Sample records for highly insulating window

  1. Highly Insulating Windows Volume Purchase Program Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-04-01

    This report documents the development, execution outcomes and lessons learned of the Highly Insulating Windows Volume Purchase (WVP) Program carried out over a three-year period from 2009 through 2012. The primary goals of the program were met: 1) reduce the incremental cost of highly insulating windows compared to ENERGY STAR windows; and 2) raise the public and potential buyers’ awareness of highly insulating windows and their benefits. A key outcome of the program is that the 2013 ENERGY STAR Most Efficient criteria for primary residential windows were adopted from the technical specifications set forth in the WVP program.

  2. Side-by-Side Field Evaluation of Highly Insulating Windows in the PNNL Lab Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.

    2012-08-01

    To examine the energy, air leakage, and thermal performance of highly insulating windows, a field evaluation was undertaken in a matched pair of all-electric, factory-built “Lab Homes” located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The “baseline” Lab Home B was retrofitted with “standard” double-pane clear aluminum-frame slider windows and patio doors, while the “experimental” Lab Home A was retrofitted with Jeld-Wen® triple-pane vinyl-frame slider windows and patio doors with a U-factor of 0.2 and solar heat gain coefficient of 0.19. To assess the window, the building shell air leakage, energy use, and interior temperatures ofmore » each home were compared during the 2012 winter heating and summer cooling seasons. The measured energy savings in Lab Home B averaged 5,821 watt-hours per day (Wh/day) during the heating season and 6,518 Wh/day during the cooling season. The overall whole-house energy savings of Lab Home B compared to Lab Home A are 11.6% ± 1.53% for the heating season and 18.4 ± 2.06% for the cooling season for identical occupancy conditions with no window coverings deployed. Extrapolating these energy savings numbers based on typical average heating degree days and cooling degree days per year yields an estimated annual energy savings of 12.2%, or 1,784 kWh/yr. The data suggest that highly insulating windows are an effective energy-saving measure that should be considered for high-performance new homes and in existing retrofits. However, the cost effectiveness of the measure, as determined by the simple payback period, suggests that highly insulating window costs continue to make windows difficult to justify on a cost basis alone. Additional reductions in costs via improvements in manufacturing and/or market penetration that continue to drive down costs will make highly insulating windows much more viable as a cost-effective energy efficiency measure. This study also illustrates that highly insulating windows have important impacts on peak load, occupant comfort, and condensation potential, which are not captured in the energy savings calculation. More consistent and uniform interior temperature distributions suggest that highly insulated windows, as part of a high performance building envelope, may enable more centralized duct design and downsized HVAC systems. Shorter, more centralized duct systems and smaller HVAC systems to yield additional cost savings, making highly insulating windows more cost effective as part of a package of new construction or retrofit measures which achieve significant reductions in home energy use.« less

  3. Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

    2012-06-01

    This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute tomore » reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.« less

  4. Vacuum encapsulated, high temperature diamond amplified cathode capsule and method for making same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Triveni; Walsh, Josh; Gangone, Elizabeth

    2015-12-29

    A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first high-temperature solder weld disposed between the diamond window element and the annular insulating spacer and a second high-temperature solder weld disposed between the annular insulating spacer and the cathode element. The cathode capsulemore » is formed by a high temperature weld process under vacuum such that the first solder weld forms a hermetical seal between the diamond window element and the annular insulating spacer and the second solder weld forms a hermetical seal between the annular spacer and the cathode element whereby a vacuum encapsulated chamber is formed within the capsule.« less

  5. Window Insulation: How to Sort Through the Options.

    ERIC Educational Resources Information Center

    Miller, Barbara

    This two-part report explores the efforts of businesses and individuals to improve the thermal performance of windows. Part I discusses the basics of what makes a window product insulate or save energy. Topic areas addressed include saving energy lost through windows, key components of window insulation, three basic types of window insulation,…

  6. [Preventive effects of sound insulation windows on the indoor noise levels in a street residential building in Beijing].

    PubMed

    Guo, Bin; Huang, Jing; Guo, Xin-biao

    2015-06-18

    To evaluate the preventive effects of sound insulation windows on traffic noise. Indoor noise levels of the residential rooms (on both the North 4th ring road side and the campus side) with closed sound insulation windows were measured using the sound level meter, and comparisons with the simultaneously measured outdoor noise levels were made. In addition, differences of indoor noise levels between rooms with closed sound insulation windows and open sound insulation windows were also compared. The average outdoor noise levels of the North 4th ring road was higher than 70 dB(A), which exceeded the limitation stated in the "Environmental Quality Standard for Noise" (GB 3096-2008) in our country. However, with the sound insulation windows closed, the indoor noise levels reduced significantly to the level under 35 dB(A) (P<0.05), which complied with the indoor noise level standards in our country. The closed or open states of the sound insulation windows had significant influence on the indoor noise levels (P<0.05). Compared with the open state of the sound insulation window, when the sound insulation windows were closed, the indoor noise levels reduced 18.8 dB(A) and 8.3 dB(A) in residential rooms facing North 4th ring road side and campus side, respectively. The results indicated that installation of insulation windows had significant noise reduction effects on street residential buildings especially on the rooms facing major traffic roads. Installation of the sound insulation windows has significant preventive effects on indoor noise in the street residential building.

  7. Sunlight Responsive Thermochromic Window System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millett, F,A; Byker,H, J

    2006-10-27

    Pleotint has embarked on a novel approach with our Sunlight Responsive Thermochromic, SRT™, windows. We are integrating dynamic sunlight control, high insulation values and low solar heat gain together in a high performance window. The Pleotint SRT window is dynamic because it reversibly changes light transmission based on thermochromics activated directly by the heating effect of sunlight. We can achieve a window package with low solar heat gain coefficient (SHGC), a low U value and high insulation. At the same time our windows provide good daylighting. Our innovative window design offers architects and building designers the opportunity to choose theirmore » desired energy performance, excellent sound reduction, external pane can be self-cleaning, or a resistance to wind load, blasts, bullets or hurricanes. SRT windows would provide energy savings that are estimated at up to 30% over traditional window systems. Glass fabricators will be able to use existing equipment to make the SRT window while adding value and flexibility to the basic design. Glazing installers will have the ability to fit the windows with traditional methods without wires, power supplies and controllers. SRT windows can be retrofit into existing buildings,« less

  8. Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen Ph.D., Arild; Goudey, Howdy; Kohler, Christian

    2010-06-17

    While window frames typically represent 20-30percent of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. The Passivhaus Institute in Germany states that windows (glazing and frames, combined) should have U-values not exceeding 0.80 W/(m??K). This has created a niche market for highly insulating frames, with frame U-values typically around 0.7-1.0 W/(m2 cdot K). The U-values reported are often based on numerical simulationsmore » according to international simulation standards. It is prudent to check the accuracy of these calculation standards, especially for high performance products before more manufacturers begin to use them to improve other product offerings. In this paper the thermal transmittance of five highly insulating window frames (three wooden frames, one aluminum frame and one PVC frame), found from numerical simulations and experiments, are compared. Hot box calorimeter results are compared with numerical simulations according to ISO 10077-2 and ISO 15099. In addition CFD simulations have been carried out, in order to use the most accurate tool available to investigate the convection and radiation effects inside the frame cavities. Our results show that available tools commonly used to evaluate window performance, based on ISO standards, give good overall agreement, but specific areas need improvement.« less

  9. Closeup view of the exterior of the starboard side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the exterior of the starboard side of the forward fuselage of the Orbiter Discovery looking at the forward facing observation windows of the flight deck. Note the High-temperature Reusable Surface Insulation (HRSI) surrounding the window openings, the Low-temperature Reusable Surface Insulation (LRSI) immediately beyond the HRSI tiles and the Advanced Flexible Reusable Surface Insulation blankets just beyond the LRSI tiles. The holes in the tiles are injection points for the application of waterproofing material. The windows are composed of redundant pressure window panes of thermal glass. This image was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  10. Low-Emissivity, Energy-Control, Retrofit Window Film: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winckler, Lisa

    Solutia Performance Films, utilizing funding from the U.S. Department of Energy's Buildings Technologies Program, completed research to develop, validate, and commercialize a range of cost-effective, low-emissivity energy-control retrofit window films with significantly improved emissivity over current technology. These films, sold under the EnerLogic® trade name, offer the energy-saving properties of modern low-e windows, with several advantages over replacement windows, such as: lower initial installation cost, a significantly lower product carbon footprint, and an ability to provide a much faster return on investment. EnerLogic® window films also offer significantly greater energy savings than previously available with window films with similar visiblemore » light transmissions. EnerLogic® window films offer these energy-saving advantages over other window films due to its ability to offer both summer cooling and winter heating savings. Unlike most window films, that produce savings only during the cooling season, EnerLogic® window film is an all-season, low-emissivity (low-e) film that produces both cooling and heating season savings. This paper will present technical information on the development hurdles as well as details regarding the following claims being made about EnerLogic® window film, which can be found at www.EnerLogicfilm.com: 1. Other window film technologies save energy. EnerLogic® window film's patent-pending coating delivers excellent energy efficiency in every season, so no other film can match its annual dollar or energy consumption savings. 2. EnerLogic® window film is a low-cost, high-return technology that compares favorably to other popular energy-saving measures both in terms of energy efficiency and cost savings. In fact, EnerLogic® window film typically outperforms most of the alternatives in terms of simple payback. 3. EnerLogic® window film provides unparalleled glass insulating capabilities for window film products. With its patent-pending low-e technology, EnerLogic® window film has the best insulating performance of any film product available. The insulating power of EnerLogic® window film gives single-pane windows the annual insulating performance of double-pane windows - and gives double-pane windows the annual insulating performance of triple-pane windows.« less

  11. State-of-the-Art Highly Insulating Window Frames - Research and Market Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush

    2007-01-01

    This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethanemore » (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The review shows that the current knowledge gives the basis for improving the calculation procedures in the calculation standards. At the same time it is room for improvement within some areas, e.g. to fully understand the natural convection effects inside irregular vertical frame cavities (jambs) and ventilated frame cavities.« less

  12. Investigation of high temperature antennas for space shuttle

    NASA Technical Reports Server (NTRS)

    Kuhlman, E. A.

    1973-01-01

    The design and development of high temperature antennas for the space shuttle orbiter are discussed. The antenna designs were based on three antenna types, an annular slot (L-Band), a linear slot (C-Band), and a horn (C-Band). The design approach was based on combining an RF window, which provides thermal protection, with an off-the-shelf antenna. Available antenna window materials were reviewed and compared, and the materials most compatible with the design requirements were selected. Two antenna window design approaches were considered: one employed a high temperature dielectric material and a low density insulation material, and the other an insulation material usable for the orbiter thermal protection system. Preliminary designs were formulated and integrated into the orbiter structure. Simple electrical models, with a series of window configurations, were constructed and tested. The results of tests and analyses for the final antenna system designs are given and show that high temperature antenna systems consisting of off-the-shelf antennas thermally protected by RF windows can be designed for the Space Shuttle Orbiter.

  13. High Reliability R-10 Windows Using Vacuum Insulating Glass Units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, David

    2012-08-16

    The objective of this effort was for EverSealed Windows (“EverSealed” or “ESW”) to design, assemble, thermally and environmentally test and demonstrate a Vacuum Insulating Glass Unit (“VIGU” or “VIG”) that would enable a whole window to meet or exceed the an R-10 insulating value (U-factor ≤ 0.1). To produce a VIGU that could withstand any North American environment, ESW believed it needed to design, produce and use a flexible edge seal system. This is because a rigid edge seal, used by all other know VIG producers and developers, limits the size and/or thermal environment of the VIG to where themore » unit is not practical for typical IG sizes and cannot withstand severe outdoor environments. The rigid-sealed VIG’s use would be limited to mild climates where it would not have a reasonable economic payback when compared to traditional double-pane or triple-pane IGs. ESW’s goals, in addition to achieving a sufficiently high R-value to enable a whole window to achieve R-10, included creating a VIG design that could be produced for a cost equal to or lower than a traditional triple-pane IG (low-e, argon filled). ESW achieved these goals. EverSealed produced, tested and demonstrated a flexible edge-seal VIG that had an R-13 insulating value and the edge-seal system durability to operate reliably for at least 40 years in the harshest climates of North America.« less

  14. AICUZ Air Installation Compatible Use Zone Report for Mather Air Force Base, California.

    DTIC Science & Technology

    1982-09-01

    Insulation shall be glass fiber or mineral wool . 1-4 Windows a. Windows other than as described in this sectionshall have a laboratory sound transmission...above. Ceilings shall be substantially airtight, with a minimum number of penetrations. I b. Glass fiber or mineral wool insulation at least 2" thick...throughout the cavity space behind the exterior sheathing and between wall studs. Insulation shall be glass fiber or mineral wool . 2-4 Windows a

  15. Arcjet exploratory tests of ARC optical window design for the AFE vehicle

    NASA Technical Reports Server (NTRS)

    Whiting, Ellis E.; Terrazas-Salinas, Imelda; Craig, Roger A.; Sobeck, Charles K.; Sarver, George L., III; Salerno, Louis J.; Love, Wendell; Maa, Scott; Covington, AL

    1991-01-01

    Tests were made in the 20 MW arc jet facility at the NASA ARC to determine the suitability of sapphire and fused silica as window materials for the Aeroassist Flight Experiment (AFE) entry vehicle. Twenty nine tests were made; 25 at a heating rate about 80 percent of that expected during the AFE entry and 4 at approximately the full, 100 percent AFE heating rate profile, that produces a temperature of about 2900 F on the surface of the tiles that protect the vehicle. These tests show that a conductively cooled window design using mechanical thermal contacts and sapphire is probably not practical. Cooling the window using mechanical thermal contacts produces thermal stresses in the sapphire that cause the window to crack. An insulated design using sapphire, that cools the window as little as possible, appears promising although some spectral data in the vacuum-ultra-violet (VUV) will be lost due to the high temperature reached by the sapphire. The surface of the insulated sapphire windows, tested at the 100 percent AFE heating rate, showed some slight ablation, and cracks appeared in two of three test windows. One small group of cracks were obviously caused by mechanical binding of the window in the assembly, which can be eliminated with improved design. Other cracks were long, straight, thin crystallographic cracks that have very little effect on the optical transmission of the window. Also, the windows did not fall apart along these crystallographic cracks when the windows were removed from their assemblies. Theoretical results from the thermal analysis computer program SINDA indicate that increasing the window thickness from 4 to 8 mm may enable surface ablation to be avoided. An insulated design using a fused silica window tested at the nominal AFE heating rate experienced severe ablation, thus fused silica is not considered to be an acceptable window material.

  16. Light valve based on nonimaging optics with potential application in cold climate greenhouses

    NASA Astrophysics Data System (ADS)

    Valerio, Angel A.; Mossman, Michele A.; Whitehead, Lorne A.

    2014-09-01

    We have evaluated a new concept for a variable light valve and thermal insulation system based on nonimaging optics. The system incorporates compound parabolic concentrators and can readily be switched between an open highly light transmissive state and a closed highly thermally insulating state. This variable light valve makes the transition between high thermal insulation and efficient light transmittance practical and may be useful in plant growth environments to provide both adequate sunlight illumination and thermal insulation as needed. We have measured light transmittance values exceeding 80% for the light valve design and achieved thermal insulation values substantially exceeding those of traditional energy efficient windows. The light valve system presented in this paper represents a potential solution for greenhouse food production in locations where greenhouses are not feasible economically due to high heating cost.

  17. Using of Aerogel to Improve Thermal Insulating Properties of Windows

    NASA Astrophysics Data System (ADS)

    Valachova, Denisa; Zdrazilova, Nada; Panovec, Vladan; Skotnicova, Iveta

    2018-06-01

    For the best possible thermal-technical properties of building structures it is necessary to use materials with very low thermal conductivity. Due to the increasing thermal-technical requirements for building structures, the insulating materials are developed. One of the modern thermal insulating materials is so-called aerogel. Unfortunately, this material is not used in the field of external thermal insulation composite systems because of its price and its properties. The aim of this paper is to present possibilities of using this insulating material in the civil engineering - specifically a usage of aerogel in the production of windows.

  18. Sliding, Insulating Window Panel Reduces Heat Loss.

    ERIC Educational Resources Information Center

    School Business Affairs, 1984

    1984-01-01

    A new sliding insulated panel reduces window heat loss up to 86 percent, and infiltration 60-90 percent, paying for itself in 3-9 years. This article discusses the panel's use and testing in the upper Midwest, reporting both technical characteristics and users' reactions. (MCG)

  19. 77 FR 12588 - Long Fence & Home, LLLP; Analysis of Proposed Consent Order To Aid Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... homeowners can realize by replacing their windows, including the home's geographic location, size, insulation... window of a specific composition in a building having a specific level of insulation in a specific region..., energy savings, energy [[Page 12590

  20. Vacuum encapsulated hermetically sealed diamond amplified cathode capsule and method for making same

    DOEpatents

    Rao, Triveni; Walsh, John; Gangone, Elizabeth

    2014-12-30

    A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first cold-weld ring disposed between the cathode element and the annular insulating spacer and a second cold-weld ring disposed between the annular insulating spacer and the diamond window element. The cathode capsule is formed by a vacuum cold-weld process such that the first cold-weld ring forms a hermetical seal between the cathode element and the annular insulating spacer and the second cold-weld ring forms a hermetical seal between the annular spacer and the diamond window element whereby a vacuum encapsulated chamber is formed within the capsule.

  1. Mind the Gap: Summary of Window Residential Retrofit Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Joseph M.; Cort, Katherine A.; Widder, Sarah H.

    Improving the insulation, solar heat gain, and infiltration characteristics of windows in a home has the potential to significantly improve the overall thermal performance by reducing heat transfer through the window and also by decreasing infiltration of outdoor air into the home. As approximately 43% of existing homes still have single-pane clear windows (~50 million houses) and millions of other homes have only double-pane clear windows (Cort 2013), improving window performance also presents a significant opportunity for energy savings in the residential sector. Today, various energy-saving window retrofit opportunities are available to homeowners, ranging from window coverings and storm panelsmore » to highly-insulating triple-pane R-5 window replacements. Many of these technologies have been evaluated in the field, in the “Lab Homes” at Pacific Northwest National Laboratory, and through modeling to prove their cost-effectiveness and performance in different climate regions. Recently, the Pacific Northwest’s Regional Technical Forum approved a utility measure for low- emissivity storm windows based on such data. This action represents a watershed moment for increasing the variety and prevalence of fenestration options in utility programs, especially for the low-income demographic. This paper will review various window retrofit options, the most recent field test and modeling data regarding their performance and cost-effectiveness, and discuss future rating efforts. This information is useful for utilities and energy-efficiency program managers to help effectively implement incentive measures for these technologies.« less

  2. Apparatus for insulating windows and the like

    DOEpatents

    Mitchell, R.A.

    1984-06-19

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

  3. Apparatus for insulating windows and the like

    DOEpatents

    Mitchell, Robert A.

    1984-01-01

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

  4. Reflective insulating blinds for windows and the like

    DOEpatents

    Barnes, P.R.; Shapira, H.B.

    1979-12-07

    Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

  5. Reflective insulating blinds for windows and the like

    DOEpatents

    Barnes, Paul R.; Shapira, Hanna B.

    1981-01-01

    Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

  6. Builders Challenge High Performance Builder Spotlight: Artistic Homes, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-12-22

    Building America Builders Challenge fact sheet on Artistic Homes of Albuquerque, New Mexico. Standard features of their homes include advanced framed 2x6 24-inch on center walls, R-21 blown insulation in the walls, and high-efficiency windows.

  7. Benefit from NASA

    NASA Image and Video Library

    1997-03-05

    Scientists at Marshall Space Flight Center (MSFC) have been studying the properties of Aerogel for several years. Aerogel, the lightest solid known to man, has displayed a high quality for insulation. Because of its smoky countenance, it has yet to be used as an insulation on windows, but has been used in the space program on the rover Sojourner, and has been used as insulation in the walls of houses and in automobile engine compartments. As heat is applied to Aerogel, scientist Dr. David Noever of Space Sciences Laboratory, Principal Investigator of Aerogel, studies for its properties trying to uncover the secret to making Aerogel a clear substance. Once found, Aerogel will be a major component in the future of glass insulation.

  8. Commercialization Plan Support for Development of Low Cost Vacuum Insulating Glazing: Cooperative Research and Development Final Report, CRADA Number CRD-11-449

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dameron, Arrelaine

    During the duration of this CRADA, V-Glass and NREL will partner in testing, analysis, performance forecasting, costing, and evaluation of V-Glass’s GRIPWELD™ process technology for creating a low cost hermetic seal for conventional and vacuum glazing. Upon successful evaluation of hermeticity, V-Glass’s GRIPWELD™ will be evaluated for its potential use in highly insulating window glazing.

  9. Metal-Insulator-Semiconductor Photodetectors

    PubMed Central

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III–V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows. PMID:22163382

  10. Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanachareonkit, Anothai; Lee, Eleanor S.; McNeil, Andrew

    2013-08-31

    Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in amore » sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-towall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare probability and other metrics used to evaluate visual discomfort. The window film was found to result in perceptible levels of discomfort glare on clear sunny days from the most conservative view point in the rear of the room looking toward the window. Daylight illuminance levels at the rear of the room were significantly increased above the reference window condition, which was defined as the same glazed clerestory window but with an interior Venetian blind (slat angle set to the cut-off angle), for the equinox to winter solstice period on clear sunny days. For partly cloudy and overcast sky conditions, daylight levels were improved slightly. To reduce glare, the daylighting film was coupled with a diffusing film in an insulating glazing unit. The diffusing film retained the directionality of the redirected light spreading it within a small range of outgoing angles. This solution was found to reduce glare to imperceptible levels while retaining for the most part the illuminance levels achieved solely by the daylighting film.« less

  11. Improvement of sound insulation performance of double-glazed windows by using viscoelastic connectors

    NASA Astrophysics Data System (ADS)

    Takahashi, D.; Sawaki, S.; Mu, R.-L.

    2016-06-01

    A new method for improving the sound insulation performance of double-glazed windows is proposed. This technique uses viscoelastic materials as connectors between the two glass panels to ensure that the appropriate spacing is maintained. An analytical model that makes it possible to discuss the effects of spacing, contact area, and viscoelastic properties of the connectors on the performance in terms of sound insulation is developed. The validity of the model is verified by comparing its results with measured data. The numerical experiments using this analytical model showed the importance of the ability of the connectors to achieve the appropriate spacing and their viscoelastic properties, both of which are necessary for improving the sound insulation performance. In addition, it was shown that the most effective factor is damping: the stronger the damping, the more the insulation performance increases.

  12. Energy Conservation: Three Projects That Worked.

    ERIC Educational Resources Information Center

    American School and University, 1981

    1981-01-01

    Compact design and insulation cut energy use at a junior high school in Rexon (New Brunswick). Loma Linda University in California has reduced consumption of natural gas by installing cogeneration equipment. Morningside College in Sioux City (Iowa) has replaced deteriorating windows. (Author/MLF)

  13. Benefit from NASA

    NASA Image and Video Library

    1997-03-05

    Sceintist at Marshall Space Flight Center have been studying the properties of Aerogel for several years. Aerogel, the lightest solid known to man, has displayed a high quality for insulation. Because of its smoky countenance, it has yet to be used as an insulation on windows, but has been used in the space program on the rover Sojourner, and has been used as insulation in the walls of houses and in automobile engine compartments. MSFC is one of the many research facilities conducting experiments to unlock the smoky properties of Aerogel and make it a clear substance. Recent experimentations in microgravity have resulted in the microstructure of the material. Research on these changes is being continued.

  14. Method of fabricating a microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2003-01-01

    A method of fabricating a microelectronic device package with an integral window for providing optical access through an aperture in the package. The package is made of a multilayered insulating material, e.g., a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC). The window is inserted in-between personalized layers of ceramic green tape during stackup and registration. Then, during baking and firing, the integral window is simultaneously bonded to the sintered ceramic layers of the densified package. Next, the microelectronic device is flip-chip bonded to cofired thick-film metallized traces on the package, where the light-sensitive side is optically accessible through the window. Finally, a cover lid is attached to the opposite side of the package. The result is a compact, low-profile package, flip-chip bonded, hermetically-sealed package having an integral window.

  15. DOE Zero Energy Ready Home Case Study: Caldwell and Johnson — Church Community and Housing Corporation, Charlestown, RI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-09-01

    This DOE Zero Energy Ready Home garnered an Affordable Builder award in the 2014 Housing Innovation Awards, for its highly insulated construction, minisplit heat pump and water heater, and triple pane windows.

  16. Baxter Community—High Performance Green Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-02-16

    This case study describes the Baxter community built by David Weekley Homes, which is reducing their energy demand through a number of techniques including advanced air sealing techniques, the installation of SEER 14 air conditioners, and Low-e windows in conjunction with conventional framing and insulation.

  17. Energy Digest.

    ERIC Educational Resources Information Center

    Gaddy, Carol T., Ed.; Wells, Kathy, Ed.

    This collection of reprints offers practical solutions, not readily available elsewhere, to everyday energy problems, such as high utility bills, insulating windows, getting more gas mileage, or buying a more efficient washer or refrigerator. The Arkansas Energy Office provides a weekly column of energy news and conservation tips to newspapers,…

  18. 77 FR 12590 - Winchester Industries; Analysis of Proposed Consent Order To Aid Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... homeowners can realize by replacing their windows, including the home's geographic location, size, insulation... insulation in a specific region). The performance standard imposed under this Part constitutes fencing-in... costs, heating and cooling costs, U-factor, solar heat gain coefficient, R-value, K-value, insulating...

  19. 77 FR 12586 - Serious Energy, Inc.; Analysis of Proposed Consent Order To Aid Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... the home's geographic location, size, insulation package, and existing windows. Consumers who replace... insulation in a specific region). The performance standard imposed under this Part constitutes fencing-in... costs, heating and cooling costs, U-factor, solar heat gain coefficient, R-value, K-value, insulating...

  20. Synthesis of optically clear polymeric materials for high temperature windows. [preparation of phenolphthalein polycarbonate resin

    NASA Technical Reports Server (NTRS)

    Pannell, C. E.; Magner, J. E.

    1973-01-01

    A polymer has been developed that has excellent potential for use as windows in spacecraft as well as conventional aircraft. This polymer, phenolphthalein polycarbonate, has outstanding thermal properties, e.g., in place of melting or burning, it produces an insulating charred foam that closes off transmission of radiant heat through the window. This fact, coupled with an oxygen index of 0.43 and a 177 C tensile strength of 58 mega Newtons/sq m, makes this polymer a prime candidate for further development. Pilot plant preparation in a 20 gallon Pfaudler kettle was accomplished and large test specimens were prepared for evaluations.

  1. Best Practices Case Study: Imagine Homes - Stillwater Ranch, San Antonio, TX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2011-04-01

    This case study describes Imagine Homes, who met Builders Challenge criteria on more than 200 homes in San Antonio with rigid foam exterior sheathing, ducts and air handler in conditioned space in a spray-foam insulated attic, and high-efficiency HVAC, windows, and appliances.

  2. New Material Saves School Dollars.

    ERIC Educational Resources Information Center

    School Business Affairs, 1984

    1984-01-01

    Hobbs Window Insulation, an inexpensive polyester material, can reduce heat loss or gain through single-pane glass by 70 percent. The product is translucent, has an insulative value of R-3, and is easy to install and remove. (MCG)

  3. Affordable Window Insulation with R-10/inch Rating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenifer Marchesi Redouane Begag; Je Kyun Lee; Danny Ou

    2004-10-15

    During the performance of contract DE-FC26-00-NT40998, entitled ''Affordable Window Insulation with R-10/inch Value'', research was conducted at Aspen Aerogels, Inc. to develop new transparent aerogel materials suitable for window insulation applications. The project requirements were to develop a formulation or multiple formulations that have high transparency (85-90%) in the visible region, are hydrophobic (will not opacify with exposure to water vapor or liquid), and have at least 2% resiliency (interpreted as recoverable 2% strain and better than 5% strain to failure in compression). Results from an unrelated project showed that silica aerogels covalently bonded to organic polymers exhibit excellent mechanicalmore » properties. At the outset of this project, we believed that such a route is the best to improve mechanical properties. We have applied Design of Experiment (DOE) techniques to optimize formulations including both silica aerogels and organically modified silica aerogels (''Ormosils''). We used these DOE results to optimize formulations around the local/global optimization points. This report documents that we succeeded in developing a number of formulations that meet all of the stated criteria. We successfully developed formulations utilizing a two-step approach where the first step involves acid catalyzed hydrolysis and the second step involves base catalyzed condensation to make the gels. The gels were dried using supercritical CO{sub 2} and we were able to make 1 foot x 1 foot x 0.5 inch panels that met the criteria established.« less

  4. Extreme Cold: A Prevention Guide to Promote Your Personal Health and Safety

    MedlinePlus

    ... possible, weatherproof your home by adding weather- stripping, insulation, insulated doors and storm windows, or thermal-pane ... colored cloth for added traction) 4 Indoor Safety Heat Your Home Safely If you plan to use ...

  5. Transmission-geometry electrochemical cell for in-situ scattering and spectroscopy investigations

    DOEpatents

    Chupas, Peter J.; Chapman, Karena W.; Kurtz, Charles A.; Borkiewicz, Olaf J.; Wiaderek, Kamila Magdelena; Shyam, Badri

    2015-05-05

    The present invention relates to a test chamber that can be used to perform a variety of X-ray and neutron spectroscopy experiments including powder diffraction, small-angle scattering, X-ray absorption spectroscopy, and pair distribution functions, such chamber comprising a first electrode with an X-ray transparent window; a second electrode with an X-ray transparent window; a plurality of insulating gaskets providing a hermetic seal around the sample and preventing contact between said first and second electrodes; and an insulating housing into which the first electrode is secured.

  6. Size constraints on a Majorana beam-splitter interferometer: Majorana coupling and surface-bulk scattering

    NASA Astrophysics Data System (ADS)

    Røising, Henrik Schou; Simon, Steven H.

    2018-03-01

    Topological insulator surfaces in proximity to superconductors have been proposed as a way to produce Majorana fermions in condensed matter physics. One of the simplest proposed experiments with such a system is Majorana interferometry. Here we consider two possibly conflicting constraints on the size of such an interferometer. Coupling of a Majorana mode from the edge (the arms) of the interferometer to vortices in the center of the device sets a lower bound on the size of the device. On the other hand, scattering to the usually imperfectly insulating bulk sets an upper bound. From estimates of experimental parameters, we find that typical samples may have no size window in which the Majorana interferometer can operate, implying that a new generation of more highly insulating samples must be explored.

  7. Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qingkun; Frazier, Allister W.; Zhao, Xinpeng

    Experimental realization of optically transparent, mechanically robust and flexible aerogels has been a longstanding challenge, which limits their practical applications in energy-saving devices, such as thermally insulating films for enhancing energy efficiency of windows. The poor transparency precluded even hypothetical consideration of the possibility of birefringent aerogels. We develop birefringent and optically isotropic aerogels that combine properties of thermal super-insulation, mechanical robustness and flexibility, and transparency to visible-spectrum light. This unusual combination of physical properties is achieved by combining liquid crystalline self-organization of cellulose nanofibers with polysiloxane cross-linking and control of the nanoscale porosity to form hybrid organic-inorganic mesostructured aerogels.more » Potential applications of these inexpensive materials range from single pane window retrofitting to smart fabrics.« less

  8. Smart window coating based on F-TiO2-KxWO3 nanocomposites with heat shielding, ultraviolet isolating, hydrophilic and photocatalytic performance

    PubMed Central

    Liu, Tongyao; Liu, Bin; Wang, Jing; Yang, Linfen; Ma, Xinlong; Li, Hao; Zhang, Yihong; Yin, Shu; Sato, Tsugio; Sekino, Tohru; Wang, Yuhua

    2016-01-01

    A series of smart window coated multifunctional NIR shielding-photocatalytic films were fabricated successfully through KxWO3 and F-TiO2 in a low-cost and environmentally friendly process. Based on the synergistic effect of KxWO3 and F-TiO2, the optimal proportion of KxWO3 to F-TiO2 was investigated and the FT/2KWO nanocomposite film exhibited strong near-infrared, ultraviolet light shielding ability, good visible light transmittance, high photocatalytic activity and excellent hydrophilic capacity. This film exhibited better thermal insulation capacity than ITO and higher photocatalytic activity than P25. Meanwhile, the excellent stability of this film was examined by the cycle photocatalytic degradation and thermal insulation experiments. Overall, this work is expected to provide a possibility in integrating KxWO3 with F-TiO2, so as to obtain a multifunctional NIR shielding-photocatalytic nanocomposite film in helping solve the energy crisis and deteriorating environmental issues. PMID:27265778

  9. Chioke Harris | NREL

    Science.gov Websites

    transfer and materials science to the development of high-performance building components. He is member of the Building Energy Science Group, his research focuses on the application of fundamental heat particularly interested in the development of novel opaque insulation and window frame materials using nano

  10. Dynamic modeling of potentially conflicting energy reduction strategies for residential structures in semi-arid climates.

    PubMed

    Hester, Nathan; Li, Ke; Schramski, John R; Crittenden, John

    2012-04-30

    Globally, residential energy consumption continues to rise due to a variety of trends such as increasing access to modern appliances, overall population growth, and the overall increase of electricity distribution. Currently, residential energy consumption accounts for approximately one-fifth of total U.S. energy consumption. This research analyzes the effectiveness of a range of energy-saving measures for residential houses in semi-arid climates. These energy-saving measures include: structural insulated panels (SIP) for exterior wall construction, daylight control, increased window area, efficient window glass suitable for the local weather, and several combinations of these. Our model determined that energy consumption is reduced by up to 6.1% when multiple energy savings technologies are combined. In addition, pre-construction technologies (structural insulated panels (SIPs), daylight control, and increased window area) provide roughly 4 times the energy savings when compared to post-construction technologies (window blinds and efficient window glass). The model also illuminated the importance variations in local climate and building configuration; highlighting the site-specific nature of this type of energy consumption quantification for policy and building code considerations. Published by Elsevier Ltd.

  11. Best Practices Case Study: CDC Realty, Inc. - Centennial Terrace, Tucson, AZ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-01

    Case study on CDC Realty who achieved HERS 70 by putting ducts in a conditioned attic insulated along the roofline with netted cellulose, R-5 rigid insulated sheathing over R-19 wall cavity insulation, and deep overhangs and low-e windows to minimize solar heat gain. The 17 homes are solar-ready for solar water heating and five have integral collector storage hot water systems on the roof.

  12. Organic memory device with self-assembly monolayered aptamer conjugated nanoparticles

    NASA Astrophysics Data System (ADS)

    Oh, Sewook; Kim, Minkeun; Kim, Yejin; Jung, Hunsang; Yoon, Tae-Sik; Choi, Young-Jin; Jung Kang, Chi; Moon, Myeong-Ju; Jeong, Yong-Yeon; Park, In-Kyu; Ho Lee, Hyun

    2013-08-01

    An organic memory structure using monolayered aptamer conjugated gold nanoparticles (Au NPs) as charge storage nodes was demonstrated. Metal-pentacene-insulator-semiconductor device was adopted for the non-volatile memory effect through self assembly monolayer of A10-aptamer conjugated Au NPs, which was formed on functionalized insulator surface with prostate-specific membrane antigen protein. The capacitance versus voltage (C-V) curves obtained for the monolayered Au NPs capacitor exhibited substantial flat-band voltage shift (ΔVFB) or memory window of 3.76 V under (+/-)7 V voltage sweep. The memory device format can be potentially expanded to a highly specific capacitive sensor for the aptamer-specific biomolecule detection.

  13. Influence of coatings on the thermal and mechanical processes at insulating glass units

    NASA Astrophysics Data System (ADS)

    Penkova, Nina; Krumov, Kalin; Surleva, Andriana; Geshkova, Zlatka

    2017-09-01

    Different coatings on structural glass are used in the advances transparent facades and window systems in order to increase the thermal performance of the glass units and to regulate their optical properties. Coated glass has a higher absorptance in the solar spectrum which leads to correspondent higher temperature in the presence of solar load compared to the uncoated one. That process results in higher climatic loads at the insulating glass units (IGU) and in thermal stresses in the coated glass elements. Temperature fields and gradients in glass panes and climatic loads at IGU in window systems are estimated at different coating of glazed system. The study is implemented by numerical simulation of conjugate heat transfer in the window systems at summer time and presence of solar irradiation, as well as during winter night time.

  14. Transparent Wood Smart Windows: Polymer Electrochromic Devices Based on Poly(3,4-Ethylenedioxythiophene):Poly(Styrene Sulfonate) Electrodes.

    PubMed

    Lang, Augustus W; Li, Yuanyuan; De Keersmaecker, Michel; Shen, D Eric; Österholm, Anna M; Berglund, Lars; Reynolds, John R

    2018-03-09

    Transparent wood composites, with their high strength and toughness, thermal insulation, and excellent transmissivity, offer a route to replace glass for diffusely transmitting windows. Here, conjugated-polymer-based electrochromic devices (ECDs) that switch on-demand are demonstrated using transparent wood coated with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a transparent conducting electrode. These ECDs exhibit a vibrant magenta-to-clear color change that results from a remarkably colorless bleached state. Furthermore, they require low energy and power inputs of 3 mWh m -2 at 2 W m -2 to switch due to a high coloration efficiency (590 cm 2  C -1 ) and low driving voltage (0.8 V). Each device component is processed with high-throughput methods, which highlights the opportunity to apply this approach to fabricate mechanically robust, energy-efficient smart windows on a large scale. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Advanced Solar Receivers

    NASA Technical Reports Server (NTRS)

    Owen, W. A.

    1984-01-01

    Low thermal efficiencies in solar receivers are discussed in terms of system design. It is recommended that careful attention be given to the overall thermal systems design, especially to conductive losses about the window and areas of relatively thin insulation. If the cavity design is carefully managed to insure a small, minimally reradiating aperture, the goal of a very high efficiency cavity receiver is a realistic one.

  16. SIP Shear Walls: Cyclic Performance of High-Aspect-Ratio Segments and Perforated Walls

    Treesearch

    Vladimir Kochkin; Douglas R. Rammer; Kevin Kauffman; Thomas Wiliamson; Robert J. Ross

    2015-01-01

    Increasing stringency of energy codes and the growing market demand for more energy efficient buildings gives structural insulated panel (SIP) construction an opportunity to increase its use in commercial and residential buildings. However, shear wall aspect ratio limitations and lack of knowledge on how to design SIPs with window and door openings are barriers to the...

  17. Around Marshall

    NASA Image and Video Library

    1996-06-18

    Scientists at MSFC have been studying the properties of Aerogel for several years. Aerogel, the lightest solid known to man, has displayed a high quality for insulation. Because of its smoky countenance it has yet to be used as an insulation on windows, but has been used to insulate the walls of houses and engine compartments in cars. It was also used in the space program as insulating material on the rover Sojourner, aboard the Mars Pathfinder. MSFC is one of the many research facilities conducting experiments to unlock the smoky properties of aerogel and make it a clear substance. MSFC researchers believe that by taking this research to space, they can resolve the problem of making aerogel transparent enough to see through. So far, recent space experiments have been encouraging. The samples produced in microgravity indicate a change in the microstructure of the material as compared to ground samples. MSFC scientists continue to study the effects of microgravity on Aerogel as their research is space continues.

  18. Life test results for an ensemble of CO2 lasers

    NASA Technical Reports Server (NTRS)

    Peruso, C. J.; Degnan, J. J.; Hochuli, U. E.

    1978-01-01

    The effects of cathode material, cathode operating temperature, anode configuration, window materials, and hydrogen additives on laser lifetime are determined. Internally oxidized copper and silber-copper alloy cathodes were tested. The cathode operating temperature was raised in some tubes through the use of thermal insulation. Lasers incorporating thermally insulated silver copper oxide cathodes clearly yielded the longest lifetimes-typically in excess of 22,000 hours. The use of platinum sheet versus platinum pin anodes had no observable effect on laser lifetime. Similarly, the choice of germanium, cadmium telluride, or zinc selenide as the optical window material appears to have no impact on lifetime.

  19. 10 CFR 429.53 - Walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... insulation, and a declaration that the manufacturer has incorporated the applicable design requirements. In... windows (e.g., double-pane with heat reflective treatment, triple-pane glass with gas fill), and the power...-value of the insulation (except for glazed portions of the doors or structural members) (iii) For WICF...

  20. 77 FR 12591 - THV Holdings LLC; Analysis of Proposed Consent Order To Aid Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... homeowners can realize by replacing their windows, including the home's geographic location, size, insulation... having a specific level of insulation in a specific region). The performance standard imposed under this... consumption, energy savings, energy costs, heating and cooling costs, U-factor, solar heat gain coefficient, R...

  1. 10 CFR 429.53 - Walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... insulation, and a declaration that the manufacturer has incorporated the applicable design requirements. In... windows (e.g., double-pane with heat reflective treatment, triple-pane glass with gas fill), and the power...-value of the insulation (except for glazed portions of the doors or structural members) (iii) For WICF...

  2. 77 FR 12584 - Gorell Enterprises, Inc.; Analysis of Proposed Consent Order To Aid Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... location, size, insulation package, and existing windows. Consumers who replace single or double-paned wood... a building having a specific level of insulation in a specific region). The performance standard... consumption, energy savings, energy costs, heating and cooling costs, U-factor, solar heat gain coefficient, R...

  3. 10 CFR 429.53 - Walk-in coolers and walk-in freezers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... insulation, and a declaration that the manufacturer has incorporated the applicable design requirements. In... windows (e.g., double-pane with heat reflective treatment, triple-pane glass with gas fill), and the power...-value of the insulation (except for glazed portions of the doors or structural members) (iii) For WICF...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  5. Fabrication of Hydrogenated Diamond Metal-Insulator-Semiconductor Field-Effect Transistors.

    PubMed

    Liu, Jiangwei; Koide, Yasuo

    2017-01-01

    Diamond is regarded as a promising material for fabrication of high-power and high-frequency electronic devices due to its remarkable intrinsic properties, such as wide band gap energy, high carrier mobility, and high breakdown field. Meanwhile, since diamond has good biocompatibility, long-term durability, good chemical inertness, and a large electron-chemical potential window, it is a suitable candidate for the fabrication of biosensors. Here, we demonstrate the fabrication of hydrogenated diamond (H-diamond) based metal-insulator-semiconductor field-effect transistors (MISFETs). The fabrication is based on the combination of laser lithography, dry-etching, atomic layer deposition (ALD), sputtering deposition (SD), electrode evaporation, and lift-off techniques. The gate insulator is high-k HfO 2 with a SD/ALD bilayer structure. The thin ALD-HfO 2 film (4.0 nm) acts as a buffer layer to prevent the hydrogen surface of the H-diamond from plasma discharge damage during the SD-HfO 2 deposition. The growth of H-diamond epitaxial layer, fabrication of H-diamond MISFETs, and electrical property measurements for the MISFETs is demonstrated. This chapter explains the fabrication of H-diamond FET based biosensors.

  6. Causes and Solutions for High Energy Consumption in Traditional Buildings Located in Hot Climate Regions

    NASA Astrophysics Data System (ADS)

    Barayan, Olfat Mohammad

    A considerable amount of money for high-energy consumption is spent in traditional buildings located in hot climate regions. High-energy consumption is significantly influenced by several causes, including building materials, orientation, mass, and openings' sizes. This paper aims to identify these causes and find practical solutions to reduce the annual cost of bills. For the purpose of this study, simulation research method has been followed. A comparison between two Revit models has also been created to point out the major cause of high-energy consumption. By analysing different orientations, wall insulation, and window glazing and applying some other high performance building techniques, a conclusion was found to confirm that appropriate building materials play a vital role in affecting energy cost. Therefore, the ability to reduce the energy cost by more than 50% in traditional buildings depends on a careful balance of building materials, mass, orientation, and type of window glazing.

  7. Study of the effect of ZnO film on some properties of clear and color window glass

    NASA Astrophysics Data System (ADS)

    Hamead, Alaa A. Abdul; Ahmed, Sura S.; Khdheer, Mena F.

    2018-05-01

    In the current research, a samples of transparent color and colorless window glass were prepared, (includes metal transition oxides) for construction applications. A nano-film layer of zinc oxide ZnO was deposited by spray pyrolysis technique for use in sustainability applications prepared. Structural properties (x-ray diffraction XRD, scanning electron microscopy SEM and atomic force microscopy AFM), and thermal properties, as well as optical properties and the effect of weathering conditions on applied film on clear and colored glass were examined. The results showed that the deposition film had a thickness of less than 90nm and that it was crystallized with high optical transparently, that was not significantly affected after deposited the ZnO nano film. While thermal insulation decreased significantly after deposition, and the effect of the weather conditions was very low as the ZnO coating was not affected, as the thermal insulation did not change after exposure to accelerated air conditions. Make it suitable in glass applications for buildings in vertical construction.

  8. Pentacene-based metal-insulator-semiconductor memory structures utilizing single walled carbon nanotubes as a nanofloating gate

    NASA Astrophysics Data System (ADS)

    Sleiman, A.; Rosamond, M. C.; Alba Martin, M.; Ayesh, A.; Al Ghaferi, A.; Gallant, A. J.; Mabrook, M. F.; Zeze, D. A.

    2012-01-01

    A pentacene-based organic metal-insulator-semiconductor memory device, utilizing single walled carbon nanotubes (SWCNTs) for charge storage is reported. SWCNTs were embedded, between SU8 and polymethylmethacrylate to achieve an efficient encapsulation. The devices exhibit capacitance-voltage clockwise hysteresis with a 6 V memory window at ± 30 V sweep voltage, attributed to charging and discharging of SWCNTs. As the applied gate voltage exceeds the SU8 breakdown voltage, charge leakage is induced in SU8 to allow more charges to be stored in the SWCNT nodes. The devices exhibited high storage density (˜9.15 × 1011 cm-2) and demonstrated 94% charge retention due to the superior encapsulation.

  9. A transparent electrochromic metal-insulator switching device with three-terminal transistor geometry

    NASA Astrophysics Data System (ADS)

    Katase, Takayoshi; Onozato, Takaki; Hirono, Misako; Mizuno, Taku; Ohta, Hiromichi

    2016-05-01

    Proton and hydroxyl ion play an essential role for tuning functionality of oxides because their electronic state can be controlled by modifying oxygen off-stoichiometry and/or protonation. Tungsten trioxide (WO3), a well-known electrochromic (EC) material for smart window, is a wide bandgap insulator, whereas it becomes a metallic conductor HxWO3 by protonation. Although one can utilize electrochromism together with metal-insulator (MI) switching for one device, such EC-MI switching cannot be utilized in current EC devices because of their two-terminal structure with parallel-plate configuration. Here we demonstrate a transparent EC-MI switchable device with three-terminal TFT-type structure using amorphous (a-) WO3 channel layer, which was fabricated on glass substrate at room temperature. We used water-infiltrated nano-porous glass, CAN (calcium aluminate with nano-pores), as a liquid-leakage-free solid gate insulator. At virgin state, the device was fully transparent in the visible-light region. For positive gate voltage, the active channel became dark blue, and electrical resistivity of the a-WO3 layer drastically decreased with protonation. For negative gate voltage, deprotonation occurred and the active channel returned to transparent insulator. Good cycleability of the present transparent EC-MI switching device would have potential for the development of advanced smart windows.

  10. Improved Comfort | Efficient Windows Collaborative

    Science.gov Websites

    temperature; how low the glass temperature drops depends on the window's insulating quality. If people are exposed to the effects of a cold surface, they can experience significant radiant heat loss to that cold surface and they feel uncomfortable, even if the room air temperature is comfortable. When the interior

  11. Coupling of an applied field magnetically insulated ion diode to a high power magnetically insulated transmission line system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maenchen, J.E.

    1983-01-01

    The coupling of energy from a high power pulsed accelerator through a long triplate magnetically insulated transmission line (MITL) in vacuum to an annular applied magnetic field insulated extraction ion diode is examined. The narrow power transport window and the wave front erosion of the MITL set stringent impedance history conditions on the diode load. A new ion diode design developed to satisfy these criteria with marginal electron insulation is presented. The LION accelerator is used to provide a positive polarity 1.5 MV, 350 kA, 40 ns FWHM pulse with a 30 kA/ns current rate from a triplate MITL source.more » A transition converts the triplate into a cylindrical cross section which flares into the ion diode load. Extensive current and voltage measurements performed along this structure and on the extracted ion beam provide conclusive evidence that the self insulation condition of the MITL is maintained in the transition by current loss alone. The ion diode utilizes a radial magnetic field between a grounded cathode annular emission tip and a disk anode. A 50 cm/sup 2/ dielectric/metal anode area serves as the ion plasma source subject to direct electron bombardment from the opposing cathode tip under marginal magnetic insulation conditions. The ions extracted cross the radial magnetic field and exit the diode volume as an annular cross section beam of peak current about 100 kA. The diode current gradually converts from the initial electron flow to nearly 100% ion current af« less

  12. The improvement of a simple theoretical model for the prediction of the sound insulation of double leaf walls.

    PubMed

    Davy, John L

    2010-02-01

    This paper presents a revised theory for predicting the sound insulation of double leaf cavity walls that removes an approximation, which is usually made when deriving the sound insulation of a double leaf cavity wall above the critical frequencies of the wall leaves due to the airborne transmission across the wall cavity. This revised theory is also used as a correction below the critical frequencies of the wall leaves instead of a correction due to Sewell [(1970). J. Sound Vib. 12, 21-32]. It is found necessary to include the "stud" borne transmission of the window frames when modeling wide air gap double glazed windows. A minimum value of stud transmission is introduced for use with resilient connections such as steel studs. Empirical equations are derived for predicting the effective sound absorption coefficient of wall cavities without sound absorbing material. The theory is compared with experimental results for double glazed windows and gypsum plasterboard cavity walls with and without sound absorbing material in their cavities. The overall mean, standard deviation, maximum, and minimum of the differences between experiment and theory are -0.6 dB, 3.1 dB, 10.9 dB at 1250 Hz, and -14.9 dB at 160 Hz, respectively.

  13. Low heat transfer, high strength window materials

    DOEpatents

    Berlad, Abraham L.; Salzano, Francis J.; Batey, John E.

    1978-01-01

    A multi-pane window with improved insulating qualities; comprising a plurality of transparent or translucent panes held in an essentially parallel, spaced-apart relationship by a frame. Between at least one pair of panes is a convection defeating means comprising an array of parallel slats or cells so designed as to prevent convection currents from developing in the space between the two panes. The convection defeating structures may have reflective surfaces so as to improve the collection and transmittance of the incident radiant energy. These same means may be used to control (increase or decrease) the transmittance of solar energy as well as to decouple the radiative transfer between the interior surfaces of the transparent panes.

  14. HVI Ballistic Limit Characterization of Fused Silica Thermal Panes

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Bohl, W. D.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.

    2015-01-01

    Fused silica window systems are used heavily on crewed reentry vehicles, and they are currently being used on the next generation of US crewed spacecraft, Orion. These systems improve crew situational awareness and comfort, as well as, insulating the reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are highly exposed to space environment hazards like solid particle impacts. This paper discusses impact studies up to 10 km/s on a fused silica window system proposed for the Orion spacecraft. A ballistic limit equation that describes the threshold of perforation of a fuse silica pane over a broad range of impact velocities, obliquities and projectile materials is discussed here.

  15. Aerogel: From Aerospace to Apparel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Aspen Systems Inc. developed an aerogel-manufacturing process solved the handling problems associated with aerogel-based insulation products. Their aerogels can now be manufactured into blankets, thin sheets, beads, and molded parts; and may be transparent, translucent, or opaque. Aspen made the material effective for window and skylight insulation, non-flammable building insulation, and inexpensive firewall insulation that will withstand fires in homes and buildings, and also assist in the prevention of forest fires. Another Aspen product is Spaceloft(TM); an inexpensive, flexible blanket that incorporates a thin layer of aerogel embedded directly into the fabric. Spaceloft, is incorporated into jackets intended for wear in extremely harsh conditions and activities, such as Antarctic expeditions.

  16. 10 CFR 431.306 - Energy conservation standards and their effective dates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., ceiling, and door insulation of at least R-25 for coolers and R-32 for freezers, except that this... insulation of at least R-28 for freezers; (5) For evaporator fan motors of under 1 horsepower and less than... freezers and windows in walk-in freezer doors shall be of triple-pane glass with either heat-reflective...

  17. 10 CFR 431.306 - Energy conservation standards and their effective dates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., ceiling, and door insulation of at least R-25 for coolers and R-32 for freezers, except that this... insulation of at least R-28 for freezers; (5) For evaporator fan motors of under 1 horsepower and less than... freezers and windows in walk-in freezer doors shall be of triple-pane glass with either heat-reflective...

  18. 10 CFR 431.306 - Energy conservation standards and their effective dates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., ceiling, and door insulation of at least R-25 for coolers and R-32 for freezers, except that this... insulation of at least R-28 for freezers; (5) For evaporator fan motors of under 1 horsepower and less than... freezers and windows in walk-in freezer doors shall be of triple-pane glass with either heat-reflective...

  19. 10 CFR 431.306 - Energy conservation standards and their effective dates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., ceiling, and door insulation of at least R-25 for coolers and R-32 for freezers, except that this... insulation of at least R-28 for freezers; (5) For evaporator fan motors of under 1 horsepower and less than... freezers and windows in walk-in freezer doors shall be of triple-pane glass with either heat-reflective...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This case study describes a DOE Zero Energy Ready Home in Greenbank, Washington that scored HERS 37 without PV and a -5 with PV. This 1,955 ft2 custom home has 6.5-inch structural insulated panel (SIPs) walls, a 10.25-inch SIPS roof, an R-20 insulated slab, a 2-ton ground source heat pump, radiant floor heat, 7.1 kWh PV, and triple-pane windows.

  1. Options for reducing carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arthur H.; Price, Lynn

    1992-03-01

    Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of ``cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for U.S. buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefitted from energy conservation research and development (R&D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed.

  2. Economic Analysis of Understanding and Implementing Design Criteria for Acoustic Suppression in Military Residential Units

    DTIC Science & Technology

    1991-06-01

    ASTM to provide a single number rating system for insulation of common building materials, compound structures, doors, windows, ect. It is also...illustrate this, Figure (4) shows a cost relationship of providing noise suppression in walls. The walls are made of 2 X 4 wood studs, drywall and fibrous...INSULATION, 2 LAYERS 1/2" DRYWALL BOTH SIDES STC 55 TWO ROWS WOOD STUDS, 6" FIBROUS INSULATION, 1 LAYER 1/2" DRYWALL BOTH SIDES STC 50 2 X 4 STUDS, 3 1/2

  3. Two-Band, Low-Loss Microwave Window

    NASA Technical Reports Server (NTRS)

    Britcliffe, Michael; Franco, Manuel

    2007-01-01

    A window for a high-sensitivity microwave receiving system allows microwave radiation to pass through to a cryogenically cooled microwave feed system in a vacuum chamber, while keeping ambient air out of the chamber and helping to keep the interior of the chamber cold. The microwave feed system comprises a feed horn and a low-noise amplifier, both of which are required to be cooled to a temperature of 15 K during operation. The window is designed to exhibit very little microwave attenuation in two frequency bands: 8 to 9 GHz and 30 to 40 GHz. The window is 15 cm in diameter. It includes three layers (see figure): 1) The outer layer is made of a poly(tetrafluoroethylene) film 0.025 mm thick. This layer serves primarily to reflect and absorb solar ultraviolet radiation to prolong the life of the underlying main window layer, which is made of a polyimide that becomes weakened when exposed to ultraviolet. The poly(tetrafluoroethylene) layer also protects the main window layer against abrasion. Moreover, the inherent hydrophobicity of poly(tetrafluoroethylene) helps to prevent the highly undesirable accumulation of water on the outer surface. 2) The polyimide main window layer is 0.08 mm thick. This layer provides the vacuum seal for the window. 3) A 20-mm-thick layer of ethylene/ propylene copolymer foam underlies the main polyimide window layer. This foam layer acts partly as a thermal insulator: it limits radiational heating of the microwave feed horn and, concomitantly, limits radiational cooling of the window. This layer has high compressive strength and provides some mechanical support for the main window layer, reducing the strength required of the main window layer. The ethylene/propylene copolymer foam layer is attached to an aluminum window ring by means of epoxy. The outer poly(tetrafluoroethylene) film and the main polyimide window layer are sandwiched together and pressed against the window ring by use of a bolted clamp ring. The window has been found to introduce a microwave loss of only about 0.4 percent. The contribution of the window to the noise temperature of the microwave feed system has been found to be less than 1 K at 32 GHz and 0.2 K at 8.4 GHz.

  4. USACE Takes Going Green to New Heights

    DTIC Science & Technology

    2010-08-01

    building of the same size—a savings of 4.5 mil- lion gallons of drinking water annually. To accomplish this, low-flow faucets , urinals, and showerheads... conserved with the help of room occupancy sensors that will automatically turn lights on and off, depending on whether a room is being occupied. Natural...round for the personnel. To conserve this air, large windows in the complex will be highly insulated to prevent air from leak- ing outside the

  5. Energy Savers: Tips on Saving Money & Energy at Home

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  6. Energy Saver: Tips on Saving Money & Energy at Home

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  7. Design of the thermal insulating test system for doors and windows of buildings

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Qi, Jinqing; Xu, Yunwei; Wu, Hao; Ou, Jinping

    2011-04-01

    Thermal insulating properties of doors and widows are important parameter to measure the quality of windows and doors. This paper develops the thermal insulating test system of doors and windows for large temperature difference in winter in north of China according to national standards. This system is integrated with temperature measurement subsystem, temperature control subsystem, the heating power measurement subsystem, and heat transfer coefficient calculated subsystem. The temperature measurement subsystem includes temperature sensor which is implemented by sixty-four thermocouple sensors to measure the key positions of cold room and hot room, and the temperature acquisition unit which adopts Agilent 34901A data acquisition card to achieve self-compensation and accurate temperature capture. The temperature control subsystem including temperature controller and compressor system is used to control the temperature between 0 degree to 20 degree for hot room and -20 degree to 0 degree for cold room. The hot room controller uses fuzzy control algorithm to achieve accurate control of temperature and the cold room controller firstly uses compressor to achieve coarse control and then uses more accurate temperature controller unit to obtain constant temperature(-20 degree). The heating power measurement is mainly to get the heat power of hot room heating devices. After above constant temperature environment is constructed, software of the test system is developed. Using software, temperature data and heat power data can be accurately got and then the heat transfer coefficient, representing the thermal insulating properties of doors and widows, is calculated using the standard formula. Experimental results show that the test system is simple, reliable and precise. It meets the testing requirements of national standard and has a good application prospect.

  8. A Pilot Demonstration of Electrochromic and Thermochromic Windows in the Denver Federal Center, Building 41, Denver, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eleanor S.; Fernandes, Luis L.; Goudey, Chad Howdy

    Chromogenic glazing materials are emerging technologies that tint reversibly from a clear to dark tinted state either passively in response to environmental conditions or actively in response to a command from a switch or building automation system. Switchable coatings on glass manage solar radiation and visible light while enabling unobstructed views to the outdoors. Building energy simulations estimate that actively controlled, near-term chromogenic glazings can reduce perimeter zone heating, ventilation, and airconditioning (HVAC) and lighting energy use by 10-20% and reduce peak electricity demand by 20-30%, achieving energy use levels that are lower than an opaque, insulated wall. This projectmore » demonstrates the use of two types of chromogenic windows: thermochromic and electrochromic windows. By 2013, these windows will begin production in the U.S. by multiple vendors at high-volume manufacturing plants, enabling lower cost and larger area window products to be specified. Both technologies are in the late R&D stage of development, where cost reductions and performance improvements are underway. Electrochromic windows have been installed in numerous buildings over the past four years, but monitored energy-efficiency performance has been independently evaluated in very limited applications. Thermochromic windows have been installed in one other building with an independent evaluation, but results have not yet been made public.« less

  9. Determination of Thermal Transmittance of Insulated Double Low-E Glazing Panel Using Portable Uglass Measuring Technique

    NASA Astrophysics Data System (ADS)

    Kim, Inkoo; Frenzl, Alexander; Kim, Taehan; Min, Steven; Blumm, Jürgen

    2018-01-01

    Windows are regarded as the primary object of energy efficiency in buildings because window is one of the major energy loss areas in building construction. Existing methods were not field measurements and were not enough to get the correct thermal transmittance. We used portable Ug measuring device on field and measured the thermal transmittance with low-E coated and uncoated double glazing panels in existing houses, apartments and buildings. In addition, we prepared four test benches and compared the insulation performance according to the construction conditions. In results, the insulation performance of double glazing panel with low-E coating is up to about 41 % higher than uncoated panel due to low-E coating inside and the glazing panel filled with about 90 % of argon gas decrease about 0.15 W \\cdot m^{-2} \\cdot K^{-1} than glazing panel filled with air gas. The measured results were compared with the theoretically calculated results according to DIN EN 673 to confirm the reliability of the analytical results. In this study, portable NETZSCH Uglass is used to increase the accuracy of calculation of thermal transmittance with various double and triple glazing panels. The paper analyzes the insulation performance of the double glazing panels in accordance with the construction conditions.

  10. Encapsulation of ZnO particles by metal fluorides: Towards an application as transparent insulating coatings for windows

    NASA Astrophysics Data System (ADS)

    Trenque, Isabelle; Mornet, Stéphane; Duguet, Etienne; Majimel, Jérôme; Brüll, Annelise; Teinz, Katharina; Kemnitz, Erhard; Gaudon, Manuel

    2013-01-01

    Because ZnO is a promising candidate for getting efficient films or varnishes with thermal insulating abilities for windows applications, the effect of the encapsulation of ZnO particles in shells of low refractive index material on the improvement of the visible light transmission was investigated. ZnO-MgF2 core-shell particles were synthesized by deposition of fluoride sols on ZnO particles through a vacuum slip casting process like. The transmission behaviours were first indirectly studied by diffuse reflexion measurements on powder beds. Then, particle films were elaborated by a screen printing process which ensured direct transmission measurements. The encapsulation of ZnO particles with a coating shell of 1.3 wt.% of MgF2 improves the visible light transmission of 32%.

  11. Multi-layered nanocomposite dielectrics for high density organic memory devices

    NASA Astrophysics Data System (ADS)

    Kang, Moonyeong; Chung, Kyungwha; Baeg, Kang-Jun; Kim, Dong Ha; Kim, Choongik

    2015-01-01

    We fabricated organic memory devices with metal-pentacene-insulator-silicon structure which contain double dielectric layers comprising 3D pattern of Au nanoparticles (Au NPs) and block copolymer (PS-b-P2VP). The role of Au NPs is to charge/discharge carriers upon applied voltage, while block copolymer helps to form highly ordered Au NP patterns in the dielectric layer. Double-layered nanocomposite dielectrics enhanced the charge trap density (i.e., trapped charge per unit area) by Au NPs, resulting in increase of the memory window (ΔVth).

  12. Light-induced metal-insulator transition in a switchable mirror.

    PubMed

    Hoekstra, A F; Roy, A S; Rosenbaum, T F; Griessen, R; Wijngaarden, R J; Koeman, N J

    2001-06-04

    Rare earth hydride films can be converted reversibly from metallic mirrors to insulating windows simply by changing the surrounding hydrogen gas pressure at room temperature. At low temperatures, in situ doping is not possible in this way as hydrogen cannot diffuse. However, our finding of persistent photoconductivity under ultraviolet illumination offers an attractive possibility to tune yttrium hydride through the T = 0 metal-insulator transition. Conductivity and Hall measurements are used to determine critical exponents. The unusually large value for the product of the static and dynamical critical exponents appears to signify the important role played by electron-electron interactions.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This case study describes a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers of mineral wool batt insulation, an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and triple-pane windows.

  14. Tailored plasmon-induced transparency in attenuated total reflection response in a metal-insulator-metal structure.

    PubMed

    Matsunaga, Kouki; Hirai, Yusuke; Neo, Yoichiro; Matsumoto, Takahiro; Tomita, Makoto

    2017-12-19

    We demonstrated tailored plasmon-induced transparency (PIT) in a metal (Au)-insulator (SiO 2 )-metal (Ag) (MIM) structure, where the Fano interference between the MIM waveguide mode and the surface plasmon polariton (SPP) resonance mode induced a transparency window in an otherwise opaque wavenumber (k) region. A series of structures with different thicknesses of the Ag layer were prepared and the attenuated total reflection (ATR) response was examined. The height and width of the transparency window, as well as the relevant k-domain dispersion, were controlled by adjusting the Ag layer thickness. To confirm the dependency of PIT on Ag layer thickness, we performed numerical calculations to determine the electric field amplitude inside the layers. The steep k-domain dispersion in the transparency window is capable of creating a lateral beam shift known as the Goos-Hänchen shift, for optical device and sensor applications. We also discuss the Fano interference profiles in a ω - k two-dimensional domain on the basis of Akaike information criteria.

  15. Winter Storms and Extreme Cold

    MedlinePlus

    ... your home to keep out the cold with insulation, caulking, and weather stripping. Learn how to keep ... and grills outdoors and away from windows. Never heat your home with a gas stovetop or oven. ...

  16. Characterization of metal-ferroelectric-insulator-semiconductor structures based on ferroelectric Langmuir-Blodgett polyvinylidene fluoride copolymer films for nondestructive random access memory applications

    NASA Astrophysics Data System (ADS)

    Reece, Timothy James

    Ferroelectric field effect transistors (FeFETs) have attracted much attention recently because of their ability to combine high speed, low power consumption, and fast nondestructive readout with the potential for high density nonvolatile memory. The polarization of the ferroelectric is used to switch the channel at the silicon surface between states of high and low conductance. Among the ferroelectric thin films used in FET devices; the ferroelectric copolymer of Polyvinylidene fluoride, PVDF (C2H2F 2), with trifluoroethylene, TrFE (C2HF3), has distinct advantages, including low dielectric constant, low processing temperature, low cost and compatibility with organic semiconductors. By employing the Langmuir-Blodgett technique, films as thin as 1.8 nm can be deposited, reducing the operating voltage. An MFIS structure consisting of aluminum, 170 nm P(VDF-TrFE), 100 nm silicon oxide and n-type silicon exhibited low leakage current (˜1x10 -8 A/cm2), a large memory window (4.2 V) and operated at 35 Volts. The operating voltage was lowered through use of high k insulators like cerium oxide. A sample consisting of 25 nm P(VDF-TrFE), 30 nm cerium oxide and p-type silicon exhibited a 1.9 V window with 7 Volt gate amplitude. The leakage current in this case was considerably higher (1x10 -6 A/cm2). The characterization, modeling, and fabrication of metal-ferroelectricinsulator semiconductor (MFIS) structures based on these films are discussed.

  17. Accommodation and Compliance Series: Employees with Arthritis

    MedlinePlus

    ... handed keyboard, an articulating keyboard tray, speech recognition software, a trackball, and office equipment for a workstation ... space heater, additional window insulation, and speech recognition software. An insurance clerk with arthritis from systemic lupus ...

  18. Department of Defense Expenditure Plans

    DTIC Science & Technology

    2009-03-20

    Substation , Feeder 198 E 1316 Coventry Air National Guard St RI Ext. Insul System and Roof 509 E 1317 Mounted Cmds Arm Providence RI Reroof USPFO 540 R 1318...that serve as the foundation for the many Defense functions needed to defend this nation. Division A , Title III of the Recovery Act provides $4.24...Replace Windows in Building 662 (Barracks) 795 E 4 Fort Greely AK Repair Exterior With Insulation Finish System on Building 662 777 E 5 Fort Greely AK

  19. Spray Foam Exterior Insulation with Stand-Off Furring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herk, Anastasia; Baker, Richard; Prahl, Duncan

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizesmore » physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.« less

  20. Spray Foam Exterior Insulation with Stand-Off Furring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herk, Anatasia; Baker, Richard; Prahl, Duncan

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizesmore » physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using "L" clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and "picture framing" the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.« less

  1. Preliminary Conservation Tables From The National Interim Energy Consumption Survey CONSUMPTION SURVEY

    EIA Publications

    1979-01-01

    The focus of this report is the conservation activities performed by households since January 1977, and the status of households with respect to insulation, storm windows, and other energy conserving characteristics.

  2. Test Program Seeks to Lower School Heating Costs.

    ERIC Educational Resources Information Center

    School Business Affairs, 1980

    1980-01-01

    As part of the second year of its Schoolhouse Energy Efficiency Demonstration (SEED) program, Tenneco, Inc. recently began a test of experimental window insulation material in three of the schools audited last year. (Author/MLF)

  3. 36 CFR 51.51 - What special terms must I know to understand leasehold surrender interest?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., windows, rafters, roofing, framing, siding, lumber, insulation, wallpaper, paint, etc.). Because of their... and sewer lines) and constructed site improvements (e.g., paved roads, retaining walls, sidewalks...

  4. 36 CFR 51.51 - What special terms must I know to understand leasehold surrender interest?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., windows, rafters, roofing, framing, siding, lumber, insulation, wallpaper, paint, etc.). Because of their... and sewer lines) and constructed site improvements (e.g., paved roads, retaining walls, sidewalks...

  5. 36 CFR 51.51 - What special terms must I know to understand leasehold surrender interest?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., windows, rafters, roofing, framing, siding, lumber, insulation, wallpaper, paint, etc.). Because of their... and sewer lines) and constructed site improvements (e.g., paved roads, retaining walls, sidewalks...

  6. 36 CFR 51.51 - What special terms must I know to understand leasehold surrender interest?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., windows, rafters, roofing, framing, siding, lumber, insulation, wallpaper, paint, etc.). Because of their... and sewer lines) and constructed site improvements (e.g., paved roads, retaining walls, sidewalks...

  7. 36 CFR 51.51 - What special terms must I know to understand leasehold surrender interest?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., windows, rafters, roofing, framing, siding, lumber, insulation, wallpaper, paint, etc.). Because of their... and sewer lines) and constructed site improvements (e.g., paved roads, retaining walls, sidewalks...

  8. External Insulation of Masonry Walls and Wood Framed Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and hasmore » been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.« less

  9. External Insulation of Masonry Walls and Wood Framed Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and hasmore » been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.« less

  10. Nanoscale Multigate TiN Metal Nanocrystal Memory Using High-k Blocking Dielectric and High-Work-Function Gate Electrode Integrated on Silcon-on-Insulator Substrate

    NASA Astrophysics Data System (ADS)

    Lu, Chi-Pei; Luo, Cheng-Kei; Tsui, Bing-Yue; Lin, Cha-Hsin; Tzeng, Pei-Jer; Wang, Ching-Chiun; Tsai, Ming-Jinn

    2009-04-01

    In this study, a charge-trapping-layer-engineered nanoscale n-channel trigate TiN nanocrystal nonvolatile memory was successfully fabricated on silicon-on-insulator (SOI) wafer. An Al2O3 high-k blocking dielectric layer and a P+ polycrystalline silicon gate electrode were used to obtain low operation voltage and suppress the back-side injection effect, respectively. TiN nanocrystals were formed by annealing TiN/Al2O3 nanolaminates deposited by an atomic layer deposition system. The memory characteristics of various samples with different TiN wetting layer thicknesses, post-deposition annealing times, and blocking oxide thicknesses were also investigated. The sample with a thicker wetting layer exhibited a much larger memory window than other samples owing to its larger nanocrystal size. Good retention with a mere 12% charge loss for up to 10 years and high endurance were also obtained. Furthermore, gate disturbance and read disturbance were measured with very small charge migrations after a 103 s stressing bias.

  11. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  12. Low-E Storm Windows Gain Acceptance as a Home Weatherization Measure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbride, Theresa L.; Cort, Katherine A.

    This article for Home Energy Magazine describes work by the U.S. Department of Energy to develop low-emissivity storm windows as an energy efficiency-retrofit option for existing homes. The article describes the low-emissivity invisible silver metal coatings on the glass, which reflect heat back into the home in winter or back outside in summer and the benefits of low-e storm windows including insulation, air sealing, noise blocking, protection of antique windows, etc. The article also describes Pacific Northwest National Laboratory's efforts on behalf of DOE to overcome market barriers to adoption of the technology, including performance validation studies in the PNNLmore » Lab Homes, cost effectiveness analysis, production of reports, brochures, how-to guides on low-e storm window installation for the Building America Solution Center, and a video posted on YouTube. PNNL's efforts were reviewed by the Pacific Northwest Regional Technical Forum (RTF), which serves as the advisory board to the Pacific Northwest Electric Power Planning Council and Bonneville Power Administration. In late July 2015, the RTF approved the low-e storm window measure’s savings and specifications, a critical step in integrating low-e storm windows into energy-efficiency planning and utility weatherization and incentive programs. PNNL estimates that more than 90 million homes in the United States with single-pane or low-performing double-pane windows would benefit from the technology. Low-e storm windows are suitable not only for private residences but also for small commercial buildings, historic properties, and facilities that house residents, such as nursing homes, dormitories, and in-patient facilities. To further assist in the market transformation of low-e storm windows and other high-efficiency window attachments, DOE helped found the window Attachment Energy Rating Council (AERC) in 2015. AERC is an independent, public interest, non-profit organization whose mission is to rate, label, and certify the performance of window attachments.« less

  13. Probing Electron Transfer Mechanisms in Shewanella oneidensis MR-1 using a Nanoelectrode Platform and Single-Cell Imaging

    DTIC Science & Technology

    2010-01-01

    investigate extracellu- lar electron transfer in Shewanella oneidensisMR-1,where an array of nanoholes precludes or single window allows for direct...the single-cell level (Fig. 1B) highlights the re- lative sizes of the nanohole and window openings in the insulating layer deposited over electrodes...relative to individual bacteria such as Shewanella. The nanoholes are sufficiently small to preclude direct contact of the bacterial cell body to the

  14. Engineering Assessment of Big House at Summit Station, Greenland

    DTIC Science & Technology

    2011-04-01

    Open cell expanded polystyrene insulation c EPS is not thought to be under the T-111 siding (communication 04 Nov 2010) d Quad-pane window ERDC...eastern side of the building where, in 2008, the roof access hatch was relocated. In 1999, the exterior was re-sheathed with 38- mm expanded ... polystyrene (EPS) insulation and 12.7-mm T-111 siding, which was attached with a number of fasteners. The wall thickness is 178 mm (Fig. 3). In 2006, a

  15. Environmental Assessment: Demolition of McGuire Central Heat Plant at Joint Base McGuire-Dix-Lakehurst, New Jersey

    DTIC Science & Technology

    2012-06-01

    insulation, boiler, holding tank and duct coverings, floor tiles , window caulking/glazing, and corrugated building siding. The asbestos insulation and...facility, with the Bulk Fuel Storage area and the golf course located between them. BOMARC is located several miles from the proposed solar sites...Architectural Resources The Central Heat Plant was constructed in 1956. It is a flat- roofed building originally rectangular in form, and is now L-shaped. The

  16. Flight Performance of a Functionally Gradient Material, TUFI, on Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Leister, Daniel B.; Stewart, David A.; DiFiore, Robert; Tipton, Bradford; Gordon, Michael P.; Arnold, Jim (Technical Monitor)

    2001-01-01

    TUFI (Toughened Uni-Piece Fibrous Insulation), a functionally gradient material has been successfully flying on the Shuttle Orbiters in several locations on two insulation substrates over the past few years. TUFI is composed of insulation and a gradated surface treatment. The locations it has flown include the base heat shield where damage had been observed after every flight before its application. It was also applied to the body flap, the bottom of the body flap and around selected windows and doors where damage had been observed in the past. A description of the types of processing used including substrates will be presented and its overall performance will be reviewed.

  17. Effect of temperature on the electrical properties of a metal-ferroelectric (SrBi2Ta2O9)-insulator (HfTaO)-silicon capacitor

    NASA Astrophysics Data System (ADS)

    Chen, Y. Q.; Xu, X. B.; Lei, Z. F.; Y Liao, X.; Wang, X.; Zeng, C.; En, Y. F.; Huang, Y.

    2015-01-01

    A metal-ferroelectric (SrBi2Ta2O9)-insulator (HfTaO)-semiconductor capacitor was fabricated, and the temperature dependence of its electrical properties was investigated. Within the temperature range of 300-220 K, the maximum memory window is up to 1.26 V, and it could be attributed to a higher coercive field of the ferroelectric film at a lower temperature, which is induced by the deeper and more box-shaped potential well based on the defect-domain interaction model. The memory window decreases with increasing temperature from 300 to 400 K, and the larger sweep voltage leads to a smaller memory window at a higher temperature, which could be attributed to temperature-dependent polarization of the ferroelectric film and charge injection from an Si substrate of the capacitor. With the temperature increasing from 220 to 400 K, the leakage current density increases with temperature by about one order, and the corresponding conduction mechanism is discussed. The results could provide useful guidelines for design and application of ferroelectric memory.

  18. Technical - Economic Research for Passive Buildings

    NASA Astrophysics Data System (ADS)

    Miniotaite, Ruta

    2017-10-01

    A newly constructed passive house must save 80 % of heat resources; otherwise it is not a passive house. The heating energy demand of a passive building is less than 15 kWh/m2 per year. However, a passive house is something more than just an energy-saving house. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Features of a passive house: high insulation of envelope components, high-quality windows, good tightness of the building, regenerative ventilation system and elimination of thermal bridges. The Energy Performance of Buildings Directive (EPBD) 61 requires all new public buildings to become near-zero energy buildings by 2019 and will be extended to all new buildings by 2021. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Foundation, walls and roofs are the most essential elements of a house. The type of foundation for a private house is selected considering many factors. The article examines technological and structural solutions for passive buildings foundation, walls and roofs. The technical-economic comparison of the main structures of a passive house revealed that it is cheaper to install an adequately designed concrete slab foundation than to build strip or pile foundation and the floor separately. Timber stud walls are the cheapest wall option for a passive house and 45-51% cheaper compared to other options. The comparison of roofs and ceilings showed that insulation of the ceiling is 25% more efficient than insulation of the roof. The comparison of the main envelope elements efficiency by multiple-criteria evaluation methods showed that it is economically feasible to install concrete slab on ground foundation, stud walls with sheet cladding and a pitched roof with insulated ceiling.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moto, Kenta; Sadoh, Taizoh; Miyao, Masanobu, E-mail: miyao@ed.kyushu-u.ac.jp

    Crystalline GeSn-on-insulator structures with high Sn concentration (>8%), which exceeds thermal equilibrium solid-solubility (∼2%) of Sn in Ge, are essential to achieve high-speed thin film transistors and high-efficiency optical devices. We investigate non-thermal equilibrium growth of Ge{sub 1−x}Sn{sub x} (0 ≤ x ≤ 0.2) on quartz substrates by using pulsed laser annealing (PLA). The window of laser fluence enabling complete crystallization without film ablation is drastically expanded (∼5 times) by Sn doping above 5% into Ge. Substitutional Sn concentration in grown layers is found to be increased with decreasing irradiation pulse number. This phenomenon can be explained on the basis of significant thermal non-equilibriummore » growth achieved by higher cooling rate after PLA with a lower pulse number. As a result, GeSn crystals with substitutional Sn concentration of ∼12% are realized at pulse irradiation of single shot for the samples with the initial Sn concentration of 15%. Raman spectroscopy and electron microscopy measurements reveal the high quality of the grown layer. This technique will be useful to fabricate high-speed thin film transistors and high-efficiency optical devices on insulating substrates.« less

  20. What Light through Yonder Window Breaks?--The Greenhouse Effect Revisited.

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    1992-01-01

    Presents three experiments exploring aspects of the greenhouse effect. Topics and discussion includes radiation in energy transfer, emissivity and absorptivity, the irrelevance of reflectivity, a digression on insulators and convection, climate change, and radiative energy balance. (MCO)

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This case study describes a DOE Zero Energy Ready Home in Boulder, Colorado, that scored HERS 38 without PV and 0 with PV. This 2,504 ft2 custom home has advanced framed walls, superior insulation a ground-source heat pump, ERV, and triple-pane windows.

  2. Plasmonic mode interferences and Fano resonances in Metal-Insulator- Metal nanostructured interface

    PubMed Central

    Nicolas, Rana; Lévêque, Gaëtan; Marae-Djouda, Joseph; Montay, Guillame; Madi, Yazid; Plain, Jérôme; Herro, Ziad; Kazan, Michel; Adam, Pierre-Michel; Maurer, Thomas

    2015-01-01

    Metal-insulator-metal systems exhibit a rich underlying physics leading to a high degree of tunability of their spectral properties. We performed a systematic study on a metal-insulator-nanostructured metal system with a thin 6 nm dielectric spacer and showed how the nanoparticle sizes and excitation conditions lead to the tunability and coupling/decoupling of localized and delocalized plasmonic modes. We also experimentally evidenced a tunable Fano resonance in a broad spectral window 600 to 800 nm resulting from the interference of gap modes with white light broad band transmitted waves at the interface playing the role of the continuum. By varying the incident illumination angle shifts in the resonances give the possibility to couple or decouple the localized and delocalized modes and to induce a strong change of the asymmetric Fano profile. All these results were confirmed with a crossed comparison between experimental and theoretical measurements, confirming the nature of different modes. The high degree of control and tunability of this plasmonically rich system paves the way for designing and engineering of similar systems with numerous applications. In particular, sensing measurements were performed and a figure of merit of 3.8 was recorded ranking this sensor among the highest sensitive in this wavelength range. PMID:26399425

  3. Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate.

    PubMed

    Kim, So-Jung; Jeon, Da-Bin; Park, Jung-Ho; Ryu, Min-Ki; Yang, Jong-Heon; Hwang, Chi-Sun; Kim, Gi-Heon; Yoon, Sung-Min

    2015-03-04

    Nonvolatile memory thin-film transistors (TFTs) fabricated on paper substrates were proposed as one of the eco-friendly electronic devices. The gate stack was composed of chicken albumen gate insulator and In-Ga-Zn-O semiconducting channel layers. All the fabrication processes were performed below 120 °C. To improve the process compatibility of the synthethic paper substrate, an Al2O3 thin film was introduced as adhesion and barrier layers by atomic layer deposition. The dielectric properties of biomaterial albumen gate insulator were also enhanced by the preparation of Al2O3 capping layer. The nonvolatile bistabilities were realized by the switching phenomena of residual polarization within the albumen thin film. The fabricated device exhibited a counterclockwise hysteresis with a memory window of 11.8 V, high on/off ratio of approximately 1.1 × 10(6), and high saturation mobility (μsat) of 11.5 cm(2)/(V s). Furthermore, these device characteristics were not markedly degraded even after the delamination and under the bending situration. When the curvature radius was set as 5.3 cm, the ION/IOFF ratio and μsat were obtained to be 5.9 × 10(6) and 7.9 cm(2)/(V s), respectively.

  4. KSC-98pc930

    NASA Image and Video Library

    1998-08-10

    In the Tile Fabrication Shop, Tony Rollins, with United Space Alliance, cuts a High-Temperature Reusable Surface Insulation (HRSI) tile on a gun stock contour milling machine. About 70 percent of a Space Shuttle orbiter’s external surface is shielded from heat by a network of more than 24,000 tiles formed from a silica fiber compound. HRSI tiles cover the lower surface of the orbiter, areas around the forward windows, upper body flap, the base heat shield, the "eyeballs" on the front of the Orbital Maneuvering System (OMS) pods, and the leading and trailing edges of the vertical stabilizer and the rudder speed brake. They are generally 6 inches square, but may also be as large as 12 inches square in some areas, and 1 to 5 inches thick. More advanced materials such as Flexible Insulation Blankets have replaced tiles on some upper surfaces of the orbiter

  5. Tony Rollins prepares a new tile for the Space Shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Tile Fabrication Shop, Tony Rollins, with United Space Alliance, cuts a High-Temperature Reusable Surface Insulation (HRSI) tile on a gun stock contour milling machine. About 70 percent of a Space Shuttle orbiter's external surface is shielded from heat by a network of more than 24,000 tiles formed from a silica fiber compound. HRSI tiles cover the lower surface of the orbiter, areas around the forward windows, upper body flap, the base heat shield, the 'eyeballs' on the front of the Orbital Maneuvering System (OMS) pods, and the leading and trailing edges of the vertical stabilizer and the rudder speed brake. They are generally 6 inches square, but may also be as large as 12 inches square in some areas, and 1 to 5 inches thick. More advanced materials such as Flexible Insulation Blankets have replaced tiles on some upper surfaces of the orbiter.

  6. Whiskerless Schottky diode

    NASA Technical Reports Server (NTRS)

    Bishop, William L. (Inventor); Mcleod, Kathleen A. (Inventor); Mattauch, Robert J. (Inventor)

    1991-01-01

    A Schottky diode for millimeter and submillimeter wave applications is comprised of a multi-layered structure including active layers of gallium arsenide on a semi-insulating gallium arsenide substrate with first and second insulating layers of silicon dioxide on the active layers of gallium arsenide. An ohmic contact pad lays on the silicon dioxide layers. An anode is formed in a window which is in and through the silicon dioxide layers. An elongated contact finger extends from the pad to the anode and a trench, preferably a transverse channel or trench of predetermined width, is formed in the active layers of the diode structure under the contact finger. The channel extends through the active layers to or substantially to the interface of the semi-insulating gallium arsenide substrate and the adjacent gallium arsenide layer which constitutes a buffer layer. Such a structure minimizes the effect of the major source of shunt capacitance by interrupting the current path between the conductive layers beneath the anode contact pad and the ohmic contact. Other embodiments of the diode may substitute various insulating or semi-insulating materials for the silicon dioxide, various semi-conductors for the active layers of gallium arsenide, and other materials for the substrate, which may be insulating or semi-insulating.

  7. Building America Case Study: Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation, Cold Climate Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    High-R wall assemblies (R-40 and above) are gaining popularity in the market due to programs like the DOE's Zero Energy Ready Home program, Passive House (PH), Net Zero Energy Home (NZEH) challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used 'double wall' systems to more practically achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double wall systems is that there are very few new exterior details. Exterior sheathing, structural bracing, house wrap or building paper, window andmore » door flashing, and siding attachment are usually identical to good details in conventional framed wall systems. The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and result in a reduction of material brought to landfills due to failures and resulting decay. While this document focuses on double wall framing techniques, the majority of the information on how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super insulated homes.« less

  8. Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arena, Lois B.

    High-R wall assemblies (R-40 and above) are gaining popularity in the market due to programs like the DOE's Zero Energy Ready Home program, Passive House (PH), Net Zero Energy Home (NZEH) challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used 'double wall' systems to more practically achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double wall systems is that there are very few new exterior details. Exterior sheathing, structural bracing, house wrap or building paper, window andmore » door flashing, and siding attachment are usually identical to good details in conventional framed wall systems. The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and result in a reduction of material brought to landfills due to failures and resulting decay. While this document focuses on double wall framing techniques, the majority of the information on how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super insulated homes.« less

  9. KSC-97pc559

    NASA Image and Video Library

    1997-04-02

    Yesterday, NASA decided to postpone for 24-hours the launch of Columbia on mission STS-83 due to a requirement to add additional thermal insulation to water coolant lines in the orbiter's payload bay. The water coolant lines are seen here winding their way around the window on the left. Managers determined that the lines, which cool various electronics on the orbiter, were not properly insulated and could possibly freeze during Columbia's 16-days in space. Columbia's launch is now set for 2:00 p.m. EST on Friday, April 4, 1997

  10. Adhesion characteristics of VO2 ink film sintered by intense pulsed light for smart window

    NASA Astrophysics Data System (ADS)

    Youn, Ji Won; Lee, Seok-Jae; Kim, Kwang-Seok; Kim, Dae Up

    2018-05-01

    Progress in the development of energy-efficient coatings on glass has led to the research of smart windows that can modulate solar energy in response to an external stimulus like light, heat, or electricity. Thermochromic smart windows have attracted great interest because they provide highly visible transparency and intelligently controllable solar heat. VO2 has been widely used as coating material for thermochromism owing to its reversible metal-to-insulator transition near room temperature. However, unstable crystalline phases and expensive fabrication processes of VO2 films limit their facile application in smart windows. To overcome these restrictions, we manufactured nanoinks based on VO2 nanoparticles and fabricated films using spin coating and intense pulsed light (IPL) sintering on a quartz substrate. We examined adhesion between the VO2 nanoink films and the quartz substrate by varying the applied voltages and the number of pulses. The average adhesion of thin films increased to 83 and 108 N/m as the applied voltage during IPL sintering increased from 1400 to 2000 V. By increasing the number of pulses from 5 to 20, the adhesive strength increased from 83 to 94 N/m at 1400 V, and decreased from 108 to 96 N/m at 2000 V voltage.

  11. 77 FR 36085 - Enterprise Underwriting Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... National Laboratory showed that homes with solar PV systems had an average $17,000 sales price premium... projects, such as solar panels, insulation, energy-efficient windows, and other technologies. Homeowners... Berkeley National Laboratory * * * showed an average $17,000 sales price premium for homes with solar P...

  12. Fabrication and characterization of Aerogel-Polydimethyl siloxane (PDMS) Insulation Film

    NASA Astrophysics Data System (ADS)

    Noh, Yeoung ah; Song, Sinae; Taik Kim, Hee

    2018-03-01

    The building has a large impact on the space heating demand and the indoor environment is affected by climate or daylight. Hence, silica aerogel has generally used as a film to reduce the coefficient of the window in the building. Silica aerogel is a suitable material to apply for insulation material with lower thermal conductivity than that of air to save interior energy. However expensive precursor and drying process were the main issue of the silica aerogel synthesis and practical usage. We attempt to fabricate aerogel insulation film for energy saving through the economic process under ambient pressure. Silica aerogel was synthesized from rice husk ash, which was an agricultural waste to be able to recycle. Taguchi design was used to optimize the parameters (amount of rice husk ash, pH, aging time) controlling the surface area of silica aerogel. The silica aerogel is prepared by sol-gel processing through acidic treatment and aging. The silica aerogel was obtained by modification of silica hydrogel surface and dry at ambient pressure. Finally, aerogel film was respectively fabricated by the different content of aerogel in polydimethylsiloxane (PDMS). Silica aerogel obtained 21 – 24nm average particle size was analyzed by SEM and silica aerogel with high surface area (832.26 m2/g), pore size ( 3.30nm ) was characterized by BET. Then silica Aerogel – PDMS insulation film with thermal conductivity (0.002 W/mK) was analyzed by thermal wave system. The study demonstrates an eco-friendly and low-cost route toward silica – PDMS insulation film with low thermal conductivity (0.002 W/mK).

  13. New Whole-House Solutions Case Study: John Wesley Miller, Tucson, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This builder worked with the National Association of Home Builders Research Center to build two net-zero energy homes with foam-sheathed masonry walls, low-E windows 2.9 ACH50 air sealing, transfer grilles, ducts in insulated attic, PV, and solar water heating.

  14. Energy Conservation Experiments You Can Do...from Edison.

    ERIC Educational Resources Information Center

    Thomas Alva Edison Foundation, Southfield, MI.

    Background information, lists of materials needed, and procedures are provided for 11 energy conservation experiments. They include: (1) five experiments on heating and cooling (investigating how insulation works, investigating how weatherstripping works, investigating how storm windows work, building a draftometer, and letting sun heat a house);…

  15. Energy Management Checklist for the Home.

    ERIC Educational Resources Information Center

    Pifer, Glenda

    This booklet contains a checklist of equipment and activities for the individual's use in home energy management. The categories covered include: (1) insulation; (2) windows; (3) temperature control; (4) lighting; (5) heating water; (6) laundry; (7) cleaning and maintenance; (8) cooking; (9) refrigeration; (10) dishwashing; (11) recreation; and…

  16. Coaxial Electric Heaters

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2008-01-01

    Coaxial electric heaters have been conceived for use in highly sensitive instruments in which there are requirements for compact heaters but stray magnetic fields associated with heater electric currents would adversely affect operation. Such instruments include atomic clocks and magnetometers that utilize heated atomic-sample cells, wherein stray magnetic fields at picotesla levels could introduce systematic errors into instrument readings. A coaxial electric heater is essentially an axisymmetric coaxial cable, the outer conductor of which is deliberately made highly electrically resistive so that it can serve as a heating element. As in the cases of other axisymmetric coaxial cables, the equal magnitude electric currents flowing in opposite directions along the inner and outer conductors give rise to zero net magnetic field outside the outer conductor. Hence, a coaxial electric heater can be placed near an atomic-sample cell or other sensitive device. A coaxial electric heater can be fabricated from an insulated copper wire, the copper core of which serves as the inner conductor. For example, in one approach, the insulated wire is dipped in a colloidal graphite emulsion, then the emulsion-coated wire is dried to form a thin, uniform, highly electrically resistive film that serves as the outer conductor. Then the film is coated with a protective layer of high-temperature epoxy except at the end to be electrically connected to the power supply. Next, the insulation is stripped from the wire at that end. Finally, electrical leads from the heater power supply are attached to the exposed portions of the wire and the resistive film. The resistance of the graphite film can be tailored via its thickness. Alternatively, the film can be made from an electrically conductive paint, other than a colloidal graphite emulsion, chosen to impart the desired resistance. Yet another alternative is to tailor the resistance of a graphite film by exploiting the fact that its resistance can be changed permanently within about 10 percent by heating it to a temperature above 300 C. A coaxial heater, with electrical leads attached, that has been bent into an almost full circle for edge heating of a circular window is shown. (In the specific application, there is a requirement for a heated cell window, through which an optical beam enters the cell.)

  17. Net-Zero Building Technologies Create Substantial Energy Savings -

    Science.gov Websites

    -by-step information for decision making around net-zero energy building technologies. The past three improved insulation, windows, and heating and cooling systems. Despite these strides, energy use by energy building methodologies and technologies during a tour of the RSF's rooftop PV system. Photo by

  18. Power Grab

    ERIC Educational Resources Information Center

    Jacobs, Paula

    2009-01-01

    Peter Pistorino says there is a name for the way he thinks a school district should launch an energy conservation initiative: an "envelope" approach. The term refers to looking at the outside package of a structure to check for inefficiencies: Examine the observable, external sources of energy loss such as the doors, windows, insulation,…

  19. Comparisons of four computer models with experimental data from test buildings in northern New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, D.K.; Christian, J.E.

    1985-01-01

    Eight one-room test buildings, 20 ft (6.1 m) square and 7.5 ft (2.3 m) high, were constructed on a high desert site near Tesuque Pueblo, New Mexico, to study the influence of wall dynamic heat transfer characteristics on building heating requirements (the ''thermal mass effect''). The buildings are nominally identical except for the walls (adobe, concrete and masonry unit, wood-frame, and log) and are constructed so as to isolate the effects of the walls. The amount of mass in the walls varies from 240 lb/ft/sup 2/ (1171 kg/m/sup 2/) for the 2 ft (.61 m) thick adobe wall to 4.3more » lb/ft/sup 2/ (21 kg/m/sup 2/) for the insulated wood-frame wall. The roof, floor, and stem walls are all well insulated and the buildings were constructed with infiltration rates less than 0.4 air change per hour. The site is instrumented to record building component temperatures and heat fluxes, outside weather conditions, and heating energy use. Data were collected for two heating seasons from midwinter to late spring with the buildings in two configurations, with and without windows. Four computer codes were used to simulate the performance of the test buildings without windows, using site weather data. The codes used were DOE-2.1A, DOE-2.1C, BLAST, and DEROB. Each code was run by a different analyst. Simulations were done for midwinter, late winter, and spring. Two of the test cell comparisons are discussed; the insulated frame and an 11-in. (.28 m) adobe. This work presents a quantitative and qualitative critical comparison of the modeling and experimental results. Cumulative heating loads, wall heat fluxes, and air surface temperatures are compared, as well as input assumptions to the models. Explanations of differences and difficulties encountered are reported. The principal findings were that cumulative heating loads and the characteristic influences of wall thermal mass on hourly behavior were reproduced by the models.« less

  20. Evaluation of Energy Efficiency Performance of Heated Windows

    NASA Astrophysics Data System (ADS)

    Jammulamadaka, Hari Swarup

    The study about the evaluation of the performance of the heated windows was funded by the WVU Research Office as a technical assistance award at the 2014 TransTech Energy Business Development Conference to the Green Heated Glass company/project owned by Frank Dlubak. The award supports a WVU researcher to conduct a project important for commercialization. This project was awarded to the WVU Industrial Assessment Center in 2015. The current study attempted to evaluate the performance of the heated windows by developing an experimental setup to test the window at various temperatures by varying the current input to the window. The heated double pane window was installed in an insulated box. A temperature gradient was developed across the window by cooling one side of the window using gel based ice packs. The other face of the window was heated by passing current at different wattages through the window. The temperature of the inside and outside panes, current and voltage input, room and box temperature were recorded, and used to calculate the apparent R-value of the window when not being heated vs when being heated. It has been concluded from the study that the heated double pane window is more effective in reducing heat losses by as much as 50% than a non-heated double pane window, if the window temperature is maintained close to the room temperature. If the temperature of the window is much higher than the room temperature, the losses through the window appear to increase beyond that of a non-heated counterpart. The issues encountered during the current round of experiments are noted, and recommendations provided for future studies.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbary, Lawrence D.; Perkins, Laura L.; Serino, Roland

    The team led by Dow Corning collaborated to increase the thermal performance of exterior insulation and finishing systems (EIFS) to reach R-40 performance meeting the needs for high efficiency insulated walls. Additionally, the project helped remove barriers to using EIFS on retrofit commercial buildings desiring high insulated walls. The three wall systems developed within the scope of this project provide the thermal performance of R-24 to R-40 by incorporating vacuum insulation panels (VIPs) into an expanded polystyrene (EPS) encapsulated vacuum insulated sandwich element (VISE). The VISE was incorporated into an EIFS as pre-engineered insulation boards. The VISE is installed usingmore » typical EIFS details and network of trained installers. These three wall systems were tested and engineered to be fully code compliant as an EIFS and meet all of the International Building Code structural, durability and fire test requirements for a code compliant exterior wall cladding system. This system is being commercialized under the trade name Dryvit® Outsulation® HE system. Full details, specifications, and application guidelines have been developed for the system. The system has been modeled both thermally and hygrothermally to predict condensation potential. Based on weather models for Baltimore, MD; Boston, MA; Miami, FL; Minneapolis, MN; Phoenix, AZ; and Seattle, WA; condensation and water build up in the wall system is not a concern. Finally, the team conducted a field trial of the system on a building at the former Brunswick Naval Air Station which is being redeveloped by the Midcoast Regional Redevelopment Authority (Brunswick, Maine). The field trial provided a retrofit R-30 wall onto a wood frame construction, slab on grade, 1800 ft2 building, that was monitored over the course of a year. Simultaneous with the façade retrofit, the building’s windows were upgraded at no charge to this program. The retrofit building used 49% less natural gas during the winter of 2012 compared to previous winters. This project achieved its goal of developing a system that is constructible, offers protection to the VIPs, and meets all performance targets established for the project.« less

  2. "TPSX: Thermal Protection System Expert and Material Property Database"

    NASA Technical Reports Server (NTRS)

    Squire, Thomas H.; Milos, Frank S.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The Thermal Protection Branch at NASA Ames Research Center has developed a computer program for storing, organizing, and accessing information about thermal protection materials. The program, called Thermal Protection Systems Expert and Material Property Database, or TPSX, is available for the Microsoft Windows operating system. An "on-line" version is also accessible on the World Wide Web. TPSX is designed to be a high-quality source for TPS material properties presented in a convenient, easily accessible form for use by engineers and researchers in the field of high-speed vehicle design. Data can be displayed and printed in several formats. An information window displays a brief description of the material with properties at standard pressure and temperature. A spread sheet window displays complete, detailed property information. Properties which are a function of temperature and/or pressure can be displayed as graphs. In any display the data can be converted from English to SI units with the click of a button. Two material databases included with TPSX are: 1) materials used and/or developed by the Thermal Protection Branch at NASA Ames Research Center, and 2) a database compiled by NASA Johnson Space Center 9JSC). The Ames database contains over 60 advanced TPS materials including flexible blankets, rigid ceramic tiles, and ultra-high temperature ceramics. The JSC database contains over 130 insulative and structural materials. The Ames database is periodically updated and expanded as required to include newly developed materials and material property refinements.

  3. Innovative on-chip packaging applied to uncooled IRFPA

    NASA Astrophysics Data System (ADS)

    Dumont, Geoffroy; Arnaud, Agnès; Imperinetti, Pierre; Mottin, Eric; Simoens, François; Vialle, Claire; Rabaud, Wilfried; Grand, Gilles; Baclet, Nathalie

    2008-03-01

    The Laboratoire Infrarouge (LIR) of the Laboratoire d'Electronique et de Technologie de l'Information (LETI) has been involved in the development of microbolometers for over fifteen years. Two generations of technology have been transferred to ULIS and LETI is still working to improve performances of low cost detectors. Simultaneously, packaging still represents a significant part of detectors price. Reducing production costs would contribute to keep on extending applications of uncooled IRFPA to high volume markets like automotive. Therefore LETI develops an onchip packaging technology dedicated to microbolometers. The efficiency of a micropackaging technology for microbolometers relies on two major technical specifications. First, it must include an optical window with a high transmittance for the IR band, so as to maximize the detector absorption. Secondly, in order to preserve the thermal insulation of the detector, the micropackaging must be hermetically closed to maintain a vacuum level lower than 10 -3mbar. This paper presents an original microcap structure that enables the use of IR window materials as sealing layers to maintain the expected vacuum level. The modelling and integration of an IR window suitable for this structure is also presented. This zero level packaging technology is performed in a standard collective way, in continuation of bolometers' technology. The CEA-LETI, MINATEC presents status of these developments concerning this innovating technology including optical simulations results and SEM views of technical realizations.

  4. Analysis of energy conservation alternatives for standard Army building. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hittle, D.C.; O'Brien, R.E.; Percivall, G.S.

    1983-03-01

    This report describes energy conservation alternatives for five standard Army building designs. By surveying maps of major Army installations and using the Integrated Facilities System, the most popular designs were determined to be a two-company, rolling-pin-shaped barracks for enlisted personnel; a Type 64 barracks; a motor repair shop; a battalion headquarters and classroom building; and an enlisted personnel mess hall. The Building Loads Analysis and System Thermodynamics (BLAST) energy-analysis computer program was used to develop baseline energy consumption for each design based on the building descriptions and calibrated by comparison with the measured energy usage of similar buildings. Once themore » baseline was established, the BLAST program was used to study energy conservation alternatives (ECAs) which could be retrofit to the existing buildings. The ECAs included closing off air-handling units, adding storm windows, adding 2 in. (0.051 m) of exterior insulation to the walls, partially blocking the windows, adding roof insulation, putting up south overhangs, installing programmable thermostats, recovering heat from exhaust fans, installing temperature economizers, replacing lights, and installing partitions between areas of differing temperature.« less

  5. Enhanced charge storage capability of Ge/GeO(2) core/shell nanostructure.

    PubMed

    Yuan, C L; Lee, P S

    2008-09-03

    A Ge/GeO(2) core/shell nanostructure embedded in an Al(2)O(3) gate dielectrics matrix was produced. A larger memory window with good data retention was observed in the fabricated metal-insulator-semiconductor (MIS) capacitor for Ge/GeO(2) core/shell nanoparticles compared to Ge nanoparticles only, which is due to the high percentage of defects located on the surface and grain boundaries of the GeO(2) shell. We believe that the findings presented here provide physical insight and offer useful guidelines to controllably modify the charge storage properties of indirect semiconductors through defect engineering.

  6. A versatile setup for ultrafast broadband optical spectroscopy of coherent collective modes in strongly correlated quantum systems

    PubMed Central

    Baldini, Edoardo; Mann, Andreas; Borroni, Simone; Arrell, Christopher; van Mourik, Frank; Carbone, Fabrizio

    2016-01-01

    A femtosecond pump-probe setup is described that is optimised for broadband transient reflectivity experiments on solid samples over a wide temperature range. By combining high temporal resolution and a broad detection window, this apparatus can investigate the interplay between coherent collective modes and high-energy electronic excitations, which is a distinctive characteristic of correlated electron systems. Using a single-shot readout array detector at frame rates of 10 kHz allows resolving coherent oscillations with amplitudes <10−4. We demonstrate its operation on the charge-transfer insulator La2CuO4, revealing coherent phonons with frequencies up to 13 THz and providing access into their Raman matrix elements. PMID:27990455

  7. EnergySavers: Tips on Saving Money & Energy at Home (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The U.S. Department of Energy's consumer guide to saving money and energy at home and on the road. It consists of the following articles: (1) Save Money and Energy Today - Get started with things you can do now, and use the whole-house approach to ensure that your investments are wisely made to save you money and energy; (2) Your Home's Energy Use - Find out how your home uses energy, and where it's losing the most energy so you can develop a plan to save in the short and long term; (3) Air Leaks and Insulation - Seal airmore » leaks and insulate your home properly so your energy dollars don't seep through the cracks; (4) Heating and Cooling - Use efficient systems to heat and cool your home, and save money and increase comfort by properly maintaining and upgrading equipment; (5) Water Heating - Use the right water heater for your home, insulate it and lower its temperature, and use less water to avoid paying too much; (6) Windows - Enjoy light and views while saving money by installing energy-efficient windows, and use strategies to keep your current windows from losing energy; (7) Lighting - Choose today's energy-efficient lighting for some of the easiest and cheapest ways to reduce your electric bill; (8) Appliances - Use efficient appliances through-out your home, and get greater performance with lower energy bills; (9) Home Office and Electronics - Find out how much energy your electronics use, reduce their out-put when you're not using them, and choose efficient electronics to save money; (10) Renewable Energy - Use renewable energy at home such as solar and wind to save energy dollars while reducing environmental impact; (11) Transportation - Choose efficient transportation options and drive more efficiently to save at the gas pump; and (12) References - Use our reference list to learn more about energy efficiency and renewable energy.« less

  8. Tuning metal-insulator transitions in epitaxial V2O3 thin films

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, Einar B.; Shayestehaminzadeh, Seyedmohammad; Arnalds, Unnar B.

    2018-04-01

    We present a study of the synthesis of epitaxial V2O3 films on c-plane Al2O3 substrates by reactive dc-magnetron sputtering. The results reveal a temperature window, at substantially lower values than previously reported, wherein epitaxial films can be obtained when deposited on [0001] oriented surfaces. The films display a metal-insulator transition with a change in the resistance of up to four orders of magnitude, strongly dependent on the O2 partial pressure during deposition. While the electronic properties of the films show sensitivity to the amount of O2 present during deposition of the films, their crystallographic structure and surface morphology of atomically flat terraced structures with up to micrometer dimensions are maintained. The transition temperature, as well as the scale of the metal-insulator transition, is correlated with the stoichiometry and local strain in the films controllable by the deposition parameters.

  9. The Traffic Noise Index: A Method of Controlling Noise Nuisance.

    ERIC Educational Resources Information Center

    Langdon, F. J.; Scholes, W. E.

    This building research survey is an analysis of the social nuisance caused by urban motor ways and their noise. The Traffic Noise Index is used to indicate traffic noises and their effects on architectural designs and planning, while suggesting the need for more and better window insulation and acoustical barriers. Overall concern is for--(1)…

  10. Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arena, Lois B.

    High R-value wall assemblies (R-40 and above) are gaining popularity in the market due to programs such as the U.S. Department of Energy Zero Energy Ready Home program, Passive House, Net Zero Energy Home challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used double-wall systems to achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double-wall systems is that there are very few new exterior details. Exterior sheathings, structural bracings, house wraps or building paper, window and doormore » flashings, and siding attachments are usually identical to good details in conventional framed-wall systems. However, although the details in double-wall systems are very similar to those in conventional stick framing, there is sometimes less room for error. Several studies have confirmed colder temperatures of exterior sheathing in high R-value wall assemblies that do not have exterior rigid foam insulation. These colder temperatures can lead to increased chances for condensation from air exfiltration, and they have the potential to result in moisture-related problems (Straube and Smegal 2009, Arena 2014, Ueno 2015). The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and reduce material brought to landfills due to failures and resulting decay. Although this document focuses on double-wall framing techniques, the majority of the information about how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture-related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super-insulated homes. The information is applicable to both new construction and gut-rehabilitation projects in Climate Zones 5 and higher.« less

  11. B-doped diamond field-effect transistor with ferroelectric vinylidene fluoride-trifluoroethylene gate insulator

    NASA Astrophysics Data System (ADS)

    Karaya, Ryota; Baba, Ikki; Mori, Yosuke; Matsumoto, Tsubasa; Nakajima, Takashi; Tokuda, Norio; Kawae, Takeshi

    2017-10-01

    A B-doped diamond field-effect transistor (FET) with a ferroelectric vinylidene fluoride-trifluoroethylene (VDF-TrFE) copolymer gate insulator was fabricated. The VDF-TrFE film deposited on the B-doped diamond showed good insulating and ferroelectric properties. Also, a Pt/VDF-TrFE/B-doped diamond layered structure showed ideal behavior as a metal-ferroelectric-semiconductor (MFS) capacitor, and the memory window width was 11 V, when the gate voltage was swept from 20 to -20 V. The fabricated MFS-type FET structure showed the typical properties of a depletion-type p-channel FET and a maximum drain current density of 0.87 mA/mm at room temperature. The drain current versus gate voltage curves of the proposed FET showed a clockwise hysteresis loop owing to the ferroelectricity of the VDF-TrFE gate insulator. In addition, we demonstrated the logic inverter with the MFS-type diamond FET coupled with a load resistor, and obtained the inversion behavior of the input signal and a maximum gain of 18.4 for the present circuit.

  12. Charging/discharging behavior and mechanism of silicon quantum dots embedded in amorphous silicon carbide films

    NASA Astrophysics Data System (ADS)

    Wen, Xixing; Zeng, Xiangbin; Zheng, Wenjun; Liao, Wugang; Feng, Feng

    2015-01-01

    The charging/discharging behavior of Si quantum dots (QDs) embedded in amorphous silicon carbide (a-SiCx) was investigated based on the Al/insulating layer/Si QDs embedded in a-SiCx/SiO2/p-Si (metal-insulator-quantum dots-oxide-silicon) multilayer structure by capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. Transmission electron microscopy and Raman scattering spectroscopy measurements reveal the microstructure and distribution of Si QDs. The occurrence and shift of conductance peaks indicate the carrier transfer and the charging/discharging behavior of Si QDs. The multilayer structure shows a large memory window of 5.2 eV at ±8 V sweeping voltage. Analysis of the C-V and G-V results allows a quantification of the Coulomb charging energy and the trapped charge density associated with the charging/discharging behavior. It is found that the memory window is related to the size effect, and Si QDs with large size or low Coulomb charging energy can trap two or more electrons by changing the charging voltage. Meanwhile, the estimated lower potential barrier height between Si QD and a-SiCx, and the lower Coulomb charging energy of Si QDs could enhance the charging and discharging effect of Si QDs and lead to an enlarged memory window. Further studies of the charging/discharging mechanism of Si QDs embedded in a-SiCx can promote the application of Si QDs in low-power consumption semiconductor memory devices.

  13. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator.

    PubMed

    Lloret, Juan; Sancho, Juan; Pu, Minhao; Gasulla, Ivana; Yvind, Kresten; Sales, Salvador; Capmany, José

    2011-06-20

    A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploiting the optical phase transfer function of a microring resonator aiming at implementing complex-valued multi-tap filtering schemes are also reported. The trade-off between the degree of tunability without changing the free spectral range and the number of taps is studied in-depth. Different window based scenarios are evaluated for improving the filter performance in terms of the side-lobe level.

  14. Status of candidate materials for full-scale tests in the 737 fuselage

    NASA Technical Reports Server (NTRS)

    Supkis, D.

    1979-01-01

    The test program has the objectives to: (1) increase passenger evacuation time to a minimum of five minutes from commercial aircraft in case of a fire; (2) prevent an external fire from entering closed cabins for five minutes by using fire barrier materials in the exterior wall; (3) demonstrate that a closed cabin will not reach 400 F; and (4) prove that a fire near a cabin opening will not propagate through the cabin for a minimum of five minutes. The materials status is outlined for seat cushions, upholstery and associated seat materials, wall and ceiling panels, floor panels, carpet and carpet underlay, windows, cargo bay liners, insulation bagging, and thermal acoustical insulation.

  15. Modular packaging concept for MEMS and MOEMS

    NASA Astrophysics Data System (ADS)

    Stenchly, Vanessa; Reinert, Wolfgang; Quenzer, Hans-Joachim

    2017-11-01

    Wherever technical systems detect objects in their environment or interact with people, optical devices may play an important role. Light can be relatively easily produced and spatially and temporally modulated. Laser can project sharp images over long distances or cut materials in short distances. Depending on the wavelength an invisible scanning in near infrared for gesture recognition is possible as well as a projection of brilliant colour images. For several years, the Fraunhofer ISIT develops Opto-Packaging processes based on the viscous reshaping of glass wafers: First, hermetically sealed laser micro-mirror scanners WLP with inclined windows deflect in the central light reflex of the window out of the image area. Second, housing with lateral light exit permits hermetic sealing of edge-emitting lasers for highest reliability and durability. Such systems are currently experiencing an extremely high interest of the industry in all segments, from consumer to automotive through to materials processing. Our modular Opto-Packaging platform enables fast product developments. Housing for opto mechanical MEMS devices are equipped with inclined windows to minimize distortion, stray light and reflection losses. The hot viscous glass forming technology is also applied to functionalized substrate wafers which possess areas with high heat dissipation in addition to thermally insulating areas. Electrical contacts may be realized with metal filled vias or TGV (Through Glass Vias). The modular system reduces the development times for new, miniaturized optical systems so that manufacturers can focus on the essentials in their development, namely their product functionalities.

  16. Retrofit of a Multifamily Mass Masonry Building in New England

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Kerrigan, P.; Wytrykowska, H.

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goalsmore » but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.« less

  17. Retrofit of a MultiFamily Mass Masonry Building in New England

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Kerrigan, P.; Wytrykowska, H.

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goalsmore » but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.« less

  18. Extended Plate and Beam Wall System: Concept Investigation and Initial Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiehagen, J.; Kochkin, V.

    A new and innovative High-R wall design, referred to as the Extended Plate & Beam (EP&B), is under development. The EP&B system uniquely integrates foam sheathing insulation with wall framing such that wood structural panels are installed exterior of the foam sheathing, enabling the use of standard practices for installation of drainage plane, windows and doors, claddings, cavity insulation, and the standard exterior foam sheathing installation approach prone to damage of the foam during transportation of prefabricated wall panels. As part of the ongoing work, the EP&B wall system concept has undergone structural verification testing and has been positively vettedmore » by a group of industry stakeholders. Having passed these initial milestone markers, the advanced wall system design has been analyzed to assess cost implications relative to other advanced wall systems, undergone design assessment to develop construction details, and has been evaluated to develop representative prescriptive requirements for the building code. This report summarizes the assessment steps conducted to-date and provides details of the concept development.« less

  19. Extended Plate and Beam Wall System: Concept Investigation and Initial Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiehagen, J.; Kochkin, V.

    2015-08-01

    A new and innovative High-R wall design, referred to as the Extended Plate & Beam (EP&B), is under development. The EP&B system uniquely integrates foam sheathing insulation with wall framing such that wood structural panels are installed exterior of the foam sheathing, enabling the use of standard practices for installation of drainage plane, windows and doors, claddings, cavity insulation, and the standard exterior foam sheathing installation approach prone to damage of the foam during transportation of prefabricated wall panels. As part of the ongoing work, the EP&B wall system concept has undergone structural verification testing and has been positively vettedmore » by a group of industry stakeholders. Having passed these initial milestone markers, the advanced wall system design has been analyzed to assess cost implications relative to other advanced wall systems, undergone design assessment to develop construction details, and has been evaluated to develop representative prescriptive requirements for the building code. This report summarizes the assessment steps conducted to-date and provides details of the concept development.« less

  20. COST-BENEFIT Analysis in Railway Noise Control

    NASA Astrophysics Data System (ADS)

    OERTLI, J.

    2000-03-01

    A method to calculate the network-wide costs of realizing different noise control possibilities and their benefits in terms of noise reduction for lineside inhabitants has been implemented in Switzerland. These studies have shown that an optimal cost distribution consists of spending 65% of the available finances on rolling stock improvement, 30% on noise control barriers and 5% on insulated windows. This mix protects 70% of the lineside population for 30% of the cost necessary to attain threshold levels for all inhabitants. This noise control strategy has been accepted by the federal traffic and environment agencies involved and will save billions of Swiss francs. The success of the calculation methodology has prompted development of a Europe-wide decision support system to the same effect. Along two freight freeways the relationship between rolling stock improvement, noise barriers, insulated windows, operational measures and track characteristics is being studied. The decision support system will allow determination of those combinations with the best cost-benefit ratios. The study is currently being undertaken as a joint venture by the railways of Switzerland, France, Germany and the Netherlands as well as the European Rail Research Institute. The results constitute part of the negotiating strategy of the railways with European and national legislators.

  1. Spin ordering and electronic texture in the bilayer iridate Sr3Ir2O7

    NASA Astrophysics Data System (ADS)

    Dhital, Chetan; Khadka, Sovit; Yamani, Z.; de la Cruz, Clarina; Hogan, T. C.; Disseler, S. M.; Pokharel, Mani; Lukas, K. C.; Tian, Wei; Opeil, C. P.; Wang, Ziqiang; Wilson, Stephen D.

    2012-09-01

    Through a neutron scattering, charge transport, and magnetization study, the correlated ground state in the bilayer iridium oxide Sr3Ir2O7 is explored. Our combined results resolve scattering consistent with a high temperature magnetic phase that persists above 600 K, reorients at the previously defined TAF=280 K, and coexists with an electronic ground state whose phase behavior suggests the formation of a fluctuating charge or orbital phase that freezes below T*≈70 K. Our study provides a window into the emergence of multiple electronic order parameters near the boundary of the metal to insulator phase transition of the 5d Jeff=1/2 Mott phase.

  2. Differences between Outdoor and Indoor Sound Levels for Open, Tilted, and Closed Windows.

    PubMed

    Locher, Barbara; Piquerez, André; Habermacher, Manuel; Ragettli, Martina; Röösli, Martin; Brink, Mark; Cajochen, Christian; Vienneau, Danielle; Foraster, Maria; Müller, Uwe; Wunderli, Jean Marc

    2018-01-18

    Noise exposure prediction models for health effect studies normally estimate free field exposure levels outside. However, to assess the noise exposure inside dwellings, an estimate of indoor sound levels is necessary. To date, little field data is available about the difference between indoor and outdoor noise levels and factors affecting the damping of outside noise. This is a major cause of uncertainty in indoor noise exposure prediction and may lead to exposure misclassification in health assessments. This study aims to determine sound level differences between the indoors and the outdoors for different window positions and how this sound damping is related to building characteristics. For this purpose, measurements were carried out at home in a sample of 102 Swiss residents exposed to road traffic noise. Sound pressure level recordings were performed outdoors and indoors, in the living room and in the bedroom. Three scenarios-of open, tilted, and closed windows-were recorded for three minutes each. For each situation, data on additional parameters such as the orientation towards the source, floor, and room, as well as sound insulation characteristics were collected. On that basis, linear regression models were established. The median outdoor-indoor sound level differences were of 10 dB(A) for open, 16 dB(A) for tilted, and 28 dB(A) for closed windows. For open and tilted windows, the most relevant parameters affecting the outdoor-indoor differences were the position of the window, the type and volume of the room, and the age of the building. For closed windows, the relevant parameters were the sound level outside, the material of the window frame, the existence of window gaskets, and the number of windows.

  3. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    NASA Astrophysics Data System (ADS)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was extended. Additionally, we designed a sound insulator so as to realize a similar distribution of the particle velocity to that obtained using the optimized window function. Sound radiation was suppressed using a sound insulator put above the vibrating surface in the simulation using the three-dimensional finite element method. On the basis of this finding, it was suggested that near-field acoustic communication which suppressed sound radiation can be realized by applying the optimized window function to the particle velocity field.

  4. Retrofits we`d rather forget

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurrelbrinck, N.

    1996-01-01

    We all make mistakes, and the best of us make some of the biggest and best ones. An energy service company in New York installed light sensitive thermostats in a complex where the residents covered windows with heavy curtains to curtail air leakage. A crew in Chicago forgot to place a top plate in the top floor bathroom of a multifamily building; when they blew insulation into the roof, it filled the bathroom. A state official in the Midwest was inspecting the attic insulation in an FHA house when his foot slipped off the walk board and went through themore » ceiling drywall. And weatherization experts in Pittsburgh have discovered that a blower door can fill a house with decades` worth of accumulated soot. These mishaps could visit anyone. Much as those visited would rather bury them, we think they deserve an airing on the pages of Home Energy. In this issue, we present some cautionary tales from the elites of insulation.« less

  5. Monocrystalline test structures, and use for calibrating instruments

    DOEpatents

    Cresswell, Michael W.; Ghoshtagore, R. N.; Linholm, Loren W.; Allen, Richard A.; Sniegowski, Jeffry J.

    1997-01-01

    An improved test structure for measurement of width of conductive lines formed on substrates as performed in semiconductor fabrication, and for calibrating instruments for such measurements, is formed from a monocrystalline starting material, having an insulative layer formed beneath its surface by ion implantation or the equivalent, leaving a monocrystalline layer on the surface. The monocrystalline surface layer is then processed by preferential etching to accurately define components of the test structure. The substrate can be removed from the rear side of the insulative layer to form a transparent window, such that the test structure can be inspected by transmissive-optical techniques. Measurements made using electrical and optical techniques can be correlated with other measurements, including measurements made using scanning probe microscopy.

  6. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes.

    PubMed

    Patel, Shrayesh N; Javier, Anna E; Balsara, Nitash P

    2013-07-23

    Block copolymers that can simultaneously conduct electronic and ionic charges on the nanometer length scale can serve as innovative conductive binder material for solid-state battery electrodes. The purpose of this work is to study the electronic charge transport of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) copolymers electrochemically oxidized with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt in the context of a lithium battery charge/discharge cycle. We use a solid-state three-terminal electrochemical cell that enables simultaneous conductivity measurements and control over electrochemical doping of P3HT. At low oxidation levels (ratio of moles of electrons removed to moles of 3-hexylthiophene moieties in the electrode), the electronic conductivity (σe,ox) increases from 10(-7) S/cm to 10(-4) S/cm. At high oxidation levels, σe,ox approaches 10(-2) S/cm. When P3HT-PEO is used as a conductive binder in a positive electrode with LiFePO4 active material, P3HT is electrochemically active within the voltage window of a charge/discharge cycle. The electronic conductivity of the P3HT-PEO binder is in the 10(-4) to 10(-2) S/cm range over most of the potential window of the charge/discharge cycle. This allows for efficient electronic conduction, and observed charge/discharge capacities approach the theoretical limit of LiFePO4. However, at the end of the discharge cycle, the electronic conductivity decreases sharply to 10(-7) S/cm, which means the "conductive" binder is now electronically insulating. The ability of our conductive binder to switch between electronically conducting and insulating states in the positive electrode provides an unprecedented route for automatic overdischarge protection in rechargeable batteries.

  7. Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator.

    PubMed

    Doylend, J K; Heck, M J R; Bovington, J T; Peters, J D; Coldren, L A; Bowers, J E

    2011-10-24

    We demonstrate a 16-channel, independently tuned waveguide surface grating optical phased array in silicon for two dimensional beam steering with a total field of view of 20° x 14°, beam width of 0.6° x 1.6°, and full-window background peak suppression of 10 dB. © 2011 Optical Society of America

  8. Asset Management: Roof Maintenance and Facility Energy Retrofits

    DTIC Science & Technology

    2012-03-01

    vapor low emission coatings. Floor finishes completed in ceramic stone tile were the most efficient floor coverings. Fixed insulated fiberglass window...been coined Asset Management which utilizes organizational levels of service, business case analysis, and risk analysis to address urgent...Force have left a number of facility systems such as roofs at risk to disrepair due to a lack of maintenance. Under the principles of asset

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. Arena

    High-R wall assemblies (R-40 and above) are gaining popularity in the market due to programs like the DOE's Zero Energy Ready Home program, Passive House (PH), Net Zero Energy Home (NZEH) challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used 'double wall' systems to more practically achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double wall systems is that there are very few new exterior details. Exterior sheathing, structural bracing, house wrap or building paper, window andmore » door flashing, and siding attachment are usually identical to good details in conventional framed wall systems. The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and result in a reduction of material brought to landfills due to failures and resulting decay. While this document focuses on double wall framing techniques, the majority of the information on how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super insulated homes.« less

  10. High-performance black phosphorus top-gate ferroelectric transistor for nonvolatile memory applications

    NASA Astrophysics Data System (ADS)

    Lee, Young Tack; Hwang, Do Kyung; Choi, Won Kook

    2016-10-01

    Two-dimensional (2D) van der Waals (vdW) atomic crystals have been extensively studied and significant progress has been made. The newest 2D vdW material, called black phosphorus (BP), has attracted considerable attention due to its unique physical properties, such as its being a singlecomponent material like graphene, and its having a high mobility and direct band gap. Here, we report on a high-performance BP nanosheet based ferroelectric field effect transistor (FeFET) with a poly(vinylidenefluoride-trifluoroethylene) top-gate insulator for a nonvolatile memory application. The BP FeFETs show the highest linear hole mobility of 563 cm2/Vs and a clear memory window of more than 15 V. For more advanced nonvolatile memory circuit applications, two different types of resistive-load and complementary ferroelectric memory inverters were implemented, which showed distinct memory on/off switching characteristics.

  11. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  12. The IRAM 30-m millimeter radio telescope on Pico Veleta, Spain

    NASA Astrophysics Data System (ADS)

    Baars, J. W. M.; Hooghoudt, B. G.; Mezger, P. G.; de Jonge, M. J.

    1987-03-01

    In the Spanish Sierra Nevada near 2900 m altitude, the new 30-m telescope for millimeter astronomy is now operational. The authors describe the original design features, which resulted in the high reflector and pointing accuracy, necessary for operation near 1 mm wavelength. The open air telescope is thermally insulated and the temperature of critical sections is controlled to better than 1 K day and night. A reflector surface error of about 80 μm and a pointing and tracking accuracy of about 1arcsec in wind velocities of 12 m s-1 and under stable atmospheric conditions have been reached. These can be further improved. Receivers are available for the 3, 2, and 1.2 mm atmospheric windows. First tests at 0.87 mm have confirmed the high quality of this instrument.

  13. Differences between Outdoor and Indoor Sound Levels for Open, Tilted, and Closed Windows

    PubMed Central

    Locher, Barbara; Piquerez, André; Habermacher, Manuel; Ragettli, Martina; Cajochen, Christian; Vienneau, Danielle; Foraster, Maria; Müller, Uwe; Wunderli, Jean Marc

    2018-01-01

    Noise exposure prediction models for health effect studies normally estimate free field exposure levels outside. However, to assess the noise exposure inside dwellings, an estimate of indoor sound levels is necessary. To date, little field data is available about the difference between indoor and outdoor noise levels and factors affecting the damping of outside noise. This is a major cause of uncertainty in indoor noise exposure prediction and may lead to exposure misclassification in health assessments. This study aims to determine sound level differences between the indoors and the outdoors for different window positions and how this sound damping is related to building characteristics. For this purpose, measurements were carried out at home in a sample of 102 Swiss residents exposed to road traffic noise. Sound pressure level recordings were performed outdoors and indoors, in the living room and in the bedroom. Three scenarios—of open, tilted, and closed windows—were recorded for three minutes each. For each situation, data on additional parameters such as the orientation towards the source, floor, and room, as well as sound insulation characteristics were collected. On that basis, linear regression models were established. The median outdoor–indoor sound level differences were of 10 dB(A) for open, 16 dB(A) for tilted, and 28 dB(A) for closed windows. For open and tilted windows, the most relevant parameters affecting the outdoor–indoor differences were the position of the window, the type and volume of the room, and the age of the building. For closed windows, the relevant parameters were the sound level outside, the material of the window frame, the existence of window gaskets, and the number of windows. PMID:29346318

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Herk; Poerschke, A.; Beach, R.

    In 2012-2013, IBACOS worked with a builder, Brookfield Homes in Denver, Colorado, to design and construct a Passive House certified model home. IBACOS used several modeling programs and calculation methods to complete the final design package along with Brookfield's architect KGA Studio. This design package included upgrades to the thermal enclosure, basement insulation, windows, and heating, ventilation, and air conditioning. Short-term performance testing in the Passive House was done during construction and after construction.

  15. An Analysis of Quality in the Modular Housing Industry.

    DTIC Science & Technology

    1991-12-01

    finishing, Station 5, installs rough plumbing and applies the first coat of drywall joint compound . The unit continues to ceiling/roof setting, Station...with I joint compound and drywall or plywood plates. 3 14. Rigid waferboard, oriented strand board, or plywood is used for exterior wall sheathing to...completed and tested, the second coat of joint compound is placed, and windows and doors are set. Insulation, exterior sheathing, roof sheathing

  16. Investigation of electron beam lithography effects on metal-insulator transition behavior of vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Yuce, H.; Alaboz, H.; Demirhan, Y.; Ozdemir, M.; Ozyuzer, L.; Aygun, G.

    2017-11-01

    Vanadium dioxide (VO2) shows metal-insulator phase transition at nearly 68 °C. This metal-insulator transition (MIT) in VO2 leads to a significant change in near-infrared transmittance and an abrupt change in the resistivity of VO2. Due to these characteristics, VO2 plays an important role on optic and electronic devices, such as thermochromic windows, meta-materials with tunable frequency, uncooled bolometers and switching devices. In this work, VO2 thin films were fabricated by reactive direct current magnetron sputtering in O2/Ar atmosphere on sapphire substrates without any further post annealing processes. The effect of sputtering parameters on optical characteristics and structural properties of grown thin films was investigated by SEM, XRD, Raman and UV/VIS spectrophotometer measurements. Patterning process of VO2 thin films was realized by e-beam lithography technique to monitor the temperature dependent electrical characterization. Electrical properties of VO2 samples were characterized using microprobe station in a vacuum system. MIT with hysteresis behavior was observed for the unpatterned square samples at around 68 °C. By four orders of magnitude of resistivity change was measured for the deposited VO2 thin films at transition temperature. After e-beam lithography process, substantial results in patterned VO2 thin films were observed. In this stage, for patterned VO2 thin films as stripes, the change in resistivity of VO2 was reduced by a factor of 10. As a consequence of electrical resistivity measurements, MIT temperature was shifted from 68 °C to 50 °C. The influence of e-beam process on the properties of VO2 thin films and the mechanism of the effects are discussed. The presented results contribute to the achievement of VO2 based thermochromic windows and bolometer applications.

  17. Testing Method for External Cladding Systems - Incerc Romania

    NASA Astrophysics Data System (ADS)

    Simion, A.; Dragne, H.

    2017-06-01

    This research presents a new testing method in a natural scale for external cladding systems tested on buildings with minimum than 3 floors [1]. The testing method is unique in Romania and it is similar about many fire testing current methods from European Union states. Also, presents the fire propagation and the effect of fire smoke on the building façade composed of thermal insulation. Laboratory of testing and research for building fire safety from National Institute INCERC Bucharest, provides a test method for determining the fire performance characteristics of non-loadbearing external cladding systems and external wall insulation systems when applied to the face of a building and exposed to an external fire under controlled conditions [2]. The fire exposure is representative of an external fire source or a fully-developed (post-flashover) fire in a room, venting through an opening such as a window aperture that exposes the cladding to the effects of external flames, or an external fire source. On the future, fire tests will be experimented for answer demande a number of high-profile fires where the external facade of tall buildings provided a route for vertical fire spread.

  18. Transparent, Flexible Silicon Nanostructured Wire Networks with Seamless Junctions for High-Performance Photodetector Applications.

    PubMed

    Hossain, Mozakkar; Kumar, Gundam Sandeep; Barimar Prabhava, S N; Sheerin, Emmet D; McCloskey, David; Acharya, Somobrata; Rao, K D M; Boland, John J

    2018-05-22

    Optically transparent photodetectors are crucial in next-generation optoelectronic applications including smart windows and transparent image sensors. Designing photodetectors with high transparency, photoresponsivity, and robust mechanical flexibility remains a significant challenge, as is managing the inevitable trade-off between high transparency and strong photoresponse. Here we report a scalable method to produce flexible crystalline Si nanostructured wire (NW) networks fabricated from silicon-on-insulator (SOI) with seamless junctions and highly responsive porous Si segments that combine to deliver exceptional performance. These networks show high transparency (∼92% at 550 nm), broadband photodetection (350 to 950 nm) with excellent responsivity (25 A/W), optical response time (0.58 ms), and mechanical flexibility (1000 cycles). Temperature-dependent photocurrent measurements indicate the presence of localized electronic states in the porous Si segments, which play a crucial role in light harvesting and photocarrier generation. The scalable low-cost approach based on SOI has the potential to deliver new classes of flexible optoelectronic devices, including next-generation photodetectors and solar cells.

  19. Solar project description for Gill Harrop Builders single-family detached residence, Big Flats, New York

    NASA Astrophysics Data System (ADS)

    1982-04-01

    A house with approximately 1360 square feet of conditioned space heated by a direct gain system with manually operated insulated curtains is discussed. Solar heating is augmented by electric resistance heating, and a wood burning stove may be installed. Sunlight is admitted through both south facing windows and through clerestory collector panels and is absorbed and stored as heat in a concrete floor and wall. Heat is then distributed by natural convection and radiation. Temperature regulation is assisted by Earth beams. Three modes of operation are described: collector-to-storage, storage-to-space heating, and passive space cooling, which is accomplished by shading, movable insulation, and ventilation. The instrumentation for the National Solar Data Network is described. The solar energy portion of the construction costs is estimated.

  20. Building America Case Study: Performance of a Hot-Dry Climate Whole House Retrofit, Stockton, California (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ARBI

    2014-09-01

    The Stockton house retrofit is a two-story tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared tomore » the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.« less

  1. Assessment of the Potential to Achieve very Low Energy Use in Public Buildings in China with Advanced Window and Shading Systems

    DOE PAGES

    Lee, Eleanor; Pang, Xiufeng; McNeil, Andrew; ...

    2015-05-29

    Here, as rapid growth in the construction industry continues to occur in China, the increased demand for a higher standard living is driving significant growth in energy use and demand across the country. Building codes and standards have been implemented to head off this trend, tightening prescriptive requirements for fenestration component measures using methods similar to the US model energy code American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1. The objective of this study is to (a) provide an overview of applicable code requirements and current efforts within China to enable characterization and comparison of window and shadingmore » products, and (b) quantify the load reduction and energy savings potential of several key advanced window and shading systems, given the divergent views on how space conditioning requirements will be met in the future. System-level heating and cooling loads and energy use performance were evaluated for a code-compliant large office building using the EnergyPlus building energy simulation program. Commercially-available, highly-insulating, low-emittance windows were found to produce 24-66% lower perimeter zone HVAC electricity use compared to the mandated energy-efficiency standard in force (GB 50189-2005) in cold climates like Beijing. Low-e windows with operable exterior shading produced up to 30-80% reductions in perimeter zone HVAC electricity use in Beijing and 18-38% reductions in Shanghai compared to the standard. The economic context of China is unique since the cost of labor and materials for the building industry is so low. Broad deployment of these commercially available technologies with the proper supporting infrastructure for design, specification, and verification in the field would enable significant reductions in energy use and greenhouse gas emissions in the near term.« less

  2. Assessment of the Potential to Achieve very Low Energy Use in Public Buildings in China with Advanced Window and Shading Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eleanor; Pang, Xiufeng; McNeil, Andrew

    Here, as rapid growth in the construction industry continues to occur in China, the increased demand for a higher standard living is driving significant growth in energy use and demand across the country. Building codes and standards have been implemented to head off this trend, tightening prescriptive requirements for fenestration component measures using methods similar to the US model energy code American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1. The objective of this study is to (a) provide an overview of applicable code requirements and current efforts within China to enable characterization and comparison of window and shadingmore » products, and (b) quantify the load reduction and energy savings potential of several key advanced window and shading systems, given the divergent views on how space conditioning requirements will be met in the future. System-level heating and cooling loads and energy use performance were evaluated for a code-compliant large office building using the EnergyPlus building energy simulation program. Commercially-available, highly-insulating, low-emittance windows were found to produce 24-66% lower perimeter zone HVAC electricity use compared to the mandated energy-efficiency standard in force (GB 50189-2005) in cold climates like Beijing. Low-e windows with operable exterior shading produced up to 30-80% reductions in perimeter zone HVAC electricity use in Beijing and 18-38% reductions in Shanghai compared to the standard. The economic context of China is unique since the cost of labor and materials for the building industry is so low. Broad deployment of these commercially available technologies with the proper supporting infrastructure for design, specification, and verification in the field would enable significant reductions in energy use and greenhouse gas emissions in the near term.« less

  3. Don't ban PVC: incinerate and recycle it instead!

    PubMed

    Menke, Doris; Fiedler, Hiltrud; Zwahr, Heiner

    2003-04-01

    Plastics are making a growing contribution to sustainable development. For example, over an expected lifetime of 50 years, the use of window frames and insulating materials made of plastic in buildings save many times the energy required to manufacture them. Plastics for packaging purposes provide protection against damage and dirt contamination, thereby saving considerable amounts of material and energy. Choosing appropriate disposal strategies for plastic waste also helps to protect the environment (Mark 2000).

  4. IR Window Studies

    DTIC Science & Technology

    1974-09-15

    molten gallium but still have a lew resistivity. Stabilized zirconia was used to remove and monitor oxygen. KC1 crystals with a-j« 5 m = lO...information that GaAs grown from Ga solutions at low temperatures can be made with higher purities than that grown at the melting point . The initial...goals were to grow thick films below the melting point which would be semi-insulating and to measure their absorption coefficients. This goal was to

  5. Energy in buildings: Efficiency, renewables and storage

    NASA Astrophysics Data System (ADS)

    Koebel, Matthias M.

    2017-07-01

    This lecture summary provides a short but comprehensive overview on the "energy and buildings" topic. Buildings account for roughly 40% of the global energy demands. Thus, an increased adoption of existing and upcoming materials and solutions for the building sector represents an enormous potential to reduce building related energy demands and greenhouse gas emissions. The central question is how the building envelope (insulation, fenestration, construction style, solar control) affects building energy demands. Compared to conventional insulation materials, superinsulation materials such as vacuum insulation panels and silica aerogel achieve the same thermal performance with significantly thinner insulation layers. With low-emissivity coatings and appropriate filler gasses, double and triple glazing reduce thermal losses by up to an order of magnitude compared to old single pane windows, while vacuum insulation and aerogel filled glazing could reduce these even further. Electrochromic and other switchable glazing solutions maximize solar gains during wintertime and minimize illumination demands whilst avoiding overheating in summer. Upon integration of renewable energy systems into the building energy supply, buildings can become both producers and consumers of energy. Combined with dynamic user behavior, temporal variations in the production of renewable energy require appropriate storage solutions, both thermal and electrical, and the integration of buildings into smart grids and energy district networks. The combination of these measures allows a reduction of the existing building stock by roughly a factor of three —a promising, but cost intensive way, to prepare our buildings for the energy turnaround.

  6. Synthetic Zeolites and Other Microporous Oxide Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Sherman, John D.

    1999-03-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  7. Preparation and electrical properties of Cr 2O 3 gate insulator embedded with Fe dot

    NASA Astrophysics Data System (ADS)

    Yokota, Takeshi; Kuribayashi, Takaaki; Murata, Shotaro; Gomi, Manabu

    2008-09-01

    We investigated the electrical properties of a metal (Au)/insulator (magneto-electric materials: Cr 2O 3)/magnetic materials (Fe)/tunnel layer (Cr 2O 3)/semiconductor (Si) capacitor. This capacitor shows the typical capacitance-voltage ( C- V) properties of an Si-MIS capacitor with hysteresis depending on the Fe dispersibility which is determined by the deposition condition. The C- V curve of the only sample having a 0.5 nm Fe layer was seen to have a hysteresis window with a clockwise trace, indicating that electrons have been injected into the ultra-thin Fe layer. The samples having Fe layers of other thicknesses show a counterclockwise trace, which indicates that the film has mobile ionic charges due to the dispersed Fe. These results indicated that the charge-injection site, which works as a memory, in the Cr 2O 3 can be prepared by Fe insertion, which is deposited using well-controlled conditions. The results also revealed the possibility of an MIS capacitor containing both ferromagnetic materials and an ME insulating layer in a single system.

  8. Method and apparatus for fabrication of high gradient insulators with parallel surface conductors spaced less than one millimeter apart

    DOEpatents

    Sanders, David M.; Decker, Derek E.

    1999-01-01

    Optical patterns and lithographic techniques are used as part of a process to embed parallel and evenly spaced conductors in the non-planar surfaces of an insulator to produce high gradient insulators. The approach extends the size that high gradient insulating structures can be fabricated as well as improves the performance of those insulators by reducing the scale of the alternating parallel lines of insulator and conductor along the surface. This fabrication approach also substantially decreases the cost required to produce high gradient insulators.

  9. Laser sealed vacuum insulation window

    DOEpatents

    Benson, David K.; Tracy, C. Edwin

    1987-01-01

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  10. Laser sealed vacuum insulating window

    DOEpatents

    Benson, D.K.; Tracy, C.E.

    1985-08-19

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  11. Neutron scattering in the proximate quantum spin liquid α-RuCl3

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A.; Stone, Matthew B.; Lumsden, Mark D.; Mandrus, David G.; Tennant, David A.; Moessner, Roderich; Nagler, Stephen E.

    2017-06-01

    The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials.

  12. Daylighting and shuttering: RIB system mechanical design and preliminary performance data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinney, L.; Reynolds, D.

    1983-12-01

    The Reflective, Insulating Blind (RIB) system is a flexible, user-controlled daylighting device which also has direct thermal advantages: it can reject a considerable portion of summer sun while still retaining an adequate daylighting function; and it functions as moveable insulation to significantly decrease thermal losses through fenestration during evening hours. The conceptual design of the RIB system was accomplished by Barnes and Shapira at the Oak Ridge National Laboratory (ORNL). Mechanical design and prototype fabrication was accomplished by the authors and 29 systems were installed immediately inside existing south-facing windows of an energy-efficient office and dormitory at ORNL. The buildingmore » is a heavily-instrumented, passively-solar-heated structure for which reliable performance data was gathered and analyzed before the addition of RIB systems, thus facilitating the interpretation of ''after RIB'' performance data.« less

  13. Peg supported thermal insulation panel

    DOEpatents

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  14. DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2013-09-01

    Palo Duro uses advanced framing techniques like 2x6 24-inch on-center framing, open headers above windows on non-load-bearing walls, 2-stud corners, ladder blocking where walls intersect, and single top and bottom plates. These techniques reduce the amount of lumber in the wall, allowing more room for insulation and reducing costs and installation time. The builder garnered a 2013 Housing Innovation Award in the production builder category.

  15. Energy Efficiency Upgrades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roby Williams

    2012-03-29

    The energy efficiency upgrades project at Hardin County General Hospital did not include research nor was it a demonstration project. The project enabled the hospital to replace outdated systems with modern efficient models. Hardin County General Hospital is a 501c3, nonprofit hospital and the sole community provider for Hardin and Pope Counties of Illinois. This project provided much needed equipment and facility upgrades that would not have been possible through locally generated funding. Task 1 was a reroofing of the hospital. The hospital architect designed the replacement to increase the energy efficiency of the hospital roof/ceiling structure. Task 2 wasmore » replacement and installation of a new more efficient CT scanner for the hospital. Included in the project was replacement of HVAC equipment for the entire radiological suite. Task 5 was a replacement and installation of a new higher capacity diesel-fueled emergency generator for the hospital replacing a 50+ year old gas-fired generator. Task 7 was the replacement of 50+ year-old walk-in cooler/freezer with a newer, energy efficient model. Task 8 was the replacement of 10+ year-old washing machines in the hospital laundry with higher capacity, energy efficient models. Task 9 was replacement of 50-year old single pane curtain window system with double-pane insulated windows. Additionally, insulation was added around ventilation systems and the curtain wall system.« less

  16. Peg supported thermal insulation panel

    DOEpatents

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  17. Conductivity Variation Observed by Polarization and Depolarization Current Measurements of High-Voltage Equipment Insulation System

    NASA Astrophysics Data System (ADS)

    Jamail, Nor Akmal Mohd; Piah, Mohamed Afendi Mohamed; Muhamad, Nor Asiah

    2012-09-01

    Nondestructive and time domain dielectric measurement techniques such as polarization and depolarization current (PDC) measurements have recently been widely used as a potential tool for determining high-voltage insulation conditions by analyzing the insulation conductivity. The variation in the conductivity of an insulator was found to depend on several parameters: the difference between the polarization and depolarization currents, geometric capacitance, and the relative permittivity of the insulation material. In this paper the conductivities of different types of oil-paper insulation material are presented. The insulation conductivities of several types of electrical apparatus were simulated using MATLAB. Conductivity insulation was found to be high at high polarizations and at the lowest depolarization current. It was also found to increase with increasing relative permittivity as well as with decreasing geometric capacitance of the insulating material.

  18. High-Power Broad-Area Diode Lasers and Laser Bars

    NASA Astrophysics Data System (ADS)

    Erbert, Goetz; Baerwolff, Arthur; Sebastian, Juergen; Tomm, Jens

    This review presents the basic ideas and some examples of the chip technology of high-power diode lasers ( λ= 650,-1060,) in connection with the achievements of mounted single-stripe emitters in recent years.In the first section the optimization of the epitaxial layer structure for a low facet load and high conversion efficiency is discussed. The so-called broadened waveguide Large Optical Cavity (LOC) concept is described and also some advantages and disadvantages of Al-free material. The next section deals with the processing steps of epitaxial wafers to make single emitters and bars. Several possibilities to realize contact windows (implantation, insulators, and wet chemical oxidation) and laser mirrors are presented. The impact of heating in the CW regime and some aspects of reliability are the following topics. The calculation of thermal distributions in diode lasers, which shows the need for sophisticated mounting, will be given. In the last part the current state-of-the-art of single-stripe emitters will be reviewed.

  19. High-performance a MoS2 nanosheet-based nonvolatile memory transistor with a ferroelectric polymer and graphene source-drain electrode

    NASA Astrophysics Data System (ADS)

    Lee, Young Tack; Hwang, Do Kyung; Im, Seongil

    2015-11-01

    Two-dimensional (2D) van der Waals (vdWs) materials are a class of new materials due to their unique physical properties. Of the many 2D vdWs materials, molybdenum disulfide (MoS2) is a representative n-type transition-metal dichalcogenide (TMD) semiconductor. Here, we report on a high-performance MoS2 nanosheet-based nonvolatile memory transistor with a poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric top gate insulator. In order to enhance the ohmic contact property, we use graphene flakes as source/drain electrodes prepared by using the direct imprinting method with an elastomer stamp. The MoS2 ferroelectric field-effect transistor (FeFET) shows the highest linear electron mobility value of 175 cm2/Vs with a high on/off current ratio of more than 107, and a very clear memory window of more than 15 V. The program and erase dynamics and the static retention properties are also well demonstrated.

  20. A reaction cell for ambient pressure soft x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Castán-Guerrero, C.; Krizmancic, D.; Bonanni, V.; Edla, R.; Deluisa, A.; Salvador, F.; Rossi, G.; Panaccione, G.; Torelli, P.

    2018-05-01

    We present a new experimental setup for performing X-ray Absorption Spectroscopy (XAS) in the soft X-ray range at ambient pressure. The ambient pressure XAS setup is fully compatible with the ultra high vacuum environment of a synchrotron radiation spectroscopy beamline end station by means of ultrathin Si3N4 membranes acting as windows for the X-ray beam and seal of the atmospheric sample environment. The XAS detection is performed in total electron yield (TEY) mode by probing the drain current from the sample with a picoammeter. The high signal/noise ratio achievable in the TEY mode, combined with a continuous scanning of the X-ray energies, makes it possible recording XAS spectra in a few seconds. The first results show the performance of this setup to record fast XAS spectra from sample surfaces exposed at atmospheric pressure, even in the case of highly insulating samples. The use of a permanent magnet inside the reaction cell enables the measurement of X-ray magnetic circular dichroism at ambient pressure.

  1. The Solar Shield: A Thermally Insulating, Broad-Band, Electromagnetic Window for Satellites

    DTIC Science & Technology

    1986-06-02

    1.2 but is difficult to machine to thicknesses less than about 1/4 in. without breakage. The one disadvantage of the quartz paper is that it is somewhat...flimsy. Additional structural S•.support was provided by fusing one side of the paper to FEP teflon-coated Kapton* in a laminat - ing press. Kapton...loose quartz fibers from escaping. .4.’ A non-outgassing, polyester netting+ was chosen to separate the composite layers from eachother. * DuPont Corp

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This case study describes a DOE Zero Energy Ready Home in Houston, Texas, that scored HERS 39 without PV and HERS 29 with PV. This 5,947 ft2 custom home has 11.5-inch ICF walls. The attic is insulated along the roof line with 5 to 7 inches of open-cell spray foam. Most of the home's drinking water is supplied by a 11,500-gallon rainwater cistern. Hurricane strapping connects the roof to the walls. The triple-pane windows are impact resistant. The foundation is a raised slab.

  3. Skylight book. Capturing the Sun and the Moon: a guide to creating natural light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, A.

    1976-01-01

    The following topics are covered: planning; essential tools: hand and power; safety hints; curb installation; plexiglas or plate glass skylight; the plexiglas box skylight; tips on working with plexiglas; checking for leaks; framing the shaftway; electric work; shaftwall insulation; covering the shaftway with drywall; other kinds of wall coverings; internal storm windows; plants under your skylight; skylight manufacturers; and places to buy things. There are 38 pages of pictures of the use of skylights. (MHR)

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This case study describes a DOE Zero Energy Ready Home in Seattle, WA, that scored HERS 42 without PV and a -1 with PV. This 3,192 ft2 custom home has 6-inch SIP walls, a 12-inch SIP roof, an R-28 ICF-insulated foundation slab edge with R-20 rigid foam under the slab; an air-to-water heat pump plus radiant floor heat; 100% LED lighting; filtered-fan-powered fresh air intake; triple-pane windows, 9.7 kWh PV for electric car charging station.

  5. Metal-Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials.

    PubMed

    Bragaglia, Valeria; Arciprete, Fabrizio; Zhang, Wei; Mio, Antonio Massimiliano; Zallo, Eugenio; Perumal, Karthick; Giussani, Alessandro; Cecchi, Stefano; Boschker, Jos Emiel; Riechert, Henning; Privitera, Stefania; Rimini, Emanuele; Mazzarello, Riccardo; Calarco, Raffaella

    2016-04-01

    Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows.

  6. The improvement of retention time of metal-ferroelectric (PbZr0.53Ti0.47O3)-insulator (ZrO2)-semiconductor transistors and capacitors by leakage current reduction using surface treatment

    NASA Astrophysics Data System (ADS)

    Shih, Wen-Chieh; Kang, Kun-Yung; Lee, Joseph Ya-Min

    2007-11-01

    Metal-ferroelectric-insulator-semiconductor transistors (MFISFETs) and capacitors with the structure of Al /Pb (Zr0.53,Ti0.47) O3/ZrO2/Si were fabricated. The wafers were pretreated with H2O2 before ZrO2 deposition and/or post-treated with HCl after ZrO2 deposition. The leakage current density at 5V is reduced from 10-1to5×10-6A /cm2. The subthreshold slope was improved to 91mV/decade. The MFISFETs maintain a threshold voltage window of about 1.1V after an elapsed time of 3000s. The mobility is 267cm2/Vs. The improvements are most likely due to the reduction of interfacial layer thickness and the interface states at the ZrO2/Si interface.

  7. Transforming common III-V/II-VI insulating building blocks into topological heterostructure via the intrinsic electric polarization

    NASA Astrophysics Data System (ADS)

    Zunger, Alex; Zhang, Xiuwen; Abdalla, Leonardo; Liu, Qihang

    Currently known topological insulators (TIs) are limited to narrow gap compounds incorporating heavy elements, thus severely limiting the material pool available for such applications. We show how a heterovalent superlattice made of common semiconductor building blocks can transform its non-TI components into a topological heterostructure. The heterovalent nature of such interfaces sets up, in the absence of interfacial atomic exchange, a natural internal electric field that along with the quantum confinement leads to band inversion, transforming these semiconductors into a topological phase while also forming a giant Rashba spin splitting. We demonstrate this paradigm of designing TIs from ordinary semiconductors via first-principle calculations on III-V/II-VI superlattice InSb/CdTe. We illustrate the relationship between the interfacial stability and the topological transition, finding a ``window of opportunity'' where both conditions can be optimized. This work illustrates the general principles of co-evaluation of TI functionality with thermodynamic stability as a route of identifying realistic combination of common insulators that could produce topological heterostructures. This work was supported by Basic Energy Science, MSE division (Grant DE-FG02-13ER46959).

  8. Micromachined electrical cauterizer

    DOEpatents

    Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen

    1999-01-01

    A micromachined electrical cauterizer. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 .mu.m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures.

  9. Micromachined electrical cauterizer

    DOEpatents

    Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.

    1999-08-31

    A micromachined electrical cauterizer is disclosed. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 {mu}m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures. 7 figs.

  10. Electrical wire insulation and electromagnetic coil

    DOEpatents

    Bich, George J.; Gupta, Tapan K.

    1984-01-01

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  11. Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section

    PubMed Central

    Yuan, Dengpeng; Dong, Ying; Liu, Yujin; Li, Tianjian

    2015-01-01

    A high-sensitivity Mach-Zehnder interferometer (MZI) biochemical sensing platform based on Silicon-in-insulator (SOI) rib waveguide with large cross section is proposed in this paper. Based on the analyses of the evanescent field intensity, the mode polarization and cross section dimensions of the SOI rib waveguide are optimized through finite difference method (FDM) simulation. To realize high-resolution MZI read-out configuration based on the SOI rib waveguide, medium-filled trenches are employed and their performances are simulated through two-dimensional finite-difference-time domain (2D-FDTD) method. With the fundamental EH-polarized mode of the SOI rib waveguide with a total rib height of 10 μm, an outside rib height of 5 μm and a rib width of 2.5 μm at the operating wavelength of 1550 nm, when the length of the sensitive window in the MZI configuration is 10 mm, a homogeneous sensitivity of 7296.6%/refractive index unit (RIU) is obtained. Supposing the resolutions of the photoelectric detectors connected to the output ports are 0.2%, the MZI sensor can achieve a detection limit of 2.74 × 10−6 RIU. Due to high coupling efficiency of SOI rib waveguide with large cross section with standard single-mode glass optical fiber, the proposed MZI sensing platform can be conveniently integrated with optical fiber communication systems and (opto-) electronic systems, and therefore has the potential to realize remote sensing, in situ real-time detecting, and possible applications in the internet of things. PMID:26343678

  12. High voltage variable diameter insulator

    DOEpatents

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  13. Curing system for high voltage cross linked cables

    DOEpatents

    Bahder, George; Katz, Carlos; Bopp, Louis A.

    1978-01-01

    This invention makes extruded, vulcanized, high voltage cables insulated with thermosetting compounds at much higher rates of production and with superior insulation of reduced thickness and with reduced cavities or voids in the insulation. As the cable comes from an extruder, it passes into a curing chamber with a heat booster that quickly raises the insulation to a temperature at which it is cured much more quickly than with steam heating of the prior art. A high temperature liquid in contact with the insulation maintains the high temperature; and because of the greater curing heat, the cable can travel through the curing chamber at a faster rate and into a cooling tube where it contacts with a cooling liquid under high pressure. The insulation compound is treated to reduce the size of cavities; and the high pressure maintained by the curing and cooling mediums prevent expansion of cavities before the insulation is set.

  14. Impact of process parameters on the structural and electrical properties of metal/PZT/Al2O3/silicon gate stack for non-volatile memory applications

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Jha, Rajesh Kumar; Singh, Rajat Kumar; Singh, B. R.

    2018-02-01

    In this paper, we present the structural and electrical properties of the Al2O3 buffer layer on non-volatile memory behavior using Metal/PZT/Al2O3/Silicon structures. Metal/PZT/Silicon and Metal/Al2O3/Silicon structures were also fabricated and characterized to obtain capacitance and leakage current parameters. Lead zirconate titanate (PZT::35:65) and Al2O3 films were deposited by sputtering on the silicon substrate. Memory window, PUND, endurance, breakdown voltage, effective charges, flat-band voltage and leakage current density parameters were measured and the effects of process parameters on the structural and electrical characteristics were investigated. X-ray data show dominant (110) tetragonal phase of the PZT film, which crystallizes at 500 °C. The sputtered Al2O3 film annealed at different temperatures show dominant (312) orientation and amorphous nature at 425 °C. Multiple angle laser ellipsometric analysis reveals the temperature dependence of PZT film refractive index and extinction coefficient. Electrical characterization shows the maximum memory window of 3.9 V and breakdown voltage of 25 V for the Metal/Ferroelectric/Silicon (MFeS) structures annealed at 500 °C. With 10 nm Al2O3 layer in the Metal/Ferroelectric/Insulator/Silicon (MFeIS) structure, the memory window and breakdown voltage was improved to 7.21 and 35 V, respectively. Such structures show high endurance with no significant reduction polarization charge for upto 2.2 × 109 iteration cycles.

  15. Hydrophobicity and leakage current statistics of polymeric insulators long-term exposed to coastal contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soerqvist, T.; Vlastos, A.E.

    1996-12-31

    The hydrophobicity of polymeric insulators is crucial for their performance. This paper reports the hydrophobicity and the peak leakage current statistics of one porcelain, two ethylene-propylene-diene monomer (EPDM) and four silicone rubber (SIR) commercially available insulators. The insulators have been energized with 130 kV rms phase-to-ground AC voltage under identical outdoor conditions for more than seven years. The results presented show that under wet and polluted conditions the hydrophilic EPDM rubber insulators develop high leakage currents and substantial arcing. During a typical salt-storm the arcing amplitude of the EPDM rubber insulators is at least twice as high as that ofmore » the porcelain insulator. The SIR insulators, on the other hand, preserve a high degree of hydrophobicity after more than seven years in service and maintain very low leakage currents. However, the results show that during heavy salt contaminated conditions a highly stressed SIR insulator can temporarily lose its hydrophobicity and thereby develop considerable surface arcing.« less

  16. Process for forming transparent aerogel insulating arrays

    DOEpatents

    Tewari, Param H.; Hunt, Arlon J.

    1986-01-01

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO.sub.2, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO.sub.2, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40.degree. C. instead of at about 270.degree. C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementry particles or cosmic rays.

  17. Process for forming transparent aerogel insulating arrays

    DOEpatents

    Tewari, P.H.; Hunt, A.J.

    1985-09-04

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO/sub 2/, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO/sub 2/, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40/sup 0/C instead of at about 270/sup 0/C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementary particles or cosmic rays.

  18. High pressure electrical insulated feed thru connector

    DOEpatents

    Oeschger, Joseph E.; Berkeland, James E.

    1979-11-13

    A feed-thru type hermetic electrical connector including at least one connector pin feeding through an insulator block within the metallic body of the connector shell. A compression stop arrangement coaxially disposed about the insulator body is brazed to the shell, and the shoulder on the insulator block bears against this top in a compression mode, the high pressure or internal connector being at the opposite end of the shell. Seals between the pin and an internal bore at the high pressure end of the insulator block and between the insulator block and the metallic shell at the high pressure end are hermetically brazed in place, the first of these also functioning to transfer the axial compressive load without permitting appreciable shear action between the pin and insulator block.

  19. Design and evaluation of thin metal surface insulation for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Petach, A. M.

    1976-01-01

    An all-metal insulation was studied as a thermal protection system for hypersonic vehicles. Key program goals included fabricating the insulation in thin packages which are optimized for high temperature insulation of an actively cooled aluminum structure, and the use of state-of-the-art alloys. The insulation was fabricated from 300 series stainless steel in thicknesses of 0.8 to 12 mm. The outer, 0.127 mm thick, skin was textured to accommodate thermal expansion and oxidized to increase emittance. The thin insulating package was achieved using an insulation concept consisting of foil radiation shields spaced within the package, and conical foil supports to carry loads from the skin and maintain package dimensions. Samples of the metal-insulation were tested to evaluate thermal insulation capability, rain and sand erosion resistance, high temperature oxidation resistance, applied load capability, and high temperature emittance.

  20. STS-114 Micrometeoroid/Orbital Debris (MMOD) Post-Flight Assessment

    NASA Technical Reports Server (NTRS)

    Hyde, J.; Bernhard, R.; Christiansen, E.

    2007-01-01

    NASA Johnson Space Center (JSC) personnel assisted Kennedy Space Center (KSC) inspection teams in the identification of 41 micrometeoroid/orbital debris (MMOD) impact sites on the OV-103 vehicle (Discovery) during STS-114 postflight inspections. There were 14 MMOD impacts reported on the crew module windows (Figure 1). The largest impact feature, a 6.6 mm x 5.8 mm crater on window #4, was caused by a particle with an estimated diameter of 0.22 mm (Figure 2). This impact was among the largest ever recorded on a crew module window. The window was removed and replaced. Scanning Electron Microscope/Energy Dispersive X-ray (SEM/EDX) analysis of dental mold samples from the impact site to determine particle origin was inconclusive, possibly due to contamination picked up on the ferry flight from Edwards Air Force Base to KSC. The radiators on the inside of the payload bay doors sustained 19 impacts (Figure 3) with one of the impacts causing a face sheet perforation. The 0.61 mm diameter hole was produced by a particle with an estimated diameter of 0.4 mm, which approaches the 0.5-mm critical particle diameter of the wing leading edge reinforced carbon-carbon (RCC) panel high-temperature regions (Zone 3, Figure 4) that was established during Return to Flight testing of the RCC panels. An inspection of the payload bay door exterior insulation (FRSI) revealed a 5.8 mm x 4.5 mm defect that was caused by an MMOD particle with unknown composition, as the sample obtained was contaminated. Figure 5 provides a summary of the exterior surface survey that was conducted following the STS-114 mission. Two windows were removed and replaced due to hypervelocity impact. Nineteen impacts were recorded on the payload bay door radiators, with one face sheet penetration. Three impact sites were identified on the FRSI. There were four hypervelocity impact sites detected on the wing leading edge RCC panels. One impact was detected on the top cover of the TPS sample box (TSB) payload that was mounted on a carrier in the aft portion of the payload bay.

  1. An Electrostatic-Barrier-Forming Window that Captures Airborne Pollen Grains to Prevent Pollinosis

    PubMed Central

    Takikawa, Yoshihiro; Matsuda, Yoshinori; Nonomura, Teruo; Kakutani, Koji; Kusakari, Shin-Ichi; Toyoda, Hideyoshi

    2017-01-01

    An electrostatic-barrier-forming window (EBW) was devised to capture airborne pollen, which can cause allergic pollinosis. The EBW consisted of three layers of insulated conductor wires (ICWs) and two voltage generators that supplied negative charges to the two outer ICW layers and a positive charge to the middle ICW layer. The ICWs generated an attractive force that captured pollen of the Japanese cedar, Cryptomeria japonica, from air blown through the EBW. The attractive force was directly proportional to the applied voltage. At ≥3.5 kV, the EBW exerted sufficient force to capture all pollen carried at an air flow of 3 m/s, and pollen-free air passed through the EBW. The findings demonstrated that the electrostatic barrier that formed inside the EBW was very effective at capturing airborne pollen; thus, it could allow a home to remain pollen-free and healthy despite continuous pollen exposure. PMID:28098835

  2. An Electrostatic-Barrier-Forming Window that Captures Airborne Pollen Grains to Prevent Pollinosis.

    PubMed

    Takikawa, Yoshihiro; Matsuda, Yoshinori; Nonomura, Teruo; Kakutani, Koji; Kusakari, Shin-Ichi; Toyoda, Hideyoshi

    2017-01-15

    An electrostatic-barrier-forming window (EBW) was devised to capture airborne pollen, which can cause allergic pollinosis. The EBW consisted of three layers of insulated conductor wires (ICWs) and two voltage generators that supplied negative charges to the two outer ICW layers and a positive charge to the middle ICW layer. The ICWs generated an attractive force that captured pollen of the Japanese cedar, Cryptomeria japonica , from air blown through the EBW. The attractive force was directly proportional to the applied voltage. At ≥3.5 kV, the EBW exerted sufficient force to capture all pollen carried at an air flow of 3 m/s, and pollen-free air passed through the EBW. The findings demonstrated that the electrostatic barrier that formed inside the EBW was very effective at capturing airborne pollen; thus, it could allow a home to remain pollen-free and healthy despite continuous pollen exposure.

  3. Synthetic zeolites and other microporous oxide molecular sieves

    PubMed Central

    Sherman, John D.

    1999-01-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  4. High voltage variable diameter insulator

    DOEpatents

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  5. Physicochemical assessment criteria for high-voltage pulse capacitors

    NASA Astrophysics Data System (ADS)

    Darian, L. A.; Lam, L. Kh.

    2016-12-01

    In the paper, the applicability of decomposition products of internal insulation of high-voltage pulse capacitors is considered (aging is the reason for decomposition products of internal insulation). Decomposition products of internal insulation of high-voltage pulse capacitors can be used to evaluate their quality when in operation and in service. There have been three generations of markers of aging of insulation as in the case with power transformers. The area of applicability of markers of aging of insulation for power transformers has been studied and the area can be extended to high-voltage pulse capacitors. The research reveals that there is a correlation between the components and quantities of markers of aging of the first generation (gaseous decomposition products of insulation) dissolved in insulating liquid and the remaining life of high-voltage pulse capacitors. The application of markers of aging to evaluate the remaining service life of high-voltage pulse capacitor is a promising direction of research, because the design of high-voltage pulse capacitors keeps stability of markers of aging of insulation in high-voltage pulse capacitors. It is necessary to continue gathering statistical data concerning development of markers of aging of the first generation. One should also carry out research aimed at estimation of the remaining life of capacitors using markers of the second and the third generation.

  6. Reflective Coating on Fibrous Insulation for Reduced Heat Transfer

    NASA Technical Reports Server (NTRS)

    Hass, Derek D.; Prasad, B. Durga; Glass, David E.; Wiedemann, Karl E.

    1997-01-01

    Radiative heat transfer through fibrous insulation used in thermal protection systems (TPS) is significant at high temperatures (1200 C). Decreasing the radiative heat transfer through the fibrous insulation can thus have a major impact on the insulating ability of the TPS. Reflective coatings applied directly to the individual fibers in fibrous insulation should decrease the radiative heat transfer leading to an insulation with decreased effective thermal conductivity. Coatings with high infrared reflectance have been developed using sol-gel techniques. Using this technique, uniform coatings can be applied to fibrous insulation without an appreciable increase in insulation weight or density. Scanning electron microscopy, Fourier Transform infrared spectroscopy, and ellipsometry have been performed to evaluate coating performance.

  7. Experimental study of three-dimensional fin-channel charge trapping flash memories with titanium nitride and polycrystalline silicon gates

    NASA Astrophysics Data System (ADS)

    Liu, Yongxun; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Ishikawa, Yuki; Mizubayashi, Wataru; Morita, Yukinori; Migita, Shinji; Ota, Hiroyuki; Masahara, Meishoku

    2014-01-01

    Three-dimensional (3D) fin-channel charge trapping (CT) flash memories with different gate materials of physical-vapor-deposited (PVD) titanium nitride (TiN) and n+-polycrystalline silicon (poly-Si) have successfully been fabricated by using (100)-oriented silicon-on-insulator (SOI) wafers and orientation-dependent wet etching. Electrical characteristics of the fabricated flash memories including statistical threshold voltage (Vt) variability, endurance, and data retention have been comparatively investigated. It was experimentally found that a larger memory window and a deeper erase are obtained in PVD-TiN-gated metal-oxide-nitride-oxide-silicon (MONOS)-type flash memories than in poly-Si-gated poly-Si-oxide-nitride-oxide-silicon (SONOS)-type memories. The larger memory window and deeper erase of MONOS-type flash memories are contributed by the higher work function of the PVD-TiN metal gate than of the n+-poly-Si gate, which is effective for suppressing electron back tunneling during erase operation. It was also found that the initial Vt roll-off due to the short-channel effect (SCE) is directly related to the memory window roll-off when the gate length (Lg) is scaled down to 46 nm or less.

  8. Novel micro-reactor flow cell for investigation of model catalysts using in situ grazing-incidence X-ray scattering

    PubMed Central

    Kehres, Jan; Pedersen, Thomas; Masini, Federico; Andreasen, Jens Wenzel; Nielsen, Martin Meedom; Diaz, Ana; Nielsen, Jane Hvolbæk; Hansen, Ole

    2016-01-01

    The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SIO), permits grazing-incidence small-angle X-ray scattering (GISAXS) in transmission through 10 µm-thick entrance and exit windows by using micro-focused beams. An additional thinning of the Pyrex glass reactor lid allows simultaneous acquisition of the grazing-incidence wide-angle X-ray scattering (GIWAXS). In situ experiments at synchrotron facilities are performed utilizing the micro-reactor and a designed transportable gas feed and analysis system. The feasibility of simultaneous in situ GISAXS/GIWAXS experiments in the novel micro-reactor flow cell was confirmed with CO oxidation over mass-selected Ru nanoparticles. PMID:26917133

  9. Neutron scattering in the proximate quantum spin liquid α-RuCl3.

    PubMed

    Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A; Stone, Matthew B; Lumsden, Mark D; Mandrus, David G; Tennant, David A; Moessner, Roderich; Nagler, Stephen E

    2017-06-09

    The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl 3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl 3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials. Copyright © 2017, American Association for the Advancement of Science.

  10. High-speed detection at two micrometres with monolithic silicon photodiodes

    NASA Astrophysics Data System (ADS)

    Ackert, Jason J.; Thomson, David J.; Shen, Li; Peacock, Anna C.; Jessop, Paul E.; Reed, Graham T.; Mashanovich, Goran Z.; Knights, Andrew P.

    2015-06-01

    With continued steep growth in the volume of data transmitted over optical networks there is a widely recognized need for more sophisticated photonics technologies to forestall a ‘capacity crunch’. A promising solution is to open new spectral regions at wavelengths near 2 μm and to exploit the long-wavelength transmission and amplification capabilities of hollow-core photonic-bandgap fibres and the recently available thulium-doped fibre amplifiers. To date, photodetector devices for this window have largely relied on III-V materials or, where the benefits of integration with silicon photonics are sought, GeSn alloys, which have been demonstrated thus far with only limited utility. Here, we describe a silicon photodiode operating at 20 Gbit s-1 in this wavelength region. The detector is compatible with standard silicon processing and is integrated directly with silicon-on-insulator waveguides, which suggests future utility in silicon-based mid-infrared integrated optics for applications in communications.

  11. Super Energy Efficiency Design (S.E.E.D.) Home Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    German, A.; Dakin, B.; Backman, C.

    This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the 'Super Energy Efficient Design' (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Sourcemore » energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.« less

  12. Super Energy Efficient Design (S.E.E.D.) Home Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    German, A.; Dakin, B.; Backman, C.

    This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the “Super Energy Efficient Design” (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Sourcemore » energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.« less

  13. Multiple infrared bands absorber based on multilayer gratings

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyi; Gao, Jinsong; Yang, Haigui; Wang, Xiaoyi; Guo, Chengli

    2018-03-01

    The present study offers an Ag/Si multilayer-grating microstructure based on an Si substrate. The microstructure exhibits designable narrowband absorption in multiple infrared wavebands, especially in mid- and long-wave infrared atmospheric windows. We investigate its resonance mode mechanism, and calculate the resonance wavelengths by the Fabry-Perot and metal-insulator-metal theories for comparison with the simulation results. Furthermore, we summarize the controlling rules of the absorption peak wavelength of the microstructure to provide a new method for generating a Si-based device with multiple working bands in infrared.

  14. Research and application of high performance GPES rigid foam composite plastic insulation boards

    NASA Astrophysics Data System (ADS)

    sun, Hongming; xu, Hongsheng; Han, Feifei

    2017-09-01

    A new type of heat insulation board named GPES was prepared by several polymers and modified nano-graphite particles, injecting high-pressure supercritical CO2. Compared with the traditional thermal insulation material, GPES insulation board has higher roundness bubble and thinner bubble wall. Repeatability and reproducibility tests show that melting knot, dimensional stability, strength and other physical properties are significantly better than traditional organic heat insulation materials. Especially the lower and more stable thermal conductivity of GPES can significantly reduce thermal insulation layer thickness. Obviously GPES is the best choice of insulation materials with the implement of 75% and higher energy efficiency standard.

  15. Hybrid Multifoil Aerogel Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Paik, Jong-Ah; Jones, Steven; Nesmith, Bill

    2008-01-01

    This innovation blends the merits of multifoil insulation (MFI) with aerogel-based insulation to develop a highly versatile, ultra-low thermally conductive material called hybrid multifoil aerogel thermal insulation (HyMATI). The density of the opacified aerogel is 240 mg/cm3 and has thermal conductivity in the 20 mW/mK range in high vacuum and 25 mW/mK in 1 atmosphere of gas (such as argon) up to 800 C. It is stable up to 1,000 C. This is equal to commercially available high-temperature thermal insulation. The thermal conductivity of the aerogel is 36 percent lower compared to several commercially available insulations when tested in 1 atmosphere of argon gas up to 800 C.

  16. West Village Student Housing Phase I: Apartment Monitoring and Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    German, A.; Bell, C.; Dakin, B.

    Building America team Alliance for Residential Building Innovation (ARBI) worked with the University of California, Davis (UC Davis) and the developer partner West Village Community Partnership (WVCP) to evaluate performance on 192 student apartments completed in September, 2011 as part of Phase I of the multi-purpose West Village project. West Village, the largest planned zero net energy community in the United States. The campus neighborhood is designed to enable faculty, staff and students to affordably live near campus, take advantage of environmentally friendly transportation options, and participate fully in campus life. The aggressive energy efficiency measures that are incorporated inmore » the design contribute to source energy reductions of 37% over the B10 Benchmark. The energy efficiency measures that are incorporated into these apartments include increased wall & attic insulation, high performance windows, high efficiency heat pumps for heating and cooling, central heat pump water heaters (HPWHs), 100% high efficacy lighting, and ENERGY STAR major appliances. Results discuss how measured energy use compares to modeling estimates over a 10 month monitoring period and includes a cost effective evaluation.« less

  17. West Village Student Housing Phase I: Apartment Monitoring and Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    German, A.; Bell, C.; Dakin, B.

    Building America team Alliance for Residential Building Innovation (ARBI) worked with the University of California, Davis and the developer partner West Village Community Partnership (WVCP) to evaluate performance on 192 student apartments completed in September, 2011 as part of Phase I of the multi-purpose West Village project. West Village is the largest planned zero net energy community in the United States. The campus neighborhood is designed to enable faculty, staff, and students to affordably live near campus, take advantage of environmentally friendly transportation options, and participate fully in campus life. The aggressive energy efficiency measures that are incorporated in themore » design contribute to source energy reductions of 37% over the B10 Benchmark. These measures include increased wall and attic insulation, high performance windows, high efficiency heat pumps for heating and cooling, central heat pump water heaters (HPWHs), 100% high efficacy lighting, and ENERGY STAR major appliances. The report discusses how measured energy use compares to modeling estimates over a 10-month monitoring period and includes a cost effective evaluation.« less

  18. Physicochemical assessment criteria for high-voltage pulse capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darian, L. A., E-mail: LDarian@rambler.ru; Lam, L. Kh.

    In the paper, the applicability of decomposition products of internal insulation of high-voltage pulse capacitors is considered (aging is the reason for decomposition products of internal insulation). Decomposition products of internal insulation of high-voltage pulse capacitors can be used to evaluate their quality when in operation and in service. There have been three generations of markers of aging of insulation as in the case with power transformers. The area of applicability of markers of aging of insulation for power transformers has been studied and the area can be extended to high-voltage pulse capacitors. The research reveals that there is amore » correlation between the components and quantities of markers of aging of the first generation (gaseous decomposition products of insulation) dissolved in insulating liquid and the remaining life of high-voltage pulse capacitors. The application of markers of aging to evaluate the remaining service life of high-voltage pulse capacitor is a promising direction of research, because the design of high-voltage pulse capacitors keeps stability of markers of aging of insulation in high-voltage pulse capacitors. It is necessary to continue gathering statistical data concerning development of markers of aging of the first generation. One should also carry out research aimed at estimation of the remaining life of capacitors using markers of the second and the third generation.« less

  19. Combined Heat Transfer in High-Porosity High-Temperature Fibrous Insulations: Theory and Experimental Validation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Cunnington, George R.; Miller, Steve D.; Knutson, Jeffry R.

    2010-01-01

    Combined radiation and conduction heat transfer through various high-temperature, high-porosity, unbonded (loose) fibrous insulations was modeled based on first principles. The diffusion approximation was used for modeling the radiation component of heat transfer in the optically thick insulations. The relevant parameters needed for the heat transfer model were derived from experimental data. Semi-empirical formulations were used to model the solid conduction contribution of heat transfer in fibrous insulations with the relevant parameters inferred from thermal conductivity measurements at cryogenic temperatures in a vacuum. The specific extinction coefficient for radiation heat transfer was obtained from high-temperature steady-state thermal measurements with large temperature gradients maintained across the sample thickness in a vacuum. Standard gas conduction modeling was used in the heat transfer formulation. This heat transfer modeling methodology was applied to silica, two types of alumina, and a zirconia-based fibrous insulation, and to a variation of opacified fibrous insulation (OFI). OFI is a class of insulations manufactured by embedding efficient ceramic opacifiers in various unbonded fibrous insulations to significantly attenuate the radiation component of heat transfer. The heat transfer modeling methodology was validated by comparison with more rigorous analytical solutions and with standard thermal conductivity measurements. The validated heat transfer model is applicable to various densities of these high-porosity insulations as long as the fiber properties are the same (index of refraction, size distribution, orientation, and length). Furthermore, the heat transfer data for these insulations can be obtained at any static pressure in any working gas environment without the need to perform tests in various gases at various pressures.

  20. Solids, liquids, and gases under high pressure

    NASA Astrophysics Data System (ADS)

    Mao, Ho-Kwang; Chen, Xiao-Jia; Ding, Yang; Li, Bing; Wang, Lin

    2018-01-01

    Pressure has long been recognized as a fundamental thermodynamic variable but its application was previously limited by the available pressure vessels and probes. The development of megabar diamond anvil cells and a battery of associated in-laboratory and synchrotron techniques at the turn of the century have opened a vast new window of opportunities. With the addition of the pressure dimension, we are facing a new world with an order of magnitude more materials to be discovered than all that have been explored at ambient pressure. Pressure drastically and categorically alters all elastic, electronic, magnetic, structural, and chemical properties, and pushes materials across conventional barriers between insulators and superconductors, amorphous and crystalline solids, ionic and covalent compounds, vigorously reactive and inert chemicals, etc. In the process, it reveals surprising high-pressure physics and chemistry and creates novel materials. This review describes the principles and methodology used to reach ultrahigh static pressure: the in situ probes, the physical phenomena to be investigated, the long-pursued goals, the surprising discoveries, and the vast potential opportunities. Exciting examples include the quest for metallic hydrogen, the record-breaking superconducting temperature of 203 K in HnS , the complication of "free-electron gas" alkali metals, the magnetic collapse in 3 d transition elements, the pressure-induced superconductivity from topological insulators, the novel stoichiometry in simple compounds, the interaction of nanoscience, the accomplishment of 750 GPa pressure, etc. These highlights are the integral results of technological achievements, specific measurements, and theoretical advancement; therefore, the same highlights will appear in different sections corresponding to these different aspects. Overall, this review demonstrates that high-pressure research is a new dimension in condensed-matter physics.

  1. From Energy Audits to Home Performance: 30 Years of Articles in Home Energy Magazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Alan

    Home Energy Magazine has been publishing articles about residential energy efficiency for 30 years. Its goal has been to disseminate technically reliable and neutral information to the practitioners, that is, professionals in the business of home energy efficiency. The articles, editorials, letters, and advertisements are a kind of window on the evolution of energy conservation technologies, policies, and organizations. Initially, the focus was on audits and simple retrofits, such as weatherstripping and insulation. Instrumentation was sparse sometimes limited to a ruler to measure depth of attic insulation and a blower door was exotic. CFLs were heavy, awkward bulbs which might,more » or might not, fit in a fixture. Saving air conditioning energy was not a priority. Solar energy was only for the most adventurous. Thirty years on, the technologies and business have moved beyond just insulating attics to the larger challenge of delivering home performance and achieving zero net energy. This shift reflects the success in reducing space heating energy and the need to create a profitable industry by providing more services. The leading edge of the residential energy services market is becoming much more sophisticated, offering both efficiency and solar systems. The challenge is to continue providing relevant and reliable information in a transformed industry and a revolutionized media landscape.« less

  2. Hermetically sealed electrical feedthrough for high temperature secondary cells

    DOEpatents

    Knoedler, R.; Nelson, P.A.; Shimotake, H.; Battles, J.E.

    1983-07-26

    A passthrough seal is disclosed for electrically isolating the terminal in a lithium/metal sulfide cell from the structural cell housing. The seal has spaced upper and lower insulator rings fitted snuggly between the terminal and an annularly disposed upstanding wall, and outwardly of a powdered insulator also confined between the upstanding wall and terminal. The adjacent surfaces of the upper insulator ring and the respective upstanding wall and terminal are conically tapered, diverging in the axial direction away from the cell interior, and a sealing ring is located between each pair of the adjacent surfaces. The components are sized so that upon appropriate movement of the upper insulator ring toward the lower insulator ring the powdered insulator and sealing rings are each compressed to a high degree. This compacts the powdered insulator thereby rendering the same highly impervious and moreover fuses the sealing rings to and between the adjacent surfaces. The upper and lower insulator rings might be formed of beryllium oxide and/or alumina, the powdered insulator might be formed of boron nitride, and the sealing rings might be formed of aluminum.

  3. Hermetically sealed electrical feedthrough for high temperature secondary cells

    DOEpatents

    Knoedler, Reinhard; Nelson, Paul A.; Shimotake, Hiroshi; Battles, James E.

    1985-01-01

    A passthrough seal is disclosed for electrically isolating the terminal in a lithium/metal sulfide cell from the structural cell housing. The seal has spaced upper and lower insulator rings fitted snuggly between the terminal and an annularly disposed upstanding wall, and outwardly of a powdered insulator also confined between the upstanding wall and terminal. The adjacent surfaces of the upper insulator ring and the respective upstanding wall and terminal are conically tapered, diverging in the axial direction away from the cell interior, and a sealing ring is located between each pair of the adjacent surfaces. The components are sized so that upon appropriate movement of the upper insulator ring toward the lower insulator ring the powdered insulator and sealing rings are each compressed to a high degree. This compacts the powdered insulator thereby rendering the same highly impervious and moreover fuses the sealing rings to and between the adjacent surfaces. The upper and lower insulator rings might be formed of beryllium oxide and/or alumina, the powdered insulator might be formed of boron nitride, and the sealing rings might be formed of aluminum.

  4. Method for disclosing invisible physical properties in metal-ferroelectric-insulator-semiconductor gate stacks

    NASA Astrophysics Data System (ADS)

    Sakai, Shigeki; Zhang, Wei; Takahashi, Mitsue

    2017-04-01

    In metal-ferroelectric-insulator-semiconductor gate stacks of ferroelectric-gate field effect transistors (FeFETs), it is impossible to directly obtain curves of polarization versus electric field (P f-E f) in the ferroelectric layer. The P f-E f behavior is not simple, i.e. the P f-E f curves are hysteretic and nonlinear, and the hysteresis curve width depends on the electric field scan amplitude. Unless the P f-E f relation is known, the field E f strength cannot be solved when the voltage is applied between the gate meal and the semiconductor substrate, and thus P f-E f cannot be obtained after all. In this paper, the method for disclosing the relationships among the polarization peak-to-peak amplitude (2P mm_av), the electric field peak-to-peak amplitude (2E mm_av), and the memory window (E w) in units of the electric field is presented. To get P mm_av versus E mm_av, FeFETs with different ferroelectric-layer thicknesses should be prepared. Knowing such essential physical parameters is helpful and in many cases enough to quantitatively understand the behavior of FeFETs. The method is applied to three groups. The first one consists of SrBi2Ta2O9-based FeFETs. The second and third ones consist of Ca x Sr1-x Bi2Ta2O9-based FeFETs made by two kinds of annealing. The method can clearly differentiate the characters of the three groups. By applying the method, ferroelectric relationships among P mm_av, E mm_av, and E w are well classified in the three groups according to the difference of the material kinds and the annealing conditions. The method also evaluates equivalent oxide thickness (EOT) of a dual layer of a deposited high-k insulator and a thermally-grown SiO2-like interfacial layer (IL). The IL thickness calculated by the method is consistent with cross-sectional image of the FeFETs observed by a transmission electron microscope. The method successfully discloses individual characteristics of the ferroelectric and the insulator layers hidden in the gate stack of a FeFET.

  5. High voltage instrument transformers for outdoor service with an insulation of low pressure SF6 gas and plastic foils

    NASA Astrophysics Data System (ADS)

    Brand, U.

    1985-04-01

    Gas-insulated failsafe high voltage instrument transformers with system voltages in the range of 123 to 420 kV for outdoor service were developed. The basic physics and high power tests performed on gas-filled instrument transformer housings are discussed. Construction and design of gas-insulated voltage transformers are explained. The insulation of the 123 kV model consists of low pressurized SF6 gas and plastic foils. The 245 kV unit has the same principal design; however, a higher SF6 pressure is used and the apparatus is fitted with a hollow composite insulator made of a fiber reinforced plastics tube and silicone casing. For the 420 kV model the same insulator type is used and a design for the voltage grading along the insulator is developed. The transformers show good performance in service; they are a safe and environment-protecting alternative to oil insulated equipment.

  6. Experimental evidence for stochastic switching of supercooled phases in NdNiO3 nanostructures

    NASA Astrophysics Data System (ADS)

    Kumar, Devendra; Rajeev, K. P.; Alonso, J. A.

    2018-03-01

    A first-order phase transition is a dynamic phenomenon. In a multi-domain system, the presence of multiple domains of coexisting phases averages out the dynamical effects, making it nearly impossible to predict the exact nature of phase transition dynamics. Here, we report the metal-insulator transition in samples of sub-micrometer size NdNiO3 where the effect of averaging is minimized by restricting the number of domains under study. We observe the presence of supercooled metallic phases with supercooling of 40 K or more. The transformation from the supercooled metallic to the insulating state is a stochastic process that happens at different temperatures and times in different experimental runs. The experimental results are understood without incorporating material specific properties, suggesting that the behavior is of universal nature. The size of the sample needed to observe individual switching of supercooled domains, the degree of supercooling, and the time-temperature window of switching are expected to depend on the parameters such as quenched disorder, strain, and magnetic field.

  7. Sprayable Aerogel Bead Compositions With High Shear Flow Resistance and High Thermal Insulation Value

    NASA Technical Reports Server (NTRS)

    Ou, Danny; Trifu, Roxana; Caggiano, Gregory

    2013-01-01

    A sprayable aerogel insulation has been developed that has good mechanical integrity and lower thermal conductivity than incumbent polyurethane spray-on foam insulation, at similar or lower areal densities, to prevent insulation cracking and debonding in an effort to eliminate the generation of inflight debris. This new, lightweight aerogel under bead form can be used as insulation in various thermal management systems that require low mass and volume, such as cryogenic storage tanks, pipelines, space platforms, and launch vehicles.

  8. Manufacture and mechanical characterisation of high voltage insulation for superconducting busbars - (Part 1) Materials selection and development

    NASA Astrophysics Data System (ADS)

    Clayton, N.; Crouchen, M.; Devred, A.; Evans, D.; Gung, C.-Y.; Lathwell, I.

    2017-04-01

    It is planned that the high voltage electrical insulation on the ITER feeder busbars will consist of interleaved layers of epoxy resin pre-impregnated glass tapes ('pre-preg') and polyimide. In addition to its electrical insulation function, the busbar insulation must have adequate mechanical properties to sustain the loads imposed on it during ITER magnet operation. This paper reports an investigation into suitable materials to manufacture the high voltage insulation for the ITER superconducting busbars and pipework. An R&D programme was undertaken in order to identify suitable pre-preg and polyimide materials from a range of suppliers. Pre-preg materials were obtained from 3 suppliers and used with Kapton HN, to make mouldings using the desired insulation architecture. Two main processing routes for pre-pregs have been investigated, namely vacuum bag processing (out of autoclave processing) and processing using a material with a high coefficient of thermal expansion (silicone rubber), to apply the compaction pressure on the insulation. Insulation should have adequate mechanical properties to cope with the stresses induced by the operating environment and a low void content necessary in a high voltage application. The quality of the mouldings was assessed by mechanical testing at 77 K and by the measurement of the void content.

  9. Nonvolatile Ferroelectric Memory Circuit Using Black Phosphorus Nanosheet-Based Field-Effect Transistors with P(VDF-TrFE) Polymer.

    PubMed

    Lee, Young Tack; Kwon, Hyeokjae; Kim, Jin Sung; Kim, Hong-Hee; Lee, Yun Jae; Lim, Jung Ah; Song, Yong-Won; Yi, Yeonjin; Choi, Won-Kook; Hwang, Do Kyung; Im, Seongil

    2015-10-27

    Two-dimensional van der Waals (2D vdWs) materials are a class of new materials that can provide important resources for future electronics and materials sciences due to their unique physical properties. Among 2D vdWs materials, black phosphorus (BP) has exhibited significant potential for use in electronic and optoelectronic applications because of its allotropic properties, high mobility, and direct and narrow band gap. Here, we demonstrate a few-layered BP-based nonvolatile memory transistor with a poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric top gate insulator. Experiments showed that our BP-based ferroelectric transistors operate satisfactorily at room temperature in ambient air and exhibit a clear memory window. Unlike conventional ambipolar BP transistors, our ferroelectric transistors showed only p-type characteristics due to the carbon-fluorine (C-F) dipole effect of the P(VDF-TrFE) layer, as well as the highest linear mobility value of 1159 cm(2) V(-1) s(-1) with a 10(3) on/off current ratio. For more advanced memory applications beyond unit memory devices, we implemented two memory inverter circuits, a resistive-load inverter circuit and a complementary inverter circuit, combined with an n-type molybdenum disulfide (MoS2) nanosheet. Our memory inverter circuits displayed a clear memory window of 15 V and memory output voltage efficiency of 95%.

  10. Impact of moisture content in AAC on its heat insulation properties

    NASA Astrophysics Data System (ADS)

    Rubene, S.; Vilnitis, M.

    2017-10-01

    One of the most popular trends in construction industry is sustainable construction. Therefore, application of construction materials with high insulation characteristics has significantly increased during the past decade. Requirements for application of construction materials with high insulation parameters are required not only by means of energy saving and idea of sustainable construction but also by legislative requirements. Autoclaved aerated concrete (AAC) is a load bearing construction material, which has high heat insulation parameters. However, if the AAC masonry construction has high moisture content the heat insulation properties of the material decrease significantly. This fact lead to the necessity for the on-site control of moisture content in AAC in order to avoid inconsistency between the designed and actual thermal resistivity values of external delimiting constructions. Research of the impact of moisture content in AAC on its heat insulation properties has been presented in this paper.

  11. Low-E Retrofit Demonstration and Educational Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, Thomas D; Wiehagen, Joseph; Drumheller, S Craig

    The objective of this project was to demonstrate the capability of low-emissivity (low-E) storm windows / panels and low-E retrofit glazing systems to significantly and cost effectively improve the energy efficiency of both existing residential and commercial buildings. The key outcomes are listed below: RESIDENTIAL CASE STUDIES: (a) A residential case study in two large multifamily apartment buildings in Philadelphia showed a substantial 18-22% reduction in heating energy use and a 9% reduction in cooling energy use by replacing old clear glass storm windows with modern low-E storm windows. Furthermore, the new low-E storm windows reduced the overall apartment airmore » leakage by an average of 10%. (b) Air leakage testing on interior low-E panels installed in a New York City multifamily building over windows with and without AC units showed that the effective leakage area of the windows was reduced by 77-95%. (c) To study the use of low-E storm windows in a warmer mixed climate with a balance of both heating and cooling, 10 older homes near Atlanta with single pane windows were tested with three types of exterior storm windows: clear glass, low-E glass with high solar heat gain, and low-E glass with lower solar heat gain. The storm windows significantly reduced the overall home air leakage by an average of 17%, or 3.7 ACH50. Considerably high variability in the data made it difficult to draw strong conclusions about the overall energy usage, but for heating periods, the low-E storm windows showed approximately 15% heating energy savings, whereas clear storm windows were neutral in performance. For cooling periods, the low-E storm windows showed a wide range of performance from 2% to over 30% cooling energy savings. Overall, the study showed the potential for significantly more energy savings from using low-E glass versus no storm window or clear glass storm windows in warmer mixed climates, but it is difficult to conclusively say whether one type of low-E performed better than the other. COMMERCIAL CASE STUDIES: (a) A 12-story office building in Philadelphia was retrofitted by adding a double-pane low-E insulating glass unit to the existing single pane windows, to create a triple glazed low-E system. A detailed side-by-side comparison in two pairs of perimeter offices facing north and east showed a 39-60% reduction in heating energy use, a 9-36% reduction in cooling energy use, and a 10% reduction in peak electrical cooling demand. An analysis of utility bills estimated the whole building heating and cooling energy use was reduced by over 25%. Additionally, the retrofit window temperatures were commonly 20 degrees warmer on winter days, and 10-20 degrees cooler on summer days, leading to increased occupant comfort. (b) Two large 4-story office buildings in New Jersey were retrofitted with a similar system, but using two low-E coatings in the retrofit system. The energy savings are being monitored by a separate GPIC project; this work quantified the changes in glass surface temperatures, thermal comfort, and potential glass thermal stress. The low-E retrofit panels greatly reduced daily variations in the interior window surface temperatures, lowering the maximum temperature and raising the minimum temperature by over 20F compared to the original single pane windows with window film. The number of hours of potential thermal discomfort, as measured by deviation between mean radiant temperature and ambient air temperature by more than 3F, were reduced by 93 percent on the south orientation and over two-thirds on the west orientation. Overall, the low-E retrofit led to substantially improved occupant comfort with less periods of both overheating and feeling cold. (c) No significant thermal stress was observed in the New Jersey office building test window when using the low-E retrofit system over a variety of weather conditions. The surface temperature difference only exceeded 10F (500 psi thermal stress) for less than 1.5% of the monitored time, and in all cases, the maximum surface temperature difference never exceeded 35F (1,750 psi thermal stress). LOW-E STORM WINDOW OUTREACH AND EDUCATION PROGRAM: (a) The project team assisted the State of Pennsylvania in adding low-E storm windows as a cost effective weatherization measure on its priority list for the state weatherization assistance program. (b) No technical barriers that could hinder widespread application were identified in the case studies. However, educational barriers have been identified, in that weatherization personnel commonly misunderstand how the application of low-E storm windows is very different than much more expensive full window replacement. (c) A package of educational materials was developed to help communicate the benefits of low-E storm windows and retrofits as a cost effective tool for weatherization personnel. (d) Using detailed thermal simulations, more accurate U-factor and solar heat gain coefficient (SHGC) values were determined for low-E storm windows installed over different primary windows. IN SUMMARY, this work confirmed the potential for low-E storm windows, panels, and retrofit systems to provide significant energy savings, reductions in air leakage, and improvements in thermal comfort in both residential and commercial existing buildings.« less

  12. Thermal insulating conformal blanket

    NASA Technical Reports Server (NTRS)

    Barney, Andrea (Inventor); Whittington, Charles A (Inventor); Eilertson, Bryan (Inventor); Siminski, Zenon (Inventor)

    2003-01-01

    The conformal thermal insulating blanket may have generally rigid batting material covered by an outer insulating layer formed of a high temperature resistant woven ceramic material and an inner insulating layer formed of a woven ceramic fiber material. The batting and insulating layers may be fastened together by sewing or stitching using an outer mold layer thread fabricated of a high temperature resistant material and an inner mold layer thread of a ceramic fiber material. The batting may be formed to a composite structure that may have a firmness factor sufficient to inhibit a pillowing effect after the stitching to not more than 0.03 inch. The outer insulating layer and an upper portion of the batting adjacent the outer insulating layer may be impregnated with a ceramic coating material.

  13. Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof

    NASA Technical Reports Server (NTRS)

    Zhang, Yide (Inventor); Wang, Shihe (Inventor); Xiao, Danny (Inventor)

    2004-01-01

    A series of bulk-size magnetic/insulating nanostructured composite soft magnetic materials with significantly reduced core loss and its manufacturing technology. This insulator coated magnetic nanostructured composite is comprises a magnetic constituent, which contains one or more magnetic components, and an insulating constituent. The magnetic constituent is nanometer scale particles (1-100 nm) coated by a thin-layered insulating phase (continuous phase). While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase (or coupled nanoparticles) provide the desired soft magnetic properties, the insulating material provides the much demanded high resistivity which significantly reduces the eddy current loss. The resulting material is a high performance magnetic nanostructured composite with reduced core loss.

  14. Electric Field Distribution in High Voltage Power Modules Using Finite Element Simulations

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Liu, Yaoning

    2018-03-01

    With the development of the high voltage insulated gate bipolar transistor (IGBT) power module, it leads to serious problems concerning the electric field insulation. The electric field capabilities of the silicone gels used in the power module encapsulation directly affect the module insulation. Some solutions have been developed to optimize the electric field and reliability. In this letter, the finite element simulation was used to analyze and localize the maximum electric field position; solutions were proposed to improve the module insulation. It’s demonstrated that BaTiO3 silicone composite is a promising insulation material for high voltage power device.

  15. Technique eliminates high voltage arcing at electrode-insulator contact area

    NASA Technical Reports Server (NTRS)

    Mealy, G.

    1967-01-01

    Coating the electrode-insulator contact area with silver epoxy conductive paint and forcing the electrode and insulator tightly together into a permanent connection, eliminates electrical arcing in high-voltage electrodes supplying electrical power to vacuum facilities.

  16. Raman study of high temperature insulator-insulator transition in Ba2Co9O14

    NASA Astrophysics Data System (ADS)

    Zaghrioui, M.; Delorme, F.; Chen, C.; Camara, N. R.; Giovannelli, F.

    2018-05-01

    The insulator-insulator transition, at Tt = 570 K, in layered cobalt oxide Ba2Co9O14 was investigated using Raman scattering technique. High temperature (300-800 K) measurements have evidenced no structural transition occurring at Tt. The obtained results are rather consistent with low to high spin-state transition of Co3+ ions in the Co3O12 octahedral trimer. More precisely, only one cobalt ion located in the central octahedron of the trimer undergoes this transition.

  17. Coexistence of metallic and insulating channels in compressed YbB6

    NASA Astrophysics Data System (ADS)

    Ying, Jianjun; Tang, Lingyun; Chen, Fei; Chen, Xianhui; Struzhkin, Viktor V.

    2018-03-01

    It remains controversial whether compressed YbB6 material is a topological insulator or a Kondo topological insulator. We performed high-pressure transport, x-ray diffraction (XRD), x-ray absorption spectroscopy, and Raman-scattering measurements on YbB6 samples in search for its topological Kondo phase. Both high-pressure powder XRD and Raman measurements show no trace of structural phase transitions in YbB6 up to 50 GPa. The nonmagnetic Yb2 + gradually change to magnetic Yb3 + above 18 GPa concomitantly with the increase in resistivity. However, the transition to the insulating state occurs only around 30 GPa, accompanied by the increase in the shear stress, and anomalies in the pressure dependence of the Raman T2 g mode and in the B atomic position. The resistivity at high pressures can be described by a model taking into account coexisting insulating and metallic channels with the activation energy for the insulating channel about 30 meV. We argue that YbB6 may become a topological Kondo insulator at high pressures above 35 GPa.

  18. High performance top-gated ferroelectric field effect transistors based on two-dimensional ZnO nanosheets

    NASA Astrophysics Data System (ADS)

    Tian, Hongzheng; Wang, Xudong; Zhu, Yuankun; Liao, Lei; Wang, Xianying; Wang, Jianlu; Hu, Weida

    2017-01-01

    High quality ultrathin two-dimensional zinc oxide (ZnO) nanosheets (NSs) are synthesized, and the ZnO NS ferroelectric field effect transistors (FeFETs) are demonstrated based on the P(VDF-TrFE) polymer film used as the top gate insulating layer. The ZnO NSs exhibit a maximum field effect mobility of 588.9 cm2/Vs and a large transconductance of 2.5 μS due to their high crystalline quality and ultrathin two-dimensional structure. The polarization property of the P(VDF-TrFE) film is studied, and a remnant polarization of >100 μC/cm2 is achieved with a P(VDF-TrFE) thickness of 300 nm. Because of the ultrahigh remnant polarization field generated in the P(VDF-TrFE) film, the FeFETs show a large memory window of 16.9 V and a high source-drain on/off current ratio of more than 107 at zero gate voltage and a source-drain bias of 0.1 V. Furthermore, a retention time of >3000 s of the polarization state is obtained, inspiring a promising candidate for applications in data storage with non-volatile features.

  19. Space Shuttle Main Engine Liquid Air Insulation Redesign Lessons Learned

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell; Carroll, Paul; Head, Kenneth; Fasheh, John; Stuart, Jessica

    2010-01-01

    The Space Shuttle Main Engine Liquid Air Insulation redesign was required to prevent the reoccurance of the STS-111 High Pressure Speed Sensor In-Flight Anomaly. The STS-111 In-Flight Anomaly Failure Investigation Team's initial redesign of the High Pressure Fuel Turbopump Pump End Ball Bearing Liquid Air Insulation failed the certification test by producing Liquid Air. The certification test failure indicated not only the High Pressure Fuel Turbopump Liquid Air Insulation, but all other Space Shuttle Main Engine Liquid Air Insulation. This paper will document the original Space Shuttle Main Engine Liquid Air STS-111 In-Flight Anomaly investigation, the heritage Space Shuttle Main Engine Insulation certification testing faults, the techniques and instrumentation used to accurately test the Liquid Air Insulation systems on the Stennis Space Center SSME test stand, the analysis techniques used to identify the Liquid Air Insulation problem areas and the analytical verification of the redesign before entering certification testing, Trade study down selected to three potential design solutions, the results of the development testing which down selected the final Liquid Air Redesign are also documented within this paper.

  20. An experimental investigation of electric flashover across solid insulators in vacuum

    NASA Technical Reports Server (NTRS)

    Vonbaeyer, H. C.

    1984-01-01

    The insulation of high voltage conductors often employs solid insulators for many applications. In such applications, an unexpected electric flashover may occur along the insulator surface. Under conditions of high vacuum, the flashover voltage across the insulator is observed to be lower compared with that of the same electrode separation without an insulator. The reason for such an extreme reduction of flashover voltage is not well understood. Several models based on the secondary electron emission, were proposed to explain the onset of the surface flashover. The starting point and the developing velocity of the surface flashover were determined. An intensified image converter camera was used to observe the initial stage of electrical flashover along the insulator surface parallel to the electric field. Several different insulator materials were used as test pieces to determine the effect of the dielectric constant on the flashover voltage characteristics.

  1. KSI's Cross Insulated Core Transformer Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhmeyer, Uwe

    2009-08-04

    Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the fluxmore » compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.« less

  2. Today's Leaders for a Sustainable Tomorrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Bryan

    2013-02-27

    Today's Leaders for a Sustainable Tomorrow is a collaboration of five residential environmental learning centers (Audubon Center of the North Woods, Deep Portage Learning Center, Laurentian Environmental Center, Long Lake Conservation Center and Wolf Ridge Environmental Learning Center) that together increased energy efficiency, energy conservation and renewable energy technologies through a number of different means appropriate for each unique center. For energy efficiency upgrades the centers installed envelope improvements to seal air barriers through better insulation in walls, ceilings, windows, doors as well as the installation of more energy efficient windows, doors, lighting and air ventilation systems. Through energy sub-metermore » monitoring the centers are able to accurately chart the usage of energy at each of their campuses and eliminate unnecessary energy usage. Facilities reduced their dependence on fossil fuel energy sources through the installation of renewable energy technologies including wood gasification, solar domestic hot water, solar photovoltaic, solar air heat, geothermal heating and wind power. Centers also installed energy education displays on the specific renewable energy technologies used at the center.« less

  3. Evaluation of the Fretting Resistance of the High Voltage Insulation on the ITER Magnet Feeder Busbars

    NASA Astrophysics Data System (ADS)

    Clayton, N.; Crouchen, M.; Evans, D.; Gung, C.-Y.; Su, M.; Devred, A.; Piccin, R.

    2017-12-01

    The high voltage (HV) insulation on the ITER magnet feeder superconducting busbars and current leads will be prepared from S-glass fabric, pre-impregnated with an epoxy resin, which is interleaved with polyimide film and wrapped onto the components and cured during feeder manufacture. The insulation architecture consists of nine half-lapped layers of glass/Kapton, which is then enveloped in a ground-screen, and two further half-lapped layers of glass pre-preg for mechanical protection. The integrity of the HV insulation is critical in order to inhibit electrical arcs within the feeders. The insulation over the entire length of the HV components (bus bar, current leads and joints) must provide a level of voltage isolation of 30 kV. In operation, the insulation on ITER busbars will be subjected to high mechanical loads, arising from Lorentz forces, and in addition will be subjected to fretting erosion against stainless steel clamps, as the pulsed nature of some magnets results in longitudinal movement of the busbar. This work was aimed at assessing the wear on, and the changes in, the electrical properties of the insulation when subjected to typical ITER operating conditions. High voltage tests demonstrated that the electrical isolation of the insulation was intact after the fretting test.

  4. Strain-induced high-temperature perovskite ferromagnetic insulator.

    PubMed

    Meng, Dechao; Guo, Hongli; Cui, Zhangzhang; Ma, Chao; Zhao, Jin; Lu, Jiangbo; Xu, Hui; Wang, Zhicheng; Hu, Xiang; Fu, Zhengping; Peng, Ranran; Guo, Jinghua; Zhai, Xiaofang; Brown, Gail J; Knize, Randy; Lu, Yalin

    2018-03-20

    Ferromagnetic insulators are required for many new magnetic devices, such as dissipationless quantum-spintronic devices, magnetic tunneling junctions, etc. Ferromagnetic insulators with a high Curie temperature and a high-symmetry structure are critical integration with common single-crystalline oxide films or substrates. So far, the commonly used ferromagnetic insulators mostly possess low-symmetry structures associated with a poor growth quality and widespread properties. The few known high-symmetry materials either have extremely low Curie temperatures (≤16 K), or require chemical doping of an otherwise antiferromagnetic matrix. Here we present compelling evidence that the LaCoO 3 single-crystalline thin film under tensile strain is a rare undoped perovskite ferromagnetic insulator with a remarkably high T C of up to 90 K. Both experiments and first-principles calculations demonstrate tensile-strain-induced ferromagnetism which does not exist in bulk LaCoO 3 The ferromagnetism is strongest within a nearly stoichiometric structure, disappearing when the Co 2+ defect concentration reaches about 10%. Significant impact of the research includes demonstration of a strain-induced high-temperature ferromagnetic insulator, successful elevation of the transition over the liquid-nitrogen temperature, and high potential for integration into large-area device fabrication processes. Copyright © 2018 the Author(s). Published by PNAS.

  5. Strain-induced high-temperature perovskite ferromagnetic insulator

    PubMed Central

    Meng, Dechao; Guo, Hongli; Cui, Zhangzhang; Ma, Chao; Zhao, Jin; Lu, Jiangbo; Xu, Hui; Wang, Zhicheng; Hu, Xiang; Fu, Zhengping; Peng, Ranran; Guo, Jinghua; Zhai, Xiaofang; Brown, Gail J.; Knize, Randy; Lu, Yalin

    2018-01-01

    Ferromagnetic insulators are required for many new magnetic devices, such as dissipationless quantum-spintronic devices, magnetic tunneling junctions, etc. Ferromagnetic insulators with a high Curie temperature and a high-symmetry structure are critical integration with common single-crystalline oxide films or substrates. So far, the commonly used ferromagnetic insulators mostly possess low-symmetry structures associated with a poor growth quality and widespread properties. The few known high-symmetry materials either have extremely low Curie temperatures (≤16 K), or require chemical doping of an otherwise antiferromagnetic matrix. Here we present compelling evidence that the LaCoO3 single-crystalline thin film under tensile strain is a rare undoped perovskite ferromagnetic insulator with a remarkably high TC of up to 90 K. Both experiments and first-principles calculations demonstrate tensile-strain–induced ferromagnetism which does not exist in bulk LaCoO3. The ferromagnetism is strongest within a nearly stoichiometric structure, disappearing when the Co2+ defect concentration reaches about 10%. Significant impact of the research includes demonstration of a strain-induced high-temperature ferromagnetic insulator, successful elevation of the transition over the liquid-nitrogen temperature, and high potential for integration into large-area device fabrication processes. PMID:29507211

  6. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  7. Calcium silicate insulation structure

    DOEpatents

    Kollie, Thomas G.; Lauf, Robert J.

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  8. Orbital disc insulator for SF.sub.6 gas-insulated bus

    DOEpatents

    Bacvarov, Dosio C.; Gomarac, Nicholas G.

    1977-01-01

    An insulator for supporting a high voltage conductor within a gas-filled grounded housing consists of radially spaced insulation rings fitted to the exterior of the bus and the interior of the grounded housing respectively, and the spaced rings are connected by trefoil type rings which are integrally formed with the spaced insulation rings.

  9. [Co-composting of high moisture vegetable waste, flower waste and chicken litter in pilot scale].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng; Qiu, Xiangyang

    2003-03-01

    Co-composting of different mixture made of vegetable waste, flower waste and chicken litter were studied. The first stage of composting was aerobic static bed based temperature feedback and control via aeration rate regulation. The second stage was window composting. At first stage, the pile was insulated and temperatures of at least 55 degrees C were maintained for a minimum of 3 days. The highest temperature was up to 73.3 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 75% to 56% and organic matter was degraded from 65% to 50% during composting. The value of pH was stable at 8. Analysis of maturity and nutrition of compost showed that end-products of composting ware bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste, flower waste and chicken litter can get high quality compost by optimizing composting process during 45 days. Composting can decrease nonpoint resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.

  10. High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pieper, Andreas; Kreutzer, Moritz; Alvermann, Andreas, E-mail: alvermann@physik.uni-greifswald.de

    2016-11-15

    We study Chebyshev filter diagonalization as a tool for the computation of many interior eigenvalues of very large sparse symmetric matrices. In this technique the subspace projection onto the target space of wanted eigenvectors is approximated with filter polynomials obtained from Chebyshev expansions of window functions. After the discussion of the conceptual foundations of Chebyshev filter diagonalization we analyze the impact of the choice of the damping kernel, search space size, and filter polynomial degree on the computational accuracy and effort, before we describe the necessary steps towards a parallel high-performance implementation. Because Chebyshev filter diagonalization avoids the need formore » matrix inversion it can deal with matrices and problem sizes that are presently not accessible with rational function methods based on direct or iterative linear solvers. To demonstrate the potential of Chebyshev filter diagonalization for large-scale problems of this kind we include as an example the computation of the 10{sup 2} innermost eigenpairs of a topological insulator matrix with dimension 10{sup 9} derived from quantum physics applications.« less

  11. Design of load-to-failure tests of high-voltage insulation breaks for ITER's cryogenic network

    NASA Astrophysics Data System (ADS)

    Langeslag, S. A. E.; Rodriguez Castro, E.; Aviles Santillana, I.; Sgobba, S.; Foussat, A.

    2015-12-01

    The development of new generation superconducting magnets for fusion research, such as the ITER experiment, is largely based on coils wound with so-called cable-in-conduit conductors. The concept of the cable-in-conduit conductor is based on a direct cooling principle, by supercritical helium, flowing through the central region of the conductor, in close contact with the superconducting strands. Consequently, a direct connection exists between the electrically grounded helium coolant supply line and the highly energised magnet windings. Various insulated regions, constructed out of high-voltage insulation breaks, are put in place to isolate sectors with different electrical potential. In addition to high voltages and significant internal helium pressure, the insulation breaks will experience various mechanical forces resulting from differential thermal contraction phenomena and electro-magnetic loads. Special test equipment was designed, prepared and employed to assess the mechanical reliability of the insulation breaks. A binary test setup is proposed, where mechanical failure is assumed when leak rate of gaseous helium exceeds 10-9·Pa·m3/s. The test consists of a load-to-failure insulation break charging, in tension, while immersed in liquid nitrogen at the temperature of 77 K. Leak tightness during the test is monitored by measuring the leak rate of the gaseous helium, directly surrounding the insulation break, with respect to the existing vacuum inside the insulation break. The experimental setup is proven effective, and various insulation breaks performed beyond expectations.

  12. High voltage insulation of bushing for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Jin; Choi, Jae-Hyeong; Kim, Sang-Hyun

    2012-12-01

    For the operation of high temperature superconducting (HTS) power equipments, it is necessary to develop insulating materials and high voltage (HV) insulation technology at cryogenic temperature of bushing. Liquid nitrogen (LN2) is an attractive dielectric liquid. Also, the polymer insulating materials are expected to be used as solid materials such as glass fiber reinforced plastic (GFRP), polytetra-fluoroethylene (PTFE, Teflon), Silicon (Si) rubber, aromatic polyamide (Nomex), EPDM/Silicon alloy compound (EPDM/Si). In this paper, the surface flashover characteristics of various insulating materials in LN2 are studied. These results are studied at both AC and impulse voltage under a non-uniform field. The use of GFRP and Teflon as insulation body for HTS bushing should be much desirable. Especially, GFRP is excellent material not only surface flashover characteristics but also mechanical characteristics at cryogenic temperature. The surface flashover is most serious problem for the shed design in LN2 and operation of superconducting equipments.

  13. High-temperature properties of ceramic fibers and insulations for thermal protection of atmospheric entry and hypersonic cruise vehicles

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Pitts, William C.; Araujo, Myrian; Zimmerman, R. S.

    1988-01-01

    Multilayer insulations (MIs) which will operate in the 500 to 1000 C temperature range are being considered for possible applications on aerospace vehicles subject to convective and radiative heating during atmospheric entry. The insulations described consist of ceramic fibers, insulations, and metal foils quilted together with ceramic thread. As these types of insulations have highly anisotropic properties, the total heat transfer characteristics must be determined. Data are presented on the thermal diffusivity and thermal conductivity of four types of MIs and are compared to the baseline Advanced Flexible Reusable Surface Insulation currently used on the Space Shuttle Orbiter. In addition, the high temperature properties of the fibers used in these MIs are discussed. The fibers investigated included silica and three types of aluminoborosilicate (ABS). Static tension tests were performed at temperatures up to 1200 C and the ultimate strain, tensile strength, and tensile modulus of single fibers were determined.

  14. High temperature properties of ceramic fibers and insulations for thermal protection of atmospheric entry and hypersonic cruise vehicles

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Pitts, William C.; Araujo, Myrian; Zimmerman, R. S.

    1988-01-01

    Multilayer insulations (MIs) which will operate in the 500 to 1000 C temperature range are being considered for possible applications on aerospace vehicles subject to convective and radiative heating during atmospheric entry. The insulations described consist of ceramic fibers, insulations, and metal foils quilted together with ceramic thread. As these types of insulations have highly anisotropic properties, the total heat transfer characteristics must be determined. Data are presented on the thermal diffusivity and thermal conductivity of four types of MIs and are compared to the baseline Advanced Flexible Reusable Surface Insulation currently used on the Space Shuttle Orbiter. In addition, the high temperature properties of the fibers used in these MIs are discussed. The fibers investigated included silica and three types of aluminoborosilicate (ABS). Static tension tests were performed at temperatures up to 1200 C and the ultimate strain, tensile strength, and tensile modulus of single fibers were determined.

  15. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Bilayer Photoresist Insulator for High Performance Organic Thin-Film Transistors on Plastic Films

    NASA Astrophysics Data System (ADS)

    Wang, He; Li, Chun-Hong; Pan, Feng; Wang, Hai-Bo; Yan, Dong-Hang

    2009-11-01

    A novel bilayer photoresist insulator is applied in flexible vanadyl-phthalocyanine (VOPc) organic thin-film transistors (OTFTs). The micron-size patterns of this photoresisit insulator can be directly defined only by photolithography without the etching process. Furthermore, these OTFTs exhibit high field-effect mobility (about 0.8 cm2/Vs) and current on/off ratio (about 106). In particular, they show rather low hysteresis (< 1 V). The results demonstrate that this bilayer photoresist insulator can be applied in large-area electronics and in the facilitation of patterning insulators.

  16. Reusable cryogenic foam insulation for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Mcauliffe, Patrick S.; Taylor, Allan H.; Sparks, Larry L.; Dube, William P.

    1991-01-01

    Future high-speed aircraft and aerospace vehicles using cryogenic propellants will require an advanced reusable insulation system for the propellant tank structure. This cryogenic insulation system must be lightweight, structurally and thermally efficient, and capable of multiple reuse without cracking or degraded performance. This paper presents recent progress in the development of a reusable cryogenic foam insulation system having a maximum service temperature of 400 F. The system consists of preshaped, precut blocks of rigid polymethacrylimide foam insulation, wrapped with a high-temperature Kapton and aluminum foil vapor barrier which is adhesively bonded to the propellant tank wall.

  17. Load responsive multilayer insulation performance testing

    NASA Astrophysics Data System (ADS)

    Dye, S.; Kopelove, A.; Mills, G. L.

    2014-01-01

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.

  18. Method of measuring thermal conductivity of high performance insulation

    NASA Technical Reports Server (NTRS)

    Hyde, E. H.; Russell, L. D.

    1968-01-01

    Method accurately measures the thermal conductivity of high-performance sheet insulation as a discrete function of temperature. It permits measurements to be made at temperature drops of approximately 10 degrees F across the insulation and ensures measurement accuracy by minimizing longitudinal heat losses in the system.

  19. High voltage gas insulated transmission line with continuous particle trapping

    DOEpatents

    Cookson, Alan H.; Dale, Steinar J.

    1983-01-01

    This invention provides a novel high voltage gas insulated transmission line utilizing insulating supports spaced at intervals with snap-in means for supporting a continuous trapping apparatus and said trapping apparatus having perforations and cutouts to facilitate trapping of contaminating particles and system flexibility.

  20. Design and Applications of a Climatic Chamber for in-situ Neutron Imaging Experiments

    NASA Astrophysics Data System (ADS)

    Mannes, David; Schmid, Florian; Wehmann, Timon; Lehmann, Eberhard

    Due to the high sensitivity for hydrogen, the detection and quantification of moisture and moisture transport processes are some of the key topics in neutron imaging. Especially when dealing with hygroscopic material, such as wood and other porous media, it is crucial for quantitative analyses to know and control the ambient conditions of the sample precisely. In this work, a neutron transparent climatic chamber is presented, which was designed and built for the imaging facilities at the Paul Scherrer Institut (PSI), Villigen (CH). The air-conditioned measuring system consists of the actual sample chamber and a moisture generator providing air with adjustable temperature and relative humidity (%RH) (up to a dew point temperature of 70 °C). The two components are connected with a flexible tube, which features insulation, a heating system and temperature sensors to prevent condensation within the tube. The sample chamber itself is equipped with neutron transparent windows, insulating double walls with three feed-through openings for the rotation stage, sensors for humidity and temperature. Thermoelectric modules allow to control the chamber temperature in the range of -20 °C to 100 °C. The chamber allows to control the climatic conditions either in a static mode (stable temperature and %RH) or in dynamic mode (humidity or temperature cycles). The envisaged areas of application are neutron radiography and tomography investigations of dynamic processes in building materials (e.g. wood, concrete), food science and any other application necessitating the control of the climatic conditions.

  1. Cryogenic electrical properties of irradiated cyanate ester/epoxy insulation for fusion magnets

    NASA Astrophysics Data System (ADS)

    Li, X.; Wu, Z. X.; Li, J.; Xu, D.; Liu, H. M.; Huang, R. J.; Li, L. F.

    2017-12-01

    The insulation materials used in high field fusion magnets require excellent mechanical properties, high electrical breakdown strength, good thermal conductivity and high radiation tolerance. Previous investigations showed that cyanate ester/epoxy (CE/EP) insulation material, a candidate insulation for fusion magnets, can maintain good mechanical performance at cryogenic temperature after 10 MGy irradiation and has a much longer pot life than traditional epoxy insulation material. In order to quantify the electrical properties of the CE/EP insulation material at low temperature, a cryogenic electrical property testing system cooled by a G-M cryocooler was developed for this study. An insulation material with 40% cyanate ester and 60% epoxy was subjected to 60Co γ-ray irradiation in air at ambient temperature with a dose rate of 300 Gy/min, and total doses of 1 MGy, 5 MGy and 10 MGy. The electrical breakdown strength of this CE/EP insulation material was measured before and after irradiation. The results show that cryogenic temperature has a positive effect on the electrical breakdown strength of this composite, while the influence of 60Co γ-ray irradiation is not obvious at 6.1 K.

  2. High-voltage electrical apparatus utilizing an insulating gas of sulfur hexafluoride and helium

    DOEpatents

    Wootton, Roy E.

    1980-01-01

    High-voltage electrical apparatus includes an outer housing at low potential, an inner electrode disposed within the outer housing at high potential with respect thereto, and support means for insulatably supporting the inner electrode within the outer housing. Conducting particles contaminate the interior of the outer housing, and an insulating gas electrically insulates the inner electrode from the outer housing even in the presence of the conducting particles. The insulating gas is comprised of sulfur hexafluoride at a partial pressure of from about 2.9 to about 3.4 atmospheres absolute, and helium at a partial pressure from about 1.1 to about 11.4 atmospheres absolute. The sulfur hexafluoride comprises between 20 and 65 volume percent of the insulating gas.

  3. Using stepped anvils to make even insulation layers in laser-heated diamond-anvil cell samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Zhixue; Gu, Tingting; Dobrosavljevic, Vasilije

    Here, we describe a method to make even insulation layers for high-pressure laser-heated diamond-anvil cell samples using stepped anvils. Moreover, the method works for both single-sided and double-sided laser heating using solid or fluid insulation. The stepped anvils are used as matched pairs or paired with a flat culet anvil to make gasket insulation layers and not actually used at high pressures; thus, their longevity is ensured. We also compare the radial temperature gradients and Soret diffusion of iron between self-insulating samples and samples produced with stepped anvils and find that less pronounced Soret diffusion occurs in samples with evenmore » insulation layers produced by stepped anvils.« less

  4. Using stepped anvils to make even insulation layers in laser-heated diamond-anvil cell samples

    DOE PAGES

    Du, Zhixue; Gu, Tingting; Dobrosavljevic, Vasilije; ...

    2015-09-01

    Here, we describe a method to make even insulation layers for high-pressure laser-heated diamond-anvil cell samples using stepped anvils. Moreover, the method works for both single-sided and double-sided laser heating using solid or fluid insulation. The stepped anvils are used as matched pairs or paired with a flat culet anvil to make gasket insulation layers and not actually used at high pressures; thus, their longevity is ensured. We also compare the radial temperature gradients and Soret diffusion of iron between self-insulating samples and samples produced with stepped anvils and find that less pronounced Soret diffusion occurs in samples with evenmore » insulation layers produced by stepped anvils.« less

  5. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  6. Gaseous insulators for high voltage electrical equipment

    DOEpatents

    Christophorou, Loucas G.; James, David R.; Pace, Marshall O.; Pai, Robert Y.

    1979-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  7. Gaseous insulators for high voltage electrical equipment

    DOEpatents

    Christophorou, Loucas G.; James, David R.; Pace, Marshall O.; Pai, Robert Y.

    1981-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  8. Etude de l'isolation hybride en vue de son application dans les transformateurs de puissance

    NASA Astrophysics Data System (ADS)

    Kassi, Koutoua Simon

    For nearly a century the conventional insulation (oil / cellulose complex) was the type of insulation used in the power transformers and most electrical power equipments. But the cellulose paper, the solid part of this insulation has many weaknesses. Indeed, the aging of cellulose paper in power transformers is accelerated by moisture, oxygen, metal catalysts, temperature, etc.). The risk of failures is thereby increased. Another major weakness of cellulose paper is its inability to protect the electrical transformer windings against the harmful effects of corrosive sulfur. Given all the weaknesses of cellulose paper, several studies have been conducted to evaluate the performance of aramid paper, which has better thermal properties. The aramid paper is currently used as high temperature insulation, combined with high fire point oils (synthetic and vegetable oils), mainly in electric traction transformers. The hybrid solid insulation is associated with mineral oil or with high fire point oils; it finds application in transformers of fixed and mobile substations. Manufacturing technology is controlled by manufacturers but operators of electrical networks do not have baseline data (standards) as diagnostic tools, allowing them to monitor the health/condition of the isolation in this new type of transformer. The overall objective of this research was to study the hybrid insulation and to demonstrate its potential use in power transformers. This overall objective has been subdivided into three specific objectives, namely: (i) improving the diagnostic of the condition of solid hybrid insulation and conventional solid insulation; (ii) diagnosing the condition of oils sampled from hybrid, high temperature and conventional insulation and finally (iii) investigating the ability of aramid paper and cellulose paper to protect the copper (electrical windings) against harmful effects of corrosive sulfur. In order to achieve these objectives, thermal accelerated aging were conducted in laboratory : • according to ASTM D1934 (American Society for Testing and Materials), four different type of insulation samples were considered, namely the oil impregnated hybrid insulation, oil impregnated cellulose insulation, oil impregnated high temperature insulation and paperless oil samples. Following the aging procedure, a local overheating (thermal fault) was applied on the paper sample using an experimental setup designed in our laboratory (first and second specific objectives). • according to the IEC (International Electrotechnical Commission)-62535, for mineral, synthetic, vegetable and silicones oils (third specific objective). The degree of polymerization by viscosimetry and the determination of the carbon oxides by dissolved gas analysis (DGA) were determined to assess the condition of the paper in conventional insulation compared to that of the hybrid insulation. Our results indicate that cellulose paper in the hybrid insulation is less degraded when compared to the conventional insulation. Since the life of a transformer is directly related to the solid insulation, these results suggest that hybrid transformer insulation has a higher life than conventional ones. Subsequently, a very good correlation between amounts of oxides of carbon and degree of polymerization was established. This relationship might help improving the accuracy when interpreting the results of the DGA for transformers (first specific objective). Regarding the second specific objective, we used four physicochemical diagnosis techniques (dissolved decay products 'DDP', Turbidity, interfacial tension (IFT) and water content) to assess comparatively the quality of oils sampled from the four types of insulation. According to our results, the oil of the hybrid insulation indicated better quality at a certain stage of aging and especially after the application of thermal stress on the solid insulation. For the third specific objective, a qualitative study followed by a quantitative ones provided the following results: aramid paper better protects copper against corrosive sulfur in mineral oil; synthetic ester oils are not corrosive; the vegetable oil is not corrosive but in the presence of cellulose paper, a degree of corrosiveness is observed and the aramid paper promotes formation of corrosive sulfur in silicone oils. Based on the obtained results, the feasibility of using hybrid insulation in power transformers is possible. Keywords : power transformer; hybrid insulation; high temperature insulation; conventional insulation; sub-stations; aramid paper; cellulose paper; degree of polymerization; dissolved gases analysis (DGA); mineral oils; vegetable oils; synthetic oils; corrosive sulfur.

  9. Investigation of the adhesive bonding technology for the insulator structure of EAST neutral beam injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Jiang-Long, E-mail: jlwei@ipp.ac.cn; Li, Jun; Hu, Chun-Dong

    A key issue on the development of EAST ion source was the junction design of insulator structure, which consists of three insulators and four supporting flanges of electrode grid. Because the ion source is installed on the vertical plane, the insulator structure has to withstand large bending and shear stress due to the gravity of whole ion source. Through a mechanical analysis, it was calculated that the maximum bending normal stress was 0.34 MPa and shear stress was 0.23 MPa on the insulator structure. Due to the advantages of simplicity and high strength, the adhesive bonding technology was applied tomore » the junction of insulator structure. A tensile testing campaign of different junction designs between insulator and supporting flange was performed, and a junction design of stainless steel and fiber enhanced epoxy resin with epoxy adhesive was determined. The insulator structure based on the determined design can satisfy both the requirements of high-voltage holding and mechanical strength.« less

  10. Measuring Thermal Conductivity and Moisture Absorption of Cryo-Insulation Materials

    NASA Technical Reports Server (NTRS)

    Lambert, Michael A.

    1998-01-01

    NASA is seeking to develop thermal insulation material systems suitable for withstanding both extremely high temperatures encountered during atmospheric re-entry heating and aero- braking maneuvers, as well as extremely low temperatures existing in liquid fuel storage tanks. Currently, materials used for the high temperature insulation or Thermal Protection System (TPS) are different from the low temperature, or cryogenic insulation. Dual purpose materials are necessary to the development of reusable launch vehicles (RLV). The present Space Shuttle (or Space Transportation System, STS) employs TPS materials on the orbiter and cryo-insulation materials on the large fuel tank slung under the orbiter. The expensive fuel tank is jettisoned just before orbit is achieved and it burns up while re-entering over the Indian Ocean. A truly completely reusable launch vehicle must store aR cryogenic fuel internally. The fuel tanks will be located close to the outer surface. In fact the outer skin of the craft will probably also serve as the fuel tank enclosure, as in jet airliners. During a normal launch the combined TPS/cryo-insulation system will serve only as a low temperature insulator, since aerodynamic heating is relatively minimal during ascent to orbit. During re-entry, the combined TPS/cryo-insulation system will serve only as a high temperature insulator, since all the cryogenic fuel will have been expended in orbit. However, in the event of an.aborted launch or a forced/emergency early re-entry, the tanks will still contain fuel, and the TPS/cryo-insulation will have to serve as both low and high temperature insulation. Also, on long duration missions, such as to Mars, very effective cryo-insulation materials are needed to reduce bod off of liquid propellants, thereby reducing necessary tankage volume, weight, and cost. The conventional approach to obtaining both low and high temperature insulation, such as is employed for the X-33 and X-34 spacecraft, is to use separate TPS and cryo-insulation materials, which are connected by means of adhesives or stand-offs (spacers). Three concepts are being considered: (1) the TPS is bonded directly to the cryo-insulation which, in turn, is bonded to the exterior of the tank, (2) stand-offs are used to make a gap between the TPS and the cryo-insulation, which is bonded externally to the tank, (3) TPS is applied directly or with stand-offs to the exterior so the tank, and cryo-insulation is applied directly to the interior of the tank. Many potential problems are inherent in these approaches. For example, mismatch between coefficients of thermal expansion of the TPS and cryo-insulation, as well as aerodynamic loads, could lead to failure of the bond. Internal cryo-insulation must be prevent from entering the sump of the fuel turbo-pump. The mechanical integrity of the stand-off structure (if used) must withstand multiple missions. During ground hold (i.e., prior to launch) moisture condensation must be minimized in the gap between the cryo-insulation and the TPS. The longer term solution requires the development of a single material to act as cryo- insulation during ground hold and as TPS during re-entry. Such a material minimizes complexity and weight while improving reliability and reducing cost.

  11. The effect of micro-ECoG substrate footprint on the meningeal tissue response

    NASA Astrophysics Data System (ADS)

    Schendel, Amelia A.; Nonte, Michael W.; Vokoun, Corinne; Richner, Thomas J.; Brodnick, Sarah K.; Atry, Farid; Frye, Seth; Bostrom, Paige; Pashaie, Ramin; Thongpang, Sanitta; Eliceiri, Kevin W.; Williams, Justin C.

    2014-08-01

    Objective. There is great interest in designing implantable neural electrode arrays that maximize function while minimizing tissue effects and damage. Although it has been shown that substrate geometry plays a key role in the tissue response to intracortically implanted, penetrating neural interfaces, there has been minimal investigation into the effect of substrate footprint on the tissue response to surface electrode arrays. This study investigates the effect of micro-electrocorticography (micro-ECoG) device geometry on the longitudinal tissue response. Approach. The meningeal tissue response to two micro-ECoG devices with differing geometries was evaluated. The first device had each electrode site and trace individually insulated, with open regions in between, while the second device had a solid substrate, in which all 16 electrode sites were embedded in a continuous insulating sheet. These devices were implanted bilaterally in rats, beneath cranial windows, through which the meningeal tissue response was monitored for one month after implantation. Electrode site impedance spectra were also monitored during the implantation period. Main results. It was observed that collagenous scar tissue formed around both types of devices. However, the distribution of the tissue growth was different between the two array designs. The mesh devices experienced thick tissue growth between the device and the cranial window, and minimal tissue growth between the device and the brain, while the solid device showed the opposite effect, with thick tissue forming between the brain and the electrode sites. Significance. These data suggest that an open architecture device would be more ideal for neural recording applications, in which a low impedance path from the brain to the electrode sites is critical for maximum recording quality.

  12. Heat Transfer In High-Temperature Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Miller, Stephen D.; Cunnington, George R.

    2006-01-01

    The combined radiation/conduction heat transfer in high-temperature multilayer insulations for typical reentry of reusable launch vehicles from low Earth orbit was investigated experimentally and numerically. The high-temperature multilayer insulation investigated consisted of gold-coated reflective foils separated by alumina fibrous insulation spacers. The steady-state heat transfer through four multilayer insulation configurations was investigated experimentally over the temperature range of 300-1300 K and environmental pressure range of 1.33 10(exp -5)-101.32 kPa. It was shown that including the reflective foils reduced the effective thermal conductivity compared to fibrous insulation sample at 1.5 times the density of the multilayer sample. A finite volume numerical model was developed to solve the governing combined radiation/conduction heat transfer equations. The radiation heat transfer in the fibrous insulation spacers was modeled using the modified two-flux approximation assuming anisotropic scattering and gray medium. The numerical model was validated by comparison with steady-state experimental data. The root mean square deviation between the predicted and measured effective thermal conductivity of the samples was 9.5%.

  13. Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides.

    PubMed

    Zhu, Shiyang; Lo, G Q; Kwong, D L

    2013-04-08

    An extremely compact Si phase modulator is proposed and validated, which relies on effective modulation of the real part of modal index of horizontal metal-insulator-Si-insulator-metal plasmonic waveguides by a voltage applied between the metal cover and the Si core. Proof-of-concept devices are fabricated on silicon-on-insulator substrates using standard complementary metal-oxide-semiconductor technology using copper as the metal and thermal silicon dioxide as the insulator. A modulator with a 1-μm-long phase shifter inserted in an asymmetric Si Mach-Zehnder interferometer exhibits 9-dB extinction ratio under a 6-V/10-kHz voltage swing. Numerical simulations suggest that high speed and low driving voltage could be achieved by shortening the distance between the Si core and the n(+)-contact and by using a high-κ dielectric as the insulator, respectively.

  14. High Performance Transparent Transistor Memory Devices Using Nano-Floating Gate of Polymer/ZnO Nanocomposites

    NASA Astrophysics Data System (ADS)

    Shih, Chien-Chung; Lee, Wen-Ya; Chiu, Yu-Cheng; Hsu, Han-Wen; Chang, Hsuan-Chun; Liu, Cheng-Liang; Chen, Wen-Chang

    2016-02-01

    Nano-floating gate memory devices (NFGM) using metal nanoparticles (NPs) covered with an insulating polymer have been considered as a promising electronic device for the next-generation nonvolatile organic memory applications NPs. However, the transparency of the device with metal NPs is restricted to 60~70% due to the light absorption in the visible region caused by the surface plasmon resonance effects of metal NPs. To address this issue, we demonstrate a novel NFGM using the blends of hole-trapping poly (9-(4-vinylphenyl) carbazole) (PVPK) and electron-trapping ZnO NPs as the charge storage element. The memory devices exhibited a remarkably programmable memory window up to 60 V during the program/erase operations, which was attributed to the trapping/detrapping of charge carriers in ZnO NPs/PVPK composite. Furthermore, the devices showed the long-term retention time (>105 s) and WRER test (>200 cycles), indicating excellent electrical reliability and stability. Additionally, the fabricated transistor memory devices exhibited a relatively high transparency of 90% at the wavelength of 500 nm based on the spray-coated PEDOT:PSS as electrode, suggesting high potential for transparent organic electronic memory devices.

  15. Better Thermal Insulation in Solar-Array Laminators

    NASA Technical Reports Server (NTRS)

    Burger, D. R.; Knox, J. F.

    1984-01-01

    Glass marbles improve temperature control. Modified vacuum laminator for photovoltaic solar arrays includes thermal insulation made of conventional glass marbles. Marbles serve as insulation for temperature control of lamination process at cure temperatures as high as 350 degrees F. Used to replace original insulation made of asbestos cement.

  16. Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    1999-01-01

    An experimental apparatus was designed to measure the effective thermal conductivity of various high temperature insulations subject to large temperature gradients representative of typical launch vehicle re-entry aerodynamic heating conditions. The insulation sample cold side was maintained around room temperature, while the hot side was heated to temperatures as high as 1800 degrees Fahrenheit. The environmental pressure was varied from 0.0001 to 760 torr. All the measurements were performed in a dry gaseous nitrogen environment. The effective thermal conductivity of Saffil, Q-Fiber felt, Cerachrome, and three multi-layer insulation configurations were measured.

  17. Development of 72kV High Pressure Air-insulated GIS with Vacuum Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Rokunohe, Toshiaki; Yagihashi, Yoshitaka; Endo, Fumihiro; Aoyagi, Kenji; Saitoh, Hitoshi; Oomori, Takashi

    SF6 gas has excellent dielectric strength and interruption performance. For these reasons, it has been widely used for gas insulated switchgear (GIS). However, use of SF6 gas has become regulated under agreements set at the 1997 COP3. So investigation and development for GIS with a lower amount of SF6 gas are being carried out worldwide. Presently, SF6 gas-free GIS has been commercialized for the 24kV class. Air or N2 gas is used as insulation gas for this GIS. On the other hand, SF6 gas-free GIS has not been commercialized for 72kV class GIS. Dielectric strengths of air and N2 gas are approximately 1/3 that of SF6 gas. So to enhance insulation performance of air and N2, we have investigated a hybrid gas insulation system which has the combined features of providing an insulation coating and suitable insulation gas. We have developed the world's first 72kV SF6 gas-free GIS. This paper deals with key technologies for SF6 gas-free GIS such as the hybrid insulation structure, bellows for the high pressure vacuum circuit breaker, a newly designed disconnector and spacer and prevention of particle levitation. Test results of 72kV high pressure air-insulated GIS with the vacuum circuit breaker are described.

  18. Determination of threshold and maximum operating electric stresses for selected high voltage insulations. Task 2: Investigation of oil-filled paper insulated cables

    NASA Astrophysics Data System (ADS)

    Sosnowski, M.; Eager, G. S., Jr.

    1983-06-01

    Threshold voltage of oil-impregnated paper insulated cables are investigaed. Experimental work was done on model cables specially manufactured for this project. The cables were impregnated with mineral and with synthetic oils. Standard impulse breakdown voltage tests and impulse voltage breakdown tests with dc prestressing were performed at room temperature and at 1000C. The most important result is the finding of very high level of threshold voltage stress for oil-impregnated paper insulated cables. This threshold voltage is approximately 1.5 times higher than the threshold voltage or crosslinked polyethylene insulated cables.

  19. Flux pumping for non-insulated and metal-insulated HTS coils

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Geng, Jianzhao; Coombs, T. A.

    2018-01-01

    High-temperature superconducting (HTS) coils wound from coated conductors without turn-to-turn insulation (non-insulated (NI) coils) have been proven with excellent electrical and thermal performances. However, the slow charging of NI coils has been a long-lasting problem. In this work, we explore using a transformer-rectifier HTS flux pump to charge an NI coil and a metal-insulated coil. The charging performance comparison is made between different coils. Comprehensive study is done to thoroughly understand the electrical-magnetic transience in charging these coils. We will show that the low-voltage high-current flux pump is especially suitable for charging NI coils with very low characteristic resistance.

  20. Development of High Performance Composite Foam Insulation with Vacuum Insulation Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik; Desjarlais, Andre Omer; SmithPhD, Douglas

    Development of a high performance thermal insulation (thermal resistance or R-value per inch of R-12 hr-ft2- F/Btu-in or greater), with twice the thermal resistance of state-of-the-art commercial insulation materials ( R6/inch for foam insulation), promises a transformational impact in the area of building insulation. In 2010, in the US, the building envelope-related primary energy consumption was 15.6 quads, of which 5.75 quads were due to opaque wall and roof sections; the total US consumption (building, industrial and transportation) was 98 quads. In other words, the wall and roof contribution was almost 6% of the entire US primary energy consumption. Buildingmore » energy modeling analyses have shown that adding insulation to increase the R-value of the external walls of residential buildings by R10-20 (hr-ft2- F/Btu) can yield savings of 38-50% in wall-generated heating and cooling loads. Adding R20 will require substantial thicknesses of current commercial insulation materials, often requiring significant (and sometimes cost-prohibitive) alterations to existing buildings. This article describes the development of a next-generation composite insulation with a target thermal resistance of R25 for a 2 inch thick board (R12/inch or higher). The composite insulation will contain vacuum insulation cores, which are nominally R35-40/inch, encapsulated in polyisocyanurate foam. A recently-developed variant of vacuum insulation, called modified atmosphere insulation (MAI), was used in this research. Some background information on the thermal performance and distinguishing features of MAI has been provided. Technical details of the composite insulation development and manufacturing as well as laboratory evaluation of prototype insulation boards are presented.« less

  1. Thick film magnetic nanoparticulate composites and method of manufacture thereof

    NASA Technical Reports Server (NTRS)

    Ge, Shihui (Inventor); Yan, Dajing (Inventor); Xiao, Danny T. (Inventor); Ma, Xinqing (Inventor); Zhang, Yide (Inventor); Zhang, Zongtao (Inventor)

    2009-01-01

    Thick film magnetic/insulating nanocomposite materials, with significantly reduced core loss, and their manufacture are described. The insulator coated magnetic nanocomposite comprises one or more magnetic components, and an insulating component. The magnetic component comprises nanometer scale particles (about 1 to about 100 nanometers) coated by a thin-layered insulating phase. While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase provides the desired soft magnetic properties, the insulating material provides high resistivity, which reduces eddy current loss.

  2. Using fiberglass volumes for VPI of superconductive magnetic systems’ insulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, I. S.; Bezrukov, A. A.; Pischugin, A. B.

    2014-01-29

    The paper describes the method of manufacturing fiberglass molds for vacuum pressure impregnation (VPI) of high-voltage insulation of superconductive magnetic systems (SMS) with epoxidian hot-setting compounds. The basic advantages of using such vacuum volumes are improved quality of insulation impregnation in complex-shaped areas, and considerable cost-saving of preparing VPI of large-sized components due to dispensing with the stage of fabricating a metal impregnating volume. Such fiberglass vacuum molds were used for VPI of high-voltage insulation samples of an ITER reactor’s PF1 poloidal coil. Electric insulation of these samples has successfully undergone a wide range of high-voltage and mechanical tests atmore » room and cryogenic temperatures. Some results of the tests are also given in this paper.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Gene; Johnson, Rolland

    High field superconducting magnets are used in particle colliders, fusion energy devices, and spectrometers for medical imaging and advanced materials research. Magnets capable of generating fields of 20-30 T are needed by future accelerator facilities. A 20-30 T magnet will require the use of high-temperature superconductors (HTS) and therefore the challenges of high field HTS magnet development need to be addressed. Superconducting Bi 2Sr 2CaCu 2O x (Bi2212) conductors fabricated by the oxide-powder-in-tube (OPIT) technique have demonstrated the capability to carry large critical current density of 10 5 A/cm 2 at 4.2 K and in magnetic fields up to 45more » T. Available in round wire multi-filamentary form, Bi2212 may allow fabrication of 20-50 T superconducting magnets. Until recently the performance of Bi2212 has been limited by challenges in realizing high current densities (J c ) in long lengths. This problem now is solved by the National High Magnetic Field Lab using an overpressure (OP) processing technique, which uses external pressure to process the conductor. OP processing also helps remove the ceramic leakage that results when Bi-2212 liquid leaks out from the sheath material and reacts with insulation, coil forms, and flanges. Significant advances have also been achieved in developing novel insulation materials (TiO 2 coating) and Ag-Al sheath materials that have higher mechanical strengths than Ag-0.2wt.% Mg, developing heat treatment approaches to broadening the maximum process temperature window, and developing high-strength, mechanical reinforced Bi-2212 cables. In the Phase I work, we leveraged these new opportunities to prototype overpressure processed solenoids and test them in background fields of up to 14 T. Additionally a design of a fully superconducting 30 T solenoid was produced. This work in conjunction with the future path outlined in the Phase II proposal would provide a major step toward qualifying Bi2212 technology for use in high-field accelerator magnets. Additionally, the performance parameters match key requirements of a final muon beam cooling solenoid. This technology will also be of interest to high-field NMR manufacturers.« less

  4. Basalt fiber insulating material with a mineral binding agent for industrial use

    NASA Astrophysics Data System (ADS)

    Drozdyuk, T.; Aizenshtadt, A.; Tutygin, A.; Frolova, M.

    2016-04-01

    The paper considers a possibility of using mining industry waste as a binding agent for heat insulating material on the basis of basalt fiber. The main objective of the research is to produce a heat-insulating material to be applied in machine building in high-temperature environments. After synthetic binder having been replaced by a mineral one, an environmentally sound thermal insulating material having desirable heat-protecting ability and not failing when exposed to high temperatures was obtained.

  5. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, K.

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board, and is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit processes. The guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations.

  6. VOC-FREE, HIGHLY FLAME-RESISTANT HYBRIDSIL® INSULATION COATINGS FOR NEXT-GENERATION THERMAL INSULATION AND ENERGY EFFICIENCY - PHASE II

    EPA Science Inventory

    NanoSonic's HybridSil® insulative coatings provide a paradigm-breaking alternative to spray-deposited polyurethane foams by affording comparable insulation, yet without any of the health and safety concerns associated ...

  7. Effect of occupant behavior and air-conditioner controls on humidity in typical and high-efficiency homes

    DOE PAGES

    Winkler, Jon; Munk, Jeffrey; Woods, Jason

    2018-04-01

    Increasing insulation levels and improved windows are reducing sensible cooling loads in high-efficiency homes. This trend raises concerns that the resulting shift in the balance of sensible and latent cooling loads may result in higher indoor humidity, occupant discomfort, and stunted adoption of high-efficiency homes. This study utilizes established moisture-buffering and air-conditioner latent degradation models in conjunction with an approach to stochastically model internal gains. Building loads and indoor humidity levels are compared for simulations of typical new construction homes and high-efficiency homes in 10 US cities. The sensitivity of indoor humidity to changes in cooling set point, air-conditioner capacity,more » and blower control parameters are evaluated. The results show that high-efficiency homes in humid climates have cooling loads with a higher fraction of latent loads than the typical new construction home, resulting in higher indoor humidity. Reducing the cooling set point is the easiest method to reduce indoor humidity, but it is not energy efficient, and overcooling may lead to occupant discomfort. Eliminating the blower operation at the end of cooling cycles and reducing the cooling airflow rate also reduce indoor humidity and with a smaller impact on energy use and comfort.« less

  8. Effect of occupant behavior and air-conditioner controls on humidity in typical and high-efficiency homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, Jon; Munk, Jeffrey; Woods, Jason

    Increasing insulation levels and improved windows are reducing sensible cooling loads in high-efficiency homes. This trend raises concerns that the resulting shift in the balance of sensible and latent cooling loads may result in higher indoor humidity, occupant discomfort, and stunted adoption of high-efficiency homes. This study utilizes established moisture-buffering and air-conditioner latent degradation models in conjunction with an approach to stochastically model internal gains. Building loads and indoor humidity levels are compared for simulations of typical new construction homes and high-efficiency homes in 10 US cities. The sensitivity of indoor humidity to changes in cooling set point, air-conditioner capacity,more » and blower control parameters are evaluated. The results show that high-efficiency homes in humid climates have cooling loads with a higher fraction of latent loads than the typical new construction home, resulting in higher indoor humidity. Reducing the cooling set point is the easiest method to reduce indoor humidity, but it is not energy efficient, and overcooling may lead to occupant discomfort. Eliminating the blower operation at the end of cooling cycles and reducing the cooling airflow rate also reduce indoor humidity and with a smaller impact on energy use and comfort.« less

  9. Direct electron injection into an oxide insulator using a cathode buffer layer

    PubMed Central

    Lee, Eungkyu; Lee, Jinwon; Kim, Ji-Hoon; Lim, Keon-Hee; Seok Byun, Jun; Ko, Jieun; Dong Kim, Young; Park, Yongsup; Kim, Youn Sang

    2015-01-01

    Injecting charge carriers into the mobile bands of an inorganic oxide insulator (for example, SiO2, HfO2) is a highly complicated task, or even impossible without external energy sources such as photons. This is because oxide insulators exhibit very low electron affinity and high ionization energy levels. Here we show that a ZnO layer acting as a cathode buffer layer permits direct electron injection into the conduction bands of various oxide insulators (for example, SiO2, Ta2O5, HfO2, Al2O3) from a metal cathode. Studies of current–voltage characteristics reveal that the current ohmically passes through the ZnO/oxide-insulator interface. Our findings suggests that the oxide insulators could be used for simply fabricated, transparent and highly stable electronic valves. With this strategy, we demonstrate an electrostatic discharging diode that uses 100-nm SiO2 as an active layer exhibiting an on/off ratio of ∼107, and protects the ZnO thin-film transistors from high electrical stresses. PMID:25864642

  10. Insulated laser tube structure and method of making same

    DOEpatents

    Dittbenner, Gerald R.

    1999-01-01

    An insulated high temperature ceramic laser tube having substantially uniform insulation along the length of the tube is disclosed having particulate ceramic insulation positioned between the outer wall of the ceramic laser tube and the inner surface of tubular ceramic fiber insulation which surrounds the ceramic laser tube. The particulate ceramic insulation is preferably a ceramic capable of sintering to the outer surface of the ceramic laser tube and to the inner surface of the tubular ceramic fiber insulation. The addition of the particulate ceramic insulation to fill all the voids between the ceramic laser tube and the fibrous ceramic insulation permits the laser tube to be operated at a substantially uniform temperature throughout the length of the laser tube.

  11. Characterization of the dimensional stability of advanced metallic materials using an optical test bench structure

    NASA Technical Reports Server (NTRS)

    Hsieh, Cheng; O'Donnell, Timothy P.

    1991-01-01

    The dimensional stability of low-density high specific-strength metal-matrix composites (including 30 vol pct SiC(p)/SXA 24-T6 Al, 25 vol pct SiC(p)/6061-T6 Al, 40 vol pct graphite P100 fiber/6061 Al, 50 vol pct graphite P100 fiber/6061 Al, and 40 vol pct P100 graphite fiber/AZ91D Mg composites) and an Al-Li-Mg metal alloy was evaluated using a specially designed five-strut optical test bench structure. The structure had 30 thermocouple locations, one retroreflector, one linear interferometer multilayer insulation, and various strip heaters. It was placed in a 10 exp -7 torr capability vacuum chamber with a laser head positioned at a window port, and a laser interferometer system for collecting dimensional change data. It was found that composite materials have greater 40-C temporal dimensional stability than the AL-Li-Mg alloy. Aluminum-based composites demonstrated better 40-C temporal stability than Mg-based composites.

  12. Load responsive multilayer insulation performance testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dye, S.; Kopelove, A.; Mills, G. L.

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that providemore » high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.« less

  13. Physical processes in high field insulating liquid conduction

    NASA Astrophysics Data System (ADS)

    Mazarakis, Michael; Kiefer, Mark; Leckbee, Joshua; Anderson, Delmar; Wilkins, Frank; Obregon, Robert

    2017-10-01

    In the power grid transmission where a large amount of energy is transmitted to long distances, High Voltage DC (HVDC) transmission of up to 1MV becomes more attractive since is more efficient than the counterpart AC. However, two of the most difficult problems to solve are the cable connections to the high voltage power sources and their insulation from the ground. The insulating systems are usually composed of transformer oil and solid insulators. The oil behavior under HVDC is similar to that of a weak electrolyte. Its behavior under HVDC is dominated more by conductivity than dielectric constant. Space charge effects in the oil bulk near high voltage electrodes and impeded plastic insulators affect the voltage oil hold-off. We have constructed an experimental facility where we study the oil and plastic insulator behavior in an actual HVDC System. Experimental results will be presented and compared with the present understanding of the physics governing the oil behavior under very high electrical stresses. Sandia National Laboratories managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. D.O.E., NNSA under contract DE-NA-0003525.

  14. Solar project description for environmental partnership, Upper Freehold Township, Monmouth County, New Jersey

    NASA Astrophysics Data System (ADS)

    1982-08-01

    A solar house is described. It is a three-story single family detached residence in New Jersey. It is equipped with a 540 cubic foot vented Trombe wall constructed of concrete filled concrete blocks and glazed with 344 square feet of insulated tempered glass. Heat is also provided by a 168 square foot sunspace of insulated glass. In the loft area is a phase change storage system composed of 32 PSI Thermal-81 phase change storage rods. Auxiliary heating is y a wood-burning stove and a dual-fuel, propane and wood, forced air furnace. A breadbox type hot water preheater is located on the roof. Summer cooling is accomplished by opening windows, doors, and exhaust dampers and operating a whole house ventilation fan. Operation of the solar system and the auxiliary subsystems may involve one or more of 5 modes: collector-to-storage, storage-to-space heating, auxiliary-to-space heating, energy-to-load-summer cooling, and domestic hot water. The house, its solar heating systems, storage, load, operation, on-site performance evaluation instrumentation, and data depicting the solar portion of construction costs are outlined.

  15. Interlayer coupling through a dimensionality-induced magnetic state

    PubMed Central

    Gibert, M.; Viret, M.; Zubko, P.; Jaouen, N.; Tonnerre, J.-M.; Torres-Pardo, A.; Catalano, S.; Gloter, A.; Stéphan, O.; Triscone, J.-M.

    2016-01-01

    Dimensionality is known to play an important role in many compounds for which ultrathin layers can behave very differently from the bulk. This is especially true for the paramagnetic metal LaNiO3, which can become insulating and magnetic when only a few monolayers thick. We show here that an induced antiferromagnetic order can be stabilized in the [111] direction by interfacial coupling to the insulating ferromagnet LaMnO3, and used to generate interlayer magnetic coupling of a nature that depends on the exact number of LaNiO3 monolayers. For 7-monolayer-thick LaNiO3/LaMnO3 superlattices, negative and positive exchange bias, as well as antiferromagnetic interlayer coupling are observed in different temperature windows. All three behaviours are explained based on the emergence of a (¼,¼,¼)-wavevector antiferromagnetic structure in LaNiO3 and the presence of interface asymmetry with LaMnO3. This dimensionality-induced magnetic order can be used to tailor a broad range of magnetic properties in well-designed superlattice-based devices. PMID:27079668

  16. Measurements of Electrical and Electron Emission Properties of Highly Insulating Materials

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Brunson, Jerilyn; Hoffman, Ryan; Abbott, Jonathon; Thomson, Clint; Sim, Alec

    2005-01-01

    Highly insulating materials often acquire significant charges when subjected to fluxes of electrons, ions, or photons. This charge can significantly modify the materials properties of the materials and have profound effects on the functionality of the materials in a variety of applications. These include charging of spacecraft materials due to interactions with the severe space environment, enhanced contamination due to charging in Lunar of Martian environments, high power arching of cables and sources, modification of tethers and ion thrusters for propulsion, and scanning electron microscopy, to name but a few examples. This paper describes new techniques and measurements of the electron emission properties and resistivity of highly insulating materials. Electron yields are a measure of the number of electrons emitted from a material per incident particle (electron, ion or photon). Electron yields depend on incident species, energy and angle, and on the material. They determine the net charge acquired by a material subject to a give incident flu. New pulsed-beam techniques will be described that allow accurate measurement of the yields for uncharged insulators and measurements of how the yields are modified as charge builds up in the insulator. A key parameter in modeling charge dissipation is the resistivity of insulating materials. This determines how charge will accumulate and redistribute across an insulator, as well as the time scale for charge transport and dissipation. Comparison of new long term constant-voltage methods and charge storage methods for measuring resistivity of highly insulating materials will be compared to more commonly used, but less accurate methods.

  17. Properties of radiation stable insulation composites for fusion magnet

    NASA Astrophysics Data System (ADS)

    Wu, Zhixiong; Huang, Rongjin; Huang, Chuanjun; Li, Laifeng

    2017-09-01

    High field superconducting magnets made of Nb3Al will be a suitable candidate for future fusion device which can provide magnetic field over 15T without critical current degradation caused by strain. The higher magnetic field and the larger current will produce a huge electromagnetic force. Therefore, it is necessary to develop high strength cryogenic structural materials and electrical insulation materials with excellent performance. On the other hand, superconducting magnets in fusion devices will experience significant nuclear radiation exposure during service. While typical structural materials like stainless steel and titanium have proven their ability to withstand these conditions, electrical insulation materials used in these coils have not fared as well. In fact, recent investigations have shown that electrical insulation breakdown is a limiting factor in the performance of high field magnets. The insulation materials used in the high field fusion magnets should be characterized by excellent mechanical properties, high radiation resistivity and good thermal conductivity. To meet these objectives, we designed various insulation materials based on epoxy resins and cyanate ester resins and investigated their processing characteristic and mechanical properties before and after irradiation at low temperature. In this paper, the recent progress of the radiation stable insulation composites for high field fusion magnet is presented. The materials have been irradiated by 60Co γ-ray irradiation in air at ambient temperature with a dose rate of 300 Gy/min. The total doses of 1 MGy, 5 MGy and 10 MGy were selected to the test specimens.

  18. Dirac-electron-mediated magnetic proximity effect in topological insulator/magnetic insulator heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingda; Song, Qichen; Zhao, Weiwei

    The possible realization of dissipationless chiral edge current in a topological insulator/magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. We report a polarized neutron reflectometry observation of Dirac-electron-mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi 0.2Sb 0.8) 2Te 3/magnetic insulator EuS heterostructure. We are able to maximize the proximity-induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the Dirac point. A phenomenological model based on diamagnetic screeningmore » is developed to explain the suppressed proximity-induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator heterointerface for low-power spintronic applications.« less

  19. Dirac-electron-mediated magnetic proximity effect in topological insulator/magnetic insulator heterostructures

    DOE PAGES

    Li, Mingda; Song, Qichen; Zhao, Weiwei; ...

    2017-11-01

    The possible realization of dissipationless chiral edge current in a topological insulator/magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. We report a polarized neutron reflectometry observation of Dirac-electron-mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi 0.2Sb 0.8) 2Te 3/magnetic insulator EuS heterostructure. We are able to maximize the proximity-induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the Dirac point. A phenomenological model based on diamagnetic screeningmore » is developed to explain the suppressed proximity-induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator heterointerface for low-power spintronic applications.« less

  20. Experimental Evaluation and Comparison of Thermal Conductivity of High-Voltage Insulation Materials for Vacuum Electronic Devices

    NASA Astrophysics Data System (ADS)

    Suresh, C.; Srikrishna, P.

    2017-07-01

    Vacuum electronic devices operate with very high voltage differences between their sub-assemblies which are separated by very small distances. These devices also emit large amounts of heat that needs to be dissipated. Hence, there exists a requirement for high-voltage insulators with good thermal conductivity for voltage isolation and efficient heat dissipation. However, these voltage insulators are generally poor conductors of heat. In the present work, an effort has been made to obtain good high-voltage insulation materials with substantial improvement in their thermal conductivity. New mixtures of composites were formed by blending varying percentages (by volumes) of aluminum nitride powders with that of neat room-temperature vulcanizing (RTV) silicone elastomer compound. In this work, a thermal conductivity test setup has been devised for the quantification of the thermal conductivity of the insulators. The thermal conductivities and high-voltage isolation capabilities of various blended composites were quantified and were compared with that of neat RTV to evaluate the relative improvement.

  1. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    DOEpatents

    Caporaso, G.J.; Sampayan, S.E.; Kirbie, H.C.

    1998-10-13

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 12 figs.

  2. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  3. Micalastic high-voltage insulation: Design features and experience

    NASA Astrophysics Data System (ADS)

    Wichmann, A.

    1981-12-01

    High-quality mica, carefully selected epoxy resins and a well-matched vacuum/pressure impregnation process determine the characteristics of the MICALASTIC insulation for large turbine-generators. Logical development and process manufacturing quality control have led to an insulation system of high quality and operating reliability. The first winding of a turbine-generator being impregnated and cured under vacuum with solvent-free synthetic resin in 1958 was designed for 10.5 kV rated voltage. Ever since, Siemens AG and Kraftwerk Union AG have used this type of insulation for all direct-cooled windings and also for an increasing number of indirect-cooled windings. At present, 240 turbine-generators with a total of more than 115,000 MVA output have been built. Since 1960, this insulation system has been registered for Siemens AG under the trade name MICALASTIC. The stator windings of the largest, single-shaft generators to date, rated 1560 MVA, 27 kV, has been built with MICALASTIC insulation.

  4. A reconfigurable image tube using an external electronic image readout

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Howorth, J. R.; Milnes, J. S.

    2005-08-01

    We have designed and built a sealed tube microchannel plate (MCP) intensifier for optical/NUV photon counting applications suitable for 18, 25 and 40 mm diameter formats. The intensifier uses an electronic image readout to provide direct conversion of event position into electronic signals, without the drawbacks associated with phosphor screens and subsequent optical detection. The Image Charge technique is used to remove the readout from the intensifier vacuum enclosure, obviating the requirement for additional electrical vacuum feedthroughs and for the readout pattern to be UHV compatible. The charge signal from an MCP intensifier is capacitively coupled via a thin dielectric vacuum window to the electronic image readout, which is external to the sealed intensifier tube. The readout pattern is a separate item held in proximity to the dielectric window and can be easily detached, making the system easily reconfigurable. Since the readout pattern detects induced charge and is external to the tube, it can be constructed as a multilayer, eliminating the requirement for narrow insulator gaps and allowing it to be constructed using standard PCB manufacturing tolerances. We describe two readout patterns, the tetra wedge anode (TWA), an optimized 4 electrode device similar to the wedge and strip anode (WSA) but with a factor 2 improvement in resolution, and an 8 channel high speed 50 ohm device, both manufactured as multilayer PCBs. We present results of the detector imaging performance, image resolution, linearity and stability, and discuss the development of an integrated readout and electronics device based on these designs.

  5. Development and analysis of insulation constructions for aerospace wiring applications

    NASA Astrophysics Data System (ADS)

    Slenski, George A.; Woodford, Lynn M.

    1993-03-01

    The Wright Laboratory Materials Directorate at WPAFB, Ohio recently completed a research and development program under contract with the McDonnell Douglas Aerospace Company, St. Louis, Missouri. Program objectives were to develop wire insulation performance requirements, evaluate candidate insulations, and prepare preliminary specification sheets on the most promising candidates. Aircraft wiring continues to be a high maintenance item and a major contributor to electrically-related aircraft mishaps. Mishap data on aircraft show that chafing of insulation is the most common mode of wire failure. Improved wiring constructions are expected to increase aircraft performance and decrease costs by reducing maintenance actions. In the laboratory program, new insulation constructions were identified that had overall improved performance in evaluation tests when compared to currently available MIL-W-81381 and MIL-W-22759 wiring. These insulations are principally aromatic polyimide and crosslinked ethylene tetrafluoroethylene (ETFE), respectively. Candidate insulations identified in preliminary specification sheets were principally fluoropolymers with a polyimide inner layer. Examples of insulation properties evaluated included flammability, high temperature mechanical and electrical performance, fluid immersion, and susceptibility to arc propagation under applied power chafing conditions. Potential next generation wire insulation materials are also reviewed.

  6. Thermal Performance Testing of Order Dependancy of Aerogels Multilayered Insulation

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Fesmire, James E.; Demko, J. A.

    2009-01-01

    Robust multilayer insulation systems have long been a goal of many research projects. Such insulation systems must provide some degree of structural support and also mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MU) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel and multilayer insulation systems have been tested at Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MU and aerogel blankets. Apparent thermal conductivity testing under cryogenic-vacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.

  7. Measure Guideline: Three High Performance Mineral Fiber Insulation Board Retrofit Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, Ken

    2015-01-01

    This Measure Guideline describes a high performance enclosure retrofit package that uses mineral fiber insulation board. The Measure Guideline describes retrofit assembly and details for wood frame roof and walls and for cast concrete foundations. This Measure Guideline is intended to serve contractors and designers seeking guidance for non-foam exterior insulation retrofit.

  8. Synthesis of one-dimensional metal-containing insulated molecular wire with versatile properties directed toward molecular electronics materials.

    PubMed

    Masai, Hiroshi; Terao, Jun; Seki, Shu; Nakashima, Shigeto; Kiguchi, Manabu; Okoshi, Kento; Fujihara, Tetsuaki; Tsuji, Yasushi

    2014-02-05

    We report, herein, the design, synthesis, and properties of new materials directed toward molecular electronics. A transition metal-containing insulated molecular wire was synthesized through the coordination polymerization of a Ru(II) porphyrin with an insulated bridging ligand of well-defined structure. The wire displayed not only high linearity and rigidity, but also high intramolecular charge mobility. Owing to the unique properties of the coordination bond, the interconversion between the monomer and polymer states was realized under a carbon monoxide atmosphere or UV irradiation. The results demonstrated a high potential of the metal-containing insulated molecular wire for applications in molecular electronics.

  9. Evaluation of three thermal protection systems in a hypersonic high-heating-rate environment induced by an elevon deflected 30 deg

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.; Weinstein, I.

    1977-01-01

    Three thermal protection systems proposed for a hypersonic research airplane were subjected to high heating rates in the Langley 8 foot, high temperature structures tunnel. Metallic heat sink (Lockalloy), reusable surface insulation, and insulator-ablator materials were each tested under similar conditions. The specimens were tested for a 10 second exposure on the windward side of an elevon deflected 30 deg. The metallic heat sink panel exhibited no damage; whereas the reusable surface insulation tiles were debonded from the panel and the insulator-ablator panel eroded through its thickness, thus exposing the aluminum structure to the Mach 7 environment.

  10. Design and comparison of laser windows for high-power lasers

    NASA Astrophysics Data System (ADS)

    Niu, Yanxiong; Liu, Wenwen; Liu, Haixia; Wang, Caili; Niu, Haisha; Man, Da

    2014-11-01

    High-power laser systems are getting more and more widely used in industry and military affairs. It is necessary to develop a high-power laser system which can operate over long periods of time without appreciable degradation in performance. When a high-energy laser beam transmits through a laser window, it is possible that the permanent damage is caused to the window because of the energy absorption by window materials. So, when we design a high-power laser system, a suitable laser window material must be selected and the laser damage threshold of the window must be known. In this paper, a thermal analysis model of high-power laser window is established, and the relationship between the laser intensity and the thermal-stress field distribution is studied by deducing the formulas through utilizing the integral-transform method. The influence of window radius, thickness and laser intensity on the temperature and stress field distributions is analyzed. Then, the performance of K9 glass and the fused silica glass is compared, and the laser-induced damage mechanism is analyzed. Finally, the damage thresholds of laser windows are calculated. The results show that compared with K9 glass, the fused silica glass has a higher damage threshold due to its good thermodynamic properties. The presented theoretical analysis and simulation results are helpful for the design and selection of high-power laser windows.

  11. Fast synthesis of transparent and hydrophobic silica aerogels using polyethoxydisiloxane and methyltrimethoxysilane in one-step drying process

    NASA Astrophysics Data System (ADS)

    Zhu, Xingqun; Naz, Hina; Nauman Ali, Rai; Yang, Yongfei; Zheng, Zhou; Xiang, Bin; Cui, Xudong

    2018-04-01

    We have successfully synthesized the transparent and hydrophobic silica aerogels by a one-step drying process using appropriate amount of Polyethoxydisiloxane and methyltrimethoxysilane. With an introduction of modified rapid supercritical extraction technique, the synthesis process time was shortened down to one hour for a 4 L solution reaction. The observed transmittance of as-synthesized product is larger than 80% within the wavelength range of 500–1000 nm, and the contact angle is confirmed to be over 135°. Our results provide a path way to the fast synthesis of hydrophobic and transparent aerogels in near future for window insulator applications.

  12. Home retrofitting for energy conservation and solar considerations

    NASA Astrophysics Data System (ADS)

    1981-10-01

    A manual which explains both the key concepts behind the need for and the home energy efficiency improvement is reviewed. A comprehensive picture of how home energy use is effected by the inhabitants and by the structure itself is presented. The manual explains: looking at energy, how the heat transfer occurs between houses and humans, energy audits and how to use them, energy conservation actions to do now to reduce energy use. Schemes to reduce infiltration, how to increase insulation, and what to do with windows and doors, heating and heat distribution systems, and water heaters are included. Solar energy options are explained, as well as financing and tax credits.

  13. Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys

    DOEpatents

    Park, J.H.

    1998-06-23

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. 2 figs.

  14. Note: A high-energy-density Tesla-type pulse generator with novel insulating oil

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Su, Jiancang; Fan, Xuliang

    2017-09-01

    A 10-GW high-energy-density Tesla-type pulse generator is developed with an improved insulating liquid based on a modified Tesla pulser—TPG700, of which the pulse forming line (PFL) is filled with novel insulating oil instead of transformer oil. Properties of insulating oil determining the stored energy density of the PFL are analyzed, and a criterion for appropriate oil is proposed. Midel 7131 is chosen as an application example. The results of insulating property experiment under tens-of-microsecond pulse charging demonstrate that the insulation capability of Midel 7131 is better than that of KI45X transformer oil. The application test in Tesla pulser TPG700 shows that the output power is increased to 10.5 GW with Midel 7131. The output energy density of TPG700 increases for about 60% with Midel 7131.

  15. Note: A high-energy-density Tesla-type pulse generator with novel insulating oil.

    PubMed

    Liu, Sheng; Su, Jiancang; Fan, Xuliang

    2017-09-01

    A 10-GW high-energy-density Tesla-type pulse generator is developed with an improved insulating liquid based on a modified Tesla pulser-TPG700, of which the pulse forming line (PFL) is filled with novel insulating oil instead of transformer oil. Properties of insulating oil determining the stored energy density of the PFL are analyzed, and a criterion for appropriate oil is proposed. Midel 7131 is chosen as an application example. The results of insulating property experiment under tens-of-microsecond pulse charging demonstrate that the insulation capability of Midel 7131 is better than that of KI45X transformer oil. The application test in Tesla pulser TPG700 shows that the output power is increased to 10.5 GW with Midel 7131. The output energy density of TPG700 increases for about 60% with Midel 7131.

  16. Cryogenic Insulation System

    NASA Technical Reports Server (NTRS)

    Davis, Randall C. (Inventor); Taylor, Allan H. (Inventor); Jackson, L. Robert (Inventor); Mcauliffe, Patrick S. (Inventor)

    1988-01-01

    This invention relates to reusable, low density, high temperature cryogenic foam insulation systems and the process for their manufacture. A pacing technology for liquid hydrogen fueled, high speed aircraft is the development of a fully reusable, flight weight cryogenic insulation system for propellant tank structures. In the invention cryogenic foam insulation is adhesively bonded to the outer wall of the fuel tank structure. The cryogenic insulation consists of square sheets fabricated from an array of abutting square blocks. Each block consists of a sheet of glass cloth adhesively bonded between two layers of polymethacrylimide foam. Each block is wrapped in a vapor impermeable membrane, such as Kapton(R) aluminum Kapton(R), to provide a vapor barrier. Very beneficial results can be obtained by employing the present invention in conjunction with fibrous insulation and an outer aeroshell, a hot fuselage structure with an internal thermal protection system.

  17. Sound transmission loss of windows on high speed trains

    NASA Astrophysics Data System (ADS)

    Zhang, Yumei; Xiao, Xinbiao; Thompson, David; Squicciarini, Giacomo; Wen, Zefeng; Li, Zhihui; Wu, Yue

    2016-09-01

    The window is one of the main components of the high speed train car body structure through which noise can be transmitted. To study the windows’ acoustic properties, the vibration of one window of a high speed train has been measured for a running speed of 250 km/h. The corresponding interior noise and the noise in the wheel-rail area have been measured simultaneously. The experimental results show that the window vibration velocity has a similar spectral shape to the interior noise. Interior noise source identification further indicates that the window makes a contribution to the interior noise. Improvement of the window's Sound Transmission Loss (STL) can reduce the interior noise from this transmission path. An STL model of the window is built based on wave propagation and modal superposition methods. From the theoretical results, the window's STL property is studied and several factors affecting it are investigated, which provide indications for future low noise design of high speed train windows.

  18. High-impact resistance optical sensor windows

    NASA Astrophysics Data System (ADS)

    Askinazi, Joel; Ceccorulli, Mark L.; Goldman, Lee

    2011-06-01

    Recent field experience with optical sensor windows on both ground and airborne platforms has shown a significant increase in window fracturing from foreign object debris (FOD) impacts and as a by-product of asymmetrical warfare. Common optical sensor window materials such as borosilicate glass do not typically have high impact resistance. Emerging advanced optical window materials such as aluminum oxynitride offer the potential for a significant improvement in FOD impact resistance due to their superior surface hardness, fracture toughness and strength properties. To confirm the potential impact resistance improvement achievable with these emerging materials, Goodrich ISR Systems in collaboration with Surmet Corporation undertook a set of comparative FOD impact tests of optical sensor windows made from borosilicate glass and from aluminum oxynitride. It was demonstrated that the aluminum oxynitride windows could withstand up to three times the FOD impact velocity (as compared with borosilicate glass) before fracture would occur. These highly encouraging test results confirm the utility of this new highly viable window solution for use on new ground and airborne window multispectral applications as well as a retrofit to current production windows. We believe that this solution can go a long way to significantly reducing the frequency and life cycle cost of window replacement.

  19. Materials Development and Spin Transport Study of Magnetic Insulator Based Heterostructures

    NASA Astrophysics Data System (ADS)

    Tang, Chi

    The subfield of magnetic insulator (MI) based spintronics is playing a substantial role in modern solid state physics research. Spin current in the MI is propagated in spin wave with a much longer decay length than spin-polarized carriers in conducting ferromagnet. In the MI-based hetereostructures, the adjacent non-magnetic materials can be magnetized in proximity of MI. Therefore, it is a promising system to study exotic transport phenomena such as quantum Anomalous Hall effect in topological insulator and graphene. Rare-earth Iron garnet (ReIG), a class of magnetic insulators with large electronic bandgap and high Curie temperature, stands out among various magnetic insulator materials and have attracted a great deal of attention in recent magnetic insulator based spintronics research. The first chapter of this dissertation gives a brief introduction to the spintronics research by introducing some essential concepts in the spintronics field and the most recent spin transport phenomena. The second chapter of this dissertation summarizes my work in the materials development of ReIG ferrimagnetic insulators, including exquisite control of high quality ultra-flat yttrium iron garnet (YIG) thin films with extremely low magnetic damping and engineering of strain induced robust perpendicular magnetic anisotropy in thulium iron garnet (TIG) and Bi-doped YIG films. The last chapter of this dissertation shows a systematic study in various ReIG based heterostructures, mainly divided into groups: ReIG (YIG & TIG)/heavy metal bilayers (Pd & Pt) and ReIG (YIG & TIG)/Dirac systems (graphene & topological insulator). The magneto-transport study disentangles the contribution from a spin current origin and proximity induced magnetism. Furthermore, the demonstration in the proximity coupling induced high-temperature ferromagnetic phase in low-dimensional Dirac systems, i.e. graphene and topological insulator surface states, provides new possibilities in the future spintronics applications. The modulation on the spin dynamics of magnetic insulator layer by topological insulator surface states is investigated at last, further confirming the superb properties of such magnetic insulator based spintronics systems.

  20. Forming Refractory Insulation On Copper Wire

    NASA Technical Reports Server (NTRS)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  1. Fabrication of amorphous InGaZnO thin-film transistor with solution processed SrZrO3 gate insulator

    NASA Astrophysics Data System (ADS)

    Takahashi, Takanori; Oikawa, Kento; Hoga, Takeshi; Uraoka, Yukiharu; Uchiyama, Kiyoshi

    2017-10-01

    In this paper, we describe a method of fabrication of thin film transistors (TFTs) with high dielectric constant (high-k) gate insulator by a solution deposition. We chose a solution processed SrZrO3 as a gate insulator material, which possesses a high dielectric constant of 21 with smooth surface. The IGZO-TFT with solution processed SrZrO3 showed good switching property and enough saturation features, i.e. field effect mobility of 1.7cm2/Vs, threshold voltage of 4.8V, sub-threshold swing of 147mV/decade, and on/off ratio of 2.3×107. Comparing to the TFTs with conventional SiO2 gate insulator, the sub-threshold swing was improved by smooth surface and high field effect due to the high dielectric constant of SrZrO3. These results clearly showed that use of solution processed high-k SrZrO3 gate insulator could improve sub-threshold swing. In addition, the residual carbon originated from organic precursors makes TFT performances degraded.

  2. Method and apparatus for connecting high voltage leads to a high temperature super-conducting transformer

    DOEpatents

    Golner, Thomas M.; Mehta, Shirish P.

    2005-07-26

    A method and apparatus for connecting high voltage leads to a super-conducting transformer is provided that includes a first super-conducting coil set, a second super-conducting coil set, and a third super-conducting coil set. The first, second and third super-conducting coil sets are connected via an insulated interconnect system that includes insulated conductors and insulated connectors that are utilized to connect the first, second, and third super-conducting coil sets to the high voltage leads.

  3. Active two-phase cooling of an IR window for a hypersonic interceptor

    NASA Astrophysics Data System (ADS)

    Burzlaff, B. H.; Chivian, Jay S.; Cotten, W. D.; Hemphill, R. B.; Huhlein, Michael A.

    1993-06-01

    A novel actively cooled window for an IR sensor on a hypersonic interceptor is envisioned which achieves an IR window with high transmittance, low emittance, and low image distortion under high aerodynamic heat flux. The cooling concept employs two-phase convective boiling of liquid ammonia. Coolant is confined to narrow, parallel channels within the window to minimize obscuration of the aperture. The high latent heat of vaporization of ammonia minimizes coolant mass-flow requirements. Low boiling temperatures at projected operating pressures promote high thermal conductivity and low emissivity in the window. The concept was tested with thermal measurements on sub-mm width coolant channels in Si. High values for heat transfer coefficient and critical heat flux were obtained. Thermal gradients within the window can be controlled by the coolant channel configuration. Design options are investigated by predicting the effect of aerodynamic heat flux on the image produced by an IR sensor with a cooled window. Ammonia-cooled IR windows will function in the anticipated aerothermal environment.

  4. Development of High Temperature Type Vacuum Insulation Panel using Soluble Polyimide and Characteristic Evaluation

    NASA Astrophysics Data System (ADS)

    Araki, Kuninari; Kamoto, Daigorou; Matsuoka, Shin-Ichi

    The utilization is expected from the high-insulated characteristic as a tool for energy saving also in the high temperature insulation fields as in vacuum insulation panels (VIP) in the future. For high temperature, the material composition and process of VIP were reviewed, the SUS foil was adopted as packaging material, and soluble polyimide was developed as the thermo compression bonding material for high temperature VIP at 150°C. To lower the glass-transition temperature (Tg) under 200°C, we elaborated the new soluble polyimide using aliphatic diamine copolymer, and controlled Tg to about 176°C. By making from trial VIP and evaluations, it was possible to be maintain high performance concerning the coefficient of thermal conductivity [λ<0.008 W/(m·K) at 150°C].

  5. Technical Achievements in Communist China’s Electrical Equipment Industry

    DTIC Science & Technology

    1960-09-15

    products has also been , developed, including long rod type insulating porcelains and a new series of line porcelains . In 1958, oil sockets for 330...is now aimed at the creation of high intensity, high insulating , and small-size high-tension porcelain products. During the past 10 years, our...of lead-covered oil-immersed paper- insulated cables of 55 kilovolts and less, rubber-sheathed cables of 6,000 volts and less, and aluminum core

  6. Cryogenic insulation development

    NASA Technical Reports Server (NTRS)

    Leonhard, K. E.

    1972-01-01

    Multilayer insulations for long term cryogenic storage are described. The development effort resulted in an insulation concept using lightweight radiation shields, separated by low conductive Dacron fiber tufts. The insulation is usually referred to as Superfloc. The fiber tufts are arranged in a triangular pattern and stand about .040 in. above the radiation shield base. Thermal and structural evaluation of Superfloc indicated that this material is a strong candidate for the development of high performance thermal protection systems because of its high strength, purge gas evacuation capability during boost, its density control and easy application to a tank.

  7. High-Tech, Low-Temp Insulation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under an SBIR (Small Business Innovative Research) contract with Ames, S.D. Miller & Associates developed new manufacturing methods for multi-layer metal spacecraft insulation that could significantly reduce launch weight and launch costs. The new honeycomb structure is more efficient than fibers for insulation. Honeycombs can be made from metals for high temperature uses, even plastic insulation from recycled milk bottles. Under development are blankets made from recycled milk bottles which will be field tested by the Red Cross and ambulance companies. Currently available are honeycomb mittens based on the same technology.

  8. Optical probing of the metal-to-insulator transition in a two-dimensional high-mobility electron gas

    NASA Astrophysics Data System (ADS)

    Dionigi, F.; Rossella, F.; Bellani, V.; Amado, M.; Diez, E.; Kowalik, K.; Biasiol, G.; Sorba, L.

    2011-06-01

    We study the quantum Hall liquid and the metal-insulator transition in a high-mobility two-dimensional electron gas, by means of photoluminescence and magnetotransport measurements. In the integer and fractional regime at ν>1/3, by analyzing the emission energy dispersion we probe the magneto-Coulomb screening and the hidden symmetry of the electron liquid. In the fractional regime above ν=1/3, the system undergoes metal-to-insulator transition, and in the insulating phase the dispersion becomes linear with evidence of an increased renormalized mass.

  9. Organophosphate flame retardants and plasticizers in indoor dust, air and window wipes in newly built low-energy preschools.

    PubMed

    Persson, Josefin; Wang, Thanh; Hagberg, Jessika

    2018-07-01

    The construction of extremely airtight and energy efficient low-energy buildings is achieved by using functional building materials, such as age-resistant plastics, insulation, adhesives, and sealants. Additives such as organophosphate flame retardants (OPFRs) can be added to some of these building materials as flame retardants and plasticizers. Some OPFRs are considered persistent, bioaccumulative and toxic. Therefore, in this pilot study, the occurrence and distribution of nine OPFRs were determined for dust, air, and window wipe samples collected in newly built low-energy preschools with and without environmental certifications. Tris(1,3-dichloroisopropyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) were detected in all indoor dust samples at concentrations ranging from 0.014 to 10μg/g and 0.0069 to 79μg/g, respectively. Only six OPFRs (predominantly chlorinated OPFRs) were detected in the indoor air. All nine OPFRs were found on the window surfaces and the highest concentrations, which occurred in the reference preschool, were measured for 2-ethylhexyl diphenyl phosphate (EHDPP) (maximum concentration: 1500ng/m 2 ). Interestingly, the OPFR levels in the environmental certified low-energy preschools were lower than those in the reference preschool and the non-certified low-energy preschool, probably attributed to the usage of environmental friendly and low-emitting building materials, interior decorations, and consumer products. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Quality control in the recycling stream of PVC from window frames by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Luciani, Valentina; Serranti, Silvia; Bonifazi, Giuseppe; Di Maio, Francesco; Rem, Peter

    2013-05-01

    Polyvinyl chloride (PVC) is one of the most commonly used thermoplastic materials in respect to the worldwide polymer consumption. PVC is mainly used in the building and construction sector, products such as pipes, window frames, cable insulation, floors, coverings, roofing sheets, etc. are realised utilising this material. In recent years, the problem of PVC waste disposal gained increasing importance in the public discussion. The quantity of used PVC items entering the waste stream is gradually increased as progressively greater numbers of PVC products approach to the end of their useful economic lives. The quality of the recycled PVC depends on the characteristics of the recycling process and the quality of the input waste. Not all PVC-containing waste streams have the same economic value. A transparent relation between value and composition is required to decide if the recycling process is cost effective for a particular waste stream. An objective and reliable quality control technique is needed in the recycling industry for the monitoring of both recycled flow streams and final products in the plant. In this work hyperspectral imaging technique in the near infrared (NIR) range (1000-1700 nm) was applied to identify unwanted plastic contaminants and rubber present in PVC coming from windows frame waste in order to assess a quality control procedure during its recycling process. Results showed as PVC, PE and rubber can be identified adopting the NIR-HSI approach.

  11. High-Performance Slab-on-Grade Foundation Insulation Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Louise F.; Mosiman, Garrett E.

    A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulationmore » at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).« less

  12. Technology Solutions Case Study: Cladding Attachment Over Mineral Fiber Insulation Board

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-03-01

    Exterior insulating sheathing for high performance building enclosures is an important strategy for meeting energy efficiency requirements in many climates and can position an existing building to perform at the level of best-in-class new construction. Insulation board is also important in high performance building retrofit situations where minimal disruption at the interior is typically desired.

  13. Update on High-Temperature Coils for Electromagnets

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.; Montague, Gerald T.; Palazzolo, Alan; Preuss, Jason; Carter, Bart; Tucker, Randall; Hunt, Andrew

    2005-01-01

    A report revisits the subject matter of "High-Temperature Coils for Electromagnets" (LEW-17164), NASA Tech Briefs, Vol. 26, No. 8, (August 2002) page 38. To recapitulate: Wires have been developed for use in electromagnets that operate at high temperatures. The starting material for a wire of this type can be either a nickel-clad, ceramic-insulated copper wire or a bare silver wire. The wire is covered by electrical-insulation material that is intended to withstand operating temperatures in the range from 800 to 1,300 F (.430 to .700 C): The starting wire is either primarily wrapped with S-glass as an insulating material or else covered with another insulating material wrapped in S-glass prior to the winding process. A ceramic binding agent is applied as a slurry during the winding process to provide further insulating capability. The turns are pre-bent during winding to prevent damage to the insulation. The coil is then heated to convert the binder into ceramic. The instant report mostly reiterates the prior information and presents some additional information on the application of the ceramic binding agent and the incorporation of high-temperature wire into the windings.

  14. Corrugated outer sheath gas-insulated transmission line

    DOEpatents

    Kemeny, George A.; Cookson, Alan H.

    1981-01-01

    A gas-insulated transmission line includes two transmission line sections each of which are formed of a corrugated outer housing enclosing an inner high-voltage conductor disposed therein, with insulating support means supporting the inner conductor within the outer housing and an insulating gas providing electrical insulation therebetween. The outer housings in each section have smooth end sections at the longitudinal ends thereof which are joined together by joining means which provide for a sealing fixed joint.

  15. Insulation detection of electric vehicle batteries

    NASA Astrophysics Data System (ADS)

    Dai, Qiqi; Zhu, Zhongwen; Huang, Denggao; Du, Mingxing; Wei, Kexin

    2018-06-01

    In this paper, an electric vehicle insulation detection method with single side switching fixed resistance is designed, and the hardware and software design of the system are given. The experiment proves that the insulation detection system can detect the insulation resistance in a wide range of resistance values, and accurately report the fault level. This system can effectively monitor the insulation fault between the car body and the high voltage line and avoid the passengers from being injured.

  16. Demonstration of Microsphere Insulation in Cryogenic Vessels

    NASA Astrophysics Data System (ADS)

    Baumgartner, R. G.; Myers, E. A.; Fesmire, J. E.; Morris, D. L.; Sokalski, E. R.

    2006-04-01

    While microspheres have been recognized as a legitimate insulation material for decades, actual use in full-scale cryogenic storage tanks has not been demonstrated until now. The performance and life-cycle-cost advantages previously predicted have now been proven. Most bulk cryogenic storage tanks are insulated with either multilayer insulation (MLI) or perlite. Microsphere insulation, consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. These properties were proven during recent field testing of two 22,700-L (6,000-gallon) liquid nitrogen tanks, one insulated with microsphere insulation and the other with perlite. Normal evaporation rates (NER) for both tanks were monitored with precision test equipment and insulation levels within the tanks were observed through view ports as an indication of insulation compaction. Specific industrial applications were evaluated based on the test results and beneficial properties of microsphere insulation. Over-the-road trailers previously insulated with perlite will benefit not only from the reduced heat leak, but also the reduced mass of microsphere insulation. Economic assessments for microsphere-insulated cryogenic vessels including life-cycle cost are also presented.

  17. A Skin-attachable Flexible Piezoelectric Pulse Wave Energy Harvester

    NASA Astrophysics Data System (ADS)

    Yoon, Sunghyun; Cho, Young-Ho

    2014-11-01

    We present a flexible piezoelectric generator, capable to harvest energy from human arterial pulse wave on the human wrist. Special features and advantages of the flexible piezoelectric generator include the multi-layer device design with contact windows and the simple fabrication process for the higher flexibility with the better energy harvesting efficiency. We have demonstrated the design effectiveness and the process simplicity of our skin- attachable flexible piezoelectric pulse wave energy harvester, composed of the sensitive P(VDF-TrFE) piezoelectric layer on the flexible polyimide support layer with windows. We experimentally characterize and demonstrate the energy harvesting capability of 0.2~1.0μW in the Human heart rate range on the skin contact area of 3.71cm2. Additional physiological and/or vital signal monitoring devices can be fabricated and integrated on the skin attachable flexible generator, covered by an insulation layer; thus demonstrating the potentials and advantages of the present device for such applications to the flexible multi-functional selfpowered artificial skins, capable to detect physiological and/or vital signals on Human skin using the energy harvested from arterial pulse waves.

  18. Thermal Testing and Analysis of an Efficient High-Temperature Multi-Screen Internal Insulation

    NASA Technical Reports Server (NTRS)

    Weiland, Stefan; Handrick, Karin; Daryabeigi, Kamran

    2007-01-01

    Conventional multi-layer insulations exhibit excellent insulation performance but they are limited to the temperature range to which their components reflective foils and spacer materials are compatible. For high temperature applications, the internal multi-screen insulation IMI has been developed that utilizes unique ceramic material technology to produce reflective screens with high temperature stability. For analytical insulation sizing a parametric material model is developed that includes the main contributors for heat flow which are radiation and conduction. The adaptation of model-parameters based on effective steady-state thermal conductivity measurements performed at NASA Langley Research Center (LaRC) allows for extrapolation to arbitrary stack configurations and temperature ranges beyond the ones that were covered in the conductivity measurements. Experimental validation of the parametric material model was performed during the thermal qualification test of the X-38 Chin-panel, where test results and predictions showed a good agreement.

  19. Light-weight ceramic insulation

    NASA Technical Reports Server (NTRS)

    Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    2002-01-01

    Ultra-high temperature, light-weight, ceramic insulation such as ceramic tile is obtained by pyrolyzing a siloxane gel derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes may contain also an effective amount of a mono- or trialkoxy silane to obtain the siloxane gel. The siloxane gel is dried at ambient pressures to form a siloxane ceramic precursor without significant shrinkage. The siloxane ceramic precursor is subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation, can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C. and is particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.

  20. The comprehensive study and the reduction of contact resistivity on the n-InGaAs M-I-S contact system with different inserted insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, M.-H., E-mail: mhliaoa@ntu.edu.tw; Lien, C.

    2015-05-15

    Five different kinds of insulators including BaTiO{sub 3}, TiO{sub 2}, Al{sub 2}O{sub 3}, CdO and ZnO on the n-type InGaAs metal-insulator-semiconductor (M-I-S) ohmic contact structure are studied. The effect for the dielectric constant (ε) of inserted insulator and the conduction band offset (CBO) between an insulator and semiconductor substrate is analyzed by a unified M-I-S contact model. Based on the theoretical model and experimental data, we demonstrates that the inserted ZnO insulator with the high electron affinity and the low CBO (∼0.1 eV) to the InGaAs substrate results in ∼10 times contact resistivity reduction, even the ε of ZnO ismore » not pretty high (∼10)« less

  1. The Development and Application of Simulative Insulation Resistance Tester

    NASA Astrophysics Data System (ADS)

    Jia, Yan; Chai, Ziqi; Wang, Bo; Ma, Hao

    2018-02-01

    The insulation state determines the performance and insulation life of electrical equipment, so it has to be judged in a timely and accurate manner. Insulation resistance test, as the simplest and most basic test of high voltage electric tests, can measure the insulation resistance and absorption ratio which are effective criterion of part or whole damp or dirty, breakdown, severe overheating aging and other insulation defects. It means that the electrical test personnel need to be familiar with the principle of insulation resistance test, and able to operate the insulation resistance tester correctly. At present, like the insulation resistance test, most of electrical tests are trained by physical devices with the real high voltage. Although this allows the students to truly experience the test process and notes on security, it also has certain limitations in terms of safety and test efficiency, especially for a large number of new staves needing induction training every year. This paper presents a new kind of electrical test training system based on the simulative device of dielectric loss measurement and simulative electrical testing devices. It can not only overcome the defects of current training methods, but also provide other advantages in economical efficiency and scalability. That makes it possible for the system to be allied in widespread.

  2. Dielectric and Insulating Technology 2005 : Reviews & Forecasts

    NASA Astrophysics Data System (ADS)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was done in the article of 2003. Thoese are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  3. Dielectric and Insulating Technology 2006 : Review & Forecast

    NASA Astrophysics Data System (ADS)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was seen in the articles of 2005. Those are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  4. Development and validation of purged thermal protection systems for liquid hydrogen fuel tanks of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Helenbrook, R. D.; Colt, J. Z.

    1977-01-01

    An economical, lightweight, safe, efficient, reliable, and reusable insulation system was developed for hypersonic cruise vehicle hydrogen fuel tanks. Results indicate that, a nitrogen purged, layered insulation system with nonpermeable closed-cell insulation next to the cryogenic tank and a high service temperature fibrous insulation surrounding it, is potentially an attractive solution to the insulation problem. For the postulated hypersonic flight the average unit weight of the purged insulation system (including insulation, condensate and fuel boil off) is 6.31 kg/sq m (1.29 psf). Limited cyclic tests of large specimens of closed cell polymethacrylimide foam indicate it will withstand the expected thermal cycle.

  5. Frozen Smoke

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under a NASA SBIR (Small Business Innovative Research) contract with Johnson Space Center, Aspen Systems developed aerogel-based superinsulation. This super-insulation is an innovative, flexible cryogenic insulation with extremely low thermal conductivity. Potential commercial uses include cryogenic applications in the transportation, storage and transfer of cryogens; near room-temperature applications such as refrigerator insulation; and elevated temperature applications such as insulations for high- temperature industrial processes and furnaces.

  6. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    NASA Astrophysics Data System (ADS)

    Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.

    2017-10-01

    As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  7. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types.

    PubMed

    Kim, JunHee; You, Young-Chan

    2015-03-03

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  8. Insulated Foamy Viral Vectors

    PubMed Central

    Browning, Diana L.; Collins, Casey P.; Hocum, Jonah D.; Leap, David J.; Rae, Dustin T.; Trobridge, Grant D.

    2016-01-01

    Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34+ cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy. PMID:26715244

  9. Light, Strong Insulating Tiles

    NASA Technical Reports Server (NTRS)

    Cordia, E.; Schirle, J.

    1987-01-01

    Improved lightweight insulating silica/aluminum borosilicate/silicon carbide tiles combine increased tensile strength with low thermal conductivity. Changes in composition substantially improve heat-insulating properties of silica-based refractory tile. Silicon carbide particles act as high-emissivity radiation scatterers in tile material.

  10. Application of Nanofiber Technology to Nonwoven Thermal Insulation

    DTIC Science & Technology

    2006-11-01

    polyester high-loft insulations, meltblown pitch carbon fiber, electrospun polyacrylonitrile, and silica aerogel -impregnated flexible fibrous insulation...supported flexible aerogels have polymer or carbon fibers dispersed in an aerogel matrix. Silica aerogels are transparent to thermal radiation, and do

  11. An Angle Resolved Photoemission Study of a Mott Insulator and Its Evolution to a High Temperature Superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronning, Filip

    2002-03-19

    One of the most remarkable facts about the high temperature superconductors is their close proximity to an antiferromagnetically ordered Mott insulating phase. This fact suggests that to understand superconductivity in the cuprates we must first understand the insulating regime. Due to material properties the technique of angle resolved photoemission is ideally suited to study the electronic structure in the cuprates. Thus, a natural starting place to unlocking the secrets of high Tc would appears to be with a photoemission investigation of insulating cuprates. This dissertation presents the results of precisely such a study. In particular, we have focused on themore » compound Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}. With increasing Na content this system goes from an antiferromagnetic Mott insulator with a Neel transition of 256K to a superconductor with an optimal transition temperature of 28K. At half filling we have found an asymmetry in the integrated spectral weight, which can be related to the occupation probability, n(k). This has led us to identify a d-wave-like dispersion in the insulator, which in turn implies that the high energy pseudogap as seen by photoemission is a remnant property of the insulator. These results are robust features of the insulator which we found in many different compounds and experimental conditions. By adding Na we were able to study the evolution of the electronic structure across the insulator to metal transition. We found that the chemical potential shifts as holes are doped into the system. This picture is in sharp contrast to the case of La{sub 2-x}Sr{sub x}CuO{sub 4} where the chemical potential remains fixed and states are created inside the gap. Furthermore, the low energy excitations (ie the Fermi surface) in metallic Ca{sub 1.9}Na{sub 0.1}CuO{sub 2}Cl{sub 2} is most well described as a Fermi arc, although the high binding energy features reveal the presence of shadow bands. Thus, the results in this dissertation provide a new avenue for understanding the evolution of the Mott insulator to high temperature superconductor.« less

  12. Dielectric and Insulating Technology 2004 : Review & Forecast

    NASA Astrophysics Data System (ADS)

    Okamoto, Tatsuki

    This article reports the state-of-art of DEIS activites. DEIS activiteis are basically based on the activites of 8-10 investigation committees’ under DEIS committee. Recent DEIS activites are categlized into three functions in this article and remarkable activity or trend of each category is mentioned. Those are activities on insulation diagnosis (AI application and asset management), activities on new insulation technology for power tansmission (high Tc super conducting cable insulation and all solid sinulated substation), and activities on new insulating materials (Nanocomposite).

  13. Impulse Flashover Tests at Edgar Beauchamp High Voltage Test Facility, Dixon, California, in Support of Cutler Insulator Failure Investigation

    DTIC Science & Technology

    2006-07-01

    sites. The strength member of the safety core insulators is a fiberglass belt wrapped around pins in the end fittings. Porcelain tubes cover the belt... porcelain tube and heavily tracked the fiberglass belt but left the belt intact structurally (Figure 1). Figure 1. Cutler safety core insulator ...fail-safe insulators . For these tests, the porcelain tube of the safety core insulator was replaced with a plastic see-through tube. The test report [5

  14. Molten Boron Phase-Change Thermal Energy Storage: Containment and Applicability to Microsatellites (Draft)

    DTIC Science & Technology

    2011-06-01

    technologies, including high temperature thermal insulation and thermal to electric power conversion, have been evaluated, and a preliminary design...support technologies, including high temperature thermal insulation and thermal to electric power conversion, have been evaluated, and a preliminary...vacuum gap with low emissivity surfaces on either side as the first insulating layer.11 D. Electrical Energy Conversion There are a wide variety

  15. High temperature arc-track resistant aerospace insulation

    NASA Technical Reports Server (NTRS)

    Dorogy, William

    1994-01-01

    The topics are presented in viewgraph form and include the following: high temperature aerospace insulation; Foster-Miller approach to develop a 300 C rated, arc-track resistant aerospace insulation; advantages and disadvantages of key structural features; summary goals and achievements of the phase 1 program; performance goals for selected materials; materials under evaluation; molecular structures of candidate polymers; candidate polymer properties; film properties; and a detailed program plan.

  16. [Design of a high-voltage insulation testing system of X-ray high frequency generators].

    PubMed

    Huang, Yong; Mo, Guo-Ming; Wang, Yan; Wang, Hong-Zhi; Yu, Jie-Ying; Dai, Shu-Guang

    2007-09-01

    In this paper, we analyze the transformer of X-ray high-voltage high-frequency generators and, have designed and implemented a high-voltage insulation testing system for its oil tank using full-bridge series resonant soft switching PFM DC-DC converter.

  17. A novel no-insulation winding technique of high temperature-superconducting racetrack coil for rotating applications: A progress report in Korea university.

    PubMed

    Choi, Y H; Song, J B; Yang, D G; Kim, Y G; Hahn, S; Lee, H G

    2016-10-01

    This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.

  18. A novel no-insulation winding technique of high temperature-superconducting racetrack coil for rotating applications: A progress report in Korea university

    NASA Astrophysics Data System (ADS)

    Choi, Y. H.; Song, J. B.; Yang, D. G.; Kim, Y. G.; Hahn, S.; Lee, H. G.

    2016-10-01

    This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.

  19. Abrasion-Resistant Coating for Flexible Insulation

    NASA Technical Reports Server (NTRS)

    Mui, D.; Headding, R. E.

    1986-01-01

    Ceramic coating increases durability and heat resistance of flexible high-temperature insulation. Coating compatible with quartz-fabric insulation allowing it to remain flexible during and after repeated exposures to temperatures of 1,800 degree F (982 degree C). Prevents fabric from becoming brittle while increasing resistance to aerodynamic abrasion and loading. Coating consists of penetrating precoat and topcoat. Major ingredients high-purity colloidal silica binder and ground silica filler, which ensure stability and compatibility with fabric at high temperatures. Both precoat and topcoat cured at room temperature.

  20. Insulation Blankets for High-Temperature Use

    NASA Technical Reports Server (NTRS)

    Goldstein, H.; Leiser, D.; Sawko, P. M.; Larson, H. K.; Estrella, C.; Smith, M.; Pitoniak, F. J.

    1986-01-01

    Insulating blanket resists temperatures up to 1,500 degrees F (815 degrees C). Useful where high-temperature resistance, flexibility, and ease of installation are important - for example, insulation for odd-shaped furnaces and high-temperature ducts, curtains for furnace openings and fire control, and conveyor belts in hot processes. Blanket is quilted composite consisting of two face sheets: outer one of silica, inner one of silica or other glass cloth with center filling of pure silica glass felt sewn together with silica glass threads.

  1. Accelerated aging test results for aerospace wire insulation constructions

    NASA Technical Reports Server (NTRS)

    Dunbar, William G.

    1995-01-01

    Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.

  2. Accelerated aging test results for aerospace wire insulation constructions

    NASA Astrophysics Data System (ADS)

    Dunbar, William G.

    1995-11-01

    Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.

  3. Ceramic electrical insulation for electrical coils, transformers, and magnets

    DOEpatents

    Rice, John A.; Hazelton, Craig S.; Fabian, Paul E.

    2002-01-01

    A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.

  4. Surface quantum oscillations and weak antilocalization effect in topological insulator (Bi0.3Sb0.7)2Te3

    NASA Astrophysics Data System (ADS)

    Urkude, Rajashri; Rawat, Rajeev; Palikundwar, Umesh

    2018-04-01

    In 3D topological insulators, achieving a genuine bulk-insulating state is an important topic of research. The material system (Bi,Sb)2(Te,Se)3 has been proposed as a topological insulator with high resistivity and low carrier concentration. Topological insulators are predicted to present interesting surface transport phenomena but their experimental studies have been hindered by metallic bulk conduction that overwhelms the surface transport. Here we present a study of the bulk-insulating properties of (Bi0.3Sb0.7)2Te3. We show that a high resistivity exceeding 1 Ωm as a result of variable-range hopping behavior of state and Shubnikov-de Haas oscillations as coming from the topological surface state. We have been able to clarify both the bulk and surface transport channels, establishing a comprehensive understanding of the transport properties in this material. Our results demonstrate that (Bi0.3Sb0.7)2Te3 is a good material for studying the surface quantum transport in a topological insulator.

  5. The collection of images of an insulator taken outdoors in varying lighting conditions with additional laser spots.

    PubMed

    Tomaszewski, Michał; Ruszczak, Bogdan; Michalski, Paweł

    2018-06-01

    Electrical insulators are elements of power lines that require periodical diagnostics. Due to their location on the components of high-voltage power lines, their imaging can be cumbersome and time-consuming, especially under varying lighting conditions. Insulator diagnostics with the use of visual methods may require localizing insulators in the scene. Studies focused on insulator localization in the scene apply a number of methods, including: texture analysis, MRF (Markov Random Field), Gabor filters or GLCM (Gray Level Co-Occurrence Matrix) [1], [2]. Some methods, e.g. those which localize insulators based on colour analysis [3], rely on object and scene illumination, which is why the images from the dataset are taken under varying lighting conditions. The dataset may also be used to compare the effectiveness of different methods of localizing insulators in images. This article presents high-resolution images depicting a long rod electrical insulator under varying lighting conditions and against different backgrounds: crops, forest and grass. The dataset contains images with visible laser spots (generated by a device emitting light at the wavelength of 532 nm) and images without such spots, as well as complementary data concerning the illumination level and insulator position in the scene, the number of registered laser spots, and their coordinates in the image. The laser spots may be used to support object-localizing algorithms, while the images without spots may serve as a source of information for those algorithms which do not need spots to localize an insulator.

  6. Analysis of partial discharge activity by a conducting particle in liquid nitrogen under AC voltages adopting UHF technique

    NASA Astrophysics Data System (ADS)

    Sarathi, R.; Giridhar, A. V.; Sethupathi, K.

    2010-01-01

    Liquid nitrogen (LN 2) is used as an insulant as well as coolant in high temperature superconducting power equipments. Particle contamination in liquid nitrogen is one of the major cause for formation of partial discharges during operation. An attempt has been made in the present study to understand the feasibility of using Ultra High Frequency (UHF) sensors for identification of partial discharge (PD) formed due to particle movement in liquid nitrogen under AC voltages. It is observed that the partial discharge formed in LN 2 radiates UHF signal. The results of the study indicate that the conventional partial discharge measurement and UHF peak amplitude measurement have direct correlation. The Phase Resolved Partial Discharge (PRPD) analysis indicates that the partial discharge formed due to particle movement occurs in the entire phase windows of the AC voltage. The PD magnitude increases with increase in applied voltage. The frequency content of UHF signal generated due to particle movement in liquid nitrogen under AC voltages lies in the range of 0.5-1.5 GHz. The UHF sensor output signal analyzed using spectrum analyzer by operating it in zero-span mode, indicates that burst type PD occurs due to particle movement.

  7. [Co-composting of high-moisture vegetable waste and flower waste in a batch operation].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-09-01

    Co-composting of different mixture made of vegetable waste and flower waste were studied. The first stage of composting was aerobic static bed based temperature feedback in a batch operation and control via aeration rate regulation. The second stage was window composting. The total composting period was 45 days. About the station of half of celery and half of carnation, the pile was insulated and temperatures of at least 55 degrees C were maintained for about 11 days. The highest temperature was up to 65 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 64.2% to 46.3% and organic matter was degraded from 74.7% to 55.6% during composting. The value of pH was had stable at 7. Analysis of maturity and nutrition of compost show that end-products of composting were bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste and flower waste can get high quality compost by optimizing composting process during 45 days. Composting can decrease non-point resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.

  8. Cabin air temperature of parked vehicles in summer conditions: life-threatening environment for children and pets calculated by a dynamic model

    NASA Astrophysics Data System (ADS)

    Horak, Johannes; Schmerold, Ivo; Wimmer, Kurt; Schauberger, Günther

    2017-10-01

    In vehicles that are parked, no ventilation and/or air conditioning takes place. If a vehicle is exposed to direct solar radiation, an immediate temperature rise occurs. The high cabin air temperature can threaten children and animals that are left unattended in vehicles. In the USA, lethal heat strokes cause a mean death rate of 37 children per year. In addition, temperature-sensitive goods (e.g. drugs in ambulances and veterinary vehicles) can be adversely affected by high temperatures. To calculate the rise of the cabin air temperature, a dynamic model was developed that is driven by only three parameters, available at standard meteorological stations: air temperature, global radiation and wind velocity. The transition from the initial temperature to the constant equilibrium temperature depends strongly on the configuration of the vehicle, more specifically on insulation, window area and transmission of the glass, as well as on the meteorological conditions. The comparison of the model with empirical data showed good agreement. The model output can be applied to assess the heat load of children and animals as well as temperature-sensitive goods, which are transported and/or stored in a vehicle.

  9. Hybrid insulation coordination and optimisation for 1 MV operation of pulsed electron accelerator KALI-30GW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senthil, K.; Mitra, S.; Sandeep, S., E-mail: sentilk@barc.gov.in

    In a multi-gigawatt pulsed power system like KALI-30 GW, insulation coordination is required to achieve high voltages ranging from 0.3 MV to 1 MV. At the same time optimisation of the insulation parameters is required to minimize the inductance of the system, so that nanoseconds output can be achieved. The KALI-30GW pulse power system utilizes a combination of Perspex, delrin, epoxy, transformer oil, nitrogen/SF{sub 6} gas and vacuum insulation at its various stages in compressing DC high voltage to a nanoseconds pulse. This paper describes the operation and performance of the system from 400 kV to 1030 kV output voltagemore » pulse and insulation parameters utilized for obtaining peak 1 MV output. (author)« less

  10. Effects of carbon/graphite fiber contamination on high voltage electrical insulation

    NASA Technical Reports Server (NTRS)

    Garrity, T.; Eichler, C.

    1980-01-01

    The contamination mechanics and resulting failure modes of high voltage electrical insulation due to carbon/graphite fibers were examined. The high voltage insulation vulnerability to carbon/graphite fiber induced failure was evaluated using a contamination system which consisted of a fiber chopper, dispersal chamber, a contamination chamber, and air ducts and suction blower. Tests were conducted to evaluate the effects of fiber length, weathering, and wetness on the insulator's resistance to carbon/graphite fibers. The ability of nuclear, fossil, and hydro power generating stations to maintain normal power generation when the surrounding environment is contaminated by an accidental carbon fiber release was investigated. The vulnerability assessment included only the power plant generating equipment and its associated controls, instrumentation, and auxiliary and support systems.

  11. High voltage studies of inverted-geometry ceramic insulators for a 350 kV DC polarized electron gun

    DOE PAGES

    Hernandez-Garcia, C.; Poelker, M.; Hansknecht, J.

    2016-02-01

    Jefferson Lab is constructing a 350 kV direct current high voltage photoemission gun employing a compact inverted-geometry insulator. This photogun will produce polarized electron beams at an injector test facility intended for low energy nuclear physics experiments, and to assist the development of new technology for the Continuous Electron Beam Accelerator Facility. A photogun operating at 350kV bias voltage reduces the complexity of the injector design, by eliminating the need for a graded-beta radio frequency “capture” section employed to boost lower voltage beams to relativistic speed. However, reliable photogun operation at 350 kV necessitates solving serious high voltage problems relatedmore » to breakdown and field emission. This study focuses on developing effective methods to avoid breakdown at the interface between the insulator and the commercial high voltage cable that connects the photogun to the high voltage power supply. Three types of inverted insulators were tested, in combination with two electrode configurations. Our results indicate that tailoring the conductivity of the insulator material, and/or adding a cathode triple-junction screening electrode, effectively serves to increase the hold-off voltage from 300kV to more than 375kV. In conclusion, electrostatic field maps suggest these configurations serve to produce a more uniform potential gradient across the insulator.« less

  12. High voltage studies of inverted-geometry ceramic insulators for a 350 kV DC polarized electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Garcia, C.; Poelker, M.; Hansknecht, J.

    Jefferson Lab is constructing a 350 kV direct current high voltage photoemission gun employing a compact inverted-geometry insulator. This photogun will produce polarized electron beams at an injector test facility intended for low energy nuclear physics experiments, and to assist the development of new technology for the Continuous Electron Beam Accelerator Facility. A photogun operating at 350kV bias voltage reduces the complexity of the injector design, by eliminating the need for a graded-beta radio frequency “capture” section employed to boost lower voltage beams to relativistic speed. However, reliable photogun operation at 350 kV necessitates solving serious high voltage problems relatedmore » to breakdown and field emission. This study focuses on developing effective methods to avoid breakdown at the interface between the insulator and the commercial high voltage cable that connects the photogun to the high voltage power supply. Three types of inverted insulators were tested, in combination with two electrode configurations. Our results indicate that tailoring the conductivity of the insulator material, and/or adding a cathode triple-junction screening electrode, effectively serves to increase the hold-off voltage from 300kV to more than 375kV. In conclusion, electrostatic field maps suggest these configurations serve to produce a more uniform potential gradient across the insulator.« less

  13. Improved Sprayable Insulation

    NASA Technical Reports Server (NTRS)

    Hill, W. F.; Sharpe, M. H.; Lester, C. N.; Echols, Sherman; Simpson, W. G.; Lambert, J. D.; Norton, W. F.; Mclemore, J. P.; Patel, A. K.; Patel, S. V.; hide

    1992-01-01

    MSA-2 and MSA-2A, two similar improved versions of Marshall sprayable ablator, insulating material developed at Marshall Space Flight Center to replace both sheets of cork and MSA-1. Suitable for use on large vehicles and structures exposed to fire or other sources of heat by design or accident. Ablative insulation turns into strong char when exposed to high temperature; highly desireable property in original spacecraft application and possibly in some terrestrial applications.

  14. Vertically aligned gas-insulated transmission line having particle traps at the inner conductor

    DOEpatents

    Dale, Steinar J.

    1984-01-01

    Gas insulated electrical apparatus having first and second conductors separated by an insulating support within an insulating gas environment, and particle traps disposed along the surface of the high potential conductor for trapping and inactivating foreign particles which may be present within the insulating gas medium. Several embodiments of the invention were developed which are particularly suited for vertically aligned gas insulated transmission lines. The particle traps are grooves or cavities formed into the walls of the tubular inner conductor, without extending into the hollow portion of the conductor. In other embodiments, the traps are appendages or insert flanges extending from the inner conductor, with the insulator supports contacting the appendages instead of the inner conductor.

  15. Chromatin insulator bodies are nuclear structures that form in response to osmotic stress and cell death

    PubMed Central

    Schoborg, Todd; Rickels, Ryan; Barrios, Josh

    2013-01-01

    Chromatin insulators assist in the formation of higher-order chromatin structures by mediating long-range contacts between distant genomic sites. It has been suggested that insulators accomplish this task by forming dense nuclear foci termed insulator bodies that result from the coalescence of multiple protein-bound insulators. However, these structures remain poorly understood, particularly the mechanisms triggering body formation and their role in nuclear function. In this paper, we show that insulator proteins undergo a dramatic and dynamic spatial reorganization into insulator bodies during osmostress and cell death in a high osmolarity glycerol–p38 mitogen-activated protein kinase–independent manner, leading to a large reduction in DNA-bound insulator proteins that rapidly repopulate chromatin as the bodies disassemble upon return to isotonicity. These bodies occupy distinct nuclear territories and contain a defined structural arrangement of insulator proteins. Our findings suggest insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins and provide new insights into the effects of osmostress on nuclear and genome organization. PMID:23878275

  16. Effect of Autoclaved Aerated Concrete Modification with High-Impact Polystyrene on Sound Insulation

    NASA Astrophysics Data System (ADS)

    Brelak, Sylwia; Dachowski, Ryszard

    2017-10-01

    Autoclaved aerated concrete is one of the most commonly used building materials. Its advantages include low density, high thermal insulation capacity and high fire resistance. It has a relatively high compressive strength, though not high enough to be able to compete with other building materials in this respect. One of the directions leading to the improvement of physical and mechanical properties of autoclaved aerated concrete is the modification of its composition. A noticeable effect of pulverized high-impact polystyrene (improved compressive strength and water absorption) was relevant for the decision to continue the study of its effects. This paper discusses the effect of high-impact polystyrene on sound insulation in AAC products. The tests demonstrated a positive influence of the modifier on AAC sound insulation enhancement. Results from the tests performed on HIPS-modified AAC products were showed and compared with the properties of conventional products. The effect of the polymer on the microstructure of the products obtained was described briefly.

  17. Composite Flexible Blanket Insulation

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A. (Inventor); Pitts, William C. (Inventor); Goldstein, Howard E. (Inventor); Sawko, Paul M. (Inventor)

    1991-01-01

    Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with the currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems are useful in providing lightweight insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.

  18. Measurement of a superconducting energy gap in a homogeneously amorphous insulator.

    PubMed

    Sherman, D; Kopnov, G; Shahar, D; Frydman, A

    2012-04-27

    We present tunneling spectroscopy measurements that directly reveal the existence of a superconducting gap in the insulating state of homogenously disordered amorphous indium oxide films. Two films on both sides of the disorder induced superconductor to insulator transition show the same energy gap scale. This energy gap persists up to relatively high magnetic fields and is observed across the magnetoresistance peak typical of disordered superconductors. The results provide useful information for understanding the nature of the insulating state in the disorder induced superconductor to insulator transition.

  19. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  20. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  1. Orbital selective directional conductor in the two-orbital Hubbard model

    DOE PAGES

    Mukherjee, Anamitra; Patel, Niravkumar D.; Moreo, Adriana; ...

    2016-02-29

    Recently, we employed a developed many-body technique that allows for the incorporation of thermal effects, the rich phase diagram of a two-dimensional two-orbital (degenerate d xz and d yz) Hubbard model is presented varying temperature and the repulsion U. The main result is the finding at intermediate U of an antiferromagnetic orbital selective state where an effective dimensional reduction renders one direction insulating and the other metallic. Possible realizations of this state are discussed. Additionally, we also study nematicity above the N eel temperature. After a careful finite-size scaling analysis, the nematicity temperature window appears to survive in the bulkmore » limit, although it is very narrow.« less

  2. Photovoltaic Powering And Control System For Electrochromic Windows

    DOEpatents

    Schulz, Stephen C.; Michalski, Lech A.; Volltrauer, Hermann N.; Van Dine, John E.

    2000-04-25

    A sealed insulated glass unit is provided with an electrochromic device for modulating light passing through the unit. The electrochromic device is controlled from outside the unit by a remote control electrically unconnected to the device. Circuitry within the unit may be magnetically controlled from outside. The electrochromic device is powered by a photovoltaic cells. The photovoltaic cells may be positioned so that at least a part of the light incident on the cell passes through the electrochromic device, providing a form of feedback control. A variable resistance placed in parallel with the electrochromic element is used to control the response of the electrochromic element to changes in output of the photovoltaic cell.

  3. Cotton-Fiber-Filled Rubber Insulation

    NASA Technical Reports Server (NTRS)

    Anderson, Floyd A.

    1987-01-01

    Carbonization of fibers at high temperatures improves strength and erosion resistance. Cotton linters tested as replacement for asbestos filler currently used in rubber insulation in solid rocket motors. Cotton-filled rubber insulation has industrial uses; in some kinds of chemical- or metal-processing equipment, hoses, and protective clothing.

  4. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide.

    PubMed

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m(-1) K(-1), which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  5. Prospect of Thermal Insulation by Silica Aerogel: A Brief Review

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammed Adnan; Sangashetty, Rashmi; Esther, A. Carmel Mary; Patil, Sharanabasappa B.; Sherikar, Baburao N.; Dey, Arjun

    2017-10-01

    Silica aerogel is a unique ultra light weight nano porous material which offers superior thermal insulation property as compared to the conventional thermal insulating materials. It can be applied not only for ground and aerospace applications but also in low and high temperatures and pressure regimes. Aerogel granules and monolith are synthesized by the sol-gel route while aerogel based composites are fabricated by the reinforcement of fibers, particle and opacifiers. Due to the characteristic brittleness (i.e., poor mechanical properties) of monolith or bulk aerogel, it is restricted in several applications. To improve the mechanical integrity and flexibility, usually different fibers are reinforced with aerogel and hence it can be used as flexible thermal insulation blankets. Further, to achieve effective thermal insulation behaviour particularly at high temperature, often opacifiers are doped with silica aerogel. In the present brief review, the prospects of bulk aerogel and aerogel based composites are discussed for the application of thermal insulation and thermal stability.

  6. Experimental simulation of space plasma interactions with high voltage solar arrays

    NASA Technical Reports Server (NTRS)

    Stillwell, R. P.; Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    Operating high voltage solar arrays in the space environment can result in anomalously large currents being collected through small insulation defects. Tests of simulated defects have been conducted in a 45-cm vacuum chamber with plasma densities of 100,000 to 1,000,000/cu cm. Plasmas were generated using an argon hollow cathode. The solar array elements were simulated by placing a thin sheet of polyimide (Kapton) insulation with a small hole in it over a conductor. Parameters tested were: hole size, adhesive, surface roughening, sample temperature, insulator thickness, insulator area. These results are discussed along with some preliminary empirical correlations.

  7. Instrumentation for Studies of Electron Emission and Charging From Insulators

    NASA Technical Reports Server (NTRS)

    Thomson, C. D.; Zavyalov, V.; Dennison, J. R.

    2004-01-01

    Making measurements of electron emission properties of insulators is difficult since insulators can charge either negatively or positively under charge particle bombardment. In addition, high incident energies or high fluences can result in modification of a material s conductivity, bulk and surface charge profile, structural makeup through bond breaking and defect creation, and emission properties. We discuss here some of the charging difficulties associated with making insulator-yield measurements and review the methods used in previous studies of electron emission from insulators. We present work undertaken by our group to make consistent and accurate measurements of the electron/ion yield properties for numerous thin-film and thick insulator materials using innovative instrumentation and techniques. We also summarize some of the necessary instrumentation developed for this purpose including fast response, low-noise, high-sensitivity ammeters; signal isolation and interface to standard computer data acquisition apparatus using opto-isolation, sample-and-hold, and boxcar integration techniques; computer control, automation and timing using Labview software; a multiple sample carousel; a pulsed, compact, low-energy, charge neutralization electron flood gun; and pulsed visible and UV light neutralization sources. This work is supported through funding from the NASA Space Environments and Effects Program and the NASA Graduate Research Fellowship Program.

  8. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types

    PubMed Central

    Kim, JunHee; You, Young-Chan

    2015-01-01

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation. PMID:28787978

  9. Light-weight black ceramic insulation

    NASA Technical Reports Server (NTRS)

    Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    2003-01-01

    Ultra-high temperature, light-weight, black ceramic insulation having a density ranging from about 0.12 g/cc. to 0.6 g/cc. such as ceramic tile is obtained by pyrolyzing siloxane gels derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes also may contain an effective amount of a mono- or trialkoxy silane to obtain the siloxane gels. The siloxane gels are dried at ambient temperatures and pressures to form siloxane ceramic precursors without significant shrinkage. The siloxane ceramic precursors are subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C., and particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.

  10. Convergence of topological domain boundaries, insulators, and polytene interbands revealed by high-resolution mapping of chromatin contacts in the early Drosophila melanogaster embryo

    PubMed Central

    Stadler, Michael R; Haines, Jenna E

    2017-01-01

    High-throughput assays of three-dimensional interactions of chromosomes have shed considerable light on the structure of animal chromatin. Despite this progress, the precise physical nature of observed structures and the forces that govern their establishment remain poorly understood. Here we present high resolution Hi-C data from early Drosophila embryos. We demonstrate that boundaries between topological domains of various sizes map to DNA elements that resemble classical insulator elements: short genomic regions sensitive to DNase digestion that are strongly bound by known insulator proteins and are frequently located between divergent promoters. Further, we show a striking correspondence between these elements and the locations of mapped polytene interband regions. We believe it is likely this relationship between insulators, topological boundaries, and polytene interbands extends across the genome, and we therefore propose a model in which decompaction of boundary-insulator-interband regions drives the organization of interphase chromosomes by creating stable physical separation between adjacent domains. PMID:29148971

  11. Interface induced ferromagnetism in topological insulator above room temperature

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Chang, Cui-Zu; Liu, Yawen; Chen, Tingyong; Moodera, Jagadeesh; Shi, Jing

    The quantum anomalous Hall effect (QAHE) observed in magnetic topological insulators (TI), an outcome of time reversal symmetry broken surface states, exhibits many exotic properties. However, a major obstacle towards high temperature QAHE is the low Curie temperature in the disordered magnetically doped TI systems. Here we report a study on heterostructures of TI and magnetic insulator in which the magnetic insulator, namely thulium iron garnet or TIG, has perpendicular magnetic anisotropy. At the TIG/TI interface, TIG magnetizes the surface states of the TI film by exchange coupling, as revealed by the anomalous Hall effect (AHE). We demonstrate that squared AHE hysteresis loops persist well above room temperature. The interface proximity induced high-temperature ferromagnetism in topological insulators opens up new possibilities for the realization of QAHE at high temperatures. This work was supported as part of the SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # SC0012670.

  12. Fabrication of high gradient insulators by stack compression

    DOEpatents

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  13. Photonic crystal ring resonator-based four-channel dense wavelength division multiplexing demultiplexer on silicon on insulator platform: design and analysis

    NASA Astrophysics Data System (ADS)

    Sreenivasulu, Tupakula; Bhowmick, Kaustav; Samad, Shafeek A.; Yadunath, Thamerassery Illam R.; Badrinarayana, Tarimala; Hegde, Gopalkrishna; Srinivas, Talabattula

    2018-04-01

    A micro/nanofabrication feasible compact photonic crystal (PC) ring-resonator-based channel drop filter has been designed and analyzed for operation in C and L bands of communication window. The four-channel demultiplexer consists of ring resonators of holes in two-dimensional PC slab. The proposed assembly design of dense wavelength division multiplexing setup is shown to achieve optimal quality factor, without altering the lattice parameters or resonator size or inclusion of scattering holes. Transmission characteristics are analyzed using the three-dimensional finite-difference time-domain simulation approach. The radiation loss of the ring resonator was minimized by forced cancelation of radiation fields by fine-tuning the air holes inside the ring resonator. An average cross talk of -34 dB has been achieved between the adjacent channels maintaining an average quality factor of 5000. Demultiplexing is achieved by engineering only the air holes inside the ring, which makes it a simple and tolerant design from the fabrication perspective. Also, the device footprint of 500 μm2 on silicon on insulator platform makes it easy to fabricate the device using e-beam lithography technique.

  14. High power density capacitor and method of fabrication

    DOEpatents

    Tuncer, Enis

    2012-11-20

    A ductile preform for making a drawn capacitor includes a plurality of electrically insulating, ductile insulator plates and a plurality of electrically conductive, ductile capacitor plates. Each insulator plate is stacked vertically on a respective capacitor plate and each capacitor plate is stacked on a corresponding insulator plate in alignment with only one edge so that other edges are not in alignment and so that each insulator plate extends beyond the other edges. One or more electrically insulating, ductile spacers are disposed in horizontal alignment with each capacitor plate along the other edges and the pattern is repeated so that alternating capacitor plates are stacked on alternating opposite edges of the insulator plates. A final insulator plate is positioned at an extremity of the preform. The preform may then be drawn to fuse the components and decrease the dimensions of the preform that are perpendicular to the direction of the draw.

  15. Composite flexible insulation for thermal protection of space vehicles

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda

    1991-01-01

    A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the aeroassist space transfer vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.

  16. Enhanced dielectric-wall linear accelerator

    DOEpatents

    Sampayan, S.E.; Caporaso, G.J.; Kirbie, H.C.

    1998-09-22

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 6 figs.

  17. Enhanced dielectric-wall linear accelerator

    DOEpatents

    Sampayan, Stephen E.; Caporaso, George J.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  18. Vacuum-surface flashover switch with cantilever conductors

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2001-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  19. Superconductor to weak-insulator transitions in disordered tantalum nitride films

    NASA Astrophysics Data System (ADS)

    Breznay, Nicholas P.; Tendulkar, Mihir; Zhang, Li; Lee, Sang-Chul; Kapitulnik, Aharon

    2017-10-01

    We study the two-dimensional superconductor-insulator transition (SIT) in thin films of tantalum nitride. At zero magnetic field, films can be disorder-tuned across the SIT by adjusting thickness and film stoichiometry; insulating films exhibit classical hopping transport. Superconducting films exhibit a magnetic-field-tuned SIT, whose insulating ground state at high field appears to be a quantum-corrected metal. Scaling behavior at the field-tuned SIT shows classical percolation critical exponents z ν ≈1.3 , with a corresponding critical field Hc≪Hc 2 , the upper critical field. The Hall effect exhibits a crossing point near Hc, but with a nonuniversal critical value ρxy c comparable to the normal-state Hall resistivity. We propose that high-carrier-density metals will always exhibit this pattern of behavior at the boundary between superconducting and (trivially) insulating ground states.

  20. Hydrophobic Characteristics of Composite Insulators in Simulated Inland Arid Desert Environment

    NASA Astrophysics Data System (ADS)

    Khan, Yasin; Al-Arainy, Abdulrehman Ali; Malik, Nazar Hussain; Qureshi, Muhammad Iqbal

    2010-06-01

    Presently along with traditional insulators i.e. glass and porcelain, etc., the polymeric insulators are also used world widely. These polymeric insulators are very sensitive to various environmental parameters e.g. UV radiations, heat, etc. The UV radiation level in the central region of Saudi Arabia is high as compared to the recommended IEC-61109 standard for the accelerated aging of the composite insulators. In this study, thermoplastic elastomer (TPE) and Ethylene Propylene Diene Monomer (EPDM) insulators were subjected to accelerated aging stress as per IEC standard as well as modified IEC standard simulating the inland arid desert's atmospheric conditions. The hydrophobic characteristics were studied by measuring the contact angle along the insulator surface before and after the accelerated aging of the samples. It was found that TPE loses its hydrophobic properties more as compared to EPDM insulator. This loss was proportional to the intensity of UV irradiation. The rate of recovery is also low for both the tested materials as compared to Silicone Rubber insulators.

  1. Detection of UV Pulse from Insulators and Application in Estimating the Conditions of Insulators

    NASA Astrophysics Data System (ADS)

    Wang, Jingang; Chong, Junlong; Yang, Jie

    2014-10-01

    Solar radiation in the band of 240-280 nm is absorbed by the ozone layer in the atmosphere, and corona discharges from high-voltage apparatus emit in air mainly in the 230-405 nm range of ultraviolet (UV), so the band of 240-280 nm is called UV Solar Blind Band. When the insulators in a string deteriorate or are contaminated, the voltage distribution along the string will change, which causes the electric fields in the vicinity of insulators change and corona discharge intensifies. An UV pulse detection method to check the conditions of insulators is presented based on detecting the UV pulse among the corona discharge, then it can be confirmed that whether there exist faulty insulators and whether the surface contamination of insulators is severe for the safe operation of power systems. An UV-I Insulator Detector has been developed, and both laboratory tests and field tests have been carried out which demonstrates the practical viability of UV-I Insulator Detector for online monitoring.

  2. HYDROPHOBIC CHARACTERISTICS OF COMPOSITE INSULATORS IN SIMULATED INLAND ARID DESERT ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Yasin; Al-Arainy, Abdulrehman Ali; Malik, Nazar Hussain

    2010-06-15

    Presently along with traditional insulators i.e. glass and porcelain, etc., the polymeric insulators are also used world widely. These polymeric insulators are very sensitive to various environmental parameters e.g. UV radiations, heat, etc. The UV radiation level in the central region of Saudi Arabia is high as compared to the recommended IEC-61109 standard for the accelerated aging of the composite insulators. In this study, thermoplastic elastomer (TPE) and Ethylene Propylene Diene Monomer (EPDM) insulators were subjected to accelerated aging stress as per IEC standard as well as modified IEC standard simulating the inland arid desert's atmospheric conditions. The hydrophobic characteristicsmore » were studied by measuring the contact angle along the insulator surface before and after the accelerated aging of the samples. It was found that TPE loses its hydrophobic properties more as compared to EPDM insulator. This loss was proportional to the intensity of UV irradiation. The rate of recovery is also low for both the tested materials as compared to Silicone Rubber insulators.« less

  3. Floquet high Chern insulators in periodically driven chirally stacked multilayer graphene

    NASA Astrophysics Data System (ADS)

    Li, Si; Liu, Cheng-Cheng; Yao, Yugui

    2018-03-01

    Chirally stacked N-layer graphene is a semimetal with ±p N band-touching at two nonequivalent corners in its Brillioun zone. We predict that an off-resonant circularly polarized light (CPL) drives chirally stacked N-layer graphene into a Floquet Chern insulators (FCIs), aka quantum anomalous Hall insulators, with tunable high Chern number C F = ±N and large gaps. A topological phase transition between such a FCI and a valley Hall (VH) insulator with high valley Chern number C v = ±N induced by a voltage gate can be engineered by the parameters of the CPL and voltage gate. We propose a topological domain wall between the FCI and VH phases, along which perfectly valley-polarized N-channel edge states propagate unidirectionally without backscattering.

  4. Coulomb Blockade Plasmonic Switch.

    PubMed

    Xiang, Dao; Wu, Jian; Gordon, Reuven

    2017-04-12

    Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.

  5. Aerogels for Thermal Insulation of Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Fleurial, Jean-Pierre; Snyder, Jeffrey; Jones, Steven; Caillat, Thierry

    2006-01-01

    Silica aerogels have been shown to be attractive for use as thermal-insulation materials for thermoelectric devices. It is desirable to thermally insulate the legs of thermoelectric devices to suppress lateral heat leaks that degrade thermal efficiency. Aerogels offer not only high thermal- insulation effectiveness, but also a combination of other properties that are especially advantageous in thermoelectric- device applications. Aerogels are synthesized by means of sol-gel chemistry, which is ideal for casting insulation into place. As the scale of the devices to be insulated decreases, the castability from liquid solutions becomes increasingly advantageous: By virtue of castability, aerogel insulation can be made to encapsulate devices having any size from macroscopic down to nanoscopic and possibly having complex, three-dimensional shapes. Castable aerogels can permeate voids having characteristic dimensions as small as nanometers. Hence, practically all the void space surrounding the legs of thermoelectric devices could be filled with aerogel insulation, making the insulation highly effective. Because aerogels have the lowest densities of any known solid materials, they would add very little mass to the encapsulated devices. The thermal-conductivity values of aerogels are among the lowest reported for any material, even after taking account of the contributions of convection and radiation (in addition to true thermal conduction) to overall effective thermal conductivities. Even in ambient air, the contribution of convection to effective overall thermal conductivity of an aerogel is extremely low because of the highly tortuous nature of the flow paths through the porous aerogel structure. For applications that involve operating temperatures high enough to give rise to significant amounts of infrared radiation, opacifiers could be added to aerogels to reduce the radiative contributions to overall effective thermal conductivities. One example of an opacifier is carbon black, which absorbs infrared radiation. Another example of an opacifier is micron- sized metal flakes, which reflect infrared radiation. Encapsulation in cast aerogel insulation also can help prolong the operational lifetimes of thermoelectric devices that must operate in vacuum and that contain SiGe or such advanced skutterudite thermoelectric materials as CoSb3 and CeFe3.5Co0.5Sb12. The primary cause of deterioration of most thermoelectric materials is thermal decomposition or sublimation (e.g., sublimation of Sb from CoSb3) at typical high operating temperatures. Aerogel present near the surface of CoSb3 can impede the outward transport of Sb vapor by establishing a highly localized, equilibrium Sb vapor atmosphere at the surface of the CoSb3.

  6. Research on breakdown characteristics of oil-paper insulation in compound field at different temperatures

    NASA Astrophysics Data System (ADS)

    Li, L.; Chen, M. Y.; Zhu, X. C.; Gao, Z. W.; Zhang, H. D.; Li, G. X.; Zhang, J.; Yu, C. L.; Feng, Y. M.

    2018-01-01

    The breakdown characteristics of oil-paper insulation in AC, DC and compound field at different temperatures were studied. The breakdown mechanism of oil-paper insulation at different temperatures and in AC and DC electric fields was analyzed. The breakdown characteristic mechanisms of the oil-paper insulation in the compound field at different temperatures were obtained: the dielectric strength of oil-paper compound insulation is changed gradually from dependence on oil dielectric strength to dependence on paperboard dielectric strength at low temperature. The dielectric strength of oil-paper compound insulation is always related to the oil dielectric strength closely at high temperature with decrease of AC content.

  7. Method and technique for installing light-weight, fragile, high-temperature fiber insulation

    NASA Technical Reports Server (NTRS)

    Patel, B. C. (Inventor)

    1983-01-01

    A method of installing fragile, light weight, high temperature fiber insulation, particularly where the insulation is to be used as a seal strip providing a high order of thermal barrier insulation is discussed. The process is based on provision of a strip of the mineral batting cut oversize by a predetermined amount, saturated in a fugitive polymer solution, compressed in a mold, dried and cured to form a rigidized batting material which is machined to required shape. The machine dimensions would normally be at least nominally less than the dimensions of the cavity to be sealed. After insertion in the cavity, which may be a wire-mesh seal enclosure, the apparatus is subjected to baking at a temperature sufficiently high to cause the resin to burn off cleanly, leaving the batting substantially in its original condition and expanded into the cavity or seal enclosure.

  8. A method and technique for installing light-weight fragile, high-temperature fiber insulation

    NASA Technical Reports Server (NTRS)

    Ballantine, T. J. (Inventor)

    1982-01-01

    A method of installing fragile, light-weight, high-temperature fiber insulation, particularly where the insulation is to be used as a seal strip providing a high order of thermal barrier insulation is described. The process is based on provision of a strip of the mineral batting cut oversize by a predetermined amount, saturated in a fugitive polymer solution, compressed in a mold, dried and cured to form a rigidized batting material which may be machined to required shape. The machined dimensions would normally be at least nominally less than the dimensions of the cavity to be sealed. After insertion in the cavity, which may be a wire-mesh seal enclosure, the apparatus is subjected to baking at a temperature sufficiently high to cause the resin to burn off cleanly, leaving the batting substantially in its original condition and expanded into the cavity or seal enclosure.

  9. Extending the high-order-harmonic spectrum using surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Ebadian, H.; Mohebbi, M.

    2017-08-01

    Nanoparticle assisted high-order-harmonic generation by low-intensity ultrashort laser pulses in hydrogen atomic gas is studied. This work is based on surface plasmon-polariton coupling in metal-insulator-metal structures. The necessary laser intensity is provided by enhancement of the incident laser power in the vicinity of bowtie nanoparticles installed on an insulator-metal structure. The inhomogeneous electric field distribution in the Au nanobowtie gap region is investigated. Simulations show that the insulator layer installed on the Au metal film that supports the plasmon-polariton interactions has a dramatic effect on the field enhancement factor. High-order-harmonic generation cutoffs for different arrangements are calculated and results show that the metal-insulator-metal structure is an excellent device for high-order-harmonic generation purposes. Also, the harmonic cutoff order is extended to more than 170, which is a considerable value and will be an efficient source for extreme ultraviolet radiation.

  10. Superconductivity, Magnetoresistance, Magnetic Anomaly and Crystal Structure of New Phases of Topological Insulators Bi2Se3 and Sb2Te3

    NASA Astrophysics Data System (ADS)

    Kulbachinskii, V. A.; Buga, S. G.; Serebryanaya, N. R.; Perov, N. S.; Kytin, V. G.; Tarelkin, S. A.; Bagramov, R. H.; Eliseev, N. N.; Blank, V. D.

    2018-03-01

    We synthesized a new metastable phase of Bi2Se3 topological insulator by a rapid quenching after a high-pressure-high-temperature treatment at P≈7.7 GPa; 673

  11. Tissue-Specific Regulation of Chromatin Insulator Function

    PubMed Central

    Matzat, Leah H.; Dale, Ryan K.; Moshkovich, Nellie; Lei, Elissa P.

    2012-01-01

    Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. PMID:23209434

  12. Insulation Fact Sheet.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    Heating and cooling account for 50-70% of the energy consumed in the average American home. Heating water accounts for another 20%. A poorly insulated home loses much of this energy, causing drafty rooms and high energy bills. This fact sheet discusses how to determine if your home needs more insulation, the additional thermal resistance (called…

  13. Metal-insulator-semiconductor capacitors with bismuth oxide as insulator

    NASA Astrophysics Data System (ADS)

    Raju, T. A.; Talwai, A. S.

    1981-07-01

    Metal-insulator-semiconductor capacitors using aluminum Bi2O3 and silicon have been studied for varactor applications. Reactively sputtered Bi2O3 films which under suitable proportions of oxygen and argon and had high resistivity suitable for device applications showed a dielectric constant of 25.

  14. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends.

    PubMed

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-08-02

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed.

  15. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends

    PubMed Central

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-01-01

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed. PMID:28773772

  16. High-voltage testing of a 500-kV dc photocathode electron gun.

    PubMed

    Nagai, Ryoji; Hajima, Ryoichi; Nishimori, Nobuyuki; Muto, Toshiya; Yamamoto, Masahiro; Honda, Yosuke; Miyajima, Tsukasa; Iijima, Hokuto; Kuriki, Masao; Kuwahara, Makoto; Okumi, Shoji; Nakanishi, Tsutomu

    2010-03-01

    A high-voltage dc photocathode electron gun was successfully conditioned up to a voltage of 550 kV and a long-time holding test for 8 h was demonstrated at an acceleration voltage of 500 kV. The dc photocathode electron gun is designed for future light sources based on energy-recovery linac and consists of a Cockcroft-Walton generator, a segmented cylindrical ceramic insulator, guard-ring electrodes, a support-rod electrode, a vacuum chamber, and a pressurized insulating gas tank. The segmented cylindrical ceramic insulator and the guard-ring electrodes were utilized to prevent any damage to the insulator from electrons emitted by the support-rod electrode.

  17. Space-Spurred Metallized Materials

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Spurred R&D toward improved vacuum metallizing techniques led to an extensive line of commercial products, from insulated outdoor garments to packaging for foods, from wall coverings to window shades, from life rafts to candy wrappings, reflective blankets to photographic reflectors. Metallized Products, Inc. (MPI) was one of the companies that worked with NASA in development of the original space materials. MPI markets its own metallized products and supplies materials to other manufacturers. One of the most widely used MPI products is TXG laminate. An example is a reflective kite, the S.O.S. Signal Kite that can be flown as high as 200 feet to enhance radar and visual detectability. It offers a boon to campers, hikers, mountain climbers and boaters. It is produced by Solar Reflections, Inc. The company also markets a solar reflective hat. Another example is by Pro-Tektion, Inc. to provide protection for expensive musical equipment that have sensitive electronic components subject to damage from the heat of stage lights, dust, or rain at outdoor concerts. MP supplied the material and acceptance of the covers by the sound industry has been excellent.

  18. Local heterogeneities in cardiac systems suppress turbulence by generating multi-armed rotors

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihui; Steinbock, Oliver

    2016-05-01

    Ventricular fibrillation is an extremely dangerous cardiac arrhythmia that is linked to rotating waves of electric activity and chaotically moving vortex lines. These filaments can pin to insulating, cylindrical heterogeneities which swiftly become the new rotation backbone of the local wave field. For thin cylinders, the stabilized rotation is sufficiently fast to repel the free segments of the turbulent filament tangle and annihilate them at the system boundaries. The resulting global wave pattern is periodic and highly ordered. Our cardiac simulations show that also thicker cylinders can establish analogous forms of tachycardia. This process occurs through the spontaneous formation of pinned multi-armed vortices. The observed number of wave arms N depends on the cylinder radius and is associated to stability windows that for N = 2, 3 partially overlap. For N = 1, 2, we find a small gap in which the turbulence is removed but the pinned rotor shows complex temporal dynamics. The relevance of our findings to human cardiology are discussed in the context of vortex pinning to more complex-shaped anatomical features and remodeled myocardium.

  19. A hybrid ferroelectric-flash memory cells

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyo; Byun, Chang Woo; Seok, Ki Hwan; Kim, Hyung Yoon; Chae, Hee Jae; Lee, Sol Kyu; Son, Se Wan; Ahn, Donghwan; Joo, Seung Ki

    2014-09-01

    A ferroelectric-flash (F-flash) memory cells having a metal-ferroelectric-nitride-oxynitride-silicon structure are demonstrated, and the ferroelectric materials were perovskite-dominated Pb(Zr,Ti)O3 (PZT) crystallized by Pt gate electrode. The PZT thin-film as a blocking layer improves electrical and memorial performance where programming and erasing mechanism are different from the metal-ferroelectric-insulator-semiconductor device or the conventional silicon-oxide-nitride-oxide-silicon device. F-flash cells exhibit not only the excellent electrical transistor performance, having 442.7 cm2 V-1 s-1 of field-effect mobility, 190 mV dec-1 of substhreshold slope, and 8 × 105 on/off drain current ratio, but also a high reliable memory characteristics, having a large memory window (6.5 V), low-operating voltage (0 to -5 V), faster P/E switching speed (50/500 μs), long retention time (>10 years), and excellent fatigue P/E cycle (>105) due to the boosting effect, amplification effect, and energy band distortion of nitride from the large polarization. All these characteristics correspond to the best performances among conventional flash cells reported so far.

  20. An Improved Simulation of the Diurnally Varying Street Canyon Flow

    NASA Astrophysics Data System (ADS)

    Yaghoobian, Neda; Kleissl, Jan; Paw U, Kyaw Tha

    2012-11-01

    The impact of diurnal variation of temperature distribution over building and ground surfaces on the wind flow and scalar transport in street canyons is numerically investigated using the PArallelized LES Model (PALM). The Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES) is used for predicting urban surface heat fluxes as boundary conditions for a modified version of PALM. TUF-IOBES dynamically simulates indoor and outdoor building surface temperatures and heat fluxes in an urban area taking into account weather conditions, indoor heat sources, building and urban material properties, composition of the building envelope (e.g. windows, insulation), and HVAC equipment. Temperature (and heat flux) distribution over urban surfaces of the 3-D raster-type geometry of TUF-IOBES makes it possible to provide realistic, high resolution boundary conditions for the numerical simulation of flow and scalar transport in an urban canopy. Compared to some previous analyses using uniformly distributed thermal forcing associated with urban surfaces, the present analysis shows that resolving non-uniform thermal forcings can provide more detailed and realistic patterns of the local air flow and pollutant dispersion in urban canyons.

  1. Next generation smart window display using transparent organic display and light blocking screen.

    PubMed

    Kim, Gyeong Woo; Lampande, Raju; Choe, Dong Cheol; Ko, Ik Jang; Park, Jin Hwan; Pode, Ramchandra; Kwon, Jang Hyuk

    2018-04-02

    Transparent organic light emitting diodes (TOLED) have widespread applications in the next-generation display devices particularly in the large size transparent window and interactive displays. Herein, we report high performance and stable attractive smart window displays using facile process. Advanced smart window display is realized by integrating the high performance light blocking screen and highly transparent white OLED panel. The full smart window display reveals a maximum transmittance as high as 64.2% at the wavelength of 600 nm and extremely good along with tunable ambient contrast ratio (171.94:1) compared to that of normal TOLED (4.54:1). Furthermore, the performance decisive light blocking screen has demonstrated an excellent optical and electrical characteristics such as i) high transmittance (85.56% at 562nm) at light-penetrating state, ii) superior absorbance (2.30 at 562nm) in light interrupting mode, iii) high optical contrast (85.50 at 562 nm), iv) high optical stability for more than 25,000 cycle of driving, v) fast switching time of 1.9 sec, and vi) low driving voltage of 1.7 V. The experimental results of smart window display are also validated using optical simulation. The proposed smart window display technology allows us to adjust the intensity of daylight entering the system quickly and conveniently.

  2. New developments in the field of high voltage and extra-high voltage cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jocteur, R.

    1990-04-01

    In this paper, the author presents the developments in progress at the present time in France concerning the high voltage (HV) and extra-high voltage (EHV) cables with synthetic insulation and their accessories up to the 500 kV range. The authors have adopted a maximum operating field strength approaching 16 kV/mm (405 V/mil) for low density polyethylene (LDPE) insulated cables. The on-going studies should allow to bring the maximum operating field strength for crosslinked polyethylene (XLPE) insulation from 7 to 10 kV/mm (180 to 255 V/mil) and cables could be manufactured more economically with this material.

  3. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect

    NASA Astrophysics Data System (ADS)

    Zhou, Hong; Maize, Kerry; Qiu, Gang; Shakouri, Ali; Ye, Peide D.

    2017-08-01

    We have demonstrated that depletion/enhancement-mode β-Ga2O3 on insulator field-effect transistors can achieve a record high drain current density of 1.5/1.0 A/mm by utilizing a highly doped β-Ga2O3 nano-membrane as the channel. β-Ga2O3 on insulator field-effect transistor (GOOI FET) shows a high on/off ratio of 1010 and low subthreshold slope of 150 mV/dec even with 300 nm thick SiO2. The enhancement-mode GOOI FET is achieved through surface depletion. An ultra-fast, high resolution thermo-reflectance imaging technique is applied to study the self-heating effect by directly measuring the local surface temperature. High drain current, low Rc, and wide bandgap make the β-Ga2O3 on insulator field-effect transistor a promising candidate for future power electronics applications.

  4. Ultrastable Natural Ester-Based Nanofluids for High Voltage Insulation Applications.

    PubMed

    Peppas, Georgios D; Bakandritsos, Aristides; Charalampakos, Vasilis P; Pyrgioti, Eleftheria C; Tucek, Jiri; Zboril, Radek; Gonos, Ioannis F

    2016-09-28

    Nanofluids for high voltage insulation systems have emerged as a potential substitute for liquid dielectrics in industrial applications. Nevertheless, the sedimentation of nanoparticles has been so far a serious barrier for their wide and effective exploitation. The present work reports on the development and in-depth characterization of colloidally ultrastable natural ester oil insulation systems containing iron oxide nanocrystals which lift the problem of sedimentation and phase separation. Compared to state-of-the-art systems, the final product is endowed with increased dielectric strength, faster thermal response, lower dielectric losses (decreased dissipation factor: tan δ), and very high endurance during discharge stressing. The developed nanofluid was studied and compared with a similar system containing commercial iron oxide nanoparticles, the latter demonstrating extensive sedimentation. Herein, the dielectric properties of the nanofluids are analyzed at various concentrations by means of breakdown voltage and dissipation factor measurements. The characterization techniques unequivocally demonstrate the high performance reliability of the reported nanofluid, which constitutes a significant breakthrough in the field of high voltage insulation technologies.

  5. Study of the Insulating Magnetic Field in an Accelerating Ion Diode

    NASA Astrophysics Data System (ADS)

    Kozlovsky, K. I.; Martynenko, A. S.; Vovchenko, E. D.; Lisovsky, M. I.; Isaev, A. A.

    2017-12-01

    The results of examination of the insulating magnetic field in an accelerating ion diode are presented. This field is produced in order to suppress the electron current and thus enhance the neutron yield of the D( d, n)3He nuclear reaction. The following two designs are discussed: a gas-filled diode with inertial electrostatic confinement of ions and a vacuum diode with a laser-plasma ion source and pulsed magnetic insulation. Although the insulating field of permanent magnets is highly nonuniform, it made it possible to extend the range of accelerating voltages to U = 200 kV and raise the neutron yield to Q = 107 in the first design. The nonuniform field structure is less prominent in the device with pulsed magnetic insulation, which demonstrated efficient deuteron acceleration with currents up to 1 kA at U = 400 kV. The predicted neutron yield is as high as 109 neutrons/pulse.

  6. Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.

    2011-01-01

    Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements.

  7. Superconductor to weak-insulator transitions in disordered tantalum nitride films

    DOE PAGES

    Breznay, Nicholas P.; Tendulkar, Mihir; Zhang, Li; ...

    2017-10-31

    Here, we study the two-dimensional superconductor-insulator transition (SIT) in thin films of tantalum nitride. At zero magnetic field, films can be disorder-tuned across the SIT by adjusting thickness and film stoichiometry; insulating films exhibit classical hopping transport. Superconducting films exhibit a magnetic-field-tuned SIT, whose insulating ground state at high field appears to be a quantum-corrected metal. Scaling behavior at the field-tuned SIT shows classical percolation critical exponents zν ≈ 1.3, with a corresponding critical field H c << H c2, the upper critical field. The Hall effect exhibits a crossing point near H c, but with a nonuniversal critical valuemore » ρ c xy comparable to the normal-state Hall resistivity. We propose that high-carrier-density metals will always exhibit this pattern of behavior at the boundary between superconducting and (trivially) insulating ground states.« less

  8. Development of a high power electron beam welding gun with replaceable high voltage feed-through insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, T.K; Mascarenhas, M.; Kandaswamy, E., E-mail: tanmay@barc.gov.in

    Ceramic to metal sealed feed-through insulators are commonly used in electron beam welding gun. The above feed-through insulators are susceptible to failure, as the brazing joints in them are not always very strong. Failure in one of these feed-through could render the complete gun unusable. This problem has already been faced in BARC, which led to the development of the electron gun with replaceable feed through insulators. A 24 kW Electron Beam Welding (EBW) gun with indigenous designed replaceable insulators is fabricated in BARC. Emphasis during the design of the gun had been to reduce the use of imported componentsmore » to zero. This paper describes the design and fabrication of this gun and reports various simulations and tests performed. Beam trajectory of the gun is numerically computed and presented. Weld passes were carried out on stainless steel plates show satisfactory penetrations. (author)« less

  9. Top-gate pentacene-based organic field-effect transistor with amorphous rubrene gate insulator

    NASA Astrophysics Data System (ADS)

    Hiroki, Mizuha; Maeda, Yasutaka; Ohmi, Shun-ichiro

    2018-02-01

    The scaling of organic field-effect transistors (OFETs) is necessary for high-density integration and for this, OFETs with a top-gate configuration are required. There have been several reports of damageless lithography processes for organic semiconductor or insulator layers. However, it is still difficult to fabricate scaled OFETs with a top-gate configuration. In this study, the lift-off process and the device characteristics of the OFETs with a top-gate configuration utilizing an amorphous (α) rubrene gate insulator were investigated. We have confirmed that α-rubrene shows an insulating property, and its extracted linear mobility was 2.5 × 10-2 cm2/(V·s). The gate length and width were 10 and 60 µm, respectively. From these results, the OFET with a top-gate configuration utilizing an α-rubrene gate insulator is promising for the high-density integration of scaled OFETs.

  10. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-06

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  11. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  12. Microsphere Insulation Panels

    NASA Technical Reports Server (NTRS)

    Mohling, R.; Allen, M.; Baumgartner, R.

    2006-01-01

    Microsphere insulation panels (MIPs) have been developed as lightweight, longlasting replacements for the foam and vacuum-jacketed systems heretofore used for thermally insulating cryogenic vessels and transfer ducts. The microsphere core material of a typical MIP consists of hollow glass bubbles, which have a combination of advantageous mechanical, chemical, and thermal-insulation properties heretofore available only separately in different materials. In particular, a core filling of glass microspheres has high crush strength and low density, is noncombustible, and performs well in soft vacuum.

  13. Electronic evidence of an insulator-superconductor crossover in single-layer FeSe/SrTiO3 films.

    PubMed

    He, Junfeng; Liu, Xu; Zhang, Wenhao; Zhao, Lin; Liu, Defa; He, Shaolong; Mou, Daixiang; Li, Fangsen; Tang, Chenjia; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2014-12-30

    In high-temperature cuprate superconductors, it is now generally agreed that superconductivity is realized by doping an antiferromagnetic Mott (charge transfer) insulator. The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic bad metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. No evidence of doping-induced insulator-superconductor transition (or crossover) has been reported in the iron-based compounds so far. Here, we report an electronic evidence of an insulator-superconductor crossover observed in the single-layer FeSe film grown on a SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with increasing carrier concentration. In particular, the insulator-superconductor crossover in FeSe/SrTiO3 film exhibits similar behaviors to that observed in the cuprate superconductors. Our results suggest that the observed insulator-superconductor crossover may be associated with the two-dimensionality that enhances electron localization or correlation. The reduced dimensionality and the interfacial effect provide a new pathway in searching for new phenomena and novel superconductors with a high transition temperature.

  14. Polyimide/Glass Composite High-Temperature Insulation

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Vasquez, Peter; Chatlin, Richard L.; Smith, Donald L.; Skalski, Thomas J.; Johnson, Gary S.; Chu, Sang-Hyon

    2009-01-01

    Lightweight composites of RP46 polyimide and glass fibers have been found to be useful as extraordinarily fire-resistant electrical-insulation materials. RP46 is a polyimide of the polymerization of monomeric reactants (PMR) type, developed by NASA Langley Research Center. RP46 has properties that make it attractive for use in electrical insulation at high temperatures. These properties include high-temperature resistance, low relative permittivity, low dissipation factor, outstanding mechanical properties, and excellent resistance to moisture and chemicals. Moreover, RP46 contains no halogen or other toxic materials and when burned it does not produce toxic fume or gaseous materials. The U. S. Navy has been seeking lightweight, high-temperature-resistant electrical-insulation materials in a program directed toward reducing fire hazards and weights in ship electrical systems. To satisfy the requirements of this program, an electrical-insulation material must withstand a 3-hour gas-flame test at 1,600 F (about 871 C). Prior to the development reported here, RP46 was rated for use at temperatures from -150 to +700 F (about -101 to 371 C), and no polymeric product - not even RP46 - was expected to withstand the Navy 3-hour gas-flame test.

  15. A new concept of a vacuum insulation tandem accelerator.

    PubMed

    Sorokin, I; Taskaev, S

    2015-12-01

    A tandem accelerator with vacuum insulation has been proposed and developed in the Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1 MV potential of the high voltage electrode, converted into protons in the gas stripping target inside the electrode, and then the protons are accelerated again by the same potential. The potential for high voltage and intermediate electrodes is supplied by the sectioned rectifier through a sectioned bushing insulator with a resistive divider. In this work, we propose a radical improvement of the accelerator concept. It is proposed to abandon the separate placement of the accelerator and the power supply and connect them through the bushing insulator. The source of high voltage is proposed to be located inside the accelerator insulator with high voltage and intermediate electrodes mounted on it. This will reduce the facility height from 7 m to 3m and make it really compact and attractive for placing in a clinic. This will significantly increase the stability of the accelerator because the potential for intermediate electrodes can be fed directly from the relevant sections of the rectifier. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Spontaneously formed high-performance charge-transport layers of organic single-crystal semiconductors on precisely synthesized insulating polymers

    NASA Astrophysics Data System (ADS)

    Makita, Tatsuyuki; Sasaki, Masayuki; Annaka, Tatsuro; Sasaki, Mari; Matsui, Hiroyuki; Mitsui, Chikahiko; Kumagai, Shohei; Watanabe, Shun; Hayakawa, Teruaki; Okamoto, Toshihiro; Takeya, Jun

    2017-04-01

    Charge-transporting semiconductor layers with high carrier mobility and low trap-density, desired for high-performance organic transistors, are spontaneously formed as a result of thermodynamic phase separation from a blend of π-conjugated small molecules and precisely synthesized insulating polymers dissolved in an aromatic solvent. A crystal film grows continuously to the size of centimeters, with the critical conditions of temperature, concentrations, and atmosphere. It turns out that the molecular weight of the insulating polymers plays an essential role in stable film growth and interfacial homogeneity at the phase separation boundary. Fabricating the transistor devices directly at the semiconductor-insulator boundaries, we demonstrate that the mixture of 3,11-didecyldinaphtho[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene and poly(methyl methacrylate) with the optimized weight-average molecular weight shows excellent device performances. The spontaneous phase separation with a one-step fabrication process leads to a high mobility up to 10 cm2 V-1 s-1 and a low subthreshold swing of 0.25 V dec-1 even without any surface treatment such as self-assembled monolayer modifications on oxide gate insulators.

  17. Quantum metallicity on the high-field side of the superconductor-insulator transition.

    PubMed

    Baturina, T I; Strunk, C; Baklanov, M R; Satta, A

    2007-03-23

    We investigate ultrathin superconducting TiN films, which are very close to the localization threshold. Perpendicular magnetic field drives the films from the superconducting to an insulating state, with very high resistance. Further increase of the magnetic field leads to an exponential decay of the resistance towards a finite value. In the limit of low temperatures, the saturation value can be very accurately extrapolated to the universal quantum resistance h/e2. Our analysis suggests that at high magnetic fields a new ground state, distinct from the normal metallic state occurring above the superconducting transition temperature, is formed. A comparison with other studies on different materials indicates that the quantum metallic phase following the magnetic-field-induced insulating phase is a generic property of systems close to the disorder-driven superconductor-insulator transition.

  18. Global field synchronization in gamma range of the sleep EEG tracks sleep depth: Artifact introduced by a rectangular analysis window.

    PubMed

    Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila

    2017-06-01

    Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. High-temperature, high-pressure optical port for rocket engine applications

    NASA Technical Reports Server (NTRS)

    Delcher, Ray; Nemeth, ED; Powers, W. T.

    1993-01-01

    This paper discusses the design, fabrication, and test of a window assembly for instrumentation of liquid-fueled rocket engine hot gas systems. The window was designed to allow optical measurements of hot gas in the SSME fuel preburner and appears to be the first window designed for application in a rocket engine hot gas system. Such a window could allow the use of a number of remote optical measurement technologies including: Raman temperature and species concentration measurement, Raleigh temperature measurements, flame emission monitoring, flow mapping, laser-induced florescence, and hardware imaging during engine operation. The window assembly has been successfully tested to 8,000 psi at 1000 F and over 11,000 psi at room temperature. A computer stress analysis shows the window will withstand high temperature and cryogenic thermal shock.

  20. Determining localized garment insulation values from manikin studies: computational method and results.

    PubMed

    Nelson, D A; Curlee, J S; Curran, A R; Ziriax, J M; Mason, P A

    2005-12-01

    The localized thermal insulation value expresses a garment's thermal resistance over the region which is covered by the garment, rather than over the entire surface of a subject or manikin. The determination of localized garment insulation values is critical to the development of high-resolution models of sensible heat exchange. A method is presented for determining and validating localized garment insulation values, based on whole-body insulation values (clo units) and using computer-aided design and thermal analysis software. Localized insulation values are presented for a catalog consisting of 106 garments and verified using computer-generated models. The values presented are suitable for use on volume element-based or surface element-based models of heat transfer involving clothed subjects.

  1. Device Performance and Reliability Improvements of AlGaBN/GaN/Si MOSFET

    DTIC Science & Technology

    2016-02-04

    Metal insulator semiconductor AlGaN /GaN high electron mobility transistors (MISHEMTs) are promising for power device applications due to a lower leakage...current than the conventional Schottky AlGaN/GaN HEMTs.1–3 Among a large number of insulator materials, an Al2O3 dielectric layer, deposited by...atomic layer deposition (ALD), is often employed as the gate insulator because of a large band gap (and the resultant high conduction band offset on

  2. KSC-08pd1920

    NASA Image and Video Library

    2008-07-10

    CAPE CANAVERAL, Fla. – In the Tile Shop at NASA's Kennedy Space Center, shelves are stacked with Boeing Rigid Insulation-18, or BRI-18, tiles. BRI-18 is the strongest material used for thermal insulation on the orbiters and, when coated to produce toughened unipiece fibrous insulation, provides a tile with extremely high-impact resistance. It is replacing tiles on areas of the vehicle where impact risk is high. These areas include the landing gear doors, the wing leading edge and the external tank doors. Photo credit: NASA/Jim Grossmann

  3. KSC-08pd1919

    NASA Image and Video Library

    2008-07-10

    CAPE CANAVERAL, Fla. – In the Tile Shop at NASA's Kennedy Space Center, shelves are stacked with Boeing Rigid Insulation-18, or BRI-18, tiles. BRI-18 is the strongest material used for thermal insulation on the orbiters and, when coated to produce toughened unipiece fibrous insulation, provides a tile with extremely high-impact resistance. It is replacing tiles on areas of the vehicle where impact risk is high. These areas include the landing gear doors, the wing leading edge and the external tank doors. Photo credit: NASA/Jim Grossmann

  4. Ultra High Voltage Propellant Isolators and Insulators for JIMO Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Gaier, James R.; Hung, Ching-Cheh; Walters, Patty A.; Sechkar, Ed; Panko, Scott; Kamiotis, Christina A.

    2004-01-01

    Within NASA's Project Prometheus, high specific impulse ion thrusters for electric propulsion of spacecraft for the proposed Jupiter Icy Moon Orbiter (JIMO) mission to three of Jupiter's moons: Callisto, Ganymede and Europa will require high voltage operation to meet mission propulsion. The anticipated approx.6,500 volt net ion energy will require electrical insulation and propellant isolation which must exceed that used successfully by the NASA Solar Electric Propulsion Technology Readiness (NSTAR) Deep Space 1 mission thruster by a factor of approx.6. Xenon propellant isolator prototypes that operate at near one atmosphere and prototypes that operate at low pressures (<100 Torr) have been designed and are being tested for suitability to the JIMO mission requirements. Propellant isolators must be durable to Paschen breakdown, sputter contamination, high temperature, and high voltage while operating for factors longer duration than for the Deep Space 1 Mission. Insulators used to mount the thrusters as well as those needed to support the ion optics have also been designed and are under evaluation. Isolator and insulator concepts, design issues, design guidelines, fabrication considerations and performance issues are presented. The objective of the investigation was to identify candidate isolators and insulators that are sufficiently robust to perform durably and reliably during the proposed JIMO mission.

  5. Low-Cost Bio-Based Carbon Fibers for High Temperature Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Ryan Michael; Naskar, Amit

    GrafTech International Holdings Inc. (GTI), under Award No. DE-EE0005779, worked with Oak Ridge National Laboratory (ORNL) under CRADA No. NFE-15-05807 to develop lignin-based carbon fiber (LBCF) technology and to demonstrate LBCF performance in high-temperature products and applications. This work was unique and different from other reported LBCF work in that this study was application-focused and scalability-focused. Accordingly, the executed work was based on meeting criteria based on technology development, cost, and application suitability. High-temperature carbon fiber based insulation is used in energy intensive industries, such as metal heat treating and ceramic and semiconductor material production. Insulation plays a critical rolemore » in achieving high thermal and process efficiency, which is directly related to energy usage, cost, and product competitiveness. Current high temperature insulation is made with petroleum based carbon fibers, and one goal of this protect was to develop and demonstrate an alternative lignin (biomass) based carbon fiber that would achieve lower cost, CO2 emissions, and energy consumption and result in insulation that met or exceeded the thermal efficiency of current commercial insulation. In addition, other products were targeted to be evaluated with LBCF. As the project was designed to proceed in stages, the initial focus of this work was to demonstrate lab-scale LBCF from at least 4 different lignin precursor feedstock sources that could meet the estimated production cost of $5.00/pound and have ash level of less than 500 ppm in the carbonized insulation-grade fiber. Accordingly, a preliminary cost model was developed based on publicly available information. The team demonstrated that 4 lignin samples met the cost criteria. In addition, the ash level for the 4 carbonized lignin samples was below 500 ppm. Processing as-received lignin to produce a high purity lignin fiber was a significant accomplishment in that most industrial lignin, prior to purification, had greater than 4X the ash level needed for this project, and prior to this work there was not a clear path of how to achieve the purity target. The lab scale development of LBCF was performed with a specific functional application in mind, specifically for high temperature rigid insulation. GTI is a consumer of foreign-sourced pitch and rayon based carbon fibers for use in its high temperature insulation products, and the motivation was that LBCF had potential to decrease costs and increase product competitiveness in the marketplace through lowered raw material costs, lowered energy costs, and decreased environmental footprint. At the end of this project, the Technology Readiness Level (TRL) remained at 5 for LBCF in high temperature insulation.« less

  6. Electrochemically Induced Insulator-Metal-Insulator Transformations of Vanadium Dioxide Nanocrystal Films

    NASA Astrophysics Data System (ADS)

    Milliron, Delia; Dahlman, Clayton; Leblanc, Gabriel; Bergerud, Amy

    Vanadium dioxide (VO2) undergoes significant optical, electronic, and structural changes as it transforms between the low-temperature monoclinic and high-temperature rutile phases. The low-temperature state is insulating and transparent, while the high-temperature state is metallic and IR blocking. Alternative stimuli have been utilized to trigger insulator-to-metal transformations in VO2, including electrochemical gating. Here, VO2 nanocrystal films have been prepared by solution deposition of V2O3 nanocrystals followed by oxidative annealing. Nanocrystalline VO2 films are electrochemically reduced, inducing changes in their electronic and optical properties. We observe a reversible transition between infrared transparent insulating phases and a darkened metallic phase by in situ visible-near-infrared spectroelectrochemistry and correlate these observations with structural and electronic changes monitored by X-ray absorption spectroscopy, X-ray diffraction, Raman spectroscopy, and conductivity measurements. Reduction causes an initial transformation to a metallic, IR-colored distorted monoclinic phase. However, an unexpected reversible transition from conductive, reduced monoclinic VO2 to an infrared-transparent insulating phase is observed upon further reduction.

  7. Visualization of a stable intermediate phase in photoinduced metal-to-insulator transition in manganites

    NASA Astrophysics Data System (ADS)

    Lin, Hanxuan; Liu, Hao; Bai, Yu; Miao, Tian; Yu, Yang; Zhu, Yinyan; Chen, Hongyan; Kou, Yunfang; Niu, Jiebin; Wang, Wenbin; Yin, Lifeng; Shen, Jian

    First order metal-insulator transition, accounting for various intriguing phenomena, is one of the most important phase transitions in condensed matter systems. Aside from the initial and final states, i.e. the metallic and insulating phases, no stable intermediate phase has been experimentally identified in such first order phase transition, though some transient phases do exist at the ultrafast time scale. Here, using our unique low-temperature, high-field magnetic force microscopy with photoexcitation, we directly observed a stable intermediate phase emerging and mediating the photoinduced first order metal-insulator transition in manganites. This phase is characteristic of low net magnetization and high resistivity. Our observations unveil the microscopic details of the photoinduced metal-insulator transition in manganites, which may be insightful to study first order metal-insulator transition in other condensed matter systems. This work was supported by National Key Research Program of China (2016YFA0300702), National Basic Research Program of China (973 Program) under the Grant No. 2013CB932901 and 2014CB921104; National Natural Science Foundation of China (11274071, 11504053).

  8. A General Strategy to Achieve Colossal Permittivity and Low Dielectric Loss Through Constructing Insulator/Semiconductor/Insulator Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Sun, Yalong; Zheng, Fengang; Tse, Mei-Yan; Sun, Qingbo; Liu, Yun; Hao, Jianhua

    2018-06-01

    In this work, we propose a route to realize high-performance colossal permittivity (CP) by creating multilayer structures of insulator/semiconductor/insulator. To prove the new concept, we made heavily reduced rutile TiO2 via annealing route in Ar/H2 atmosphere. Dielectric studies show that the maximum dielectric permittivity ( 3.0 × 104) of our prepared samples is about 100 times higher than that ( 300) of conventional TiO2. The minimum dielectric loss is 0.03 (at 104-105 Hz). Furthermore, CP is almost independent of the frequency (100-106 Hz) and the temperature (20-350 K). We suggest that the colossal permittivity is attributed to the high carrier concentration of the inner TiO2 semiconductor, while the low dielectric loss is due to the presentation of the insulator layer on the surface of TiO2. The method proposed here can be expanded to other material systems, such as semiconductor Si sandwiched by top and bottom insulator layers of Ga2O3.

  9. Roles of subcutaneous fat and thermoregulatory reflexes in determining ability to stabilize body temperature in water.

    PubMed Central

    Hayward, M G; Keatinge, W R

    1981-01-01

    1. The lowest water temperature in which different young adults could stabilize body temperature was found to vary from 32 degrees C to less than 12 degrees C, because of large differences in both total body insulation and metabolic heat production. 2. Total body insulation per unit surface area, in the coldest water allowing stability, was quite closely determined by mean subcutaneous fat thickness measured ultrasonically (r = 0.92), regardless of differences in distribution of this fat between men and women. 3. Reactive individuals developed high metabolic rates, and often rather high insulations in relation to fat thickness, which enabled them to stabilize their body temperatures in water more than 10 degrees C colder than was possible for less reactive individuals of similar fat thickness. 4. Measurements of heat flux, after stabilization in the coldest water possible, showed that the trunk was the main site of heat loss and that over half of the internal insulation there could be accounted for by subcutaneous fat; by contrast, fat could account for less than a third of higher insulations found in muscular parts of the limbs, and for less than 3% of very high insulations in the hands and feet. 5. After stabilization of body temperature at rest in the coldest possible water, exercise reduced internal insulation only in muscular parts of the limbs. Exercise also increased heat loss elsewhere by exposing skin of protected regions such as flexural surfaces of joints. During exercise total heat production increased rather more than heat loss in unreactive subjects, but less than loss in subjects whose heat production had already risen to a high level when they were at rest in cold water. 6. In warm (37 degrees C) water, tissue insulations were lower and much more uniform between subjects and between different body regions than in the cold. Even in the warm, however, insulations remained rather higher in fat than thin subjects, higher at rest than during exercise, and usually higher in the limbs than the upper trunk. PMID:7320937

  10. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  11. Composite flexible insulation for thermal protection of space vehicles

    NASA Astrophysics Data System (ADS)

    Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda

    1992-09-01

    A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the Aeroassist Space Transfer Vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this system are also described. Analytical modeling describing the thermal performance of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.

  12. Reducing DNA context dependence in bacterial promoters

    PubMed Central

    Carr, Swati B.; Densmore, Douglas M.

    2017-01-01

    Variation in the DNA sequence upstream of bacterial promoters is known to affect the expression levels of the products they regulate, sometimes dramatically. While neutral synthetic insulator sequences have been found to buffer promoters from upstream DNA context, there are no established methods for designing effective insulator sequences with predictable effects on expression levels. We address this problem with Degenerate Insulation Screening (DIS), a novel method based on a randomized 36-nucleotide insulator library and a simple, high-throughput, flow-cytometry-based screen that randomly samples from a library of 436 potential insulated promoters. The results of this screen can then be compared against a reference uninsulated device to select a set of insulated promoters providing a precise level of expression. We verify this method by insulating the constitutive, inducible, and repressible promotors of a four transcriptional-unit inverter (NOT-gate) circuit, finding both that order dependence is largely eliminated by insulation and that circuit performance is also significantly improved, with a 5.8-fold mean improvement in on/off ratio. PMID:28422998

  13. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.

    PubMed

    Magyari-Köpe, Blanka; Tendulkar, Mihir; Park, Seong-Geon; Lee, Hyung Dong; Nishi, Yoshio

    2011-06-24

    Resistance change random access memory (RRAM) cells, typically built as MIM capacitor structures, consist of insulating layers I sandwiched between metal layers M, where the insulator performs the resistance switching operation. These devices can be electrically switched between two or more stable resistance states at a speed of nanoseconds, with long retention times, high switching endurance, low read voltage, and large switching windows. They are attractive candidates for next-generation non-volatile memory, particularly as a flash successor, as the material properties can be scaled to the nanometer regime. Several resistance switching models have been suggested so far for transition metal oxide based devices, such as charge trapping, conductive filament formation, Schottky barrier modulation, and electrochemical migration of point defects. The underlying fundamental principles of the switching mechanism still lack a detailed understanding, i.e. how to control and modulate the electrical characteristics of devices incorporating defects and impurities, such as oxygen vacancies, metal interstitials, hydrogen, and other metallic atoms acting as dopants. In this paper, state of the art ab initio theoretical methods are employed to understand the effects that filamentary types of stable oxygen vacancy configurations in TiO(2) and NiO have on the electronic conduction. It is shown that strong electronic interactions between metal ions adjacent to oxygen vacancy sites results in the formation of a conductive path and thus can explain the 'ON' site conduction in these materials. Implication of hydrogen doping on electroforming is discussed for Pr(0.7)Ca(0.3)MnO(3) devices based on electrical characterization and FTIR measurements.

  14. Silicon carbide sewing thread

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor)

    1995-01-01

    Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems provide lightweight thermal insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.

  15. Lightweight, Thermally Insulating Structural Panels

    NASA Technical Reports Server (NTRS)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  16. Flexible thermal protection materials for entry systems

    NASA Astrophysics Data System (ADS)

    Kourtides, Demetrius A.

    1993-02-01

    Current programs addressed in aeroassist flight experiment are: (1) evaluation of thermal performance of advanced rigid and flexible insulations and reflective coating; (2) investigation of lighter than baseline materials; (3) investigation of rigid insulations which perform well; (4) study of flexible insulations which require ceramic coating; and (5) study of reflective coating effective at greater than 15 percent. In National Aerospace Plane (NASP), the programs addressed are: (1) high and low temperature insulations; and (2) attachment/standoff methodology critical which affects thermal performance.

  17. Quantum cascade lasers with Y2O3 insulation layer operating at 8.1 µm.

    PubMed

    Kang, JoonHyun; Yang, Hyun-Duk; Joo, Beom Soo; Park, Joon-Suh; Lee, Song-Ee; Jeong, Shinyoung; Kyhm, Jihoon; Han, Moonsup; Song, Jin Dong; Han, Il Ki

    2017-08-07

    SiO 2 is a commonly used insulation layer for QCLs but has high absorption peak around 8 to 10 µm. Instead of SiO 2 , we used Y 2 O 3 as an insulation layer for DC-QCL and successfully demonstrated lasing operation at the wavelength around 8.1 µm. We also showed 2D numerical analysis on the absorption coefficient of our DC-QCL structure with various parameters such as insulating materials, waveguide width, and mesa angle.

  18. Flexible thermal protection materials for entry systems

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1993-01-01

    Current programs addressed in aeroassist flight experiment are: (1) evaluation of thermal performance of advanced rigid and flexible insulations and reflective coating; (2) investigation of lighter than baseline materials; (3) investigation of rigid insulations which perform well; (4) study of flexible insulations which require ceramic coating; and (5) study of reflective coating effective at greater than 15 percent. In National Aerospace Plane (NASP), the programs addressed are: (1) high and low temperature insulations; and (2) attachment/standoff methodology critical which affects thermal performance.

  19. Electrochemical removal of material from metallic work

    DOEpatents

    Csakvary, Tibor; Fromson, Robert E.

    1980-05-13

    Deburring, polishing, surface forming and the like are carried out by electrochemical machining with conformable electrode means including an electrically conducting and an insulating web. The surface of the work to be processed is covered by a deformable electrically insulating web or cloth which is perforated and conforms with the work. The web is covered by a deformable perforated electrically conducting screen electrode which also conforms with, and is insulated from, the work by the insulating web. An electrolyte is conducted through the electrode and insulating web and along the work through a perforated elastic member which engages the electrode under pressure pressing the electrode and web against the work. High current under low voltage is conducted betwen the electrode and work through the insulator, removing material from the work. Under the pressure of the elastic member, the electrode and insulator continue to conform with the work and the spacing between the electrode and work is maintained constant.

  20. Insulation Progress since the Mid-1950s

    NASA Astrophysics Data System (ADS)

    Timmerhaus, K. D.

    Storage vessel and cryostat design for modern cryogenic systems has become rather routine as the result of the wide use of and application of cryogenic fluids. Such vessels for these fluids range in size from 1 L flasks used in the laboratory for liquid nitrogen to the more than 200,000 m3 double-walled tanks used for temporary storage of liquefied natural gas before being transported overseas to their final destination. These storage vessels for cryogenic fluids range in type from low-performance containers insulated with rigid foam or fibrous insulation to high-performance containers insulated with evacuated multilayer insulations. The overriding factors in the type of container selected normally are of economics and safety. This paper will consider various insulation concepts used in such cryogenic storage systems and will review the progress that has been made over the past 50 years in these insulation systems.

  1. Surface structural changes of naturally aged silicone and EPDM composite insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlastos, A.E.; Gubanski, S.M.

    1991-04-01

    In a long-term outdoor test with high direct and alternating voltages, silicone and EPDM rubber composite insulators have, at the beginning, shown a superior performance to that of glass and porcelain insulators. In the long-term test, however, the silicone rubber composite insulator has, in spite of the ageing of both insulator types, kept its good performance, while the performance of the EPDM rubber composite insulator was drastically deteriorated. In order to get a better insight into results obtained, the wettability and the surface structural changes of the insulators were studied by the drop deposition method (using a goniometer) and bymore » advanced techniques such as SEM, ESCA, FTIR and SIMS respectively. The results show that the differences in performance have to be found in the differences in the surface structural changes and in the dynamic ability of the surface to compensate the ageing.« less

  2. Determination of Hydrophobic Contact Angle of Epoxy Resin Compound Silicon Rubber and Silica

    NASA Astrophysics Data System (ADS)

    Syakur, Abdul; Hermawan; Sutanto, Heri

    2017-04-01

    Epoxy resin is a thermosetting polymeric material which is very good for application of high voltage outdoor insulator in electrical power system. This material has several advantages, i.e. high dielectric strength, light weight, high mechanical strength, easy to blend with additive, and easy maintenance if compared to that of porcelain and glass outdoor insulators which are commonly used. However, this material also has several disadvantages, i.e. hydrophilic property, very sensitive to aging and easily degraded when there is a flow of contaminants on its surface. The research towards improving the performance of epoxy resin insulation materials were carried out to obtain epoxy resin insulating material with high water repellent properties and high surface tracking to aging. In this work, insulating material was made at room temperature vulcanization, with material composition: Diglycidyl Ether Bisphenol A (DGEBA), Metaphenylene Diamine (MPDA) as hardener with stoichiometric value of unity, and nanosilica mixed with Silicon Rubber (SiR) with 10% (RTV21), 20% (RTV22), 30% (RTV23), 40% (RTV24) and 50% (RTV25) variation. The usage of nanosilica and Silicon Rubber (SIR) as filler was expected to provide hydrophobic properties and was able to increase the value of surface tracking of materials. The performance of the insulator observed were contact angle of hydrophobic surface materials. Tests carried out using Inclined Plane Tracking procedure according to IEC 60-587: 1984 with Ammonium Chloride (NH4Cl) as contaminants flowed using peristaltic pumps. The results show that hydrophobic contact angle can be determined from each sample, and RTV25 has maximum contact angle among others.

  3. Sensitivity of dual-wall structures under hypervelocity impact to multi-layer thermal insulation thickness and placement

    NASA Astrophysics Data System (ADS)

    Schonberg, William P.

    1993-04-01

    Results are presented from an experimental study in which Al dual-wall structures were tested, under various high-speed impact conditions, with a view to the effect of multilayer insulation thickness and location on perforation resistance. Attention is given to comparisons of the damage sustained by dual-wall systems with multilayer insulation blankets of various thicknesses and at various locations within the dual-wall system, under comparable impact loading conditions. The placement of the insulation has a significant effect on the ballistic limit of the dual-wall structures considered, while reducing insulation thickness by as much as a third did not.

  4. Reusable Surface Insulation Tile Thermal Protection Materials: Past, Present and the Future

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Stewart, David A.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    Silica (LI-900) Reusable Surface Insulation (RSI) tile have been used on the majority of the Shuttle since its initial flight. Its overall performance with Reaction Cured Glass (RCG) coating applied will be reviewed. Improvements in insulations, Fibrous Refractory Composite Insulation (FRCI-12) and Alumina Enhanced Thermal Barrier (AETB-8) and coatings/surface treatments such as Toughened Uni-Piece Fibrous Insulation (TUFI) have been developed and successfully applied. The performance of these enhancements on the Shuttle Orbiters over the past few years along with the next version of tile materials, High Efficiency Tantalum-based Ceramic (HETC) with even broader applicability will also be discussed.

  5. High-Temperature Optical Window Design

    NASA Technical Reports Server (NTRS)

    Roeloffs, Norman; Taranto, Nick

    1995-01-01

    A high-temperature optical window is essential to the optical diagnostics of high-temperature combustion rigs. Laser Doppler velocimetry, schlieren photography, light sheet visualization, and laser-induced fluorescence spectroscopy are a few of the tests that require optically clear access to the combustor flow stream. A design was developed for a high-temperature window that could withstand the severe environment of the NASA Lewis 3200 F Lean Premixed Prevaporized (LPP) Flame Tube Test Rig. The development of this design was both time consuming and costly. This report documents the design process and the lessons learned, in an effort to reduce the cost of developing future designs for high-temperature optical windows.

  6. Cryogenic Insulation System for Soft Vacuum

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.

    1999-01-01

    The development of a cryogenic insulation system for operation under soft vacuum is presented in this paper. Conventional insulation materials for cryogenic applications can be divided into three levels of thermal performance, in terms of apparent thermal conductivity [k-value in milliwatt per meter-kelvin (mW/m-K)]. System k-values below 0.1 can be achieved for multilayer insulation operating at a vacuum level below 1 x 10(exp -4) torr. For fiberglass or powder operating below 1 x 10(exp -3) torr, k-values of about 2 are obtained. For foam and other materials at ambient pressure, k-values around 30 are typical. New industry and aerospace applications require a versatile, robust, low-cost thermal insulation with performance in the intermediate range. The target for the new composite insulation system is a k-value below 4.8 mW/m-K (R-30) at a soft vacuum level (from 1 to 10 torr) and boundary temperatures of approximately 77 and 293 kelvin (K). Many combinations of radiation shields, spacers, and composite materials were tested from high vacuum to ambient pressure using cryostat boiloff methods. Significant improvement over conventional systems in the soft vacuum range was demonstrated. The new layered composite insulation system was also shown to provide key benefits for high vacuum applications as well.

  7. Fault location method for unexposed gas trunk line insulation at stray current constant effect area

    NASA Astrophysics Data System (ADS)

    Tsenev, A. N.; Nosov, V. V.; Akimova, E. V.

    2017-10-01

    For the purpose of gas trunk lines safe operation, two types of pipe wall metal anticorrosion protection are generally used - the passive (insulation coating) protection and the active (electrochemical) protection. In the process of a pipeline long-term operation, its insulation is subject to wear and damage. Electrochemical protection means of a certain potential value prevent metal dissolution in the soil. When insulation wear and tear attains a level of insufficiency of the protection potential value, the insulating coating needs repair which is a labor-consuming procedure. To reduce the risk of such situation, it is necessary to make inspection rounds to monitor the condition of pipe insulation. A method for pipeline insulation coating unexposed fault location based on Pearson method is considered, wherein a working cathodic protection station signal of 100 Hz frequency is used, which makes installation of a generator unnecessary, and also a specific generator signal of 1 kHz frequency is used at high noise immunity and sensitivity of the instrument complex. This method enables detection and sizing of unexposed pipeline defects within the zones of earth current permanent action. High noise immunity of selective indicators allows for operation in proximity to 110 kV, 220 kV, and 500 kV power transmission lines in action.

  8. High Performance Slab-on-Grade Foundation Insulation Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Louise F.; Mosiman, Garrett E.

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulationmore » at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.« less

  9. Nature of the superconductor-insulator transition in disordered superconductors.

    PubMed

    Dubi, Yonatan; Meir, Yigal; Avishai, Yshai

    2007-10-18

    The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-T(c)) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor-insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor-insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of 'the pseudogap phenomenon' in underdoped high-T(c) superconductors.

  10. Efficient thermoelectric device

    NASA Technical Reports Server (NTRS)

    Ila, Daryush (Inventor)

    2010-01-01

    A high efficiency thermo electric device comprising a multi nanolayer structure of alternating insulator and insulator/metal material that is irradiated across the plane of the layer structure with ionizing radiation. The ionizing radiation produces nanocrystals in the layered structure that increase the electrical conductivity and decrease the thermal conductivity thereby increasing the thermoelectric figure of merit. Figures of merit as high as 2.5 have been achieved using layers of co-deposited gold and silicon dioxide interspersed with layers of silicon dioxide. The gold to silicon dioxide ratio was 0.04. 5 MeV silicon ions were used to irradiate the structure. Other metals and insulators may be substituted. Other ionizing radiation sources may be used. The structure tolerates a wide range of metal to insulator ratio.

  11. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose

    PubMed Central

    Li, Tian; Song, Jianwei; Zhao, Xinpeng; Yang, Zhi; Pastel, Glenn; Xu, Shaomao; Jia, Chao; Dai, Jiaqi; Chen, Chaoji; Gong, Amy; Jiang, Feng; Yao, Yonggang; Fan, Tianzhu; Yang, Bao; Wågberg, Lars; Yang, Ronggui; Hu, Liangbing

    2018-01-01

    There has been a growing interest in thermal management materials due to the prevailing energy challenges and unfulfilled needs for thermal insulation applications. We demonstrate the exceptional thermal management capabilities of a large-scale, hierarchal alignment of cellulose nanofibrils directly fabricated from wood, hereafter referred to as nanowood. Nanowood exhibits anisotropic thermal properties with an extremely low thermal conductivity of 0.03 W/m·K in the transverse direction (perpendicular to the nanofibrils) and approximately two times higher thermal conductivity of 0.06 W/m·K in the axial direction due to the hierarchically aligned nanofibrils within the highly porous backbone. The anisotropy of the thermal conductivity enables efficient thermal dissipation along the axial direction, thereby preventing local overheating on the illuminated side while yielding improved thermal insulation along the backside that cannot be obtained with isotropic thermal insulators. The nanowood also shows a low emissivity of <5% over the solar spectrum with the ability to effectively reflect solar thermal energy. Moreover, the nanowood is lightweight yet strong, owing to the effective bonding between the aligned cellulose nanofibrils with a high compressive strength of 13 MPa in the axial direction and 20 MPa in the transverse direction at 75% strain, which exceeds other thermal insulation materials, such as silica and polymer aerogels, Styrofoam, and wool. The excellent thermal management, abundance, biodegradability, high mechanical strength, low mass density, and manufacturing scalability of the nanowood make this material highly attractive for practical thermal insulation applications. PMID:29536048

  12. Characteristics of corona impulses from insulated wires subjected to high ac voltages

    NASA Technical Reports Server (NTRS)

    Doreswamy, C. V.; Crowell, C. S.

    1976-01-01

    Corona discharges arise due to ionization of air or gas subject to high electric fields. The free electrons and ions contained in these discharges interact with molecules of insulating materials, resulting in chemical changes and destroying the electrical insulating properties. The paper describes some results of measurements aimed at determining corona pulse waveforms, their repetition rate, and amplitude distribution during various randomly-sampled identical time periods of a 60-Hz high-voltage wave. Described are properties of positive and negative corona impulses generated from typical conductors at various test high voltages. A possible method for calculating the energies, densities, and electromagnetic interferences by making use of these results is suggested.

  13. Fourth near-infrared optical window for assessment of bone and other tissues

    NASA Astrophysics Data System (ADS)

    Sordillo, Diana C.; Sordillo, Laura A.; Sordillo, Peter P.; Alfano, Robert R.

    2016-02-01

    Recently, additional near-infrared (NIR) optical windows beyond the conventional first therapeutic window have been utilized for deep tissue imaging through scattering media. Biomedical applications using a second optical window (1100 to 1300 nm) and a third (1600 to 1870 nm) are emerging. A fourth window (2100 to 2300 nm) has been largely ignored due to high water absorption and a lack of high sensitivity imaging detectors and ultrafast laser sources. In this study, optical properties of bone in this fourth NIR optical window, were investigated. Results were compared to those seen at the first, second and third windows, and are consistent with our previous work on malignant and benign breast and prostate tissues. Bone and malignant tissues showed highest uptake in the third and fourth windows. As collagen is a major chromophore with prominent spectral peaks between 2100 and 2300 nm, it may be that the fourth optical window is particularly useful for studying tissues with a higher collagen content, such as bone or malignant tumors.

  14. High temperature structural insulating material

    DOEpatents

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  15. High performance dielectric materials development

    NASA Technical Reports Server (NTRS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-01-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  16. High performance dielectric materials development

    NASA Astrophysics Data System (ADS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-09-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  17. Thickness-dependent phase transition in graphite under high magnetic field

    NASA Astrophysics Data System (ADS)

    Taen, Toshihiro; Uchida, Kazuhito; Osada, Toshihito

    2018-03-01

    Various electronic phases emerge when applying high magnetic fields in graphite. However, the origin of a semimetal-insulator transition at B ≃30 T is still not clear, while an exotic density-wave state is theoretically proposed. In order to identify the electronic state of the insulator phase, we investigate the phase transition in thin-film graphite samples that were fabricated on silicon substrate by a mechanical exfoliation method. The critical magnetic fields of the semimetal-insulator transition in thin-film graphite shift to higher magnetic fields, accompanied by a reduction in temperature dependence. These results can be qualitatively reproduced by a density-wave model by introducing a quantum size effect. Our findings establish the electronic state of the insulator phase as a density-wave state standing along the out-of-plane direction, and help determine the electronic states in other high-magnetic-field phases.

  18. High temperature liquid level sensor

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.

  19. Spark gap switch system with condensable dielectric gas

    DOEpatents

    Thayer, III, William J.

    1991-01-01

    A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

  20. Surface degradation of polymer insulators under accelerated climatic aging in weather-ometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, G.; McGrath, P.B.; Burns, C.W.

    1996-12-31

    Climatic aging experiments were conducted on two types of outdoor polymer insulators by using a programmable weather-ometer. The housing materials for the insulators were silicone rubber (SR) and ethylene propylene diene monomer (EPDM). The accelerated aging stresses were comprised of ultraviolet radiation, elevated temperature, temperature cycling, thermal shock and high humidity. Their effects on the insulator surface conditions and electrical performance wee examined through visual inspection and SEM studies, contact angle measurements, thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS) analysis, and 50% impulse flashover voltage tests. The results showed a significant damage on the insulator surface caused by some ofmore » the imposed aging stresses. The EDS analysis suggested a photooxidation process that happened on the insulator surface during the aging period.« less

Top