoparticles (BNPs) obtained by a simple and efficient method as probes for fluorescence analysis and/or contrast agents for MRI. These promising BNPs with small dimensions (ca. 17 nm) consist of superparamagnetic iron oxide nanoparticles (SPIONs) covalently bound with CdTe quantum dots (ca. 3 nm). The chemical structure of the magnetic part of BNPs is predominantly magnetite, with minor goethite and maghemite contributions, as shown by Mössbauer spectroscopy, which is compatible with the x-ray diffraction data. Their size evaluation by different techniques showed that the SPION derivatization process, in order to produce the BNPs, does not lead to a large size increase. The BNPs saturation magnetization, when corrected for the organic content of the sample, is ca. 68 emu g-1, which is only slightly reduced relative to the bare nanoparticles. This indicates that the SPION surface functionalization does not change considerably the magnetic properties. The BNP aqueous suspensions presented stability, high fluorescence, high relaxivity ratio (r 2/r 1 equal to 25) and labeled efficiently HeLa cells as can be seen by fluorescence analysis. These BNP properties point to their applications as fluorescent probes as well as negative T 2-weighted MRI contrast agents. Moreover, their potential magnetic response could also be used for fast bioseparation applications.

  11. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials.

    PubMed

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-03

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9'-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9',9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  12. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials

    NASA Astrophysics Data System (ADS)

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-01

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9‧-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9‧,9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  13. Design of ortho-Substituted Donor-Acceptor Molecules as Highly Efficient Green Thermally Activated Delayed Fluorescent Emitters

    NASA Astrophysics Data System (ADS)

    Cha, Jae-Ryung; Gong, Myoung-Seon; Lee, Tak Jae; Ha, Tae Hoon; Lee, Chil Won

    2018-04-01

    The ortho-substituted donor-acceptor molecules 2-(4,6-diphenyl-1, 3, 5-triazin-2-yl)- N,Ndiphenylaniline (DPA- o-Trz) and 2-(4,6-diphenyl-1, 3, 5-triazine-2-yl)- N,N-di- p-tolylaniline (MPA- o-Trz) were designed, synthesized, and found to exhibit green fluorescence characteristics. Notably, the singlet-triplet energy gap was less than 0.1 eV, indicating that reverse intersystem crossing gave rise to thermally activated delayed fluorescence (TADF). The organic light-emitting device performance of MPA- o-Trz showed a high external quantum efficiency of 16.3% and good color stability from 0.1 cd/m2 to 5000 cd/m2.

  14. Remanagement of Singlet and Triplet Excitons in Single-Emissive-Layer Hybrid White Organic Light-Emitting Devices Using Thermally Activated Delayed Fluorescent Blue Exciplex.

    PubMed

    Liu, Xiao-Ke; Chen, Zhan; Qing, Jian; Zhang, Wen-Jun; Wu, Bo; Tam, Hoi Lam; Zhu, Furong; Zhang, Xiao-Hong; Lee, Chun-Sing

    2015-11-25

    A high-performance hybrid white organic light-emitting device (WOLED) is demonstrated based on an efficient novel thermally activated delayed fluorescence (TADF) blue exciplex system. This device shows a low turn-on voltage of 2.5 V and maximum forward-viewing external quantum efficiency of 25.5%, which opens a new avenue for achieving high-performance hybrid WOLEDs with simple structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, A.N.; Benson, S.C.

    1997-07-08

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated. 4 figs.

  16. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, A.M.; Benson, S.C.

    1998-06-16

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated. 4 figs.

  17. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, A.N.; Benson, S.C.

    1995-03-28

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated. 4 figures.

  18. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses.

    PubMed

    Tschiersch, Henning; Junker, Astrid; Meyer, Rhonda C; Altmann, Thomas

    2017-01-01

    Automated plant phenotyping has been established as a powerful new tool in studying plant growth, development and response to various types of biotic or abiotic stressors. Respective facilities mainly apply non-invasive imaging based methods, which enable the continuous quantification of the dynamics of plant growth and physiology during developmental progression. However, especially for plants of larger size, integrative, automated and high throughput measurements of complex physiological parameters such as photosystem II efficiency determined through kinetic chlorophyll fluorescence analysis remain a challenge. We present the technical installations and the establishment of experimental procedures that allow the integrated high throughput imaging of all commonly determined PSII parameters for small and large plants using kinetic chlorophyll fluorescence imaging systems (FluorCam, PSI) integrated into automated phenotyping facilities (Scanalyzer, LemnaTec). Besides determination of the maximum PSII efficiency, we focused on implementation of high throughput amenable protocols recording PSII operating efficiency (Φ PSII ). Using the presented setup, this parameter is shown to be reproducibly measured in differently sized plants despite the corresponding variation in distance between plants and light source that caused small differences in incident light intensity. Values of Φ PSII obtained with the automated chlorophyll fluorescence imaging setup correlated very well with conventionally determined data using a spot-measuring chlorophyll fluorometer. The established high throughput operating protocols enable the screening of up to 1080 small and 184 large plants per hour, respectively. The application of the implemented high throughput protocols is demonstrated in screening experiments performed with large Arabidopsis and maize populations assessing natural variation in PSII efficiency. The incorporation of imaging systems suitable for kinetic chlorophyll fluorescence analysis leads to a substantial extension of the feature spectrum to be assessed in the presented high throughput automated plant phenotyping platforms, thus enabling the simultaneous assessment of plant architectural and biomass-related traits and their relations to physiological features such as PSII operating efficiency. The implemented high throughput protocols are applicable to a broad spectrum of model and crop plants of different sizes (up to 1.80 m height) and architectures. The deeper understanding of the relation of plant architecture, biomass formation and photosynthetic efficiency has a great potential with respect to crop and yield improvement strategies.

  19. NIR-induced highly sensitive detection of latent finger-marks by NaYF4:Yb,Er upconversion nanoparticles in a dry powder state

    PubMed Central

    Wang, Meng; Li, Ming; Yang, Mingying; Zhang, Xiaomei; Yu, Aoyang; Zhu, Ye; Qiu, Penghe; Mao, Chuanbin

    2016-01-01

    The most commonly found fingermarks at crime scenes are latent and, thus, an efficient method for detecting latent fingermarks is very important. However, traditional developing techniques have drawbacks such as low detection sensitivity, high background interference, complicated operation, and high toxicity. To tackle this challenge, we employed fluorescent NaYF4:Yb,Er upconversion nanoparticles (UCNPs), which can fluoresce visible light when excited by 980 nm human-safe near-infrared light, to stain the latent fingermarks on various substrate surfaces. The UCNPs were successfully used as a novel fluorescent label for the detection of latent fingermarks with high sensitivity, low background, high efficiency, and low toxicity on various substrates including non-infiltrating materials (glass, marble, aluminum alloy sheets, stainless steel sheets, aluminum foils, and plastic cards), semi-infiltrating materials (floor leathers, ceramic tiles, wood floor, and painted wood), and infiltrating materials such as various types of papers. This work shows that UCNPs are a versatile fluorescent label for the facile detection of fingermarks on virtually any material, enabling their practical applications in forensic sciences. PMID:27818741

  20. A simple and sensitive high-throughput GFP screening in woody and herbaceous plants.

    PubMed

    Hily, Jean-Michel; Liu, Zongrang

    2009-03-01

    Green fluorescent protein (GFP) has been used widely as a powerful bioluminescent reporter, but its visualization by existing methods in tissues or whole plants and its utilization for high-throughput screening remains challenging in many species. Here, we report a fluorescence image analyzer-based method for GFP detection and its utility for high-throughput screening of transformed plants. Of three detection methods tested, the Typhoon fluorescence scanner was able to detect GFP fluorescence in all Arabidopsis thaliana tissues and apple leaves, while regular fluorescence microscopy detected it only in Arabidopsis flowers and siliques but barely in the leaves of either Arabidopsis or apple. The hand-held UV illumination method failed in all tissues of both species. Additionally, the Typhoon imager was able to detect GFP fluorescence in both green and non-green tissues of Arabidopsis seedlings as well as in imbibed seeds, qualifying it as a high-throughput screening tool, which was further demonstrated by screening the seedlings of primary transformed T(0) seeds. Of the 30,000 germinating Arabidopsis seedlings screened, at least 69 GFP-positive lines were identified, accounting for an approximately 0.23% transformation efficiency. About 14,000 seedlings grown in 16 Petri plates could be screened within an hour, making the screening process significantly more efficient and robust than any other existing high-throughput screening method for transgenic plants.

  1. Enhancement of fluorescence using nanoplasmonic and photonic structures

    NASA Astrophysics Data System (ADS)

    Arya, Akash; Tagore, Amit K.; Dantham, Venkata R.

    2018-05-01

    Two different nanoplasmonic structures have been synthesized using wet-chemistry method and demonstrated the enhancement of fluorescence of dye molecules. The difficulties associated with the plasmonic enhancement of fluorescence are discussed and to overcome these, an efficient approach has been proposed to enhance the fluorescence of a few molecules with the help of a high quality factor photonic microstructure (whispering gallery mode microresonator). The fabrication details of microresonators and experimental arrangement for enhancing the fluorescence are reported here.

  2. Comparison of flow cytometry, fluorescence microscopy and spectrofluorometry for analysis of gene electrotransfer efficiency.

    PubMed

    Marjanovič, Igor; Kandušer, Maša; Miklavčič, Damijan; Keber, Mateja Manček; Pavlin, Mojca

    2014-12-01

    In this study, we compared three different methods used for quantification of gene electrotransfer efficiency: fluorescence microscopy, flow cytometry and spectrofluorometry. We used CHO and B16 cells in a suspension and plasmid coding for GFP. The aim of this study was to compare and analyse the results obtained by fluorescence microscopy, flow cytometry and spectrofluorometry and in addition to analyse the applicability of spectrofluorometry for quantifying gene electrotransfer on cells in a suspension. Our results show that all the three methods detected similar critical electric field strength, around 0.55 kV/cm for both cell lines. Moreover, results obtained on CHO cells showed that the total fluorescence intensity and percentage of transfection exhibit similar increase in response to increase electric field strength for all the three methods. For B16 cells, there was a good correlation at low electric field strengths, but at high field strengths, flow cytometer results deviated from results obtained by fluorescence microscope and spectrofluorometer. Our study showed that all the three methods detected similar critical electric field strengths and high correlations of results were obtained except for B16 cells at high electric field strengths. The results also demonstrated that flow cytometry measures higher values of percentage transfection compared to microscopy. Furthermore, we have demonstrated that spectrofluorometry can be used as a simple and consistent method to determine gene electrotransfer efficiency on cells in a suspension.

  3. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  4. Two-photon imaging in living brain slices.

    PubMed

    Mainen, Z F; Maletic-Savatic, M; Shi, S H; Hayashi, Y; Malinow, R; Svoboda, K

    1999-06-01

    Two-photon excitation laser scanning microscopy (TPLSM) has become the tool of choice for high-resolution fluorescence imaging in intact neural tissues. Compared with other optical techniques, TPLSM allows high-resolution imaging and efficient detection of fluorescence signal with minimal photobleaching and phototoxicity. The advantages of TPLSM are especially pronounced in highly scattering environments such as the brain slice. Here we describe our approaches to imaging various aspects of synaptic function in living brain slices. To combine several imaging modes together with patch-clamp electrophysiological recordings we found it advantageous to custom-build an upright microscope. Our design goals were primarily experimental convenience and efficient collection of fluorescence. We describe our TPLSM imaging system and its performance in detail. We present dynamic measurements of neuronal morphology of neurons expressing green fluorescent protein (GFP) and GFP fusion proteins as well as functional imaging of calcium dynamics in individual dendritic spines. Although our microscope is a custom instrument, its key advantages can be easily implemented as a modification of commercial laser scanning microscopes. Copyright 1999 Academic Press.

  5. Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems.

    PubMed

    Wang, E; Babbey, C M; Dunn, K W

    2005-05-01

    Fluorescence microscopy of the dynamics of living cells presents a special challenge to a microscope imaging system, simultaneously requiring both high spatial resolution and high temporal resolution, but with illumination levels low enough to prevent fluorophore damage and cytotoxicity. We have compared the high-speed Yokogawa CSU10 spinning disc confocal system with several conventional single-point scanning confocal (SPSC) microscopes, using the relationship between image signal-to-noise ratio and fluorophore photobleaching as an index of system efficiency. These studies demonstrate that the efficiency of the CSU10 consistently exceeds that of the SPSC systems. The high efficiency of the CSU10 means that quality images can be collected with much lower levels of illumination; the CSU10 was capable of achieving the maximum signal-to-noise of an SPSC system at illumination levels that incur only at 1/15th of the rate of the photobleaching of the SPSC system. Although some of the relative efficiency of the CSU10 system may be attributed to the use of a CCD rather than a photomultiplier detector system, our analyses indicate that high-speed imaging with the SPSC system is limited by fluorescence saturation at the high levels of illumination frequently needed to collect images at high frame rates. The high speed, high efficiency and freedom from fluorescence saturation combine to make the CSU10 effective for extended imaging of living cells at rates capable of capturing the three-dimensional motion of endosomes moving up to several micrometres per second.

  6. Detecting Circular RNAs by RNA Fluorescence In Situ Hybridization.

    PubMed

    Zirkel, Anne; Papantonis, Argyris

    2018-01-01

    Fluorescence in situ hybridization (FISH) coupled to high-resolution microscopy is a powerful method for analyzing the subcellular localization of RNA. However, the detection of circular RNAs (circRNAs) using microscopy is challenging because the only feature of a circRNA that can be used for the probe design is its junction. Circular RNAs are expressed at varying levels, and for their efficient monitoring by FISH, background fluorescence levels need to be kept low. Here, we describe a FISH protocol coupled to high-precision localizations using a single fluorescently labeled probe spanning the circRNA junction; this allows circRNA detection in mammalian cells with high signal-to-noise ratios.

  7. A Novel Sensitive Luminescence Probe Microspheres for Rapid and Efficient Detection of τ-Fluvalinate in Taihu Lake

    PubMed Central

    Wang, Jixiang; Wang, Yunyun; Qiu, Hao; Sun, Lin; Dai, Xiaohui; Pan, Jianming; Yan, Yongsheng

    2017-01-01

    Fluorescent molecularly imprinted polymers have shown great promise in biological or chemical separations and detection, due to their high stability, selectivity and sensitivity. In this work, fluorescent molecularly imprinted microsphere was synthesized via precipitation polymerization, which could separate efficiently and rapidly detect τ-fluvalinate (a toxic insecticide) in water samples, was reported. The fluorescent imprinted sensor showed excellent stability, outstanding selectivity and the limit of detection low to 12.14 nM, good regeneration ability which still kept good sensitivity after 8 cycling experiments and fluorescence quenching mechanism was illustrated in details. In addition, the fluorescent sensor was further used to detect τ-fluvalinate in real samples from Taihu Lake. Despite the relatively complex components of the environment water, the fluorescent imprinted microspheres sitll showed good recovery, clearly demonstrating the potental value of this smart sensor nanomaterial in environment monitoring. PMID:28485402

  8. Rarefied flow diagnostics using pulsed high-current electron beams

    NASA Technical Reports Server (NTRS)

    Wojcik, Radoslaw M.; Schilling, John H.; Erwin, Daniel A.

    1990-01-01

    The use of high-current short-pulse electron beams in low-density gas flow diagnostics is introduced. Efficient beam propagation is demonstrated for pressure up to 300 microns. The beams, generated by low-pressure pseudospark discharges in helium, provide extremely high fluorescence levels, allowing time-resolved visualization in high-background environments. The fluorescence signal frequency is species-dependent, allowing instantaneous visualization of mixing flowfields.

  9. Contact-lens type of micromachined hydrogenated amorphous Si fluorescence detector coupled with microfluidic electrophoresis devices

    NASA Astrophysics Data System (ADS)

    Kamei, Toshihiro; Wada, Takehito

    2006-09-01

    A 5.8-μm-thick SiO2/Ta2O5 multilayer optical interference filter was monolithically integrated and micromachined on a hydrogenated amorphous Si (a-Si :H) pin photodiode to form a fluorescence detector. A microfluidic electrophoresis device was mounted on a detection platform comprising a fluorescence-collecting half-ball lens and the micromachined fluorescence detector. The central aperture of the fluorescence detector allows semiconductor laser light to pass up through the detector and to irradiate an electrophoretic separation channel. The limit of detection is as low as 7nM of the fluorescein solution, and high-speed DNA fragment sizing can be achieved with high separation efficiency. The micromachined a-Si :H fluorescence detector exhibits high sensitivity for practical fluorescent labeling dyes as well as integration flexibility on various substances, making it ideal for application to portable microfluidic bioanalysis devices.

  10. Silole-Based Red Fluorescent Organic Dots for Bright Two-Photon Fluorescence In vitro Cell and In vivo Blood Vessel Imaging.

    PubMed

    Chen, Bin; Feng, Guangxue; He, Bairong; Goh, Chiching; Xu, Shidang; Ramos-Ortiz, Gabriel; Aparicio-Ixta, Laura; Zhou, Jian; Ng, Laiguan; Zhao, Zujin; Liu, Bin; Tang, Ben Zhong

    2016-02-10

    Robust luminescent dyes with efficient two-photon fluorescence are highly desirable for biological imaging applications, but those suitable for organic dots fabrication are still rare because of aggregation-caused quenching. In this work, a red fluorescent silole, 2,5-bis[5-(dimesitylboranyl)thiophen-2-yl]-1-methyl-1,3,4-triphenylsilole ((MesB)2 DTTPS), is synthesized and characterized. (MesB)2 DTTPS exhibits enhanced fluorescence efficiency in nanoaggregates, indicative of aggregation-enhanced emission (AEE). The organic dots fabricated by encapsulating (MesB)2 DTTPS within lipid-PEG show red fluorescence peaking at 598 nm and a high fluorescence quantum yield of 32%. Upon excitation at 820 nm, the dots show a large two-photon absorption cross section of 3.43 × 10(5) GM, which yields a two-photon action cross section of 1.09 × 10(5) GM. These (MesB)2 DTTPS dots show good biocompatibility and are successfully applied to one-photon and two-photon fluorescence imaging of MCF-7 cells and two-photon in vivo visualization of the blood vascular of mouse muscle in a high-contrast and noninvasive manner. Moreover, the 3D blood vasculature located at the mouse ear skin with a depth of over 100 μm can also be visualized clearly, providing the spatiotemporal information about the whole blood vascular network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Transfer of ultraviolet photon energy into fluorescent light in the visible path represents a new and efficient protection mechanism of sunscreens

    NASA Astrophysics Data System (ADS)

    Vergou, Theognosia; Patzelt, Alexa; Richter, Heike; Schanzer, Sabine; Zastrow, Leonhard; Golz, Karin; Doucet, Olivier; Antoniou, Christina; Sterry, Wolfram; Lademann, Juergen

    2011-10-01

    The development of sunscreens with high sun protection factor (SPF) values but low filter concentrations is the ultimate goal. The purpose of the present study was to investigate why a sunscreen spray and cream with different concentrations of the same UV-filters provided the same SPF. Therefore, the homogeneity of the distribution of both sunscreens was investigated by laser scanning microscopy (LSM) and tape stripping (TS). Additionally, the energy transfer mechanisms of the sunscreens on the skin were analyzed. The TS and LSM showed a better homogeneity of the distribution of the spray. With Wood's light, a total absorption of the irradiation was detected in the spray area. In contrast, after cream treatment, an intensive fluorescent signal was observed. It was demonstrated that this fluorescent signal was caused by nonthermal energy transferred from the UV-filters to one compound of the cream releasing its excitation energy by fluorescence. This nonthermal energy transfer seemed to be the reason for the high efficiency of the cream, which is subjected to thermal relaxation. The transfer of UV photon energy into fluorescent light represents a new approach to increase the efficiency of sunscreens and could form the basis for a new generation of sunscreens.

  12. Studies on Cation-induced Thylakoid Membrane Stacking, Fluorescence Yield, and Photochemical Efficiency 1

    PubMed Central

    Jennings, Robert Charles; Forti, Giorgio; Gerola, Paolo Domenico; Garlaschi, Flavio Massimo

    1978-01-01

    Trypsin digestion of photosynthetic membranes isolated from spinach (Spinacia oleracea L.) leaves eliminates the cation stimulation of chlorophyll fluorescence. High concentrations of cations protect the fluorescence yield against trypsin digestion, and the cation specificity for this protection closely resembles that required for the stimulation of fluorescence by cations. Trypsin digestion reverses cation-induced thylakoid stacking, and the time course of this effect seems to parallel that of the reversal of cation fluorescence. High concentrations of cations protect thylakoid stacking and cation-stimulated fluorescence alike. The cation stimulation of photosytem II photochemistry remains intact after trypsinization has reversed both cation-induced thylakoid stacking and fluorescence yield. It is concluded that cation-stimulated fluorescence yield, and not the cation stimulation of photosystem II photochemistry, is associated with thylakoid membrane stacking. ImagesFig. 2Fig. 3 PMID:16660630

  13. Evaluation of the charge transfer efficiency of organic thin-film photovoltaic devices fabricated using a photoprecursor approach.

    PubMed

    Masuo, Sadahiro; Sato, Wataru; Yamaguchi, Yuji; Suzuki, Mitsuharu; Nakayama, Ken-ichi; Yamada, Hiroko

    2015-05-01

    Recently, a unique 'photoprecursor approach' was reported as a new option to fabricate a p-i-n triple-layer organic photovoltaic device (OPV) through solution processes. By fabricating the p-i-n architecture using two kinds of photoprecursors and a [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) as the donor and the acceptor, the p-i-n OPVs afforded a higher photovoltaic efficiency than the corresponding p-n devices and i-devices, while the photovoltaic efficiency of p-i-n OPVs depended on the photoprecursors. In this work, the charge transfer efficiency of the i-devices composed of the photoprecursors and PC71BM was investigated using high-sensitivity fluorescence microspectroscopy combined with a time-correlated single photon counting technique to elucidate the photovoltaic efficiency depending on the photoprecursors and the effects of the p-i-n architecture. The spatially resolved fluorescence images and fluorescence lifetime measurements clearly indicated that the compatibility of the photoprecursors with PC71BM influences the charge transfer and the photovoltaic efficiencies. Although the charge transfer efficiency of the i-device was quite high, the photovoltaic efficiency of the i-device was much lower than that of the p-i-n device. These results imply that the carrier generation and carrier transportation efficiencies can be increased by fabricating the p-i-n architecture.

  14. Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection λ-cyhalothrin in environmental water.

    PubMed

    Wang, Jixiang; Qiu, Hao; Shen, Hongqiang; Pan, Jianming; Dai, Xiaohui; Yan, Yongsheng; Pan, Guoqing; Sellergren, Börje

    2016-11-15

    Molecularly imprinted fluorescent polymers have shown great promise in biological or chemical separations and detections, due to their high stability, selectivity and sensitivity. In this work, molecularly imprinted fluorescent hollow nanoparticles, which could rapidly and efficiently detect λ-cyhalothrin (a toxic insecticide) in water samples, was reported. The molecularly imprinted fluorescent sensor showed excellent sensitivity (the limit of detection low to 10.26nM), rapid detection rate (quantitative detection of λ-cyhalothrin within 8min), regeneration ability (maintaining good fluorescence properties after 8 cycling operation) and appreciable selectivity over several structural analogs. Moreover, the fluorescent sensor was further used to detect λ-cyhalothrin in real samples form the Beijing-Hangzhou Grand Canal Water. Despite the relatively complex components of the environmental water, the molecularly imprinted fluorescent hollow nanosensor still showed good recovery, clearly demonstrating the potential value of this smart sensor nanomaterial in environmental monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The design and application of fluorophore–gold nanoparticle activatable probes

    PubMed Central

    Swierczewska, Magdalena; Lee, Seulki; Chen, Xiaoyuan

    2013-01-01

    Fluorescence-based assays and detection techniques are among the most highly sensitive and popular biological tests for researchers. To match the needs of research and the clinic, detection limits and specificities need to improve, however. One mechanism is to decrease non-specific background signals, which is most efficiently done by increasing fluorescence quenching abilities. Reports in the literature of theoretical and experimental work have shown that metallic gold surfaces and nanoparticles are ultra-efficient fluorescence quenchers. Based on these findings, subsequent reports have described gold nanoparticle fluorescence-based activatable probes that were designed to increase fluorescence intensity based on a range of stimuli. In this way, these probes can detect and signify assorted biomarkers and changes in environmental conditions. In this review, we explore the various factors and theoretical models that affect gold nanoparticle fluorescence quenching, explore current uses of activatable probes, and propose an engineering approach for future development of fluorescence based gold nanoparticle activatable probes. PMID:21380462

  16. An Analysis of Sources of Technological Change in Efficiency Improvement of Fluorescent Lamp Systems

    NASA Astrophysics Data System (ADS)

    Imanaka, Takeo

    In Japan, energy efficient fluorescent lamp systems which use “rare-earth phosphors” and “electronic ballasts” have shown rapid diffusion since 1990s. This report investigated sources of technological change in the efficiency improvement of fluorescent lamp systems: (i) Fluorescent lamp and luminaires have been under steady technological development for getting more energy efficient lighting and the concepts to achieve high efficiency had been found in such activities; however, it took long time until they realized and become widely used; (ii) Electronic ballasts and rare-earth phosphors add fluorescent lamp systems not only energy efficiency but also various values such as compactness, lightweight, higher output, and better color rendering properties, which have also been expected and have induced research and development (R&D) (iii) Affordable electronic ballasts are realized by the new technology “power MOSFET” which is based on IC technologies and has been developed for large markets of information and communication technologies and mobile devices; and (iv) Rare-earth phosphors became available after rare-earth industries developed for the purpose of supplying rare-earth phosphors for color television. In terms of sources of technological change, (i) corresponds to “R&D” aiming at the particular purpose i.e. energy efficiency in this case, on the other hand, (ii), (iii), and (iv) correspond to “spillovers” from activities aiming at other purposes. This case exhibits an actual example in which “spillovers” were the critical sources of technological change in energy technology.

  17. High-Performance Fluorescent Organic Light-Emitting Diodes Utilizing an Asymmetric Anthracene Derivative as an Electron-Transporting Material.

    PubMed

    Zhang, Dongdong; Song, Xiaozeng; Li, Haoyuan; Cai, Minghan; Bin, Zhengyang; Huang, Tianyu; Duan, Lian

    2018-05-17

    Fluorescent organic light-emitting diodes with thermally activated delayed fluorescent sensitizers (TSF-OLEDs) have aroused wide attention, the power efficiencies of which, however, are limited by the mutual exclusion of high electron-transport mobility and large triplet energy of electron-transporting materials (ETMs). Here, an asymmetric anthracene derivative with electronic properties manipulated by different side groups is developed as an ETM to promote TSF-OLED performances. Multiple intermolecular interactions are observed, leading to a kind of "cable-like packing" in the crystal and favoring the simultaneous realization of high electron-transporting mobility and good exciton-confinement ability, albeit the low triplet energy of the ETM. The optimized TSF-OLEDs exhibit a record-high maximum external quantum efficiency/power efficiency of 24.6%/76.0 lm W -1 , which remain 23.8%/69.0 lm W -1 at a high luminance of even 5000 cd m -2 with an extremely low operation voltage of 3.14 V. This work opens a new paradigm for designing ETMs and also paves the way toward practical application of TSF-OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A Fusion Protein of the p53 Transaction Domain and the p53-Binding Domain of the Oncoprotein MdmX as an Efficient System for High-Throughput Screening of MdmX Inhibitors.

    PubMed

    Chen, Rong; Zhou, Jingjing; Qin, Lingyun; Chen, Yao; Huang, Yongqi; Liu, Huili; Su, Zhengding

    2017-06-27

    In nearly half of cancers, the anticancer activity of p53 protein is often impaired by the overexpressed oncoprotein Mdm2 and its homologue, MdmX, demanding efficient therapeutics to disrupt the aberrant p53-MdmX/Mdm2 interactions to restore the p53 activity. While many potent Mdm2-specific inhibitors have already undergone clinical investigations, searching for MdmX-specific inhibitors has become very attractive, requiring a more efficient screening strategy for evaluating potential scaffolds or leads. In this work, considering that the intrinsic fluorescence residue Trp23 in the p53 transaction domain (p53p) plays an important role in determining the p53-MdmX/Mdm2 interactions, we constructed a fusion protein to utilize this intrinsic fluorescence signal to monitor high-throughput screening of a compound library. The fusion protein was composed of the p53p followed by the N-terminal domain of MdmX (N-MdmX) through a flexible amino acid linker, while the whole fusion protein contained a sole intrinsic fluorescence probe. The fusion protein was then evaluated using fluorescence spectroscopy against model compounds. Our results revealed that the variation of the fluorescence signal was highly correlated with the concentration of the ligand within 65 μM. The fusion protein was further evaluated with respect to its feasibility for use in high-throughput screening using a model compound library, including controls. We found that the imidazo-indole scaffold was a bona fide scaffold for template-based design of MdmX inhibitors. Thus, the p53p-N-MdmX fusion protein we designed provides a convenient and efficient tool for high-throughput screening of new MdmX inhibitors. The strategy described in this work should be applicable for other protein targets to accelerate drug discovery.

  19. Baculovirus-mediated gene transfer in butterfly wings in vivo: an efficient expression system with an anti-gp64 antibody.

    PubMed

    Dhungel, Bidur; Ohno, Yoshikazu; Matayoshi, Rie; Otaki, Joji M

    2013-03-25

    Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer, express, and functionally examine foreign genes in butterfly wings and also in other non-model insect systems.

  20. Design and characterization of an optimized simultaneous color and near-infrared fluorescence rigid endoscopic imaging system

    NASA Astrophysics Data System (ADS)

    Venugopal, Vivek; Park, Minho; Ashitate, Yoshitomo; Neacsu, Florin; Kettenring, Frank; Frangioni, John V.; Gangadharan, Sidhu P.; Gioux, Sylvain

    2013-12-01

    We report the design, characterization, and validation of an optimized simultaneous color and near-infrared (NIR) fluorescence rigid endoscopic imaging system for minimally invasive surgery. This system is optimized for illumination and collection of NIR wavelengths allowing the simultaneous acquisition of both color and NIR fluorescence at frame rates higher than 6.8 fps with high sensitivity. The system employs a custom 10-mm diameter rigid endoscope optimized for NIR transmission. A dual-channel light source compatible with the constraints of an endoscope was built and includes a plasma source for white light illumination and NIR laser diodes for fluorescence excitation. A prism-based 2-CCD camera was customized for simultaneous color and NIR detection with a highly efficient filtration scheme for fluorescence imaging of both 700- and 800-nm emission dyes. The performance characterization studies indicate that the endoscope can efficiently detect fluorescence signal from both indocyanine green and methylene blue in dimethyl sulfoxide at the concentrations of 100 to 185 nM depending on the background optical properties. Finally, we performed the validation of this imaging system in vivo during a minimally invasive procedure for thoracic sentinel lymph node mapping in a porcine model.

  1. Molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin.

    PubMed

    Wang, Xiaoyan; Yu, Jialuo; Kang, Qi; Shen, Dazhong; Li, Jinhua; Chen, Lingxin

    2016-03-15

    A facile strategy was developed to prepare molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin (PC) based on fluorescence resonance energy transfer (FRET), via a sol-gel polymerization process using nitrobenzoxadiazole (NBD) as fluorescent signal source. The ratio of two fluorescence peak emission intensities of NBD and PC was utilized to determine the concentration of PC, which could effectively reduce the background interference and fluctuation of diverse conditions. As a result, this sensor obtained high sensitivity with a low detection limit of 0.14 nM within 6 min, and excellent recognition specificity for PC over its analogues with a high imprinting factor of 9.1. Furthermore, the sensor attained high recoveries in the range of 93.8-110.2% at three spiking levels of PC, with precisions below 4.7% in seawater and lake water samples. The developed sensor strategy demonstrated simplicity, reliability, rapidity, high selectivity and high sensitivity, proving to be a feasible way to develop high efficient fluorescence sensors and thus potentially applicable for ultratrace analysis of complicated matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. One-step fabrication of PEGylated fluorescent nanodiamonds through the thiol-ene click reaction and their potential for biological imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hongye; Liu, Meiying; Tuo, Xun; Chen, Junyu; Mao, Liucheng; Wen, Yuanqing; Tian, Jianwen; Zhou, Naigen; Zhang, Xiaoyong; Wei, Yen

    2018-05-01

    Over the past years, fluorescent carbon nanoparticles have got growing interest for biological imaging. Fluorescent nanodiamonds (FNDs) are novel fluorescent carbon nanoparticles with multitudinous useful properties, including remarkable fluorescence properties, extremely low toxicity and high refractive index. However, facile preparation of FNDs with designable properties and functions from non-fluorescent detonation nanodiamonds (DNDs) has demonstrated to be challengeable. In this work, we reported for the first time that preparation of Polyethylene glycol (PEG) functionalized FNDs through a one-step thiol-ene click reaction using thiol containing PEG (PEG-SH) as the coating agent. Based on the characterization results, we demonstrated that PEG-SH could be efficiently introduced on DNDs to obtain FNDs through the thiol-ene click chemistry. The resultant FND-PEG composites showed high water dispersibility, strong fluorescence and low cytotoxicity. Moreover, FND-PEG composites could be internalized by cells and displayed good cell dyeing performance. All of these features implied that FND-PEG composites are of great potential for biological imaging. Taken together, a facile one-step strategy based on the one-step thiol-ene click reaction has been developed for efficient preparation of FND-PEG composites from non-fluorescent DNDs. The strategy should be also useful for fabrication of many other functional FNDs via using different thiol containing compounds for the universality of thiol-ene click reaction.

  3. Molecular approaches to third generation photovoltaics: photochemical up-conversion

    NASA Astrophysics Data System (ADS)

    Cheng, Yuen Yap; Fückel, Burkhard; Roberts, Derrick A.; Khoury, Tony; Clady, Rapha"l. G. C. R.; Tayebjee, Murad J. Y.; Piper, Roland; Ekins-Daukes, N. J.; Crossley, Maxwell J.; Schmidt, Timothy W.

    2010-08-01

    We have investigated a photochemical up-conversion system comprising a molecular mixture of a palladium porphyrin to harvest light, and a polycyclic aromatic hydrocarbon to emit light. The energy of harvested photons is stored as molecular triplet states which then annihilate to bring about up-converted fluorescence. The limiting efficiency of such triplet-triplet annihilation up-conversion has been believed to be 11% for some time. However, by rigorously investigating the kinetics of delayed fluorescence following pulsed excitation, we demonstrate instantaneous annihilation efficiencies exceeding 40%, and limiting efficiencies for the current system of ~60%. We attribute the high efficiencies obtained to the electronic structure of the emitting molecule, which exhibits an exceptionally high T2 molecular state. We utilize the kinetic data obtained to model an up-converting layer irradiated with broadband sunlight, finding that ~3% efficiencies can be obtained with the current system, with this improving dramatically upon optimization of various parameters.

  4. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-11-01

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05839b

  5. Epi-Fluorescence Microscopy

    PubMed Central

    Webb, Donna J.; Brown, Claire M.

    2012-01-01

    Epi-fluorescence microscopy is available in most life sciences research laboratories, and when optimized can be a central laboratory tool. In this chapter, the epi-fluorescence light path is introduced and the various components are discussed in detail. Recommendations are made for incident lamp light sources, excitation and emission filters, dichroic mirrors, objective lenses, and charge-coupled device (CCD) cameras in order to obtain the most sensitive epi-fluorescence microscope. The even illumination of metal-halide lamps combined with new “hard” coated filters and mirrors, a high resolution monochrome CCD camera, and a high NA objective lens are all recommended for high resolution and high sensitivity fluorescence imaging. Recommendations are also made for multicolor imaging with the use of monochrome cameras, motorized filter turrets, individual filter cubes, and corresponding dyes that are the best choice for sensitive, high resolution multicolor imaging. Images should be collected using Nyquist sampling and should be corrected for background intensity contributions and nonuniform illumination across the field of view. Photostable fluorescent probes and proteins that absorb a lot of light (i.e., high extinction co-efficients) and generate a lot of fluorescence signal (i.e., high quantum yields) are optimal. A neuronal immune-fluorescence labeling protocol is also presented. Finally, in order to maximize the utility of sensitive wide-field microscopes and generate the highest resolution images with high signal-to-noise, advice for combining wide-field epi-fluorescence imaging with restorative image deconvolution is presented. PMID:23026996

  6. Fluorescent porous silicon biological probes with high quantum efficiency and stability.

    PubMed

    Tu, Chang-Ching; Chou, Ying-Nien; Hung, Hsiang-Chieh; Wu, Jingda; Jiang, Shaoyi; Lin, Lih Y

    2014-12-01

    We demonstrate porous silicon biological probes as a stable and non-toxic alternative to organic dyes or cadmium-containing quantum dots for imaging and sensing applications. The fluorescent silicon quantum dots which are embedded on the porous silicon surface are passivated with carboxyl-terminated ligands through stable Si-C covalent bonds. The porous silicon bio-probes have shown photoluminescence quantum yield around 50% under near-UV excitation, with high photochemical and thermal stability. The bio-probes can be efficiently conjugated with antibodies, which is confirmed by a standard enzyme-linked immunosorbent assay (ELISA) method.

  7. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    NASA Technical Reports Server (NTRS)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  8. A NEW TRACER METHOD FOR ASSESSING HAND-TO-MOUTH TRANSFERS OF PESTICIDES

    EPA Science Inventory

    A common food chemical with high fluorescence intensity is being used in an evaluation of dermal transfer efficiencies as a surrogate for indoor pesticides chlorpyrifos and synthetic pyrethroids. The fluorescence monitoring system is based on an Olympus digital camera and the ...

  9. New Molecular Design Concurrently Providing Superior Pure Blue, Thermally Activated Delayed Fluorescence and Optical Out-Coupling Efficiencies.

    PubMed

    Rajamalli, P; Senthilkumar, N; Huang, P-Y; Ren-Wu, C-C; Lin, H-W; Cheng, C-H

    2017-08-16

    Simultaneous enhancement of out-coupling efficiency, internal quantum efficiency, and color purity in thermally activated delayed fluorescence (TADF) emitters is highly desired for the practical application of these materials. We designed and synthesized two isomeric TADF emitters, 2DPyM-mDTC and 3DPyM-pDTC, based on di(pyridinyl)methanone (DPyM) cores as the new electron-accepting units and di(tert-butyl)carbazole (DTC) as the electron-donating units. 3DPyM-pDTC, which is structurally nearly planar with a very small ΔE ST , shows higher color purity, horizontal ratio, and quantum yield than 2DPyM-mDTC, which has a more flexible structure. An electroluminescence device based on 3DPyM-pDTC as the dopant emitter can reach an extremely high external quantum efficiency of 31.9% with a pure blue emission. This work also demonstrates a way to design materials with a high portion of horizontal molecular orientation to realize a highly efficient pure-blue device based on TADF emitters.

  10. Versatile Indolocarbazole-Isomer Derivatives as Highly Emissive Emitters and Ideal Hosts for Thermally Activated Delayed Fluorescent OLEDs with Alleviated Efficiency Roll-Off.

    PubMed

    Zhang, Dongdong; Song, Xiaozeng; Cai, Minghan; Kaji, Hironori; Duan, Lian

    2018-02-01

    Maintaining high efficiency at high brightness levels is an exigent challenge for real-world applications of thermally activated delayed fluorescent organic light-emitting diodes (TADF-OLEDs). Here, versatile indolocarbazole-isomer derivatives are developed as highly emissive emitters and ideal hosts for TADF-OLEDs to alleviate efficiency roll-off. It is observed that photophysical and electronic properties of these compounds can be well modulated by varying the indolocarbazole isomers. A photoluminescence quantum yield (η PL ) approaching unity and a maximum external quantum efficiency (EQE max ) of 25.1% are obtained for the emitter with indolo[3,2-a]carbazolyl subunit. Remarkably, record-high EQE/power efficiency of 26.2%/69.7 lm W -1 at the brightness level of 5000 cd m -2 with a voltage of only 3.74 V are also obtained using the same isomer as the host in a green TADF-OLED. It is evident that TADF hosts with high η PL values, fast reverse intersystem crossing processes, and balanced charge transport properties may open the path toward roll-off-free TADF-OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High-efficiency/CRI/color stability warm white organic light-emitting diodes by incorporating ultrathin phosphorescence layers in a blue fluorescence layer

    NASA Astrophysics Data System (ADS)

    Miao, Yanqin; Wang, Kexiang; Zhao, Bo; Gao, Long; Tao, Peng; Liu, Xuguang; Hao, Yuying; Wang, Hua; Xu, Bingshe; Zhu, Furong

    2018-01-01

    By incorporating ultrathin (<0.1 nm) green, yellow, and red phosphorescence layers with different sequence arrangements in a blue fluorescence layer, four unique and simplified fluorescence/phosphorescence (F/P) hybrid, white organic light-emitting diodes (WOLEDs) were obtained. All four devices realize good warm white light emission, with high color rending index (CRI) of >80, low correlated color temperature of <3600 K, and high color stability at a wide voltage range of 5 V-9 V. These hybrid WOLEDs also reveal high forward-viewing external quantum efficiencies (EQE) of 17.82%-19.34%, which are close to the theoretical value of 20%, indicating an almost complete exciton harvesting. In addition, the electroluminescence spectra of the hybrid WOLEDs can be easily improved by only changing the incorporating sequence of the ultrathin phosphorescence layers without device efficiency loss. For example, the hybrid WOLED with an incorporation sequence of ultrathin red/yellow/green phosphorescence layers exhibits an ultra-high CRI of 96 and a high EQE of 19.34%. To the best of our knowledge, this is the first WOLED with good tradeoff among device efficiency, CRI, and color stability. The introduction of ultrathin (<0.1 nm) phosphorescence layers can also greatly reduce the consumption of phosphorescent emitters as well as simplify device structures and fabrication process, thus leading to low cost. Such a finding is very meaningful for the potential commercialization of hybrid WOLEDs.

  12. Efficient fluorescence quenching in electrochemically exfoliated graphene decorated with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Hurtado-Morales, M.; Ortiz, M.; Acuña, C.; Nerl, H. C.; Nicolosi, V.; Hernández, Y.

    2016-07-01

    High surface area graphene sheets were obtained by electrochemical exfoliation of graphite in an acid medium under constant potential conditions. Filtration and centrifugation processes played an important role in order to obtain stable dispersions in water. Scanning electron microscopy and transmission electron microscopy imaging revealed highly exfoliated crystalline samples of ∼5 μm. Raman, Fourier transform infrared and x-ray photoelectron spectroscopy further confirmed the high quality of the exfoliated material. The electrochemically exfoliated graphene (EEG) was decorated with gold nanoparticles (AuNPs) using sodium cholate as a buffer layer. This approach allowed for a non-covalent functionalization without altering the desirable electronic properties of the EEG. The AuNP-EEG samples were characterized with various techniques including absorbance and fluorescence spectroscopy. These samples displayed a fluorescence signal using an excitation wavelength of 290 nm. The calculated quantum yield (Φ) for these samples was 40.04%, a high efficiency compared to previous studies using solution processable graphene.

  13. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    PubMed

    Lu, Ting; Lin, Zongwei; Ren, Jianwei; Yao, Peng; Wang, Xiaowei; Wang, Zhe; Zhang, Qunye

    2016-01-01

    MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs. Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye) could firmly bind to the surface of adherent cells (Hela) and suspended cells (K562) even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein) to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it. These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  14. Using simulated fluorescence cell micrographs for the evaluation of cell image segmentation algorithms.

    PubMed

    Wiesmann, Veit; Bergler, Matthias; Palmisano, Ralf; Prinzen, Martin; Franz, Daniela; Wittenberg, Thomas

    2017-03-18

    Manual assessment and evaluation of fluorescent micrograph cell experiments is time-consuming and tedious. Automated segmentation pipelines can ensure efficient and reproducible evaluation and analysis with constant high quality for all images of an experiment. Such cell segmentation approaches are usually validated and rated in comparison to manually annotated micrographs. Nevertheless, manual annotations are prone to errors and display inter- and intra-observer variability which influence the validation results of automated cell segmentation pipelines. We present a new approach to simulate fluorescent cell micrographs that provides an objective ground truth for the validation of cell segmentation methods. The cell simulation was evaluated twofold: (1) An expert observer study shows that the proposed approach generates realistic fluorescent cell micrograph simulations. (2) An automated segmentation pipeline on the simulated fluorescent cell micrographs reproduces segmentation performances of that pipeline on real fluorescent cell micrographs. The proposed simulation approach produces realistic fluorescent cell micrographs with corresponding ground truth. The simulated data is suited to evaluate image segmentation pipelines more efficiently and reproducibly than it is possible on manually annotated real micrographs.

  15. Synthesis and characterization of photoswitchable fluorescent silica nanoparticles.

    PubMed

    Fölling, Jonas; Polyakova, Svetlana; Belov, Vladimir; van Blaaderen, Alfons; Bossi, Mariano L; Hell, Stefan W

    2008-01-01

    We have designed and synthesized a new functional (amino reactive) highly efficient fluorescent molecular switch (FMS) with a photochromic diarylethene and a rhodamine fluorescent dye. The reactive group in this FMS -N-hydroxysuccinimide ester- allows selective labeling of amino containing molecules or other materials. In ethanolic solutions, the compound displays a large fluorescent quantum yield of 52 % and a large fluorescence modulation ratio (94 %) between two states that may be interconverted with red and near-UV light. Silica nanoparticles incorporating the new FMS were prepared and characterized, and their spectroscopic and switching properties were also studied. The dye retained its properties after the incorporation into the silica, thereby allowing light-induced reversible high modulation of the fluorescence signal of a single particle for up to 60 cycles, before undergoing irreversible photobleaching. Some applications of these particles in fluorescence microscopy are also demonstrated. In particular, subdiffraction images of nanoparticles were obtained, in the focal plane of a confocal microscope.

  16. Carbon nanotube-mediated siRNA delivery for gene silencing in cancer cells

    NASA Astrophysics Data System (ADS)

    Hong, Tu; Guo, Honglian; Xu, Yaqiong

    2011-10-01

    Small interfering RNA (siRNA) is potentially a promising tool in influencing gene expression with a high degree of target specificity. However, its poor intracellular uptake, instability in vivo, and non-specific immune stimulations impeded its effect in clinical applications. In this study, carbon nanotubes (CNTs) functionalized with two types of phospholipid-polyethylene glycol (PEG) have shown capabilities to stabilize siRNA in cell culture medium during the transfection and efficiently deliver siRNA into neuroblastoma and breast cancer cells. Moreover, the intrinsic optical properties of CNTs have been investigated through absorption and fluorescence measurements. We have found that the directly-functionalized groups play an important role on the fluorescence imaging of functionalized CNTs. The unique fluorescence imaging and high delivery efficiency make CNTs a promising material to deliver drugs and evaluate the treatment effect simultaneously.

  17. Ultra-sensitive and selective Hg{sup 2+} detection based on fluorescent carbon dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ruihua; Li, Haitao; Kong, Weiqian

    2013-07-15

    Graphical abstract: Fluorescent carbon dots were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from PEG and demonstrated to show high selectivity toward Hg2+ ions detection. - Highlights: • FCDs were synthesized by one-step sodium hydroxide-assisted reflux method from PEG. • The FCDs emit blue photoluminescence and have upconversion fluorescent property. • The FCDs show ultra-sensitive detective ability for Hg{sup 2+} ions. - Abstract: Fluorescent carbon dots (FCDs) were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from poly(ethylene glycol) (PEG). The obtained FCDs exhibit excellent water-solubility and high stability. Under the UV irradiation, the FCDs could emit bright bluemore » photoluminescence, and also they were found to show excellent up-conversion fluorescence. It was further demonstrated that such FCDs can serve as effective fluorescent sensing platform for Hg{sup 2+} ions detection with ultra-sensitivity and selectivity. The sensing system achieved a limit of detection as low as 1 fM, which is much lower than all the previous reported sensing systems for Hg{sup 2+} ions detection. This FCDs sensing system has been successfully applied for the analysis of Hg{sup 2+} ions in water samples from river, lake, and tap water, showing good practical feasibility.« less

  18. Near-field fluorescence thermometry using highly efficient triple-tapered near-field optical fiber probe.

    PubMed

    Fujii, T; Taguchi, Y; Saiki, T; Nagasaka, Y

    2012-12-01

    A novel local temperature measurement method using fluorescence near-field optics thermal nanoscopy (Fluor-NOTN) has been developed. Fluor-NOTN enables nanoscale temperature measurement in situ by detecting the temperature-dependent fluorescence lifetime of CdSe quantum dots (QDs). In this paper, we report a novel triple-tapered near-field optical fiber probe that can increase the temperature measurement sensitivity of Fluor-NOTN. The performance of the proposed probe was numerically evaluated by the finite difference time domain method. Due to improvements in both the throughput and collection efficiency of near-field light, the sensitivity of the proposed probe was 1.9 times greater than that of typical double-tapered probe. The proposed shape of the triple-tapered core was successfully fabricated utilizing a geometrical model. The detected signal intensity of dried layers of QDs was greater by more than two orders than that of auto-fluorescence from the fiber core. In addition, the near-field fluorescence lifetime of the QDs and its temperature dependence were successfully measured by the fabricated triple-tapered near-field optical fiber probe. These measurement results verified the capability of the proposed triple-tapered near-field optical fiber probe to improve the collection efficiency of near-field fluorescence.

  19. Computational efficient segmentation of cell nuclei in 2D and 3D fluorescent micrographs

    NASA Astrophysics Data System (ADS)

    De Vylder, Jonas; Philips, Wilfried

    2011-02-01

    This paper proposes a new segmentation technique developed for the segmentation of cell nuclei in both 2D and 3D fluorescent micrographs. The proposed method can deal with both blurred edges as with touching nuclei. Using a dual scan line algorithm its both memory as computational efficient, making it interesting for the analysis of images coming from high throughput systems or the analysis of 3D microscopic images. Experiments show good results, i.e. recall of over 0.98.

  20. Polydopamine nanotube mediated fluorescent biosensor for Hg(ii) determination through exonuclease III-assisted signal amplification.

    PubMed

    A, Ravikumar; P, Panneerselvam

    2018-05-29

    We describe a highly sensitive fluorescence biosensor incorporating polydopamine nanotubes (PDNTs) based on the mechanism of exonuclease III (Exo III) assisted signal amplification for the determination of Hg2+ in aqueous solution. Fluorescent probes of FAM labeled ssDNA (FAM-ssDNA) adsorbed on the PDNTs act as an efficient quencher. In the presence of Hg2+, the FAM-ssDNA can bind to Hg2+ to form double stranded DNA (dsDNA) via the formation of T-Hg2+-T base pairs. Then, the dsDNA was removed from the surface of the PDNTs to restore the fluorescence. The release of the dsDNA was triggered by Exo III digestion. At the same time, the liberated Hg2+ mediates a new cycle of digestion. This assay is ultrasensitive for the selective recognition of Hg2+, and a detection limit as low as 10 pM was achieved. In addition, the fluorescent biosensing system also displays remarkable specificity to Hg2+ in the presence of other possible competing ions. This approach was applied to the determination of Hg2+ in real water samples with good recovery and high efficiency for practical analysis.

  1. High MRI performance fluorescent mesoporous silica-coated magnetic nanoparticles for tracking neural progenitor cells in an ischemic mouse model

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Wang, Yao; Tang, Yaohui; Jiao, Zheng; Xie, Chengying; Zhang, Haijiao; Gu, Ping; Wei, Xunbin; Yang, Guo-Yuan; Gu, Hongchen; Zhang, Chunfu

    2013-05-01

    Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future.Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future. Electronic supplementary information (ESI) available: Details of cell internalization of fmSiO4@SPIONs compared with SHU555A, immunofluorescence image of the immature phenotype of labeled C17.2. See DOI: 10.1039/c3nr00119a

  2. Fast globally optimal segmentation of cells in fluorescence microscopy images.

    PubMed

    Bergeest, Jan-Philip; Rohr, Karl

    2011-01-01

    Accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression in high-throughput screening applications. We propose a new approach for segmenting cell nuclei which is based on active contours and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images of different cell types. We have also performed a quantitative comparison with previous segmentation approaches.

  3. Donor-Acceptor-Collector Ternary Crystalline Films for Efficient Solid-State Photon Upconversion.

    PubMed

    Ogawa, Taku; Hosoyamada, Masanori; Yurash, Brett; Nguyen, Thuc-Quyen; Yanai, Nobuhiro; Kimizuka, Nobuo

    2018-06-25

    It is pivotal to achieve efficient triplet-triplet annihilation based photon upconversion (TTA-UC) in the solid-state for enhancing potentials of renewable energy production devices. However, the UC efficiency of solid materials is largely limited by low fluorescence quantum yields that originate from the aggregation of TTA-UC chromophores, and also by severe back energy transfer from the acceptor singlet state to the singlet state of the triplet donor in the condensed state. In this work, to overcome these issues, we introduce a highly fluorescent singlet energy collector as the third component of donor-doped acceptor crystalline films, in which dual energy migration, i.e., triplet energy migration for TTA-UC and succeeding singlet energy migration for transferring energy to a collector, takes place. To demonstrate this scheme, a highly fluorescent singlet energy collector was added as the third component of donor-doped acceptor crystalline films. An anthracene-based acceptor containing alkyl chains and a carboxylic moiety is mixed with the triplet donor Pt(II) octaethylporphyrin (PtOEP) and the energy collector 2,5,8,11-tetra- tert-butylperylene (TTBP) in solution, and spin-coating of the mixed solution gives acceptor films of nanofibrous crystals homogeneously doped with PtOEP and TTBP. Interestingly, delocalized singlet excitons in acceptor crystals are found to diffuse effectively over the distance of ~37 nm. Thanks to this high diffusivity, only 0.5 mol% of doped TTBP can harvest most of the singlet excitons, which successfully doubles the solid-state fluorescent quantum yield of acceptor/TTBP blend films to 76%. Furthermore, since the donor PtOEP and the collector TTBP are separately isolated in the nanofibrous acceptor crystals, the singlet back energy transfer from the collector to the donor is effectively avoided. Such efficient singlet energy collection and inhibited back energy transfer processes result in a large increase of UC efficiency up to 9.0%, offering rational design principles towards ultimately efficient solid-state upconverters.

  4. Extremely efficient flexible organic light-emitting diodes with modified graphene anode

    NASA Astrophysics Data System (ADS)

    Han, Tae-Hee; Lee, Youngbin; Choi, Mi-Ri; Woo, Seong-Hoon; Bae, Sang-Hoon; Hong, Byung Hee; Ahn, Jong-Hyun; Lee, Tae-Woo

    2012-02-01

    Although graphene films have a strong potential to replace indium tin oxide anodes in organic light-emitting diodes (OLEDs), to date, the luminous efficiency of OLEDs with graphene anodes has been limited by a lack of efficient methods to improve the low work function and reduce the sheet resistance of graphene films to the levels required for electrodes. Here, we fabricate flexible OLEDs by modifying the graphene anode to have a high work function and low sheet resistance, and thus achieve extremely high luminous efficiencies (37.2 lm W-1 in fluorescent OLEDs, 102.7 lm W-1 in phosphorescent OLEDs), which are significantly higher than those of optimized devices with an indium tin oxide anode (24.1 lm W-1 in fluorescent OLEDs, 85.6 lm W-1 in phosphorescent OLEDs). We also fabricate flexible white OLED lighting devices using the graphene anode. These results demonstrate the great potential of graphene anodes for use in a wide variety of high-performance flexible organic optoelectronics.

  5. Baculovirus-mediated gene transfer in butterfly wings in vivo: an efficient expression system with an anti-gp64 antibody

    PubMed Central

    2013-01-01

    Background Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. Results A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Conclusions Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer, express, and functionally examine foreign genes in butterfly wings and also in other non-model insect systems. PMID:23522444

  6. Disposal of Energy by UV-B Sunscreens

    NASA Astrophysics Data System (ADS)

    Nordlund, Thomas; Krishnan, Rajagopal

    2008-03-01

    Ideal sunscreens absorb dangerous UV light and dispose of the energy safely. ``Safe disposal'' usually means conversion to heat. However, efficient absorption entails a high radiative rate, which implies high energy-transfer and other rates, unless some process intervenes to ``defuse'' the excited state. We studied the excited-state kinetics of three UV-B (290-320 nm) sunscreens by absorption, steady-state and time-resolved fluorescence. Excited-state rate analysis suggests that some sunscreens have low radiative-rate ``dark'' states, in addition to normal excited states.* We deduce dark states when sunscreens of high extinction coefficient do not show lifetimes and total emission consistent with such high radiative rates. A high radiative rate, accompanied by efficient fluorescence emission and/or transfer, may be unfavorable for a sunscreen. In spite of its dark excited state, padimate O shows significant re-emission of light in the UV-A (320-400 nm) and energy transfer to a natural component of excised skin, probably collagen. * Krishnan, R. and T.M. Nordlund (2007) J. Fluoresc. DOI 10.1007/s10895-007-0264-3.

  7. CH3 NH3 PbBr3 Perovskite Nanocrystals as Efficient Light-Harvesting Antenna for Fluorescence Resonance Energy Transfer.

    PubMed

    Muthu, Chinnadurai; Vijayan, Anuja; Nair, Vijayakumar C

    2017-05-04

    Hybrid perovskites have created enormous research interest as a low-cost material for high-performance photovoltaic devices, light-emitting diodes, photodetectors, memory devices and sensors. Perovskite materials in nanocrystal form that display intense luminescence due to the quantum confinement effect were found to be particularly suitable for most of these applications. However, the potential use of perovskite nanocrystals as a light-harvesting antenna for possible applications in artificial photosynthesis systems is not yet explored. In the present work, we study the light-harvesting antenna properties of luminescent methylammonium lead bromide (CH 3 NH 3 PbBr 3 )-based perovskite nanocrystals using fluorescent dyes (rhodamine B, rhodamine 101, and nile red) as energy acceptors. Our studies revealed that CH 3 NH 3 PbBr 3 nanocrystals are an excellent light-harvesting antenna, and efficient fluorescence resonance energy transfer occurs from the nanocrystals to fluorescent dyes. Further, the energy transfer efficiency is found to be highly dependent on the number of anchoring groups and binding ability of the dyes to the surface of the nanocrystals. These observations may have significant implications for perovskite-based light-harvesting devices and their possible use in artificial photosynthesis systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Highly fluorescent carbon dots for visible sensing of doxorubicin release based on efficient nanosurface energy transfer.

    PubMed

    Wang, Beibei; Wang, Shujun; Wang, Yanfang; Lv, Yan; Wu, Hao; Ma, Xiaojun; Tan, Mingqian

    2016-01-01

    To prepare fluorescent carbon dots for loading cationic anticancer drug through donor-quenched nanosurface energy transfer in visible sensing of drug release. Highly fluorescent carbon dots (CDs) were prepared by a facile hydrothermal approach from citric acid and o-phenylenediamine. The obtained CDs showed a high quantum yield of 46 % and exhibited good cytocompatibility even at 1 mg/ml. The cationic anticancer drug doxorubicin (DOX) can be loaded onto the negatively charged CDs through electrostatic interactions. Additionally, the fluorescent CDs feature reversible donor-quenched mode nanosurface energy transfer. When loading the energy receptor DOX, the donor CDs' fluorescence was switched "off", while it turned "on" again after DOX release from the surface through endocytic uptake. Most DOX molecules were released from the CDs after 6 h incubation and entered cell nuclear region after 8 h, suggesting the drug delivery system may have potential for visible sensing in drug release.

  9. Double-cladding-fiber-based detection system for intravascular mapping of fluorescent molecular probes

    NASA Astrophysics Data System (ADS)

    Razansky, R. Nika; Rozental, Amir; Mueller, Mathias S.; Deliolanis, Nikolaos; Jaffer, Farouc A.; Koch, Alexander W.; Ntziachristos, Vasilis

    2011-03-01

    Early detection of high-risk coronary atherosclerosis remains an unmet clinical challenge. We have previously demonstrated a near-infrared fluorescence catheter system for two-dimensional intravascular detection of fluorescence molecular probes [1]. In this work we improve the system performance by introducing a novel high resolution sensor. The main challenge of the intravascular sensor is to provide a highly focused spot at an application relevant distance on one hand and a highly efficient collection of emitted light on the other. We suggest employing a double cladding optical fiber (DCF) in combination with focusing optics to provide a sensor with both highly focused excitation light and highly efficient fluorescent light collection. The excitation laser is coupled into the single mode core of DCF and guided through a focusing element and a right angle prism. The resulting side-fired beam exhibits a small spot diameter (50 μm) throughout a distance of up to 2 mm from the sensor. This is the distance of interest for intravascular coronary imaging application, determined by an average human coronary artery diameter. At the blood vessel wall, an activatable fluorescence molecular probe is excited in the diseased lesions. Next light of slightly shifted wavelength emits only in the places of the inflammations, associated with dangerous plaques [2]. The emitted light is collected by the cladding of the DCF, with a large collection angle (NA=0.4). The doublecladding acts as multimodal fiber and guides the collected light to the photo detection elements. The sensor automatically rotates and pulled-back, while each scanned point is mapped according to the amount of detected fluorescent emission. The resulting map of fluorescence activity helps to associate the atherosclerotic plaques with the inflammation process. The presented detection system is a valuable tool in the intravascular plaque detection and can help to differentiate the atherosclerotic plaques based on their biological activity, identify the ones that prone to rupture and therefore require more medical attention.

  10. Masked red-emitting carbopyronine dyes with photosensitive 2-diazo-1-indanone caging group.

    PubMed

    Kolmakov, Kirill; Wurm, Christian; Sednev, Maksim V; Bossi, Mariano L; Belov, Vladimir N; Hell, Stefan W

    2012-03-01

    Caged near-IR emitting fluorescent dyes are in high demand in optical microscopy but up to now were unavailable. We discovered that the combination of a carbopyronine dye core and a photosensitive 2-diazo-1-indanone residue leads to masked near-IR emitting fluorescent dyes. Illumination of these caged dyes with either UV or visible light (λ < 420 nm) efficiently generates fluorescent compounds with absorption and emission at 635 nm and 660 nm, respectively. A high-yielding synthetic route with attractive possibilities for further dye design is described in detail. Good photostability, high contrast, and a large fluorescence quantum yield after uncaging are the most important features of the new compounds for non-invasive imaging in high-resolution optical microscopy. For use in immunolabelling the caged dyes were decorated with a (hydrophilic) linker and an (activated) carboxyl group.

  11. Fluorescent pyrimidine ribonucleotide: synthesis, enzymatic incorporation and utilization

    PubMed Central

    Srivatsan, Seergazhi G.

    2008-01-01

    Fluorescent nucleobase analogs that respond to changes in their microenvironment are valuable for studying RNA structure, dynamics and recognition. The most commonly used fluorescent ribonucleoside is 2-aminopurine, a highly responsive purine analog. Responsive isosteric fluorescent pyrimidine analogs are, however, rare. Appending 5-membered aromatic heterocycles at the 5-position on a pyrimidine core has recently been found to provide a family of responsive fluorescent nucleoside analogs with emission in the visible range. To explore the potential utility of this chromophore for studying RNA–ligand interactions, an efficient incorporation method is necessary. Here we describe the synthesis of the furan-containing ribonucleoside and its triphosphate, as well as their basic photophysical characteristics. We demonstrate that T7 RNA polymerase accepts this fluorescent ribonucleoside triphosphate as a substrate in in vitro transcription reactions and very efficiently incorporates it into RNA oligonucleotides, generating fluorescent constructs. Furthermore, we utilize this triphosphate for the enzymatic preparation of a fluorescent bacterial A-site, an RNA construct of potential therapeutic utility. We show that the binding of this RNA target to aminoglycoside antibiotics, its cognate ligands, can be effectively monitored by fluorescence spectroscopy. These observations are significant since isosteric emissive U derivatives are scarce and the trivial synthesis and effective enzymatic incorporation of the furan-containing U triphosphate make it accessible to the biophysical community. PMID:17256858

  12. A Versatile Molecular Design for High-Performance Nondoped OLEDs with ~100% Exciton Utilization and Negligible Efficiency Roll-Off.

    PubMed

    Liu, Huijun; Zeng, Jiajie; Guo, Jingjing; Nie, Han; Zhao, Zujin; Tang, Ben Zhong

    2018-06-01

    Nondoped organic light-emitting diodes (OLEDs) possess merits of higher stability and easier fabrication than doped devices. However, luminescent materials with high exciton utilization are generally unsuitable for nondoped OLEDs because of severe emission quenching and exciton annihilation in neat films. Herein, we wish to report a novel molecular design of integrating aggregation-induced delayed fluorescence (AIDF) moiety within host materials to explore efficient luminogens for nondoped OLEDs. By grafting 4-(phenoxazin-10-yl)benzoyl to common host materials, we develop a series of new luminescent materials with prominent AIDF property. Their neat films fluoresce strongly and can fully harvest both singlet and triplet excitons with suppressed exciton annihilation. Nondoped OLEDs of these AIDF luminogens exhibit excellent luminance (~100000 cd m-2), outstanding external quantum efficiencies (22.1-22.6%), negligible efficiency roll-off and improved operational stability. To the best of our knowledge, these are the most efficient nondoped OLEDs reported so far. This convenient and versatile molecular design is of high significance for the advance of nondoped OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Efficient processing of fluorescence images using directional multiscale representations.

    PubMed

    Labate, D; Laezza, F; Negi, P; Ozcan, B; Papadakis, M

    2014-01-01

    Recent advances in high-resolution fluorescence microscopy have enabled the systematic study of morphological changes in large populations of cells induced by chemical and genetic perturbations, facilitating the discovery of signaling pathways underlying diseases and the development of new pharmacological treatments. In these studies, though, due to the complexity of the data, quantification and analysis of morphological features are for the vast majority handled manually, slowing significantly data processing and limiting often the information gained to a descriptive level. Thus, there is an urgent need for developing highly efficient automated analysis and processing tools for fluorescent images. In this paper, we present the application of a method based on the shearlet representation for confocal image analysis of neurons. The shearlet representation is a newly emerged method designed to combine multiscale data analysis with superior directional sensitivity, making this approach particularly effective for the representation of objects defined over a wide range of scales and with highly anisotropic features. Here, we apply the shearlet representation to problems of soma detection of neurons in culture and extraction of geometrical features of neuronal processes in brain tissue, and propose it as a new framework for large-scale fluorescent image analysis of biomedical data.

  14. Carbon nanotubes as novel spacer materials on silver thin-films for generating superior fluorescence enhancements via surface plasmon coupled emission

    NASA Astrophysics Data System (ADS)

    Mulpur, Pradyumna; Podila, Ramakrishna; Rao, Apparao M.; Kamisetti, Venkataramaniah

    2016-06-01

    In this study, we report the first time implementation of single/multi-walled carbon nanotubes, as novel spacer materials, on a silver (Ag) thin-film based surface plasmon coupled emission (SPCE) platform. The engineered Ag-CNT SPCE substrates enabled the realization of up to ∼10-fold enhancement in fluorescence signal intensity, of the rhodamine b dye. This study addresses the issue that, while many of the biochemical sensing strategies are based on fluorescence, they are all fundamentally limited by the isotropic nature of the phenomenon that results in low signal collection efficiency (<1%). Pursuant to the aim of realizing superior levels of signal sensitivity, we previously reported graphene and C60 as novel spacer materials, and similarly project CNTs in this study as ‘active’ contributors for the amplification of fluorescence signals on the SPCE platform that generates highly directional emission, with very high signal to noise ratios and >50% signal collection efficiency. Considering the easy functionalization of these carbon nano-allotropes, and their high sensitivity; the economical Ag-CNT SPCE platforms can be effectively extended towards sensing applications.

  15. Efficient processing of fluorescence images using directional multiscale representations

    PubMed Central

    Labate, D.; Laezza, F.; Negi, P.; Ozcan, B.; Papadakis, M.

    2017-01-01

    Recent advances in high-resolution fluorescence microscopy have enabled the systematic study of morphological changes in large populations of cells induced by chemical and genetic perturbations, facilitating the discovery of signaling pathways underlying diseases and the development of new pharmacological treatments. In these studies, though, due to the complexity of the data, quantification and analysis of morphological features are for the vast majority handled manually, slowing significantly data processing and limiting often the information gained to a descriptive level. Thus, there is an urgent need for developing highly efficient automated analysis and processing tools for fluorescent images. In this paper, we present the application of a method based on the shearlet representation for confocal image analysis of neurons. The shearlet representation is a newly emerged method designed to combine multiscale data analysis with superior directional sensitivity, making this approach particularly effective for the representation of objects defined over a wide range of scales and with highly anisotropic features. Here, we apply the shearlet representation to problems of soma detection of neurons in culture and extraction of geometrical features of neuronal processes in brain tissue, and propose it as a new framework for large-scale fluorescent image analysis of biomedical data. PMID:28804225

  16. Highly Tunable Aptasensing Microarrays with Graphene Oxide Multilayers

    NASA Astrophysics Data System (ADS)

    Jung, Yun Kyung; Lee, Taemin; Shin, Eeseul; Kim, Byeong-Su

    2013-11-01

    A highly tunable layer-by-layer (LbL)-assembled graphene oxide (GO) array has been devised for high-throughput multiplex protein sensing. In this array, the fluorescence of different target-bound aptamers labeled with dye is efficiently quenched by GO through fluorescence resonance energy transfer (FRET), and simultaneous multiplex target detection is performed by recovering the quenched fluorescence caused by specific binding between an aptamer and a protein. Thin GO films consisting of 10 bilayers displayed a high quenching ability, yielding over 85% fluorescence quenching with the addition of a 2 μM dye-labeled aptamer. The limit for human thrombin detection in the 6- and 10-bilayered GO array is estimated to be 0.1 and 0.001 nM, respectively, indicating highly tunable nature of LbL assembled GO multilayers in controlling the sensitivity of graphene-based FRET aptasensor. Furthermore, the GO chip could be reused up to four times simply by cleaning it with distilled water.

  17. NIR-Mediated Nanohybrids of Upconversion Nanophosphors and Fluorescent Conjugated Polymers for High-Efficiency Antibacterial Performance Based on Fluorescence Resonance Energy Transfer.

    PubMed

    Li, Junting; Zhao, Qi; Shi, Feng; Liu, Chenghui; Tang, Yanli

    2016-12-01

    A novel nanohybrid comprised of upconversion nanophosphors (UCNPs) and fluorescent conjugated polymers (PFVCN) is rationally fabricated. The new UCNP/PFVCN nanohybrids combine the excellent antibacterial ability of PFVCN and the near IR (NIR) absorbing property of UCNPs, which allows for NIR-mediated antibacterial through the effective fluorescence resonance energy transfer from UCNPs to PFVCN accompanied with generation of reactive oxygen species to kill bacteria. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya

    2018-02-01

    Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.

  19. Efficient triplet application in exciplex delayed-fluorescence OLEDs using a reverse intersystem crossing mechanism based on a ΔES-T of around zero.

    PubMed

    Zhang, Tianyou; Chu, Bei; Li, Wenlian; Su, Zisheng; Peng, Qi Ming; Zhao, Bo; Luo, Yongshi; Jin, Fangming; Yan, Xingwu; Gao, Yuan; Wu, Hairuo; Zhang, Feng; Fan, Di; Wang, Junbo

    2014-08-13

    We demonstrate highly efficient exciplex delayed-fluorescence organic light-emitting diodes (OLEDs) in which 4,4',4″-tris[3-methylphenyl(phenyl)aminotriphenylamine (m-MTDATA) and 4,7-diphenyl-1,10-phenanthroline (Bphen) were selected as donor and acceptor components, respectively. Our m-MTDATA:Bphen exciplex electroluminescence (EL) mechanism is based on reverse intersystem crossing (RISC) from the triplet to singlet excited states. As a result, an external quantum efficiency (EQE) of 7.79% at 10 mA/cm(2) was observed, which increases by 3.2 and 1.5 times over that reported in Nat. Photonics 2012, 6, 253 and Appl. Phys. Lett. 2012, 101, 023306, respectively. The high EQE would be attributed to a very easy RISC process because the energy difference between the singlet and triplet excited states is almost around zero. The verdict was proven by photoluminescence (PL) rate analysis at different temperatures and time-resolved spectral analysis. Besides, the study of the transient PL process indicates that the presence of an unbalanced charge in exciplex EL devices is responsible for the low EQE and high-efficiency roll-off. When the exciplex devices were placed in a 100 mT magnetic field, the permanently positive magnetoelectroluminescence and magnetoconductivity were observed. The magnetic properties confirm that the efficient exciplex EL only originates from delayed fluorescence via RISC processes but is not related to the triplet-triplet annihilation process.

  20. Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue

    PubMed Central

    Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.

    2015-01-01

    Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379

  1. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform.

    PubMed

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-12-14

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.

  2. Amphiphilic inclusion spaces for various guests and regulation of fluorescence intensity of 1,8-bis(4-aminophenyl)anthracene crystals.

    PubMed

    Sugino, Misa; Hatanaka, Keisuke; Araki, Yusuke; Hisaki, Ichiro; Miyata, Mikiji; Tohnai, Norimitsu

    2014-03-10

    A host framework for inclusion of various guest molecules was investigated by preparation of inclusion crystals of 1,8-bis(4-aminophenyl)anthracene (1,8-BAPA) with organic solvents. X-ray crystallographic analysis revealed construction of the same inclusion space incorporating 1,8-BAPA and eight guest molecules including both non-polar (benzene) and polar guests (N,N-dimethylformamide, DMF). Fluorescence efficiencies varied depending on guest molecule polarity; DMF inclusion crystals exhibited the highest fluorescence intensity (ΦF=0.40), four times as high as that of a benzene inclusion crystal (ΦF=0.10). According to systematic investigations of inclusion phenomena, strong host–guest interactions and filling of the inclusion space led to a high fluorescence intensity. Temperature-dependent fluorescence spectral measurements revealed these factors effectively immobilised the host framework. Although hydrogen bonding commonly decreases fluorescence intensity, the present study demonstrated that such strong interactions provide excellent conditions for fluorescence enhancement. Thus, this remarkable behaviour has potential application toward sensing of highly polar molecules, such as biogenic compounds.

  3. High MRI performance fluorescent mesoporous silica-coated magnetic nanoparticles for tracking neural progenitor cells in an ischemic mouse model.

    PubMed

    Zhang, Lu; Wang, Yao; Tang, Yaohui; Jiao, Zheng; Xie, Chengying; Zhang, Haijiao; Gu, Ping; Wei, Xunbin; Yang, Guo-Yuan; Gu, Hongchen; Zhang, Chunfu

    2013-05-21

    Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future.

  4. Tuning Fluorescence Direction with Plasmonic Metal–Dielectric– Metal Substrates

    PubMed Central

    Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Nowaczyk, Kazimierz; Ray, Krishanu; Lakowicz, Joseph R.

    2013-01-01

    Controlling the emission properties of fluorophores is essential for improving the performance of fluorescence-based techniques in modern biochemical research, medical diagnosis, and sensing. Fluorescence emission is isotropic in nature, which makes it difficult to capture more than a small fraction of the total emission. Metal– dielectric–metal (MDM) substrates, discussed in this Letter, convert isotropic fluorescence into beaming emission normal to the substrate. This improves fluorescence collection efficiency and also opens up new avenues for a wide range of fluorescence-based applications. We suggest that MDM substrates can be readily adapted for multiple uses, such as in microarray formats, for directional fluorescence studies of multiple probes or for molecule-specific sensing with a high degree of spatial control over the fluorescence emission. SECTION: Physical Processes in Nanomaterials and Nanostructures PMID:24013521

  5. Effect of fluorescent particle size on the modulation efficiency of ultrasound-modulated fluorescence.

    PubMed

    Liu, Yuan; Yuan, Baohong; Vignola, Joseph

    2012-01-01

    To investigate whether the size of fluorescent particles affects the modulation efficiency of ultrasound-modulated fluorescence (UMF), we measured UMF and DC (direct current) signals of the fluorescence emission from four different sized fluorescent particles: (1) three carboxylate-modified fluorescent microspheres (FM) with diameters of 20 nm, 200 nm, and 1.0 µm and (2) streptavidin-conjugated Alexa Fluor 647 with a diameter of approximately 5 nm. The UMF and DC signals were simultaneously measured using a broadband lock-in amplifier and a narrowband amplifier, respectively. The ratio of the UMF strength to the DC signal strength is defined as the modulation efficiency. This modulation efficiency was then used to evaluate the effects of fluorophore size and concentration. Results show that the modulation efficiency was improved by approximately a factor of two when the size of the fluorescent particles is increased from 5 nm to 1 µm. In addition, the linear relationship between the UMF strength and ultrasound pressure (observed in our previous study) were maintained regardless of the fluorescent particle sizes.

  6. Effect of fluorescent particle size on the modulation efficiency of ultrasound-modulated fluorescence

    PubMed Central

    Liu, Yuan; Yuan, Baohong; Vignola, Joseph

    2013-01-01

    To investigate whether the size of fluorescent particles affects the modulation efficiency of ultrasound-modulated fluorescence (UMF), we measured UMF and DC (direct current) signals of the fluorescence emission from four different sized fluorescent particles: (1) three carboxylate-modified fluorescent microspheres (FM) with diameters of 20 nm, 200 nm, and 1.0 µm and (2) streptavidin-conjugated Alexa Fluor 647 with a diameter of approximately 5 nm. The UMF and DC signals were simultaneously measured using a broadband lock-in amplifier and a narrowband amplifier, respectively. The ratio of the UMF strength to the DC signal strength is defined as the modulation efficiency. This modulation efficiency was then used to evaluate the effects of fluorophore size and concentration. Results show that the modulation efficiency was improved by approximately a factor of two when the size of the fluorescent particles is increased from 5 nm to 1 µm. In addition, the linear relationship between the UMF strength and ultrasound pressure (observed in our previous study) were maintained regardless of the fluorescent particle sizes. PMID:24179476

  7. FRET Studies Between CdTe Capped by Small-Molecule Ligands and Fluorescent Protein

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhou, Dejian; He, Junhui

    2014-12-01

    Water-soluble luminescent semiconductor nanocrystals also known as quantum dots (QDs) that have prominent photostability, wide absorption cross sections and tunable narrow emission, have been shown as promising probes in immunoassays. QDs are often used as donors in fluorescence resonance energy transfer (FRET) based sensors using organic dyes or fluorescent proteins as acceptors. Here, the FRET between a QD donor and fluorescent protein acceptors has been studied. The fluorescent protein (FP)mCherry appended with a hexa-histidine-tag could effectively self-assemble onto CdTe to produce small donor-acceptor distances and hence highly efficient FRET (efficiency > 80%) at relatively low FP:CdTe copy numbers (ca.1). Using the Förster dipole-dipole interaction formula, the Förster radius (R0) and respective donor-acceptor distances for the CdTe-FP FRET systems have been calculated. The binding constants (Kd) of the QD-FP systems have also been evaluated by the emission spectra.

  8. Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals.

    PubMed

    Bergeest, Jan-Philip; Rohr, Karl

    2012-10-01

    In high-throughput applications, accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression and the understanding of cell function. We propose an approach for segmenting cell nuclei which is based on active contours using level sets and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We consider three different well-known energy functionals for active contour-based segmentation and introduce convex formulations of these functionals. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images from different experiments comprising different cell types. We have also performed a quantitative comparison with previous segmentation approaches. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation.

    PubMed

    Ren, Fang; Takashima, Hideaki; Tanaka, Yoshito; Fujiwara, Hideki; Sasaki, Keiji

    2013-11-18

    A simple tapered fiber based photonic-plasmonic hybrid nanostructure composed of a thin tapered fiber and a pseudoisocyanine (PIC)-attached Au-coated tip was demonstrated. Using this simple hybrid nanostructure, we succeeded in observing two-photon excited fluorescence from the PIC dye molecules under a weak continuous wave excitation condition. From the results of the tip-fiber distance dependence and excitation polarization dependence, we found that using a thin tapered fiber and an Au-coated tip realized efficient coupling of the incident light (~95%) and LSP excitation at the Au-coated tip, suggesting the possibility of efficiently inducing two-photon excited fluorescence from the PIC dye molecules attached on the Au-coated tip. This simple photonic-plasmonic hybrid system is one of the promising tools for single photon sources, highly efficient plasmonic sensors, and integrated nonlinear plasmonic devices.

  10. Enhancing the color gamut of white displays using novel deep-blue organic fluorescent dyes to form color-changed thin films with improved efficiency

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Ting; Huang, Wen-Yao

    2012-10-01

    This study used the novel fluorescence based deep-blue-emitting molecule BPVPDA in an organic fluorescent color thin film to exhibit deep blue color with CIE coordinates of (0.13, 0.16). The developed original organic RGB color thin film technology enables the optimization of the distinctive features of an organic light emitting diode (OLED) and thin-film-transistor (TFT) LCD display. The color filter structure maintains the same high resolution to obtain a higher level of brightness in comparison with conventional organic RGB color thin film. The image-processing engine is designed to achieve a sharp text image for a TFT LCD with organic color thin films. The organic color thin films structure uses an organic dye dopant in a limpid photoresist. With this technology, the following characteristics can be obtained: 1. high color reproduction of gamut ratio, and 2. improved luminous efficiency with organic color fluorescent thin film. This performance is among the best results ever reported for a color-filter used on TFT-LCD or OLED.

  11. Enhancing the color gamut of white displays using novel deep-blue organic fluorescent dyes to form color-changed thin films with improved efficiency

    NASA Astrophysics Data System (ADS)

    Liu, Wei-ting; Huang, Wen-Yao

    2012-06-01

    This study used novel fluorescence based deep-blue-emitting molecules, namely BPVPDA, an organic fluorescence color thin film using BPVPDA exhibit deep blue fluorine with CIE coordinates of (0.13,0.16). The developed original Organic RGB color thin film technology enables the optimization of the distinctive features of an organic light emitting diode (OLED) and (TFT) LCD display. The color filter structure maintains the same high resolution to obtain a higher level of brightness, in comparison with conventional organic RGB color thin film. The image-processing engine is designed to achieve a sharp text image for a thin-film-transistor (TFT) LCD with organic color thin films. The organic color thin films structure uses organic dye dopent in limpid photo resist. With this technology , the following characteristics can be obtained: (1) high color reproduction of gamut ratio, and (2) improved luminous efficiency with organic color fluorescence thin film. This performance is among the best results ever reported for a color-filter used on TFT-LCD and OLED.

  12. Robust Distant Entanglement Generation Using Coherent Multiphoton Scattering

    NASA Astrophysics Data System (ADS)

    Chan, Ching-Kit; Sham, L. J.

    2013-02-01

    We describe a protocol to entangle two qubits at a distance by using resonance fluorescence. The scheme makes use of the postselection of large and distinguishable fluorescence signals corresponding to entangled and unentangled qubit states and has the merits of both high success probability and high entanglement fidelity owing to the multiphoton nature. Our result shows that the entanglement generation is robust against photon fluctuations in the fluorescence signals for a wide range of driving fields. We also demonstrate that this new protocol has an average entanglement duration within the decoherence time of corresponding qubit systems, based on current experimental photon efficiency.

  13. Robust distant entanglement generation using coherent multiphoton scattering.

    PubMed

    Chan, Ching-Kit; Sham, L J

    2013-02-15

    We describe a protocol to entangle two qubits at a distance by using resonance fluorescence. The scheme makes use of the postselection of large and distinguishable fluorescence signals corresponding to entangled and unentangled qubit states and has the merits of both high success probability and high entanglement fidelity owing to the multiphoton nature. Our result shows that the entanglement generation is robust against photon fluctuations in the fluorescence signals for a wide range of driving fields. We also demonstrate that this new protocol has an average entanglement duration within the decoherence time of corresponding qubit systems, based on current experimental photon efficiency.

  14. A new way towards high-efficiency thermally activated delayed fluorescence devices via external heavy-atom effect

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzhi; Jin, Jiangjiang; Huang, Zhi; Zhuang, Shaoqing; Wang, Lei

    2016-07-01

    Thermally activated delayed fluorescence (TADF) mechanism is a significant method that enables the harvesting of both triplet and singlet excitons for emission. However, up to now most efforts have been devoted to dealing with the relation between singlet-triplet splitting (ΔEST) and fluorescence efficiency, while the significance of spin-orbit coupling (SOC) is usually ignored. In this contribution, a new method is developed to realize high-efficiency TADF-based devices through simple device-structure optimizations. By inserting an ultrathin external heavy-atom (EHA) perturber layer in a desired manner, it provides useful means of accelerating the T1 → S1 reverse intersystem crossing (RISC) in TADF molecules without affecting the corresponding S1 → T1 process heavily. Furthermore, this strategy also promotes the utilization of host triplets through Förster mechanism during host → guest energy transfer (ET) processes, which helps to get rid of the solely dependence upon Dexter mechanism. Based on this strategy, we have successfully raised the external quantum efficiency (EQE) in 4CzPN-based devices by nearly 38% in comparison to control devices. These findings provide keen insights into the role of EHA played in TADF-based devices, offering valuable guidelines for utilizing certain TADF dyes which possess high radiative transition rate but relatively inefficient RISC.

  15. Efficient expression of green fluorescent protein (GFP) mediated by a chimeric promoter in Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Wu, Jinxia; Hu, Zhangli; Wang, Chaogang; Li, Shuangfei; Lei, Anping

    2008-08-01

    To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-I and HSP70A-RBCS2 mediated strain Tran-II. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-II was at least double of that in Tran-I. In addition, a threefold increase of GFP in Tran-II was induced by heat shock at 40°C. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. reinhardtii.

  16. Glowing locked nucleic acids: brightly fluorescent probes for detection of nucleic acids in cells.

    PubMed

    Østergaard, Michael E; Cheguru, Pallavi; Papasani, Madhusudhan R; Hill, Rodney A; Hrdlicka, Patrick J

    2010-10-13

    Fluorophore-modified oligonucleotides have found widespread use in genomics and enable detection of single-nucleotide polymorphisms, real-time monitoring of PCR, and imaging of mRNA in living cells. Hybridization probes modified with polarity-sensitive fluorophores and molecular beacons (MBs) are among the most popular approaches to produce hybridization-induced increases in fluorescence intensity for nucleic acid detection. In the present study, we demonstrate that the 2'-N-(pyren-1-yl)carbonyl-2'-amino locked nucleic acid (LNA) monomer X is a highly versatile building block for generation of efficient hybridization probes and quencher-free MBs. The hybridization and fluorescence properties of these Glowing LNA probes are efficiently modulated and optimized by changes in probe backbone chemistry and architecture. Correctly designed probes are shown to exhibit (a) high affinity toward RNA targets, (b) excellent mismatch discrimination, (c) high biostability, and (d) pronounced hybridization-induced increases in fluorescence intensity leading to formation of brightly fluorescent duplexes with unprecedented emission quantum yields (Φ(F) = 0.45-0.89) among pyrene-labeled oligonucleotides. Finally, specific binding between messenger RNA and multilabeled quencher-free MBs based on Glowing LNA monomers is demonstrated (a) using in vitro transcription assays and (b) by quantitative fluorometric assays and direct microscopic observation of probes bound to mRNA in its native form. These features render Glowing LNA as promising diagnostic probes for biomedical applications.

  17. A novel quantitative analysis method of three-dimensional fluorescence spectra for vegetable oils contents in edible blend oil

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei

    2015-04-01

    Edible blend oil is a mixture of vegetable oils. Eligible blend oil can meet the daily need of two essential fatty acids for human to achieve the balanced nutrition. Each vegetable oil has its different composition, so vegetable oils contents in edible blend oil determine nutritional components in blend oil. A high-precision quantitative analysis method to detect the vegetable oils contents in blend oil is necessary to ensure balanced nutrition for human being. Three-dimensional fluorescence technique is high selectivity, high sensitivity, and high-efficiency. Efficiency extraction and full use of information in tree-dimensional fluorescence spectra will improve the accuracy of the measurement. A novel quantitative analysis is proposed based on Quasi-Monte-Carlo integral to improve the measurement sensitivity and reduce the random error. Partial least squares method is used to solve nonlinear equations to avoid the effect of multicollinearity. The recovery rates of blend oil mixed by peanut oil, soybean oil and sunflower are calculated to verify the accuracy of the method, which are increased, compared the linear method used commonly for component concentration measurement.

  18. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio

    NASA Astrophysics Data System (ADS)

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-01

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  19. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio.

    PubMed

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-12

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  20. A coumarin-based "turn-on" fluorescent sensor for the determination of Al3+: single crystal X-ray structure and cell staining properties.

    PubMed

    Guha, Subarna; Lohar, Sisir; Sahana, Animesh; Banerjee, Arnab; Safin, Damir A; Babashkina, Maria G; Mitoraj, Mariusz P; Bolte, Michael; Garcia, Yann; Mukhopadhyay, Subhra Kanti; Das, Debasis

    2013-07-28

    An efficient Al(3+) receptor, 6-(2-hydroxybenzylideneamino)-2H-chromen-2-one (HBC), has been synthesized by condensing salicylaldehyde with 6-aminocoumarin. The molecular structure of HBC has been determined by a single crystal X-ray analysis. It was established that in the presence of Al(3+), HBC shows 25 fold enhancement of fluorescence intensity which might be attributed to the chelation-enhanced fluorescence (CHEF) process. HBC binds Al(NO3)3 in a 1 : 1 stoichiometry with a binding constant (K) of 7.9 × 10(4) M(-1). Fe(3+) and Mn(2+) quench the emission intensity of the [HBC + Al(3+)] system to an insignificant extent at a concentration 10 times higher compared to that of Al(3+). HBC is highly efficient in the detection of intracellular Al(3+) under a fluorescence microscope.

  1. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes

    PubMed Central

    Ren, Xiaomei; El-Sagheer, Afaf H.; Brown, Tom

    2016-01-01

    A sterically undemanding azide analogue of dTTP (AHP dUTP) with an alkyl chain and ethynyl attachment to the nucleobase was designed and incorporated into DNA by primer extension, reverse transcription and polymerase chain reaction (PCR). An azide-modified 523 bp PCR amplicon with all 335 thymidines replaced by AHP dU was shown to be a perfect copy of the template from which it was amplified. Replacement of thymidine with AHP dU increases duplex stability, accounting in part for the high incorporation efficiency of the azide-modified triphosphate. Single-stranded azide-labelled DNA was conveniently prepared from PCR products by λ-exonuclease digestion and streptavidin magnetic bead isolation. Efficient fluorescent labelling of single and double-stranded DNA was carried out using dyes functionalized with bicyclo[6.1.0]non-4-yne (BCN) via the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. This revealed that the degree of labelling must be carefully controlled to achieve optimum fluorescence and avoid fluorescence quenching. Dual-coloured probes were obtained in a single tube fluorescent labelling reaction; and varying the ratios of the two dyes provides a simple method to prepare DNA probes with unique fluorescent signatures. AHP dUTP is a versatile clickable nucleotide with potentially wide applications in biology and nanotechnology including single molecule studies and synthesis of modified aptamer libraries via SELEX. PMID:26819406

  2. Low-picomolar limits of detection using high-power light-emitting diodes for fluorescence.

    PubMed

    de Jong, Ebbing P; Lucy, Charles A

    2006-05-01

    Fluorescence detectors are ever more frequently being used with light-emitting diodes (LEDs) as the light source. Technological advances in the solid-state lighting industry have produced LEDs which are also suitable tools in analytical measurements. LEDs are now available which deliver 700 mW of radiometric power. While this greater light power can increase the fluorescence signal, it is not trivial to make proper use of this light. This new generation of LEDs has a large emitting area and a highly divergent beam. This presents a classic problem in optics where one must choose between either a small focused light spot, or high light collection efficiency. We have selected for light collection efficiency, which yields a light spot somewhat larger than the emitting area of the LED. This light is focused onto a flow cell. Increasing the detector cell internal diameter (i.d.) produces gains in (sensitivity)3. However, since the detector cell i.d. is smaller than the LED spot size, scattering of excitation light towards the detector remains a significant source of background signal. This can be minimized through the use of spectral filters and spatial filters in the form of pinholes. The detector produced a limit of detection (LOD) of 3 pM, which is roughly three orders of magnitude lower than other reports of LED-based fluorescence detectors. Furthermore, this LOD comes within a factor of six of much more expensive laser-based fluorescence systems. This detector has been used to monitor a separation from a gel filtration column of fluorescently labeled BSA from residual labeling reagent. The LOD of fluorescently labeled BSA is 25 pM.

  3. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance.

    PubMed

    Liu, Hongliang; Jia, Yuechen; Vázquez de Aldana, Javier Rodríguez; Jaque, Daniel; Chen, Feng

    2012-08-13

    We report on the fabrication of depressed cladding waveguide lasers in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) ceramics microstructured by femtosecond laser pulses. Full control over the confined light spatial distribution is demonstrated by the fabrication of high contrast waveguides with hexagonal, circular and trapezoidal configurations. The confocal fluorescence measurements of the waveguides reveal that the original luminescence features of Nd3+ ions are well-preserved in the waveguide regions. Under optical pump at 808 nm, cladding waveguides showed continuous wave efficient laser oscillation. The maximum output power obtained at 1064.5 nm is ~181 mW with a slope efficiency as high as 44%, which suggests that the fabricated Nd:YAG ceramic waveguides are promising candidates for efficient integrated laser sources.

  4. Realizing Highly Efficient Solution-Processed Homojunction-Like Sky-Blue OLEDs by Using Thermally Activated Delayed Fluorescent Emitters Featuring an Aggregation-Induced Emission Property.

    PubMed

    Wu, Kailong; Wang, Zian; Zhan, Lisi; Zhong, Cheng; Gong, Shaolong; Xie, Guohua; Yang, Chuluo

    2018-04-05

    Two new blue emitters, i.e., bis-[2-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone ( o-ACSO2) and bis-[3-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone ( m-ACSO2), with reserved fine thermally activated delayed fluorescent (TADF) nature and simply tuned thermal and optoelectronic properties, were synthesized by isomer engineering. The meta-linking compound, i.e., m-ACSO2, obtains the highest photoluminescence quantum yield with a small singlet-triplet energy gap, a moderate delayed fluorescent lifetime, excellent solubility, and neat film homogeneity. Due to its unique aggregation-induced emission (AIE) character, neat film-based heterojunction-like organic light-emitting diodes (OLEDs) are achievable. By inserting an excitonic inert exciton-blocking layer, the PN heterojunction-like emission accompanied by intefacial exciplex was shifted to a homojunction-like channel mainly from the AIE emitter itself, providing a new tactic to generate efficient blue color from neat films. The solution-processed nondoped sky-blue OLED employing m-ACSO2 as emitter with homojunction-like emission achieved a maximum external quantum efficiency of 17.2%. The design strategies presented herein provide practical methods to construct efficient blue TADF dyes and realize high-performance blue TADF devices.

  5. A highly sensitive and selective fluorescent sensor for detection of sulfide anion based on the steric hindrance effect

    NASA Astrophysics Data System (ADS)

    Chen, Guanfan; Tang, Mengzhuo; Fu, Xiufang; Cheng, Fenmin; Zou, Xianghua; Wang, Jingpei; Zeng, Rongjin

    2018-01-01

    Sulfide anions are not only generated as a byproduct from industrial processes but also as a crucial kind of element in biological systems. Therefore, fluorescent probes for detecting sulfide anion with sensitive and selective characters are highly popular. In this study, we report a highly sensitive and selective fluorescent sensor M1 for detection of sulfide anion based on the steric hindrance effect, where the recognition unit, dinitrobenzenesulfonate ester group is linked to aromatic ortho-position in the porphyrin, and correspondingly the fluorescence of fluorescein is efficiently quenched. Compared with the sensors with recognition unit linked to the other aromatic positions, the fluorescent sensor M1 has a lower fluorescence background. Furthermore, the corresponding fluorescence responses (F/F0) of M1 for mercapto amino-acid GSH, Hcy and Cys, were all far lower than the relative fluorescence ratio F/F0 values for S2-. It means that M1 is sensitive and selective to detection of S2-, and has an anti-disturbance ability to the biologically-relevant thiols, GSH, Hcy and Cys, and has the prospect of application in the exact detection of sulfide anions in living organisms. This approach offers some useful insights for realizing sensitive and selective fluorescent turn-on sensing in the detection assays for other analytes.

  6. Efficient, deep-blue TADF-emitters for OLED display applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Volz, Daniel; Baumann, Thomas

    2016-09-01

    Currently, the mobile display market is strongly shifting towards AMOLED technology, in order to enable curved and flexible displays. This leads to a growing demand for highly efficient OLED emitters to reduce the power consumption and increase display resolution at the same time. While highly efficient green and red OLEDs already found their place in commercial OLED-displays, the lack of efficient blue emitters is still an issue. Consequently, the active area for blue is considerably larger than for green and red pixels, to make up for the lower efficiency. We intend to close this efficiency-gap with novel emitters based on thermally activated delayed fluorescence (TADF) technology. Compared to state-of-the-art fluorescent dopants, the efficiency of TADF-emitters is up to four times higher. At the same time, it is possible to design them in a way to maintain deep blue emission, i.e. CIE y < 0.2. These aspects are relevant to produce efficient high resolution AMOLED displays. Apart from these direct customer benefits, our TADF technology does not contain any rare elements, which allows for the fabrication of sustainable OLED technology. In this work, we highlight one of our recently developed blue TADF materials. Basic material properties as well as first device results are discussed. In a bottom-emitting device, a CIEx/CIEy coordinate of (0.16/0.17) was achieved with efficiency values close to 20% EQE.

  7. Light Sources and Ballast Circuits

    NASA Astrophysics Data System (ADS)

    Yorifuji, Takashi; Sakai, Makoto; Yasuda, Takeo; Maehara, Akiyoshi; Okada, Atsunori; Gouriki, Takeshi; Mannami, Tomoaki

    According to the machinery statistics by Ministry of Economy, Trade and Industry (METI), the total of domestic light bulb production in 2006 was 1,101 million (88.5% year-on-year). Production for general purpose illumination light bulbs and halogen light bulbs accounted for 122 million (99.2% y/y) and 45 million (96.3% y/y), respectively. The total of fluorescent lamp production was 988 million (114.9%) and the production of general purpose fluorescent lamps excluding backlights accounted for 367 million (101.7% y/y). Further, HID lamp production was 10 million (106.3% y/y). What is noteworthy regarding such lamp production is that, similar to the previous year, the sales volume (amount) of lamps for general illumination exceeded 100% against the previous year, indicating a steady shift to high value added products. Major lighting exhibitions in 2006 included the Light + Building Trade Fair held in Frankfurt in April and the Light Fair International 2006 held in Las Vegas, U.S.A. in May, both of which demonstrated signs of acceleration toward energy saving, high efficiency and resource saving. As for incandescent lamps, products filled with larger atomic weight gases aiming at higher efficiency/longer life are becoming the mainstream. As for new technologies, it was experimentally demonstrated that infrared radiation can be suppressed by processing micro cavities to metal plates made of tungsten, tantalum, etc. For fluorescent lamps, straight and circular fluorescent lamps achieving a longer life/higher luminous flux maintenance factor continued to be widely developed/launched again this year. For compact fluorescent lamps, energy saving/high efficiency products, multifunctional type products combined with LED and new shaped products were launched. As to HID lamps, ceramic metal halide lamps with high efficiency, improved color rendering, longer life and higher luminous flux maintenance factor were commercialized one after another. Numerous studies and analyses, on discharge models were reported. Further, studies on ultra high-pressure mercury lamps as light sources for projectors are becoming the mainstream of HID lamp related researches. For high-pressure sodium lamps, many studies on plant growing and pest control utilizing low insect attracting aspects were also reported in 2006. Additionally, for discharge lamps, the minimum sustaining electric power for arc tubes employed in electrode-less compact fluorescent lamps was investigated. For Hg-free rare-gas fluorescent lamps, a luminance of 10,000cd/m2 was attained by a 1 meter-long external duplex spiral electrode prototype using Xe/Ne barrier discharge. As to startup circuits, the commercialization of energy saving and high value added products mainly associated with fluorescent lamps and HID lamps are becoming common. Further, the miniaturization of startup circuits for self electronic-ballasted lamps has advanced. Speaking of the overall light sources and startup circuits in 2006 and with the enforcement of RoHS in Europe in July, the momentum toward hazardous substance-free and energy saving initiatives has been enhanced from the perspective of protecting the global environment. It is anticipated that similar restrictions will be globally enforced in the future.

  8. Efficient HOMO-LUMO separation by multiple resonance effect toward ultrapure blue thermally activated delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Takuji; Ikuta, Toshiaki; Shiren, Kazushi; Nakajima, Kiichi; Nomura, Shintaro; Ni, Jingping

    2016-09-01

    Organic light-emitting diodes (OLEDs) play an important role in the new generation of flat-panel displays. Conventional OLEDs employing fluorescent materials together with triplet-triplet annihilation suffer from a relatively low internal quantum efficiency (IQE) of 62.5%. On the other hand, the IQE of OLEDs employing phosphorescent or thermally activated delayed fluorescence (TADF) materials can reach 100%. However, these materials exhibit very broad peaks with a full-width at half-maximum (FWHM) of 70-100 nm and cannot satisfy the color-purity requirements for displays. Therefore, the latest commercial OLED displays employ blue fluorescent materials with a relatively low IQE, and efficient blue emitters with a small FWHM are highly needed. In our manuscript, we present organic molecules that exhibit ultrapure blue fluorescence based on TADF. These molecules consist of three benzene rings connected by one boron and two nitrogen atoms, which establish a rigid polycyclic framework and significant localization of the highest occupied and lowest unoccupied molecular orbitals by a multiple resonance effect. An OLED device based on the new emitter exhibits ultrapure blue emission at 467 nm with an FWHM of 28 nm, Commission Internationale de l'Eclairage (CIE) coordinates of (0.12, 0.13), and an IQE of 100%, which represent record-setting performance for blue OLED devices.

  9. The efficiency of non-photochemical fluorescence quenching by cation radicals in photosystem II reaction centers.

    PubMed

    Paschenko, V Z; Churin, A A; Gorokhov, V V; Grishanova, N P; Korvatovskii, B N; Maksimov, E G; Mamedov, M D

    2016-12-01

    In a direct experiment, the rate constants of photochemical k p and non-photochemical k p + quenching of the chlorophyll fluorescence have been determined in spinach photosystem II (PS II) membrane fragments, oxygen-evolving PS II core, as well as manganese-depleted PS II particles using pulse fluorimetry. In the dark-adapted reaction center(s) (RC), the fluorescence decay kinetics of the antenna were measured at low-intensity picosecond pulsed excitation. To create a "closed" P680 + Q A - state, RCs were illuminated by high-intensity actinic flash 8 ns prior to the measuring flash. The obtained data were approximated by the sum of two decaying exponents. It was found that the antennae fluorescence quenching efficiency by the oxidized photoactive pigment of RC P680 + was about 1.5 times higher than that of the neutral P680 state. These results were confirmed by a single-photon counting technique, which allowed to resolve the additional slow component of the fluorescence decay. Slow component was assigned to the charge recombination of P680 + Pheo - in PS II RC. Thus, for the first time, the ratio k p + /k p  ≅ 1.5 was found directly. The mechanism of the higher efficiency of non-photochemical quenching comparing to photochemical quenching is discussed.

  10. Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Li, Jian-Jun; Wang, A.-Qing; Chen, Yu; Zhao, Jun-Wu

    2010-09-01

    Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance-induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell.

  11. APTS and rGO co-functionalized pyrenated fluorescent nanonets for representative vapor phase nitroaromatic explosive detection

    NASA Astrophysics Data System (ADS)

    Guo, Linjuan; Zu, Baiyi; Yang, Zheng; Cao, Hongyu; Zheng, Xuefang; Dou, Xincun

    2014-01-01

    For the first time, flexible PVP/pyrene/APTS/rGO fluorescent nanonets were designed and synthesized via a one-step electrospinning method to detect representative subsaturated nitroaromatic explosive vapor. The functional fluorescent nanonets, which were highly stable in air, showed an 81% quenching efficiency towards TNT vapor (~10 ppb) with an exposure time of 540 s at room temperature. The nice performance of the nanonets was ascribed to the synergistic effects induced by the specific adsorption properties of APTS, the fast charge transfer properties and the effective π-π interaction with pyrene and TNT of rGO. Compared to the analogues of TNT, the PVP/pyrene/APTS/rGO nanonets showed notable selectivity towards TNT and DNT vapors. The explored functionalization method opens up brand new insight into sensitive and selective detection of vapor phase nitroaromatic explosives.For the first time, flexible PVP/pyrene/APTS/rGO fluorescent nanonets were designed and synthesized via a one-step electrospinning method to detect representative subsaturated nitroaromatic explosive vapor. The functional fluorescent nanonets, which were highly stable in air, showed an 81% quenching efficiency towards TNT vapor (~10 ppb) with an exposure time of 540 s at room temperature. The nice performance of the nanonets was ascribed to the synergistic effects induced by the specific adsorption properties of APTS, the fast charge transfer properties and the effective π-π interaction with pyrene and TNT of rGO. Compared to the analogues of TNT, the PVP/pyrene/APTS/rGO nanonets showed notable selectivity towards TNT and DNT vapors. The explored functionalization method opens up brand new insight into sensitive and selective detection of vapor phase nitroaromatic explosives. Electronic supplementary information (ESI) available: Vapor pressure of TNT and its analogues, fluorescence quenching kinetics, fluorescence quenching efficiencies and additional SEM images. See DOI: 10.1039/c3nr04960d

  12. Emission turn-on and solubility turn-off in conjugated polymers: one- and two-photon-induced removal of fluorescence-quenching solubilizing groups.

    PubMed

    Schelkle, Korwin M; Becht, Steffy; Faraji, Shirin; Petzoldt, Martin; Müllen, Klaus; Buckup, Tiago; Dreuw, Andreas; Motzkus, Marcus; Hamburger, Manuel

    2015-01-01

    The synthesis of highly efficient two-photon uncaging groups and their potential use in functional conjugated polymers for post-polymerization modification are reported. Careful structural design of the employed nitrophenethyl caging groups allows to efficiently induce bond scission by a two-photon process through a combination of exceptionally high two-photon absorption cross-sections and high reaction quantum yields. Furthermore, π-conjugated polyfluorenes are functionalized with these photocleavable side groups and it is possible to alter their emission properties and solubility behavior by simple light irradiation. Cleavage of side groups leads to a turn-on of the fluorescence while solubility of the π-conjugated materials is drastically reduced. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Rapid and reliable diagnostic method to detect Zika virus by real-time fluorescence reverse transcription loop-mediated isothermal amplification.

    PubMed

    Guo, Xu-Guang; Zhou, Yong-Zhuo; Li, Qin; Wang, Wei; Wen, Jin-Zhou; Zheng, Lei; Wang, Qian

    2018-04-18

    To detect Zika virus more rapidly and accurately, we developed a novel method that utilized a real-time fluorescence reverse transcription loop-mediated isothermal amplification (LAMP) technique. The NS5 gene was amplified by a set of six specific primers that recognized six distinct sequences. The amplification process, including 60 min of thermostatic reaction with Bst DNA polymerase following real-time fluorescence reverse transcriptase using genomic Zika virus standard strain (MR766), was conducted through fluorescent signaling. Among the six pairs of primers that we designate here, NS5 was the most efficient with a high sensitivity of up to 3.3 ng/μl and reproducible specificity on eight pathogen samples that were used as negative controls. The real-time fluorescence reverse transcription LAMP detection process can be completed within 35 min. Our study demonstrated that real-time fluorescence reverse transcription LAMP could be highly beneficial and convenient clinical application to detect Zika virus due to its high specificity and stability.

  14. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers.

    PubMed

    Gather, Malte C; Yun, Seok Hyun

    2014-12-08

    Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here, we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (-7 dB) and support strong optical amplification (gnet=22 cm(-1); 96 dB cm(-1)). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles.

  15. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers

    PubMed Central

    Gather, Malte C.; Yun, Seok Hyun

    2015-01-01

    Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (−7 dB) and support strong optical amplification (gnet = 22 cm−1; 96 dB cm−1). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles. PMID:25483850

  16. Harvesting Triplet Excitons with Exciplex Thermally Activated Delayed Fluorescence Emitters toward High Performance Heterostructured Organic Light-Emitting Field Effect Transistors.

    PubMed

    Song, Li; Hu, Yongsheng; Liu, Zheqin; Lv, Ying; Guo, Xiaoyang; Liu, Xingyuan

    2017-01-25

    The utilization of triplet excitons plays a key role in obtaining high emission efficiency for organic electroluminescent devices. However, to date, only phosphorescent materials have been implemented to harvest the triplet excitons in the organic light-emitting field effect transistors (OLEFETs). In this work, we report the first incorporation of exciplex thermally activated delayed fluorescence (TADF) emitters in heterostructured OLEFETs to harvest the triplet excitons. By developing a new kind of exciplex TADF emitter constituted by m-MTDATA (4,4',4″-tris(N-3-methylphenyl-N-phenylamino)triphenylamine) as the donor and OXD-7 (1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene) as the acceptor, an exciton utilization efficiency of 74.3% for the devices was achieved. It is found that the injection barrier between hole transport layer and emission layer as well as the ratio between donor and acceptor would influence the external quantum efficiency (EQE) significantly. Devices with a maximum EQE of 3.76% which is far exceeding the reported results for devices with conventional fluorescent emitters were successfully demonstrated. Moreover, the EQE at high brightness even outperformed the result for organic light-emitting diode based on the same emitter. Our results demonstrate that the exciplex TADF emitters can be promising candidates to develop OLEFETs with high performance.

  17. A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification.

    PubMed

    Xiao, Kunyi; Liu, Juan; Chen, Hui; Zhang, Song; Kong, Jilie

    2017-05-15

    A label-free and high-efficient graphene oxide (GO)-based aptasensor was developed for the detection of low quantity cancer cells based on cell-triggered cyclic enzymatic signal amplification (CTCESA). In the absence of target cells, hairpin aptamer probes (HAPs) and dye-labeled linker DNAs stably coexisted in solution, and the fluorescence was quenched by the GO-based FÖrster resonance energy transfer (FRET) process. In the presence of target cells, the specific binding of HAPs with the target cells triggered a conformational alternation, which resulted in linker DNA complementary pairing and cleavage by nicking endonuclease-strand scission cycles. Consequently, more cleaved fragments of linker DNAs with more the terminal labeled dyes could show the enhanced fluorescence because these cleaved DNA fragments hardly combine with GOs and prevent the FRET process. Fluorescence analysis demonstrated that this GO-based aptasensor exhibited selective and sensitive response to the presence of target CCRF-CEM cells in the concentration range from 50 to 10 5 cells. The detection limit of this method was 25 cells, which was approximately 20 times lower than the detection limit of normal fluorescence aptasensors without amplification. With high sensitivity and specificity, it provided a simple and cost-effective approach for early cancer diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Absorption-emission optrode and methods of use thereof

    DOEpatents

    Hirschfeld, T.B.

    1990-05-29

    A method and apparatus are described for monitoring the physical and chemical properties of a sample fluid by measuring an optical signal generated by a fluorescent substance and modulated by an absorber substance. The emission band of the fluorescent substance overlaps the absorption band of the absorber substance, and the degree of overlap is dependent on the physical and chemical properties of the sample fluid. The fluorescent substance and absorber substance are immobilized on a substrate so that an effective number of molecules thereof are sufficiently close for resonant energy transfer to occur, thereby providing highly efficient modulation of the fluorescent emissions of the fluorescent substance by the absorber substance. 4 figs.

  19. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, I. V.; Doronina-Amitonova, L. V.; Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  20. Determination of MDMA, MDEA and MDA in urine by high performance liquid chromatography with fluorescence detection.

    PubMed

    da Costa, José Luiz; da Matta Chasin, Alice Aparecida

    2004-11-05

    This paper describes the development and validation of analytical methodology for the determination of the use of MDMA, MDEA and MDA in urine. After a simple liquid extraction, the analyses were carried out on a high performance liquid chromatography (HPLC) in an octadecyl column, with fluorescence detection. The mobile phase using a sodium dodecyl sulfate ion-pairing reagent allows good separation and efficiency. The method showed good linearity and precision. Recovery was between 85 and 102% and detection limits were 10, 15 and 20 ng/ml for MDA, MDMA and MDEA, respectively. No interfering substances were detected with fluorescence detection.

  1. Two-photon fluorescent sensor for K+ imaging in live cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D.

    2016-03-01

    It is difficult to overstate the physiological importance of potassium for life as its indispensable roles in a variety of biological processes are widely known. As a result, efficient methods for determining physiological levels of potassium are of paramount importance. Despite this, relatively few K+ fluorescence sensors have been reported, with only one being commercially available. A new two-photon excited fluorescent K+ sensor is reported. The sensor is comprised of three moieties, a highly selective K+ chelator as the K+ recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (<52-fold) in detecting K+ over other physiological metal cations. Upon binding K+, the sensor switches from non-fluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K+ sensing in living cells.

  2. Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states

    PubMed Central

    Hosokai, Takuya; Matsuzaki, Hiroyuki; Nakanotani, Hajime; Tokumaru, Katsumi; Tsutsui, Tetsuo; Furube, Akihiro; Nasu, Keirou; Nomura, Hiroko; Yahiro, Masayuki; Adachi, Chihaya

    2017-01-01

    The design of organic compounds with nearly no gap between the first excited singlet (S1) and triplet (T1) states has been demonstrated to result in an efficient spin-flip transition from the T1 to S1 state, that is, reverse intersystem crossing (RISC), and facilitate light emission as thermally activated delayed fluorescence (TADF). However, many TADF molecules have shown that a relatively appreciable energy difference between the S1 and T1 states (~0.2 eV) could also result in a high RISC rate. We revealed from a comprehensive study of optical properties of TADF molecules that the formation of delocalized states is the key to efficient RISC and identified a chemical template for these materials. In addition, simple structural confinement further enhances RISC by suppressing structural relaxation in the triplet states. Our findings aid in designing advanced organic molecules with a high rate of RISC and, thus, achieving the maximum theoretical electroluminescence efficiency in organic light-emitting diodes. PMID:28508081

  3. High-level fluorescence labeling of gram-positive pathogens.

    PubMed

    Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara

    2011-01-01

    Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.

  4. Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture

    PubMed Central

    Regmi, Raju; Al Balushi, Ahmed A.; Rigneault, Hervé; Gordon, Reuven; Wenger, Jérôme

    2015-01-01

    Diffraction ultimately limits the fluorescence collected from a single molecule, and sets an upper limit to the maximum concentration to isolate a single molecule in the detection volume. To overcome these limitations, we introduce here the use of a double nanohole structure with 25 nm gap, and report enhanced detection of single fluorescent molecules in concentrated solutions exceeding 20 micromolar. The nanometer gap concentrates the light into an apex volume down to 70 zeptoliter (10−21 L), 7000-fold below the diffraction-limited confocal volume. Using fluorescence correlation spectroscopy and time-correlated photon counting, we measure fluorescence enhancement up to 100-fold, together with local density of optical states (LDOS) enhancement of 30-fold. The distinctive features of double nanoholes combining high local field enhancement, efficient background screening and relative nanofabrication simplicity offer new strategies for real time investigation of biochemical events with single molecule resolution at high concentrations. PMID:26511149

  5. A new dual-channel optical signal probe for Cu2+ detection based on morin and boric acid.

    PubMed

    Wang, Peng; Yuan, Bin Fang; Li, Nian Bing; Luo, Hong Qun

    2014-01-01

    In this work we utilized the common analytical reagent morin to develop a new a dual-channel, cost-effective, and sensitive method for determination of Cu(2+). It is found that morin is only weakly fluorescent by itself, but forms highly fluorescent complexes with boric acid. Moreover, the fluorescence of complexes of morin with boric acid is quenched linearly by Cu(2+) in a certain concentration range. Under optimum conditions, the fluorescence quenching efficiency was linearly proportional to the concentration of cupric ions in the range of 0.5-25 μM with high sensitivity, and the detection limit for Cu(2+) was 0.38 μM. The linear range was 1-25 μM determined by spectrophotometry, and the detection limit for cupric ions was 0.8 μM. Furthermore, the mechanism of sensitive fluorescence quenching response of morin to Cu(2+) is discussed.

  6. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation.

    PubMed

    Werley, Christopher A; Chien, Miao-Ping; Cohen, Adam E

    2017-12-01

    The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our 'Firefly' microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology ('Optopatch') in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes.

  7. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation

    PubMed Central

    Werley, Christopher A.; Chien, Miao-Ping; Cohen, Adam E.

    2017-01-01

    The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our ‘Firefly’ microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology (‘Optopatch’) in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes. PMID:29296505

  8. Development of a High Output Fluorescent Light Module for the Commercial Plant Biotechnology Facility

    NASA Technical Reports Server (NTRS)

    Turner, Mark; Zhou, Wei-Jia; Doty, Laura (Technical Monitor)

    2000-01-01

    To maximize the use of available resources provided onboard the International Space Station, the development of an efficient lighting 1 system is critical to the overall performance of the CPBF. Not only is it important to efficiently generate photon energy, but thermal loads on the CPBF Temperature and Humidity Control System must be minimized. By utilizing optical coatings designed to produce highly diffuse reflectance in the visible wavelengths while minimizing reflectance in the infrared region, the design of the fluorescent light module for the CPBF is optimized for maximum photon flux, spatial uniformity and energy efficiency. Since the Fluorescent Light Module must be fully enclosed to meet (ISS) requirements for containment of particulates and toxic materials, heat removal from the lights presented some unique design challenges. By using the Express Rack moderate C, temperature-cooling loop, heat is rejected by means of a liquid/air coolant manifold. Heat transfer to the manifold is performed by conduction using copper fins, by forced air convection using miniature fans, and by radiation using optically selective coatings that absorb in the infrared wavelengths. Using this combination of heat transfer mechanisms builds in redundancy to prevent thermal build up and premature bulb failure.

  9. 2-(2-Hydroxyphenyl)benzimidazole-based four-coordinate boron-containing materials with highly efficient deep-blue photoluminescence and electroluminescence.

    PubMed

    Zhang, Zhenyu; Zhang, Houyu; Jiao, Chuanjun; Ye, Kaiqi; Zhang, Hongyu; Zhang, Jingying; Wang, Yue

    2015-03-16

    Two novel four-coordinate boron-containing emitters 1 and 2 with deep-blue emissions were synthesized by refluxing a 2-(2-hydroxyphenyl)benzimidazole ligand with triphenylborane or bromodibenzoborole. The boron chelation produced a new π-conjugated skeleton, which rendered the synthesized boron materials with intense fluorescence, good thermal stability, and high carrier mobility. Both compounds displayed deep-blue emissions in solutions with very high fluorescence quantum yields (over 0.70). More importantly, the samples showed identical fluorescence in the solution and solid states, and the efficiency was maintained at a high level (approximately 0.50) because of the bulky substituents between the boron atom and the benzimidazole unit, which can effectively separate the flat luminescent units. In addition, neat thin films composed of 1 or 2 exhibited high electron and hole mobility in the same order of magnitude 10(-4), as determined by time-of-flight. The fabricated electroluminescent devices that employed 1 or 2 as emitting materials showed high-performance deep-blue emissions with Commission Internationale de L'Eclairage (CIE) coordinates of (X = 0.15, Y = 0.09) and (X = 0.16, Y = 0.08), respectively. Thus, the synthesized boron-containing materials are ideal candidates for fabricating high-performance deep-blue organic light-emitting diodes.

  10. Manipulation of Thermally Activated Delayed Fluorescence of Blue Exciplex Emission: Fully Utilizing Exciton Energy for Highly Efficient Organic Light Emitting Diodes with Low Roll-Off.

    PubMed

    Wang, Zixing; Wang, Hedan; Zhu, Jun; Wu, Peng; Shen, Bowen; Dou, Dehai; Wei, Bin

    2017-06-28

    The application of exciplex energy has become a unique way to achieve organic light-emitting diodes (OLEDs) with high efficiencies, low turn-on voltage, and low roll-off. Novel δ-carboline derivatives with high triplet energy (T 1 ≈ 2.92 eV) and high glass transition temperature (T g ≈ 153 °C) were employed to manipulate exciplex emissions in this paper. Deep blue (peak at 436 nm) and pure blue (peak at 468 nm) thermally activated delayed fluorescence (TADF) of exciplex OLEDs were demonstrated by utilizing them as emitters with the maximum current efficiency (CE) of 4.64 cd A -1 , power efficiency (PE) of 2.91 lm W -1 , and external quantum efficiency (EQE) of 2.36%. Highly efficient blue phosphorescent OLEDs doped with FIrpic showed a maximum CE of 55.6 cd A -1 , PE of 52.9 lm W -1 , and EQE of 24.6% respectively with very low turn on voltage at 2.7 V. The devices still remain high CE of 46.5 cd A -1 at 100 cd m -2 , 45.4 cd A -1 at 1000 cd m -2 and 42.3 cd A -1 at 5000 cd m -2 with EQE close to 20% indicating low roll-off. Manipulating blue exciplex emissions by chemical structure gives an ideal strategy to fully utilize all exciton energies for lighting of OLEDs.

  11. Snapshot imaging Fraunhofer line discriminator for detection of plant fluorescence

    NASA Astrophysics Data System (ADS)

    Gupta Roy, S.; Kudenov, M. W.

    2015-05-01

    Non-invasive quantification of plant health is traditionally accomplished using reflectance based metrics, such as the normalized difference vegetative index (NDVI). However, measuring plant fluorescence (both active and passive) to determine photochemistry of plants has gained importance. Due to better cost efficiency, lower power requirements, and simpler scanning synchronization, detecting passive fluorescence is preferred over active fluorescence. In this paper, we propose a high speed imaging approach for measuring passive plant fluorescence, within the hydrogen alpha Fraunhofer line at ~656 nm, using a Snapshot Imaging Fraunhofer Line Discriminator (SIFOLD). For the first time, the advantage of snapshot imaging for high throughput Fraunhofer Line Discrimination (FLD) is cultivated by our system, which is based on a multiple-image Fourier transform spectrometer and a spatial heterodyne interferometer (SHI). The SHI is a Sagnac interferometer, which is dispersion compensated using blazed diffraction gratings. We present data and techniques for calibrating the SIFOLD to any particular wavelength. This technique can be applied to quantify plant fluorescence at low cost and reduced complexity of data collection.

  12. Detecting crop population growth using chlorophyll fluorescence imaging.

    PubMed

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2017-12-10

    For both field and greenhouse crops, it is challenging to evaluate their growth information on a large area over a long time. In this work, we developed a chlorophyll fluorescence imaging-based system for crop population growth information detection. Modular design was used to make the system provide high-intensity uniform illumination. This system can perform modulated chlorophyll fluorescence induction kinetics measurement and chlorophyll fluorescence parameter imaging over a large area of up to 45  cm×34  cm. The system can provide different lighting intensity by modulating the duty cycle of its control signal. Results of continuous monitoring of cucumbers in nitrogen deficiency show the system can reduce the judge error of crop physiological status and improve monitoring efficiency. Meanwhile, the system is promising in high throughput application scenarios.

  13. Etching-dependent fluorescence quenching of Ag-dielectric-Au three-layered nanoshells: The effect of inner Ag nanosphere

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Xu, Zai-jie; Weng, Guo-jun; Zhao, Jing; Li, Jian-jun; Zhao, Jun-wu

    2018-07-01

    In this report, Ag-dielectric-Au three-layered nanoshells with controlled inner core size were synthesized. The fluorescence emission of the rhodamine 6G (R6G) could be quenched by the three-layered nanoshells distinctly. What's more, the fluorescence quenching efficiency could be further improved by tuning the etching of inner Ag nanosphere. The maximum fluorescence quenching efficiency is obtained when the separate layer just appears between the inner Ag core and the outer Au shell. Whereas the fluorescence quenching efficiency is weakened when no gaps take place around the inner Ag core or the separate layer is too thick and greater than 13 nm. The fluorescence quenching properties of the Ag-dielectric-Au three-layered nanoshells with different initial sizes of the Ag nanoparticles are also studied. The maximum fluorescence quenching efficiency is obtained when the three-layered nanoshells are synthesized based on the Ag nanoparticles with 60 nm, which is better than others two sizes (42 and 79 nm). Thus we believe that the size of initial Ag nanospheres also greatly affects the optimized fluorescence quenching efficiency. These results about fluorescence quenching properties of Ag-dielectric-Au three-layered nanoshells present a potential for design and fabrication of fluorescence nanosensors based on tuning the geometry of the inner core and the separate layer.

  14. Multi-Channel Hyperspectral Fluorescence Detection Excited by Coupled Plasmon-Waveguide Resonance

    PubMed Central

    Du, Chan; Liu, Le; Zhang, Lin; Guo, Jun; Guo, Jihua; Ma, Hui; He, Yonghong

    2013-01-01

    We propose in this paper a biosensor scheme based on coupled plasmon-waveguide resonance (CPWR) excited fluorescence spectroscopy. A symmetrical structure that offers higher surface electric field strengths, longer surface propagation lengths and depths is developed to support guided waveguide modes for the efficient excitation of fluorescence. The optimal parameters for the sensor films are theoretically and experimentally investigated, leading to a detection limit of 0.1 nM (for a Cy5 solution). Multiplex analysis possible with the fluorescence detection is further advanced by employing the hyperspectral fluorescence technique to record the full spectra for every pixel on the sample plane. We demonstrate experimentally that highly overlapping fluorescence (Cy5 and Dylight680) can be distinguished and ratios of different emission sources can be determined accurately. This biosensor shows great potential for multiplex detections of fluorescence analytes. PMID:24129023

  15. Effect of Clouds on Apertures of Space-based Air Fluorescence Detectors

    NASA Technical Reports Server (NTRS)

    Sokolsky, P.; Krizmanic, J.

    2003-01-01

    Space-based ultra-high-energy cosmic ray detectors observe fluorescence light from extensive air showers produced by these particles in the troposphere. Clouds can scatter and absorb this light and produce systematic errors in energy determination and spectrum normalization. We study the possibility of using IR remote sensing data from MODIS and GOES satellites to delimit clear areas of the atmosphere. The efficiency for detecting ultra-high-energy cosmic rays whose showers do not intersect clouds is determined for real, night-time cloud scenes. We use the MODIS SST cloud mask product to define clear pixels for cloud scenes along the equator and use the OWL Monte Carlo to generate showers in the cloud scenes. We find the efficiency for cloud-free showers with closest approach of three pixels to a cloudy pixel is 6.5% exclusive of other factors. We conclude that defining a totally cloud-free aperture reduces the sensitivity of space-based fluorescence detectors to unacceptably small levels.

  16. Benzimidazobenzothiazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes: A quantum-chemical TD-DFT study

    NASA Astrophysics Data System (ADS)

    Zhu, Qiuling; Wen, Keke; Feng, Songyan; Guo, Xugeng; Zhang, Jinglai

    2018-03-01

    Based upon two thermally activated delayed fluorescence (TADF) emitters 1 and 2, compounds 3-6 have been designed by replacing the carbazol group with the bis(4-biphenyl)amine one (3 and 4) and introducing the electron-withdrawing CF3 group into the acceptor unit of 3 and 4 (5 and 6). It is found that the present calculations predict comparable but relatively large energy differences (approximate 0.5 eV) between the lowest singlet S1 and triplet T1 states (Δ EST) for the six targeted compounds. In order to explain the highly-efficient TADF behavior observed in compounds 1 and 2, the"triplet reservoir" mechanism has been proposed. In addition, the fluorescence rates of all six compounds are very large, in 107-108 orders of magnitude. According to the present calculations, it is a reasonable assumption that the newly designed compounds 3-6 could be considered as the potential TADF emitters, which needs to be further verified by experimental techniques.

  17. Highly efficient exciplex formation via radical ion pair recombination in X-irradiated alkane solutions for luminophores with short fluorescence lifetimes.

    PubMed

    Melnikov, Anatoly R; Kalneus, Evgeny V; Korolev, Valeri V; Dranov, Igor G; Kruppa, Alexander I; Stass, Dmitri V

    2014-08-01

    X-irradiation of alkane solutions of N,N-dimethylaniline with various organic luminophores produces characteristic emission bands ascribed to the corresponding exciplexes. In contrast to optical generation, which requires diffusion-controlled quenching of excited states, an additional channel of exciplex formation via irreversible recombination of radical ion pairs is operative here, which produces exciplexes in solution with high efficiency even for p-terphenyl and diphenylacetylene having fluorescence decay times of 0.95 ns and 8 ps, respectively. The exciplex emission band is sensitive to an external magnetic field and exerts a very large observed magnetic field effect of up to 20%, the maximum possible value under the conditions of the described experiment.

  18. Visualization of nucleic acids with synthetic exciton-controlled fluorescent oligonucleotide probes.

    PubMed

    Wang, Dan Ohtan; Okamoto, Akimitsu

    2015-01-01

    Engineered probes to adapt new photochemical properties upon recognition of target nucleic acids offer powerful tools to DNA and RNA visualization technologies. Herein, we describe a rapid and effective visualization method of nucleic acids in both fixed and living cells with hybridization-sensitive fluorescent oligonucleotide probes. These probes are efficiently quenched in an aqueous environment due to the homodimeric, excitonic interactions between fluorophores but become highly fluorescent upon hybridization to DNA or RNA with complementary sequences. The fast hybridization kinetics and quick fluorescence activation of the new probes allow applications to simplify the conventional fluorescent in situ hybridization protocols and reduce the amount of time to process the samples. Furthermore, hybridization-sensitive fluorescence emission of the probes allows monitoring dynamic behaviors of RNA in living cells.

  19. Phytoplankton-Fluorescence-Lifetime Vertical Profiler

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.; Guignon, Ernest F.; St. Louis, Ernest

    2004-01-01

    A battery-operated optoelectronic instrument is designed to be lowered into the ocean to measure the intensity and lifetime of fluorescence of chlorophyll A in marine phytoplankton as a function of depth from 0 to 300 m. Fluorescence lifetimes are especially useful as robust measures of photosynthetic productivity of phytoplankton and of physical and chemical mechanisms that affect photosynthesis. The knowledge of photosynthesis in phytoplankton gained by use of this and related instruments is expected to contribute to understanding of global processes that control the time-varying fluxes of carbon and associated biogenic elements in the ocean. The concentration of chlorophyll in the ocean presents a major detection challenge because in order to obtain accurate values of photosynthetic parameters, the intensity of light used to excite fluorescence must be kept very low so as not to disturb the photosynthetic system. Several innovations in fluorometric instrumentation were made in order to make it possible to reach the required low detection limit. These innovations include a highly efficient optical assembly with an integrated flow-through sample interface, and a high-gain, low-noise electronic detection subsystem. The instrument also incorporates means for self-calibration during operation, and electronic hardware and software for control, acquisition and analysis of data, and communications. The electronic circuitry is highly miniaturized and designed to minimize power demand. The instrument is housed in a package that can withstand the water pressure at the maximum depth of 300 m. A light-emitting diode excites fluorescence in the sample flow cell, which is placed at one focal point of an ellipsoidal reflector. A photomultiplier tube is placed at the other focal point. This optical arrangement enables highly efficient collection of fluorescence emitted over all polar directions. Fluorescence lifetime is measured indirectly, by use of a technique based on the same principle as the one described in "Fluorometer for Analysis of Photosynthesis in Phytoplankton" (SSC-00110), NASA Tech Briefs, Vol. 24, No. 1 (November 2000), page 79. The excitation is modulated at a frequency of 70 MHz, and the phase shift between the excitation light and the emitted fluorescence is measured by a detection method in which the 70 MHz signal is down-converted to a 400 Hz signal. The fluorescence lifetime can be computed from the known relationship among the fluorescence lifetime, phase shift, and modulation frequency

  20. Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications

    NASA Astrophysics Data System (ADS)

    Tian, Ying; Xu, Rongrong; Hu, Lili; Zhang, Junjie

    2012-04-01

    The fluorescence properties of 2.7 μm emission as well as near infrared emissions in Er3+/Nd3+ doped fluorophosphate glasses are investigated under 800 and 980 nm excitation. The fluorescence dynamics and energy transfer processes between Er and Nd ions in different pumping schemes are reported. Three Judd-Ofelt intensity parameters, energy transfer microparameters, and efficiency have been determined using the Judd-Ofelt and Förster-Dexter theories. The calculated energy transfer efficiency of the Er3+:4I13/2 level to the Nd3+:4I15/2 level is as high as 83.91%. The results indicate that Nd3+ may be an efficient sensitizer for Er3+ to obtain mid-infrared emission and the more suitable pumping scheme of 2.7 μm laser applications for Er3+/Nd3+ doped fluorophosphate glass is 980 nm excitation.

  1. Use of acousto-optic tunable filter in fluorescence imaging endoscopy

    NASA Astrophysics Data System (ADS)

    Bouhifd, Mounir; Whelan, Maurice; Aprahamian, Marc

    2003-10-01

    A prototype instrument for fluorescence-based medical diagnostics in vivo is described. The system consists of a rigid endoscope comprising a UV laser-source for fluorescence excitation and a white light source for direct imaging. An acousto-optic tuneable filter (AOTF) is employed as a full-field tuneable bandpass filter. This allows fast continuous or random-access tuning with high filtering efficiency. A study of the diagnostic potential of fluorescence imaging for pancreatitis was conducted on a rat model. In particular, the aim was to detect autofluorescence of endogenous protoporphyrin IX (PpIX) that has been shown to accumulate in early-stage diseased tissue undergoing an inflammatory response.

  2. Fluorescence imaging technology (FI) for high-throughput screening of selenide-modified nano-TiO2 catalysts.

    PubMed

    Wang, Liping; Lee, Jianchao; Zhang, Meijuan; Duan, Qiannan; Zhang, Jiarui; Qi, Hailang

    2016-02-18

    A high-throughput screening (HTS) method based on fluorescence imaging (FI) was implemented to evaluate the catalytic performance of selenide-modified nano-TiO2. Chemical ink-jet printing (IJP) technology was reformed to fabricate a catalyst library comprising 1405 (Ni(a)Cu(b)Cd(c)Ce(d)In(e)Y(f))Se(x)/TiO2 (M6Se/Ti) composite photocatalysts. Nineteen M6Se/Tis were screened out from the 1405 candidates efficiently.

  3. A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis.

    PubMed

    Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale.

  4. A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB.

    PubMed

    Liang, Junfei; Wei, Ran; He, Shuai; Liu, Yikan; Guo, Lin; Li, Lidong

    2013-03-21

    Oncoprotein platelet derived growth factor-BB (PDGF-BB) is one of the most critical growth factors that regulates tumor growth and division. In this work, a highly sensitive and selective fluorescence resonance energy transfer (FRET) aptasensor for PDGF-BB detection based on the assembly of dye-labeled aptamer and graphene oxide (GO) is developed for the first time. Due to the non-covalent assembly between aptamer and GO, fluorescence quenching of the dye takes place because of FRET. In the presence of PDGF-BB, the binding between aptamer and PDGF-BB will disturb the interaction between aptamer and GO, and release the dye-labeled aptamer from the GO surface, resulting in restoration of the fluorophore fluorescence. Because of the high fluorescence quenching efficiency, unique structure, and electronic properties of GO, the GO aptasensor exhibits extraordinarily high sensitivity. We also demonstrate that two highly related molecular variants of PDGF (AA, AB) can be distinguished from PDGF-BB, which indicates the aptasensor has excellent selectivity. Such an aptasensor opens a rapid, selective and sensitive route for the detection of PDGF-BB and provides a promising strategy for other cancer-related proteins detections.

  5. Design of peptide substrates for nanosecond time-resolved fluorescence assays of proteases: 2,3-diazabicyclo[2.2.2]oct-2-ene as a noninvasive fluorophore.

    PubMed

    Hennig, Andreas; Florea, Mara; Roth, Doris; Enderle, Thilo; Nau, Werner M

    2007-01-15

    Fluorescence protease assays were investigated with peptide substrates containing a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as a fluorescent amino acid. The special characteristic of the fluorophore Dbo is its exceedingly long fluorescence lifetime (ca. 300 ns in water under air), which allows the use of nanosecond time-resolved fluorescence (Nano-TRF) detection to efficiently suppress shorter-lived background emission. In addition, the natural amino acids tryptophan and tyrosine can be employed as intramolecular fluorescence quenchers, which facilitates substrate design. Fourteen synthetic peptide substrates (composed of 2-19 amino acids) and five enzymes (trypsin, pepsin, carboxypeptidase A, leucine aminopeptidase, and chymotrypsin) were investigated and, in all 28 examined combinations, enzymatic activity was detected by monitoring the increase in steady state fluorescence with time and determining the reaction rates as kcat/Km values, which ranged from 0.2 to 80x10(6) M-1 min-1. The results suggest an excellent compatibility of the very small and hydrophilic fluorescent probe Dbo with solid-phase peptide synthesis and the investigated proteases. For all 14 peptides the fluorescence lifetimes before and after enzymatic cleavage were measured and Nano-TRF measurements were performed in 384-well microplates. The fluorescence lifetimes of the different peptides provide the basis for the rational design of Dbo-based fluorescent substrates for protease assays. Measurements in Nano-TRF mode revealed, in addition to efficient suppression of background fluorescence, an increased differentiation between cleaved and uncleaved substrate. The Dbo-based assays can be adapted for high-throughput screening.

  6. High-throughput and selective solid-phase extraction of urinary catecholamines by crown ether-modified resin composite fiber.

    PubMed

    Chen, LiQin; Wang, Hui; Xu, Zhen; Zhang, QiuYue; Liu, Jia; Shen, Jun; Zhang, WanQi

    2018-08-03

    In the present study, we developed a simple and high-throughput solid phase extraction (SPE) procedure for selective extraction of catecholamines (CAs) in urine samples. The SPE adsorbents were electrospun composite fibers functionalized with 4-carboxybenzo-18-crown-6 ether modified XAD resin and polystyrene, which were packed into 96-well columns and used for high-throughput selective extraction of CAs in healthy human urine samples. Moreover, the extraction efficiency of packed-fiber SPE (PFSPE) was examined by high performance liquid chromatography coupled with fluorescence detector. The parameters affecting the extraction efficiency and impurity removal efficiency were optimized, and good linearity ranging from 0.5 to 400 ng/mL was obtained with a low limit of detection (LOD, 0.2-0.5 ng/mL) and a good repeatability (2.7%-3.7%, n = 6). The extraction recoveries of three CAs ranged from 70.5% to 119.5%. Furthermore, stable and reliable results obtained by the fluorescence detector were superior to those obtained by the electrochemical detector. Collectively, PFSPE coupled with 96-well columns was a simple, rapid, selective, high-throughput and cost-efficient method, and the proposed method could be applied in clinical chemistry. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Transgenic-cloned pigs systemically expressing red fluorescent protein, Kusabira-Orange.

    PubMed

    Matsunari, Hitomi; Onodera, Masafumi; Tada, Norihiro; Mochizuki, Hideki; Karasawa, Satoshi; Haruyama, Erika; Nakayama, Naoki; Saito, Hitoshi; Ueno, Satoshi; Kurome, Mayuko; Miyawaki, Atsushi; Nagashima, Hiroshi

    2008-09-01

    Genetically engineered pigs with cell markers such as fluorescent proteins are highly useful in lines of research that include the tracking of transplanted cells or tissues. In this study, we produced transgenic-cloned pigs carrying a gene for the newly developed red fluorescent protein, humanized Kusabira-Orange (huKO), which was cloned from the coral stone Fungia concinna. The nuclear transfer embryos, reconstructed with fetal fibroblast cells that had been transduced with huKO cDNA using retroviral vector D Delta Nsap, developed efficiently in vitro into blastocysts (28.0%, 37/132). Nearly all (94.6%, 35/37) of the cloned blastocysts derived from the transduced cells exhibited clear huKO gene expression. A total of 429 nuclear transfer embryos were transferred to four recipients, all of which became pregnant and gave birth to 18 transgenic-cloned offspring in total. All of the pigs highly expressed huKO fluorescence in all of the 23 organs and tissues analyzed, including the brain, eyes, intestinal and reproductive organs, skeletal muscle, bone, skin, and hoof. Furthermore, such expression was also confirmed by histological analyses of various tissues such as pancreatic islets, renal corpuscles, neuronal and glial cells, the retina, chondrocytes, and hematopoietic cells. These data demonstrate that transgenic-cloned pigs exhibiting systemic red fluorescence expression can be efficiently produced by nuclear transfer of somatic cells retrovirally transduced with huKO gene.

  8. Highly efficient blue and warm white organic light-emitting diodes with a simplified structure

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Long; Ouyang, Xinhua; Chen, Dongcheng; Cai, Xinyi; Liu, Ming; Ge, Ziyi; Cao, Yong; Su, Shi-Jian

    2016-03-01

    Two blue fluorescent emitters were utilized to construct simplified organic light-emitting diodes (OLEDs) and the remarkable difference in device performance was carefully illustrated. A maximum current efficiency of 4.84 cd A-1 (corresponding to a quantum efficiency of 4.29%) with a Commission Internationale de l’Eclairage (CIE) coordinate of (0.144, 0.127) was achieved by using N,N-diphenyl-4″-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1, 1‧:4‧, 1″-terphenyl]-4-amine (BBPI) as a non-doped emission layer of the simplified blue OLEDs without carrier-transport layers. In addition, simplified fluorescent/phosphorescent (F/P) hybrid warm white OLEDs without carrier-transport layers were fabricated by utilizing BBPI as (1) the blue emitter and (2) the host of a complementary yellow phosphorescent emitter (PO-01). A maximum current efficiency of 36.8 cd A-1 and a maximum power efficiency of 38.6 lm W-1 were achieved as a result of efficient energy transfer from the host to the guest and good triplet exciton confinement on the phosphorescent molecules. The blue and white OLEDs are among the most efficient simplified fluorescent blue and F/P hybrid white devices, and their performance is even comparable to that of most previously reported complicated multi-layer devices with carrier-transport layers.

  9. Improving confocal microscopy with solid-state semiconductor excitation sources

    NASA Astrophysics Data System (ADS)

    Sivers, Nelson L.

    To efficiently excite the fluorescent dyes used in imaging biological samples with a confocal microscope, the wavelengths of the exciting laser must be near the fluorochrome absorption peak. However, this causes imaging problems when the fluorochrome absorption and emission spectra overlap significantly, i.e. have small Stokes shifts, which is the case for most fluorochromes that emit in the red to infrared. As a result, the reflected laser excitation cannot be distinguished from the information-containing fluorescence signal. However, cryogenically cooling the exciting laser diode enabled the laser emission wavelengths to be tuned to shorter wavelengths, decreasing the interference between the laser and the fluorochrome's fluorescence. This reduced the amount of reflected laser light in the confocal image. However, the cooled laser diode's shorter wavelength signal resulted in slightly less efficient fluorochrome excitation. Spectrophotometric analysis showed that as the laser diodes were cooled, their output power increased, which more than compensated for the lower fluorochrome excitation and resulted in significantly more intense fluorescence. Thus, by tuning the laser diode emission wavelengths away from the fluorescence signal, less reflected laser light and more fluorescence information reached the detector, creating images with better signal to noise ratios. Additionally, new, high, luminous flux, light-emitting diodes (LEDs) are now powerful enough to create confocal fluorescence signals comparable to those produced by the traditional laser excitation sources in fluorescence confocal microscopes. The broader LED spectral response effectively excited the fluorochrome, yet was spectrally limited enough for standard filter sets to separate the LED excitation from the fluorochrome fluorescence signal. Spectrophotometric analysis of the excitation and fluorescence spectra of several fluorochromes showed that high-powered, LED-induced fluorescence contained the same spectral information and could be more intense than that produced by lasers. An alternative, LED-based, confocal microscope is proposed in this thesis that would be capable of exciting multiple fluorochromes in a single specimen, producing images of several distinct cellular components simultaneously. The inexpensive, LED-based, confocal microscope would require lower peak excitation intensities to produce fluorescence signals equal to those produced by laser excitation, reducing cellular damage and slowing fluorochrome photobleaching.

  10. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo

    PubMed Central

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M.; Specht, Christian G.; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-01

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling. PMID:26711992

  11. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo.

    PubMed

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M; Specht, Christian G; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-19

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling.

  12. Preliminary Results on Luminaire Designs for Hybrid Solar Lighting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earl, D.D.

    2001-06-15

    We report on the design of two hybrid lighting luminaires that blend light from a fiber optic end-emitted solar source with electric T8 fluorescent lamps. Both designs involve the retrofit of a commercially-available recessed fluorescent luminaire with minimal reductions in the original luminaire's optical efficiency. Two methods for high-angle dispersion of fiber optic end-emitted solar light are described and the resulting spatial intensity distributions, simulated using ZEMAX, are compared with standard cylindrical fluorescent tubes. Differences in spatial intensity distribution are qualitatively characterized and potential design improvements discussed.

  13. A novel method for the rapid detection of benzo(a)pyrene in liquid milk by dimethyl sulfoxide selectively enhanced synchronous fluorescence spectrometry.

    PubMed

    Lin, Li-Rong; Luo, He-Dong; Li, Xiu-Ying; Li, Na; Zhou, Na; Jia, Yu-Zhu; Liu, Yi-Hong; Li, Yao-Qun

    2014-01-01

    Based on the high solubility efficiency and strong fluorescence response of benzo(a)pyrene (BaP) in dimethyl sulfoxide in combination with the high-performance derivative constant-energy synchronous fluorescence spectroscopic (DCESFS) technique, a simple, sensitive and economic method was developed for the determination of BaP in liquid milk. This method comprises ultrasound-assisted solvent extraction, solvent replacement and DCESFS detection. No saponification or other tedious clean-up procedures were needed. The recoveries of BaP in different milk samples were greater than 82%. Detection limits in full- and low-fat milk were 0.03 and 0.04 μg kg(-1), respectively.

  14. Rise-Time of FRET-Acceptor Fluorescence Tracks Protein Folding

    PubMed Central

    Lindhoud, Simon; Westphal, Adrie H.; van Mierlo, Carlo P. M.; Visser, Antonie J. W. G.; Borst, Jan Willem

    2014-01-01

    Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway. PMID:25535076

  15. A malonitrile-functionalized metal-organic framework for hydrogen sulfide detection and selective amino acid molecular recognition

    NASA Astrophysics Data System (ADS)

    Li, Haiwei; Feng, Xiao; Guo, Yuexin; Chen, Didi; Li, Rui; Ren, Xiaoqian; Jiang, Xin; Dong, Yuping; Wang, Bo

    2014-03-01

    A novel porous polymeric fluorescence probe, MN-ZIF-90, has been designed and synthesized for quantitative hydrogen sulfide (H2S) fluorescent detection and highly selective amino acid recognition. This distinct crystalline structure, derived from rational design and malonitrile functionalization, can trigger significant enhancement of its fluorescent intensity when exposed to H2S or cysteine molecules. Indeed this new metal-organic framework (MOF) structure shows high selectivity of biothiols over other amino acids and exhibits favorable stability. Moreover, in vitro viability assays on HeLa cells show low cytotoxicity of MN-ZIF-90 and its imaging contrast efficiency is further demonstrated by fluorescence microscopy studies. This facile yet powerful strategy also offers great potential of using open-framework materials (i.e. MOFs) as the novel platform for sensing and other biological applications.

  16. High-Throughput Synthesis and Characterization of Eu Doped Ba xSr2- xSiO4 Thin Film Phosphors.

    PubMed

    Frost, Sara; Guérin, Samuel; Hayden, Brian E; Soulié, Jean-Philippe; Vian, Chris

    2018-06-20

    High-throughput techniques have been employed for the synthesis and characterization of thin film phosphors of Eu-doped Ba x Sr 2- x SiO 4 . Direct synthesis from evaporation of the constituent elements under a flux of atomic oxygen on a sapphire substrate at 850 °C was used to directly produce thin film libraries (415 nm thickness) of the crystalline orthosilicate phase with the desired compositional variation (0.24 > x > 1.86). The orthosilicate phase could be synthesized as a pure, or predominantly pure, phase. Annealing the as synthesized library in a reducing atmosphere resulted in the reduction of the Eu while retaining the orthosilicate phase, and resulted in a materials thin film library where fluorescence excited by blue light (450 nm) was observable by the naked eye. Parallel screening of the fluorescence from the combinatorial libraries of Eu doped Ba x Sr 2- x SiO 4 has been implemented by imaging the fluorescent radiation over the library using a monochrome digital camera using a series of color filters. Informatics tools have been developed to allow the 1931 CIE color coordinates and the relative quantum efficiencies of the materials library to be rapidly assessed and mapped against composition, crystal structure and phase purity. The range of compositions gave values of CIE x between 0.17 and 0.52 and CIE y between 0.48 and 0.69 with relative efficiencies in the range 2.0 × 10 -4 -7.6 × 10 -4 . Good agreement was obtained between the thin film phosphors and the fluorescence characteristics of a number of corresponding bulk phosphor powders. The thermal quenching of fluorescence in the thin film libraries was also measured in the temperature range 25-130 °C: The phase purity of the thin film was found to significantly influence both the relative quantum efficiency and the thermal quenching of the fluorescence.

  17. New Trends in Educational Lighting Systems.

    ERIC Educational Resources Information Center

    Murphy, Peter

    2001-01-01

    Explores technological trends for improving campus lighting, including the use of direct-indirect suspended fluorescent lighting, suspended linear lighting, high-efficiency optical systems, and occupancy and daylight sensors. (GR)

  18. Near-infrared fluorescence amplified organic nanoparticles with aggregation-induced emission characteristics for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Geng, Junlong; Zhu, Zhenshu; Qin, Wei; Ma, Lin; Hu, Yong; Gurzadyan, Gagik G.; Tang, Ben Zhong; Liu, Bin

    2013-12-01

    Near-infrared (NIR) fluorescence signals are highly desirable to achieve high resolution in biological imaging. To obtain NIR emission with high brightness, fluorescent nanoparticles (NPs) are synthesized by co-encapsulation of 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenylamino)phenyl)fumaronitrile (TPETPAFN), a luminogen with aggregation-induced emission (AIE) characteristics, and a NIR fluorogen of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] as the encapsulation matrix. The good spectral overlap between the emission of TPETPAFN and the absorption of NIR775 leads to efficient energy transfer, resulting in a 47-fold enhancement of the NIR775 emission intensity upon excitation of TPETPAFN at 510 nm as compared to that upon direct excitation of NIR775 at 760 nm. The obtained fluorescent NPs show sharp NIR emission with a band width of 20 nm, a large Stokes shift of 275 nm, good photostability and low cytotoxicity. In vivo imaging study reveals that the synthesized NPs are able to provide high fluorescence contrast in live animals. The Förster resonance energy transfer strategy overcomes the intrinsic limitation of broad emission spectra for AIE NPs, which opens new opportunities to synthesize organic NPs with high brightness and narrow emission for potential applications in multiplex sensing and imaging.Near-infrared (NIR) fluorescence signals are highly desirable to achieve high resolution in biological imaging. To obtain NIR emission with high brightness, fluorescent nanoparticles (NPs) are synthesized by co-encapsulation of 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenylamino)phenyl)fumaronitrile (TPETPAFN), a luminogen with aggregation-induced emission (AIE) characteristics, and a NIR fluorogen of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] as the encapsulation matrix. The good spectral overlap between the emission of TPETPAFN and the absorption of NIR775 leads to efficient energy transfer, resulting in a 47-fold enhancement of the NIR775 emission intensity upon excitation of TPETPAFN at 510 nm as compared to that upon direct excitation of NIR775 at 760 nm. The obtained fluorescent NPs show sharp NIR emission with a band width of 20 nm, a large Stokes shift of 275 nm, good photostability and low cytotoxicity. In vivo imaging study reveals that the synthesized NPs are able to provide high fluorescence contrast in live animals. The Förster resonance energy transfer strategy overcomes the intrinsic limitation of broad emission spectra for AIE NPs, which opens new opportunities to synthesize organic NPs with high brightness and narrow emission for potential applications in multiplex sensing and imaging. Electronic supplementary information (ESI) available: Characterization of AIE properties of TPETPAFN, UV-vis spectra of NPs, PL spectra comparison upon excitation at the donor and receptor absorbance maxima, ex vivo fluorescence imaging of mice organs. See DOI: 10.1039/c3nr04243j

  19. High-sensitivity detection of biological amines using fast Hadamard transform CE coupled with photolytic optical gating.

    PubMed

    Braun, Kevin L; Hapuarachchi, Suminda; Fernandez, Facundo M; Aspinwall, Craig A

    2007-08-01

    Here, we report the first utilization of Hadamard transform CE (HTCE), a high-sensitivity, multiplexed CE technique, with photolytic optical gating sample injection of caged fluorescent labels for the detection of biologically important amines. Previous implementations of HTCE have relied upon photobleaching optical gating sample injection of fluorescent dyes. Photolysis of caged fluorescent labels reduces the fluorescence background, providing marked enhancements in sensitivity compared to photobleaching. Application of fast Hadamard transform CE (fHTCE) for fluorescein-based dyes yields a ten-fold higher sensitivity for photolytic injections compared to photobleaching injections, due primarily to the reduced fluorescent background provided by caged fluorescent dyes. Detection limits as low as 5 pM (ca. 18 molecules per injection event) were obtained with on-column LIF detection using fHTCE in less than 25 s, with the capacity for continuous, online separations. Detection limits for glutamate and aspartate below 150 pM (1-2 amol/injection event) were obtained using photolytic sample injection, with separation efficiencies exceeding 1 x 10(6) plates/m and total multiplexed separation times as low as 8 s. These results strongly support the feasibility of this approach for high-sensitivity dynamic chemical monitoring applications.

  20. Synthesis of molecularly imprinted dye-silica nanocomposites with high selectivity and sensitivity: Fluorescent imprinted sensor for rapid and efficient detection of τ-fluvalinate in vodka.

    PubMed

    Wang, Yunyun; Wang, Jixiang; Cheng, Rujia; Sun, Lin; Dai, Xiaohui; Yan, Yongsheng

    2018-04-01

    An imprinted fluorescent sensor was fabricated based on SiO 2 nanoparticles encapsulated with a molecularly imprinted polymer containing allyl fluorescein. High fluorine cypermethirin as template molecules, methyl methacrylate as functional monomer, and allyl fluorescein as optical materials synthesized a core-shell fluorescent molecular imprinted sensor, which showed a high and rapid sensitivity and selectivity for the detection of τ-fluvalinate. The sensor presented appreciable sensitivity with a limit of 13.251 nM, rapid detection that reached to equilibrium within 3 min, great linear relationship in the relevant concentration range from 0 to 150 nM, and excellent selectivity over structural analogues. In addition, the fluorescent sensor demonstrated desirable regeneration ability (eight cycling operations). The molecularly imprinted polymers ensured specificity, while the fluorescent dyes provided the stabile sensitivity. Finally, an effective application of the sensor was implemented by the detection of τ-fluvalinate in real samples from vodka. The molecularly imprinted fluorescent sensor showed a promising potential in environmental monitoring and food safety. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging

    NASA Astrophysics Data System (ADS)

    Bartelmess, Juergen; de Luca, Elisa; Signorelli, Angelo; Baldrighi, Michele; Becce, Michele; Brescia, Rosaria; Nardone, Valentina; Parisini, Emilio; Echegoyen, Luis; Pompa, Pier Paolo; Giordani, Silvia

    2014-10-01

    Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes.Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes. Electronic supplementary information (ESI) available: Additional experimental and crystallographic data, additional confocal microscopy and HR-TEM images and illustrations, EELS, TGA, DLS and Z-potential results. Movie M1. See DOI: 10.1039/c4nr04533e

  2. Detection of reactive oxygen species in mainstream cigarette smoke by a fluorescent probe

    NASA Astrophysics Data System (ADS)

    Liu, Li; Xu, Shi-jie; Li, Song-zhan

    2009-07-01

    A mass of reactive oxygen species(ROS) are produced in the process of smoking. Superfluous ROS can induce the oxidative stress in organism, which will cause irreversible damage to cells. Fluorescent probe is taken as a marker of oxidative stress in biology and has been applied to ROS detection in the field of biology and chemistry for high sensitivity, high simplicity of data collection and high resolution. As one type of fluorescent probe, dihydrorhodamine 6G (dR6G) will be oxidized to the fluorescent rhodamine 6G, which could be used to detect ROS in mainstream cigarette smoke. We investigated the action mechanism of ROS on dR6G, built up the standard curve of R6G fluorescence intensity with its content, achieved the variation pattern of R6G fluorescence intensity with ROS content in mainstream cigarette smoke and detected the contents of ROS from the 4 types of cigarettes purchased in market. The result shows that the amount of ROS has close relationship with the types of tobacco and cigarette production technology. Compared with other detecting methods such as electronic spin resonance(ESR), chromatography and mass spectrometry, this detection method by the fluorescent probe has higher efficiency and sensitivity and will have wide applications in the ROS detection field.

  3. Aerosol Generation by Modern Flush Toilets.

    PubMed

    Johnson, David; Lynch, Robert; Marshall, Charles; Mead, Kenneth; Hirst, Deborah

    A microbe-contaminated toilet will produce bioaerosols when flushed. We assessed toilet plume aerosol from high efficiency (HET), pressure-assisted high efficiency (PAT), and flushometer (FOM) toilets with similar bowl water and flush volumes. Total and droplet nuclei "bioaerosols" were assessed. Monodisperse 0.25-1.9- μ m fluorescent microspheres served as microbe surrogates in separate trials in a mockup 5 m 3 water closet (WC). Bowl water seeding was approximately 10 12 particles/mL. Droplet nuclei were sampled onto 0.2- μ m pore size mixed cellulose ester filters beginning 15 min after the flush using open-face cassettes mounted on the WC walls. Pre- and postflush bowl water concentrations were measured. Filter particle counts were analyzed via fluorescent microscopy. Bowl headspace droplet count size distributions were bimodal and similar for all toilet types and flush conditions, with 95% of droplets < 2 μ m diameter and > 99% < 5 μ m. Up to 145,000 droplets were produced per flush, with the high-energy flushometer producing over three times as many as the lower energy PAT and over 12 times as many as the lowest energy HET despite similar flush volumes. The mean numbers of fluorescent droplet nuclei particles aerosolized and remaining airborne also increased with flush energy. Fluorescent droplet nuclei per flush decreased with increasing particle size. These findings suggest two concurrent aerosolization mechanisms-splashing for large droplets and bubble bursting for the fine droplets that form droplet nuclei.

  4. Highly sensitive oligothiophene-phenylamine-based dual-functional fluorescence "turn-on" sensor for rapid and simultaneous detection of Al3+ and Fe3+ in environment and food samples.

    PubMed

    Guo, Zongrang; Niu, Qingfen; Li, Tianduo

    2018-07-05

    Developing low-cost and efficient sensors for rapid, selective and sensitive detection of the transition metal ions in environmental and food science is very important. In this study, a novel dual-functional fluorescent "turn-on" sensor 3TP based on oligothiophene-phenylamine Schiff base has been synthesized for discrimination and simultaneous detection of both Al 3+ and Fe 3+ ions with high selectivity and anti-interference over other metal ions. Sensor 3TP displayed a very fast fluorescence-enhanced response towards Al 3+ and Fe 3+ ions with low detection limits (0.177μM for Al 3+ and 0.172μM for Fe 3+ ) and wide pH response range (4.0-12.0). The Al 3+ /Fe 3+ sensing mechanisms were investigated by fluorescence experiments, 1 H NMR titrations, FT-IR and ESI-MS spectra. Importantly, sensor 3TP was served as an efficient solid material for the highly sensitive and selective detection of Fe 3+ on TLC plates. Moreover, the sensor 3TP has been successfully used to detect trace Al 3+ and Fe 3+ in environment and food samples with satisfactory results and good recoveries, revealing a convenient, reliable and accurate method for Al 3+ and Fe 3+ analysis in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Highly sensitive oligothiophene-phenylamine-based dual-functional fluorescence "turn-on" sensor for rapid and simultaneous detection of Al3+ and Fe3+ in environment and food samples

    NASA Astrophysics Data System (ADS)

    Guo, Zongrang; Niu, Qingfen; Li, Tianduo

    2018-07-01

    Developing low-cost and efficient sensors for rapid, selective and sensitive detection of the transition metal ions in environmental and food science is very important. In this study, a novel dual-functional fluorescent "turn-on" sensor 3TP based on oligothiophene-phenylamine Schiff base has been synthesized for discrimination and simultaneous detection of both Al3+ and Fe3+ ions with high selectivity and anti-interference over other metal ions. Sensor 3TP displayed a very fast fluorescence-enhanced response towards Al3+ and Fe3+ ions with low detection limits (0.177 μM for Al3+ and 0.172 μM for Fe3+) and wide pH response range (4.0-12.0). The Al3+/Fe3+ sensing mechanisms were investigated by fluorescence experiments, 1H NMR titrations, FT-IR and ESI-MS spectra. Importantly, sensor 3TP was served as an efficient solid material for the highly sensitive and selective detection of Fe3+ on TLC plates. Moreover, the sensor 3TP has been successfully used to detect trace Al3+ and Fe3+ in environment and food samples with satisfactory results and good recoveries, revealing a convenient, reliable and accurate method for Al3+ and Fe3+ analysis in real samples.

  6. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    PubMed

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A high-throughput direct fluorescence resonance energy transfer-based assay for analyzing apoptotic proteases using flow cytometry and fluorescence lifetime measurements.

    PubMed

    Suzuki, Miho; Sakata, Ichiro; Sakai, Takafumi; Tomioka, Hiroaki; Nishigaki, Koichi; Tramier, Marc; Coppey-Moisan, Maïté

    2015-12-15

    Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput (HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are required to facilitate research. In this study, we developed a high-throughput system to profile cellular populations in terms of time- or dose-dependent responses to apoptotic stimulations because apoptotic inducers are potent anticancer drugs. We previously established assay systems involving protease to monitor live cells for apoptosis using tunable fluorescence resonance energy transfer (FRET)-based bioprobes. These assays can be used for microscopic analyses or fluorescence-activated cell sorting. In this study, we developed FRET-based bioprobes to detect the activity of the apoptotic markers caspase-3 and caspase-9 via changes in bioprobe fluorescence lifetimes using a flow cytometer for direct estimation of FRET efficiencies. Different patterns of changes in the fluorescence lifetimes of these markers during apoptosis were observed, indicating a relationship between discrete steps in the apoptosis process. The findings demonstrate the feasibility of evaluating collective cellular dynamics during apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. High-Level Fluorescence Labeling of Gram-Positive Pathogens

    PubMed Central

    Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara

    2011-01-01

    Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10–50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration. PMID:21731607

  9. A robust TALENs system for highly efficient mammalian genome editing.

    PubMed

    Feng, Yuanxi; Zhang, Siliang; Huang, Xin

    2014-01-10

    Recently, transcription activator-like effector nucleases (TALENs) have emerged as a highly effective tool for genomic editing. A pair of TALENs binds to two DNA recognition sites separated by a spacer sequence, and the dimerized FokI nucleases at the C terminal then cleave DNA in the spacer. Because of its modular design and capacity to precisely target almost any desired genomic locus, TALEN is a technology that can revolutionize the entire biomedical research field. Currently, for genomic editing in cultured cells, two plasmids encoding a pair of TALENs are co-transfected, followed by limited dilution to isolate cell colonies with the intended genomic manipulation. However, uncertain transfection efficiency becomes a bottleneck, especially in hard-to-transfect cells, reducing the overall efficiency of genome editing. We have developed a robust TALENs system in which each TALEN plasmid also encodes a fluorescence protein. Thus, cells transfected with both TALEN plasmids, a prerequisite for genomic editing, can be isolated by fluorescence-activated cell sorting. Our improved TALENs system can be applied to all cultured cells to achieve highly efficient genomic editing. Furthermore, an optimized procedure for genomic editing using TALENs is also presented. We expect our system to be widely adopted by the scientific community.

  10. Construction of a highly efficient display system for baculovirus and its application on multigene co-display.

    PubMed

    Zheng, Hao; Wang, Xiong; Ren, Feifei; Zou, Shenglong; Feng, Min; Xu, Liangliang; Yao, Lunguang; Sun, Jingchen

    2018-06-19

    The classical baculovirus display system (BDS) has often recruited fields including gene delivery, gene therapy, and the genetic engineering of vaccines, as it is capable of presenting foreign polypeptides on the membranes of recombinant baculovirus through a transmembrane protein. However, classical BDS's high cost, complicated operation, low display efficiency and its inability to simultaneously display multiple gene products impede its practicality. In this study, we present a novel and highly efficient display system based on ires-dependent gp64 for rescuing gp64-null Bacmid of baculovirus construction without affecting the viral replication cycle, which we name the baculovirus multigene display system (BMDS). Laser scanning confocal microscopy demonstrated that eGFP, eYFP, and mCherry were translocated on the membrane of Spodoptera frugiperda 9 cell successfully as expected. Western blot analysis further confirmed the presence of the fluorescent proteins on the budded, mature viral particles. The results showed the display efficiency of target gene on cell surface is fourfold that of classical BDS. In addition, a recombinant baculovirus displaying three kinds of fluorescent proteins simultaneously was constructed, thereby demonstrating the effectiveness of BMDS as a co-display system.

  11. Efficient white-light-emitting diodes based on poly(N-vinylcarbazole) doped with blue fluorescent and orange phosphorescent materials

    NASA Astrophysics Data System (ADS)

    Shih, Ping-I.; Shu, Ching-Fong; Tung, Yung-Liang; Chi, Yun

    2006-06-01

    We have fabricated polymer white-light-emitting devices possessing a single emitting layer containing a hole-transporting host polymer, poly(N-vinylcarbazole), and an electron-transporting auxiliary, 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole, doped with a blue-light-emitting amino-substituted distyrylarylene fluorescent dye and an orange-light-emitting osmium phosphor. The doubly doped device exhibited an intense white emission having Commission Internationale de l'Eclairage coordinates of (0.33, 0.34), a high external quantum efficiency of 6.12% (13.2cd/A), and a maximum brightness of 11306cd/m2. The color coordinates remained unchanged over a range of operating voltages, even at luminance as high as 1×104cd/m2.

  12. Effect of Annealing on Exciton Diffusion in a High Performance Small Molecule Organic Photovoltaic Material.

    PubMed

    Long, Yun; Hedley, Gordon J; Ruseckas, Arvydas; Chowdhury, Mithun; Roland, Thomas; Serrano, Luis A; Cooke, Graeme; Samuel, Ifor D W

    2017-05-03

    Singlet exciton diffusion was studied in the efficient organic photovoltaic electron donor material DTS(FBTTh 2 ) 2 . Three complementary time-resolved fluorescence measurements were performed: quenching in planar heterojunctions with an electron acceptor, exciton-exciton annihilation, and fluorescence depolarization. The average exciton diffusivity increases upon annealing from 1.6 × 10 -3 to 3.6 × 10 -3 cm 2 s -1 , resulting in an enhancement of the mean two-dimensional exciton diffusion length (L D = (4Dτ) 1/2 ) from 15 to 27 nm. About 30% of the excitons get trapped very quickly in as-cast films. The high exciton diffusion coefficient of the material leads to it being able to harvest excitons efficiently from large donor domains in bulk heterojunctions.

  13. Effect of Annealing on Exciton Diffusion in a High Performance Small Molecule Organic Photovoltaic Material

    PubMed Central

    2017-01-01

    Singlet exciton diffusion was studied in the efficient organic photovoltaic electron donor material DTS(FBTTh2)2. Three complementary time-resolved fluorescence measurements were performed: quenching in planar heterojunctions with an electron acceptor, exciton–exciton annihilation, and fluorescence depolarization. The average exciton diffusivity increases upon annealing from 1.6 × 10–3 to 3.6 × 10–3 cm2 s–1, resulting in an enhancement of the mean two-dimensional exciton diffusion length (LD = (4Dτ)1/2) from 15 to 27 nm. About 30% of the excitons get trapped very quickly in as-cast films. The high exciton diffusion coefficient of the material leads to it being able to harvest excitons efficiently from large donor domains in bulk heterojunctions. PMID:28358189

  14. Detection of trace tetracycline in fish via synchronous fluorescence quenching with carbon quantum dots coated with molecularly imprinted silica

    NASA Astrophysics Data System (ADS)

    Yang, Ji; Lin, Zheng-Zhong; Nur, A.-Zha; Lu, Yan; Wu, Ming-Hui; Zeng, Jun; Chen, Xiao-Mei; Huang, Zhi-Yong

    2018-02-01

    A novel fluorescence-based sensor combining synchronous fluorescence spectroscopy (SFS) with molecularly imprinted polymers (MIPs) was fabricated with reverse microemulsion method. Tetracycline (TC), (3-aminopropyl) triethoxysilane (APTES), tetraethyl orthosilicate (TEOS) and carbon quantum dots (CDs) were used as template, functional monomer, cross-linker and signal sources respectively in the probe preparation. A synchronous fluorescence emission (λem) at 355 nm was observed for the prepared MIP-coated CDs (MIP@CDs) particles when the wavelength interval (Δλ) was set as 70 nm, and the synchronous fluorescence intensity could be rapidly and efficiently quenched by TC based on inner filter effect (IFE). The quenching efficiencies of synchronous fluorescence intensity was linearly fitted with tetracycline (TC) concentrations ranging from 0.1 to 50 μmol L- 1 with a detection limit (DL) of 9 nmol L- 1 (3σ, n = 9). The MIP@CDs was used as a probe to detect TC in fish samples with the recoveries ranging from 98.4% to 103.1% and the relative standard deviation less than 6.0%. The results illustrated that the as-prepared MIP@CDs could be applied to the detection of trace TC in fish samples with rapidity, high sensitivity and accuracy.

  15. Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging.

    PubMed

    Edison, Thomas Nesakumar Jebakumar Immanuel; Atchudan, Raji; Shim, Jae-Jin; Kalimuthu, Senthilkumar; Ahn, Byeong-Cheol; Lee, Yong Rok

    2016-05-01

    This paper reports turn-off fluorescence sensor for Fe(3+) ion in water using fluorescent N-doped carbon dots as a probe. A simple and efficient hydrothermal carbonization of Prunus avium fruit extract for the synthesis of fluorescent nitrogen-doped carbon dots (N-CDs) is described. This green approach proceeds quickly and provides good quality N-CDs. The mean size of synthesized N-CDs was approximately 7nm calculated from the high-resolution transmission electron microscopic images. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy revealed the presence of -OH, -NH2, -COOH, and -CO functional groups over the surface of CDs. The N-CDs showed excellent fluorescent properties, and emitted blue fluorescence at 411nm upon excitation at 310nm. The calculated quantum yield of the synthesized N-CDs is 13% against quinine sulfate as a reference fluorophore. The synthesized N-CDs were used as a fluorescent probe towards the selective and sensitive detection of biologically important Fe(3+) ions in water by fluorescence spectroscopy and for bio-imaging of MDA-MB-231 cells. The limit of detection (LOD) and the Stern-Volmer quenching constant for the synthesized N-CDs were 0.96μM and 2.0958×10(3)M of Fe(3+) ions. The green synthesized N-CDs are efficiently used as a promising candidate for the detection of Fe(3+) ions and bio-imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Discriminative detection and enumeration of microbial life in marine subsurface sediments.

    PubMed

    Morono, Yuki; Terada, Takeshi; Masui, Noriaki; Inagaki, Fumio

    2009-05-01

    Detection and enumeration of microbial life in natural environments provide fundamental information about the extent of the biosphere on Earth. However, it has long been difficult to evaluate the abundance of microbial cells in sedimentary habitats because non-specific binding of fluorescent dye and/or auto-fluorescence from sediment particles strongly hampers the recognition of cell-derived signals. Here, we show a highly efficient and discriminative detection and enumeration technique for microbial cells in sediments using hydrofluoric acid (HF) treatment and automated fluorescent image analysis. Washing of sediment slurries with HF significantly reduced non-biological fluorescent signals such as amorphous silica and enhanced the efficiency of cell detachment from the particles. We found that cell-derived SYBR Green I signals can be distinguished from non-biological backgrounds by dividing green fluorescence (band-pass filter: 528/38 nm (center-wavelength/bandwidth)) by red (617/73 nm) per image. A newly developed automated microscope system could take a wide range of high-resolution image in a short time, and subsequently enumerate the accurate number of cell-derived signals by the calculation of green to red fluorescence signals per image. Using our technique, we evaluated the microbial population in deep marine sediments offshore Peru and Japan down to 365 m below the seafloor, which provided objective digital images as evidence for the quantification of the prevailing microbial life. Our method is hence useful to explore the extent of sub-seafloor life in the future scientific drilling, and moreover widely applicable in the study of microbial ecology.

  17. Multi-state lasing in self-assembled ring-shaped green fluorescent protein microcavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, Christof P., E-mail: cpd3@st-andrews.ac.uk; Höfling, Sven; Gather, Malte C., E-mail: mcg6@st-andrews.ac.uk

    2014-12-08

    We demonstrate highly efficient lasing from multiple photonic states in microcavities filled with self-assembled rings of recombinant enhanced green fluorescent protein (eGFP) in its solid state form. The lasing regime is achieved at very low excitation energies of 13 nJ and occurs from cavity modes dispersed in both energy and momentum. We attribute the momentum distribution to very efficient scattering of incident light at the surface of the eGFP rings. The distribution of lasing states in energy is induced by the large spectral width of the gain spectrum of recombinant eGFP (FWHM ≅ 25 nm)

  18. Thermally activated delayed fluorescent phenothiazine–dibenzo[a,j]phenazine–phenothiazine triads exhibiting tricolor-changing mechanochromic luminescence† †Electronic supplementary information (ESI) available: Synthetic procedures, spectroscopic data, copies of NMR charts, physicochemical properties, and device fabrication and performances. CCDC 1452024. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc04863c Click here for additional data file. Click here for additional data file.

    PubMed Central

    Okazaki, Masato; Pander, Piotr; Higginbotham, Heather; Monkman, Andrew P.

    2017-01-01

    Novel U-shaped donor–acceptor–donor (D–A–D) π-conjugated multi-functional molecules comprising dibenzo[a,j]phenazine (DBPHZ) as an acceptor and phenothiazines (PTZ) as donors have been developed. Most importantly, the D–A–D compounds exhibit not only distinct tricolor-changeable mechanochromic luminescence (MCL) properties but also efficient thermally activated delayed fluorescence (TADF). Quantum chemical calculations, X-ray diffraction analysis, and systematic studies on the photophysical properties indicated that the “two-conformation-switchable” PTZ units play a highly important role in achieving multi-color-changing MCL. Time-resolved photophysical measurements revealed that the developed D–A–D compounds also exhibit efficient orange-TADF. Furthermore, organic light-emitting diode (OLED) devices fabricated with the new TADF emitters have achieved high external quantum efficiencies (EQEs) up to 16.8%, which significantly exceeds the theoretical maximum (∼5%) of conventional fluorescent emitters. PMID:28553504

  19. Highly efficient white OLEDs for lighting applications

    NASA Astrophysics Data System (ADS)

    Murano, Sven; Burghart, Markus; Birnstock, Jan; Wellmann, Philipp; Vehse, Martin; Werner, Ansgar; Canzler, Tobias; Stübinger, Thomas; He, Gufeng; Pfeiffer, Martin; Boerner, Herbert

    2005-10-01

    The use of organic light-emitting diodes (OLEDs) for large area general lighting purposes is gaining increasing interest during the recent years. Especially small molecule based OLEDs have already shown their potential for future applications. For white light emission OLEDs, power efficiencies exceeding that of incandescent bulbs could already be demonstrated, however additional improvements are needed to further mature the technology allowing for commercial applications as general purpose illuminating sources. Ultimately the efficiencies of fluorescent tubes should be reached or even excelled, a goal which could already be achieved in the past for green OLEDs.1 In this publication the authors will present highly efficient white OLEDs based on an intentional doping of the charge carrier transport layers and the usage of different state of the art emission principles. This presentation will compare white PIN-OLEDs based on phosphorescent emitters, fluorescent emitters and stacked OLEDs. It will be demonstrated that the reduction of the operating voltage by the use of intentionally doped transport layers leads to very high power efficiencies for white OLEDs, demonstrating power efficiencies of well above 20 lm/W @ 1000 cd/m2. The color rendering properties of the emitted light is very high and CRIs between 85 and 95 are achieved, therefore the requirements for standard applications in the field of lighting applications could be clearly fulfilled. The color coordinates of the light emission can be tuned within a wide range through the implementation of minor structural changes.

  20. [The management of the metastatic disease by the surgeons].

    PubMed

    Mery, Eliane; Golzio, Muriel; Thibault, Benoît; Ferron, Gwenael; Querleu, Denis; Delord, Jean-Pierre; Couderc, Bettina

    2013-04-01

    The high rate of recurrence after apparently complete surgery and/or complete clinical response to chemotherapy implies that most patients have undetected minimal residual disease. Novel techniques such as laparoscopic or laparotomic fluorescence may prove to be crucial in reassessing the definition of primary outcome in ovarian cancer management. For this purpose, the importance of fluorescence in the peroperative detection of human ovarian adenocarcinoma cells has to be validated in animal models prior to be used in clinic by determining its efficiency in detecting infra-millimetric tumor metastases. In the preclinical data presented, a fluorescent RAFT-(cRGD)4 tracer molecule (AngioStamp(®)) with a very high affinity for the αvβ3 integrin was used. Infrared fluorescence was visualized with Fluobeam(®), an open fluorescent imaging system that could potentially be used in peroperative conditions in the future. We showed that this novel technique allowed the specific detection of residual tumor deposits and inframillimetric metastases in mice and dogs.

  1. Controlling Plasmon-Enhanced Fluorescence via Intersystem Crossing in Photoswitchable Molecules.

    PubMed

    Wang, Mingsong; Hartmann, Gregory; Wu, Zilong; Scarabelli, Leonardo; Rajeeva, Bharath Bangalore; Jarrett, Jeremy W; Perillo, Evan P; Dunn, Andrew K; Liz-Marzán, Luis M; Hwang, Gyeong S; Zheng, Yuebing

    2017-10-01

    By harnessing photoswitchable intersystem crossing (ISC) in spiropyran (SP) molecules, active control of plasmon-enhanced fluorescence in the hybrid systems of SP molecules and plasmonic nanostructures is achieved. Specifically, SP-derived merocyanine (MC) molecules formed by photochemical ring-opening reaction display efficient ISC due to their zwitterionic character. In contrast, ISC in quinoidal MC molecules formed by thermal ring-opening reaction is negligible. The high ISC rate can improve fluorescence quantum yield of the plasmon-modified spontaneous emission, only when the plasmonic electromagnetic field enhancement is sufficiently high. Along this line, extensive photomodulation of fluorescence is demonstrated by switching the ISC in MC molecules at Au nanoparticle aggregates, where strongly enhanced plasmonic hot spots exist. The ISC-mediated plasmon-enhanced fluorescence represents a new approach toward controlling the spontaneous emission of fluorophores near plasmonic nanostructures, which expands the applications of active molecular plasmonics in information processing, biosensing, and bioimaging. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Research of the absorbance detection and fluorescence detection for multifunctional nutrition analyzer

    NASA Astrophysics Data System (ADS)

    Ni, Zhengyuan; Yan, Huimin; Ni, Xuxiang; Zhang, Xiuda

    2017-10-01

    The research of the multifunctional analyzer which integrates absorbance detection, fluorescence detection, time-resolved fluorescence detection, biochemical luminescence detection methods, can make efficient detection and analysis for a variety of human body nutrients. This article focuses on the absorbance detection and fluorescence detection system. The two systems are modular in design and controlled by embedded system, to achieve automatic measurement according to user settings. In the optical path design, the application of confocal design can improve the optical signal acquisition capability, and reduce the interference. A photon counter is used for detection, and a high performance counter module is designed to measure the output of photon counter. In the experiment, we use neutral density filters and potassium dichromate solution to test the absorbance detection system, and use fluorescein isothiocyanate FITC for fluorescence detection system performance test. The experimental results show that the absorbance detection system has a detection range of 0 4OD, and has good linearity in the detection range, while the fluorescence detection system has a high sensitivity of 1pmol/L concentration.

  3. Embedding and Chemical Reactivation of Green Fluorescent Protein in the Whole Mouse Brain for Optical Micro-Imaging

    PubMed Central

    Gang, Yadong; Zhou, Hongfu; Jia, Yao; Liu, Ling; Liu, Xiuli; Rao, Gong; Li, Longhui; Wang, Xiaojun; Lv, Xiaohua; Xiong, Hanqing; Yang, Zhongqin; Luo, Qingming; Gong, Hui; Zeng, Shaoqun

    2017-01-01

    Resin embedding has been widely applied to fixing biological tissues for sectioning and imaging, but has long been regarded as incompatible with green fluorescent protein (GFP) labeled sample because it reduces fluorescence. Recently, it has been reported that resin-embedded GFP-labeled brain tissue can be imaged with high resolution. In this protocol, we describe an optimized protocol for resin embedding and chemical reactivation of fluorescent protein labeled mouse brain, we have used mice as experiment model, but the protocol should be applied to other species. This method involves whole brain embedding and chemical reactivation of the fluorescent signal in resin-embedded tissue. The whole brain embedding process takes a total of 7 days. The duration of chemical reactivation is ~2 min for penetrating 4 μm below the surface in the resin-embedded brain. This protocol provides an efficient way to prepare fluorescent protein labeled sample for high-resolution optical imaging. This kind of sample was demonstrated to be imaged by various optical micro-imaging methods. Fine structures labeled with GFP across a whole brain can be detected. PMID:28352214

  4. Reversible optical control of cyanine fluorescence in fixed and living cells: optical lock-in detection immunofluorescence imaging microscopy

    PubMed Central

    Yan, Yuling; Petchprayoon, Chutima; Mao, Shu; Marriott, Gerard

    2013-01-01

    Optical switch probes undergo rapid and reversible transitions between two distinct states, one of which may fluoresce. This class of probe is used in various super-resolution imaging techniques and in the high-contrast imaging technique of optical lock-in detection (OLID) microscopy. Here, we introduce optimized optical switches for studies in living cells under standard conditions of cell culture. In particular, a highly fluorescent cyanine probe (Cy or Cy3) is directly or indirectly linked to naphthoxazine (NISO), a highly efficient optical switch that undergoes robust, 405/532 nm-driven transitions between a colourless spiro (SP) state and a colourful merocyanine (MC) state. The intensity of Cy fluorescence in these Cy/Cy3-NISO probes is reversibly modulated between a low and high value in SP and MC states, respectively, as a result of Förster resonance energy transfer. Cy/Cy3-NISO probes are targeted to specific proteins in living cells where defined waveforms of Cy3 fluorescence are generated by optical switching of the SP and MC states. Finally, we introduce a new imaging technique (called OLID-immunofluorescence microscopy) that combines optical modulation of Cy3 fluorescence from Cy3/NISO co-labelled antibodies within fixed cells and OLID analysis to significantly improve image contrast in samples having high background or rare antigens. PMID:23267183

  5. High-Collection-Efficiency Fluorescence Detection Cell

    NASA Technical Reports Server (NTRS)

    Hanisco, Thomas; Cazorla, Maria; Swanson, Andrew

    2013-01-01

    A new fluorescence cell has been developed for the laser induced fluorescence (LIF) detection of formaldehyde. The cell is used to sample a flow of air that contains trace concentrations of formaldehyde. The cell provides a hermetically sealed volume in which a flow of air containing formaldehyde can be illuminated by a laser. The cell includes the optics for transmitting the laser beam that is used to excite the formaldehyde and for collecting the resulting fluorescence. The novelty of the cell is its small size and simple design that provides a more robust and cheaper alternative to the state of the art. Despite its simplicity, the cell provides the same sensitivity to detection as larger, more complicated cells.

  6. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses.

    PubMed

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik; Park, Hyun

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflective light collection module using a coumarin-derived dendrimer-based fluorescent lateral flow immunoassay. By application of an optimized bioconjugate, a smartphone-based diagnostic device had a two-fold higher detectability as compared to that of the table-top fluorescence strip reader for three different AI subtypes (H5N3, H7N1, and H9N2). Additionally, in a clinical study of H5N1-confirmed patients, the smartphone-based diagnostic device showed a sensitivity of 96.55% (28/29) [95% confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to 99.96). The measurement results from the distributed individual smartphones were wirelessly transmitted via short messaging service and collected by a centralized database system for further information processing and data mining. Smartphone-based diagnosis provided highly sensitive measurement results for H5N1 detection within 15 minutes. Because of its high sensitivity, portability and automatic reporting feature, the proposed device will enable agile identification of patients and efficient control of AI dissemination.

  7. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses

    PubMed Central

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik; Park, Hyun

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflective light collection module using a coumarin-derived dendrimer-based fluorescent lateral flow immunoassay. By application of an optimized bioconjugate, a smartphone-based diagnostic device had a two-fold higher detectability as compared to that of the table-top fluorescence strip reader for three different AI subtypes (H5N3, H7N1, and H9N2). Additionally, in a clinical study of H5N1-confirmed patients, the smartphone-based diagnostic device showed a sensitivity of 96.55% (28/29) [95% confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to 99.96). The measurement results from the distributed individual smartphones were wirelessly transmitted via short messaging service and collected by a centralized database system for further information processing and data mining. Smartphone-based diagnosis provided highly sensitive measurement results for H5N1 detection within 15 minutes. Because of its high sensitivity, portability and automatic reporting feature, the proposed device will enable agile identification of patients and efficient control of AI dissemination. PMID:26877781

  8. Microlensed dual-fiber probe for depth-resolved fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Choi, Hae Young; Ryu, Seon Young; Kim, Jae Young; Kim, Geon Hee; Park, Seong Jun; Lee, Byeong Ha; Chang, Ki Soo

    2011-07-01

    We propose and demonstrate a compact microlensed dual-fiber probe that has a good collection efficiency and a high depth-resolution ability for fluorescence measurements. The probe is formed with a conventional fusion splicer creating a common focusing lens on two fibers placed side by side. The collection efficiency of the fabricated probe was evaluated by measuring the fluorescence signal of a fresh ginkgo leaf. It was shown experimentally that the proposed probe could effectively collect the fluorescence signal with a six-fold increase compared to that of a general flat-tipped probe. The beam propagation method was used to design a probe with an optimized working distance and an improved resolving depth. It was found that the working distance depends mainly on the radius of curvature of the lens, whereas the resolving depth is determined by the core diameters of the illumination and collection fibers. The depth-resolved ability of probes with working distances of ~100 μm and 300 μm was validated by using a two-layer tissue phantom. The experimental results demonstrate that the microlensed dual-fiber probe has the potential to facilitate depth-resolved fluorescence detection of epithelial tissue.

  9. Quantum dots as optical labels for ultrasensitive detection of polyphenols.

    PubMed

    Akshath, Uchangi Satyaprasad; Shubha, Likitha R; Bhatt, Praveena; Thakur, Munna Singh

    2014-07-15

    Considering the fact that polyphenols have versatile activity in-vivo, its detection and quantification is very much important for a healthy diet. Laccase enzyme can convert polyphenols to yield mono/polyquinones which can quench Quantum dots fluorescence. This phenomenon of charge transfer from quinones to QDs was exploited as optical labels to detect polyphenols. CdTe QD may undergo dipolar interaction with quinones as a result of broad spectral absorption due to multiple excitonic states resulting from quantum confinement effects. Thus, "turn-off" fluorescence method was applied for ultrasensitive detection of polyphenols by using laccase. We observed proportionate quenching of QDs fluorescence with respect to polyphenol concentration in the range of 100 µg to 1 ng/mL. Also, quenching of the photoluminescence was highly efficient and stable and could detect individual and total polyphenols with high sensitivity (LOD-1 ng/mL). Moreover, proposed method was highly efficient than any other reported methods in terms of sensitivity, specificity and selectivity. Therefore, a novel optical sensor was developed for the detection of polyphenols at a sensitive level based on the charge transfer mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Versatile Polymer Nanoparticles as Two-Photon-Triggered Photosensitizers for Simultaneous Cellular, Deep-Tissue Imaging, and Photodynamic Therapy.

    PubMed

    Guo, Liang; Ge, Jiechao; Liu, Qian; Jia, Qingyan; Zhang, Hongyan; Liu, Weimin; Niu, Guangle; Liu, Sha; Gong, Jianru; Hackbarth, Steffen; Wang, Pengfei

    2017-06-01

    Clinical applications of current photodynamic therapy (PDT) photosensitizers (PSs) are often limited by their absorption in the UV-vis range that possesses limited tissue penetration ability, leading to ineffective therapeutic response for deep-seated tumors. Alternatively, two-photon excited PS (TPE-PS) using NIR light triggered is one the most promising candidates for PDT improvement. Herein, multimodal polymer nanoparticles (PNPs) from polythiophene derivative as two-photon fluorescence imaging as well as two-photon-excited PDT agent are developed. The prepared PNPs exhibit excellent water dispersibility, high photostability and pH stability, strong fluorescence brightness, and low dark toxicity. More importantly, the PNPs also possess other outstanding features including: (1) the high 1 O 2 quantum yield; (2) the strong two-photon-induced fluorescence and efficient 1 O 2 generation; (3) the specific accumulation in lysosomes of HeLa cells; and (4) the imaging detection depth up to 2100 µm in the mock tissue under two-photon. The multifunctional PNPs are promising candidates as TPE-PDT agent for simultaneous cellular, deep-tissue imaging, and highly efficient in vivo PDT of cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Manipulating the Electronic Excited State Energies of Pyrimidine-Based Thermally Activated Delayed Fluorescence Emitters To Realize Efficient Deep-Blue Emission.

    PubMed

    Komatsu, Ryutaro; Ohsawa, Tatsuya; Sasabe, Hisahiro; Nakao, Kohei; Hayasaka, Yuya; Kido, Junji

    2017-02-08

    The development of efficient and robust deep-blue emitters is one of the key issues in organic light-emitting devices (OLEDs) for environmentally friendly, large-area displays or general lighting. As a promising technology that realizes 100% conversion from electrons to photons, thermally activated delayed fluorescence (TADF) emitters have attracted considerable attention. However, only a handful of examples of deep-blue TADF emitters have been reported to date, and the emitters generally show large efficiency roll-off at practical luminance over several hundreds to thousands of cd m -2 , most likely because of the long delayed fluorescent lifetime (τ d ). To overcome this problem, we molecularly manipulated the electronic excited state energies of pyrimidine-based TADF emitters to realize deep-blue emission and reduced τ d . We then systematically investigated the relationships among the chemical structure, properties, and device performances. The resultant novel pyrimidine emitters, called Ac-XMHPMs (X = 1, 2, and 3), contain different numbers of bulky methyl substituents at acceptor moieties, increasing the excited singlet (E S ) and triplet state (E T ) energies. Among them, Ac-3MHPM, with a high E T of 2.95 eV, exhibited a high external quantum efficiency (η ext,max ) of 18% and an η ext of 10% at 100 cd m -2 with Commission Internationale de l'Eclairage chromaticity coordinates of (0.16, 0.15). These efficiencies are among the highest values to date for deep-blue TADF OLEDs. Our molecular design strategy provides fundamental guidance to design novel deep-blue TADF emitters.

  12. A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1.

    PubMed

    He, Yue; Lin, Yi; Tang, Hongwu; Pang, Daiwen

    2012-03-21

    Mucin 1 (MUC1) which presents in epithelial malignancies, is a well-known tumor biomarker. In this paper, a highly sensitive and selective fluorescent aptasensor for Mucin 1 (MUC1) detection is constructed, utilizing graphene oxide (GO) as a quencher which can quench the fluorescence of single-stranded dye-labeled MUC1 specific aptamer. In the absence of MUC1, the adsorption of the dye-labeled aptamer on GO brings the dyes in close proximity to the GO surface resulting in high efficiency quenching of dye fluorescence. Therefore, the fluorescence of the designed aptasensor is completely quenched by GO, and the system shows very low background fluorescence. Conversely, and very importantly, upon the adding of MUC1, the quenched fluorescence is recovered significantly, and MUC1 can be detected in a wide range of 0.04-10 μM with a detection limit of 28 nM and good selectivity. Moreover, the results have also been verified for real sample application by testing 2% serum containing buffer solution spiked with a series of concentrations of MUC1. This journal is © The Royal Society of Chemistry 2012

  13. Detection of the barium daughter in 136Xe -->136Ba + 2e- by in situ single-molecule fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Nygren, David

    2015-10-01

    To proceed toward effective ``discovery class'' ton-scale detectors in the search for neutrino-less double beta decay, a robust technique for rejection of all radioactivity-induced backgrounds is urgently needed. An efficient technique for detection of the barium daughter in the decay 136Xe -->136Ba + 2e- would provide a long-sought pathway toward this goal. Single-molecule fluorescent imaging appears to offer a new way to detect the barium daughter atom, which emerges naturally in an ionized state in pure xenon. A doubly charged barium ion can initiate a chelation process with a non-fluorescent precursor molecule, leading to a highly fluorescent complex. Repeated photo-excitation of the complex can reveal both presence and location of a single ionized atom with high precision and selectivity. Detection within the active volume of a xenon gas Time Projection Chamber operating at high pressure would be automatic, and with a capability for redundant confirmation.

  14. OppoRTUnities Abound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deru, Michael

    According to the U.S. Energy Information Administration, HVAC accounts for approximately 38 percent of U.S. commercial buildings' primary energy consumption and a slightly higher percentage of their greenhouse-gas emissions. We have seen incredible gains made with lighting, going from incandescent and T12 fluorescent bulbs to high-efficiency LEDS, but there are even greater advances to be made with HVAC. Gains of 20 percent to 30 percent easily can be made by replacing older degraded equipment with new high-efficiency equipment. Even more savings are possible with an integrated engineering approach yielding optimized system designs combined with highly efficient controls.

  15. Daylighting with Fluorescent Concentrators and Highly Reflective Silver-Coated Plastic Films: A New Application for New Materials

    NASA Astrophysics Data System (ADS)

    Zastrow, Armin; Wittwer, Volker

    1986-09-01

    The interest in efficient daylighting systems has grown recently, due to their potential for saving a considerable amount of electrical energy used for lighting purposes. In this paper we discuss the properties of daylighting systems based on either fluorescent planar concentrators and transparent light guiding plates or light pipes coated with highly reflective silver coated plastic films. Finally we give first results from a demonstration project, daylighting systems in the students' living quarters in Stuttgart-Hohenheim, which is supported by the Commission of the European Communities.

  16. Mechanochemical synthesis of fluorescent carbon dots from cellulose powders

    NASA Astrophysics Data System (ADS)

    Chae, Ari; Ram Choi, Bo; Choi, Yujin; Jo, Seongho; Kang, Eun Bi; Lee, Hyukjin; Park, Sung Young; In, Insik

    2018-04-01

    A novel mechanochemical method was firstly developed to synthesize carbon nanodots (CNDs) or carbon nano-onions (CNOs) through high-pressure homogenization of cellulose powders as naturally abundant resource depending on the treatment times. While CNDs (less than 5 nm in size) showed spherical and amorphous morphology, CNOs (10-50 nm in size) presented polyhedral shape, and onion-like outer lattice structure, graphene-like interlattice spacing of 0.36 nm. CNOs showed blue emissions, moderate dispersibility in aqueous media, and high cell viability, which enables efficient fluorescence imaging of cellular media.

  17. Fluorescent cooling of objects exposed to sunlight – The ruby example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdahl, Paul; Chen, Sharon S.; Destaillats, Hugo

    Various pigments are used to formulate desirable non-white colors that stay cooler in the sun than alternatives, which is particularly useful for hot climate areas. These cool pigments provide a high near-infrared (NIR) reflectance in the solar infrared range of 700-2500 nm, and also a color specified by a reflectance spectrum in the 400-700 nm visible range. Still cooler materials can be formulated by also utilizing the phenomenon of fluorescence (photoluminescence). Ruby, Al 2O 3 :Cr, is a prime example, with efficient emission in the deep red (~694 nm) and near infrared (700-800 nm). A layer of synthetic ruby crystalsmore » on a white surface having an attractive red color can remain cooler in the sun than conventional red materials. Ruby particles can also be used as a red/pink pigment. Increasing the Cr:Al ratio produces a stronger (darker) pigment but doping above ~3 wt% Cr 2O 3 causes concentration quenching of the fluorescence. The system quantum efficiency for lightly doped ruby-pigmented coatings over white is high, 0.83 ± 0.10.« less

  18. Organic Fluorescent Dyes Supported on Activated Boron Nitride: A Promising Blue Light Excited Phosphors for High-Performance White Light-Emitting Diodes

    PubMed Central

    Li, Jie; Lin, Jing; Huang, Yang; Xu, Xuewen; Liu, Zhenya; Xue, Yanming; Ding, Xiaoxia; Luo, Han; Jin, Peng; Zhang, Jun; Zou, Jin; Tang, Chengchun

    2015-01-01

    We report an effective and rare-earth free light conversion material synthesized via a facile fabrication route, in which organic fluorescent dyes, i.e. Rhodamine B (RhB) and fluorescein isothiocyanate (FITC) are embedded into activated boron nitride (αBN) to form a composite phosphor. The composite phosphor shows highly efficient Förster resonance energy transfer and greatly improved thermal stability, and can emit at broad visible wavelengths of 500–650 nm under the 466 nm blue-light excitation. By packaging of the composite phosphors and a blue light-emitting diode (LED) chip with transparent epoxy resin, white LED with excellent thermal conductivity, current stability and optical performance can be realized, i.e. a thermal conductivity of 0.36 W/mk, a Commission Internationale de 1'Eclairage color coordinates of (0.32, 0.34), and a luminous efficiency of 21.6 lm·W−1. Our research opens the door toward to the practical long-life organic fluorescent dyes-based white LEDs. PMID:25682730

  19. Chromophore Isomer Stabilization Is Critical to the Efficient Fluorescence of Cyan Fluorescent Proteins.

    PubMed

    Gotthard, Guillaume; von Stetten, David; Clavel, Damien; Noirclerc-Savoye, Marjolaine; Royant, Antoine

    2017-12-12

    ECFP, the first usable cyan fluorescent protein (CFP), was obtained by adapting the tyrosine-based chromophore environment in green fluorescent protein to that of a tryptophan-based one. This first-generation CFP was superseded by the popular Cerulean, CyPet, and SCFP3A that were engineered by rational and random mutagenesis, yet the latter CFPs still exhibit suboptimal properties of pH sensitivity and reversible photobleaching behavior. These flaws were serendipitously corrected in the third-generation CFP mTurquoise and its successors without an obvious rationale. We show here that the evolution process had unexpectedly remodeled the chromophore environment in second-generation CFPs so they would accommodate a different isomer, whose formation is favored by acidic pH or light irradiation and which emits fluorescence much less efficiently. Our results illustrate how fluorescent protein engineering based solely on fluorescence efficiency optimization may affect other photophysical or physicochemical parameters and provide novel insights into the rational evolution of fluorescent proteins with a tryptophan-based chromophore.

  20. Surface-confined fluorescence enhancement of Au nanoclusters anchoring to a two-dimensional ultrathin nanosheet toward bioimaging

    NASA Astrophysics Data System (ADS)

    Tian, Rui; Yan, Dongpeng; Li, Chunyang; Xu, Simin; Liang, Ruizheng; Guo, Lingyan; Wei, Min; Evans, David G.; Duan, Xue

    2016-05-01

    Gold nanoclusters (Au NCs) as ultrasmall fluorescent nanomaterials possess discrete electronic energy and unique physicochemical properties, but suffer from relatively low quantum yield (QY) which severely affects their application in displays and imaging. To solve this conundrum and obtain highly-efficient fluorescent emission, 2D exfoliated layered double hydroxide (ELDH) nanosheets were employed to localize Au NCs with a density as high as 5.44 × 1013 cm-2, by virtue of the surface confinement effect of ELDH. Both experimental studies and computational simulations testify that the excited electrons of Au NCs are strongly confined by MgAl-ELDH nanosheets, which results in a largely promoted QY as well as prolonged fluorescence lifetime (both ~7 times enhancement). In addition, the as-fabricated Au NC/ELDH hybrid material exhibits excellent imaging properties with good stability and biocompatibility in the intracellular environment. Therefore, this work provides a facile strategy to achieve highly luminescent Au NCs via surface-confined emission enhancement imposed by ultrathin inorganic nanosheets, which can be potentially used in bio-imaging and cell labelling.Gold nanoclusters (Au NCs) as ultrasmall fluorescent nanomaterials possess discrete electronic energy and unique physicochemical properties, but suffer from relatively low quantum yield (QY) which severely affects their application in displays and imaging. To solve this conundrum and obtain highly-efficient fluorescent emission, 2D exfoliated layered double hydroxide (ELDH) nanosheets were employed to localize Au NCs with a density as high as 5.44 × 1013 cm-2, by virtue of the surface confinement effect of ELDH. Both experimental studies and computational simulations testify that the excited electrons of Au NCs are strongly confined by MgAl-ELDH nanosheets, which results in a largely promoted QY as well as prolonged fluorescence lifetime (both ~7 times enhancement). In addition, the as-fabricated Au NC/ELDH hybrid material exhibits excellent imaging properties with good stability and biocompatibility in the intracellular environment. Therefore, this work provides a facile strategy to achieve highly luminescent Au NCs via surface-confined emission enhancement imposed by ultrathin inorganic nanosheets, which can be potentially used in bio-imaging and cell labelling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01624c

  1. The study of chemical composition and elemental mappings of colored over-glaze porcelain fired in Qing Dynasty by micro-X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Lin, Cheng; Meitian, Li; Youshi, Kim; Changsheng, Fan; Shanghai, Wang; Qiuli, Pan; Zhiguo, Liu; Rongwu, Li

    2011-02-01

    It is very difficult to measure the chemical composition of colored pigments of over-glaze porcelain by X-ray fluorescence because it contains high concentration of Pb. One of the disadvantages of our polycapillary optics is that it has low transmission efficiency to the high energy X-ray. However, it is beneficial to measure the chemical compositions of rich Pb sample. In this paper, we reported the performances of a tabletop setup of micro-X-ray fluorescence system base on slightly focusing polycapillary and its applications for analysis of rich Pb sample. A piece of Chinese ancient over-glaze porcelain was analyzed by micro-X-ray fluorescence. The experimental results showed that the Cu, Fe and Mn are the major color elements. The possibilities of the process of decorative technology were discussed in this paper, also.

  2. Excessive Labeling Technique Provides a Highly Sensitive Fluorescent Probe for Real-time Monitoring of Biodegradation of Biopolymer Pharmaceuticals in vivo.

    PubMed

    Terekhov, S S; Smirnov, I V; Shamborant, O G; Zenkova, M A; Chernolovskaya, E L; Gladkikh, D V; Murashev, A N; Dyachenko, I A; Knorre, V D; Belogurov, A A; Ponomarenko, N A; Deyev, S M; Vlasov, V V; Gabibov, A G

    2014-10-01

    Recombinant proteins represent a large sector of the biopharma market. Determination of the main elimination pathways raises the opportunities to significantly increase their half-lives in vivo. However, evaluation of biodegradation of pharmaceutical biopolymers performed in the course of pre-clinical studies is frequently complicated. Noninvasive pharmacokinetic and biodistribution studies in living organism are possible using proteins conjugated with near-infrared dyes. In the present study we designed a highly efficient probe based on fluorescent dye self-quenching for monitoring of in vivo biodegradation of recombinant human butyrylcholinesterase. The maximum enhancement of integral fluorescence in response to degradation of an intravenously administered enzyme was observed 6 h after injection. Importantly, excessive butyrylcholinesterase labeling with fluorescent dye results in significant changes in the pharmacokinetic properties of the obtained conjugate. This fact must be taken into consideration during future pharmacokinetic studies using in vivo bioimaging.

  3. Fluorescent microplate assay method for high-throughput detection of lipase transesterification activity.

    PubMed

    Zheng, Jianyong; Wei, Wei; Lan, Xing; Zhang, Yinjun; Wang, Zhao

    2018-05-15

    This study describes a sensitive and fluorescent microplate assay method to detect lipase transesterification activity. Lipase-catalyzed transesterification between butyryl 4-methyl umbelliferone (Bu-4-Mu) and methanol in tert-butanol was selected as the model reaction. The release of 4-methylumbelliferone (4-Mu) in the reaction was determined by detecting the fluorescence intensity at λ ex 330 nm and λ em 390 nm. Several lipases were used to investigate the accuracy and efficiency of the proposed method. Apparent Michaelis constant (Km) was calculated for transesterification between Bu-4-Mu and methanol by the lipases. The main advantages of the assay method include high sensitivity, inexpensive reagents, and simple detection process. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Blue Thermally Activated Delayed Fluorescence Polymers with Nonconjugated Backbone and Through-Space Charge Transfer Effect.

    PubMed

    Shao, Shiyang; Hu, Jun; Wang, Xingdong; Wang, Lixiang; Jing, Xiabin; Wang, Fosong

    2017-12-13

    We demonstrate novel molecular design for thermally activated delayed fluorescence (TADF) polymers based on a nonconjugated polyethylene backbone with through-space charge transfer effect between pendant electron donor (D) and acceptor (A) units. Different from conventional conjugated D-A polymers with through-bond charge transfer effect, the nonconjugated architecture avoids direct conjugation between D and A units, enabling blue emission. Meanwhile, spatial π-π interaction between the physically separated D and A units results in both small singlet-triplet energy splitting (0.019 eV) and high photoluminescence quantum yield (up to 60% in film state). The resulting polymer with 5 mol % acceptor unit gives efficient blue electroluminescence with Commission Internationale de l'Eclairage coordinates of (0.176, 0.269), together with a high external quantum efficiency of 12.1% and low efficiency roll-off of 4.9% (at 1000 cd m -2 ), which represents the first example of blue TADF nonconjugated polymer.

  5. Optical radiation emissions from compact fluorescent lamps.

    PubMed

    Khazova, M; O'Hagan, J B

    2008-01-01

    There is a drive to energy efficiency to mitigate climate change. To meet this challenge, the UK Government has proposed phasing out incandescent lamps by the end of 2011 and replacing them with energy efficient fluorescent lighting, including compact fluorescent lamps (CFLs) with integrated ballasts. This paper presents a summary of an assessment conducted by the Health Protection Agency in March 2008 to evaluate the optical radiation emissions of CFLs currently available in the UK consumer market. The study concluded that the UV emissions from a significant percentage of the tested CFLs with single envelopes may result in foreseeable overexposure of the skin when these lamps are used in desk or task lighting applications. The optical output of all tested CFLs, in addition to high-frequency modulation, had a 100-Hz envelope with modulation in excess of 15%. This degree of modulation may be linked to a number of adverse effects.

  6. Oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor: Sensing ability, TD-DFT calculations and its application as an efficient solid state sensor

    NASA Astrophysics Data System (ADS)

    Lan, Linxin; Li, Tianduo; Wei, Tao; Pang, He; Sun, Tao; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-03-01

    An oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor 3 T-2CN was reported. Sensor 3 T-2CN showed both naked-eye recognition and ratiometric fluorescence response for CN- with an excellent selectivity and high sensitivity. The sensing mechanism based on the nucleophilic attack of CN- on the vinyl Cdbnd C bond has been successfully confirmed by the optical measurements, 1H NMR titration, FT-IR spectra as well as the DFT/TD-DFT calculations. Moreover, the detection limit was calculated to be 0.19 μM, which is much lower than the maximum permission concentration in drinking water (1.9 μM). Importantly, test strips (filter paper and TLC plates) containing 3 T-2CN were fabricated, which could act as a practical and efficient solid state optical sensor for CN- in field measurements.

  7. Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes.

    PubMed

    Guo, Wenjuan; Wei, Yanhong; Dai, Zhao; Chen, Guangping; Chu, Yuanyuan; Zhao, Yifei

    2018-02-09

    Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO₂ coated CdTe (CdTe/SiO₂) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446-2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L.

  8. Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes

    PubMed Central

    Guo, Wenjuan; Wei, Yanhong; Dai, Zhao; Chen, Guangping; Chu, Yuanyuan; Zhao, Yifei

    2018-01-01

    Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO2 coated CdTe (CdTe/SiO2) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446–2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L. PMID:29425163

  9. Selective and Sensitive Fluorescent Detection of Picric Acid by New Pyrene and Anthracene Based Copper Complexes.

    PubMed

    Reddy, Kumbam Lingeshwar; Kumar, Anabathula Manoj; Dhir, Abhimanew; Krishnan, Venkata

    2016-11-01

    New pyrene and anthracene based copper complexes 4 and 7 respectively were designed, synthesized and characterized. The fluorescence behaviour of both 4 and 7 were evaluated towards nitro aromatics and anions. Both 4 and 7 possess high selectivity for the detection of well-known explosive picric acid (PA) by showing maximum fluorescence affinity. Furthermore, complex 4 showed similar sensing efficiency towards PA at different pH ranges. It was also used for real world applications, as illustrated by the very fast detection of PA from soil samples observed directly by naked eye.

  10. Video-Rate Confocal Microscopy for Single-Molecule Imaging in Live Cells and Superresolution Fluorescence Imaging

    PubMed Central

    Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul

    2012-01-01

    There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0–85 μm from the surface of a coverglass. PMID:23083712

  11. Optical properties of flexible fluorescent films prepared by screen printing technology

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Ke, Taiyan; Chen, Shuijin; He, Xin; Zhang, Mei; Li, Dong; Deng, Jinfeng; Zeng, Qingguang

    2018-05-01

    In this work, we prepared a fluorescent film comprised phosphors and silicone on flexible polyethylene terephthalate (PET) substrate using a screen printing technology. The effects of mesh number and weight ratio of phosphors to silicone on the optical properties of the flexible films were investigated. The results indicate that the emission intensity of the film increase as the mesh decreased from 400 to 200, but the film surface gradually becomes uneven. The fluorescent film with high emission intensity and smooth surface can be obtained when the weight ratio of phosphor to gel is 2:1, and mesh number is 300. The luminous efficiency of the fabricated LEDs combined the fluorescent films with 460 nm Ga(In)N chip module can reach 75 lm/W. The investigation indicates that the approach can be applied in the remote fluorescent film conversion and decreases the requirements of the particle size and the dispersion state of fluorescent materials.

  12. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein

    PubMed Central

    Warner, Katherine Deigan; Chen, Michael C.; Song, Wenjiao; Strack, Rita L.; Thorn, Andrea; Jaffrey, Samie R.; Ferré-D’Amaré, Adrian R.

    2014-01-01

    Green fluorescent protein (GFP) and its derivatives revolutionized the study of proteins. Spinach is a recently reported in vitro evolved RNA mimic of GFP, which as genetically encoded fusions, makes possible live-cell, real-time imaging of biological RNAs, without resorting to large RNA-binding protein-GFP fusions. To elucidate the molecular basis of Spinach fluorescence, we have solved its co-crystal structure bound to its cognate exogenous chromophore, revealing that Spinach activates the small molecule by immobilizing it between a base triple, a G-quadruplex, and an unpaired guanine. Mutational and NMR analyses indicate that the G-quadruplex is essential for Spinach fluorescence, is also present in other fluorogenic RNAs, and may represent a general strategy for RNAs to induce fluorescence of chromophores. The structure has guided the design of a miniaturized 'Baby Spinach', and provides the foundation for structure-driven design and tuning of fluorescent RNAs. PMID:25026079

  13. Metallothionein quantification in clams by reversed-phase high-performance liquid chromatography coupled to fluorescence detection after monobromobimane derivatization.

    PubMed

    Alhama, José; Romero-Ruiz, Antonio; López-Barea, Juan

    2006-02-24

    In this paper, we describe a highly specific, sensitive and reliable method for total metallothionein (MT) quantification by RP-HPLC coupled to fluorescence detection following reaction with monobromobimane of thiols from metal-depleted MT after heat-denaturation of extracts in the presence of sodium dodecyl sulphate (SDS). SDS-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed the identity of the peak resolved (t(R)=16.44) with MT: a highly fluorescent protein of approximately 8.3 kDa, in agreement with the high thiol content and low MT size. Other heat-resistant and Cys-containing proteins of 35 kDa were efficiently separated. The new method was successfully used to quantify MT content in digestive gland of clams from southern Spanish coastal sites with different metal levels, and is proposed as a tool for using MTs as biomarker in monitoring programmes.

  14. Study on the blocking effect of a quantum-dot TiO2 compact layer in dye-sensitized solar cells with ionic liquid electrolyte under low-intensity illumination

    NASA Astrophysics Data System (ADS)

    Zhai, Peng; Lee, Hyeonseok; Huang, Yu-Ting; Wei, Tzu-Chien; Feng, Shien-Ping

    2016-10-01

    In this study, ultrasmall and ultrafine TiO2 quantum dots (QDs) were prepared and used as a high-performance compact layer (CL) in dye-sensitized solar cells (DSCs). We systematically investigated the performance of TiO2 CL under both low-intensity light and indoor fluorescent light illumination and found that the efficiency of DSCs with the insertion of optimal TiO2 QDs-CL was increased up to 18.3% under indoor T5 fluorescent light illumination (7000 lux). We clarified the controversy over the blocking effect of TiO2 CL for the efficiency increment and confirmed that the TiO2 QDs-CL performed significantly better under low-intensity illumination due to the efficient suppression of electron recombination at the FTO/electrolyte interface. We, for the first time, demonstrate this potential for the application of the DSCs with TiO2 QDs-CL in the low-intensity light and indoor fluorescent light illumination.

  15. Prime-Color Concept: Lighting for the Future

    ERIC Educational Resources Information Center

    Modern Schools, 1976

    1976-01-01

    A major technological breakthrough--the isolation and then combination of narrow bands of blue-violet, pure green, and orange-red energy--has resulted in a highly efficient white fluorescent lamp. (Author/MLF)

  16. Fused Silica Ion Trap Chip with Efficient Optical Collection System for Timekeeping, Sensing, and Emulation

    DTIC Science & Technology

    2015-01-22

    applications in fast single photon sources, quantum repeater circuitry, and high fidelity remote entanglement of atoms for quantum information protocols. We...fluorescence for motion/force sensors through Doppler velocimetry; and for the efficient collection of single photons from trapped ions for...Doppler velocimetry; and for the efficient collection of single photons from trapped ions for applications in fast single photon sources, quantum

  17. A Rapid, Highly Efficient and Economical Method of Agrobacterium-Mediated In planta Transient Transformation in Living Onion Epidermis

    PubMed Central

    Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale. PMID:24416168

  18. Performance of a two-leaf light use efficiency model for mapping gross primary productivity against remotely sensed sun-induced chlorophyll fluorescence data.

    PubMed

    Zan, Mei; Zhou, Yanlian; Ju, Weimin; Zhang, Yongguang; Zhang, Leiming; Liu, Yibo

    2018-02-01

    Estimating terrestrial gross primary production is an important task when studying the carbon cycle. In this study, the ability of a two-leaf light use efficiency model to simulate regional gross primary production in China was validated using satellite Global Ozone Monitoring Instrument - 2 sun-induced chlorophyll fluorescence data. The two-leaf light use efficiency model was used to estimate daily gross primary production in China's terrestrial ecosystems with 500-m resolution for the period from 2007 to 2014. Gross primary production simulated with the two-leaf light use efficiency model was resampled to a spatial resolution of 0.5° and then compared with sun-induced chlorophyll fluorescence. During the study period, sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model exhibited similar spatial and temporal patterns in China. The correlation coefficient between sun-induced chlorophyll fluorescence and monthly gross primary production simulated by the two-leaf light use efficiency model was significant (p<0.05, n=96) in 88.9% of vegetated areas in China (average value 0.78) and varied among vegetation types. The interannual variations in monthly sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model were similar in spring and autumn in most vegetated regions, but dissimilar in winter and summer. The spatial variability of sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model was similar in spring, summer, and autumn. The proportion of spatial variations of sun-induced chlorophyll fluorescence and annual gross primary production simulated by the two-leaf light use efficiency model explained by ranged from 0.76 (2011) to 0.80 (2013) during the study period. Overall, the two-leaf light use efficiency model was capable of capturing spatial and temporal variations in gross primary production in China. However, the model needs further improvement to better simulate gross primary production in summer. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Balance the Carrier Mobility To Achieve High Performance Exciplex OLED Using a Triazine-Based Acceptor.

    PubMed

    Hung, Wen-Yi; Chiang, Pin-Yi; Lin, Shih-Wei; Tang, Wei-Chieh; Chen, Yi-Ting; Liu, Shih-Hung; Chou, Pi-Tai; Hung, Yi-Tzu; Wong, Ken-Tsung

    2016-02-01

    A star-shaped 1,3,5-triazine/cyano hybrid molecule CN-T2T was designed and synthesized as a new electron acceptor for efficient exciplex-based OLED emitter by mixing with a suitable electron donor (Tris-PCz). The CN-T2T/Tris-PCz exciplex emission shows a high ΦPL of 0.53 and a small ΔET-S = -0.59 kcal/mol, affording intrinsically efficient fluorescence and highly efficient exciton up-conversion. The large energy level offsets between Tris-PCz and CN-T2T and the balanced hole and electron mobility of Tris-PCz and CN-T2T, respectively, ensuring sufficient carrier density accumulated in the interface for efficient generation of exciplex excitons. Employing a facile device structure composed as ITO/4% ReO3:Tris-PCz (60 nm)/Tris-PCz (15 nm)/Tris-PCz:CN-T2T(1:1) (25 nm)/CN-T2T (50 nm)/Liq (0.5 nm)/Al (100 nm), in which the electron-hole capture is efficient without additional carrier injection barrier from donor (or acceptor) molecule and carriers mobilities are balanced in the emitting layer, leads to a highly efficient green exciplex OLED with external quantum efficiency (EQE) of 11.9%. The obtained EQE is 18% higher than that of a comparison device using an exciplex exhibiting a comparable ΦPL (0.50), in which TCTA shows similar energy levels but higher hole mobility as compared with Tris-PCz. Our results clearly indicate the significance of mobility balance in governing the efficiency of exciplex-based OLED. Exploiting the Tris-PCz:CN-T2T exciplex as the host, we further demonstrated highly efficient yellow and red fluorescent OLEDs by doping 1 wt % Rubrene and DCJTB as emitter, achieving high EQE of 6.9 and 9.7%, respectively.

  20. Strategies to Achieve High-Performance White Organic Light-Emitting Diodes

    PubMed Central

    Zhang, Lirong; Li, Xiang-Long; Luo, Dongxiang; Xiao, Peng; Xiao, Wenping; Song, Yuhong; Ang, Qinshu; Liu, Baiquan

    2017-01-01

    As one of the most promising technologies for next-generation lighting and displays, white organic light-emitting diodes (WOLEDs) have received enormous worldwide interest due to their outstanding properties, including high efficiency, bright luminance, wide viewing angle, fast switching, lower power consumption, ultralight and ultrathin characteristics, and flexibility. In this invited review, the main parameters which are used to characterize the performance of WOLEDs are introduced. Subsequently, the state-of-the-art strategies to achieve high-performance WOLEDs in recent years are summarized. Specifically, the manipulation of charges and excitons distribution in the four types of WOLEDs (fluorescent WOLEDs, phosphorescent WOLEDs, thermally activated delayed fluorescent WOLEDs, and fluorescent/phosphorescent hybrid WOLEDs) are comprehensively highlighted. Moreover, doping-free WOLEDs are described. Finally, issues and ways to further enhance the performance of WOLEDs are briefly clarified. PMID:29194426

  1. A Fluorescent Protein Scaffold for Presenting Structurally Constrained Peptides Provides an Effective Screening System to Identify High Affinity Target-Binding Peptides

    PubMed Central

    Kadonosono, Tetsuya; Yabe, Etsuri; Furuta, Tadaomi; Yamano, Akihiro; Tsubaki, Takuya; Sekine, Takuya; Kuchimaru, Takahiro; Sakurai, Minoru; Kizaka-Kondoh, Shinae

    2014-01-01

    Peptides that have high affinity for target molecules on the surface of cancer cells are crucial for the development of targeted cancer therapies. However, unstructured peptides often fail to bind their target molecules with high affinity. To efficiently identify high-affinity target-binding peptides, we have constructed a fluorescent protein scaffold, designated gFPS, in which structurally constrained peptides are integrated at residues K131–L137 of superfolder green fluorescent protein. Molecular dynamics simulation supported the suitability of this site for presentation of exogenous peptides with a constrained structure. gFPS can present 4 to 12 exogenous amino acids without a loss of fluorescence. When gFPSs presenting human epidermal growth factor receptor type 2 (HER2)-targeting peptides were added to the culture medium of HER2-expressing cells, we could easily identify the peptides with high HER2-affinity and -specificity based on gFPS fluorescence. In addition, gFPS could be expressed on the yeast cell surface and applied for a high-throughput screening. These results demonstrate that gFPS has the potential to serve as a powerful tool to improve screening of structurally constrained peptides that have a high target affinity, and suggest that it could expedite the one-step identification of clinically applicable cancer cell-binding peptides. PMID:25084350

  2. High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Sallis, Shawn; Fuchs, Oliver; Blum, Monika; Weinhardt, Lothar; Heske, Clemens; Pepper, John; Jones, Michael; Brown, Adam; Spucces, Adrian; Chow, Ken; Smith, Brian; Glans, Per-Anders; Chen, Yanxue; Yan, Shishen; Pan, Feng; Piper, Louis F. J.; Denlinger, Jonathan; Guo, Jinghua; Hussain, Zahid; Chuang, Yi-De; Yang, Wanli

    2017-03-01

    An endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without moving any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.

  3. A Neuron-Based Screening Platform for Optimizing Genetically-Encoded Calcium Indicators

    PubMed Central

    Schreiter, Eric R.; Hasseman, Jeremy P.; Tsegaye, Getahun; Fosque, Benjamin F.; Behnam, Reza; Shields, Brenda C.; Ramirez, Melissa; Kimmel, Bruce E.; Kerr, Rex A.; Jayaraman, Vivek; Looger, Loren L.; Svoboda, Karel; Kim, Douglas S.

    2013-01-01

    Fluorescent protein-based sensors for detecting neuronal activity have been developed largely based on non-neuronal screening systems. However, the dynamics of neuronal state variables (e.g., voltage, calcium, etc.) are typically very rapid compared to those of non-excitable cells. We developed an electrical stimulation and fluorescence imaging platform based on dissociated rat primary neuronal cultures. We describe its use in testing genetically-encoded calcium indicators (GECIs). Efficient neuronal GECI expression was achieved using lentiviruses containing a neuronal-selective gene promoter. Action potentials (APs) and thus neuronal calcium levels were quantitatively controlled by electrical field stimulation, and fluorescence images were recorded. Images were segmented to extract fluorescence signals corresponding to individual GECI-expressing neurons, which improved sensitivity over full-field measurements. We demonstrate the superiority of screening GECIs in neurons compared with solution measurements. Neuronal screening was useful for efficient identification of variants with both improved response kinetics and high signal amplitudes. This platform can be used to screen many types of sensors with cellular resolution under realistic conditions where neuronal state variables are in relevant ranges with respect to timing and amplitude. PMID:24155972

  4. FITC labeled silica nanoparticles as efficient cell tags: uptake and photostability study in endothelial cells.

    PubMed

    Veeranarayanan, Srivani; Poulose, Aby Cheruvathoor; Mohamed, Sheikh; Aravind, Athulya; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2012-03-01

    The use of fluorescent nanomaterials has gained great importance in the field of medical imaging. Many traditional imaging technologies have been reported utilizing dyes in the past. These methods face drawbacks due to non-specific accumulation and photobleaching of dyes. We studied the uptake and internalization of two different sized (30 nm and 100 nm) FITC labeled silica nanoparticles in Human umbilical vein endothelial cell line. These nanomaterials show high biocompatability and are highly photostable inside live cells for increased period of time in comparison to the dye alone. To our knowledge, we report for the first time the use of 30 nm fluorescent silica nanoparticles as efficient endothelial tags along with the well studied 100 nm particles. We also have emphasized the good photostability of these materials in live cells.

  5. Novel DNA probes with low background and high hybridization-triggered fluorescence.

    PubMed

    Lukhtanov, Eugeny A; Lokhov, Sergey G; Gorn, Vladimir V; Podyminogin, Mikhail A; Mahoney, Walt

    2007-01-01

    Novel fluorogenic DNA probes are described. The probes (called Pleiades) have a minor groove binder (MGB) and a fluorophore at the 5'-end and a non-fluorescent quencher at the 3'-end of the DNA sequence. This configuration provides surprisingly low background and high hybridization-triggered fluorescence. Here, we comparatively study the performance of such probes, MGB-Eclipse probes, and molecular beacons. Unlike the other two probe formats, the Pleiades probes have low, temperature-independent background fluorescence and excellent signal-to-background ratios. The probes possess good mismatch discrimination ability and high rates of hybridization. Based on the analysis of fluorescence and absorption spectra we propose a mechanism of action for the Pleiades probes. First, hydrophobic interactions between the quencher and the MGB bring the ends of the probe and, therefore, the fluorophore and the quencher in close proximity. Second, the MGB interacts with the fluorophore and independent of the quencher is able to provide a modest (2-4-fold) quenching effect. Joint action of the MGB and the quencher is the basis for the unique quenching mechanism. The fluorescence is efficiently restored upon binding of the probe to target sequence due to a disruption in the MGB-quencher interaction and concealment of the MGB moiety inside the minor groove.

  6. Novel DNA probes with low background and high hybridization-triggered fluorescence

    PubMed Central

    Lukhtanov, Eugeny A.; Lokhov, Sergey G.; Gorn, Vladimir V.; Podyminogin, Mikhail A.; Mahoney, Walt

    2007-01-01

    Novel fluorogenic DNA probes are described. The probes (called Pleiades) have a minor groove binder (MGB) and a fluorophore at the 5′-end and a non-fluorescent quencher at the 3′-end of the DNA sequence. This configuration provides surprisingly low background and high hybridization-triggered fluorescence. Here, we comparatively study the performance of such probes, MGB-Eclipse probes, and molecular beacons. Unlike the other two probe formats, the Pleiades probes have low, temperature-independent background fluorescence and excellent signal-to-background ratios. The probes possess good mismatch discrimination ability and high rates of hybridization. Based on the analysis of fluorescence and absorption spectra we propose a mechanism of action for the Pleiades probes. First, hydrophobic interactions between the quencher and the MGB bring the ends of the probe and, therefore, the fluorophore and the quencher in close proximity. Second, the MGB interacts with the fluorophore and independent of the quencher is able to provide a modest (2–4-fold) quenching effect. Joint action of the MGB and the quencher is the basis for the unique quenching mechanism. The fluorescence is efficiently restored upon binding of the probe to target sequence due to a disruption in the MGB–quencher interaction and concealment of the MGB moiety inside the minor groove. PMID:17259212

  7. Quantitation of circulating tumor cells in blood samples from ovarian and prostate cancer patients using tumor-specific fluorescent ligands.

    PubMed

    He, Wei; Kularatne, Sumith A; Kalli, Kimberly R; Prendergast, Franklyn G; Amato, Robert J; Klee, George G; Hartmann, Lynn C; Low, Philip S

    2008-10-15

    Quantitation of circulating tumor cells (CTCs) can provide information on the stage of a malignancy, onset of disease progression and response to therapy. In an effort to more accurately quantitate CTCs, we have synthesized fluorescent conjugates of 2 high-affinity tumor-specific ligands (folate-AlexaFluor 488 and DUPA-FITC) that bind tumor cells >20-fold more efficiently than fluorescent antibodies. Here we determine whether these tumor-specific dyes can be exploited for quantitation of CTCs in peripheral blood samples from cancer patients. A CTC-enriched fraction was isolated from the peripheral blood of ovarian and prostate cancer patients by an optimized density gradient centrifugation protocol and labeled with the aforementioned fluorescent ligands. CTCs were then quantitated by flow cytometry. CTCs were detected in 18 of 20 ovarian cancer patients (mean 222 CTCs/ml; median 15 CTCs/ml; maximum 3,118 CTCs/ml), whereas CTC numbers in 16 gender-matched normal volunteers were negligible (mean 0.4 CTCs/ml; median 0.3 CTCs/ml; maximum 1.5 CTCs/ml; p < 0.001, chi(2)). CTCs were also detected in 10 of 13 prostate cancer patients (mean 26 CTCs/ml, median 14 CTCs/ml, maximum 94 CTCs/ml) but not in 18 gender-matched healthy donors (mean 0.8 CTCs/ml, median 1, maximum 3 CTC/ml; p < 0.0026, chi(2)). Tumor-specific fluorescent antibodies were much less efficient in quantitating CTCs because of their lower CTC labeling efficiency. Use of tumor-specific fluorescent ligands to label CTCs in peripheral blood can provide a simple, accurate and sensitive method for determining the number of cancer cells circulating in the bloodstream.

  8. Aerosol Generation by Modern Flush Toilets

    PubMed Central

    Johnson, David; Lynch, Robert; Marshall, Charles; Mead, Kenneth; Hirst, Deborah

    2015-01-01

    A microbe-contaminated toilet will produce bioaerosols when flushed. We assessed toilet plume aerosol from high efficiency (HET), pressure-assisted high efficiency (PAT), and flushometer (FOM) toilets with similar bowl water and flush volumes. Total and droplet nuclei “bioaerosols” were assessed. Monodisperse 0.25–1.9-μm fluorescent microspheres served as microbe surrogates in separate trials in a mockup 5 m3 water closet (WC). Bowl water seeding was approximately 1012 particles/mL. Droplet nuclei were sampled onto 0.2-μm pore size mixed cellulose ester filters beginning 15 min after the flush using open-face cassettes mounted on the WC walls. Pre- and postflush bowl water concentrations were measured. Filter particle counts were analyzed via fluorescent microscopy. Bowl headspace droplet count size distributions were bimodal and similar for all toilet types and flush conditions, with 95% of droplets <2 μm diameter and >99% <5 μm. Up to 145,000 droplets were produced per flush, with the high-energy flushometer producing over three times as many as the lower energy PAT and over 12 times as many as the lowest energy HET despite similar flush volumes. The mean numbers of fluorescent droplet nuclei particles aerosolized and remaining airborne also increased with flush energy. Fluorescent droplet nuclei per flush decreased with increasing particle size. These findings suggest two concurrent aerosolization mechanisms—splashing for large droplets and bubble bursting for the fine droplets that form droplet nuclei. PMID:26635429

  9. The mechanisms of delayed fluorescence in charge-transfer crystal of tetracyanobenzene-hexamethylbenzene

    NASA Astrophysics Data System (ADS)

    Kozankiewicz, B.; Prochorow, J.

    1989-08-01

    Fluorescence, phosphorescence and delayed fluorescence emission characteristics of tetracyanobenzene-hexamethylbenzene (TCNB-HMB) charge-transfer crystal have been studied in the 1.7-340 K temperature range. Delayed fluorescence, originating from heterogeneous triplet-triplet annihilation indicates the presence of mobile charge-transfer triplet excitons at a temperature as low as 1.7 K. However, the behaviour of triplet excitons in TCNB-HMB crystal is strongly controlled by a very efficient trapping process in the whole temperature range investigated. It was found that thermally activated delayed fluorescence, which is a dominating emission of the crystal at elevated temperatures (>60 K), has a different origin (a different initial state) at different temperatures. These observations were analysed and interpreted in terms of a photokinetic model, which is considered to be typical for charge-transfer crystals with high charge-transfer character of triplet excitons.

  10. Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts.

    PubMed

    Cui, Lin-Song; Ruan, Shi-Bin; Bencheikh, Fatima; Nagata, Ryo; Zhang, Lei; Inada, Ko; Nakanotani, Hajime; Liao, Liang-Sheng; Adachi, Chihaya

    2017-12-21

    Organic light-emitting diodes have become a mainstream display technology because of their desirable features. Third-generation electroluminescent devices that emit light through a mechanism called thermally activated delayed fluorescence are currently garnering much attention. However, unsatisfactory device stability is still an unresolved issue in this field. Here we demonstrate that electron-transporting n-type hosts, which typically include an acceptor moiety in their chemical structure, have the intrinsic ability to balance the charge fluxes and broaden the recombination zone in delayed fluorescence organic electroluminescent devices, while at the same time preventing the formation of high-energy excitons. The n-type hosts lengthen the lifetimes of green and blue delayed fluorescence devices by > 30 and 1000 times, respectively. Our results indicate that n-type hosts are suitable to realize stable delayed fluorescence organic electroluminescent devices.

  11. Pyridine Based Fluorescence Probe: Simultaneous Detection and Removal of Arsenate from Real Samples with Living Cell Imaging Properties.

    PubMed

    Nandi, Sandip; Sahana, Animesh; Sarkar, Bidisha; Mukhopadhyay, Subhra Kanti; Das, Debasis

    2015-09-01

    Pyridine based fluorescence probe, DFPPIC and its functionalized Merrifield polymer has been synthesized, characterized and used as an arsenate selective fluorescence sensor. Arsenate induced fluorescence enhancement is attributed to inter-molecular H-bonding assisted CHEF process. The detection limit for arsenate is 0.001 μM, much below the WHO recommended tolerance level in drinking water. DFPPIC can detect intracellular arsenate in drinking water of Purbasthali, West Bengal, India efficiently. Graphical Abstract DFPPIC and its Merrifield conjugate polymer are used for selective determination and removal of arsenate from real drinking water samples of Purbasthali, a highly arsenic contaminated region of West Bengal, India. DFPPIC is very promising to imaging arsenate in living cells.

  12. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu2+/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu2+ detection is 1 µM for a nanoparticle sample with a diameter of ~30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, K+, Mg2+, Ca2+, Zn2+, Hg2+, Mn2+, Fe2+, Ni2+, Co2+ and Pb2+). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  13. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles.

    PubMed

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-09

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu(2+) in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu(2+) ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu(2+) ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu(2+) ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu(2+)/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu(2+) detection is 1 microM for a nanoparticle sample with a diameter of approximately 30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu(2+) ion among the metal ions examined (Na(+), K(+), Mg(2+), Ca(2+), Zn(2+), Hg(2+), Mn(2+), Fe(2+), Ni(2+), Co(2+) and Pb(2+)). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  14. A Wireless Fiber Photometry System Based on a High-Precision CMOS Biosensor With Embedded Continuous-Time Modulation.

    PubMed

    Khiarak, Mehdi Noormohammadi; Martianova, Ekaterina; Bories, Cyril; Martel, Sylvain; Proulx, Christophe D; De Koninck, Yves; Gosselin, Benoit

    2018-06-01

    Fluorescence biophotometry measurements require wide dynamic range (DR) and high-sensitivity laboratory apparatus. Indeed, it is often very challenging to accurately resolve the small fluorescence variations in presence of noise and high-background tissue autofluorescence. There is a great need for smaller detectors combining high linearity, high sensitivity, and high-energy efficiency. This paper presents a new biophotometry sensor merging two individual building blocks, namely a low-noise sensing front-end and a order continuous-time modulator (CTSDM), into a single module for enabling high-sensitivity and high energy-efficiency photo-sensing. In particular, a differential CMOS photodetector associated with a differential capacitive transimpedance amplifier-based sensing front-end is merged with an incremental order 1-bit CTSDM to achieve a large DR, low hardware complexity, and high-energy efficiency. The sensor leverages a hardware sharing strategy to simplify the implementation and reduce power consumption. The proposed CMOS biosensor is integrated within a miniature wireless head mountable prototype for enabling biophotometry with a single implantable fiber in the brain of live mice. The proposed biophotometry sensor is implemented in a 0.18- CMOS technology, consuming from a 1.8- supply voltage, while achieving a peak dynamic range of over a 50- input bandwidth, a sensitivity of 24 mV/nW, and a minimum detectable current of 2.46- at a 20- sampling rate.

  15. An aggregated perylene-based broad-spectrum, efficient and label-free quencher for multiplexed fluorescent bioassays.

    PubMed

    Liu, Tao; Hu, Rong; Lv, Yi-Fan; Wu, Yuan; Liang, Hao; Huan, Shuang-Yan; Zhang, Xiao-Bing; Tan, Weihong; Yu, Ru-Qin

    2014-08-15

    Fluorescent sensing systems based on the quenching of fluorophores have found wide applications in bioassays. An efficient quencher will endow the sensing system a high sensitivity. The frequently used quenchers are based on organic molecules or nanomaterials, which usually need tedious synthesizing and modifying steps, and exhibit different quenching efficiencies to different fluorophores. In this work, we for the first time report that aggregated perylene derivative can serve as a broad-spectrum and label-free quencher that is able to efficiently quench a variety of fluorophores, such as green, red and far red dyes labeled on DNA. By choosing nucleases as model biomolecules, such a broad-spectrum quencher was then employed to construct a multiplexed bioassay platform through a label-free manner. Due to the high quenching efficiency of the aggregated perylene, the proposed platform could detect nuclease with high sensitivity, with a detection limit of 0.03U/mL for EcoRV, and 0.05U/mL for EcoRI. The perylene quencher does not affect the activity of nuclease, which makes it possible to design post-addition type bioassay platform. Moreover, the proposed platform allows simultaneous and multicolor analysis of nucleases in homogeneous solution, demonstrating its value of potential application in rapid screening of multiple bio-targets. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Soybean stem growth under high-pressure sodium with supplemental blue lighting

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.

    1991-01-01

    To study high-pressure sodium (HPS) lamps used for plant lighting because of their high energy conversion efficiencies, 'McCall' soybean plants were grown for 28 days in growth chambers utilizing HPS lamps, with/without supplemental light from blue phosphor fluorescent lamps. Total photosynthetic photon flux levels, including blue fluorescent, were maintained near 300 or 500 micromol/sq m s. Results indicate that employment of HPS or other blue-deficient sources for lighting at low to moderate photosynthetic photon flux levels may cause abnormal stem elongation, but this can be prevented by the addition of a small amount of supplemental blue light.

  17. Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects.

    PubMed

    Zehentbauer, Florian M; Moretto, Claudia; Stephen, Ryan; Thevar, Thangavel; Gilchrist, John R; Pokrajac, Dubravka; Richard, Katherine L; Kiefer, Johannes

    2014-01-01

    Rhodamine 6G (R6G), also known as Rhodamine 590, is one of the most frequently used dyes for application in dye lasers and as a fluorescence tracer, e.g., in the area of environmental hydraulics. Knowing the spectroscopic characteristics of the optical emission is key to obtaining high conversion efficiency and measurement accuracy, respectively. In this work, solvent and concentration effects are studied. A series of eight different organic solvents (methanol, ethanol, n-propanol, iso-propanol, n-butanol, n-pentanol, acetone, and dimethyl sulfoxide (DMSO)) are investigated at constant dye concentration. Relatively small changes of the fluorescence spectrum are observed for the different solvents; the highest fluorescence intensity is observed for methanol and lowest for DMSO. The shortest peak wavelength is found in methanol (568 nm) and the longest in DMSO (579 nm). Concentration effects in aqueous R6G solutions are studied over the full concentration range from the solubility limit to highly dilute states. Changing the dye concentration provides tunability between ∼550 nm in the dilute case and ∼620 nm at high concentration, at which point the fluorescence spectrum indicates the formation of R6G aggregates. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Photo-acoustic spectroscopy and quantum efficiency of Yb{sup 3+} doped alumino silicate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, Stefan, E-mail: stefan.kuhn84@googlemail.com; Tiegel, Mirko; Herrmann, Andreas

    2015-09-14

    In this contribution, we analyze the effect of several preparation methods of Yb{sup 3+} doped alumino silicate glasses on their quantum efficiency by using photo-acoustic measurements in comparison to standard measurement methods including the determination via the fluorescence lifetime and an integrating sphere setup. The preparation methods focused on decreasing the OH concentration by means of fluorine-substitution and/or applying dry melting atmospheres, which led to an increase in the measured fluorescence lifetime. However, it was found that the influence of these methods on radiative properties such as the measured fluorescence lifetime alone does not per se give exact information aboutmore » the actual quantum efficiency of the sample. The determination of the quantum efficiency by means of fluorescence lifetime shows inaccuracies when refractive index changing elements such as fluorine are incorporated into the glass. Since fluorine not only eliminates OH from the glass but also increases the “intrinsic” radiative fluorescence lifetime, which is needed to calculate the quantum efficiency, it is difficult to separate lifetime quenching from purely radiative effects. The approach used in this contribution offers a possibility to disentangle radiative from non-radiative properties which is not possible by using fluorescence lifetime measurements alone and allows an accurate determination of the quantum efficiency of a given sample. The comparative determination by an integrating sphere setup leads to the well-known problem of reabsorption which embodies itself in the measurement of too low quantum efficiencies, especially for samples with small quantum efficiencies.« less

  19. Photochemical studies of a fluorescent chlorophyll catabolite--source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen.

    PubMed

    Jockusch, Steffen; Turro, Nicholas J; Banala, Srinivas; Kräutler, Bernhard

    2014-02-01

    Fluorescent chlorophyll catabolites (FCCs) are fleeting intermediates of chlorophyll breakdown, which is seen as an enzyme controlled detoxification process of the chlorophylls in plants. However, some plants accumulate large amounts of persistent FCCs, such as in senescent leaves and in peels of yellow bananas. The photophysical properties of such a persistent FCC (Me-sFCC) were investigated in detail. FCCs absorb in the near UV spectral region and show blue fluorescence (max at 437 nm). The Me-sFCC fluorescence had a quantum yield of 0.21 (lifetime 1.6 ns). Photoexcited Me-sFCC intersystem crosses into the triplet state (quantum yield 0.6) and generates efficiently singlet oxygen (quantum yield 0.59). The efficient generation of singlet oxygen makes fluorescent chlorophyll catabolites phototoxic, but might also be useful as a (stress) signal and for defense of the plant tissue against infection by pathogens.

  20. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    PubMed

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of <0.2mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. An efficient core-shell fluorescent silica nanoprobe for ratiometric fluorescence detection of pH in living cells.

    PubMed

    Fu, Jingni; Ding, Changqin; Zhu, Anwei; Tian, Yang

    2016-08-07

    Intracellular pH plays a vital role in cell biology, including signal transduction, ion transport and homeostasis. Herein, a ratiometric fluorescent silica probe was developed to detect intracellular pH values. The pH sensitive dye fluorescein isothiocyanate isomer I (FITC), emitting green fluorescence, was hybridized with reference dye rhodamine B (RB), emitting red fluorescence, as a dual-emission fluorophore, in which RB was embedded in a silica core of ∼40 nm diameter. Moreover, to prevent fluorescence resonance energy transfer between FITC and RB, FITC was grafted onto the surface of core-shell silica colloidal particles with a shell thickness of 10-12 nm. The nanoprobe exhibited dual emission bands centered at 517 and 570 nm, under single wavelength excitation of 488 nm. RB encapsulated in silica was inert to pH change and only served as reference signals for providing built-in correction to avoid environmental effects. Moreover, FITC (λem = 517 nm) showed high selectivity toward H(+) against metal ions and amino acids, leading to fluorescence variation upon pH change. Consequently, variations of the two fluorescence intensities (Fgreen/Fred) resulted in a ratiometric pH fluorescent sensor. The specific nanoprobe showed good linearity with pH variation in the range of 6.0-7.8. It can be noted that the fluorescent silica probe demonstrated good water dispersibility, high stability and low cytotoxicity. Accordingly, imaging and biosensing of pH variation was successfully achieved in HeLa cells.

  2. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics

    NASA Astrophysics Data System (ADS)

    Davis, Caitlin M.; Reddish, Michael J.; Dyer, R. Brian

    2017-05-01

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of < 0.2 mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50 ns to 0.5 ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics.

  3. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume

    NASA Astrophysics Data System (ADS)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Sethuraman, Mathur Gopalakrishnan; Lee, Yong Rok

    2016-10-01

    Highly fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized using the extract of unripe Prunus mume (P. mume) fruit by a simple one step hydrothermal-carbonization method. The N-CDs were synthesized at different pH ranges, 2.3, 5, 7, and 9. The pH of the P. mume extract was adjusted using an aqueous ammonia solution (25%). The optical properties of N-CDs were examined by UV-vis and fluorescence spectroscopy. The N-CDs synthesized at pH 9 emitted high fluorescence intensity compared to other obtained N-CDs. The N-CDs synthesized at pH 9 was further characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform-infra red (FT-IR) spectroscopy. HR-TEM showed that the average size of the synthesized N-CDs was approximately 9 nm and the interlayer distance was 0.21 nm, which was validated by XRD. The graphitic nature of the synthesized N-CDs were confirmed by Raman spectroscopy. XPS and FT-IR spectroscopy confirmed the doping of the nitrogen moiety over the synthesized CDs. The synthesized nitrogen doped CDs (N-CDs) were low toxicity and were used as a staining probe for fluorescence cell imaging.

  4. Simple Microwave-Assisted Synthesis of Amphiphilic Carbon Quantum Dots from A3/B2 Polyamidation Monomer Set.

    PubMed

    Choi, Yujin; Jo, Seongho; Chae, Ari; Kim, Young Kwang; Park, Jeong Eun; Lim, Donggun; Park, Sung Young; In, Insik

    2017-08-23

    Highly fluorescent and amphiphilic carbon quantum dots (CQDs) were prepared by microwave-assisted pyrolysis of citric acid and 4,7,10-trioxa-1,13-tridecanediamine (TTDDA), which functioned as an A 3 and B 2 polyamidation type monomer set. Gram quantities of fluorescent CQDs were easily obtained within 5 min of microwave heating using a household microwave oven. Because of the dual role of TTDDA, both as a constituting monomer and as a surface passivation agent, TTDDA-based CQDs showed a high fluorescence quantum yield of 29% and amphiphilic solubility in various polar and nonpolar solvents. These properties enable the wide application of TTDDA-based CQDs as nontoxic bioimaging agents, nanofillers for polymer composites, and down-converting layers for enhancing the efficiency of Si solar cells.

  5. An Experimental Study of the Fluorescence Spectrum of Cesium Atoms in the Presence of a Buffer Gas

    NASA Astrophysics Data System (ADS)

    Davydov, V. G.; Kulyasov, V. N.

    2018-01-01

    A direct experiment is performed to determine the quantum efficiency of a cesium fluorescence filter. The fluorescence spectra of cesium atoms are recorded under excitation of the upper states of the second resonance doublet with a Bell-Bloom cesium lamp. Introduction of different noble gases into the cell with cesium leads to the appearance of additional fluorescence photons. It is found that a fluorescence filter based on atomic cesium vapor with addition of helium in the working cell has the highest efficiency and response rate of all known fluorescence filters based on alkali-metal atomic vapors.

  6. In situ optical measurements for characterization of flame species and remote sensing

    NASA Astrophysics Data System (ADS)

    Cullum, Brian Michael

    1998-12-01

    The following dissertation describes the use of spectroscopic techniques for both characterization of combustion intermediates and remote chemical sensing. The primary techniques that have been used for these measurements include, laser-induced fluorescence (LIF), time resolved LIF, resonance enhanced multiphoton ionization (REMPI) and Raman spectroscopy. A simple and quantitative means of measuring the efficiency of halogenated flame retardants is described, using laser-induced fluorescence (LIF). Intensity based LIF measurements of OH radical have been used to quantitatively measure the efficacy of halogenated flame retardant/polymer plaques. Temporally resolved LIF has been used to determine the extent to which the chemical kinetic theory of flame retardation applies to the effect of these compounds on combustion. We have shown that LIF of OH radicals is a very sensitive means of measuring the efficiency of these flame retardants as well as the giving information about the nature of flame retardation. In addition, we have developed a technique for the introduction of insoluble polymer plaques into a flame for fluorescence analysis. A high power pulsed Nd:YAG laser is used to ablate the sample into the flame while a second pulse from a dye laser is used to measure the LIF of OH radicals. Spectroscopic techniques are also very useful for trace remote analysis of environmental pollutants via optical fibers. A simple fiber-optic probe suitable for remote analysis using resonance enhanced multiphoton ionization (REMPI) has been developed for this purpose and is used to determine the toluene/gasoline concentration in water samples via a headspace measurement. The limit of detection for toluene in water using this probe is 0.54 ppb (wt/wt) with a sample standard deviation of 0.02 ppb (wt/wt). Another technique that has great potential for optical sensing is fluorescence lifetime imaging. A new method for measuring fluorescence lifetime images of quickly decaying species has been developed. This method employs a high powered pulsed laser that excites the fluorescent species in a dual pulse manner, and a non-gated charge coupled device (CCD) for detection of the fluorescence. Unlike other fluorescence lifetime imaging methods, this technique has the potential of monitoring fluorescent species with picosecond lifetimes.

  7. A novel cyanide-selective colorimetric and fluorescent chemosensor: first molecular security keypad lock based on phosphotungstic acid and CN- inputs.

    PubMed

    Tavallali, Hossein; Deilamy-Rad, Gohar; Parhami, Abolfath; Hasanli, Nahid

    2014-02-15

    Rhodamine B (RhB) an available dye has been developed as novel and efficient colorimetric and fluorometric chemosensor for cyanide ions in an absolutely aqueous media. The UV-vis absorption and fluorescent emission titrations experiments have been employed to study the sensing process. RhB could act as an efficient "ON-OFF" fluorescent response for phosphotungstic acid (H3PW12O40 or PTA) based on an ion associate process. Also (RhB(+))3 · PTA(3-) could operate as an "OFF-ON" fluorescent sensor for cyanide anions based on a ligand substitution process. It has been identified as highly sensitive probe for CN(-) which responds at 0.3 and 0.04 μmol L(-1) concentration levels by absorption and fluorescent method respectively. Depending upon the sequence of addition of PTA and CN(-) ions into the solution, RhB could be as a molecular security keypad lock with PTA and CN(-) inputs. The ionic inputs to new fluorophore have been mimicked as a superimposed electronic molecular keypad lock. The results were compared successfully (>96%) with the data of a spectrophotometry approved method (EPA 9014-1) for cyanide ions. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching

    PubMed Central

    Gerbich, Therese M.; Rana, Kishan; Suzuki, Aussie; Schaefer, Kristina N.; Heppert, Jennifer K.; Boothby, Thomas C.; Allbritton, Nancy L.; Gladfelter, Amy S.; Maddox, Amy S.

    2018-01-01

    Fluorescence microscopy is a powerful approach for studying subcellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light-sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective by using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel live-cell LSFM method, lateral interference tilted excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightness, and coverslip-based objectives. We demonstrate the utility of LITE for imaging animal, fungal, and plant model organisms over many hours at high spatiotemporal resolution. PMID:29490939

  9. Stable and Size-Tunable Aggregation-Induced Emission Nanoparticles Encapsulated with Nanographene Oxide and Applications in Three-Photon Fluorescence Bioimaging.

    PubMed

    Zhu, Zhenfeng; Qian, Jun; Zhao, Xinyuan; Qin, Wei; Hu, Rongrong; Zhang, Hequn; Li, Dongyu; Xu, Zhengping; Tang, Ben Zhong; He, Sailing

    2016-01-26

    Organic fluorescent dyes with high quantum yield are widely applied in bioimaging and biosensing. However, most of them suffer from a severe effect called aggregation-caused quenching (ACQ), which means that their fluorescence is quenched at high molecular concentrations or in the aggregation state. Aggregation-induced emission (AIE) is a diametrically opposite phenomenon to ACQ, and luminogens with this feature can effectively solve this problem. Graphene oxide has been utilized as a quencher for many fluorescent dyes, based on which biosensing can be achieved. However, using graphene oxide as a surface modification agent of fluorescent nanoparticles is seldom reported. In this article, we used nanographene oxide (NGO) to encapsulate fluorescent nanoparticles, which consisted of a type of AIE dye named TPE-TPA-FN (TTF). NGO significantly improved the stability of nanoparticles in aqueous dispersion. In addition, this method could control the size of nanoparticles' flexibly as well as increase their emission efficiency. We then used the NGO-modified TTF nanoparticles to achieve three-photon fluorescence bioimaging. The architecture of ear blood vessels in mice and the distribution of nanoparticles in zebrafish could be observed clearly. Furthermore, we extended this method to other AIE luminogens and showed it was widely feasible.

  10. High-performance flexible inverted organic light-emitting diodes by exploiting MoS2 nanopillar arrays as electron-injecting and light-coupling layers.

    PubMed

    Guo, Kunping; Si, Changfeng; Han, Ceng; Pan, Saihu; Chen, Guo; Zheng, Yanqiong; Zhu, Wenqing; Zhang, Jianhua; Sun, Chang; Wei, Bin

    2017-10-05

    Inverted organic light-emitting diodes (IOLEDs) on plastic substrates have great potential application in flexible active-matrix displays. High energy consumption, instability and poor electron injection are key issues limiting the commercialization of flexible IOLEDs. Here, we have systematically investigated the electrooptical properties of molybdenum disulfide (MoS 2 ) and applied it in developing highly efficient and stable blue fluorescent IOLEDs. We have demonstrated that MoS 2 -based IOLEDs can significantly improve electron-injecting capacity. For the MoS 2 -based device on plastic substrates, we have achieved a very high external quantum efficiency of 7.3% at the luminance of 9141 cd m -2 , which is the highest among the flexible blue fluorescent IOLEDs reported. Also, an approximately 1.8-fold improvement in power efficiency was obtained compared to glass-based IOLEDs. We attributed the enhanced performance of flexible IOLEDs to MoS 2 nanopillar arrays due to their light extraction effect. The van der Waals force played an important role in the formation of MoS 2 nanopillar arrays by thermal evaporation. Notably, MoS 2 -based flexible IOLEDs exhibit an intriguing efficiency roll-up, that is, the current efficiency increases slightly from 14.0 to 14.6 cd A -1 with the luminance increasing from 100 to 5000 cd m -2 . In addition, we observed that the initial brightness of 500 cd m -2 can be maintained at 97% after bending for 500 cycles, demonstrating the excellent mechanical stability of flexible IOLEDs. Furthermore, we have successfully fabricated a transparent, flexible IOLED with low efficiency roll-off at high current density.

  11. Development and cytotoxicity of Schiff base derivative as a fluorescence probe for the detection of L-Arginine

    NASA Astrophysics Data System (ADS)

    Shang, Xuefang; Li, Jie; Guo, Kerong; Ti, Tongyu; Wang, Tianyun; Zhang, Jinlian

    2017-04-01

    Inspired from biological counter parts, chemical modification of Schiff base derivatives with function groups may provide a highly efficient method to detect amino acids. Therefore, a fluorescent probe involving Schiff base and hydroxyl group has been designed and prepared, which showed high response and specificity for Arginine (Arg) among normal eighteen standard kinds of amino acids (Alanine, Valine, Leucine, Isoleucine, Methionine, Asparticacid, Glutamicacid, Arginine, Glycine, Serine, Threonine, Asparagine, Phenylalanine, Histidine, Tryptophan, Proline, Lysine, Glutamine, Tyrosine and Cysteine). Furthermore, theoretical investigation further illustrated the possible binding mode in the host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. In addition, the synthesized fluorescent probe exhibited high binding ability for Arg and low cytotoxicity to MCF-7 cells over a concentration range of 0-200 μg mL-1 which can be also used as a biosensor for the Arg detection in vivo.

  12. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects.

    PubMed

    Sugawa, Kosuke; Tamura, Takahiro; Tahara, Hironobu; Yamaguchi, Daisuke; Akiyama, Tsuyoshi; Otsuki, Joe; Kusaka, Yasuyuki; Fukuda, Nobuko; Ushijima, Hirobumi

    2013-11-26

    Ordered arrays of copper nanostructures were fabricated and modified with porphyrin molecules in order to evaluate fluorescence enhancement due to the localized surface plasmon resonance. The nanostructures were prepared by thermally depositing copper on the upper hemispheres of two-dimensional silica colloidal crystals. The wavelength at which the surface plasmon resonance of the nanostructures was generated was tuned to a longer wavelength than the interband transition region of copper (>590 nm) by controlling the diameter of the underlying silica particles. Immobilization of porphyrin monolayers onto the nanostructures was achieved via self-assembly of 16-mercaptohexadecanoic acid, which also suppressed the oxidation of the copper surface. The maximum fluorescence enhancement of porphyrin by a factor of 89.2 was achieved as compared with that on a planar Cu plate (CuP) due to the generation of the surface plasmon resonance. Furthermore, it was found that while the fluorescence from the porphyrin was quenched within the interband transition region, it was efficiently enhanced at longer wavelengths. It was demonstrated that the enhancement induced by the proximity of the fluorophore to the nanostructures was enough to overcome the highly efficient quenching effects of the metal. From these results, it is speculated that the surface plasmon resonance of copper has tremendous potential for practical use as high functional plasmonic sensor and devices.

  13. Fiber-optic multiphoton flow cytometry in whole blood and in vivo

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Cao, Zhengyi; Kotlyar, Alina; Tkaczyk, Eric R.; Baker, James R.; Norris, Theodore B.

    2010-07-01

    Circulating tumor cells in the bloodstream are sensitive indicators for metastasis and disease prognosis. Circulating cells have usually been monitored via extraction from blood, and more recently in vivo using free-space optics; however, long-term intravital monitoring of rare circulating cells remains a major challenge. We demonstrate the application of a two-photon-fluorescence optical fiber probe for the detection of cells in whole blood and in vivo. A double-clad fiber was used to enhance the detection sensitivity. Two-channel detection was employed to enable simultaneous measurement of multiple fluorescent markers. Because the fiber probe circumvents scattering and absorption from whole blood, the detected signal strength from fluorescent cells was found to be similar in phosphate-buffered saline (PBS) and in whole blood. The detection efficiency of cells labeled with the membrane-binding dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindoldicarbocyanine, 4-chlorobenzenesulfonate (DiD) was demonstrated to be the same in PBS and in whole blood. A high detection efficiency of green fluorescent protein (GFP)-expressing cells in whole blood was also demonstrated. To characterize in vivo detection, DiD-labeled untransfected and GFP-transfected cells were injected into live mice, and the cell circulation dynamics was monitored in real time. The detection efficiency of GFP-expressing cells in vivo was consistent with that observed ex vivo in whole blood.

  14. Maximizing Aggregation of Organic Fluorophores to Prolong Fluorescence Lifetime for Two-Photon Fluorescence Lifetime Imaging.

    PubMed

    Hu, Wenbo; Guo, Lihong; Bai, Lei; Miao, Xiaofei; Ni, Yun; Wang, Qi; Zhao, Hui; Xie, Meng; Li, Lin; Lu, Xiaomei; Huang, Wei; Fan, Quli

    2018-05-28

    Two-photon fluorescence lifetime imaging (TP-FLIM) not only permits imaging deep inside the tissues with precise spatial manipulation but also circumvents tissue autofluorescence, holding tremendous promise in molecular imaging. However, the serious lack of suitable contrast agents with long fluorescence lifetime and efficient two-photon absorption (TPA) greatly limits the advance of TP-FLIM. This study reports a simple approach to fabricate water-soluble organic semiconducting nanoparticles [thioxanthone (TXO) NPs] with ultralong fluorescence lifetime and efficient TPA for in vivo TP-FLIM. The approach utilizes the aggregation of a specifically selected thermally activated delayed fluorescence (TADF) fluorophore to prolong its fluorescence lifetime. Encapsulating the TADF fluorophore within an amphiphilic copolymer not only maximizes its aggregation but also obtains TXO NPs with efficient TPA. Importantly, as-prepared TXO NPs exhibit a considerably long fluorescence lifetime at a magnitude of 4.2 µs, which is almost 1000 times larger than that of existing organic contrast agents. Moreover, such long fluorescence lifetime is almost oxygen-inert, readily realizing both in vitro and in vivo TP-FLIM. This work may set valuable guidance for designing organic semiconducting materials with ultralong fluorescence lifetimes to fulfill the potential of FLIM. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. One-step synthesis of fluorescein modified nano-carbon for Pd(II) detection via fluorescence quenching.

    PubMed

    Panchompoo, Janjira; Aldous, Leigh; Baker, Matthew; Wallace, Mark I; Compton, Richard G

    2012-05-07

    Carbon black (CB) nanoparticles modified with fluorescein, a highly fluorescent molecule, were prepared using a facile and efficient methodology. Simply stirring CB in aqueous solution containing fluorescein resulted in the strong physisorption of fluorescein onto the CB surface. The resulting Fluorescein/CB was then characterised by means of X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), fluorescence microscopy and fluorescence spectroscopy. The optimum experimental conditions for fluorescence of Fluorescein/CB viz. fluorescence excitation and emission wavelengths, O(2) removal and the amount of Fluorescein/CB used, were investigated. The Fluorescein/CB was used as a fluorescent probe for the sensitive detection of Pd(II) in water, based on fluorescence quenching. The results demonstrated that the fluorescence intensity of Fluorescein/CB decreased with increasing Pd(II) concentration, and the fluorescence quenching process could be described by the Stern-Volmer equation. The limit of detection (LOD) for the fluorescence quenching of Fluorescein/CB by Pd(II) in aqueous solution was found to be 1.07 μM (based on 3σ). Last, approaches were studied for the removal of Fe(III) which interferes with the fluorescence quenching of Fluorescein/CB. Complexation of Fe(III) with salicylic acid was used to enhance and control the selectivity of Fluorescein/CB sensor towards Pd(II) in the presence of Fe(III).

  16. Nd/sup 3 +/ fluorescence quantum-efficiency measurements with photoacoustics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosencwaig, A.; Hildum, E.A.

    1981-04-01

    We have investigated the use of photoacoustic techniques for obtaining absolute values of fluorescence quantum efficiencies in lightly doped Nd/sup 3 +/ laser materials. We have found that surface absorptions play an important role in gas-microphone measurements, and that thermal profiles are important in piezoelectric measurements. We have obtained fluorescence quantum efficiencies for Nd/sup 3 +/ in yttrium aluminum garnet, and in silicate and borate glasses that are in good agreement with lifetime measurements and Judd-Ofelt calculations.

  17. Highly sensitive low-background fluorescent probes for imaging of nitric oxide in cells and tissues.

    PubMed

    Zhang, Hui-Xian; Chen, Jian-Bo; Guo, Xiao-Feng; Wang, Hong; Zhang, Hua-Shan

    2014-03-18

    Small-molecule fluorescent probes in combination with fluorescent microscopy can be a powerful tool to provide real-time detection and high spatiotemporal resolution of transient molecules in cells and bodies. For the design of fluorescent probes for transient molecule imaging, high detection sensitivity is crucial. In this report, two new fluorescent probes, 8-(3,4-diaminophenyl)-4,4-difluoro-4-bora-3a,4a-diaza-di(1,2-dihydro)naphtho[b,g]-s-indacene (DANPBO-H) and 8-(3,4-diaminophenyl)-1,7-dimethyl-4,4-difluoro-4-bora-3a,4a-diaza-di(1,2-dihydro)naphtho[b,g]-s-indacene (DANPBO-M), have been developed for nitric oxide (NO) imaging. The detection sensitivity has been efficiently improved by use of these probes through increasing NO detection signals and decreasing background fluorescence. Fluorescence in the far-red region is enhanced by 400- and 550-fold after reaction with NO is achieved and remains stable for at least 24 h under the irradiation of xenon lamp. Excitation and emission wavelengths longer than 600 nm and excellent intracellular retention of these probes and their NO products create dark background inside and outside cells and tissues. What is more, the excellent intracellular retention of these compounds is obtained by their strong lipophilicity, which is a novel design concept diametrically opposite to the traditional approaches. The high sensitivity and dark background make DANPBO-H and DANPBO-M competitive for NO imaging in cells and tissues. The lipophilicity-based intracellular retention mechanism as a design strategy has great potential in the development of fluorescent probes for bioimaging.

  18. Dual-Color Fluorescence Imaging of Magnetic Nanoparticles in Live Cancer Cells Using Conjugated Polymer Probes

    PubMed Central

    Sun, Minjie; Sun, Bin; Liu, Yun; Shen, Qun-Dong; Jiang, Shaojun

    2016-01-01

    Rapid growth in biological applications of nanomaterials brings about pressing needs for exploring nanomaterial-cell interactions. Cationic blue-emissive and anionic green-emissive conjugated polymers are applied as dual-color fluorescence probes to the surface of negatively charged magnetic nanoparticles through sequentially electrostatic adsorption. These conjugated polymers have large extinction coefficients and high fluorescence quantum yield (82% for PFN and 62% for ThPFS). Thereby, one can visualize trace amount (2.7 μg/mL) of fluorescence-labeled nanoparticles within cancer cells by confocal laser scanning microscopy. Fluorescence labeling by the conjugated polymers is also validated for quantitative determination of the internalized nanoparticles in each individual cell by flow cytometry analysis. Extensive overlap of blue and green fluorescence signals in the cytoplasm indicates that both conjugated polymer probes tightly bind to the surface of the nanoparticles during cellular internalization. The highly charged and fluorescence-labeled nanoparticles non-specifically bind to the cell membranes, followed by cellular uptake through endocytosis. The nanoparticles form aggregates inside endosomes, which yields a punctuated staining pattern. Cellular internalization of the nanoparticles is dependent on the dosage and time. Uptake efficiency can be enhanced three-fold by application of an external magnetic field. The nanoparticles are low cytotoxicity and suitable for simultaneously noninvasive fluorescence and magnetic resonance imaging application. PMID:26931282

  19. Disposable pen-shaped capillary gel electrophoresis cartridge for fluorescence detection of bio-molecules

    NASA Astrophysics Data System (ADS)

    Amirkhanian, Varoujan; Tsai, Shou-Kuan

    2014-03-01

    We introduce a novel and cost-effective capillary gel electrophoresis (CGE) system utilizing disposable pen-shaped gelcartridges for highly efficient, high speed, high throughput fluorescence detection of bio-molecules. The CGE system has been integrated with dual excitation and emission optical-fibers with micro-ball end design for fluorescence detection of bio-molecules separated and detected in a disposable pen-shaped capillary gel electrophoresis cartridge. The high-performance capillary gel electrophoresis (CGE) analyzer has been optimized for glycoprotein analysis type applications. Using commercially available labeling agent such as ANTS (8-aminonapthalene-1,3,6- trisulfonate) as an indicator, the capillary gel electrophoresis-based glycan analyzer provides high detection sensitivity and high resolving power in 2-5 minutes of separations. The system can hold total of 96 samples, which can be automatically analyzed within 4-5 hours. This affordable fiber optic based fluorescence detection system provides fast run times (4 minutes vs. 20 minutes with other CE systems), provides improved peak resolution, good linear dynamic range and reproducible migration times, that can be used in laboratories for high speed glycan (N-glycan) profiling applications. The CGE-based glycan analyzer will significantly increase the pace at which glycoprotein research is performed in the labs, saving hours of preparation time and assuring accurate, consistent and economical results.

  20. A fluorescence-based method for direct measurement of submicrosecond intramolecular contact formation in biopolymers: an exploratory study with polypeptides.

    PubMed

    Hudgins, Robert R; Huang, Fang; Gramlich, Gabriela; Nau, Werner M

    2002-01-30

    A fluorescent amino acid derivative (Fmoc-DBO) has been synthesized, which contains 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as a small, hydrophilic fluorophore with an extremely long fluorescence lifetime (325 ns in H2O and 505 ns in D2O under air). Polypeptides containing both the DBO residue and an efficient fluorescence quencher allow the measurement of rate constants for intramolecular end-to-end contact formation. Bimolecular quenching experiments indicated that Trp, Cys, Met, and Tyr are efficient quenchers of DBO (k(q) = 20, 5.1, 4.5, and 3.6 x 10(8) M(-1) x s(-1) in D2O), while the other amino acids are inefficient. The quenching by Trp, which was selected as an intrinsic quencher, is presumed to involve exciplex-induced deactivation. Flexible, structureless polypeptides, Trp-(Gly-Ser)n-DBO-NH2, were prepared by standard solid-phase synthesis, and the rates of contact formation were measured through the intramolecular fluorescence quenching of DBO by Trp with time-correlated single-photon counting, laser flash photolysis, and steady-state fluorometry. Rate constants of 4.1, 6.8, 4.9, 3.1, 2.0, and 1.1 x 10(7) s(-1) for n = 0, 1, 2, 4, 6, and 10 were obtained. Noteworthy was the relatively slow quenching for the shortest peptide (n = 0). The kinetic data are in agreement with recent transient absorption studies of triplet probes for related peptides, but the rate constants are significantly larger. In contrast to the flexible structureless Gly-Ser polypeptides, the polyproline Trp-Pro4-DBO-NH2 showed insignificant fluorescence quenching, suggesting that a high polypeptide flexibility and the possibility of probe-quencher contact is essential to induce quenching. Advantages of the new fluorescence-based method for measuring contact formation rates in biopolymers include high accuracy, fast time range (100 ps-1 micros), and the possibility to perform measurements in water under air.

  1. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar.

    PubMed

    Ding, Xing; He, Yu; Duan, Z-C; Gregersen, Niels; Chen, M-C; Unsleber, S; Maier, S; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei

    2016-01-15

    Scalable photonic quantum technologies require on-demand single-photon sources with simultaneously high levels of purity, indistinguishability, and efficiency. These key features, however, have only been demonstrated separately in previous experiments. Here, by s-shell pulsed resonant excitation of a Purcell-enhanced quantum dot-micropillar system, we deterministically generate resonance fluorescence single photons which, at π pulse excitation, have an extraction efficiency of 66%, single-photon purity of 99.1%, and photon indistinguishability of 98.5%. Such a single-photon source for the first time combines the features of high efficiency and near-perfect levels of purity and indistinguishabilty, and thus opens the way to multiphoton experiments with semiconductor quantum dots.

  2. Orderly arranged fluorescence dyes as a highly efficient chemiluminescence resonance energy transfer probe for peroxynitrite.

    PubMed

    Wang, Zhihua; Teng, Xu; Lu, Chao

    2015-03-17

    Chemiluminescence (CL) probes for reactive oxygen species (ROS) are commonly based on a redox reaction between a CL reagent and ROS, leading to poor selectivity toward a specific ROS. The energy-matching rules in the chemiluminescence resonance energy transfer (CRET) process between a specific ROS donor and a suitable fluorescence dye acceptor is a promising method for the selective detection of ROS. Nevertheless, higher concentrations of fluorescence dyes can lead to the intractable aggregation-caused quenching effect, decreasing the CRET efficiency. In this report, we fabricated an orderly arranged structure of calcein-sodium dodecyl sulfate (SDS) molecules to improve the CRET efficiency between ONOOH* donor and calcein acceptor. Such orderly arranged calcein-SDS composites can distinguish peroxynitrite (ONOO(-)) from a variety of other ROS owing to the energy matching in the CRET process between ONOOH* donor and calcein acceptor. Under the optimal experimental conditions, ONOO(-) could be assayed in the range of 1.0-20.0 μM, and the detection limit for ONOO(-) [signal-to-noise ratio (S/N) = 3] was 0.3 μM. The proposed strategy has been successfully applied in both detecting ONOO(-) in cancer mouse plasma samples and monitoring the generation of ONOO(-) from 3-morpholinosydnonimine (SIN-1). Recoveries from cancer mouse plasma samples were in the range of 96-105%. The success of this work provides a unique opportunity to develop a CL tool to monitor ONOO(-) with high selectivity in a specific manner. Improvement of selectivity and sensitivity of CL probes holds great promise as a strategy for developing a wide range of probes for various ROS by tuning the types of fluorescence dyes.

  3. Rapid and efficient detection of single chromophore molecules in aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Li-Qiang; Davis, Lloyd M.

    1995-06-01

    The first experiments on the detection of single fluorescent molecules in a flowing stream of an aqueous solution with high total efficiency are reported. A capillary injection system for sample delivery causes all the dye molecules to pass in a diffusion-broadened stream within a fast-moving sheath flow, through the center of the tightly focused laser excitation beam. Single-molecule detection with a transit time of approximately 1 ms is accomplished with a high-quantum-efficiency single-photon avalanche diode and a low dead-time time-gating circuit for discrimination of Raman-scattered light from the solvent.

  4. Construction of an efficient two-photon fluorescent probe for imaging nitroreductase in live cells and tissues

    NASA Astrophysics Data System (ADS)

    Zhou, Liyi; Gong, Liang; Hu, Shunqin

    2018-06-01

    Compared with traditional confocal microscopy, two-photon fluorescence microscopy (TPFM), which excites a two-photon (TP) fluorophore by near-infrared light, provides improved three-dimensional image resolution with increased tissue-image depth (>500 μm) and an extended observation time. Therefore, the development of novel functional TP fluorophores has attracted great attention in recent years. Herein, a novel TP fluorophore CM-NH2, which have the donor-π-acceptor (D-π-A)-structure, was designed and synthesized. We further used this dye developed a new type of TP fluorescent probe CM-NO2 for detecting nitroreductase (NTR). Upon incubated with NTR for 15 min, CM-NO2 displayed a 90-fold fluorescence enhancement at 505 nm and the maximal TP action cross-section value after reaction was detected and calculated to be 200 GM at 760 nm. The probe exhibited excellent properties such as high sensitivity, high selectivity, low cytotoxicity, and high photostability. Moreover, the probe was utilized to image the tumor hypoxia in live HeLa cells. Finally, using the CM-NO2 to image NTR in tissues was demonstrated.

  5. Highly Efficient Red-Emitting Carbon Dots with Gram-Scale Yield for Bioimaging.

    PubMed

    Ding, Hui; Wei, Ji-Shi; Zhong, Ning; Gao, Qing-Yu; Xiong, Huan-Ming

    2017-11-07

    Carbon dots (CDs) are a new class of photoluminescent (PL), biocompatible, environment-friendly, and low-cost carbon nanomaterials. Synthesis of highly efficient red-emitting carbon dots (R-CDs) on a gram scale is a great challenge at present, which heavily restricts the wide applications of CDs in the bioimaging field. Herein, R-CDs with a high quantum yield (QY) of 53% are produced on a gram scale by heating a formamide solution of citric acid and ethylenediamine. The as-prepared R-CDs have an average size of 4.1 nm and a nitrogen content of about 30%, with an excitation-independent emission at 627 nm. After detailed characterizations, such strong red fluorescence is ascribed to the contribution from the nitrogen- and oxygen-related surface states and the nitrogen-derived structures in the R-CD cores. Our R-CDs show good photostability and low cytotoxicity, and thus they are excellent red fluorescence probes for bioimaging both in vitro and in vivo.

  6. Sodium hydroxide-mediated hydrogel of citrus pectin for preparation of fluorescent carbon dots for bioimaging.

    PubMed

    Zhao, Xi Juan; Zhang, Wen Lin; Zhou, Zhi Qin

    2014-11-01

    The citrus process industry produces annually a huge amount of pomace, which is a rich source of citrus pectin. Here, we report the hydrogel of citrus pectin mediated by sodium hydroxide can be used to prepare fluorescent carbon dots (CDs). The introduction of hydrogel can not only make the temperature of the hydrothermal reaction down to 100 °C, but also avoid visually carbonized precipitates in the synthesis process even up to 180 °C. The as-synthesized CDs are well dispersed in water with an average size of 2.7 nm and show cyan fluorescence with high photostability, good biocompatibility. Furthermore, the CDs can act as a potential fluorescent probe for cell imaging. Citrus pectin as a non-toxic carbonaceous precursor for preparation of fluorescent CDs provides a new approach for the efficient utilization of citrus germplasm in future. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Determination of sunset yellow in soft drinks based on fluorescence quenching of carbon dots

    NASA Astrophysics Data System (ADS)

    Yuan, Yusheng; Zhao, Xin; Qiao, Man; Zhu, Jinghui; Liu, Shaopu; Yang, Jidong; Hu, Xiaoli

    2016-10-01

    Fluorescent carbon dots was prepared by heating N-(2-hydroxyethyl)ethylene diaminetriacetic acid in air. The carbon dots were not only highly soluble in water but also uniform in size, and possessed strong blue fluorescence and excitation wavelength-dependent emission properties with the maximum excitation and emission wavelength at 366 nm and 423 nm, respectively. Food colorant sunset yellow whose excitation and emission wavelength at 303 nm and 430 nm could selectively quench the fluorescence of carbon dots, efficient fluorescent resonance energy transfer between the carbon dots and sunset yellow is achieved. This was exploited to design a method for the determination of sunset yellow in the concentration range from 0.3 to 8.0 μmol L- 1, with a limit of detection (3 σ/k) of 79.6 nmol L- 1. Furthermore the fluorimetric detection method was established and validated for sunset yellow in soft drinks samples with satisfactory results.

  8. A rhodamine-based fluorescent probe for colorimetric and fluorescence lighting-up determination of toxic thiophenols in environmental water and living cells.

    PubMed

    Wu, Juanjuan; Ye, Zhuo; Wu, Feng; Wang, Hongying; Zeng, Lintao; Bao, Guang-Ming

    2018-05-01

    Thiophenols are a class of highly toxic environmental pollutant, hence it is very necessary to monitor thiophenols in environment and living cells with an efficient and reliable method. Herein, a novel fluorescent probe for thiophenols has been developed, which exhibited a colorimetric and fluorescence turn-on dual response towards thiophenols with good selectivity and fast response. The sensing mechanism for thiophenols was attributed to nucleophilic substitution reaction, which was confirmed by HPLC. The probe exhibited good recovery (from 90% to 107%) and low limit of detection for thiophenols (37nM) in industrial wastewater. Moreover, the probe has been successfully employed to visualize thiophenol in living cells. Therefore, the fluorescent probe has good capability for monitoring thiophenols in environmental samples and biological systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. An Enzyme-Responsive "Turn-on" Fluorescence Polymeric Superamphiphile as a Potential Visualizable Phosphate Prodrug Delivery Vehicle.

    PubMed

    Yang, Xi; Shen, Shihong; Guo, Li; Tan, Jidong; Lei, Henxin; Wu, Jianghan; Zhao, Lei; Xiong, Tao; Wu, Youshen; Cheng, Yilong; Zhang, Yanfeng

    2018-06-01

    The development of inexpensive and highly efficient enzyme-responsive polymers has significantly contributed to targeted drug delivery systems. Here, a superamphiphile with a capability of fluorescent dissociation sensing is designed. It is constructed with negatively charged adenosine 5'-triphosphate (ATP) and negatively charged fluorescein diphosphate (FDP), which are used as fluorescence detection, and a cationic diblock copolymer methoxy-poly(ethylene glycol) 113 -b-poly(2-dimethyl-aminoethyl methacrylate) 70 . Upon addition of calf intestinal alkaline phosphatase, the superamphiphile disintegrates, presumably due to the enzymatic hydrolysis of ATP. This process is accompanied by an increase in the fluorescence emission intensity of fluorescein owing to the hydrolysis of FDP. The in vitro application of the superamphiphile is also proven. Thus, the "turn-on" fluorescence of the superamphiphile serves as a real-time module for detection of the disintegration of superamphiphile. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Segmentation and classification of cell cycle phases in fluorescence imaging.

    PubMed

    Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan

    2009-01-01

    Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.

  11. An efficient spectrofluorimetric method adopts doxazosin, terazosin and alfuzosin coupling with orthophthalaldehyde: Application in human plasma

    NASA Astrophysics Data System (ADS)

    Omar, Mahmoud A.; Mohamed, Abdel-Maaboud I.; Derayea, Sayed M.; Hammad, Mohamed A.; Mohamed, Abobakr A.

    2018-04-01

    A new, selective and sensitive spectrofluorimetric method was designed for the quantitation of doxazosin (DOX), terazosin (TER) and alfuzosin (ALF) in their dosage forms and human plasma. The method adopts efficient derivatization of the studied drugs with ortho-phthalaldehyde (OPA), in the presence of 2-mercaptoethanol in borate buffer (pH 9.7) to generate a highly fluorescent isoindole derivatives, which can strongly enhance the fluorescence intensities of the studied drugs, allowing their sensitive determination at 430 nm after excitation at 337 nm. The fluorescence-concentration plots were rectilinear over the ranges (10.0-400.0) ng/mL. Detection and quantification limits were found to be (0.52-3.88) and (1.59-11.76) ng/mL, respectively. The proposed method was validated according to ICH guidelines, and successfully applied for the determination of pharmaceutical preparations of the studied drugs. Moreover, the high sensitivity of the proposed method permits its successful application to the analysis of the studied drugs in spiked human plasma with % recovery (96.12 ± 1.34-100.66 ± 0.57, n = 3). A proposal for the reaction mechanism was presented.

  12. Non-toxic fluorescent phosphonium probes to detect mitochondrial potential.

    PubMed

    Šarić, Ana; Crnolatac, Ivo; Bouillaud, Frédéric; Sobočanec, Sandra; Mikecin, Ana-Matea; Mačak Šafranko, Željka; Delgeorgiev, Todor; Piantanida, Ivo; Balog, Tihomir; Petit, Patrice X

    2017-03-22

    We evaluated our phosphonium-based fluorescent probes for selective staining of mitochondria. Currently used probes for monitoring mitochondrial membrane potential show varying degrees of interference with cell metabolism, photo-induced damage and probe binding. Here presented probes are characterised by highly efficient cellular uptake and specific accumulation in mitochondria. Fluorescent detection of the probes was accomplished using flow cytometry and confocal microscopy imaging of yeast and mammalian cells. Toxicity analysis (impedimetry-xCELLigence for the cellular proliferation and Seahorse technology for respiratory properties) confirms that these dyes exhibit no-toxicity on mitochondrial or cellular functioning even for long time incubation. The excellent chemical and photophysical stability of the dyes makes them promising leads toward improved fluorescent probes. Therefore, the probes described here offer to circumvent the problems associated with existing-probe's limitations.

  13. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localizationmore » patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.« less

  14. Non-toxic fluorescent phosphonium probes to detect mitochondrial potential

    NASA Astrophysics Data System (ADS)

    Šarić, Ana; Crnolatac, Ivo; Bouillaud, Frédéric; Sobočanec, Sandra; Mikecin, Ana-Matea; Mačak Šafranko, Željka; Delgeorgiev, Todor; Piantanida, Ivo; Balog, Tihomir; Petit, Patrice X.

    2017-03-01

    We evaluated our phosphonium-based fluorescent probes for selective staining of mitochondria. Currently used probes for monitoring mitochondrial membrane potential show varying degrees of interference with cell metabolism, photo-induced damage and probe binding. Here presented probes are characterised by highly efficient cellular uptake and specific accumulation in mitochondria. Fluorescent detection of the probes was accomplished using flow cytometry and confocal microscopy imaging of yeast and mammalian cells. Toxicity analysis (impedimetry—xCELLigence for the cellular proliferation and Seahorse technology for respiratory properties) confirms that these dyes exhibit no-toxicity on mitochondrial or cellular functioning even for long time incubation. The excellent chemical and photophysical stability of the dyes makes them promising leads toward improved fluorescent probes. Therefore, the probes described here offer to circumvent the problems associated with existing-probe’s limitations.

  15. Azadioxatriangulenium: exploring the effect of a 20 ns fluorescence lifetime in fluorescence anisotropy measurements

    NASA Astrophysics Data System (ADS)

    Bogh, Sidsel A.; Bora, Ilkay; Rosenberg, Martin; Thyrhaug, Erling; Laursen, Bo W.; Just Sørensen, Thomas

    2015-12-01

    Azaoxatriangulenium (ADOTA) has been shown to be highly emissive despite a moderate molar absorption coefficient of the primary electronic transition. As a result, the fluorescence lifetime is ~20 ns, longer than all commonly used red fluorescent organic probes. The electronic transitions in ADOTA are highly polarised (r 0  =  0.38), which in combination with the long fluorescence lifetime extents the size-range of biomolecular weights that can be detected in fluorescence polarisation-based experiments. Here, the rotational dynamics of bovine serum albumin (BSA) are monitored with three different ADOTA derivatives, differing only in constitution of the reactive linker. A detailed study of the degree of labelling, the steady-state anisotropy, and the time-resolved anisotropy of the three different ADOTA-BSA conjugates are reported. The fluorescence quantum yields (ϕ fl) of the free dyes in PBS solution are determined to be ~55%, which is reduced to ~20% in the ADOTA-BSA conjugates. Despite the reduction in ϕ fl, a ~20 ns intensity averaged lifetime is maintained, allowing for the rotational dynamics of BSA to be monitored for up to 100 ns. Thus, ADOTA can be used in fluorescence polarisation assays to fill the gap between commonly used organic dyes and the long luminescence lifetime transition metal complexes. This allows for efficient steady-state fluorescence polarisation assays for detecting binding of analytes with molecular weights of up to 100 kDa.

  16. Disruption of the ndhF1 gene affects Chl fluorescence through state transition in the Cyanobacterium Synechocystis sp. PCC 6803, resulting in apparent high efficiency of photosynthesis.

    PubMed

    Ogawa, Takako; Harada, Tetsuyuki; Ozaki, Hiroshi; Sonoike, Kintake

    2013-07-01

    In Synechocystis sp. PCC 6803, the disruption of the ndhF1 gene (slr0844), which encodes a subunit of one of the NDH-1 complexes (NDH-1L complex) serving for respiratory electron transfer, causes the largest change in Chl fluorescence induction kinetics among the kinetics of 750 disruptants searched in the Fluorome, the cyanobacterial Chl fluorescence database. The cause of the explicit phenotype of the ndhF1 disruptant was examined by measurements of the photosynthetic rate, Chl fluorescence and state transition. The results demonstrate that the defects in respiratory electron transfer obviously have great impact on Chl fluorescence in cyanobacteria. The inactivation of NDH-1L complexes involving electron transfer from NDH-1 to plastoquinone (PQ) would result in the oxidation of the PQ pool, leading to the transition to State 1, where the yield of Chl fluorescence is high. Apparently, respiration, although its rate is far lower than that of photosynthesis, could affect Chl fluorescence through the state transition as leverage. The disruption of the ndhF1 gene caused lower oxygen-evolving activity but the estimated electron transport rate from Chl fluorescence measurements was faster in the mutant than in the wild-type cells. The discrepancy could be ascribed to the decreased level of non-photochemical quenching due to state transition. One must be cautious when using the Chl fluorescence parameter to estimate photosynthesis in mutants defective in state transition.

  17. Versatile benzimidazole/triphenylamine hybrids: efficient nondoped deep-blue electroluminescence and good host materials for phosphorescent emitters.

    PubMed

    Gong, Shaolong; Zhao, Yongbiao; Wang, Meng; Yang, Chuluo; Zhong, Cheng; Qin, Jingui; Ma, Dongge

    2010-09-03

    Two new bipolar compounds, N,N,N',N'-tetraphenyl-5'-(1-phenyl-1H-benzimidazol-2-yl)-1,1':3',1''-terphenyl-4,4''-diamine (1) and N,N,N',N'-tetraphenyl-5'-(1-phenyl-1H-benzimidazol-2-yl)-1,1':3',1''-terphenyl-3,3''-diamine (2), were synthesized and characterized, and their thermal, photophysical, and electrochemical properties were investigated. Compounds 1 and 2 possess good thermal stability with high glass-transition temperatures of 109-129 degrees C and thermal decomposition temperatures of 501-531 degrees C. The fluorescence quantum yield of 1 (0.52) is higher than that of 2 (0.16), which could be attributed to greater pi conjugation between the donor and acceptor moieties. A nondoped deep-blue fluorescent organic light-emitting diode (OLED) using 1 as the blue emitter displays high performance, with a maximum current efficiency of 2.2 cd A(-1) and a maximum external efficiency of 2.9 % at the CIE coordinates of (0.17, 0.07) that are very close to the National Television System Committee's blue standard (0.15, 0.07). Electrophosphorescent devices using the two compounds as host materials for green and red phosphor emitters show high efficiencies. The best performance of a green phosphorescent device was achieved using 2 as the host, with a maximum current efficiency of 64.3 cd A(-1) and a maximum power efficiency of 68.3 lm W(-1); whereas the best performance of a red phosphorescent device was achieved using 1 as the host, with a maximum current efficiency of 11.5 cd A(-1), and a maximum power efficiency of 9.8 lm W(-1). The relationship between the molecular structures and optoelectronic properties are discussed.

  18. Bichromophoric dyes for wavelength shifting of dye-protein fluoromodules.

    PubMed

    Pham, Ha H; Szent-Gyorgyi, Christopher; Brotherton, Wendy L; Schmidt, Brigitte F; Zanotti, Kimberly J; Waggoner, Alan S; Armitage, Bruce A

    2015-03-28

    Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields.

  19. Two-photon in vivo flow cytometry using a fiber probe

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Cao, Zhengyi; Kotlyar, Alina; Tkaczyk, Eric R.; Baker, James R., Jr.; Norris, Theodore B.

    2009-02-01

    We have demonstrated the use of a double-clad fiber probe to conduct two-photon excited flow cytometry in vitro and in vivo. We conducted two-channel detection to measure fluorescence at two distinct wavelengths simultaneously. Because the scattering and absorption problems from whole blood were circumvented by the fiber probe, the detected signal strength from the cells were found to be similar in PBS and in whole blood. We achieved the same detection efficiency of the membrane-binding lipophilic dye DiD labeled cells in PBS and in whole blood. High detection efficiency of green fluorescent protein (GFP)-expressing cells in whole blood was demonstrated. DiD-labeled untransfected and GFP-transfected cells were injected into live mice and the circulation dynamics of the externally injected cells were monitored. The detection efficiency of GFP-expressing cells in vivo was consistent with that observed in whole blood.

  20. Bichromophoric Dyes for Wavelength Shifting of Dye-Protein Fluoromodules

    PubMed Central

    Pham, Ha H.; Szent-Gyorgyi, Christopher; Brotherton, Wendy L.; Schmidt, Brigitte F.; Zanotti, Kimberly J.; Waggoner, Alan S.

    2015-01-01

    Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields. PMID:25679477

  1. Classic maximum entropy recovery of the average joint distribution of apparent FRET efficiency and fluorescence photons for single-molecule burst measurements.

    PubMed

    DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2012-04-05

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.

  2. The potential of a fluorescent-based approach for bioassay of antifungal agents against chili anthracnose disease in Thailand.

    PubMed

    Chutrakul, Chanikul; Khaokhajorn, Pratoomporn; Auncharoen, Patchanee; Boonruengprapa, Tanapong; Mongkolporn, Orarat

    2013-01-01

    Severe chili anthracnose disease in Thailand is caused by Colletotrichum gloeosporioides and C. capsici. To discover anti-anthracnose substances we developed an efficient dual-fluorescent labeling bioassay based on a microdilution approach. Indicator strains used in the assay were constructed by integrating synthetic green fluorescent protein (sGFP) and Discosoma sp. red fluorescent protein (DsRedExp) genes into the genomes of C. gloeosporioides or C. capsici respectively. Survival of co-spore cultures in the presence of inhibitors was determined by the expression levels of these fluorescent proteins. This developed assay has high potential for utilization in the investigation of selective inhibition activity to either one of the pathogens as well as the broad-range inhibitory effect against both pathogens. The value of using the dual-fluorescent assay is rapid, reliable, and consistent identification of anti-anthracnose agents. Most of all, the assay enables the identification of specific inhibitors under the co-cultivation condition.

  3. Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging.

    PubMed

    Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul

    2012-10-17

    There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0-85 μm from the surface of a coverglass. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Effect of planar dielectric interfaces on fluorescence emission and detection. Evanescent excitation with high-aperture collection.

    PubMed Central

    Burghardt, T P; Thompson, N L

    1984-01-01

    We consider the effect of planar dielectric interfaces (e.g., solid/liquid) on the fluorescence emission of nearby probes. First, we derive an integral expression for the electric field radiated by an oscillating electric dipole when it is close to a dielectric interface. The electric field depends on the refractive indices of the interface, the orientation of the dipole, the distance from the dipole to the interface, and the position of observation. We numerically calculate the electric field intensity for a dipole on an interface, as a function of observation position. These results are applicable to fluorescent molecules excited by the evanescent field of a totally internally reflected laser beam and thus very close to a solid/liquid interface. Next, we derive an integral expression for the electric field radiated when a second dielectric interface is also close to the fluorescent molecule. We numerically calculate this intensity as observed through the second interface. These results are useful when the fluorescence is collected by a high-aperture microscope objective. Finally, we define and calculate a "dichroic factor," which describes the efficiency of collection, in the two-interface system, of polarized fluorescence. The limit when the first interface is removed is applicable for any high-aperture collection of polarized or unpolarized fluorescence. The limit when the second interface is removed has application in the collection of fluorescence with any aperture from molecules close to a dielectric interface. The results of this paper are required for the interpretation of order parameter measurements on fluorescent probes in supported phospholipid monolayers (Thompson, N.L., H. M. McConnell, and T. P. Burghardt, 1984, Biophys. J., 46:739-747). PMID:6518253

  5. Determination of the termination efficiency of the transcription terminator using different fluorescent profiles in green fluorescent protein mutants.

    PubMed

    Nojima, Takahiko; Lin, Angela C; Fujii, Teruo; Endo, Isao

    2005-12-01

    An approach in determining the intrinsic termination efficiency (%T) of transcription termination using green fluorescent protein (GFP) mutants was developed. This approach utilizes a cassette vector in which the tested terminator is introduced between two GFP mutant genes: an ultraviolet-optimized mutant (GFPuv: F99S, M153T, V163A) and a blue-shifted mutant (BFP: F64L, S65T, T145F). The ratio of the fluorescence intensity of BFP to GFPuv after transcription and translation represents the termination efficiency of the terminator. E. coli ribosomal RNA operon T1 terminator, phage lambda terminator site R2, E. coli tryptophane attenuater were introduced into the vector, and their transcriptional efficiencies were estimated as 89, 79, and 24%, respectively, showing good agreement with published data.

  6. Computer-aided design of peptide near infrared fluorescent probe for tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Congying; Gu, Yueqing

    2014-09-01

    Integrin αvβ3 receptors are expressed on activated endothelial cells during neovascularization to maintain tumor growth, so they become hot research tagets in cancer diagnosis. Peptides possess several attractive features when compared to protein and small molecule, such as small size and high structural compatibility with target proteins. Efficient design of high-affinity peptide ligands to Integrin αvβ3 receptors has been an important problem. Designed peptides in silico provide a valuable and high-selectivity peptide, meanwhile decrease the time of drug screening. In this study, we design peptide which can bind with integrin αvβ3 via computer, and then synthesis near infrared fluorescent probe. The characterization of this near infrared fluorescent probe was detected by UV. To investigate the tumor cell targeting of this probe, it was labeled with visible fluorescent dye Rhodamine B (RhB) for microscopy. To evaluate the targeting capability of this near infrared fluorescent probe, mice bearing integrin αvβ3 positive tumor xenografts were used. In vitro cellular experiments indicated that this probe have a clear binding affinity to αvβ3-positive tumor cells. In vivo experiments confirmed the receptor binding specificity of this probe. The peptide of computational design can bind with integrin αvβ3. Combined peptide near-infrared fluorescent probe with imaging technology use for clinical and tumor diagnosis have a greater development in future.

  7. Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer

    PubMed Central

    Elliott, Amicia D.; Gao, Liang; Ustione, Alessandro; Bedard, Noah; Kester, Robert; Piston, David W.; Tkaczyk, Tomasz S.

    2012-01-01

    Summary The development of multi-colored fluorescent proteins, nanocrystals and organic fluorophores, along with the resulting engineered biosensors, has revolutionized the study of protein localization and dynamics in living cells. Hyperspectral imaging has proven to be a useful approach for such studies, but this technique is often limited by low signal and insufficient temporal resolution. Here, we present an implementation of a snapshot hyperspectral imaging device, the image mapping spectrometer (IMS), which acquires full spectral information simultaneously from each pixel in the field without scanning. The IMS is capable of real-time signal capture from multiple fluorophores with high collection efficiency (∼65%) and image acquisition rate (up to 7.2 fps). To demonstrate the capabilities of the IMS in cellular applications, we have combined fluorescent protein (FP)-FRET and [Ca2+]i biosensors to measure simultaneously intracellular cAMP and [Ca2+]i signaling in pancreatic β-cells. Additionally, we have compared quantitatively the IMS detection efficiency with a laser-scanning confocal microscope. PMID:22854044

  8. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Pian, Qi; Yao, Ruoyang; Sinsuebphon, Nattawut; Intes, Xavier

    2017-07-01

    Spectrally resolved fluorescence lifetime imaging and spatial multiplexing have offered information content and collection-efficiency boosts in microscopy, but efficient implementations for macroscopic applications are still lacking. An imaging platform based on time-resolved structured light and hyperspectral single-pixel detection has been developed to perform quantitative macroscopic fluorescence lifetime imaging (MFLI) over a large field of view (FOV) and multiple spectral bands simultaneously. The system makes use of three digital micromirror device (DMD)-based spatial light modulators (SLMs) to generate spatial optical bases and reconstruct N by N images over 16 spectral channels with a time-resolved capability (∼40 ps temporal resolution) using fewer than N2 optical measurements. We demonstrate the potential of this new imaging platform by quantitatively imaging near-infrared (NIR) Förster resonance energy transfer (FRET) both in vitro and in vivo. The technique is well suited for quantitative hyperspectral lifetime imaging with a high sensitivity and paves the way for many important biomedical applications.

  9. Quantitative fluorescence measurements performed on typical matrix molecules in matrix-assisted laser desorption/ionisation

    NASA Astrophysics Data System (ADS)

    Allwood, D. A.; Dyer, P. E.

    2000-11-01

    Fundamental photophysical parameters have been determined for several molecules that are commonly used as matrices, e.g. ferulic acid, within matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Fluorescence quantum efficiencies ( φqe), singlet decay rates ( kl), vibrationless ground-singlet transition energies and average fluorescence wavelengths have been obtained from solid and solution samples by quantitative optical measurements. This new data will assist in modelling calculations of MALDI processes and in highlighting desirable characteristics of MALDI matrices. φqe may be as high as 0.59 whilst the radiative decay rate ( kf) appears to be within the (0.8-4)×10 8 s -1 range. Interestingly, α-cyano-4-hydroxycinnamic acid (α-CHC) has a very low φqe and fast non-radiative decay rate which would imply a rapid and efficient thermalisation of electronic excitation. This is in keeping with observations that α-CHC exhibits low threshold fluences for ion detection and the low fluences at which α-CHC tends to fragment.

  10. Oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor: Sensing ability, TD-DFT calculations and its application as an efficient solid state sensor.

    PubMed

    Lan, Linxin; Li, Tianduo; Wei, Tao; Pang, He; Sun, Tao; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-03-15

    An oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor 3 T-2CN was reported. Sensor 3 T-2CN showed both naked-eye recognition and ratiometric fluorescence response for CN - with an excellent selectivity and high sensitivity. The sensing mechanism based on the nucleophilic attack of CN - on the vinyl CC bond has been successfully confirmed by the optical measurements, 1 H NMR titration, FT-IR spectra as well as the DFT/TD-DFT calculations. Moreover, the detection limit was calculated to be 0.19μM, which is much lower than the maximum permission concentration in drinking water (1.9μM). Importantly, test strips (filter paper and TLC plates) containing 3 T-2CN were fabricated, which could act as a practical and efficient solid state optical sensor for CN - in field measurements. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy.

    PubMed

    Guo, Baoshan; Lei, Cheng; Ito, Takuro; Jiang, Yiyue; Ozeki, Yasuyuki; Goda, Keisuke

    2016-01-01

    The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, algal biofuel is expected to play a key role in alleviating global warming since algae absorb atmospheric CO2 via photosynthesis. Among various algae for fuel production, Euglena gracilis is an attractive microalgal species as it is known to produce wax ester (good for biodiesel and aviation fuel) within lipid droplets. To date, while there exist many techniques for inducing microalgal cells to produce and accumulate lipid with high efficiency, few analytical methods are available for characterizing a population of such lipid-accumulated microalgae including E. gracilis with high throughout, high accuracy, and single-cell resolution simultaneously. Here we demonstrate high-throughput, high-accuracy, single-cell screening of E. gracilis with fluorescence-assisted optofluidic time-stretch microscopy-a method that combines the strengths of microfluidic cell focusing, optical time-stretch microscopy, and fluorescence detection used in conventional flow cytometry. Specifically, our fluorescence-assisted optofluidic time-stretch microscope consists of an optical time-stretch microscope and a fluorescence analyzer on top of a hydrodynamically focusing microfluidic device and can detect fluorescence from every E. gracilis cell in a population and simultaneously obtain its image with a high throughput of 10,000 cells/s. With the multi-dimensional information acquired by the system, we classify nitrogen-sufficient (ordinary) and nitrogen-deficient (lipid-accumulated) E. gracilis cells with a low false positive rate of 1.0%. This method holds promise for evaluating cultivation techniques and selective breeding for microalgae-based biofuel production.

  12. High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source

    DOE PAGES

    Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; ...

    2017-03-17

    In this paper, an endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without movingmore » any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Finally and moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.« less

  13. An integrated centrifugo-opto-microfluidic platform for arraying, analysis, identification and manipulation of individual cells.

    PubMed

    Burger, R; Kurzbuch, D; Gorkin, R; Kijanka, G; Glynn, M; McDonagh, C; Ducrée, J

    2015-01-21

    In this work we present a centrifugal microfluidic system enabling highly efficient collective trapping and alignment of particles such as microbeads and cells, their multi-colour fluorescent detection and subsequent manipulation by optical tweezers. We demonstrate array-based capture and imaging followed by "cherry-picking" of individual particles, first for fluorescently labelled polystyrene (PS) beads and then for cells. Different cell lines are discriminated based on intracellular as well as surface-based markers.

  14. Fluorescence sensing and photocatalytic properties of a 2D stable and biocompatible Zn(II)-based polymer

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Li, Bao-Hong; Zhong, Hua-Rui; Qiu, Shuo-Wen; Liang, Yi-Wen; Zhuang, Xiao-Yi; Singh, Amita; Kumar, Abhinav

    2018-04-01

    A biocompatible metal-organic framework (MOF) [Zn2(TPL)(FA)(OH)(H2O)] (1) (TPL = theophylline and H2FA = fumaric acid) had been chosen which offers an ideal model for the development of fluorescencent chemosensor using simple synthetic protocol. The MOF 1 have been tested as a fluorescent chemosensor against nitro-aromatics (NACs) and it displayed high selectivity for 4-NT over other NACs as evident by the emission spectroscopy. The alleviation in fluorescence intensity of 1 in presence of different NACs have been explained with the help of theoretical calculations which suggested that there is occurrence of both electron and energy transfer processes, in addition to electrostatic interaction between 1 and NACs which may be responsible for the unprecedented selective alleviation in the fluorescence intensity. Also, 1 had been deployed as a photocatalyst for the degradation of methyl violet (MV) and Rhodamine B (Rh B) in aqueous solution under UV irradiation. The photocatalytic results indicated the 1 exhibit 85% photocatalytic efficiency against Rh B in 100 min, while its efficiency against MV was only 50% under the identical experimental conditions. The possible mechanism for the photocatalytic activity has been proposed using density of states (DOS) calculations.

  15. Utilizing Diffuse Reflection to Increase the Efficiency of Luminescent Solar Concentrators

    NASA Astrophysics Data System (ADS)

    Bowser, Seth; Weible, Seth; Solomon, Joel; Schrecengost, Jonathan; Wittmershaus, Bruce

    A luminescent solar concentrator (LSC) consists of a high index solid plate containing a fluorescent material that converts sunlight into fluorescence. Utilizing total internal reflection, the LSC collects and concentrates the fluorescence at the plate's edges where it is converted into electricity via photovoltaic solar cells. The lower production costs of LSCs make them an attractive alternative to photovoltaic solar cells. To optimize an LSC's efficiency, a white diffusive surface (background) is positioned behind it. The background allows sunlight transmitted in the first pass to be reflected back through the LSC providing a second chance for absorption. Our research examines how the LSC's performance is affected by changing the distance between the white background and the LSC. An automated linear motion apparatus was engineered to precisely measure this distance and the LSC's electrical current, simultaneously. LSC plates, with and without the presence of fluorescent material and in an isolated environment, showed a maximum current at a distance greater than zero. Further experimentation has proved that the optimal distance results from the background's optical properties and how the reflected light enters the LSC. This material is based upon work supported by the National Science Foundation under Grant Number NSF-ECCS-1306157.

  16. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).

    PubMed

    Pawlowski, Sylwin; Galinha, Claudia F; Crespo, João G; Velizarov, Svetlozar

    2016-01-01

    Reverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation. In the present study, two-dimensional (2D) fluorescence spectroscopy was used, for the first time, as a tool for fouling monitoring in RED. Fluorescence excitation-emission matrices (EEMs) of ion-exchange membrane surfaces and of natural aqueous streams were acquired during one month of a RED stack operation. Fouling evolvement on the ion-exchange membrane surfaces was successfully followed by 2D fluorescence spectroscopy and quantified using principal components analysis (PCA). Additionally, the efficiency of cleaning strategy was assessed by measuring the membrane fluorescence emission intensity before and after cleaning. The anion-exchange membrane (AEM) surface in contact with river water showed to be significantly affected due to fouling by humic compounds, which were found to cross through the membrane from the lower salinity (river water) to higher salinity (sea water) stream. The results obtained show that the combined approach of using 2D fluorescence spectroscopy and PCA has a high potential for studying fouling development and membrane cleaning efficiency in ion exchange membrane processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Ultrabright and Fluorogenic Probes for Multicolor Imaging and Tracking of Lipid Droplets in Cells and Tissues.

    PubMed

    Collot, Mayeul; Fam, Tkhe Kyong; Ashokkumar, Pichandi; Faklaris, Orestis; Galli, Thierry; Danglot, Lydia; Klymchenko, Andrey S

    2018-04-25

    Lipid droplets (LDs) are intracellular lipid-rich organelles that regulate the storage of neutral lipids and were recently found to be involved in many physiological processes, metabolic disorders, and diseases including obesity, diabetes, and cancers. Herein we present a family of new fluorogenic merocyanine fluorophores based on an indolenine moiety and a dioxaborine barbiturate derivative. These so-called StatoMerocyanines (SMCy) fluoresce from yellow to the near-infrared (NIR) in oil with an impressive fluorescence enhancement compared to aqueous media. Additionally, SMCy display remarkably high molar extinction coefficients (up to 390 000 M -1 cm -1 ) and high quantum yield values (up to 100%). All the members of this new family specifically stain the LDs in live cells with very low background noise. Unlike Nile Red, a well-known lipid droplet marker, SMCy dyes possess narrow absorption and emission bands in the visible, thus allowing multicolor imaging. SMCy proved to be compatible with fixation and led to high-quality 3D images of lipid droplets in cells and tissues. Their high brightness allowed efficient tissue imaging of adipocytes and circulating LDs. Moreover their remarkably high two-photon absorption cross-section, especially SMCy5.5 (up to 13 300 GM), as well as their capacity to efficiently fluoresce in the NIR region led to two-photon multicolor tissue imaging (liver). Taking advantage of the available color palette, lipid droplet exchange between cells was tracked and imaged, thus demonstrating intercellular communication.

  18. Conformational Control of Ultrafast Molecular Rotor Property: Tuning Viscosity Sensing Efficiency by Twist Angle Variation.

    PubMed

    Ghosh, Rajib; Kushwaha, Archana; Das, Dipanwita

    2017-09-21

    Fluorescent molecular rotors find widespread application in sensing and imaging of microscopic viscosity in complex chemical and biological media. Development of viscosity-sensitive ultrafast molecular rotor (UMR) relies upon the understanding of the excited-state dynamics and their implications for viscosity-dependent fluorescence signaling. Unraveling the structure-property relationship of UMR behavior is of significance toward development of an ultrasensitive fluorescence microviscosity sensor. Herein we show that the ground-state equilibrium conformation has an important role in the ultrafast twisting dynamics of UMRs and consequent viscosity sensing efficiency. Synthesis, photophysics, and ultrafast spectroscopic experiments in conjunction with quantum chemical calculation of a series of UMRs based on dimethylaniline donor and benzimidazolium acceptor with predefined ground-state torsion angle led us to unravel that the ultrafast torsional dynamics around the bond connecting donor and acceptor groups profoundly influences the molecular rotor efficiency. This is the first experimental demonstration of conformational control of small-molecule-based UMR efficiencies which can have wider implication toward development of fluorescence sensors based on the UMR principle. Conformation-controlled UMR efficiency has been shown to exhibit commensurate fluorescence enhancement upon DNA binding.

  19. Highly selective and sensitive determination of Cu2+ in drink and water samples based on a 1,8-diaminonaphthalene derived fluorescent sensor

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Li, Yang; Niu, Qingfen; Li, Tianduo; Liu, Yan

    2018-04-01

    A new simple and efficient fluorescent sensor L based on 1,8-diaminonaphthalene Schiff-base for highly sensitive and selective determination of Cu2+ in drink and water has been developed. This Cu2+-selective detection over other tested metal ions displayed an obvious color change from blue to colorless easily detected by naked eye. The detection limit is determined to be as low as 13.2 nM and the response time is very fast within 30 s. The 1:1 binding mechanism was well confirmed by fluorescence measurements, IR analysis and DFT calculations. Importantly, this sensor L was employed for quick detection of Cu2+ in drink and environmental water samples with satisfactory results, providing a simple, rapid, reliable and feasible Cu2+-sensing method.

  20. In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens.

    PubMed

    Brooker, Gary; Siegel, Nisan; Rosen, Joseph; Hashimoto, Nobuyuki; Kurihara, Makoto; Tanabe, Ayano

    2013-12-15

    We report a new optical arrangement that creates high-efficiency, high-quality Fresnel incoherent correlation holography (FINCH) holograms using polarization sensitive transmission liquid crystal gradient index (TLCGRIN) diffractive lenses. In contrast, current universal practice in the field employs a reflective spatial light modulator (SLM) to separate sample and reference beams. Polarization sensitive TLCGRIN lenses enable a straight optical path, have >90% transmission efficiency, are not pixilated, and are free of many limitations of reflective SLM devices. For each sample point, two spherical beams created by a glass lens in combination with a polarization sensitive TLCGRIN lens interfere and create a hologram and resultant super resolution image.

  1. A Metal-Polydopamine Framework (MPDA) as an Effective Fluorescent Quencher for Highly Sensitive Detection of Hg (II) And Ag (I) ions Through Exonuclease III Activity.

    PubMed

    Ravikumar, Ayyanu; Panneerselvam, Perumal; Morad, Norhashimah

    2018-05-24

    In this paper, we propose a metal-polydopamine framework (MPDA) with specific molecular probe which appears to be the most promising approach to a strong fluorescence quencher. The MPDA framework quenching ability towards various organic fluorophore such as aminoethylcomarin acetate (AMCA), 6-carboxyfluorescein (FAM), carboxyteramethylrhodamine (TAMRA) and Cy5 are used to establish a fluorescent biosensor that can selectively recognize Hg2+ and Ag+ ion. The fluorescent quenching efficiency was sufficient to achieve more than 96%. The MPDA framework also exhibits different affinities with ssDNA and dsDNA. In addition, the FAM labelled ssDNA was adsorbed onto MPDA framework, based on their interaction with the complex formed between MPDA frameworks/ssDNA taken as a sensing platform. By taking advantage of this sensor highly sensitive and selective determination of Hg2+and Ag+ ions is achieved through Exonuclease III signal amplification activity. The detection limits of Hg2+and Ag+ achieved to be 1.2 pM and 34 pM respectively, were compared to co-existing metal ions and GO based sensors. Furthermore, the potential applications of this study establish the highly sensitive fluorescence detection targets in environmental and biological fields.

  2. Intermolecular interaction approach for TADF (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wong, Ken-Tsung

    2016-09-01

    Materials with thermally activated delayed fluorescence (TADF) have recently emerged as new fluorescent emitters for highly efficient organic light-emitting diodes (OLEDs). Molecule with TADF behavior needs to have a small singlet-triplet energy difference (ΔES-T) that allows the up-conversion from nonradiative triplet state (T1) to radiative singlet state (S1) via reverse intersystem crossing (RISC) process. Generally, molecules with small ΔES-T can be obtained via carefully manipulate the degree of "intramolecular" charge transfer (ICT) between electron-donating and -accepting components, such that the electron exchange energy that contributes to ΔES-T, can be minimized. Alternatively, excited state with small ΔES-T can be feasibly realized via "intermolecular" charge transfer occurring at the interface between spatially separating donor (D) and acceptor (A) molecules. Because the exchange energy decreases as the HOMO-LUMO separation distance increases, theoretically, the intermolecular D/A charge transfer state (or exciplex) should have rather small ΔES-T, leading to efficient TADF. However, it is still a challenge to access highly efficient exciplex systems. This is mainly because exciplex formation is commonly accompanied with a large red shift of emission spectra and long radiative lifetime, which tend to diminish photoluminescence quantum yield (PLQY) as well as electroluminescence (EL) performance. Until now, exciplex-based OLEDs with external quantum efficiency (EQE) above 10% are still limited. By judicious selection of donor and acceptor, the formation of efficient exciplex can be feasibly achieved. In this conference, our recent efforts on highly efficient exciplexes using C3-symmetry triazine acceptors and various donors, and their device characteristics will be presented.

  3. An excellent fluorescent dye with a twistable aromatic chain and its axially chiral crystals.

    PubMed

    Ma, Yan; Hao, Rui; Shao, Guangsheng; Wang, Yuan

    2009-04-30

    A new organic fluorescent dye, 2,4-dichloro-6-[p-(N,N-diethylamino)biphenylyl]-1,3,5-triazine (DBQ), with an electron withdrawing-donating pair bridged by a twistable aromatic chain has been synthesized. DBQ exhibits high fluorescence quantum yields (0.96 in hexane and 0.71 in THF), high extinction coefficients, and an excitation window extending up to approximately 480 nm. Due to the strong intramolecular charge transfer character, DBQ shows obviously solvent-dependent Stokes shifts with a value as high as 6360 cm(-1) in THF and controllable fluorescence emission in the visible region from "blue" to "orange". The axially chiral structures of DBQ crystals were clearly revealed by the X-ray analyses and CD spectroscopy measurements. Two enantiomers of DBQ were obtained by spontaneous resolution upon crystallization without any chiral auxiliary. The low rotation barriers around the interannular bonds in DBQ molecules resulted in an efficient and selective multiplication of each of the chiral structures when DBQ crystallized in THF at room temperature in the presence of an enantiopure crystal seed, leaving racemized DBQ molecules in the solution. The special crystalline properties of DBQ provided a new approach to the design and synthesis of organic chiral crystals. The photophysical properties of DBQ make it promising in the preparation of new fluorescent probes with high sensitivity.

  4. Continuous flow real-time PCR device using multi-channel fluorescence excitation and detection.

    PubMed

    Hatch, Andrew C; Ray, Tathagata; Lintecum, Kelly; Youngbull, Cody

    2014-02-07

    High throughput automation is greatly enhanced using techniques that employ conveyor belt strategies with un-interrupted streams of flow. We have developed a 'conveyor belt' analog for high throughput real-time quantitative Polymerase Chain Reaction (qPCR) using droplet emulsion technology. We developed a low power, portable device that employs LED and fiber optic fluorescence excitation in conjunction with a continuous flow thermal cycler to achieve multi-channel fluorescence detection for real-time fluorescence measurements. Continuously streaming fluid plugs or droplets pass through tubing wrapped around a two-temperature zone thermal block with each wrap of tubing fluorescently coupled to a 64-channel multi-anode PMT. This work demonstrates real-time qPCR of 0.1-10 μL droplets or fluid plugs over a range of 7 orders of magnitude concentration from 1 × 10(1) to 1 × 10(7). The real-time qPCR analysis allows dynamic range quantification as high as 1 × 10(7) copies per 10 μL reaction, with PCR efficiencies within the range of 90-110% based on serial dilution assays and a limit of detection of 10 copies per rxn. The combined functionality of continuous flow, low power thermal cycling, high throughput sample processing, and real-time qPCR improves the rates at which biological or environmental samples can be continuously sampled and analyzed.

  5. [Effects of plastic film mulching and rain harvesting modes on chlorophyll fluorescence characteristics, yield and water use efficiency of dryland maize].

    PubMed

    Li, Shang-Zhong; Fan, Ting-Lu; Wang, Yong; Zhao, Gang; Wang, Lei; Tang, Xiao-Ming; Dang, Yi; Zhao, Hui

    2014-02-01

    The differences on chlorophyll fluorescence parameters, yield and water use efficiency of dryland maize were compared among full plastic film mulching on double ridges and planting in catchment furrows (FFDRF), half plastic film mulching on double ridges and planting in catchment furrows (HFDRF), plastic film mulching on ridge and planting in film-side (FS), and flat planting with no plastic film mulching (NM) under field conditions in dry highland of Loess Plateau in 2007-2012. The results showed that fluorescence yield (Fo), the maximum fluorescence yield (Fm), light-adapted fluorescence yield when PS II reaction centers were totally open (F), light-adapted fluorescence yield when PS II reaction centers closed (Fm'), the maximal photochemical efficiency of PS II (Fv/Fm), the actual photochemical efficiency of PS II in the light (Phi PS II), the relative electron transport rate (ETR), photochemical quenching (qP) and non-photochemical quenching (qN) in maize leaves of FFDRF were higher than that of control (NM), and the value of 1-qP was lower than that of control, at 13:00, chlorophyll fluorescence parameters values of FFDRF was significantly higher than control, which were increased by 5.3%, 56.8%, 10.7%, 36.3%, 23.6%, 56.7%, 64.4%, 45.5%, 23.6% and -55.6%, respectively, compared with the control. Yield and water use efficiency of FFDRF were the highest in every year no matter dry year, normal year, humid year and hail disaster year. Average yield and water use efficiency of FFDRF were 12,650 kg x hm(-2) and 40.4 kg x mm(-1) x hm(-2) during 2007-2012, increased by 57.8% and 61.6% compared with the control, respectively, and also significantly higher compared with HFDRF and PS. Therefore, it was concluded that FFDRF had significantly increased the efficiency of light energy conversion and improved the production capacity of dryland maize.

  6. Development of practical red fluorescent probe for cytoplasmic calcium ions with greatly improved cell-membrane permeability.

    PubMed

    Hirabayashi, Kazuhisa; Hanaoka, Kenjiro; Egawa, Takahiro; Kobayashi, Chiaki; Takahashi, Shodai; Komatsu, Toru; Ueno, Tasuku; Terai, Takuya; Ikegaya, Yuji; Nagano, Tetsuo; Urano, Yasuteru

    2016-10-01

    Fluorescence imaging of calcium ions (Ca(2+)) has become an essential technique for investigation of signaling pathways involving Ca(2+) as a second messenger. But, Ca(2+) signaling is involved in many biological phenomena, and therefore simultaneous visualization of Ca(2+) and other biomolecules (multicolor imaging) would be particularly informative. For this purpose, we set out to develop a fluorescent probe for Ca(2+) that would operate in a different color region (red) from that of probes for other molecules, many of which show green fluorescence, as exemplified by green fluorescent protein (GFP). We previously developed a red fluorescent probe for monitoring cytoplasmic Ca(2+) concentration, based on our established red fluorophore, TokyoMagenta (TM), but there remained room for improvement, especially as regards efficiency of introduction into cells. We considered that this issue was probably mainly due to limited water solubility of the probe. So, we designed and synthesized a red-fluorescent probe with improved water solubility. We confirmed that this Ca(2+) red-fluorescent probe showed high cell-membrane permeability with bright fluorescence. It was successfully applied to fluorescence imaging of not only live cells, but also brain slices, and should be practically useful for multicolor imaging studies of biological mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Classic Maximum Entropy Recovery of the Average Joint Distribution of Apparent FRET Efficiency and Fluorescence Photons for Single-molecule Burst Measurements

    PubMed Central

    DeVore, Matthew S.; Gull, Stephen F.; Johnson, Carey K.

    2012-01-01

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions. PMID:22338694

  8. Diazobenzene-containing conjugated polymers as dark quenchers.

    PubMed

    Wu, Jiatao; Tan, Ying; Xie, Yonghua; Wu, Yi; Zhao, Rui; Jiang, Yuyang; Tan, Chunyan

    2013-12-18

    The synthesis and photophysical characterization of new conjugated polymers (CPs) with alternating phenylethynylene and diazobenzene (azo-PPE) units were reported, which showed broadened absorption and no measurable fluorescence. Quenching studies showed that azo-PPEs displayed high efficiency over a wide wavelength range.

  9. Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer

    NASA Astrophysics Data System (ADS)

    Ikai, Masamichi; Tokito, Shizuo; Sakamoto, Youichi; Suzuki, Toshiyasu; Taga, Yasunori

    2001-07-01

    One of the keys to highly efficient phosphorescent emission in organic light-emitting devices is to confine triplet excitons generated within the emitting layer. We employ "starburst" perfluorinated phenylenes (C60F42) as a both hole- and exciton-block layer, and a hole-transport material 4,4',4″-tri(N-carbazolyl) triphenylamine as a host for the phosphorescent dopant dye in the emitting layer. A maximum external quantum efficiency reaches to 19.2%, and keeps over 15% even at high current densities of 10-20 mA/cm2, providing several times the brightness of fluorescent tubes for lighting. The onset voltage of the electroluminescence is as low as 2.4 V and the peak power efficiency is 70-72 lm/W, promising for low-power display devices.

  10. Polydopamine Nanotubes as an Effective Fluorescent Quencher for Highly Sensitive and Selective Detection of Biomolecules Assisted with Exonuclease III Amplification.

    PubMed

    Fan, Daoqing; Zhu, Xiaoqing; Zhai, Qingfeng; Wang, Erkang; Dong, Shaojun

    2016-09-20

    In this work, the effective fluorescence quenching ability of polydopamine nanotubes (PDANTs) toward various fluorescent dyes was studied and further applied to fluorescent biosensing for the first time. The PDANTs could quench the fluorophores with different emission frequencies, aminomethylcoumarin acetate (AMCA), 6-carboxyfluorescein (FAM), 6-carboxytetramethylrhodamine (TAMRA), and Cy5. All the quenching efficiencies reached to more than 97%. Taking advantage of PDANTs' different affinities toward ssDNA and dsDNA and utilizing the complex of FAM-labeled ssDNA and PDANTs as a sensing platform, we achieved highly sensitive and selective detection of human immunodeficiency virus (HIV) DNA and adenosine triphosphate (ATP) assisted with Exonuclease III amplification. The limits of detection (LODs) of HIV DNA and ATP reached to 3.5 pM and 150 nM, respectively, which were all lower than that of previous nanoquenchers with Exo III amplification, and the platform also presented good applicability in biological samples. Fluorescent sensing applications of this nanotube enlightened other targets detection based upon it and enriched the building blocks of fluorescent sensing platforms. This polydopamine nanotube also possesses excellent biocompatibility and biodegradability, which is suitable for future drug delivery, cell imaging, and other biological applications.

  11. A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins[S

    PubMed Central

    Gaebler, Anne; Penno, Anke; Kuerschner, Lars; Thiele, Christoph

    2016-01-01

    The demand to study the cellular localization of specific lipids has led to recent advances in lipid probes and microscopy. Alkyne lipids bear a small, noninterfering tag and can be detected upon click reaction with an azide-coupled reporter. Fluorescent alkyne lipid imaging crucially depends on appropriate azide reporters and labeling protocols that allow for an efficient click reaction and therefore a sensitive detection. We synthesized several azide reporters with different spacer components and tested their suitability for alkyne lipid imaging in fixed cells. The implementation of a copper-chelating picolyl moiety into fluorescent or biotin-based azide reagents strongly increased the sensitivity of the imaging routine. We demonstrate the applicability and evaluate the performance of this approach using different lipid classes and experimental setups. As azide picolyl reporters allow for reduced copper catalyst concentrations, they also enable coimaging of alkyne lipids with multiple fluorescent proteins including enhanced green fluorescent protein. Alternatively, and as we also show, microscopy of alkyne lipids can be combined with protein detection by immunocytochemistry. In summary, we present a robust, sensitive, and highly versatile protocol for the labeling of alkyne lipids with azide-coupled reporters for fluorescence microscopy that can be combined with different protein detection and imaging techniques. PMID:27565170

  12. Method Of Signal Amplification In Multi-Chromophore Luminescence Sensors

    DOEpatents

    Levitsky, Igor A.; Krivoshlykov, Sergei G.

    2004-02-03

    A fluorescence-based method for highly sensitive and selective detection of analyte molecules is proposed. The method employs the energy transfer between two or more fluorescent chromophores in a carefully selected polymer matrix. In one preferred embodiment, signal amplification has been achieved in the fluorescent sensing of dimethyl methylphosphonate (DMMP) using two dyes, 3-aminofluoranthene (AM) and Nile Red (NR), in a hydrogen bond acidic polymer matrix. The selected polymer matrix quenches the fluorescence of both dyes and shifts dye emission and absorption spectra relative to more inert matrices. Upon DMMP sorption, the AM fluorescence shifts to the red at the same time the NR absorption shifts to the blue, resulting in better band overlap and increased energy transfer between chromophores. In another preferred embodiment, the sensitive material is incorporated into an optical fiber system enabling efficient excitation of the dye and collecting the fluorescent signal form the sensitive material on the remote end of the system. The proposed method can be applied to multichromophore luminescence sensor systems incorporating N-chromophores leading to N-fold signal amplification and improved selectivity. The method can be used in all applications where highly sensitive detection of basic gases, such as dimethyl methylphosphonate (DMMP), Sarin, Soman and other chemical warfare agents having basic properties, is required, including environmental monitoring, chemical industry and medicine.

  13. A theranostic nanoplatform: magneto-gold@fluorescence polymer nanoparticles for tumor targeting T1&T2-MRI/CT/NIR fluorescence imaging and induction of genuine autophagy mediated chemotherapy.

    PubMed

    Wang, Guannan; Qian, Kun; Mei, Xifan

    2018-06-14

    Multifunctional nanoparticles, bearing low toxicity and tumor-targeting properties, coupled with multifunctional diagnostic imaging and enhanced treatment efficacy, have drawn tremendous attention due to their enormous potential for medical applications. Herein, we report a new kind of biocompatible and tumor-targeting magneto-gold@fluorescent polymer nanoparticle (MGFs-LyP-1), which is based on ultra-small magneto-gold (Fe 3 O 4 -Au) nanoparticles and NIR emissive fluorescent polymers by a solvent-mediated method. This kind of nanoparticle could be taken up efficiently and simultaneously serve for in vivo tumor targeting T 1 &T 2 -MRI/CT/near infrared (NIR) fluorescence bioimaging. Furthermore, the nanoparticles exhibit small size, higher tumor targeting accumulation, excellent cytocompatibility for long-term tracking, and no disturbing cell proliferation and differentiation. Moreover, clear and convincing evidence proves that as-synthesized MGFs-LyP-1 could elicit genuine autophagy via inducing autophagosome formation, which offers a definite synergistic effect to enhance cancer therapy with doxorubicin (DOX) at a nontoxic concentration through enhancement of the autophagy flux. Meanwhile, the as-prepared nanoparticles could be rapidly cleared from mice without any obvious organ impairment. The results indeed reveal a promising prospect of an MGFs-LyP-1 contrast agent with low toxicity and high efficiency for promising application in biomedicine.

  14. Development and biodistribution of a theranostic aluminum phthalocyanine nanophotosensitizer.

    PubMed

    Asem, Heba; El-Fattah, Ahmed Abd; Nafee, Noha; Zhao, Ying; Khalil, Labiba; Muhammed, Mamoun; Hassan, Moustapha; Kandil, Sherif

    2016-03-01

    Aluminum phthalocyanine (AlPc) is an efficient second generation photosensitizer (PS) with high fluorescence ability. Its use in photodynamic therapy (PDT) is hampered by hydrophobicity and poor biodistribution. AlPc was converted to a biocompatible nanostructure by incorporation into amphiphilic polyethylene glycol-polycaprolactone (PECL) copolymer nanoparticles, allowing efficient entrapment of the PS in the hydrophobic core, water dispersibility and biodistribution enhancement by PEG-induced surface characteristics. A series of synthesized PECL copolymers were used to prepare nanophotosensitizers with an average diameter of 66.5-99.1nm and encapsulation efficiency (EE%) of 66.4-78.0%. One formulation with favorable colloidal properties and relatively slow release over 7 days was selected for in vitro photophysical assessment and in vivo biodistribution studies in mice. The photophysical properties of AlPc were improved by encapsulating AlPc into PECL-NPs, which showed intense fluorescence emission at 687nm and no AlPc aggregation has been induced after entrapment into the nanoparticles. Biodistribution of AlPc loaded NPs (AlPc-NPs) and free AlPc drug in mice was monitored by in vivo whole body fluorescence imaging and ex vivo organ imaging, with in vivo imaging system (IVIS). Compared to a AlPc solution in aqueous TWEEN 80 (2 w/v%), the developed nanophotosensitizer showed targeted drug delivery to lungs, liver and spleen as monitored by the intrinsic fluorescence of AlPc at different time points (1h, 24h and 48h) post iv. administration. The AlPc-based copolymer nanoparticles developed offer potential as a single agent-multifunctional theranostic nanophotosensitizer for PDT coupled with imaging-guided drug delivery and biodistribution, and possibly also fluorescence diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Facile synthesis of Curcuma longa tuber powder engineered metal nanoparticles for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Sankar, Renu; Rahman, Pattanathu K. S. M.; Varunkumar, Krishnamoorthy; Anusha, Chidambaram; Kalaiarasi, Arunachalam; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2017-02-01

    Nanomaterials based fluorescent agents are rapidly becoming significant and promising transformative tools for improving medical diagnostics for extensive in vivo imaging modalities. Compared with conventional fluorescent agents, nano-fluorescence has capabilities to improve the in vivo detection and enriched targeting efficiencies. In our laboratory we synthesized fluorescent metal nanoparticles of silver, copper and iron using Curcuma longa tuber powder by simple reduction. The physicochemical properties of the synthesized metal nanoparticles were attained using UV-visible spectrophotometry, scanning electron microscopy with EDAX spectroscopy, dynamic light scattering, Fourier-transform infrared spectroscopy and X-ray diffraction. The Curcuma longa tuber powder has one of the bioactive compound Curcumin might act as a capping agent during the synthesis of nanoparticles. The synthesized metal nanoparticles fluorescence property was confirmed by spectrofluorometry. When compared with copper and iron nanoparticles the silver nanoparticles showed high fluorescence intensity under spectrofluorometry. Moreover, in vitro cell images of the silver nanoparticles in A549 cell lines also correlated with the results of spectrofluorometry. These silver nanoparticles show inspiring cell-imaging applications. They enter into cells without any further modifications, and the fluorescence property can be utilized for fluorescence-based cell imaging applications.

  16. Relative fluorescent efficiency of sodium salicylate between 90 and 800 eV

    NASA Technical Reports Server (NTRS)

    Angel, G. C.; Samson, J. A. R.; Wiliams, G.

    1986-01-01

    The relative fluorescent quantum efficiency of sodium salicylate was measured between 90 and 800 eV (138-15 A) by the use of synchrotron radiation. A general increase in efficiency was observed in this spectral range except for abrupt decreases in efficiency at the carbon and oxygen K-edges. Beyond the oxygen K-edge (532 eV) the efficiency increased linearly with the incident photon energy to the limit of the present observations.

  17. The relative fluorescent efficiency of sodium salicylate between 90 and 800 eV

    NASA Technical Reports Server (NTRS)

    Angel, G. C.; Samson, J. A. R.; Williams, G.

    1986-01-01

    The relative fluorescent quantum efficiency of sodium salicylate was measured between 90 and 800 eV (138 -15 A) by the use of synchrotron radiation. A general increase in efficiency was observed in this spectral range except for abrupt decreases in efficiency at the carbon and oxygen K-edges. Beyond the oxygen K-edge (532 eV) the efficiency increased linearly with the incident photon energy to the limit of the present observations.

  18. Quantitative Analysis of the Lamellarity of Giant Liposomes Prepared by the Inverted Emulsion Method

    PubMed Central

    Chiba, Masataka; Miyazaki, Makito; Ishiwata, Shin’ichi

    2014-01-01

    The inverted emulsion method is used to prepare giant liposomes by pushing water-in-oil droplets through the oil/water interface into an aqueous medium. Due to the high encapsulation efficiency of proteins under physiological conditions and the simplicity of the protocol, it has been widely used to prepare various cell models. However, the lamellarity of liposomes prepared by this method has not been evaluated quantitatively. Here, we prepared liposomes that were partially stained with a fluorescent dye, and analyzed their fluorescence intensity under an epifluorescence microscope. The fluorescence intensities of the membranes of individual liposomes were plotted against their diameter. The plots showed discrete distributions, which were classified into several groups. The group with the lowest fluorescence intensity was determined to be unilamellar by monitoring the exchangeability of the inner and the outer solutions of the liposomes in the presence of the pore-forming toxin α-hemolysin. Increasing the lipid concentration dissolved in oil increased the number of liposomes ∼100 times. However, almost all the liposomes were unilamellar even at saturating lipid concentrations. We also investigated the effects of lipid composition and liposome content, such as highly concentrated actin filaments and Xenopus egg extracts, on the lamellarity of the liposomes. Remarkably, over 90% of the liposomes were unilamellar under all conditions examined. We conclude that the inverted emulsion method can be used to efficiently prepare giant unilamellar liposomes and is useful for designing cell models. PMID:25028876

  19. Fluorescence and visual detection of fluoride ions using a photoluminescent graphene oxide paper sensor

    NASA Astrophysics Data System (ADS)

    Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong

    2016-07-01

    The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F- has been successfully developed. The paper sensor showed high sensitivity for aqueous F-, and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes.The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F- has been successfully developed. The paper sensor showed high sensitivity for aqueous F-, and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02878k

  20. Magnetite nanoparticle-induced fluorescence quenching of adenosine triphosphate-BODIPY Conjugates: application to adenosine triphosphate and pyrophosphate sensing.

    PubMed

    Yu, Cheng-Ju; Wu, Su-Mei; Tseng, Wei-Lung

    2013-09-17

    We report that magnetite nanoparticles (Fe3O4 NPs) act as an efficient quencher for boron dipyrromethene-conjugated adenosine 5'-triphosphate (BODIPY-ATP) that is highly fluorescent in bulk solution. BODIPY-ATP molecules attached to the surface of Fe3O4 NPs through the coordination between the triphosphate group of BODIPY-ATP and Fe(3+)/Fe(2+) on the NP surface. The formed complexes induced an apparent reduction in the BODIPY-ATP fluorescence resulting from an oxidative-photoinduced electron transfer (PET) from the BODIPY-ATP excited state to an unfilled d shell of Fe(3+)/Fe(2+) on the NP surface. A comparison of the Stern-Volmer quenching constant between Fe(3+) and Fe(2+) suggests that Fe(3+) on the NP surface dominantly controls this quenching process. The efficiency for Fe3O4 NP-induced fluorescence quenching of the BODIPY-ATP was enhanced by increasing the concentration of Fe3O4 NPs and lowering the pH of the solution to below 6.0. We found that pyrophosphate and ATP compete with BODIPY-ATP for binding to Fe3O4 NPs. Thus, we amplified BODIPY-ATP fluorescence in the presence of increasing the pyrophosphate and ATP concentration; the detection limits at a signal-to-noise ratio of 3 for pyrophosphate and ATP were determined to be 7 and 30 nM, respectively. The Fe3O4 NP-based competitive binding assay detected ATP and pyrophosphate in only 5 min. The selectivity of this assay for ATP over metal ions, amino acids, and adenosine analogues is particularly high. The practicality of using the developed method to determine ATP in a single drop of blood is also validated.

  1. Fluorescence-based characterization of genetically encoded peptides that fold in live cells: progress toward a generic hairpin scaffold

    NASA Astrophysics Data System (ADS)

    Cheng, Zihao; Campbell, Robert E.

    2007-02-01

    Binding proteins suitable for expression and high affinity molecular recognition in the cytoplasm or nucleus of live cells have numerous applications in the biological sciences. In an effort to add a new minimal motif to the growing repertoire of validated non-immunoglobulin binding proteins, we have undertaken the development of a generic protein scaffold based on a single β-hairpin that can fold efficiently in the cytoplasm. We have developed a method, based on the measurement of fluorescence resonance energy transfer (FRET) between a genetically fused cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP), that allows the structural stability of recombinant β-hairpin peptides to be rapidly assessed both in vitro and in vivo. We have previously reported the validation of this method when applied to a 16mer tryptophan zipper β-hairpin. We now describe the use of this method to evaluate the potential of a designed 20mer β-hairpin peptide with a 3rd Trp/Trp cross-strand pair to function as a generic protein scaffold. Quantitative analysis of the FRET efficiency, resistance to proteolysis (assayed by loss of FRET), and circular dichroism spectra revealed that the 20mer peptide is significantly more tolerant of destabilizing mutations than the 16mer peptide. Furthermore, we experimentally demonstrate that the in vitro determined β-hairpin stabilities are well correlated with in vivo β-hairpin stabilities as determined by FRET measurements of colonies of live bacteria expressing the recombinant peptides flanked by CFP and YFP. Finally, we report on our progress to develop highly folded 24mer and 28mer β-hairpin peptides through the use of fluorescence-based library screening.

  2. Anomalous doping of a molecular crystal monitored with confocal fluorescence microscopy: Terrylene in a p-terphenyl crystal

    NASA Astrophysics Data System (ADS)

    Białkowska, Magda; Deperasińska, Irena; Makarewicz, Artur; Kozankiewicz, Bolesław

    2017-09-01

    Highly terrylene doped single crystals of p-terphenyl, obtained by co-sublimation of both components, showed bright spots in the confocal fluorescence images. Polarization of the fluorescence excitation spectra, blinking and bleaching, and saturation behavior allowed us to attribute them to single molecules of terrylene anomalously embedded between two neighbor layers of the host crystal, in the (a,b) plane. Such an orientation of terrylene molecules results in much more efficient absorption and collection of the fluorescence photons than in the case of previously investigated molecules embedded in the substitution sites. The above conclusion was supported by quantum chemistry calculations. We postulate that the kind of doping considered in this work should be possible in other molecular crystals where the host molecules are organized in a herringbone pattern.

  3. Emission behaviors of unsymmetrical 1,3-diaryl-β-diketones: A model perfectly disclosing the effect of molecular conformation on luminescence of organic solids

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao; Li, Feng; Han, Shenghua; Zhang, Yufei; Jiao, Chuanjun; Wei, Jinbei; Ye, Kaiqi; Wang, Yue; Zhang, Hongyu

    2015-03-01

    A series of unsymmetrical 1,3-diaryl-β-diketones 1-6 displaying molecular conformation-dependent fluorescence quantum yields have been synthesized. Crystals with planar molecular conformation such as 1, 2, 3 and 4 are highly fluorescent (φf: 39-53%), and the one holding slightly twisted conformation (5) is moderately luminescent (φf = 17%), while crystal 6 possessing heavily bent structure is completely nonluminous (φf ~ 0). The distinct fluorescence efficiencies are ascribed to their different molecular conformations, since all the crystals hold the same crystal system, space group and crystal packing structures. Additionally, the fluorescent crystals 1-5 display low threshold amplified spontaneous emission (ASE) with small full widths at half-maximum (FWHM: 3-7 nm), indicating their potential as candidates for organic crystal lasing devices.

  4. DNA-length-dependent quenching of fluorescently labeled iron oxide nanoparticles with gold, graphene oxide and MoS2 nanostructures.

    PubMed

    Balcioglu, Mustafa; Rana, Muhit; Robertson, Neil; Yigit, Mehmet V

    2014-08-13

    We controlled the fluorescence emission of a fluorescently labeled iron oxide nanoparticle using three different nanomaterials with ultraefficient quenching capabilities. The control over the fluorescence emission was investigated via spacing introduced by the surface-functionalized single-stranded DNA molecules. DNA molecules were conjugated on different templates, either on the surface of the fluorescently labeled iron oxide nanoparticles or gold and nanographene oxide. The efficiency of the quenching was determined and compared with various fluorescently labeled iron oxide nanoparticle and nanoquencher combinations using DNA molecules with three different lengths. We have found that the template for DNA conjugation plays significant role on quenching the fluorescence emission of the fluorescently labeled iron oxide nanoparticles. We have observed that the size of the DNA controls the quenching efficiency when conjugated only on the fluorescently labeled iron oxide nanoparticles by setting a spacer between the surfaces and resulting change in the hydrodynamic size. The quenching efficiency with 12mer, 23mer and 36mer oligonucleotides decreased to 56%, 54% and 53% with gold nanoparticles, 58%, 38% and 32% with nanographene oxide, 46%, 38% and 35% with MoS2, respectively. On the other hand, the presence, not the size, of the DNA molecules on the other surfaces quenched the fluorescence significantly with different degrees. To understand the effect of the mobility of the DNA molecules on the nanoparticle surface, DNA molecules were attached to the surface with two different approaches. Covalently immobilized oligonucleotides decreased the quenching efficiency of nanographene oxide and gold nanoparticles to ∼22% and ∼21%, respectively, whereas noncovalently adsorbed oligonucleotides decreased it to ∼25% and ∼55%, respectively. As a result, we have found that each nanoquencher has a powerful quenching capability against a fluorescent nanoparticle, which can be tuned with surface functionalized DNA molecules.

  5. One-Step Borylation of 1,3-Diaryloxybenzenes Towards Efficient Materials for Organic Light-Emitting Diodes.

    PubMed

    Hirai, Hiroki; Nakajima, Kiichi; Nakatsuka, Soichiro; Shiren, Kazushi; Ni, Jingping; Nomura, Shintaro; Ikuta, Toshiaki; Hatakeyama, Takuji

    2015-11-09

    The development of a one-step borylation of 1,3-diaryloxybenzenes, yielding novel boron-containing polycyclic aromatic compounds, is reported. The resulting boron-containing compounds possess high singlet-triplet excitation energies as a result of localized frontier molecular orbitals induced by boron and oxygen. Using these compounds as a host material, we successfully prepared phosphorescent organic light-emitting diodes exhibiting high efficiency and adequate lifetimes. Moreover, using the present one-step borylation, we succeeded in the synthesis of an efficient, thermally activated delayed fluorescence emitter and boron-fused benzo[6]helicene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sensitive, label-free protein assay using 1-ethyl-3-methylimidazolium tetrafluoroborate-supported microchip electrophoresis with laser-induced fluorescence detection.

    PubMed

    Xu, Yuanhong; Li, Jing; Wang, Erkang

    2008-05-01

    Based on the dimer-monomer equilibrium movement of the fluorescent dye Pyronin Y (PY), a rapid, simple, highly sensitive, label-free method for protein detection was developed by microchip electrophoresis with LIF detection. PY formed a nonfluorescent dimer induced by the premicellar aggregation of an anionic surfactant, SDS, however, the fluorescence intensity of the system increased dramatically when proteins such as BSA, bovine hemoglobin, cytochrome c, and trypsin were added to the solution due to the transition of dimer to fluorescent monomer. Furthermore, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) instead of PBS was applied as running buffers in microchip electrophoresis. Due to the excellent properties of EMImBF4, not only nonspecific protein adsorption was more efficiently suppressed, but also approximately ten-fold higher fluorescence intensity enhancement was obtained than that using PBS. Under the optimal conditions, detection limits for BSA, bovine hemoglobin, cytochrome c, and trypsin were 1.00x10(-6), 2x10(-6), 7x10(-7), and 5x10(-7) mg/mL, respectively. Thus, without covalent modification of the protein, a protein assay method with high sensitivity was achieved on microchips.

  7. Crosslinked plastic scintillators: a new detection system for radioactivity measurement in organic and aggressive media.

    PubMed

    Bagán, Héctor; Tarancón, Alex; Ye, Lei; García, José F

    2014-12-10

    The measurement of radioactive solutions containing organic or aggressive media may cause stability problems in liquid and plastic scintillation (PS) techniques. In the case of PS, this can be overcome by adding a crosslinker to the polymer structure. The objectives of this study are to synthesise a suitable crosslinked plastic scintillator (C-PS) for radioactivity determination in organic and aggressive media. The results indicated that an increase in the crosslinker content reduces the detection efficiency and a more flexible crosslinker yields higher detection efficiency. For the polymer composition studied, 2,5-diphenyloxazole (PPO) is the most adequate fluorescent solute and an increase in its concentration causes little change in the detection efficiency. The inclusion of a secondary fluorescent solute 1,4-bis-2-(5-phenyloxazolyl) benzene (POPOP) improves the C-PS radiometrical characteristics. For the final composition chosen, the synthesis of the C-PS exhibits good reproducibility with elevated yield. The obtained C-PS also displays high stability in different organic (toluene, hydrotreated vegetable oil (HVO) and methanol) and aggressive media (hydrochloric acid, nitric acid and hydrogen peroxide). Finally, the C-PS exhibits high detection efficiency both in water and in aggressive media and can also be applied in organic media showing similar or even higher detection efficiency values. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. [Sensitive Determination of Chondroitin Sulfate by Fluorescence Recovery of an Anionic Aluminum Phthalocyanine-Cationic Surfactant Ion-Association Complex Used as a Fluorescent Probe Emitting at Red Region].

    PubMed

    Chen, Lin; Huang, Ping; Yang, Hui-qing; Deng, Ya-bin; Guo, Meng-lin; Li, Dong-hui

    2015-08-01

    Determination of chondroitin sulfate in the biomedical field has an important value. The conventional methods for the assay of chondroitin sulfate are still unsatisfactory in sensitivity, selectivity or simplicity. This work aimed at developing a novel method for sensitive and selective determination of chondroitin sulfate by fluorimetry. We found that some kinds of cationic surfactants have the ability to quench the fluorescence of tetrasulfonated aluminum phthalocyanine (AlS4Pc), a strongly fluorescent compound which emits at red region, with high efficiency. But, the fluorescence of the above-mentioned fluorescence quenching system recovered significantly when chondroitin sulfate (CS) exits. Tetradecyl dimethyl benzyl ammonium chloride(TDBAC) which was screened from all of the candidates of cationic surfactants was chosen as the quencher because it shows the most efficient quenching effect. It was found that the fluorescence of AlS4Pc was extremely quenched by TDBAC because of the formation of association complex between AlS4Pc and TDBAC. Fluorescence of the association complex recovered dramatically after the addition of chondroitin sulfate (CS) due to the ability of chondroitin sulfate to shift the association equilibrium of the association, leading to the release of AlS4Pc, thus resulting in an increase in the fluorescence of the reaction system. Based on this phenomenon, a novel method with simplicity, accuracy and sensitivity was developed for quantitative determination of CS. Factors including the reaction time, influencing factors and the effect of coexisting substances were investigated and discussed. Under optimum conditions the linear range of the calibration curve was 0.20~10.0 μg · mL(-1). The detection limit for CS was 0.070 μg · mL(-1). The method has been applied to the analysis of practical samples with satisfied results. This work expands the applications of AlS4Pc in biomedical area.

  9. Radioisotopic energy conversion system (RECS): A new radioisotopic power cell, based on nuclear, atomic, and radiation transport principles

    NASA Astrophysics Data System (ADS)

    Steinfelds, Eric Victor

    The topic of this thesis is the development of the Radioisotope Energy Conversion System (RECS) in a project which is utilizing analytical computational assisted design and some experimental Research in the investigation of fluorescers and effective transducers with the appropriate energy range choice for the conversion of energy. It is desirable to increase the efficiency in electrical power from the raw kinetic power available from the radioactive material within radioisotope power generators. A major step in this direction is the development and use of Radioisotope Energy Conversion Systems to supplement and ideally replace Radioactive Thermal Generators (RTG). It is possible to achieve electrical conversion efficiencies exceeding 25% for RECS power devices compared to only 9 percent efficiency for RTG's. The theoretical basis with existent materials for the potential achievability of efficiencies above 25% is documented within this thesis. The fundamental RECS consists of a radioisotope radiative source (C1), a mediating fluorescent gas (C2) which readily absorbs energy from the beta particles (or alpha's) and subsequently emits blue or UV photons, photovoltaic cells (C3) to convert the blue and UV photons into electrical energy [2], and electrical circuitry (C4). Solid State inspired component (C3), due to its theoretical (and attainable) high efficiency, is a large step ahead of the RTG design concept. The radioisotope flux source produces the beta(-) particles or alpha particles. Geometrically, presently, we prefer to have the ambient fluorescent gas surround the radioisotope flux source. Our fluorescer shall be a gas such as Krypton. Our specifically wide band-gap photovoltaic cells shall have gap energies which are slightly less than that of UV photons produced by the fluorescing gas. Diamond and Aluminum Nitride sample materials are good potential choices for photovoltaic cells, as is explained here in. Out of the material examples discussed, the highest electric power to mass ratio is found to be readily attainable with strontium-90 as the radiative source. Krypton-85 is indisputably the most efficient in RECS devices. In the conclusion in chapter VI, suggestions are given on acceptable ways of containing krypton-85 and providing sufficient shielding on deep space probes destined to use krypton-85 powered 'batteries'.

  10. The video fluorescent device for diagnostics of cancer of human reproductive system

    NASA Astrophysics Data System (ADS)

    Brysin, Nickolay N.; Linkov, Kirill G.; Stratonnikov, Alexander A.; Savelieva, Tatiana A.; Loschenov, Victor B.

    2008-06-01

    Photodynamic therapy (PDT) is one of the advanced methods of treatment of skin cancer and surfaces of internal organs. The basic advantages of PDT are high efficiency and low cost of treatment. PDT technique is needed for providing fluorescent diagnostics. Laser-based systems are widely applied to the fluorescence excitations for diagnostic because of a narrow spectrum of fluorescence excitation and high density of radiation. Application of laser systems for carrying out fluorescent diagnostics gives the image of a tumor distorted by speckles that does not give an opportunity to obtain full information about the form of a tumor quickly. Besides, these laser excitation systems have complicated structure and high cost. As a base for the development and creation of a video fluorescent device one of commercially produced colposcopes was chosen. It allows to decrease cost of the device, and also has enabled to make modernization for already used colposcopes. A LED-based light source was offered to be used for fluorescence excitation in this work. The maximum in a spectrum of radiation of LEDs corresponds to the general spectral maximum of protoporphyrin IX (PPIX) absorption. Irradiance in the center of a light spot is 31 mW/cm2. The receiving optical system of the fluorescent channel is adjusted at 635 nm where a general spectral maximum of fluorescence PPIX is located. Also the device contains a RGB video channel, a white light source and a USB spectrometer LESA-01-BIOSPEC, for measurement of spectra of fluorescence and diffusion reflections in treatment area. The software is developed for maintenance of the device. Some studies on laboratory animals were made. As a result, areas with the increased concentration of a PPIX were correctly detected. At present, the device is used for diagnostics of cancer of female reproductive system in Research Centre for Obstetrics, Gynecology and Perinatology of the Russian Academy of Medical Sciences (Moscow, Russia).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavis, Samuel M; Edel, Joshua B; Samiee, Kevan T

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidicmore » channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.« less

  12. Cloning of transgenic tobacco BY-2 cells; an efficient method to analyse and reduce high natural heterogeneity of transgene expression.

    PubMed

    Nocarova, Eva; Fischer, Lukas

    2009-04-22

    Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with a visual marker for BY-2 transformation. The cloning procedure can be used not only for efficient reduction of expression heterogeneity of such transgenes, but also as a useful tool for studies of transgene expression and other purposes.

  13. Extracting Fluorescent Reporter Time Courses of Cell Lineages from High-Throughput Microscopy at Low Temporal Resolution

    PubMed Central

    Downey, Mike J.; Jeziorska, Danuta M.; Ott, Sascha; Tamai, T. Katherine; Koentges, Georgy; Vance, Keith W.; Bretschneider, Till

    2011-01-01

    The extraction of fluorescence time course data is a major bottleneck in high-throughput live-cell microscopy. Here we present an extendible framework based on the open-source image analysis software ImageJ, which aims in particular at analyzing the expression of fluorescent reporters through cell divisions. The ability to track individual cell lineages is essential for the analysis of gene regulatory factors involved in the control of cell fate and identity decisions. In our approach, cell nuclei are identified using Hoechst, and a characteristic drop in Hoechst fluorescence helps to detect dividing cells. We first compare the efficiency and accuracy of different segmentation methods and then present a statistical scoring algorithm for cell tracking, which draws on the combination of various features, such as nuclear intensity, area or shape, and importantly, dynamic changes thereof. Principal component analysis is used to determine the most significant features, and a global parameter search is performed to determine the weighting of individual features. Our algorithm has been optimized to cope with large cell movements, and we were able to semi-automatically extract cell trajectories across three cell generations. Based on the MTrackJ plugin for ImageJ, we have developed tools to efficiently validate tracks and manually correct them by connecting broken trajectories and reassigning falsely connected cell positions. A gold standard consisting of two time-series with 15,000 validated positions will be released as a valuable resource for benchmarking. We demonstrate how our method can be applied to analyze fluorescence distributions generated from mouse stem cells transfected with reporter constructs containing transcriptional control elements of the Msx1 gene, a regulator of pluripotency, in mother and daughter cells. Furthermore, we show by tracking zebrafish PAC2 cells expressing FUCCI cell cycle markers, our framework can be easily adapted to different cell types and fluorescent markers. PMID:22194797

  14. Evaluation of hyperaccumulator plant species grown in metalliferous sites in Albania

    NASA Astrophysics Data System (ADS)

    Babani, F.; Civici, N.; Mullaj, A.; Kongjika, E.; Ylli, A.

    2007-04-01

    Heavy metal contamination of soils causes serious problems to our society. A small number of interesting plant species have been identified that can grow in soils containing high levels of heavy metals, and can also accumulate these metals to high concentrations in the shoot. The heavy metal contents in root, shoot, leaves and flowers of spontaneous plants grown in metalliferous sites in Albania together with the elemental composition of the native soils were determined by X-ray fluorescence spectrometry. Efficiency of photosynthetic apparatus of analyzed ecotypes was evaluated via chlorophyll fluorescence imaging during induction kinetics. Response of plant root system to the presence of metals, the available pools of metals to plants, effect of plant biomass to phytoextraction, photosynthetic pigment metabolism and chlorophyll fluorescence signature of leaves allowed to characterize hyperaccumulator properties and to detect the variation between selected ecotypes to heavy metal accumulation.

  15. Two novel blue phosphorescent host materials containing phenothiazine-5,5-dioxide structure derivatives

    PubMed Central

    Xie, Feng-Ming; Ou, Qingdong; Zhang, Qiang; Zhang, Jiang-Kun; Dai, Guo-Liang

    2018-01-01

    Two novel D–A bipolar blue phosphorescent host materials based on phenothiazine-5,5-dioxide: 3-(9H-carbazol-9-yl)-10-ethyl-10H-phenothiazine-5,5-dioxide (CEPDO) and 10-butyl-3-(9H-carbazol-9-yl)-10H-phenothiazine-5,5-dioxide (CBPDO) were synthesized and characterized. The photophysical, electrochemical and thermal properties were systematically investigated. CEPDO and CBPDO not only have a high triplet energy but also show a bipolar behavior. Moreover, their fluorescence emission peaks are in the blue fluorescence region at 408 nm and the fluorescence quantum efficiency (Φ) of CEPDO and CBPDO were 62.5% and 59.7%, respectively. Both CEPDO and CBPDO showed very high thermal stability with decomposition temperatures (T d) of 409 and 396 °C as well as suitable HOMO and LUMO energy levels. This preferable performance suggests that CEPDO and CBPDO are alternative bipolar host materials for the PhOLEDs. PMID:29765467

  16. Fluorescence polarization-based assay using N-glycan-conjugated quantum dots for screening in hemagglutinin blockers for influenza A viruses.

    PubMed

    Okamatsu, Masatoshi; Feng, Fei; Ohyanagi, Tatsuya; Nagahori, Noriko; Someya, Kazuhiko; Sakoda, Yoshihiro; Miura, Nobuaki; Nishimura, Shin-Ichiro; Kida, Hiroshi

    2013-02-01

    Attachment of influenza virus to susceptible cells is mediated by viral protein hemagglutinin (HA), which recognizes cell surface glycoconjugates that terminate in α-sialosides. To develop anti-influenza drugs based on inhibition of HA-mediated infection, novel fluorescent nanoparticles displaying multiple biantennary N-glycan chains with α-sialosides (A2-PC-QDs) that have high affinity for the HA were designed and constructed. The A2-PC-QDs enabled an easy and efficient fluorescence polarization (FP) assay for detection of interaction with the HA and competitive inhibition even by small molecule compounds against A2-PC-QDs-HA binding. The quantum dot (QD)-based FP assay established in the present study is a useful tool for high-throughput screening and to accelerate the development of novel and more effective blockers of the viral attachment of influenza virus. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Ionic liquid as a mobile phase additive in high-performance liquid chromatography for the simultaneous determination of eleven fluorescent whitening agents in paper materials.

    PubMed

    Wang, Qing; Chen, Xianbo; Qiu, Bin; Zhou, Liang; Zhang, Hui; Xie, Juan; Luo, Yan; Wang, Bin

    2016-04-01

    In the present study, 11 4,4'-diaminostilbene-2,2'-disulfonic acid based fluorescent whitening agents with different numbers of sulfonic acid groups were separated by using an ionic liquid as a mobile phase additive in high-performance liquid chromatography with fluorescence detection. The effects of ionic liquid concentration, pH of mobile phase B, and composition of mobile phase A on the separation of fluorescent whitening agents were systematically investigated. The ionic liquid tetrabutylammonium tetrafluoroborate is superior to tetrabutylammomnium bromide for the separation of the fluorescent whitening agents. The optimal separation conditions were an ionic liquid concentration at 8 mM and the pH of mobile phase B at 8.5 with methanol as mobile phase A. The established method exhibited low limits of detection (0.04-0.07 ng/mL) and wide linearity ranges (0.30-20 ng/mL) with high linear correlation coefficients from 0.9994 to 0.9998. The optimized procedure was applied to analyze target analytes in paper samples with satisfactory results. Eleven target analytes were quantified, and the recoveries of spiked paper samples were in the range of 85-105% with the relative standard deviations from 2.1 to 5.1%. The obtained results indicated that the method was efficient for detection of 11 fluorescent whitening agents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. An efficient solid-state synthesis of fluorescent surface carboxylated carbon dots derived from C60 as a label-free probe for iron ions in living cells.

    PubMed

    Lan, Jing; Liu, Chunfang; Gao, Mingxuan; Huang, Chengzhi

    2015-11-01

    In order to achieve the simple, easily repeated, and large scale preparation of fluorescent CDs, a new solid-state synthesis (SSS) approach was developed by calcining the mixture of fullerenes (C60) and solid sodium hydroxide. The cage of fullerenes could be opened and the hydroxyl and carboxyl were successfully introduced in the presence of sodium hydroxide under high temperature. The as-prepared surface carboxylated CDs possess many good properties, such as high water solubility, good photostability, salt tolerance, and nontoxicity. Especially, the fluorescence of CDs could be highly quenched by Fe(3+) because of the strong interaction of hydroxyl or carboxyl on the as-obtained CDs with Fe(3+), which realized a sensitive detection of Fe(3+) in the linear range of 0.02-0.6 μmol/L. What is more, we further applied the obtained CDs into the intracellular imaging of Fe(3+). Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.

    PubMed

    Xu, Shoufang; Lu, Hongzhi

    2016-11-15

    A facile strategy was developed to prepare mesoporous structured molecularly imprinted polymers capped carbon dots (M-MIPs@CDs) fluorescence sensor for highly sensitive and selective determination of TNT. The strategy using amino-CDs directly as "functional monomer" for imprinting simplify the imprinting process and provide well recognition sites accessibility. The as-prepared M-MIPs@CDs sensor, using periodic mesoporous silica as imprinting matrix, and amino-CDs directly as "functional monomer", exhibited excellent selectivity and sensitivity toward TNT with detection limit of 17nM. The recycling process was sustainable for 10 times without obvious efficiency decrease. The feasibility of the developed method in real samples was successfully evaluated through the analysis of TNT in soil and water samples with satisfactory recoveries of 88.6-95.7%. The method proposed in this work was proved to be a convenient and practical way to prepare high sensitive and selective fluorescence MIPs@CDs sensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Fabrication, Light Emission, and Magnetism of Silica Nanoparticles Hybridized with AIE Luminogens and Inorganic Nanostructures

    NASA Astrophysics Data System (ADS)

    Faisal, Mahtab

    Much research efforts have been devoted in developing new synthetic approaches for fluorescent silica nanoparticles (FSNPs) due to their potential high-technological applications. However, light emissions from most of the FSNPs prepared so far have been rather weak. This is due to the emission quenching caused by the aggregation of fluorophores in the solid state. We have observed a novel phenomenon of aggregation-induced emission (AIE): a series of propeller-shaped molecules such as tetraphenylethene (TPE) and silole are induced to emit efficiently by aggregate formation. Thus, they are ideal fluorophors for the construction of FSNPs and my thesis work focuses on the synthesis of silica nanoparticles containing these luminogens and magnetic nanostructures. Highly emissive FSNPs with core-shell structures are fabricated by surfactant-free sol-gel reactions of tetraphenylethene- (TPE) and silole-functionalized siloxanes followed by the reactions with tetraethoxysilane. The FSNPs are uniformly sized, surface-charged and colloidally stable. The diameters of the FSNPs are tunable in the range of 45--295 nm by changing the reaction conditions. Whereas their TPE and silole precursors are non-emissive, the FSNPs emit strong visible lights, thanks to the novel aggregation-induced emission characteristics of the TPE and silole aggregates in the hybrid nanoparticles. The FSNPs pose no toxicity to living cells and can be utilized to selectively image cytoplasm of HeLa cells. Applying the same tool in the presence of citrate-coated magnetite nanoparticles, uniform magnetic fluorescent silica nanoparticles (MFSNPs) with smooth surfaces are fabricated. These particles exhibit appreciable surface charges and hence good colloidal stability. They are superparamagnetic, exhibiting no hysteresis at room temperature. UV irradiation of a suspension of MFSNPs in ethanol gives strong blue and green emissions. The MFSNPs can selectively stain the cytoplasmic regions of the living cells. Sol-gel reaction in the presence of (3-aminopropyl)triethoxysilane has generated MFSNP-NH2 with numerous amino functionalities decorated on the surfaces, enabling them to immobilize bovine serum albumin efficiently. FSNPs with strong light emissions are facilely fabricated by thio-click chemistry, Cu(I)-catalyzed 1,3-dipolar cycloaddition, and sol-gel reaction. The FSNPs are characterized by SEM, TEM, IR, PL, and zeta potential analyses. They are uniformly sized with smooth surfaces. Upon photoexcitation, the FSNPs emit strong visible lights with fluorescence quantum yields up to 25.5%. Sugar-functionalized fluorescent silica nanoparticles are facilely fabricated by click reaction of azide-modified FSNPs with sugar- containing phenylacetylene catalyzed by Cu(PPh3)3Br in THF. The nanoparticles are uniformly sized and emit efficient light upon photoexcitation. They can function as fluorescent visualizers for intracellular imaging and can target specific cancer cells. Folic acid-functionalized fluorescent silica nanoparticles are facilely fabricated by surface functionalization of FSNPs with folic acid. The nanoparticles are spherical in shape. They possess high zeta potentials and hence exhibit excellent colloidal stability. UV irradiation of suspensions of the nanoparticles in ethanol gives strong blue and green emissions at 465 and 490 nm with absolute fluorescence quantum yields up to 47%. Carboxylic acid and thiol-functionalized fluorescent silica nanoparticles (FSNP-COOH and FSNP-SH) with uniform particle sizes, narrow size distributions, and smooth surface morphologies are fabricated. The nanoparticles possess high surface charges and exhibit strong light emissions upon photoexcitation. They can adsorb lysozyme strongly on their surfaces and for 5 mg of FSNP-COOH and FSNP-SH, they can take 209 and 86 mug of lysozyme. Thus, they are potential carriers for protein and fluorescent probes or biosensors for an array of biological applications.

  1. Highly fluorescent resorcinarene cavitand nanocapsules with efficient renal clearance

    NASA Astrophysics Data System (ADS)

    Mahadevan, Kalpana; Patthipati, Venkata Suresh; Han, Sangbum; Swanson, R. James; Whelan, Eoin C.; Osgood, Christopher; Balasubramanian, Ramjee

    2016-08-01

    Nanomaterial based imaging approaches hold substantial promise in addressing current diagnostic and therapeutic challenges. One of the key requirements for the successful clinical translation of nanomaterials is their complete clearance from the body within a reasonable time period preferably via the renal filtration route. This article describes the synthesis of highly fluorescent, water soluble, resorcinarene cavitand nanocapsules and demonstrates their effective renal clearance in mice. The synthesis and functionalization of nanocapsules was accomplished in a one-pot operation via thiol-ene reactions without involving self-assembly, sacrificial templates or emulsions. Water soluble resorcinarene cavitand nanocapsules obtained by this approach were covalently functionalized with Alexa Fluor 750. Highly fluorescent nanocapsules with hydrodynamic diameters of 122 nm and 68 nm and extinction coefficients of 1.3 × 109 M-1 cm-1 and 1.5 × 108 M-1 cm-1 respectively were prepared by varying the reaction conditions. The in vivo biodistribution and clearance of these nanocapsules in mice followed by whole-body fluorescence imaging showed that they were both cleared renally within a few hours. Given the inherent encapsulation capabilities of nanocapsules, the renal clearance demonstrated in this work opens up new opportunities for their theranostic applications especially for targeting and treating the urinary tract.

  2. Construction of an efficient two-photon fluorescent probe for imaging nitroreductase in live cells and tissues.

    PubMed

    Zhou, Liyi; Gong, Liang; Hu, Shunqin

    2018-06-15

    Compared with traditional confocal microscopy, two-photon fluorescence microscopy (TPFM), which excites a two-photon (TP) fluorophore by near-infrared light, provides improved three-dimensional image resolution with increased tissue-image depth (>500μm) and an extended observation time. Therefore, the development of novel functional TP fluorophores has attracted great attention in recent years. Herein, a novel TP fluorophore CM-NH 2 , which have the donor-π-acceptor (D-π-A)-structure, was designed and synthesized. We further used this dye developed a new type of TP fluorescent probe CM-NO 2 for detecting nitroreductase (NTR). Upon incubated with NTR for 15min, CM-NO 2 displayed a ~90-fold fluorescence enhancement at 505nm and the maximal TP action cross-section value after reaction was detected and calculated to be 200 GM at 760nm. The probe exhibited excellent properties such as high sensitivity, high selectivity, low cytotoxicity, and high photostability. Moreover, the probe was utilized to image the tumor hypoxia in live HeLa cells. Finally, using the CM-NO 2 to image NTR in tissues was demonstrated. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Highly Efficient and Excitation Tunable Two-Photon Luminescence Platform For Targeted Multi-Color MDRB Imaging Using Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Pramanik, Avijit; Fan, Zhen; Chavva, Suhash Reddy; Sinha, Sudarson Sekhar; Ray, Paresh Chandra

    2014-08-01

    Multiple drug-resistance bacteria (MDRB) infection is one of the top three threats to human health according to the World Health Organization (WHO). Due to the large penetration depth and reduced photodamage, two-photon imaging is an highly promising technique for clinical MDRB diagnostics. Since most commercially available water-soluble organic dyes have low two-photon absorption cross-section and rapid photobleaching tendency, their applications in two-photon imaging is highly limited. Driven by the need, in this article we report extremely high two-photon absorption from aptamer conjugated graphene oxide (σ2PA = 50800 GM) which can be used for highly efficient two-photon fluorescent probe for MDRB imaging. Reported experimental data show that two-photon photoluminescence imaging color, as well as luminescence peak position can be tuned from deep blue to red, just by varying the excitation wavelength without changing its chemical composition and size. We have demonstrated that graphene oxide (GO) based two-photon fluorescence probe is capable of imaging of multiple antibiotics resistance MRSA in the first and second biological transparency windows using 760-1120 nm wavelength range.

  4. Compact and high-efficiency device for Raman scattering measurement using optical fibers.

    PubMed

    Mitsui, Tadashi

    2014-11-01

    We describe the design and development of a high-efficiency optical measurement device for operation within the small bore of a high-power magnet at low temperature. For the high-efficiency measurement of light emitted from this small region, we designed a compact confocal optics with lens focusing and tilting systems, and used a piezodriven translation stage that allows micron-scale focus control of the sample position. We designed a measurement device that uses 10 m-long optical fibers in order to avoid the influence of mechanical vibration and magnetic field leakage of high-power magnets, and we also describe a technique for minimizing the fluorescence signal of optical fibers. The operation of the device was confirmed by Raman scattering measurements of monolayer graphene on quartz glass with a high signal-to-noise ratio.

  5. Gaussian decomposition of high-resolution melt curve derivatives for measuring genome-editing efficiency

    PubMed Central

    Zaboikin, Michail; Freter, Carl

    2018-01-01

    We describe a method for measuring genome editing efficiency from in silico analysis of high-resolution melt curve data. The melt curve data derived from amplicons of genome-edited or unmodified target sites were processed to remove the background fluorescent signal emanating from free fluorophore and then corrected for temperature-dependent quenching of fluorescence of double-stranded DNA-bound fluorophore. Corrected data were normalized and numerically differentiated to obtain the first derivatives of the melt curves. These were then mathematically modeled as a sum or superposition of minimal number of Gaussian components. Using Gaussian parameters determined by modeling of melt curve derivatives of unedited samples, we were able to model melt curve derivatives from genetically altered target sites where the mutant population could be accommodated using an additional Gaussian component. From this, the proportion contributed by the mutant component in the target region amplicon could be accurately determined. Mutant component computations compared well with the mutant frequency determination from next generation sequencing data. The results were also consistent with our earlier studies that used difference curve areas from high-resolution melt curves for determining the efficiency of genome-editing reagents. The advantage of the described method is that it does not require calibration curves to estimate proportion of mutants in amplicons of genome-edited target sites. PMID:29300734

  6. Detecting Crop Functional Response to a Heat Wave using Airborne Reflectance and Sun-induced Chlorophyll Fluorescence Measurements

    NASA Astrophysics Data System (ADS)

    Yang, P.; Van der Tol, C.; Rascher, U.; Damm, A.; Schickling, A.; Verhoef, W.

    2016-12-01

    This study presents an analysis of airborne measured reflectance (R) and solar-induced chlorophyll fluorescence (SIF) as indicators of high temperature stress in agricultural crops. We used atmospherically corrected R and retrievals of SIF in the O2-A band as obtained from HyPlant data over C3 crops (rapeseed, wheat and barley) and a C4 crop (corn) in Germany before (30th June) and during (2nd July) a heat wave in 2015. The availability of airborne data during this heat wave allowed us to detect fluorescence emission efficiency changes as an indicator of crop photosynthetic performance in response to temperature fluctuations. We found that SIF is affected relatively stronger by heat stress than R. This is according to expectation, because the R spectrum is determined by leaf properties and canopy structure, whereas top-of-canopy (TOC) SIF is also affected by the temperature dependent efficiencies of photochemical and non-photochemical quenching of fluorescence. With the model 'Soil Canopy Observation of Photosynthesis and Energy fluxes (SCOPE), we differentiated leaf optical parameters and canopy structure from the fluorescence quantum emission efficiency (FQE), i.e. the ratio of fluorescence production to light absorption of photosystems. The leaf optical and canopy structure parameters were retrieved from R by inversion of the radiative transfer module 'RTMo' of SCOPE. The retrieved parameters were further used to estimate the FQE from SIF measurements. It appeared that both the leaf water content CW and the FQE responded to the heat wave, but the responses were different for C3 and C4 crops. A slight reduction of CW occurred in C3 crops between the two days, but not in the C4 crop. The reduction of FQE was only significant in C3 crops, and ranged from 18% to 31% for various C3 species. These findings agree with the general knowledge that C4 plants are better adapted to high temperature than C3 plants, and comply with simulations from a biochemical model for C3 and C4 crops in SCOPE. It is concluded that the combination of hyperspectral R and SIF enables the differentiation of long-term and short term responses to heat stress.

  7. Trace vapor detection of hydrogen peroxide: An effective approach to identification of improvised explosive devices

    NASA Astrophysics Data System (ADS)

    Xu, Miao

    Vapor detection has been proven as one of the practical, noninvasive methods suitable for explosives detection among current explosive detection technologies. Optical methods (especially colorimetric and fluorescence spectral methods) are low in cost, provide simple instrumentation alignment, while still maintaining high sensitivity and selectivity, these factors combined facilitate broad field applications. Trace vapor detection of hydrogen peroxide (H2O2) represents an effective approach to noninvasive detection of peroxide-based explosives, though development of such a sensor system with high reliability and sufficient sensitivity (reactivity) still remains challenging. Three vapor sensor systems for H2O2 were proposed and developed in this study, which exploited specific chemical reaction towards H2O2 to ensure the selectivity, and materials surface engineering to afford efficient air sampling. The combination of these features enables expedient, cost effective, reliable detection of peroxide explosives. First, an expedient colorimetric sensor for H2O2 vapor was developed, which utilized the specific interaction between Ti(oxo) and H2O2 to offer a yellow color development. The Ti(oxo) salt can be blended into a cellulose microfibril network to produce tunable interface that can react with H2O2. The vapor detection limit can reach 400 ppb. To further improve the detection sensitivity, a naphthalimide based fluorescence turn-on sensor was designed and developed. The sensor mechanism was based on H2O2-mediated oxidation of a boronate fluorophore, which is nonfluorescent in ICT band, but becomes strongly fluorescent upon conversion into the phenol state. The detection limit of this sensory material was improved to be below 10 ppb. However, some technical factors such as sensor concentration, local environment, and excitation intensity were found difficult to control to make the sensor system sufficiently reproducible. To solve the problem, we developed a ratiometric fluorescence sensor, which allows for dual-band emission monitoring and thus enhances the detection reliability. Moreover, the significant spectral overlap between the fluorescence of the pristine sensor and the absorption of the reacted state enables effective Foster Resonance Energy Transfer (FRET). This FRET process can significantly enhance the fluorescence sensing efficiency in comparison to the normal single-band sensor system, for which the sensing efficiency is solely determined by the stoichiometric conversion of sensor molecules.

  8. Ultramicroscopy as a novel tool to unravel the tropism of AAV gene therapy vectors in the brain.

    PubMed

    Alves, Sandro; Bode, Julia; Bemelmans, Alexis-Pierre; von Kalle, Christof; Cartier, Nathalie; Tews, Björn

    2016-06-20

    Recombinant adeno-associated viral (AAV) vectors have advanced to the vanguard of gene therapy. Numerous naturally occurring serotypes have been used to target cells in various tissues. There is a strong need for fast and dynamic methods which efficiently unravel viral tropism in whole organs. Ultramicroscopy (UM) is a novel fluorescence microscopy technique that images optically cleared undissected specimens, achieving good resolutions at high penetration depths while being non-destructive. UM was applied to obtain high-resolution 3D analysis of AAV transduction in adult mouse brains, especially in the hippocampus, a region of interest for Alzheimer's disease therapy. We separately or simultaneously compared transduction efficacies for commonly used serotypes (AAV9 and AAVrh10) using fluorescent reporter expression. We provide a detailed comparative and quantitative analysis of the transduction profiles. UM allowed a rapid analysis of marker fluorescence expression in neurons with intact projections deep inside the brain, in defined anatomical structures. Major hippocampal neuronal transduction was observed with both vectors, with slightly better efficacy for AAV9 in UM. Glial response and synaptic marker expression did not change post transduction.We propose UM as a novel valuable complementary tool to efficiently and simultaneously unravel tropism of different viruses in a single non-dissected adult rodent brain.

  9. Broadband enhancement of photoluminance from colloidal metal halide perovskite nanocrystals on plasmonic nanostructured surfaces.

    PubMed

    Zhang, Si; Liang, Yuzhang; Jing, Qiang; Lu, Zhenda; Lu, Yanqing; Xu, Ting

    2017-11-07

    Metal halide perovskite nanocrystals (NCs) as a new kind of promising optoelectronic material have attracted wide attention due to their high photoluminescence (PL) quantum yield, narrow emission linewidth and wideband color tunability. Since the PL intensity always has a direct influence on the performance of optoelectronic devices, it is of vital importance to improve the perovskite NCs' fluorescence emission efficiency. Here, we synthesize three inorganic perovskite NCs and experimentally demonstrate a broadband fluorescence enhancement of perovskite NCs by exploiting plasmonic nanostructured surface consisting of nanogrooves array. The strong near-field optical localization associated with surface plasmon polariton-coupled emission effect generated by the nanogrooves array can significantly boost the absorption of perovskite NCs and tailor the fluorescence emissions. As a result, the PL intensities of perovskite NCs are broadband enhanced with a maximum factor higher than 8-fold achieved in experimental demonstration. Moreover, the high efficiency PL of perovskite NCs embedded in the polymer matrix layer on the top of plasmonic nanostructured surface can be maintained for more than three weeks. These results imply that plasmonic nanostructured surface is a good candidate to stably broadband enhance the PL intensity of perovskite NCs and further promote their potentials in the application of visible-light-emitting devices.

  10. Detection of Free Thiols and Fluorescence Response of Phycoerythrin Chromophore after Ultraviolet-B Radiation Stress.

    PubMed

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2017-03-01

    The chemistry of thiol-chromophore linkage plays a central role in the nature of fluorescence of phycoerythrin (PE). Interaction of thiol and chromophore is crucial for the energy transfer, redox signal and inhibition of oxidative damage. In the present investigation the effects of ultraviolet-B radiation on an emission fluorescence intensity and wavelength shift in PE due to interaction between thiol and chromophore by remarkable strategy of detection technique was studied. Purification of PE was done by using a gel permeation and ion exchange chromatography that yielded a quite high purity index (6.40) in a monomeric (αβ) form. UV-B radiation accelerated the quenching efficiency (24.9 ± 1.52%) by reducing fluorescence emission intensity of thiol linked chromophore after 240 min of UV-B exposure. However, after blocking of transiently released free thiol by N-ethylmaleimide, quenching efficiency was increased (36.8 ± 2.80%) with marked emission wavelength shift towards shorter wavelengths up to 562 nm as compared to 575 nm in control. Emission fluorescence of free thiol was at maximum after 240 min that was detected specifically by monobromobimane (mBrB) molecular probe. The association/dissociation of bilin chromophore was analyzed by SDS- and Native-PAGE that also indicated a complete reduction in emission fluorescence. Our work clearly shows an early detection of free thiols and relative interaction with chromophore after UV-B radiation which might play a significant role in structural and functional integrity of terminal PE.

  11. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.

    PubMed

    Peng, Tao; Hang, Howard C

    2016-11-02

    Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.

  12. A new hydrothermal refluxing route to strong fluorescent carbon dots and its application as fluorescent imaging agent.

    PubMed

    Zhang, Ye-Yun; Wu, Ming; Wang, Yan-Qin; He, Xi-Wen; Li, Wen-You; Feng, Xi-Zeng

    2013-12-15

    Due to their unique optical and biochemical properties, the water-soluble fluorescent carbon dots (CDs) have attracted a lot of attention recently. Here, strong fluorescent carbon dots with excellent quality have been synthesized by the hydrothermal refluxing method using lactose as carbon source and tris(hydroxymethyl) aminomethane (i.e. Tris) as surface passivation reagent. This facile approach was simple, efficient, economical, green without pollution, and allows large-scale production of CDs without any post-treatment. TEM measurements showed that the resulting particles exhibited an average diameter of 1.5 nm. The obtained CDs possess small particle sizes, good stability in a wide range of pH values (pH 3.5-9.5), high tolerance of salt concentration, strong resistibility to photobleaching, and a fluorescent quantum yield up to 12.5%. The CDs were applied to optical bioimaging of HeLa cells, showing low cytotoxicity and excellent biocompatibility. © 2013 Elsevier B.V. All rights reserved.

  13. Carbon nanosphere-based fluorescence aptasensor for targeted detection of breast cancer cell MCF-7.

    PubMed

    Yang, Dandan; Liu, Mei; Xu, Jing; Yang, Chao; Wang, Xiaoxiao; Lou, Yongbing; He, Nongyue; Wang, Zhifei

    2018-08-01

    In this work, carbon nanosphere (CNS)-based fluorescence "turn off/on" aptasensor was developed for targeted detection of breast cancer cell MCF-7 by conjugation with FAM (a dye)-labeled mucin1 (MUC1) aptamer P0 (P0-FAM), which can recognize MUC1 protein overexpressed on the surface of MCF-7. Different from other carbon based fluorescence quenching materials, CNSs prepared by the carbonization of glucose not only have the high fluorescence quenching efficiency (98.8%), but also possess negligible cytotoxicity (in the concentration range of 0-1 mg/mL, which is 10 times higher than that of traditional carbon nanotubes or graphene oxide (0-100 µg/mL)). As for the detection of the mimic of the tumor antigen MUC1, the resulting fluorescence intensity increases nearly linearly in the range of 0-6 μM with the limit of detection (LOD) of 25 nM. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Spectroscopic imaging using acousto-optic tunable filters

    NASA Astrophysics Data System (ADS)

    Bouhifd, Mounir; Whelan, Maurice

    2007-07-01

    We report on novel hyper-spectral imaging filter-modules based on acousto-optic tuneable filters (AOTF). The AOTF functions as a full-field tuneable bandpass filter which offers fast continuous or random access tuning with high filtering efficiency. Due to the diffractive nature of the device, the unfiltered zero-order and the filtered first-order images are geometrically separated. The modules developed exploit this feature to simultaneously route both the transmitted white-light image and the filtered fluorescence image to two separate cameras. Incorporation of prisms in the optical paths and careful design of the relay optics in the filter module have overcome a number of aberrations inherent to imaging through AOTFs, leading to excellent spatial resolution. A number of practical uses of this technique, both for in vivo auto-fluorescence endoscopy and in vitro fluorescence microscopy were demonstrated. We describe the operational principle and design of recently improved prototype instruments for fluorescence-based diagnostics and demonstrate their performance by presenting challenging hyper-spectral fluorescence imaging applications.

  15. Quantitatively Mapping Cellular Viscosity with Detailed Organelle Information via a Designed PET Fluorescent Probe

    PubMed Central

    Liu, Tianyu; Liu, Xiaogang; Spring, David R.; Qian, Xuhong; Cui, Jingnan; Xu, Zhaochao

    2014-01-01

    Viscosity is a fundamental physical parameter that influences diffusion in biological processes. The distribution of intracellular viscosity is highly heterogeneous, and it is challenging to obtain a full map of cellular viscosity with detailed organelle information. In this work, we report 1 as the first fluorescent viscosity probe which is able to quantitatively map cellular viscosity with detailed organelle information based on the PET mechanism. This probe exhibited a significant ratiometric fluorescence intensity enhancement as solvent viscosity increases. The emission intensity increase was attributed to combined effects of the inhibition of PET due to restricted conformational access (favorable for FRET, but not for PET), and the decreased PET efficiency caused by viscosity-dependent twisted intramolecular charge transfer (TICT). A full map of subcellular viscosity was successfully constructed via fluorescent ratiometric detection and fluorescence lifetime imaging; it was found that lysosomal regions in a cell possess the highest viscosity, followed by mitochondrial regions. PMID:24957323

  16. Highly efficient red fluorescent organic light-emitting diodes by sorbitol-doped PEDOT:PSS

    NASA Astrophysics Data System (ADS)

    Zheng, Yan-Qiong; Yu, Jun-Le; Wang, Chao; Yang, Fang; Wei, Bin; Zhang, Jian-Hua; Zeng, Cheng-Hui; Yang, Yang

    2018-06-01

    This work shows a promising approach to improve device performance by optimizing the electron transport and hole injection layers for tetraphenyldibenzoperiflanthene (DBP):rubrene-based red fluorescent organic light-emitting diodes (OLEDs). We compared the effect of two electron transport layers (ETLs), and found that the rubrene/bathophenanthroline (Bphen) ETL-based OLED showed a much higher external quantum efficiency (EQE) (4.67%) than the Alq3 ETL-based OLED (EQE of 3.08%). The doping ratio of DBP in rubrene was tuned from 1.0 wt% to 4.5 wt%, and the 1.5 wt%-DBP:rubrene-based OLED demonstrated the highest EQE of 5.24% and lowest turn-on voltage of 2.2 V. Atomic force microscopy images indicated that 1.5 wt% DBP-doped rubrene film exhibited a regular strip shape, and this regular surface was favorable to the hole and electron recombination in the emitting layer. Finally, the sorbitol-doped poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was used to further improve the EQE; doping with 6 wt% sorbitol achieved the highest current efficiency of 7.03 cd A‑1 and an EQE of 7.50%. The significantly enhanced performance implies that the hole injection is a limiting factor for DBP:rubrene-based red fluorescent OLEDs.

  17. Evaluating the binding efficiency of pheromone binding protein with its natural ligand using molecular docking and fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Ilayaraja, Renganathan; Rajkumar, Ramalingam; Rajesh, Durairaj; Muralidharan, Arumugam Ramachandran; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2014-06-01

    Chemosignals play a crucial role in social and sexual communication among inter- and intra-species. Chemical cues are bound with protein that is present in the pheromones irrespective of sex are commonly called as pheromone binding protein (PBP). In rats, the pheromone compounds are bound with low molecular lipocalin protein α2u-globulin (α2u). We reported farnesol is a natural endogenous ligand (compound) present in rat preputial gland as a bound volatile compound. In the present study, an attempt has been made through computational method to evaluating the binding efficiency of α2u with the natural ligand (farnesol) and standard fluorescent molecule (2-naphthol). The docking analysis revealed that the binding energy of farnesol and 2-naphthol was almost equal and likely to share some binding pocket of protein. Further, to extrapolate the results generated through computational approach, the α2u protein was purified and subjected to fluorescence titration and binding assay. The results showed that the farnesol is replaced by 2-naphthol with high hydrophobicity of TYR120 in binding sites of α2u providing an acceptable dissociation constant indicating the binding efficiency of α2u. The obtained results are in corroboration with the data made through computational approach.

  18. Spatial exciton allocation strategy with reduced energy loss for high-efficiency fluorescent/phosphorescent hybrid white organic light-emitting diodes

    DOE PAGES

    Zhao, Fangchao; Wei, Ying; Xu, Hui; ...

    2017-05-17

    Due to the poor operational lifetime of blue phosphorescent dopants and blue thermally activated delayed fluorescent (TADF) materials, hybrid white organic light-emitting diodes (WOLEDs) with conventional blue fluorescent emitters are still preferred for commercial applications in general lighting. However, the improvement in the overall efficiency of hybrid WOLEDs has been limited due to energy losses during the energy transfer process and exciton quenching after the spatial separation of the singlet and triplet excitons. Here we demonstrate the development of a Spatial Exciton Allocation Strategy (SEAS) to achieve close to 100% internal quantum efficiency (IQE) in blue-yellow complementary color hybrid WOLEDs.more » The employed blue fluorophore not only has a resonant triplet level with the yellow phosphor to reduce energy loss during energy transfer processes and triplet–triplet annihilation (TTA), but also has a resonant singlet level with the electron transport layer to extend singlet exciton distribution and enhance both singlet and triplet exciton utilization. Thus, the resulting hybrid WOLEDs exhibited 104 lm W -1 efficacy at 100 cd m -2 and 74 lm W -1 at 1000 cd m -2 with CIE coordinates of (0.42, 0.44) which is warm white and suitable for indoor lighting.« less

  19. Boric-Acid-Functional Lanthanide Metal-Organic Frameworks for Selective Ratiometric Fluorescence Detection of Fluoride Ions.

    PubMed

    Yang, Zhong-Rui; Wang, Man-Man; Wang, Xue-Sheng; Yin, Xue-Bo

    2017-02-07

    Here, we report that boric acid is used to tune the optical properties of lanthanide metal-organic frameworks (LMOFs) for dual-fluorescence emission and improves the selectivity of LMOFs for the determination of F - ions. The LMOFs are prepared with 5-boronoisophthalic acid (5-bop) and Eu 3+ ions as the precursors. Emission mechanism study indicates that 5-bop is excited with UV photons to produce its triplet state, which then excites Eu 3+ ions for their red emission. This is the general story of the antenna effect, but electron-deficient boric acid decreases the energy transfer efficiency from the triplet state of 5-bop to Eu 3+ ions, so dual emission from both 5-bop and Eu 3+ ions is efficiently excited at the single excitation of 275 nm. Moreover, boric acid is used to identify fluoride specifically as a free accessible site. The ratiometric fluorescent detection of F - ions is validated with the dual emission at single excitation. The LMOFs are very monodisperse, so the determination of aqueous F - ions is easily achieved with high selectivity and a low detection limit (2 μM). For the first time, we reveal that rational selection of functional ligands can improve the sensing efficiency of LMOFs through tuning their optical property and enhancing the selectivity toward targets.

  20. Spatial exciton allocation strategy with reduced energy loss for high-efficiency fluorescent/phosphorescent hybrid white organic light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Fangchao; Wei, Ying; Xu, Hui

    Due to the poor operational lifetime of blue phosphorescent dopants and blue thermally activated delayed fluorescent (TADF) materials, hybrid white organic light-emitting diodes (WOLEDs) with conventional blue fluorescent emitters are still preferred for commercial applications in general lighting. However, the improvement in the overall efficiency of hybrid WOLEDs has been limited due to energy losses during the energy transfer process and exciton quenching after the spatial separation of the singlet and triplet excitons. Here we demonstrate the development of a Spatial Exciton Allocation Strategy (SEAS) to achieve close to 100% internal quantum efficiency (IQE) in blue-yellow complementary color hybrid WOLEDs.more » The employed blue fluorophore not only has a resonant triplet level with the yellow phosphor to reduce energy loss during energy transfer processes and triplet–triplet annihilation (TTA), but also has a resonant singlet level with the electron transport layer to extend singlet exciton distribution and enhance both singlet and triplet exciton utilization. Thus, the resulting hybrid WOLEDs exhibited 104 lm W -1 efficacy at 100 cd m -2 and 74 lm W -1 at 1000 cd m -2 with CIE coordinates of (0.42, 0.44) which is warm white and suitable for indoor lighting.« less

  1. A new fluorescent probe for colorimetric and ratiometric detection of sulfur dioxide derivatives in liver cancer cells

    NASA Astrophysics Data System (ADS)

    Li, Dong-Peng; Wang, Zhao-Yang; Cui, Jie; Wang, Xin; Miao, Jun-Ying; Zhao, Bao-Xiang

    2017-03-01

    A new ratiometric fluorescent probe was constructed with hemicyanine and 7-nitrobenzofurazan for detection of sulfur dioxide derivatives (HSO3-/SO32-). The ratiometric response mode could be attributed to the efficient FRET (Förster resonance energy transfer) platform. The probe exbihited some desirable properties including fast response (within 2 minutes), good selectivity and high sensitivity. Moreover, the probe could detect endogenous HSO3- in liver cancer cells rather than normal liver cells, implying the diagnosal potential of the probe.

  2. Mixing of phosphorescent and exciplex emission in efficient organic electroluminescent devices.

    PubMed

    Cherpak, Vladyslav; Stakhira, Pavlo; Minaev, Boris; Baryshnikov, Gleb; Stromylo, Evgeniy; Helzhynskyy, Igor; Chapran, Marian; Volyniuk, Dmytro; Hotra, Zenon; Dabuliene, Asta; Tomkeviciene, Ausra; Voznyak, Lesya; Grazulevicius, Juozas Vidas

    2015-01-21

    We fabricated a yellow organic light-emitting diode (OLED) based on the star-shaped donor compound tri(9-hexylcarbazol-3-yl)amine, which provides formation of the interface exciplexes with the iridium(III) bis[4,6-difluorophenyl]-pyridinato-N,C2']picolinate (FIrpic). The exciplex emission is characterized by a broad band and provides a condition to realize the highly effective white OLED. It consists of a combination of the blue phosphorescent emission from the FIrpic complex and a broad efficient delayed fluorescence induced by thermal activation with additional direct phosphorescence from the triplet exciplex formed at the interface. The fabricated exciplex-type device exhibits a high brightness of 38 000 cd/m(2) and a high external quantum efficiency.

  3. Upconverting fluorescent nanoparticles for biodetection and photoactivation

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Li, WenKai; Jayakumar, Muthu Kumara Gnanasammandhan; Zhang, Yong

    2013-03-01

    Fluorophores including fluorescent dyes/proteins and quantum dots (QDs) are used for fluorescence-based imaging and detection. These are based on `downconversion fluorescence' and have several drawbacks: photobleaching, autofluorescence, short tissue penetration depth and tissue photo-damage. Upconversion fluorescent nanoparticles (UCNs) emit detectable photons of higher energy in the short wavelength range upon irradiation with near-infrared (NIR) light based on a process termed `upconversion'. UCNs show absolute photostability, negligible autofluorescence, high penetration depth and minimum photodamage to biological tissues. Lanthanide doped nanocrystals with nearinfrared NIR-to-NIR and/or NIR-to-VIS and/or NIR-to-UV upconversion fluorescence emission have been synthesized. The nanocrystals with small size and tunable multi-color emission have been developed. The emission can be tuned by doping different upconverting lanthanide ions into the nanocrystals. The nanocrystals with core-shell structure have also been prepared to tune the emission color. The surfaces of these nanocrystals have been modified to render them water dispersible and biocompatible. They can be used for ultrasensitive interference-free biodetection because most biomolecules do not have upconversion properties. UCNs are also useful for light based therapy with enhanced efficiency, for example, photoactivation.

  4. Simultaneous fluorescence and quantitative phase microscopy with single-pixel detectors

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Suo, Jinli; Zhang, Yuanlong; Dai, Qionghai

    2018-02-01

    Multimodal microscopy offers high flexibilities for biomedical observation and diagnosis. Conventional multimodal approaches either use multiple cameras or a single camera spatially multiplexing different modes. The former needs expertise demanding alignment and the latter suffers from limited spatial resolution. Here, we report an alignment-free full-resolution simultaneous fluorescence and quantitative phase imaging approach using single-pixel detectors. By combining reference-free interferometry with single-pixel detection, we encode the phase and fluorescence of the sample in two detection arms at the same time. Then we employ structured illumination and the correlated measurements between the sample and the illuminations for reconstruction. The recovered fluorescence and phase images are inherently aligned thanks to single-pixel detection. To validate the proposed method, we built a proof-of-concept setup for first imaging the phase of etched glass with the depth of a few hundred nanometers and then imaging the fluorescence and phase of the quantum dot drop. This method holds great potential for multispectral fluorescence microscopy with additional single-pixel detectors or a spectrometer. Besides, this cost-efficient multimodal system might find broad applications in biomedical science and neuroscience.

  5. A Phosphanthrene Oxide Host with Close Sphere Packing for Ultralow-Voltage-Driven Efficient Blue Thermally Activated Delayed Fluorescence Diodes.

    PubMed

    Yang, He; Liang, Qianqian; Han, Chunmiao; Zhang, Jing; Xu, Hui

    2017-10-01

    A phosphanthrene oxide host, 5,10-diphenyl-phosphanthrene 5,10-dioxide (DPDPO 2 A), with intra- and intermolecular hydrogen bonds achieves spheroidal cis-configuration and close sphere packing. DPDPO 2 A realizes effective exciton suppression and excellent and balanced carrier transporting ability, both at the same time, demonstrating favorable photoluminescence quantum yield of 84% from its blue thermally activated delayed fluorescence (TADF) dye, namely bis[4-(9,9-dimethyl-9,10-dihydroacridine) phenyl]sulfone, doped films and high electron and hole mobility at the level of 10 -4 and 10 -5 cm 2 V -1 s -1 , respectively. DPDPO 2 A endows its blue TADF devices with record-low driving voltages, e.g., turn-on voltage of 2.5 V, and the state-of-the-art efficiencies with maxima of 22.5% for external quantum efficiency and 52.9 lm W -1 for power efficiency, which is the best comprehensive performance to date of ultralow-voltage-driven blue TADF diodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sorting Out Antibiotics' Mechanisms of Action: a Double Fluorescent Protein Reporter for High-Throughput Screening of Ribosome and DNA Biosynthesis Inhibitors

    PubMed Central

    Osterman, Ilya A.; Komarova, Ekaterina S.; Shiryaev, Dmitry I.; Korniltsev, Ilya A.; Khven, Irina M.; Lukyanov, Dmitry A.; Tashlitsky, Vadim N.; Serebryakova, Marina V.; Efremenkova, Olga V.; Ivanenkov, Yan A.; Bogdanov, Alexey A.; Dontsova, Olga A.

    2016-01-01

    In order to accelerate drug discovery, a simple, reliable, and cost-effective system for high-throughput identification of a potential antibiotic mechanism of action is required. To facilitate such screening of new antibiotics, we created a double-reporter system for not only antimicrobial activity detection but also simultaneous sorting of potential antimicrobials into those that cause ribosome stalling and those that induce the SOS response due to DNA damage. In this reporter system, the red fluorescent protein gene rfp was placed under the control of the SOS-inducible sulA promoter. The gene of the far-red fluorescent protein, katushka2S, was inserted downstream of the tryptophan attenuator in which two tryptophan codons were replaced by alanine codons, with simultaneous replacement of the complementary part of the attenuator to preserve the ability to form secondary structures that influence transcription termination. This genetically modified attenuator makes possible Katushka2S expression only upon exposure to ribosome-stalling compounds. The application of red and far-red fluorescent proteins provides a high signal-to-background ratio without any need of enzymatic substrates for detection of the reporter activity. This reporter was shown to be efficient in high-throughput screening of both synthetic and natural chemicals. PMID:27736765

  7. Compact 3D printed module for fluorescence and label-free imaging using evanescent excitation

    NASA Astrophysics Data System (ADS)

    Pandey, Vikas; Gupta, Shalini; Elangovan, Ravikrishnan

    2018-01-01

    Total internal reflection fluorescence (TIRF) microscopy is widely used for selective excitation and high-resolution imaging of fluorophores, and more recently label-free nanosized objects, with high vertical confinement near a liquid-solid interface. Traditionally, high numerical aperture objectives (>1.4) are used to simultaneously generate evanescent waves and collect fluorescence emission signals which limits their use to small area imaging (<0.1 mm2). Objective-based TIRFs are also expensive as they require dichroic mirrors and efficient notch filters to prevent specular reflection within the objective lenses. We have developed a compact 3D module called cTIRF that can generate evanescent waves in microscope glass slides via a planar waveguide illumination. The module can be attached as a fixture to any existing optical microscope, converting it into a TIRF and enabling high signal-to-noise ratio (SNR) fluorescence imaging using any magnification objective. As the incidence optics is perpendicular to the detector, label-free evanescent scattering-based imaging of submicron objects can also be performed without using emission filters. SNR is significantly enhanced in this case as compared to cTIRF alone, as seen through our model experiments performed on latex beads and mammalian cells. Extreme flexibility and the low cost of our approach makes it scalable for limited resource settings.

  8. Green and ultraviolet pulse generation with a compact, fiber laser, chirped-pulse amplification system for aerosol fluorescence measurements.

    PubMed

    Lou, Janet W; Currie, Marc; Sivaprakasam, Vasanthi; Eversole, Jay D

    2010-10-01

    We use a compact chirped-pulse amplified system to harmonically generate ultrashort pulses for aerosol fluorescence measurements. The seed laser is a compact, all-normal dispersion, mode-locked Yb-doped fiber laser with a 1050 nm center wavelength operating at 41 MHz. Average powers of more than 1.2 W at 525 nm and 350 mW at 262 nm are generated with <500 fs pulse durations. The pulses are time-stretched with high-dispersion fiber, amplified by a high-power, large-mode-area fiber amplifier, and recompressed using a chirped volume holographic Bragg grating. The resulting high-peak-power pulses allow for highly efficient harmonic generation. We also demonstrate for the first time to our knowledge, the use of a mode-locked ultraviolet source to excite individual biological particles and other calibration particles in an inlet air flow as they pass through an optical chamber. The repetition rate is ideal for biofluorescence measurements as it allows faster sampling rates as well as the higher peak powers as compared to previously demonstrated Q-switched systems while maintaining a pulse period that is longer than the typical fluorescence lifetimes. Thus, the fluorescence excitation can be considered to be quasicontinuous and requires no external synchronization and triggering.

  9. Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off

    NASA Astrophysics Data System (ADS)

    Wu, Tien-Lin; Huang, Min-Jie; Lin, Chih-Chun; Huang, Pei-Yun; Chou, Tsu-Yu; Chen-Cheng, Ren-Wu; Lin, Hao-Wu; Liu, Rai-Shung; Cheng, Chien-Hong

    2018-04-01

    Organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) materials are promising for the realization of highly efficient light emitters. However, such devices have so far suffered from efficiency roll-off at high luminance. Here, we report the design and synthesis of two diboron-based molecules, CzDBA and tBuCzDBA, which show excellent TADF properties and yield efficient OLEDs with very low efficiency roll-off. These donor-acceptor-donor (D-A-D) type and rod-like compounds concurrently generate TADF with a photoluminescence quantum yield of 100% and an 84% horizontal dipole ratio in the thin film. A green OLED based on CzDBA exhibits a high external quantum efficiency of 37.8 ± 0.6%, a current efficiency of 139.6 ± 2.8 cd A-1 and a power efficiency of 121.6 ± 3.1 lm W-1 with an efficiency roll-off of only 0.3% at 1,000 cd m-2. The device has a peak emission wavelength of 528 nm and colour coordinates of the Commission International de ĺEclairage (CIE) of (0.31, 0.61), making it attractive for colour-display applications.

  10. High sensitive and direct fluorescence detection of single viral DNA sequences by integration of double strand probes onto microgels particles.

    PubMed

    Aliberti, A; Cusano, A M; Battista, E; Causa, F; Netti, P A

    2016-02-21

    A novel class of probes for fluorescence detection was developed and combined to microgel particles for a high sensitive fluorescence detection of nucleic acids. A double strand probe with an optimized fluorescent-quencher couple was designed for the detection of different lengths of nucleic acids (39 nt and 100 nt). Such probe proved efficient in target detection in different contests and specific even in presence of serum proteins. The conjugation of double strand probes onto polymeric microgels allows for a sensitive detection of DNA sequences from HIV, HCV and SARS corona viruses with a LOD of 1.4 fM, 3.7 fM and 1.4 fM, respectively, and with a dynamic range of 10(-9)-10(-15) M. Such combination enhances the sensitivity of the detection of almost five orders of magnitude when compared to the only probe. The proposed platform based on the integration of innovative double strand probe into microgels particles represents an attractive alternative to conventional sensitive DNA detection technologies that rely on amplifications methods.

  11. Curcumin-cysteine and curcumin-tryptophan conjugate as fluorescence turn on sensors for picric Acid in aqueous media.

    PubMed

    Gogoi, Bedanta; Sen Sarma, Neelotpal

    2015-06-03

    Rapid detection of picric acid in real sample is of outmost importance from the perspective of health, safety, and environment. In this study, a very simple and cost-effective detection of picric acid is accomplished by developing a couple of biobased conjugates curcumin-cysteine (CC) and curcumin-tryptophan (CT), which undergo efficient fluorescence turn on toward picric acid in aqueous media. Both the probes experience about 26.5-fold fluorescence enhancements at 70 nM concentration of the analyte. Here, the fluorescence turn on process is governed by the aggregation induced emission, which is induced from the electrostatic interaction between the conjugates with picric acid. The detection limit of CC and CT are about 13.51 and 13.54 nM of picric acid, respectively. Importantly, both the probes exhibit high selectivity and low interference of other analogues toward the detection of picric acid. In addition, the probes are highly photostable, show low response time and are practically applicable for sensing picric acid in real environmental samples, which is the ultimate goal of this work.

  12. Research on the ultrafast fluorescence property of thylakoid membranes of the wild-type and mutant rice

    NASA Astrophysics Data System (ADS)

    Ren, Zhao-Yu; Xu, Xiao-Ming; Wang, Shui-Cai; Xin, Yue-Yong; He, Jun-Fang; Hou, Xun

    2003-10-01

    A high yielding rice variety mutant (Oryza sativa L., Zhenhui 249) with low chlorophyll b (Chl b) has been discovered in natural fields. It has a quality character controlled by a pair of recessive genes (nuclear gene). The partial loss of Chl b in content affects the efficiency of light harvest in a light harvest complex (LHC), thus producing the difference of the exciting energy transfer and the efficiency of photochemistry conversion between the mutant and wild-type rice in photosynthetic unit. The efficiency of utilizing light energy is higher in the mutant than that in the wild-type rice relatively. For further discussion of the above-mentioned difference and learning about the mechanism of the increase in the photochemical efficiency of the mutant, the pico-second resolution fluorescence spectrum measurement with delay-frame-scanning single photon counting technique is adopted. Thylakoid membranes of the mutant and the wild-type rice are excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. Compared with the time and spectrum property of exciting fluorescence, conclusions of those ultrafast dynamic experiments are: 1) The speeds of the exciting energy transferred in photo-system I are faster than that in photo-system II in both samples. 2) The speeds of the exciting energy transfer of mutant sample are faster than those of the wild-type. This might be one of the major reasons why the efficiency of photosynthesis is higher in mutant than that in the wild-type rice.

  13. Layer-by-layer assembly of small interfering RNA and poly(ethyleneimine) for substrate-mediated electroporation with high efficiency.

    PubMed

    Fujimoto, Hiroyuki; Kato, Koichi; Iwata, Hiroo

    2010-05-01

    Electroporation microarrays have been developed for the high-throughput transfection of expression constructs and small interfering RNAs (siRNAs) into living mammalian cells. These techniques have potential to provide a platform for the cell-based analysis of gene functions. One of the key issues associated with microarray technology is the efficiency of transfection. The capability of attaining reasonably high transfection efficiency is the basis for obtaining functional data without false negatives. In this study, we aimed at improving the transfection efficiency in the system that siRNA loaded on an electrode is electroporated into cells cultured directly on the electrode. The strategy we adopted here is to increase the surface density of siRNA loaded onto electrodes. For this purpose, the layer-by-layer assembly of siRNA and cationic polymers, branched or linear form of poly(ethyleneimine), was performed. The multilayer thus obtained was characterized by infrared reflection-adsorption spectroscopy and surface plasmon resonance analysis. Transfection efficiency was evaluated in a system that siRNA specific for enhanced green fluorescent protein (EGFP) was electroporated on the electrode into human embryonic kidney cells stably transformed with the EGFP gene. The suppression of EGFP expression was assessed by fluorescence microscopy and flow cytometry. Our data showed that the layer-by-layer assembly of siRNA with branched poly(ethyleneimine) facilitated to increase the surface density of loaded siRNA. As a result, the expression of EGFP gene in the electroporated cells was suppressed much more on the electrodes with the multilayer of siRNA than that with the monolayer.

  14. Electronic structural dependence of the photophysical properties of fluorescent heteroditopic ligands - implications in designing molecular fluorescent indicators.

    PubMed

    Younes, Ali H; Zhang, Lu; Clark, Ronald J; Davidson, Michael W; Zhu, Lei

    2010-12-07

    Two fluorescent heteroditopic ligands (2a and 2b) for zinc ion were synthesized and studied. The efficiencies of two photophysical processes, intramolecular charge transfer (ICT) and photoinduced electron transfer (PET), determine the magnitudes of emission bathochromic shift and enhancement, respectively, when a heteroditopic ligand forms mono- or dizinc complexes. The electron-rich 2b is characterized by a high degree of ICT in the excited state with little propensity for PET, which is manifested in a large bathochromic shift of emission upon Zn(2+) coordination without enhancement in fluorescence quantum yield. The electron-poor 2a displays the opposite photophysical consequence where Zn(2+) binding results in greatly enhanced emission without significant spectral shift. The electronic structural effects on the relative efficiencies of ICT and PET in 2a and 2b as well as the impact of Zn(2+)-coordination are probed using experimental and computational approaches. This study reveals that the delicate balance between various photophysical pathways (e.g. ICT and PET) engineered in a heteroditopic ligand is sensitively dependent on the electronic structure of the ligand, i.e. whether the fluorophore is electron-rich or poor, whether it possesses a donor-acceptor type of structure, and where the metal binding occurs.

  15. “Turn-On” Protein Fluorescence: In Situ Formation of Cyanine Dyes

    PubMed Central

    2015-01-01

    Protein reengineering of cellular retinoic acid binding protein II (CRABPII) has yielded a genetically addressable system, capable of binding a profluorophoric chromophore that results in fluorescent protein/chromophore complexes. These complexes exhibit far-red emission, with high quantum efficiencies and brightness and also exhibit excellent pH stability spanning the range of 2–11. In the course of this study, it became evident that single mutations of L121E and R59W were most effective in improving the fluorescent characteristics of CRABPII mutants as well as the kinetics of complex formation. The readily crystallizable nature of these proteins was invaluable to provide clues for the observed spectroscopic behavior that results from single mutation of key residues. PMID:25534273

  16. "Turn-on" protein fluorescence: in situ formation of cyanine dyes.

    PubMed

    Yapici, Ipek; Lee, Kin Sing Stephen; Berbasova, Tetyana; Nosrati, Meisam; Jia, Xiaofei; Vasileiou, Chrysoula; Wang, Wenjing; Santos, Elizabeth M; Geiger, James H; Borhan, Babak

    2015-01-28

    Protein reengineering of cellular retinoic acid binding protein II (CRABPII) has yielded a genetically addressable system, capable of binding a profluorophoric chromophore that results in fluorescent protein/chromophore complexes. These complexes exhibit far-red emission, with high quantum efficiencies and brightness and also exhibit excellent pH stability spanning the range of 2-11. In the course of this study, it became evident that single mutations of L121E and R59W were most effective in improving the fluorescent characteristics of CRABPII mutants as well as the kinetics of complex formation. The readily crystallizable nature of these proteins was invaluable to provide clues for the observed spectroscopic behavior that results from single mutation of key residues.

  17. Optimization of fluorescent imaging in the operating room through pulsed acquisition and gating to ambient background cycling

    PubMed Central

    Sexton, Kristian J.; Zhao, Yan; Davis, Scott C.; Jiang, Shudong; Pogue, Brian W.

    2017-01-01

    The design of fluorescence imaging instruments for surgical guidance is rapidly evolving, and a key issue is to efficiently capture signals with high ambient room lighting. Here, we introduce a novel time-gated approach to fluorescence imaging synchronizing acquisition to the 120 Hz light of the room, with pulsed LED excitation and gated ICCD detection. It is shown that under bright ambient room light this technique allows for the detection of physiologically relevant nanomolar fluorophore concentrations, and in particular reduces the light fluctuations present from the room lights, making low concentration measurements more reliable. This is particularly relevant for the light bands near 700nm that are more dominated by ambient lights. PMID:28663895

  18. Textural and Optical Properties of Ce-Doped YAG/Al2O3 Melt Growth Composite Grown by Micro-Pulling-Down Method

    NASA Astrophysics Data System (ADS)

    Simura, Rayko; Taniuchi, Tetsuo; Sugiyama, Kazumasa; Fukuda, Tsuguo

    2018-01-01

    Ce-doped YAG/Al2O3 melt-growth composite (MGC) samples were grown by the micro-pulling-down (μ-PD) method, and their physical and chemical properties were investigated. The grown MGC samples exhibit fine-grained granophyric texture at the micron scale. Fluorescence spectra, excited by a blue laser diode, were recorded, and, in particular, the finely textured granophyric MGC sample doped with 0.1 at% Ce and prepared with a growth rate of 3 mm/min shows superior fluorescence properties without high-temperature deterioration of fluorescence intensity. The μ-PD method is demonstrated to be applicable for manufacturing finely textured MGC samples with improved luminous efficiency as phosphors for white LEDs.

  19. “Turn-On” Protein Fluorescence: In Situ Formation of Cyanine Dyes

    DOE PAGES

    Yapici, Ipek; Lee, Kin Sing Stephen; Berbasova, Tetyana; ...

    2014-12-22

    Protein reengineering of cellular retinoic acid binding protein II (CRABPII) has yielded a genetically addressable system, capable of binding a profluorophoric chromophore that results in fluorescent protein/chromophore complexes. These complexes exhibit far-red emission, with high quantum efficiencies and brightness and also exhibit excellent pH stability spanning the range of 2$-$11. In the course of this study, it became evident that single mutations of L121E and R59W were most effective in improving the fluorescent characteristics of CRABPII mutants as well as the kinetics of complex formation. The readily crystallizable nature of these proteins was invaluable to provide clues for the observedmore » spectroscopic behavior that results from single mutation of key residues.« less

  20. Water-soluble, neutral 3,5-diformyl-BODIPY with extended fluorescence lifetime in a self-healable chitosan hydrogel.

    PubMed

    Belali, Simin; Emandi, Ganapathi; Cafolla, Atillio A; O'Connell, Barry; Haffner, Benjamin; Möbius, Matthias E; Karimi, Alireza; Senge, Mathias O

    2017-11-08

    3,5-Diformyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (3,5-diformyl-BODIPY) can be used as an efficient biofunctional cross-linker to generate a new class of chitosan-based hydrogels with fluorescence resonance energy transfer (FRET) dynamics and good solubility in water. The hydrogel was fully characterized by FT-IR, UV-vis, fluorescence, FE-SEM, AFM, rheology and picosecond time-resolved spectroscopic techniques. The self-healing ability was demonstrated by rheological recovery and macroscopic and microscopic observations. The fluorescence lifetime was found to increase in aqueous solution of the BODIPY-chitosan hydrogel compared to the 3,5-diformyl-BODIPY monomer. Calculations based on experimental results such as red-shift and decreased intensity of the emission spectrum of highly dye-concentrated hydrogel in comparison to dilute hydrogels, together with changes in the fluorescence lifetime of the hydrogel at different concentration of dyes, suggest that the BDP-CS hydrogels fluorescence dynamics obey the Förster resonance energy transfer (FRET). Improvements in mechanical and photochemical properties and the acceptable values of BODIPY fluorescence lifetime in the hydrogel matrix indicate the utility of the newly synthesized hydrogels for biomedical applications.

  1. A fluorescent aptasensor for amplified label-free detection of adenosine triphosphate based on core-shell Ag@SiO2 nanoparticles.

    PubMed

    Song, Quanwei; Peng, Manshu; Wang, Le; He, Dacheng; Ouyang, Jin

    2016-03-15

    The novel, facile and universal aptamer-based methods for the highly sensitive and selective fluorescence detection of important biomolecules have attracted considerable interest. Here, we present a label-free aptasensor for adenosine triphosphate (ATP) detection in aqueous solutions by using an ultra-sensitive nucleic acid stain PicoGreen (PG) as a fluorescent indicator and core-shell Ag@SiO2 nanoparticles (NPs) as a metal-enhanced fluorescence (MEF) platform. In the presence of ATP, the complementary DNA (cDNA)/aptamer duplexes confined onto the Ag@SiO2 NPs surface can release their aptamers into the buffered solution, causing a significant reduction in fluorescence intensity. By virtue of the amplified fluorescence signal, this aptasensor toward ATP can achieve a detection limit of 14.2 nM with a wide linear range and exhibit a good assay performance in complex biological samples. This sensing approach is cost-effective and efficient because it avoids the fluorescence labeling process and the use of any enzymes. Hence, this method may offer an alternative tool for determining the concentrations of ATP in biochemical and biomedical research. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Application of silver nanoparticles in the detection of SYBR Green I by surface enhanced Raman and surface-enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Wu, Jian; Wang, Chunyan; Zhang, Tian; Chen, Tao

    2018-05-01

    Silver nanomaterials have remarkable application in biomedical detection due to their unique surface plasmon resonance (SPR) characteristics. It can be used for surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). Current research elaborates a technique for improvement of SYBR Green I detection obtained from surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) by silver nanoparticles with the average size about 70 nm. Primarily, SYBR Green I is an important fluorescent dye used in polymerase chain reaction (PCR). It is found that both Raman and fluorescence can be used for detection of this dye. Furthermore, the enhanced efficiency of the Raman and fluorescence by SERS and SEF is observed in this study, the enhancement factor for Raman signals is 3.2 × 103, and the fluorescence intensity bincreased two times by SEF. The quantitative detection of SYBR Green I by SERS and SEF can be achieved. The present work can be used to improve the detection of SYBR Green I by SERS and SEF. It would also be employed for high-sensitive detection of other materials in the future.

  3. High-throughput screening of hybridoma supernatants using multiplexed fluorescent cell barcoding on live cells.

    PubMed

    Lu, Mei; Chan, Brian M; Schow, Peter W; Chang, Wesley S; King, Chadwick T

    2017-12-01

    With current available assay formats using either immobilized protein (ELISA, enzyme-linked immunosorbent assay) or immunostaining of fixed cells for primary monoclonal antibody (mAb) screening, researchers often fail to identify and characterize antibodies that recognize the native conformation of cell-surface antigens. Therefore, screening using live cells has become an integral and important step contributing to the successful identification of therapeutic antibody candidates. Thus the need for developing high-throughput screening (HTS) technologies using live cells has become a major priority for therapeutic mAb discovery and development. We have developed a novel technique called Multiplexed Fluorescent Cell Barcoding (MFCB), a flow cytometry-based method based upon the Fluorescent Cell Barcoding (FCB) technique and the Luminex fluorescent bead array system, but is applicable to high-through mAb screens on live cells. Using this technique in our system, we can simultaneously identify or characterize the antibody-antigen binding of up to nine unique fluorescent labeled cell populations in the time that it would normally take to process a single population. This has significantly reduced the amount of time needed for the identification of potential lead candidates. This new technology enables investigators to conduct large-scale primary hybridoma screens using flow cytometry. This in turn has allowed us to screen antibodies more efficiently than before and streamline identification and characterization of lead molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles.

    PubMed

    Zhang, Xiaodong; Chen, Xiaokai; Kai, Siqi; Wang, Hong-Yin; Yang, Jingjing; Wu, Fu-Gen; Chen, Zhan

    2015-03-17

    A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications.

  5. Fluorescent Reporter Libraries as Useful Tools for Optimizing Microbial Cell Factories: A Review of the Current Methods and Applications

    PubMed Central

    Delvigne, Frank; Pêcheux, Hélène; Tarayre, Cédric

    2015-01-01

    The use of genetically encoded fluorescent reporters allows speeding up the initial optimization steps of microbial bioprocesses. These reporters can be used for determining the expression level of a particular promoter, not only the synthesis of a specific protein but also the content of intracellular metabolites. The level of protein/metabolite is thus proportional to a fluorescence signal. By this way, mean expression profiles of protein/metabolites can be determined non-invasively at a high-throughput rate, allowing the rapid identification of the best producers. Actually, different kinds of reporter systems are available, as well as specific cultivation devices allowing the on-line recording of the fluorescent signal. Cell-to-cell variability is another important phenomenon that can be integrated into the screening procedures for the selection of more efficient microbial cell factories. PMID:26442261

  6. Green synthesis of carbon dots from pork and application as nanosensors for uric acid detection

    NASA Astrophysics Data System (ADS)

    Zhao, Chunxi; Jiao, Yang; Hu, Feng; Yang, Yaling

    2018-02-01

    In this work, a green, simple, economical method was developed in the synthesis of fluorescent carbon dots using pork as carbon source. The as-prepared carbon dots exhibit exceptional advantages including high fluorescent quantum yield (17.3%) and satisfactory chemical stability. The fluorescence of carbon dots based nanosensor can be selectively and efficiently quenched by uric acid. This phenomenon was used to develop a fluorescent method for facile detection of uric acid within a linear range of 0.1-100 μM and 100-500 μM, with a detection limit of 0.05 μM (S/N = 3). Finally, the proposed method was successfully applied in the determination of uric acid in human serum and urine samples with satisfactory recoveries, which suggested that the new nanosensors have great prospect toward the detection of uric acid in human fluids.

  7. Selective Killing of Breast Cancer Cells by Doxorubicin-Loaded Fluorescent Gold Nanoclusters: Confocal Microscopy and FRET.

    PubMed

    Chattoraj, Shyamtanu; Amin, Asif; Jana, Batakrishna; Mohapatra, Saswat; Ghosh, Surajit; Bhattacharyya, Kankan

    2016-01-18

    Fluorescent gold nanoclusters (AuNCs) capped with lysozymes are used to deliver the anticancer drug doxorubicin to cancer and noncancer cells. Doxorubicin-loaded AuNCs cause the highly selective and efficient killing (90 %) of breast cancer cells (MCF7) (IC50 =155 nm). In contrast, the killing of the noncancer breast cells (MCF10A) by doxorubicin-loaded AuNCs is only 40 % (IC50 =4500 nm). By using a confocal microscope, the fluorescence spectrum and decay of the AuNCs were recorded inside the cell. The fluorescence maxima (at ≈490-515 nm) and lifetime (≈2 ns), of the AuNCs inside the cells correspond to Au10-13 . The intracellular release of doxorubicin from AuNCs is monitored by Förster resonance energy transfer (FRET) imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing

    NASA Astrophysics Data System (ADS)

    Li, Kai; Qin, Wei; Ding, Dan; Tomczak, Nikodem; Geng, Junlong; Liu, Rongrong; Liu, Jianzhao; Zhang, Xinhai; Liu, Hongwei; Liu, Bin; Tang, Ben Zhong

    2013-01-01

    Long-term noninvasive cell tracing by fluorescent probes is of great importance to life science and biomedical engineering. For example, understanding genesis, development, invasion and metastasis of cancerous cells and monitoring tissue regeneration after stem cell transplantation require continual tracing of the biological processes by cytocompatible fluorescent probes over a long period of time. In this work, we successfully developed organic far-red/near-infrared dots with aggregation-induced emission (AIE dots) and demonstrated their utilities as long-term cell trackers. The high emission efficiency, large absorptivity, excellent biocompatibility, and strong photobleaching resistance of the AIE dots functionalized by cell penetrating peptides derived from transactivator of transcription proteins ensured outstanding long-term noninvasive in vitro and in vivo cell tracing. The organic AIE dots outperform their counterparts of inorganic quantum dots, opening a new avenue in the development of fluorescent probes for following biological processes such as carcinogenesis.

  9. Highly selectively monitoring heavy and transition metal ions by a fluorescent sensor based on dipeptide.

    PubMed

    Neupane, Lok Nath; Thirupathi, Ponnaboina; Jang, Sujung; Jang, Min Jung; Kim, Jung Hwa; Lee, Keun-Hyeung

    2011-09-15

    Fluorescent sensor (DMH) based on dipeptide was efficiently synthesized in solid phase synthesis. The dipeptide sensor shows sensitive response to Ag(I), Hg(II), and Cu(II) among 14 metal ions in 100% aqueous solution. The fluorescent sensor differentiates three heavy metal ions by response type; turn on response to Ag(I), ratiometric response to Hg(II), and turn off detection of Cu(II). The detection limits of the sensor for Ag(I) and Cu(II) were much lower than the EPA's drinking water maximum contaminant levels (MCL). Specially, DMH penetrated live cells and detected intracellular Ag(+) by turn on response. We described the fluorescent change, binding affinity, detection limit for the metal ions. The study of a heavy metal-responsive sensor based on dipeptide demonstrates its potential utility in the environment field. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Cell segmentation in time-lapse fluorescence microscopy with temporally varying sub-cellular fusion protein patterns.

    PubMed

    Bunyak, Filiz; Palaniappan, Kannappan; Chagin, Vadim; Cardoso, M

    2009-01-01

    Fluorescently tagged proteins such as GFP-PCNA produce rich dynamically varying textural patterns of foci distributed in the nucleus. This enables the behavioral study of sub-cellular structures during different phases of the cell cycle. The varying punctuate patterns of fluorescence, drastic changes in SNR, shape and position during mitosis and abundance of touching cells, however, require more sophisticated algorithms for reliable automatic cell segmentation and lineage analysis. Since the cell nuclei are non-uniform in appearance, a distribution-based modeling of foreground classes is essential. The recently proposed graph partitioning active contours (GPAC) algorithm supports region descriptors and flexible distance metrics. We extend GPAC for fluorescence-based cell segmentation using regional density functions and dramatically improve its efficiency for segmentation from O(N(4)) to O(N(2)), for an image with N(2) pixels, making it practical and scalable for high throughput microscopy imaging studies.

  11. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulnessmore » as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.« less

  12. Luminescence of ferrocene-modified pyrene derivatives for turn-on sensing of Cu2 + and anions

    NASA Astrophysics Data System (ADS)

    Sun, Shuhua; Hu, Wenting; Gao, Hongfang; Qi, Honglan; Ding, Liping

    2017-09-01

    Detection and identification of metal ions by fluorescent turn-on sensors are challenging due to the quenching effect of most of the tested metal ions. In the present work, three ferrocene-modified pyrene-based probes 2-4 were synthesized to act as turn-on fluorescent sensors for Cu2 +. The measurements of fluorescence quantum yield and fluorescence lifetime reveal that ferrocenyl unit can efficiently reduce the fluorescence emission of pyrene moiety. Steady-state fluorescence measurements find that the three ferrocene-modified fluorophores exhibit selective turn-on responses to Cu2 +. Moreover, this turn-on effect to Cu2 + is highly influenced by the type of the counter ion. It is found that the presence of Cl- or NO3- could realize the turn-on response to Cu2 +, whereas, the presence of SO42 - or Ac- could not induce any fluorescence enhancement to Cu2 +. Control experiments with ferrocene-free pyrene-based probe 1 reveal that the ferrocenyl unit plays the key role in the turn-on response to Cu2 +. The possible mechanism for the turn-on responses is attributed to the oxidation behavior of Cu2 + to the ferrocene unit, which is confirmed by the control experiments with sodium ascorbate. Cyclic voltammetry measurements show that Cu2 + can influence the redox behaviors of ferrocenyl derivatives, which is also highly dependent on the anion of the copper salts. The influence of anion on the turn-on responses to Cu2 + was further used for anion detection and fluorescent logic gate.

  13. Luminescence of ferrocene-modified pyrene derivatives for turn-on sensing of Cu2+ and anions.

    PubMed

    Sun, Shuhua; Hu, Wenting; Gao, Hongfang; Qi, Honglan; Ding, Liping

    2017-09-05

    Detection and identification of metal ions by fluorescent turn-on sensors are challenging due to the quenching effect of most of the tested metal ions. In the present work, three ferrocene-modified pyrene-based probes 2-4 were synthesized to act as turn-on fluorescent sensors for Cu 2+ . The measurements of fluorescence quantum yield and fluorescence lifetime reveal that ferrocenyl unit can efficiently reduce the fluorescence emission of pyrene moiety. Steady-state fluorescence measurements find that the three ferrocene-modified fluorophores exhibit selective turn-on responses to Cu 2+ . Moreover, this turn-on effect to Cu 2+ is highly influenced by the type of the counter ion. It is found that the presence of Cl - or NO 3 - could realize the turn-on response to Cu 2+ , whereas, the presence of SO 4 2- or Ac - could not induce any fluorescence enhancement to Cu 2+ . Control experiments with ferrocene-free pyrene-based probe 1 reveal that the ferrocenyl unit plays the key role in the turn-on response to Cu 2+ . The possible mechanism for the turn-on responses is attributed to the oxidation behavior of Cu 2+ to the ferrocene unit, which is confirmed by the control experiments with sodium ascorbate. Cyclic voltammetry measurements show that Cu 2+ can influence the redox behaviors of ferrocenyl derivatives, which is also highly dependent on the anion of the copper salts. The influence of anion on the turn-on responses to Cu 2+ was further used for anion detection and fluorescent logic gate. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Diffuse reflectance of the ocean - The theory of its augmentation by chlorophyll a fluorescence at 685 nm

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.

    1979-01-01

    The radiative transfer equation is modified to include the effect of fluorescent substances and solved in the quasi-single scattering approximation for a homogeneous ocean containing fluorescent particles with wavelength independent quantum efficiency and a Gaussian shaped emission line. The results are applied to the in vivo fluorescence of chlorophyll a (in phytoplankton) in the ocean to determine if the observed quantum efficiencies are large enough to explain the enhancement of the ocean's diffuse reflectance near 685 nm in chlorophyll rich waters without resorting to anomalous dispersion. The computations indicate that the required efficiencies are sufficiently low to account completely for the enhanced reflectance. The validity of the theory is further demonstrated by deriving values for the upwelling irradiance attenuation coefficient at 685 nm which are in close agreement with the observations.

  15. A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins.

    PubMed

    Gaebler, Anne; Penno, Anke; Kuerschner, Lars; Thiele, Christoph

    2016-10-01

    The demand to study the cellular localization of specific lipids has led to recent advances in lipid probes and microscopy. Alkyne lipids bear a small, noninterfering tag and can be detected upon click reaction with an azide-coupled reporter. Fluorescent alkyne lipid imaging crucially depends on appropriate azide reporters and labeling protocols that allow for an efficient click reaction and therefore a sensitive detection. We synthesized several azide reporters with different spacer components and tested their suitability for alkyne lipid imaging in fixed cells. The implementation of a copper-chelating picolyl moiety into fluorescent or biotin-based azide reagents strongly increased the sensitivity of the imaging routine. We demonstrate the applicability and evaluate the performance of this approach using different lipid classes and experimental setups. As azide picolyl reporters allow for reduced copper catalyst concentrations, they also enable coimaging of alkyne lipids with multiple fluorescent proteins including enhanced green fluorescent protein. Alternatively, and as we also show, microscopy of alkyne lipids can be combined with protein detection by immunocytochemistry. In summary, we present a robust, sensitive, and highly versatile protocol for the labeling of alkyne lipids with azide-coupled reporters for fluorescence microscopy that can be combined with different protein detection and imaging techniques. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  16. Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures.

    PubMed

    Nelson, Jacob A; Bugbee, Bruce

    2014-01-01

    Lighting technologies for plant growth are improving rapidly, providing numerous options for supplemental lighting in greenhouses. Here we report the photosynthetic (400-700 nm) photon efficiency and photon distribution pattern of two double-ended HPS fixtures, five mogul-base HPS fixtures, ten LED fixtures, three ceramic metal halide fixtures, and two fluorescent fixtures. The two most efficient LED and the two most efficient double-ended HPS fixtures had nearly identical efficiencies at 1.66 to 1.70 micromoles per joule. These four fixtures represent a dramatic improvement over the 1.02 micromoles per joule efficiency of the mogul-base HPS fixtures that are in common use. The best ceramic metal halide and fluorescent fixtures had efficiencies of 1.46 and 0.95 micromoles per joule, respectively. We also calculated the initial capital cost of fixtures per photon delivered and determined that LED fixtures cost five to ten times more than HPS fixtures. The five-year electric plus fixture cost per mole of photons is thus 2.3 times higher for LED fixtures, due to high capital costs. Compared to electric costs, our analysis indicates that the long-term maintenance costs are small for both technologies. If widely spaced benches are a necessary part of a production system, the unique ability of LED fixtures to efficiently focus photons on specific areas can be used to improve the photon capture by plant canopies. Our analysis demonstrates, however, that the cost per photon delivered is higher in these systems, regardless of fixture category. The lowest lighting system costs are realized when an efficient fixture is coupled with effective canopy photon capture.

  17. High-spatial-resolution nanoparticle x-ray fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Jakob C.; Vâgberg, William; Vogt, Carmen; Lundström, Ulf; Larsson, Daniel H.; Hertz, Hans M.

    2016-03-01

    X-ray fluorescence tomography (XFCT) has potential for high-resolution 3D molecular x-ray bio-imaging. In this technique the fluorescence signal from targeted nanoparticles (NPs) is measured, providing information about the spatial distribution and concentration of the NPs inside the object. However, present laboratory XFCT systems typically have limited spatial resolution (>1 mm) and suffer from long scan times and high radiation dose even at high NP concentrations, mainly due to low efficiency and poor signal-to-noise ratio. We have developed a laboratory XFCT system with high spatial resolution (sub-100 μm), low NP concentration and vastly decreased scan times and dose, opening up the possibilities for in-vivo small-animal imaging research. The system consists of a high-brightness liquid-metal-jet microfocus x-ray source, x-ray focusing optics and an energy-resolving photon-counting detector. By using the source's characteristic 24 keV line-emission together with carefully matched molybdenum nanoparticles the Compton background is greatly reduced, increasing the SNR. Each measurement provides information about the spatial distribution and concentration of the Mo nanoparticles. A filtered back-projection method is used to produce the final XFCT image.

  18. Fluorescent proteins as singlet oxygen photosensitizers: mechanistic studies in photodynamic inactivation of bacteria

    NASA Astrophysics Data System (ADS)

    Ruiz-González, Rubén.; White, John H.; Cortajarena, Aitziber L.; Agut, Montserrat; Nonell, Santi; Flors, Cristina

    2013-02-01

    Antimicrobial photodynamic therapy (aPDT) combines a photosensitizer, light and oxygen to produce reactive oxygen species (ROS), mainly singlet oxygen (1O2), to photo-oxidize important biomolecules and induce cell death. aPDT is a promising alternative to standard antimicrobial strategies, but its mechanisms of action are not well understood. One of the reasons for that is the lack of control of the photosensitizing drugs location. Here we report the use of geneticallyencoded fluorescent proteins that are also 1O2 photosensitizers to address the latter issue. First, we have chosen the red fluorescent protein TagRFP as a photosensitizer, which unlike other fluorescent proteins such as KillerRed, is able to produce 1O2 but not other ROS. TagRFP photosensitizes 1O2 with a small, but not negligible, quantum yield. In addition, we have used miniSOG, a more efficient 1O2 photosensitizing fluorescent flavoprotein that has been recently engineered from phototropin 2. We have genetically incorporated these two photosensitizers into the cytosol of E. coli and demonstrated that intracellular 1O2 is sufficient to kill bacteria. Additional assays have provided further insight into the mechanism of cell death. Photodamage seems to occur primarily in the inner membrane, and extends to the outer membrane if the photosensitizer's efficiency is high enough. These observations are markedly different to those reported for external photosensitizers, suggesting that the site where 1O2 is primarily generated proves crucial for inflicting different types of cell damage.

  19. An efficient ratiometric fluorescence sensor based on metal-organic frameworks and quantum dots for highly selective detection of 6-mercaptopurine.

    PubMed

    Jin, Meng; Mou, Zhao-Li; Zhang, Rui-Ling; Liang, Si-Si; Zhang, Zhi-Qi

    2017-05-15

    The development of a simple and accurate quantitative method for the determination of 6-mercaptopurine (6-MP) is of great importance because of its serious side effects. Ratiometric fluorescence (RF) sensors are not subject to interference from environmental factors, and exhibit enhanced precision and accuracy. Therefore, a novel RF sensor for the selective detection of 6-MP was developed based on a dual-emission nanosensor. The nanosensor was fabricated by combining a blue-emission metal-organic framework (MOF) NH 2 -MIL-53(Al) (λ em =425nm) with green-emission 3-mercaptopropionic acid-capped CdTe quantum dots (MPA-CdTe QDs) (λ em =528nm) under a single excitation wavelength (335nm). Upon addition of 6-MP, the fluorescence of NH 2 -MIL-53(Al) in the nanohybrid was selectively quenched due to strong inner filter effects, while the fluorescence of the MPA-CdTe QDs was enhanced. The novel RF sensor exhibited higher selectivity towards 6-MP than CdTe QDs alone, and higher sensitivity than MOFs alone. 6-MP could be detected in the range of 0-50μM with a detection limit of 0.15μM (S/N=3). The developed sensor was applied for the determination of 6-MP in human urine samples and satisfactory results were obtained. Overall, a novel and efficient fluorescence-based method was developed for the detection of 6-MP in biosamples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Improving sensitivity of gold nanoparticle based fluorescence quenching and colorimetric aptasensor by using water resuspended gold nanoparticle.

    PubMed

    Liu, Jinchuan; Guan, Zheng; Lv, Zhenzhen; Jiang, Xiaoling; Yang, Shuming; Chen, Ailiang

    2014-02-15

    Gold nanoparticles (AuNPs) based fluorescence quenching or colorimetric aptasensor have been developed for many analytes recently largely because of the ease of detection, high sensitivity, and potential for high-throughput analysis. However, the effects of remnant non-AuNPs components in the colloid gold solution on these assays performance remain unclear. For the first time, we demonstrated that the remnant sodium citrate and the reaction products of three acids play counteractive roles in AuNPs based fluorescence quenching and colorimetric aptasensor in three ways in this study. First, the remnant sodium citrate in the colloid gold solution could increase the fluorescence intensity of FAM labeled on the aptamer that reduce the efficiency of AuNPs fluorescent quenching. Second, the reaction products of citric acid, HCl and ketoglutaric acid reduce the fluorescence recovery by quenching the fluorescence of FAM labeled on the aptamer dissociated from the surface of AuNPs upon addition of target. Lastly, the reaction products of three acids reduce the pH value of the colloid gold solution that reduce the sensitivity of AuNPs based colorimetric aptasensor by increasing the adsorption of aptamer to surface of AuNPs. With sulfadimethoxine and thrombin as model analytes, we found that water resuspended AuNPs can significantly increase the sensitivity by more than 10-fold for AuNPs based fluorescence quenching aptasensor. In the AuNPs based colorimetric aptasensor for sulfadimethoxine using the water resuspended AuNPs, the sensitivity also was increased by 10-fold compared with that of original AuNPs. The findings in this study provide theoretical guidance for further improving AuNPs based fluorescent quenching and colorimetric aptasensor by adjusting the composition of AuNPs solution. © 2013 Elsevier B.V. All rights reserved.

  1. X-ray fluorescence spectrometry-based approach to precision management of bioavailable phosphorus in soil environments

    USDA-ARS?s Scientific Manuscript database

    Declining nutrient use efficiency in crop production has been a global priority to preserve high agricultural productivity with finite non-renewable nutrient resources, in particular phosphorus (P). Rapid spectroscopic methods increase measurement density of soil nutrients, and the availability of ...

  2. Efficient fluorescence energy transfer system between CdTe-doped silica nanoparticles and gold nanoparticles for turn-on fluorescence detection of melamine.

    PubMed

    Gao, Feng; Ye, Qingqing; Cui, Peng; Zhang, Lu

    2012-05-09

    We here report an efficient and enhanced fluorescence energy transfer system between confined quantum dots (QDs) by entrapping CdTe into the mesoporous silica shell (CdTe@SiO₂) as donors and gold nanoparticles (AuNPs) as acceptors. At pH 6.50, the CdTe@SiO₂-AuNPs assemblies coalesce to form larger clusters due to charge neutralization, leading to the fluorescence quenching of CdTe@SiO₂ as a result of energy transfer. As compared with the energy transfer system between unconfined CdTe and AuNPs, the maximum fluorescence quenching efficiency of the proposed system is improved by about 27.0%, and the quenching constant, K(sv), is increased by about 2.4-fold. The enhanced quenching effect largely turns off the fluorescence of CdTe@SiO₂ and provides an optimal "off-state" for sensitive "turn-on" assay. In the present study, upon addition of melamine, the weak fluorescence system of CdTe@SiO₂-AuNPs is enhanced due to the strong interactions between the amino group of melamine and the gold nanoparticles via covalent bond, leading to the release of AuNPs from the surfaces of CdTe@SiO₂; thus, its fluorescence is restored. A "turn-on" fluorimetric method for the detection of melamine is proposed based on the restored fluorescence of the system. Under the optimal conditions, the fluorescence enhanced efficiency shows a linear function against the melamine concentrations ranging from 7.5 × 10⁻⁹ to 3.5 × 10⁻⁷ M (i.e., 1.0-44 ppb). The analytical sensitivity is improved by about 50%, and the detection limit is decreased by 5.0-fold, as compared with the analytical results using the CdTe-AuNPs system. Moreover, the proposed method was successfully applied to the determination of melamine in real samples with excellent recoveries in the range from 97.4 to 104.1%. Such a fluorescence energy transfer system between confined QDs and AuNPs may pave a new way for designing chemo/biosensing.

  3. Fluorescence Quantum Yield Measurements of Fluorescent Proteins: A Laboratory Experiment for a Biochemistry or Molecular Biophysics Laboratory Course

    ERIC Educational Resources Information Center

    Wall, Kathryn P.; Dillon, Rebecca; Knowles, Michelle K.

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts…

  4. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOEpatents

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  5. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOEpatents

    Stavis, Samuel M [Ithaca, NY; Edel, Joshua B [Brookline, MA; Samiee, Kevan T [Ithaca, NY; Craighead, Harold G [Ithaca, NY

    2008-07-29

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  6. A fluorescent probe for ecstasy.

    PubMed

    Masseroni, D; Biavardi, E; Genovese, D; Rampazzo, E; Prodi, L; Dalcanale, E

    2015-08-18

    A nanostructure formed by the insertion in silica nanoparticles of a pyrene-derivatized cavitand, which is able to specifically recognize ecstasy in water, is presented. The absence of effects from interferents and an efficient electron transfer process occurring after complexation of ecstasy, makes this system an efficient fluorescent probe for this popular drug.

  7. Concepts for high efficient white OLEDs for lighting applications

    NASA Astrophysics Data System (ADS)

    Hunze, A.; Krause, R.; Seidel, S.; Weiss, O.; Kozlowski, F.; Schmid, G.; Meyer, J.; Kröger, M.; Johannes, H. H.; Kowalsky, W.; Dobbertin, T.

    2007-09-01

    Apart from usage of organic light emitting diodes for flat panel display applications OLEDs are a potential candidate for the next solid state lighting technology. One key parameter is the development of high efficient, stable white devices. To realize this goal there are different concepts. Especially by using highly efficient phosphorescent guest molecules doped into a suitable host material high efficiency values can be obtained. We started our investigations with a single dopant and extended this to a two phosphorescent emitter approach leading to a device with a high power efficiency of more than 25 lm/W @ 1000 cd/m2. The disadvantage of full phosphorescent device setups is that esp. blue phosphorescent emitters show an insufficient long-term stability. A possibility to overcome this problem is the usage of more stable fluorescent blue dopants, whereas, due to the fact that only singlet excitons can decay radiatively, the efficiency is lower. With a concept, proposed by Sun et al.1 in 2006, it is possible to manage the recombination zone and thus the contribution from the different dopants. With this approach stable white color coordinates with sufficient current efficiency values have been achieved.

  8. Leakage of soluble microbial products from biological activated carbon filtration in drinking water treatment plants and its influence on health risks.

    PubMed

    Hong, Shen; Xian-Chun, Tang; Nan-Xiang, Wu; Hong-Bin, Chen

    2018-07-01

    The application of ozone-biological activated carbon (O 3 -BAC) as an advanced treatment method in drinking water treatment plants (DWTPs) can help to remove organic micropollutants and further decrease the dissolved organic carbon (DOC) level in finished water. With the increase attention to microbial safety of drinking water, a pre-positioned O 3 -BAC followed by a sand filter has been implanted into DWTP located in Shanghai, China to increase the biostability of effluents. The results showed that BAC had high removal efficiencies of UV 254 , DOC and disinfection by-product formation potential (DBPFP). The removal efficiencies between pre- and post-positioned BAC filtrations were similar. Based on the analyses of fluorescence excitation-emission matrix spectrophotometry (FEEM), the generation and leakage of soluble microbial products (SMPs) were found in both two BAC filtrations on account of the increased fluorescence intensities and fluorescence regional integration (FRI) distribution of protein-like organics, as well as the enhanced biological index (BIX). The leakage of SMPs produced by metabolism of microbes during BAC process resulted in increased DBPFP yield and carcinogenic factor per unit of DOC (CF/DOC). Although BAC filtration reduced the DBPFP and CF, there still was high health risk of effluents for the production of SMPs. Therefore, the health risks for SMPs generated by BAC filtration in drinking water advanced treatment process should be addressed, especially with that at high temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Functionality-Oriented Derivatization of Naphthalene Diimide: A Molecular Gel Strategy-Based Fluorescent Film for Aniline Vapor Detection.

    PubMed

    Fan, Jiayun; Chang, Xingmao; He, Meixia; Shang, Congdi; Wang, Gang; Yin, Shiwei; Peng, Haonan; Fang, Yu

    2016-07-20

    Modification of naphthalene diimide (NDI) resulted in a photochemically stable, fluorescent 3,4,5-tris(dodecyloxy)benzamide derivative of NDI (TDBNDI), and introduction of the long alkyl chains endowed the compound with good compatibility with commonly found organic solvents and in particular superior self-assembly in the solution state. Further studies revealed that TDBNDI forms gels with nine of the 18 solvents tested at a concentration of 2.0% (w/v), and the critical gelation concentrations of five of the eight gels are lower than 1.0% (w/v), indicating the high efficiency of the compound as a low-molecular mass gelator (LMMG). Transmission electron microscopy, scanning electron microscopy, and confocal laser scanning microscopy studies revealed the networked fibrillar structure of the TDBNDI/methylcyclohexane (MCH) gel. On the basis of these findings, a fluorescent film was developed via simple spin-coating of the TDBNDI/MCH gel on a glass substrate surface. Fluorescence behavior and sensing performance studies demonstrated that this film is photochemically stable, and sensitive and selective to the presence of aniline vapor. Notably, the response is instantaneous, and the sensing process is fully and quickly reversible. This case study demonstrates that derivatization of photochemically stable fluorophores into LMMGs is a good strategy for developing high-performance fluorescent sensing films.

  10. Fluorescence and visual detection of fluoride ions using a photoluminescent graphene oxide paper sensor.

    PubMed

    Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong

    2016-07-14

    The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F(-) on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F(-) can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F(-) in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F(-) has been successfully developed. The paper sensor showed high sensitivity for aqueous F(-), and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes.

  11. Light-Induced Fluorescence Modulation of Quantum Dot-Crystal Violet Conjugates: Stochastic Off-On-Off Cycles for Multicolor Patterning and Super-Resolution.

    PubMed

    Jung, Sungwook; Park, Joonhyuck; Bang, Jiwon; Kim, Jae-Yeol; Kim, Cheolhee; Jeon, Yongmoon; Lee, Seung Hwan; Jin, Ho; Choi, Sukyung; Kim, Bomi; Lee, Woo Jin; Pack, Chan-Gi; Lee, Jong-Bong; Lee, Nam Ki; Kim, Sungjee

    2017-06-07

    Photoswitching or modulation of quantum dots (QDs) can be promising for many fields that include display, memory, and super-resolution imaging. However, such modulations have mostly relied on photomodulations of conjugated molecules in QD vicinity, which typically require high power of high energy photons at UV. We report a visible light-induced facile modulation route for QD-dye conjugates. QD crystal violets conjugates (QD-CVs) were prepared and the crystal violet (CV) molecules on QD quenched the fluorescence efficiently. The fluorescence of QD-CVs showed a single cycle of emission burst as they go through three stages of (i) initially quenched "off" to (ii) photoactivated "on" as the result of chemical change of CVs induced by photoelectrons from QD and (iii) back to photodarkened "off" by radical-associated reactions. Multicolor on-demand photopatterning was demonstrated using QD-CV solid films. QD-CVs were introduced into cells, and excitation with visible light yielded photomodulation from "off" to "on" and "off" by nearly ten fold. Individual photoluminescence dynamics of QD-CVs was investigated using fluorescence correlation spectroscopy and single QD emission analysis, which revealed temporally stochastic photoactivations and photodarkenings. Exploiting the stochastic fluorescence burst of QD-CVs, simultaneous multicolor super-resolution localizations were demonstrated.

  12. On the use of nonfluorescent dye labeled ligands in FRET-based receptor binding studies.

    PubMed

    Tahtaoui, Chouaib; Guillier, Fabrice; Klotz, Philippe; Galzi, Jean-Luc; Hibert, Marcel; Ilien, Brigitte

    2005-12-01

    The efficiency of fluorescence resonance energy transfer (FRET) is dependent upon donor-acceptor proximity and spectral overlap, whether the acceptor partner is fluorescent or not. We report here on the design, synthesis, and characterization of two novel pirenzepine derivatives that were coupled to patent blue VF and pinacyanol dyes. These nonfluorescent compounds, when added to cells stably expressing enhanced green fluorescent protein (EGFP)-fused muscarinic M1 receptors, promote EGFP fluorescence extinction in a time-, concentration-, and atropine-dependent manner. They display nanomolar affinity for the muscarinic receptor, determined using either FRET or classical radioligand binding conditions. We provide evidence that these compounds behave as potent acceptors of energy from excited EGFP with quenching efficiencies comparable to those of analogous fluorescent bodipy or rhodamine red pirenzepine derivatives. The advantages they offer over fluorescent ligands are illustrated and discussed in terms of reliability, sensitivity, and wider applicability of FRET-based receptor binding assays.

  13. Mesoporous silica for drug delivery: Interactions with model fluorescent lipid vesicles and live cells.

    PubMed

    Bardhan, Munmun; Majumdar, Anupa; Jana, Sayantan; Ghosh, Tapas; Pal, Uttam; Swarnakar, Snehasikta; Senapati, Dulal

    2018-01-01

    Formulated mesoporous silica nanoparticle (MSN) systems offer the best possible drug delivery system through the release of drug molecules from the accessible pores. In the present investigation, steady state and time resolved fluorescence techniques along with the fluorescence imaging were applied to investigate the interactions of dye loaded MSN with fluorescent unilamellar vesicles and live cells. Here 1,2-dimyristoyl-sn-glycero-3-phospocholine (DMPC) was used to prepare Small Unilamellar Vesicles (SUVs) as the model membrane with fluorescent 1,6-diphenyl-1,3,5-hexatriene (DPH) molecule incorporated inside the lipid bilayer. The interaction of DPH incorporated DMPC membrane with Fluorescein loaded MSN lead to the release of Fluorescein (Fl) dye from the interior pores of MSN systems. The extent of release of Fl and spatial distribution of the DPH molecule has been explored by monitoring steady-state fluorescence intensity and fluorescence lifetime at physiological condition. To investigate the fate of drug molecule released from MSN, fluorescence anisotropy has been used. The drug delivery efficiency of the MSN as a carrier for doxorubicin (DOX), a fluorescent chemotherapeutic drug, has also been investigated at physiological conditions. The study gives a definite confirmation for high uptake and steady release of DOX in primary oral mucosal non-keratinized squamous cells in comparison to naked DOX treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. CdSe/ZnS quantum dots conjugated with a fluorescein derivative: a FRET-based pH sensor for physiological alkaline conditions.

    PubMed

    Kurabayashi, Tomokazu; Funaki, Nayuta; Fukuda, Takeshi; Akiyama, Shinnosuke; Suzuki, Miho

    2014-01-01

    Dual pH-dependent fluorescence peaks from a semiconductor quantum dot (QD) and a pH-dependent fluorescent dye can be measured by irradiating with a single wavelength light, and the pH can be estimated from the ratio of the fluorescent intensity of the two peaks. In this work, ratiometric pH sensing was achieved in an aqueous environment by a fluorescent CdSe/ZnS QD appended with a pH-sensitive organic dye, based on fluorescence resonance energy transfer (FRET). By functionalizing the CdSe/ZnS QD with 5-(and 6)-carboxynaphthofluorescein succinimidyl ester as a pH-dependent fluorescent dye, we succeeded in fabricating sensitive nanocomplexes with a linear response to a broad range of physiological pH levels (7.5-9.5) when excited at 450 nm. We found that a purification process is important for increasing the high-fluorescence intensity ratio of a ratiometric fluorescence pH-sensor, and the fluorescence intensity ratio was improved up to 1.0 at pH 8.0 after the purification process to remove unreacted CdSe/ZnS QDs even though the fluorescence of the dye could not be observed without the purification process. The fluorescence intensity ratio corresponds to the fluorescence intensity of the dye, and this fluorescent dye exhibited pH-dependent fluorescence intensity changes. These facts indicate that the fluorescence intensity ratio linearly increased with increasing pH value of the buffer solution containing the QD and the dye. The FRET efficiencies changed from 0.3 (pH 7.5) to 6.2 (pH 9.5).

  15. Highly selective and sensitive fluorogenic ferric probes based on aggregation-enhanced emission with - SiMe3 substituted polybenzene

    NASA Astrophysics Data System (ADS)

    Wang, Xuefeng; Wang, Hua; Jiang, Qin; Lee, Yong-Ill; Feng, Shengyu; Liu, Hong-Guo

    2018-01-01

    In this study, thiophene was linked to polybenzene to generate novel fluorescent probes, namely 3,4-diphenyl-2,5-di(2-thienyl)phenyl-trimethylsilane (DPTB-TMS) with a - SiMe3 substituent and 3,4-diphenyl-2,5-di(2-thienyl)phenyl (DPTB) without the - SiMe3 substituent, respectively. Both of the two compounds exhibit aggregation-enhanced emission (AEE) properties in tetrahydrofuran/water mixtures due to restricted intramolecular rotation of the peripheral groups, which make the two compounds good candidates for the detection of Fe3 + ions in aqueous-based solutions. The fluorescence intensity of the two compounds decreases immediately and obviously upon addition of a trace amount of Fe3 +, and decreases continuously as the amount of Fe3 + increases. The fluorescence was quenched to 92% of its initial intensity when the amount of Fe3 + ions reached 6 μmol for DPTB-TMS and to 80% for DPTB in the systems, indicating that the compound with the - SiMe3 group is a more effective probe. The detection limit was found to be 1.17 μM (65 ppb). The detection mechanism is proposed to be static quenching. DPTB-TMS is highly efficient for the detection of ferric ions even in the presence of other metal ions. In addition, the method is also successfully applied to the detection of ferric ions in water, blood serum, or solid films. This indicates that these polybenzene compounds can be applied as low-cost, high selectivity, and high efficiency Fe3 + probes in water or in clinical applications.

  16. Superior optical nonlinearity of an exceptional fluorescent stilbene dye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Tingchao; Division of Physics and Applied Physics, Centre for Disruptive Photonic Technologies; Sreejith, Sivaramapanicker

    2015-03-16

    Strong multiphoton absorption and harmonic generation in organic fluorescent chromophores are, respectively, significant in many fields of research. However, most of fluorescent chromophores fall short of the full potential due to the absence of the combination of such different nonlinear upconversion behaviors. Here, we demonstrate that an exceptional fluorescent stilbene dye could exhibit efficient two- and three-photon absorption under the excitation of femtosecond pulses in solution phase. Benefiting from its biocompatibility and strong excited state absorption behavior, in vitro two-photon bioimaging and superior optical limiting have been exploited, respectively. Simultaneously, the chromophore could generate efficient three-photon excited fluorescence and third-harmonicmore » generation (THG) when dispersed into PMMA film, circumventing the limitations of classical fluorescent chromophores. Such chromophore may find application in the production of coherent light sources of higher photon energy. Moreover, the combination of three-photon excited fluorescence and THG can be used in tandem to provide complementary information in biomedical studies.« less

  17. Efficient triplet harvesting of hybrid white organic light-emitting diodes using thermally activated delayed fluorescence green emitter

    NASA Astrophysics Data System (ADS)

    Lee, Song Eun; Lee, Ho Won; Baek, Hyun Jung; Yun, Tae Jun; Yun, Geum Jae; Kim, Woo Young; Kim, Young Kwan

    2016-10-01

    Hybrid white organic light-emitting diodes (WOLEDs) were fabricated by applying triplet harvesting (TH) using a green thermally activated delayed fluorescence (TADF) emitter. The triplet exciton of the green TADF emitter can be upconverted to its singlet state. The TH involved energy transfer of triplet exciton from a blue fluorescent emitter to a green TADF and red phosphorescent emitters, where they can decay radiatively. In addition, the triplet exciton of the green TADF emitter was energy transferred to its singlet state for a reverse intersystem crossing by green emission. Enhanced hybrid WOLEDs were demonstrated using an efficient green TADF emitter combined with red phosphorescent and blue fluorescent emitters. Hybrid WOLEDs were fabricated with various hole-electron recombination zones as changing blue emitting layer thicknesses. Among these, hybrid WOLEDs showed a maximum external quantum efficiency of 11.23%, luminous efficiency of 29.20 cd/A, and a power efficiency of 26.21 lm/W. Moreover, the WOLED exhibited electroluminescence spectra with Commission International de L'Éclairage chromaticity of (0.38, 0.36) at 1000 cd/m2 and a color rendering index of 82 at a practical brightness of 20,000 cd/m2.

  18. A highly efficient dinuclear Cu(II) chemosensor for colorimetric and fluorescent detection of cyanide in water

    PubMed Central

    Rhaman, Md. Mhahabubur; Alamgir, Azmain; Wong, Bryan M.; Powell, Douglas R.

    2017-01-01

    A novel dinuclear copper chemosensor selectively binds cyanide over a wide range of inorganic anions, enabling it to detect cyanide in water up to 0.02 ppm which is 10 times lower than the EPA standard for drinking water. PMID:28217299

  19. Novel multistep BRET-FRET energy transfer using nanoconjugates of firefly proteins, quantum dots, and red fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Alam, Rabeka; Zylstra, Joshua; Fontaine, Danielle M.; Branchini, Bruce R.; Maye, Mathew M.

    2013-05-01

    Sequential bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) from firefly luciferase to red fluorescent proteins using quantum dot or rod acceptor/donor linkers is described. The effect of morphology and tuned optical properties on the efficiency of this unique BRET-FRET system was evaluated.Sequential bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) from firefly luciferase to red fluorescent proteins using quantum dot or rod acceptor/donor linkers is described. The effect of morphology and tuned optical properties on the efficiency of this unique BRET-FRET system was evaluated. Electronic supplementary information (ESI) available: Experimental details, Fig. S1 and Table S1-S4. See DOI: 10.1039/c3nr01842c

  20. A fluorescent graphitic carbon nitride nanosheet biosensor for highly sensitive, label-free detection of alkaline phosphatase.

    PubMed

    Xiang, Mei-Hao; Liu, Jin-Wen; Li, Na; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui

    2016-02-28

    Graphitic C3N4 (g-C3N4) nanosheets provide an attractive option for bioprobes and bioimaging applications. Utilizing highly fluorescent and water-dispersible ultrathin g-C3N4 nanosheets, a highly sensitive, selective and label-free biosensor has been developed for ALP detection for the first time. The developed approach utilizes a natural substrate of ALP in biological systems and thus affords very high catalytic efficiency. This novel biosensor is demonstrated to enable quantitative analysis of ALP in a wide range from 0.1 to 1000 U L(-1) with a low detection limit of 0.08 U L(-1), which is among the most sensitive assays for ALP. It is expected that the developed method may provide a low-cost, convenient, rapid and highly sensitive platform for ALP-based clinical diagnostics and biomedical applications.

  1. Cyclodextrin-enhanced extraction and energy transfer of carcinogens in complex oil environments.

    PubMed

    Serio, Nicole; Chanthalyma, Chitapom; Prignano, Lindsey; Levine, Mindy

    2013-11-27

    Reported herein is the use of γ-cyclodextrin for two tandem functions: (a) the extraction of carcinogenic polycyclic aromatic hydrocarbons (PAHs) from oil samples into aqueous solution and (b) the promotion of highly efficient energy transfer from the newly extracted PAHs to a high-quantum-yield fluorophore. The extraction proceeded in moderate to good efficiencies, and the resulting cyclodextrin-promoted energy transfer led to a new, brightly fluorescent signal in aqueous solution. The resulting dual-function system (extraction followed by energy transfer) has significant relevance in the environmental detection and cleanup of oil-spill-related carcinogens.

  2. Design of Organic Solar Cells as a Function of Radiative Quantum Efficiency

    NASA Astrophysics Data System (ADS)

    Godefroid, Blaise; Kozyreff, Gregory

    2017-09-01

    We study the radiative decay, or fluorescence, of excitons in organic solar cells as a function of its geometrical parameters. Contrary to their nonradiative counterpart, fluorescence losses strongly depend on the environment. By properly tuning the thicknesses of the buffer layers between the active regions of the cell and the electrodes, the exciton lifetime and, hence, the exciton diffusion length can be increased. The importance of this phenomenon depends on the radiative quantum efficiency, which is the fraction of the exciton decay that is intrinsically due to fluorescence. Besides this effect, interferences within the cell control the efficiency of sunlight injection into the active layers. The optimal cell design must rely on a consideration of these two aspects. By properly managing fluorescence losses, one can significantly improve the cell performance. To demonstrate this fact, we use realistic material parameters inspired from literature data and obtain an increase of power-conversion efficiency from 11.3% to 12.7%. Conversely, not to take into account the strong dependence of fluorescence on the environment may lead to a suboptimal cell design and a degradation of cell performance. The presence of radiative losses, however small, significantly changes the optimal set of thicknesses. We illustrate the latter situation with experimental material data.

  3. Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells

    NASA Astrophysics Data System (ADS)

    Yan, Zhengyu; Qian, Jing; Gu, Yueqing; Su, Yilong; Ai, Xiaoxia; Wu, Shengmei

    2014-03-01

    A green and efficient biosynthesis method to prepare fluorescence-tunable biocompatible cadmium selenide quantum dots using Escherichia coli cells as biological matrix was proposed. Decisive factors in biosynthesis of cadmium selenide quantum dots in a designed route in Escherichia coli cells were elaborately investigated, including the influence of the biological matrix growth stage, the working concentration of inorganic reactants, and the co-incubation duration of inorganic metals to biomatrix. Ultraviolet-visible, photoluminescence, and inverted fluorescence microscope analysis confirmed the unique optical properties of the biosynthesized cadmium selenide quantum dots. The size distribution of the nanocrystals extracted from cells and the location of nanocrystals foci in vivo were also detected seriously by transmission electron microscopy. A surface protein capping layer outside the nanocrystals was confirmed by Fourier transform infrared spectroscopy measurements, which were supposed to contribute to reducing cytotoxicity and maintain a high viability of cells when incubating with quantum dots at concentrations as high as 2 μM. Cell morphology observation indicated an effective labeling of living cells by the biosynthesized quantum dots after a 48 h co-incubation. The present work demonstrated an economical and environmentally friendly approach to fabricating highly fluorescent quantum dots which were expected to be an excellent fluorescent dye for broad bio-imaging and labeling.

  4. Whole mouse cryo-imaging

    NASA Astrophysics Data System (ADS)

    Wilson, David; Roy, Debashish; Steyer, Grant; Gargesha, Madhusudhana; Stone, Meredith; McKinley, Eliot

    2008-03-01

    The Case cryo-imaging system is a section and image system which allows one to acquire micron-scale, information rich, whole mouse color bright field and molecular fluorescence images of an entire mouse. Cryo-imaging is used in a variety of applications, including mouse and embryo anatomical phenotyping, drug delivery, imaging agents, metastastic cancer, stem cells, and very high resolution vascular imaging, among many. Cryo-imaging fills the gap between whole animal in vivo imaging and histology, allowing one to image a mouse along the continuum from the mouse -> organ -> tissue structure -> cell -> sub-cellular domains. In this overview, we describe the technology and a variety of exciting applications. Enhancements to the system now enable tiled acquisition of high resolution images to cover an entire mouse. High resolution fluorescence imaging, aided by a novel subtraction processing algorithm to remove sub-surface fluorescence, makes it possible to detect fluorescently-labeled single cells. Multi-modality experiments in Magnetic Resonance Imaging and Cryo-imaging of a whole mouse demonstrate superior resolution of cryo-images and efficiency of registration techniques. The 3D results demonstrate the novel true-color volume visualization tools we have developed and the inherent advantage of cryo-imaging in providing unlimited depth of field and spatial resolution. The recent results continue to demonstrate the value cryo-imaging provides in the field of small animal imaging research.

  5. Recent developments in white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lohe, P. P.; Nandanwar, D. V.; Belsare, P. D.; Moharil, S. V.

    2018-05-01

    In the recent years solid state lighting based on LEDs has revolutionized lighting technology. LEDs have many advantages over the conventional lighting based on fluorescent and incandescent lamps such as mercury free, high conversion efficiency of electrical energy into light, long lifetime reliability and ability to use with many types of devices. LEDs have emerged as a new potentially revolutionary technology that could save up to half of energy used for lighting applications. White LEDs would be the most important light source in the future, so much so that this aspect had been highlighted by the Nobel committee during the award of 2014 Nobel Prize for Physics. Recent advancement in the fabrication of GaN chip capable of emitting in blue and near UV region paved way for fabrication of white LED lamps. Mainly there are two approaches used for preparing white emitting solid state lamp. In the first approach blue light (λ=450 nm) emitted from the InGaN LED chip is partially absorbed by the YAG:Ce3+ phosphor coated on it and re-emitted as yellow fluorescence. A white light can be generated by the combination of blue + yellow emission bands. These lamps are already available. But they are suffering from major drawback that their Colour Rendering Index (CRI) is low. In the second approach, white LEDs are made by coating near ultraviolet emitting (360 to 410nm) LED with a mixture of high efficiency red, green and blue emitting phosphors, analogous to the fluorescent lamp. This method yields lamps with better color rendition. Addition of a yellow emitting phosphor improves CRI further. However conversion efficiency is compromised to some extent. Further the cost of near UV emitting chip is very high compared to blue emitting chips. Thus cost and light output wise, near UV chips are much inferior to blue chips. Recently some rare earth activated oxynitrides, silicates, fluorides have emerged as an important family of luminescent materials for white LED application because they can emit visible light strongly under blue light irradiation. These are chemically, thermally and mechanically stable materials with high efficiency to down convert blue radiation into green and red. Efficient white light can be generated by coating these phosphors on blue LED.CRI of white emitting LED lamp can be improved significantly if green and red emitting phosphors are coated on efficient blue emitting LED chips. In this approach CRI will be maintained if appropriate combination of red, green along with blue emission is used. This article reviews some recent developments in phosphors for white light emitting diodes.

  6. Efficient fluorescence "turn-on" sensing of dissolved oxygen by electrochemical switching.

    PubMed

    Shin, Ik-Soo; Hirsch, Thomas; Ehrl, Benno; Jang, Dong-Hak; Wolfbeis, Otto S; Hong, Jong-In

    2012-11-06

    We report on a novel method for sensing oxygen that is based on the use of a perylene diimide dye (1) which is electrochemically reduced to its nonfluorescent dianion form (1(2-)). In the presence of oxygen, the dianion is oxidized to its initial form via an electron-transfer reaction with oxygen upon which fluorescence is recovered. As a result, the fluorescence intensity of the dianion solution increases upon the addition of oxygen gas. Results demonstrate that high sensitivity is obtained, and the emission intensity shows a linear correlation with oxygen content (0.0-4.0% v/v) at ambient barometric pressure. In addition, using electrochemical reduction, oxygen determination becomes regenerative, and no significant degradation is observed over several turnovers. The limit of detection is 0.4% oxygen in argon gas.

  7. Inverse transport problems in quantitative PAT for molecular imaging

    NASA Astrophysics Data System (ADS)

    Ren, Kui; Zhang, Rongting; Zhong, Yimin

    2015-12-01

    Fluorescence photoacoustic tomography (fPAT) is a molecular imaging modality that combines photoacoustic tomography with fluorescence imaging to obtain high-resolution imaging of fluorescence distributions inside heterogeneous media. The objective of this work is to study inverse problems in the quantitative step of fPAT where we intend to reconstruct physical coefficients in a coupled system of radiative transport equations using internal data recovered from ultrasound measurements. We derive uniqueness and stability results on the inverse problems and develop some efficient algorithms for image reconstructions. Numerical simulations based on synthetic data are presented to validate the theoretical analysis. The results we present here complement these in Ren K and Zhao H (2013 SIAM J. Imaging Sci. 6 2024-49) on the same problem but in the diffusive regime.

  8. Simultaneous Single-Molecule Force and Fluorescence Sampling of DNA Nanostructure Conformations Using Magnetic Tweezers.

    PubMed

    Kemmerich, Felix E; Swoboda, Marko; Kauert, Dominik J; Grieb, M Svea; Hahn, Steffen; Schwarz, Friedrich W; Seidel, Ralf; Schlierf, Michael

    2016-01-13

    We present a hybrid single-molecule technique combining magnetic tweezers and Förster resonance energy transfer (FRET) measurements. Through applying external forces to a paramagnetic sphere, we induce conformational changes in DNA nanostructures, which are detected in two output channels simultaneously. First, by tracking a magnetic bead with high spatial and temporal resolution, we observe overall DNA length changes along the force axis. Second, the measured FRET efficiency between two fluorescent probes monitors local conformational changes. The synchronized orthogonal readout in different observation channels will facilitate deciphering the complex mechanisms of biomolecular machines.

  9. Obstacles and opportunities in the commercialization of the solid state electronic fluorescent lighting ballast

    NASA Astrophysics Data System (ADS)

    Johnson, D. R.; Marcus, A. A.; Campbell, R. S.; Sommers, P.; Skumatz, L.; Berk, B.; Petty, P.; Eschbach, C.

    1981-10-01

    A solid state ballast (SSB), which improves the efficiency of fluorescent lights, is described. The first generation of solid state electronic ballasts was developed and the technology was transferred to the private sector. The opportunities for rapid dissemination of this technology into the marketplace is examined. Product characteristics and their influence on the commercialization of the SSB, a description of the technology delivery system presently used by the ballast industry, an analysis of the market for SSB, and identification of some high leverage opportunities to accelerate the commercialization process are included.

  10. Daylighting with Mirror Light Pipes and with Fluorescent Planar Concentrators. First Results from the Demonstration Project Stuttgart-Hohenheim

    NASA Astrophysics Data System (ADS)

    Zastrow, Armin; Wittwer, Volker

    1987-02-01

    Efficient daylighting systems have recently attracted increasing interest due to their potential for saving a condiderable amount of electrical energy used for lighting purposes. In this paper we discuss the properties of daylighting systems based on either fluorescent planar concentrators (FPC's) and transparent light guiding plates or light pipes coated with a highly reflective silver coated plastic film (3M Silverlux film). First results on daylighting systems in the students' living quarters in Stuttgart-Hohenheim will be presented. This is a demonstration project which is supported by the Commission of the European Communities.

  11. [Development of X-ray excited fluorescence spectrometer].

    PubMed

    Ni, Chen; Gu, Mu; Di, Wang; Cao, Dun-Hua; Liu, Xiao-Lin; Huang, Shi-Ming

    2009-08-01

    An X-ray excited fluorescence spectrometer was developed with an X-ray tube and a spectrometer. The X-ray tube, spectrometer, autocontrol method and data processing selected were roundly evaluated. The wavelength and detecting efficiency of the apparatus were calibrated with the mercury and tungsten bromine standard lamps, and the X-ray excited emission spectra of BaF2, Cs I (Tl) crystals were measured. The results indicate that the apparatus has advantages of good wavelength resolution, high stability, easy to operation and good radioprotection. It is a wery effective tool for exploration of new scintillation materials.

  12. Quenched substrates for live-cell labeling of SNAP-tagged fusion proteins with improved fluorescent background.

    PubMed

    Stöhr, Katharina; Siegberg, Daniel; Ehrhard, Tanja; Lymperopoulos, Konstantinos; Öz, Simin; Schulmeister, Sonja; Pfeifer, Andrea C; Bachmann, Julie; Klingmüller, Ursula; Sourjik, Victor; Herten, Dirk-Peter

    2010-10-01

    Recent developments in fluorescence microscopy raise the demands for bright and photostable fluorescent tags for specific and background free labeling in living cells. Aside from fluorescent proteins and other tagging methods, labeling of SNAP-tagged proteins has become available thereby increasing the pool of potentially applicable fluorescent dyes for specific labeling of proteins. Here, we report on novel conjugates of benzylguanine (BG) which are quenched in their fluorescence and become highly fluorescent upon labeling of the SNAP-tag, the commercial variant of the human O(6)-alkylguanosyltransferase (hAGT). We identified four conjugates showing a strong increase, i.e., >10-fold, in fluorescence intensity upon labeling of SNAP-tag in vitro. Moreover, we screened a subset of nine BG-dye conjugates in living Escherichia coli and found them all suited for labeling of the SNAP-tag. Here, quenched BG-dye conjugates yield a higher specificity due to reduced contribution from excess conjugate to the fluorescence signal. We further extended the application of these conjugates by labeling a SNAP-tag fusion of the Tar chemoreceptor in live E. coli cells and the eukaryotic transcription factor STAT5b in NIH 3T3 mouse fibroblast cells. Aside from the labeling efficiency and specificity in living cells, we discuss possible mechanisms that might be responsible for the changes in fluorescence emission upon labeling of the SNAP-tag, as well as problems we encountered with nonspecific labeling with certain conjugates in eukaryotic cells.

  13. Energy Efficiency Comparison between Compact Fluorescent Lamp and Common Light Bulb

    ERIC Educational Resources Information Center

    Tanushevsk, Atanas; Rendevski, Stojan

    2016-01-01

    For acquainting the students of applied physics and students of teaching physics with the concept of energy efficiency, electrical and spectral characteristics of two widely used lamps--integrated fluorescence lamp and common light bulb have been investigated. Characterization of the lamps has been done by measuring the spectral irradiance and…

  14. Shape Engineering Boosts Magnetic Mesoporous Silica Nanoparticle-Based Isolation and Detection of Circulating Tumor Cells.

    PubMed

    Chang, Zhi-Min; Wang, Zheng; Shao, Dan; Yue, Juan; Xing, Hao; Li, Li; Ge, Mingfeng; Li, Mingqiang; Yan, Huize; Hu, Hanze; Xu, Qiaobing; Dong, Wen-Fei

    2018-04-04

    Magnetic mesoporous silica nanoparticles (M-MSNs) are attractive candidates for the immunomagnetic isolation and detection of circulating tumor cells (CTCs). Understanding of the interactions between the effects of the shape of M-MSNs and CTCs is crucial to maximize the binding capacity and capture efficiency as well as to facilitate the sensitivity and efficiency of detection. In this work, fluorescent M-MSNs were rationally designed with sphere and rod morphologies while retaining their robust fluorescence and uniform surface functionality. After conjugation with the antibody of epithelial cell adhesion molecule (EpCAM), both of the differently shaped M-MSNs-EpCAM obtained achieved efficient enrichment of CTCs and fluorescent-based detection. Importantly, rodlike M-MSNs exhibited faster immunomagnetic isolation as well as better performance in the isolation and detection of CTCs in spiked cells and real clinical blood samples than those of their spherelike counterparts. Our results showed that shape engineering contributes positively toward immunomagnetic isolation, which might open new avenues to the rational design of magnetic-fluorescent nanoprobes for the sensitive and efficient isolation and detection of CTCs.

  15. The imprints of the high light and UV-B stresses in Oryza sativa L. 'Kanchana' seedlings are differentially modulated.

    PubMed

    Faseela, Parammal; Puthur, Jos T

    2018-01-01

    High light and ultraviolet-B radiation (UV-B) are generally considered to have negative impact on photosynthesis and plant growth. The present study evaluates the tolerance potential of three cultivars of Oryza sativa L. (Kanchana, Mattatriveni and Harsha) seedlings towards high light and UV-B stress on the basis of photosynthetic pigment degradation, chlorophyll a fluorescence parameters and rate of lipid peroxidation, expressed by malondialdehyde content. Surprisingly, it was revealed that Kanchana was the most sensitive cultivar towards high light and at the same time it was the most tolerant cultivar towards UV-B stress. This contrasting feature of Kanchana towards high light and UV-B tolerance was further studied by analyzing photosystem (PS) I and II activity, mitochondrial activity, chlorophyll a fluorescence transient, enzymatic and non-enzymatic antioxidant defense system. Due to the occurrence of more PS I and PSII damages, the inhibition of photochemical efficiency and emission of dissipated energy as heat or fluorescence per PSII reaction center was higher upon high light exposure than UV-B treatments in rice seedlings of Kanchana. The mitochondrial activity was also found to be drastically altered upon high light as compared to UV-B treatments. The UV-B induced accumulation of non-enzymatic antioxidants (proline, total phenolics, sugar and ascorbate) and enzymatic antioxidants (ascorbate peroxidase, guaiacol peroxidase, superoxide dismutase and glutathione reductase) in rice seedlings than those subjected to high light exposure afforded more efficient protection against UV-B radiation in rice seedlings. Our results proved that high tolerance of Kanchana towards UV-B than high light treatments, correlated linearly with the protected photosynthetic and mitochondrial machinery which was provided by upregulation of antioxidants particularly by total phenolics, ascorbate and ascorbate peroxidase in rice seedlings. Data presented in this study conclusively proved that rice cultivar Kanchana respond to different environmental signals independently and tolerance mechanisms to individual stress factors was also varied. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Nanowire-Intensified Metal-Enhanced Fluorescence in Hybrid Polymer-Plasmonic Electrospun Filaments.

    PubMed

    Camposeo, Andrea; Jurga, Radoslaw; Moffa, Maria; Portone, Alberto; Cardarelli, Francesco; Della Sala, Fabio; Ciracì, Cristian; Pisignano, Dario

    2018-05-01

    Hybrid polymer-plasmonic nanostructures might combine high enhancement of localized fields from metal nanoparticles with light confinement and long-range transport in subwavelength dielectric structures. Here, the complex behavior of fluorophores coupling to Au nanoparticles within polymer nanowires, which features localized metal-enhanced fluorescence (MEF) with unique characteristics compared to conventional structures, is reported. The intensification effect when the particle is placed in the organic filaments is remarkably higher with respect to thin films of comparable thickness, thus highlighting a specific, nanowire-related enhancement of MEF effects. A dependence on the confinement volume in the dielectric nanowire is also indicated, with MEF significantly increasing upon reduction of the wire diameter. These findings are rationalized by finite element simulations, predicting a position-dependent enhancement of the quantum yield of fluorophores embedded in the fibers. Calculation of the ensemble-averaged fluorescence enhancement unveils the possibility of strongly enhancing the overall emission intensity for structures with size twice the diameter of the embedded metal particles. These new, hybrid fluorescent systems with localized enhanced emission, and the general nanowire-enhanced MEF effects associated to them, are highly relevant for developing nanoscale light-emitting devices with high efficiency and intercoupled through nanofiber networks, highly sensitive optical sensors, and novel laser architectures. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA Weinheim.

  17. Experimental and numerical investigation of a scaled-up passive micromixer using fluorescence technique

    NASA Astrophysics Data System (ADS)

    Fan, Yanfeng; Hassan, Ibrahim

    2010-09-01

    The present paper investigates experimentally and numerically a scaled-up micromixer that combines the mixing principles of focusing/diverging and flow split-and-recombine. The micromixer consists of two units called “cross” and “omega”, which are similar to a zigzag structure. The total length is 199.5 mm with a depth of 3 mm. Fluorescence technique is used in the present study for local quantitative measurements of concentration. Two syringe pumps are used to supply the working fluids at two inlets. The testing range of Reynolds number is at 1 ≤ Re ≤ 50. The results of the experiment, obtained by fluorescence technique, are supported by the mixing visualization. The experimental results show that the mixing efficiency decreases at Re ≤ 10 and increases at Re ≥ 10. This is caused by the change in mixing mechanism from mass-diffusion domination to mass-convection domination. After five cells, the mixing efficiency reaches to 70% at Re = 50. The computational fluid dynamics is applied to assist in the understanding of fluid characteristics in channels. The simulation has a good agreement with the experiment. Based on the simulation results, vortices are observed in the channels at high Re, which could stretch and fold the fluids to enhance the effect of mass-convection on mixing. This design has the potential to be developed for micromixers with high flow rates.

  18. Generation of recombinant rotaviruses expressing fluorescent proteins using an optimized reverse genetics system.

    PubMed

    Komoto, Satoshi; Fukuda, Saori; Ide, Tomihiko; Ito, Naoto; Sugiyama, Makoto; Yoshikawa, Tetsushi; Murata, Takayuki; Taniguchi, Koki

    2018-04-18

    An entirely plasmid-based reverse genetics system for rotaviruses was established very recently. We improved the reverse genetics system to generate recombinant rotavirus by transfecting only 11 cDNA plasmids for its 11 gene segments under the condition of increasing the ratio of the cDNA plasmids for NSP2 and NSP5 genes. Utilizing this highly efficient system, we then engineered infectious recombinant rotaviruses expressing bioluminescent (NanoLuc luciferase) and fluorescent (EGFP and mCherry) reporters. These recombinant rotaviruses expressing reporters remained genetically stable during serial passages. Our reverse genetics approach and recombinant rotaviruses carrying reporter genes will be great additions to the tool kit for studying the molecular virology of rotavirus, and for developing future next-generation vaccines and expression vectors. IMPORTANCE Rotavirus is one of the most important pathogens causing severe gastroenteritis in young children worldwide. In this paper, we describe a robust and simple reverse genetics system based on only rotavirus cDNAs, and its application for engineering infectious recombinant rotaviruses harboring bioluminescent (NanoLuc) and fluorescent (EGFP and mCherry) protein genes. This highly efficient reverse genetics system and recombinant RVAs expressing reporters could be powerful tools for the study of different aspects of rotavirus replication. Furthermore, they may be useful for next-generation vaccine production for this medically important virus. Copyright © 2018 American Society for Microbiology.

  19. Fluorescence Guided PDT for Optimization of Skin Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Blanco, Kate; Moriyama, Lilian; Inada, Natalia; Kurachi, Cristina; Salvio, Ana; Leite, Everson; Menezes, Priscila; Bagnato, Vanderlei

    2015-04-01

    The photodynamic therapy (PDT) is an alternative technique that can be indicated for superficial basal cell carcinoma (sBCC), Bowen’s disease and actinic keratosis with high efficiency. The objective of this study is to present the importance of fluorescence imaging for PDT guidance and monitoring in real time. Confirming that the lesion is well prepared and the photosensitizer shows a homogenous distribution, the outcome after few PDT sessions will be positive and the recurrence should be lower. Our proposition in this study is use the widefield fluorescence imaging to evaluate the PDT protocol in situ and in real time for each lesion. This evaluation procedure is performed in two steps: first with the monitoring of the production of protoporphyrin IX (PpIX) induced by methyl aminolevulinate (MAL), an derivative of 5-aminolevulinic acid (ALA) and second with the detection of PpIX photobleaching after illumination. The fluorescence images provide information correlated with distinct clinical features and with the treatment outcome. Eight BCC lesions are presented and discussed in this study. Different fluorescence patterns of PpIX production and photobleaching could be correlated with the treatment response. The presented results show the potential of using widefield fluorescence imaging as a guidance tool to customized PDT.

  20. Ultrasensitive detection of lead (II) based on fluorescent aptamer-functionalized carbon nanotubes.

    PubMed

    Taghdisi, Seyed Mohammad; Emrani, Somayeh Sarreshtehdar; Tabrizian, Kaveh; Ramezani, Mohammad; Abnous, Khalil; Emrani, Ahmad Sarreshtehdar

    2014-05-01

    Lead contamination is a serious environmental problem with toxic effects in human. Here, we developed a simple and sensitive sensing method employing ATTO 647N/aptamer-SWNT ensemble for detection of Pb(2+). This method is based on the super quenching capability of single-walled carbon nanotubes (SWNTs), high affinity of the aptamer toward Pb(2+) and different propensities of ATTO 647N-aptamer and ATTO 647N-aptamer/Pb(2+) complex for adsorption on SWNTs. In the absence of Pb(2+), the fluorescence of ATTO 647N-aptamer is efficiently quenched by SWNTs. Upon addition of Pb(2+), the aptamer binds to its target, leading to the formation of a G-quadruplex/Pb(2+) complex and does not interact with SWNTs and ATTO 647N-aptamer starts fluorescing. This sensor exhibited a high selectivity toward Pb(2+) and a limit of detection (LOD) as low as 0.42 nM was obtained. Also this sensor could be applied for detection of Pb(2+) ions in tap water and biological sample like serum with high sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes.

    PubMed

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Ma, Juan Juan; Chen, Jian Rong; Feng, Hui

    2014-10-15

    An ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) between biocompatible graphene quantum dots and carbon nanotubes for DNA detection was reported. We take advantage of good biocompatibility and strong fluorescence of graphene quantum dots, base pairing specificity of DNA and unique fluorescence resonance energy transfer between graphene quantum dots and carbon nanotubes to achieve the analysis of low concentrations of DNA. Graphene quantum dots with high quantum yield up to 0.20 were prepared and served as the fluorophore of DNA probe. FRET process between graphene quantum dots-labeled probe and oxidized carbon nanotubes is easily achieved due to their efficient self-assembly through specific π-π interaction. This nanosensor can distinguish complementary and mismatched nucleic acid sequences with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a broad linear span of up to 133.0 nM and ultralow detection limit of 0.4 nM. The constructed nanosensor is expected to be highly biocompatible because of all its components with excellent biocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Direct fluorescent-dye labeling of α-tubulin in mammalian cells for live cell and superresolution imaging

    PubMed Central

    Schvartz, Tomer; Aloush, Noa; Goliand, Inna; Segal, Inbar; Nachmias, Dikla; Arbely, Eyal; Elia, Natalie

    2017-01-01

    Genetic code expansion and bioorthogonal labeling provide for the first time a way for direct, site-specific labeling of proteins with fluorescent-dyes in live cells. Although the small size and superb photophysical parameters of fluorescent-dyes offer unique advantages for high-resolution microscopy, this approach has yet to be embraced as a tool in live cell imaging. Here we evaluated the feasibility of this approach by applying it for α-tubulin labeling. After a series of calibrations, we site-specifically labeled α-tubulin with silicon rhodamine (SiR) in live mammalian cells in an efficient and robust manner. SiR-labeled tubulin successfully incorporated into endogenous microtubules at high density, enabling video recording of microtubule dynamics in interphase and mitotic cells. Applying this labeling approach to structured illumination microscopy resulted in an increase in resolution, highlighting the advantages in using a smaller, brighter tag. Therefore, using our optimized assay, genetic code expansion provides an attractive tool for labeling proteins with a minimal, bright tag in quantitative high-resolution imaging. PMID:28835375

  3. Chlorophyll fluorescence is a rigorous, high throughput tool to analyze the impacts of genotype, species, and stress on plant and ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Pleban, J. R.; Aston, T.; Beverly, D.; Speckman, H. N.; Hosseini, A.; Bretfeld, M.; Edwards, C.; Yarkhunova, Y.; Weinig, C.; Mackay, D. S.

    2017-12-01

    Abiotic and biotic stresses reduce plant productivity, yet high-throughput characterization of plant responses across genotypes, species and stress conditions are limited by both instrumentation and data analysis techniques. Recent developments in chlorophyll a fluorescence measurement at leaf to landscape scales could improve our predictive understanding of plants response to stressors. We analyzed the interaction of species and stress across two crop types, five gymnosperm and two angiosperm tree species from boreal and montane forests, grasses, forbs and shrubs from sagebrush steppe, and 30 tree species from seasonally wet tropical forest. We also analyzed chlorophyll fluorescence and gas exchange data from twelve Brassica rapa crop accessions and 120 recombinant inbred lines to investigate phenotypic responses to drought. These data represent more than 10,000 measurements of fluorescence and allow us to answer two questions 1) are the measurements from high-throughput, hand held and drone-mounted instruments quantitatively similar to lower throughput camera and gas exchange mounted instruments and 2) do the measurements find differences in genotypic, species and environmental stress on plants? We found through regression that the high and low throughput instruments agreed across both individual chlorophyll fluorescence components and calculated ratios and were not different from a 1:1 relationship with correlation greater than 0.9. We used hierarchical Bayesian modeling to test the second question. We found a linear relationship between the fluorescence-derived quantum yield of PSII and the quantum yield of CO2 assimilation from gas-exchange, with a slope of ca. 0.1 indicating that the efficiency of the entire photosynthetic process was about 10% of PSII across genotypes, species and drought stress. Posterior estimates of quantum yield revealed that drought-treatment, genotype and species differences were preserved when accounting for measurement uncertainty. High throughput handheld or drone-based measurements of chlorophyll fluorescence provide high quality, quantitative data that can be used to not only connect genotype to phenotype but also quantify how vastly different plant species and genotypes respond to stress and change ecosystem productivity.

  4. Multiple excitation nano-spot generation and confocal detection for far-field microscopy.

    PubMed

    Mondal, Partha Pratim

    2010-03-01

    An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.

  5. Multiple excitation nano-spot generation and confocal detection for far-field microscopy

    NASA Astrophysics Data System (ADS)

    Mondal, Partha Pratim

    2010-03-01

    An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.

  6. Application of CORSIKA Simulation Code to Study Lateral and Longitudinal Distribution of Fluorescence Light in Cosmic Ray Extensive Air Showers

    NASA Astrophysics Data System (ADS)

    Bagheri, Zahra; Davoudifar, Pantea; Rastegarzadeh, Gohar; Shayan, Milad

    2017-03-01

    In this paper, we used CORSIKA code to understand the characteristics of cosmic ray induced showers at extremely high energy as a function of energy, detector distance to shower axis, number, and density of secondary charged particles and the nature particle producing the shower. Based on the standard properties of the atmosphere, lateral and longitudinal development of the shower for photons and electrons has been investigated. Fluorescent light has been collected by the detector for protons, helium, oxygen, silicon, calcium and iron primary cosmic rays in different energies. So we have obtained a number of electrons per unit area, distance to the shower axis, shape function of particles density, percentage of fluorescent light, lateral distribution of energy dissipated in the atmosphere and visual field angle of detector as well as size of the shower image. We have also shown that location of highest percentage of fluorescence light is directly proportional to atomic number of elements. Also we have shown when the distance from shower axis increases and the shape function of particles density decreases severely. At the first stages of development, shower axis distance from detector is high and visual field angle is small; then with shower moving toward the Earth, angle increases. Overall, in higher energies, the fluorescent light method has more efficiency. The paper provides standard calibration lines for high energy showers which can be used to determine the nature of the particles.

  7. One pot synthesis of intriguing fluorescent carbon dots for sensing and live cell imaging.

    PubMed

    Jana, Jayasmita; Ganguly, Mainak; Das, Bodhisatwa; Dhara, Santanu; Negishi, Yuichi; Pal, Tarasankar

    2016-04-01

    We report a simple one-pot synthesis of highly fluorescent carbon dots (CDs) via modified hydrothermal (MHT) treatment of alkaline solution of dopamine and cysteine. These CDs (λex=320 nm, λem=390 nm, and quantum yield ∼ 5.1%) are of ∼ 2-3 nm in diameter. Further attempt of synthesizing CDs in some common water-miscible solvents ends up the fact that the MHT product from acetone medium is nonfluorescent. However, CDs, produced in aqueous medium, are so stable that they can be dried as a deliverable solid (WCD) without any alteration of fluorescing property if reversibly dispersed in water. Fluorescence of WCD is quenched selectively in acetone. Quenching occurs presumably due to the disruption of radiative recombination along with the hindrance in quantum confinement of the emissive energy traps to the particle surface. Successive quenching of fluorescence of WCD in different acetone concentration admixed in water paves the way to selective acetone sensing (LOD=8.75 × 10(-7) M). The synthesized CDs (in aqueous medium) are cytocompatible and are efficient fluorescent probe for cell imaging. Only living cells are recognized exclusively from fluorescence imaging leaving aside dead cells, while cells are treated with CDs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Sensitivity evaluation of rhodamine B hydrazide towards nitric oxide and its application for macrophage cells imaging.

    PubMed

    Wu, Chi-Ming; Chen, Yen-Hao; Dayananda, Kasala; Shiue, Tsun-Wei; Hung, Chen-Hsiung; Liaw, Wen-Feng; Chen, Po-Yu; Wang, Yun-Ming

    2011-12-05

    A colorless and non-fluorescent rhodamine derivative, rhodamine B hydrazide (RH), is applied to detect nitric oxide and form fluorescent rhodamine B (RB). The reaction mechanism of RH with NO is proposed in this study. The probe shows good stability over a broad pH range (pH>4). Furthermore, fluorescence intensity of RH displays an excellent linearity to the NO concentration and the detection limit is as low as 20 nM. A 1000-fold fluorescence turn-on from a dark background was observed. Moreover, the selectivity study indicated that the fluorescence intensity increasing in the presence of NO was significantly higher than those of other reactive oxygen/nitrogen species. In exogenously generated NO detection study, clear intracellular red fluorescence was observed in the presence of S-nitroso-N-acetyl-D,L-penicillamine (SNAP, a kind of NO releasing agent). In endogenously generated NO detection study, increasing incubation time of RH with lipopolysaccharied (LPS) pre-treated cells could obtain a highly fluorescent cell image. These cell imaging results demonstrated that RH can efficiently penetrate into Raw 264.7 cells and be used for detection of exogenously and endogenously generated nitric oxide. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Sensitive fluorescence detection of mercury(ii) in aqueous solution by the fluorescence quenching effect of MoS2 with DNA functionalized carbon dots.

    PubMed

    Srinivasan, K; Subramanian, K; Murugan, K; Dinakaran, K

    2016-10-24

    A rapid and sensitive fluorescent sensor based on the MoS 2 nanosheet/DNA/carbon dot nanoassembly has been developed towards the detection of mercury(ii) present in environmental samples. Bio-carbon dots (CDs) having strong fluorescence maxima at 451 nm were synthesized via one-step treatment with honey under low temperature carbonization. These CDs were nearly spherical with good size distribution and excellent monodispersity, and the average sizes of CD were around 2-4 nm as evidenced from transmission electron microscopy. The conjugation of DNA strands on the surface of the carbon dots provided an efficient fluorescent probe. The fluorescence of the MoS 2 nanosheet/DNA/carbon dot nanoassembly enhanced gradually with the increase in the concentration of Hg 2+ ions and the detection limit was found to be 1.02 nM. Furthermore, the fluorescence intensity was found to be linear with the concentration of Hg 2+ ions in the range from 0 to 10 nM and their respective coefficient of determination was found to be 0.93676 and 0.98178. The present MoS 2 nanosheet/DNA/carbon dot nanoassembly is highly selective toward Hg 2+ ions over a wide range of metal ions tested.

  10. Study of probe-sample distance for biomedical spectra measurement.

    PubMed

    Wang, Bowen; Fan, Shuzhen; Li, Lei; Wang, Cong

    2011-11-02

    Fiber-based optical spectroscopy has been widely used for biomedical applications. However, the effect of probe-sample distance on the collection efficiency has not been well investigated. In this paper, we presented a theoretical model to maximize the illumination and collection efficiency in designing fiber optic probes for biomedical spectra measurement. This model was in general applicable to probes with single or multiple fibers at an arbitrary incident angle. In order to demonstrate the theory, a fluorescence spectrometer was used to measure the fluorescence of human finger skin at various probe-sample distances. The fluorescence spectrum and the total fluorescence intensity were recorded. The theoretical results show that for single fiber probes, contact measurement always provides the best results. While for multi-fiber probes, there is an optimal probe distance. When a 400- μm excitation fiber is used to deliver the light to the skin and another six 400- μm fibers surrounding the excitation fiber are used to collect the fluorescence signal, the experimental results show that human finger skin has very strong fluorescence between 475 nm and 700 nm under 450 nm excitation. The fluorescence intensity is heavily dependent on the probe-sample distance and there is an optimal probe distance. We investigated a number of probe-sample configurations and found that contact measurement could be the primary choice for single-fiber probes, but was very inefficient for multi-fiber probes. There was an optimal probe-sample distance for multi-fiber probes. By carefully choosing the probe-sample distance, the collection efficiency could be enhanced by 5-10 times. Our experiments demonstrated that the experimental results of the probe-sample distance dependence of collection efficiency in multi-fiber probes were in general agreement with our theory.

  11. Dopant-Engineered Wide-Band Gap Semiconductors for Deep Tissue Bioimaging

    NASA Astrophysics Data System (ADS)

    Raghavendra, Achyut; Gregory, Wren; Slonecki, Tyler; Bruce, Terri; Podila, Ramakrishna

    Optical spectroscopy promises improved lateral resolution for in vivo imaging but is limited by background fluorescence and photon attenuation. There is clearly an unmet clinical need for new hybrid approaches that use fluorescence to identify cancer margins intraoperatively during the initial operation. An efficient strategy to increase the imaging depth and diagnostic capability, beyond what two-photon absorption (2PA) offers, is to use longer excitation wavelengths outside the water absorption window through three-photon absorption (3PA). Although a variety of existing fluorescent dyes, fluorescent proteins, and calcium indicators could be used in 3PA, they have low or moderate 3PA cross-sections and suffer from photobleaching. The non-linear 3PA coefficient of such fluorescent probes is often low necessitating high excitation powers, which could cause overheating, photodamage, and photo-induced toxicity. To address this demand we have designed dopant-engineered ZnO nanoparticles (d-ZnO NPs) for enabling 3PA with higher penetration depth, lower background noise, and improved spatial resolution (<1 um) at powers below 5 mW.

  12. Engineering an FMN-based iLOV protein for the detection of arsenic ions.

    PubMed

    Ravikumar, Yuvaraj; Nadarajan, Saravanan Prabhu; Lee, Chong-Soon; Yun, Hyungdon

    2017-05-15

    Over the past few decades, genetically encoded fluorescent proteins have been widely used as efficient probes to explore and investigate the roles of metal ions in biological processes. The discovery of small FMN-based fluorescent proteins, such as iLOV and FbFP, has enabled researchers to exploit these fluorescent reporter proteins for metal-sensing applications. In this study, we report the inherent binding properties of iLOV towards arsenic ions. The fluorescence quenching of iLOV was linearly related to the concentration of arsenic ions, and engineered proteins showed better sensitivity than the wild-type protein. Engineering key residues around the chromophore converted the iLOV protein into a highly sensitive sensor for As 3+ ions. iLOV N468S exhibited an improved binding affinity with a dissociation constant of 1.5 μM. Furthermore, the circular dichroism spectra indicated that the fluorescence quenching mechanism might be related to arsenic-protein complex formation. Thus, the reagentless sensing of arsenic can potentially be exploited to determine intracellular or environmental arsenic using a genetically encoded biosensing approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Redox-responsive nanoparticles with Aggregation-Induced Emission (AIE) characteristic for fluorescence imaging.

    PubMed

    Cheng, Weiren; Wang, Guan; Pan, Xiaoyong; Zhang, Yong; Tang, Ben Zhong; Liu, Ye

    2014-08-01

    The redox environment between intracellular compartments and extracellular matrix is significantly different, and the cellular redox homeostasis determines many physiological functions. Here, redox-responsive nanoparticles with aggregation-induced emission (AIE) characteristic for fluorescence imaging are developed by encapsulation of fluorophore with redox "turn-on" AIE characteristic, TPE-MI, into the micelles of poly(ethylene glycol) (PEG)- and cholesterol (CE)-conjugated disulfide containing poly(amido amine)s. The redox-responsive fluorescence profiles of the nanoparticles are investigated after reaction with glutathione (GSH). The encapsulation of TPE-MI in micelles leads to a higher efficiency and red shift in emission, and the fluorescence intensity of the nanoparticles increases with the concentration of GSH. Confocal microscopy imaging shows that the nanoparticles can provide obvious contrast between the intracellular compartments and the extracellular matrix in MCF-7 and HepG2 cells. So the nanoparticles with PEG shells and low cytotoxicity are promising to provide fluorescence bioimaging with a high contrast and for differentiation of cellular redox environment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Laser-Induced Fluorescence Measurements for Optical Single Atom Detection for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Parzuchowski, Kristen; Singh, Jaideep; Wenzl, Jennifer; Frisbie, Dustin; Johnson, Maegan

    2016-09-01

    We propose a new highly selective detector to measure rare nuclear reactions relevant for nuclear astrophysics. Our primary interest is the 22Ne(α , n) 25Mg reaction, which is a primary source of neutrons for the s-process. Our proposed detector, in conjunction with a recoil separator, captures the recoil products resulting from the reaction in a cryogenically frozen thin film of solid neon. The fluorescence spectra of the captured atoms is shifted from the absorption spectra by hundreds of nanometers. This allows for the optical detection of individual fluorescence photons against a background of intense excitation light. We will describe our initial studies of laser-induced fluorescence of Yb and Mg in solid Ne. Neon is an attractive medium because it is optically transparent and provides efficient, pure, stable, & chemically inert confinement for a wide variety of atomic and molecular species. Yb is used as a test atom because of its similar atomic structure to Mg and much brighter fluorescence signal. This work is supported by funds from Michigan State University.

  15. Evaluation of the photocatalytic activity of Ln3+-TiO2 nanomaterial using fluorescence technique for real wastewater treatment.

    PubMed

    Saif, M; Aboul-Fotouh, S M K; El-Molla, S A; Ibrahim, M M; Ismail, L F M

    2014-07-15

    Evaluation the photocatalytic activity of different Ln(3+) modified TiO2 nanomaterials using fluorescence based technique has rarely been reported. In the present work, xmol Ln(3+) modified TiO2 nanomaterials (Ln = Nd(3+), Sm(3+), Eu(3+), Gd(3+), Dy(3+) and Er(3+) ions; x = 0.005, 0.008, 0.01, 0.02 and 0.03) were synthesized by sol-gel method and characterized using different advanced techniques. The photocatalytic efficiency of the modified TiO2 expressed in the charge carrier separation and OH radicals formation were assigned using TiO2 fluorescence quenching and fluorescence probe methods, respectively. The obtained fluorescence measurements confirm that doping treatment significantly decreases the electron-hole recombination probability in the obtained Ln(3+)/TiO2. Moreover, the rate of OH radicals formation is increased by doping. The highly active nanoparticles (0.02Gd(3+)/TiO2 and 0.01Eu(3+)/TiO2) were applied for industrial wastewater treatment using solar radiation as a renewable energy source. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Submicron polycaprolactone particles as a carrier for imaging contrast agent for in vitro applications.

    PubMed

    Iqbal, Muhammad; Robin, Sophie; Humbert, Philippe; Viennet, Céline; Agusti, Geraldine; Fessi, Hatem; Elaissari, Abdelhamid

    2015-12-01

    Fluorescent materials have recently attracted considerable attention due to their unique properties and high performance as imaging agent in biomedical fields. Different imaging agents have been encapsulated in order to restrict its delivery to a specific area. In this study, a fluorescent contrast agent was encapsulated for in vitro application by polycaprolactone (PCL) polymer. The encapsulation was performed using modified double emulsion solvent evaporation technique with sonication. Fluorescent nanoparticles (20 nm) were incorporated in the inner aqueous phase of double emulsion. A number of samples were fabricated using different concentrations of fluorescent contrast agent. The contrast agent-containing submicron particle was characterized by a zetasizer for average particle size, SEM and TEM for morphology observations and fluorescence spectrophotometer for encapsulation efficiency. Moreover, contrast agent distribution in the PCL matrix was determined by confocal microscopy. The incorporation of contrast agent in different concentrations did not affect the physicochemical properties of PCL particles and the average size of encapsulated particles was found to be in the submicron range. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal-organic framework nanorods: Synergies of the metal center and organic linker.

    PubMed

    Tian, Jingqi; Liu, Qian; Shi, Jinle; Hu, Jianming; Asiri, Abdullah M; Sun, Xuping; He, Yuquan

    2015-09-15

    Considerable recent attention has been paid to homogeneous fluorescent DNA detection with the use of nanostructures as a universal "quencher", but it still remains a great challenge to develop such nanosensor with the benefits of low cost, high speed, sensitivity, and selectivity. In this work, we report the use of iron-based metal-organic framework nanorods as a high-efficient sensing platform for fluorescent DNA detection. It only takes about 4 min to complete the whole "mix-and-detect" process with a low detection limit of 10 pM and a strong discrimination of single point mutation. Control experiments reveal the remarkable sensing behavior is a consequence of the synergies of the metal center and organic linker. This work elucidates how composition control of nanostructures can significantly impact their sensing properties, enabling new opportunities for the rational design of functional materials for analytical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Characterization of aluminum nitride based films with high resolution X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, D. F.; Siozios, A.; Patsalas, P.

    2018-02-01

    X-ray fluorescence spectra of Al based films are measured, using a lab-scale wavelength dispersive flat crystal spectrometer. Various structures of AlN films were studied, like single layered, capped, stratified, nanostructured, crystalline, or amorphous. By optimizing the set-up for enhanced energy resolution and detection efficiency, the measured line shapes of Κα, Kβ, and KLL radiative Auger transitions are shown to be adequately detailed to allow chemical characterization. The chemistry identification is based on the pattern comparison of the emitted line shape from the chemically unknown film and the reference line shapes from standard materials, recorded under identical experimental conditions. The ultimate strength of lab-scale high resolution X-ray fluorescence spectroscopy on film analysis is verified, in cases that ordinary applied techniques like X-ray photoelectron and X-ray diffraction fail, while the characterization refers to the non-destructive determination of the bulk properties of the film and not to its surface, as the probed depth is in the micrometer range.

  19. A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective and Sensitive Detection of H2S: Synthesis, Spectra and Bioimaging

    NASA Astrophysics Data System (ADS)

    Zhang, Changyu; Wang, Runyu; Cheng, Longhuai; Li, Bingjie; Xi, Zhen; Yi, Long

    2016-07-01

    Hydrogen sulfide (H2S) is an important signalling molecule with multiple biological functions. The reported H2S fluorescent probes are majorly based on redox or nucleophilic reactions. The combination usage of both redox and nucleophilic reactions could improve the probe’s selectivity, sensitivity and stability. Herein we report a new dual-reactable probe with yellow turn-on fluorescence for H2S detection. The sensing mechanism of the dual-reactable probe was based on thiolysis of NBD (7-nitro-1,2,3-benzoxadiazole) amine (a nucleophilic reaction) and reduction of azide to amine (a redox reaction). Compared with its corresponding single-reactable probes, the dual-reactable probe has higher selectivity and fluorescence turn-on fold with magnitude of multiplication from that of each single-reactable probe. The highly selective and sensitive properties enabled the dual-reactable probe as a useful tool for efficiently sensing H2S in aqueous buffer and in living cells.

  20. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery

    NASA Astrophysics Data System (ADS)

    Roy, Indrajit; Ohulchanskyy, Tymish Y.; Bharali, Dhruba J.; Pudavar, Haridas E.; Mistretta, Ruth A.; Kaur, Navjot; Prasad, Paras N.

    2005-01-01

    This article reports a multidisciplinary approach to produce fluorescently labeled organically modified silica nanoparticles as a nonviral vector for gene delivery and biophotonics methods to optically monitor intracellular trafficking and gene transfection. Highly monodispersed, stable aqueous suspensions of organically modified silica nanoparticles, encapsulating fluorescent dyes and surface functionalized by cationic-amino groups, are produced by micellar nanochemistry. Gel-electrophoresis studies reveal that the particles efficiently complex with DNA and protect it from enzymatic digestion of DNase 1. The electrostatic binding of DNA onto the surface of the nanoparticles, due to positively charged amino groups, is also shown by intercalating an appropriate dye into the DNA and observing the Förster (fluorescence) resonance energy transfer between the dye (energy donor) intercalated in DNA on the surface of nanoparticles and a second dye (energy acceptor) inside the nanoparticles. Imaging by fluorescence confocal microscopy shows that cells efficiently take up the nanoparticles in vitro in the cytoplasm, and the nanoparticles deliver DNA to the nucleus. The use of plasmid encoding enhanced GFP allowed us to demonstrate the process of gene transfection in cultured cells. Our work shows that the nanomedicine approach, with nanoparticles acting as a drug-delivery platform combining multiple optical and other types of probes, provides a promising direction for targeted therapy with enhanced efficacy as well as for real-time monitoring of drug action. nonviral vector | ORMOSIL nanoparticles | confocal microscopy

Top