Integration mechanisms and hospital efficiency in integrated health care delivery systems.
Wan, Thomas T H; Lin, Blossom Yen-Ju; Ma, Allen
2002-04-01
This study analyzes integration mechanisms that affect system performances measured by indicators of efficiency in integrated delivery systems (IDSs) in the United States. The research question is, do integration mechanisms improve IDSs' efficiency in hospital care? American Hospital Association's Annual Survey (1998) and Dorenfest's Survey on Information Systems in Integrated Healthcare Delivery Systems (1998) were used to conduct the study, using IDS as the unit of analysis. A covariance structure equation model of the effects of system integration mechanisms on IDS performance was formulated and validated by an empirical examination of IDSs. The study sample includes 973 hospital-based integrated health care delivery systems operating in the United States, carried in the list of Dorenfests Survey on Information Systems in Integrated Health care Delivery Systems. The measurement indicators of system integration mechanisms are categorized into six related domains: informatic integration, case management, hybrid physician-hospital integration, forward integration, backward integration, and high tech medical services. The multivariate analysis reveals that integration mechanisms in system operation are positively correlated and positively affect IDSs' efficiency. The six domains of integration mechanisms account for 58.9% of the total variance in hospital performance. The service differentiation strategy such as having more high tech medical services have much stronger influences on efficiency than other integration mechanisms do. The beneficial effects of integration mechanisms have been realized in IDS performance. High efficiency in hospital care can be achieved by employing proper integration strategies in operations.
ESIF Call for High-Impact Integrated Projects | Energy Systems Integration
Integrated Projects As a U.S. Department of Energy user facility, the Energy Systems Integration Facility concepts, tools, and technologies needed to measure, analyze, predict, protect, and control the grid of the Facility | NREL ESIF Call for High-Impact Integrated Projects ESIF Call for High-Impact
Energy Systems High-Pressure Test Laboratory | Energy Systems Integration
Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2007-01-01
Ceramic integration technology has been recognized as an enabling technology for the implementation of advanced ceramic systems in a number of high-temperature applications in aerospace, power generation, nuclear, chemical, and electronic industries. Various ceramic integration technologies (joining, brazing, attachments, repair, etc.) play a role in fabrication and manufacturing of large and complex shaped parts of various functionalities. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Experimental results for bonding and integration of SiC based LDI fuel injector, high conductivity C/C composite based heat rejection system, solid oxide fuel cells system, ultra high temperature ceramics for leading edges, and ceramic composites for thermostructural applications will be presented. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be discussed.
Highly integrated digital engine control system on an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Haering, E. A., Jr.
1984-01-01
The Highly Integrated Digital Electronic Control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine/airframe control systems. This system is being used on the F-15 airplane. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed.
Propagating Molecular Recognition Events through Highly Integrated Sense-Response Chemical Systems
2017-08-01
Propagating Molecular Recognition Events through Highly Integrated Sense-Response Chemical Systems The views, opinions and/or findings contained in...University of California - San Diego Title: Propagating Molecular Recognition Events through Highly Integrated Sense-Response Chemical Systems Report Term...including enzymatic reactions , occurring at the aqueous interfaces of thermotropic LCs show promise as the basis of biomolecular triggers of LC
High-Performance Computing Data Center | Energy Systems Integration
Facility | NREL High-Performance Computing Data Center High-Performance Computing Data Center The Energy Systems Integration Facility's High-Performance Computing Data Center is home to Peregrine -the largest high-performance computing system in the world exclusively dedicated to advancing
Energy Systems Integration Laboratory | Energy Systems Integration Facility
systems test hub includes a Class 1, Division 2 space for performing tests of high-pressure hydrogen Laboratory offers the following capabilities. High-Pressure Hydrogen Systems The high-pressure hydrogen infrastructure. Key Infrastructure Robotic arm; high-pressure hydrogen; natural gas supply; standalone SCADA
Highly integrated digital engine control system on an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Haering, E. A., Jr.
1984-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. This system is being used on the F-15 airplane at the Dryden Flight Research Facility of NASA Ames Research Center. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are being implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed in this paper.
Integrating high levels of variable renewable energy into electric power systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroposki, Benjamin
As more variable renewable energy (VRE) such as wind and solar are integrated into electric power systems, technical challenges arise from the need to maintain the balance between load and generation at all timescales. This paper examines the challenges with integrating ultra-high levels of VRE into electric power system, reviews a range of solutions to these challenges, and provides a description of several examples of ultra-high VRE systems that are in operation today.
Integrating high levels of variable renewable energy into electric power systems
Kroposki, Benjamin
2017-11-17
As more variable renewable energy (VRE) such as wind and solar are integrated into electric power systems, technical challenges arise from the need to maintain the balance between load and generation at all timescales. This paper examines the challenges with integrating ultra-high levels of VRE into electric power system, reviews a range of solutions to these challenges, and provides a description of several examples of ultra-high VRE systems that are in operation today.
Publications | Energy Systems Integration Facility | NREL
100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable timeline. Feeder Voltage Regulation with High-Penetration PV Using Advanced Inverters and a Distribution Integrating High Levels of Variable Renewable Energy into Electric Power Systems, Journal of Modern Power
Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun
2014-01-01
A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046
A High-Power Wireless Charging System Development and Integration for a Toyota RAV4 Electric Vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Seiber, Larry Eugene; White, Cliff P
Several wireless charging methods are underdevelopment or available as an aftermarket option in the light-duty automotive market. However, there are not many studies detailing the vehicle integrations, particularly a complete vehicle integration with higher power levels. This paper presents the development, implementation, and vehicle integration of a high-power (>10 kW) wireless power transfer (WPT)-based electric vehicle (EV) charging system for a Toyota RAV4 vehicle. The power stages of the system are introduced with the design specifications and control systems including the active front-end rectifier with power factor correction (PFC), high frequency power inverter, high frequency isolation transformer, coupling coils, vehiclemore » side full-bridge rectifier and filter, and the vehicle battery. The operating principles of the control, communications, and protection systems are also presented in addition to the alignment and the driver interface system. The physical limitations of the system are also defined that would prevent the system operating at higher levels. The experiments are carried out using the integrated vehicle and the results obtained to demonstrate the system performance including the stage-by-stage efficiencies with matched and interoperable primary and secondary coils.« less
NASA Astrophysics Data System (ADS)
Szydzik, C.; Gavela, A. F.; Roccisano, J.; Herranz de Andrés, S.; Mitchell, A.; Lechuga, L. M.
2016-12-01
We present recent results on the realisation and demonstration of an integrated optofluidic lab-on-a-chip measurement system. The system consists of an integrated on-chip automated microfluidic fluid handling subsystem, coupled with bimodal nano-interferometer waveguide technology, and is applied in the context of detection of antibiotics in seawater. The bimodal waveguide (BMWG) is a highly sensitive label-free biosensor. Integration of complex microfluidic systems with bimodal waveguide technology enables on-chip sample handling and fluid processing capabilities and allows for significant automation of experimental processes. The on-chip fluid-handling subsystem is realised through the integration of pneumatically actuated elastomer pumps and valves, enabling high temporal resolution sample and reagent delivery and facilitating multiplexed detection processes.
Laboratories | Energy Systems Integration Facility | NREL
laboratories to be safely divided into multiple test stand locations (or "capability hubs") to enable Fabrication Laboratory Energy Systems High-Pressure Test Laboratory Energy Systems Integration Laboratory Energy Systems Sensor Laboratory Fuel Cell Development and Test Laboratory High-Performance Computing
Project management techniques for highly integrated programs
NASA Technical Reports Server (NTRS)
Stewart, J. F.; Bauer, C. A.
1983-01-01
The management and control of a representative, highly integrated high-technology project, in the X-29A aircraft flight test project is addressed. The X-29A research aircraft required the development and integration of eight distinct technologies in one aircraft. The project management system developed for the X-29A flight test program focuses on the dynamic interactions and the the intercommunication among components of the system. The insights gained from the new conceptual framework permitted subordination of departments to more functional units of decisionmaking, information processing, and communication networks. These processes were used to develop a project management system for the X-29A around the information flows that minimized the effects inherent in sampled-data systems and exploited the closed-loop multivariable nature of highly integrated projects.
Parallel Architectures and Parallel Algorithms for Integrated Vision Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Choudhary, Alok Nidhi
1989-01-01
Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems.
NASA Technical Reports Server (NTRS)
Thomas, Leann; Utley, Dawn
2006-01-01
While there has been extensive research in defining project organizational structures for traditional projects, little research exists to support high technology government project s organizational structure definition. High-Technology Government projects differ from traditional projects in that they are non-profit, span across Government-Industry organizations, typically require significant integration effort, and are strongly susceptible to a volatile external environment. Systems Integration implementation has been identified as a major contributor to both project success and failure. The literature research bridges program management organizational planning, systems integration, organizational theory, and independent project reports, in order to assess Systems Integration (SI) organizational structure selection for improving the high-technology government project s probability of success. This paper will describe the methodology used to 1) Identify and assess SI organizational structures and their success rate, and 2) Identify key factors to be used in the selection of these SI organizational structures during the acquisition strategy process.
Juhas, Mario; Ajioka, James W
2016-10-05
Escherichia coli K-12 is a frequently used host for a number of synthetic biology and biotechnology applications and chassis for the development of the minimal cell factories. Novel approaches for integrating high molecular weight DNA into the E. coli chromosome would therefore greatly facilitate engineering efforts in this bacterium. We developed a reliable and flexible lambda Red recombinase-based system, which utilizes overlapping DNA fragments for integration of the high molecular weight DNA into the E. coli chromosome. Our chromosomal integration strategy can be used to integrate high molecular weight DNA of variable length into any non-essential locus in the E. coli chromosome. Using this approach we integrated 15 kb DNA encoding sucrose catabolism and lactose metabolism and transport operons into the fliK locus of the flagellar region 3b in the E. coli K12 MG1655 chromosome. Furthermore, with this system we integrated 50 kb of Bacillus subtilis 168 DNA into two target sites in the E. coli K12 MG1655 chromosome. The chromosomal integrations into the fliK locus occurred with high efficiency, inhibited motility, and did not have a negative effect on the growth of E. coli. In addition to the rational design of synthetic biology devices, our high molecular weight DNA chromosomal integration system will facilitate metabolic and genome-scale engineering of E. coli.
Integrated semiconductor-magnetic random access memory system
NASA Technical Reports Server (NTRS)
Katti, Romney R. (Inventor); Blaes, Brent R. (Inventor)
2001-01-01
The present disclosure describes a non-volatile magnetic random access memory (RAM) system having a semiconductor control circuit and a magnetic array element. The integrated magnetic RAM system uses CMOS control circuit to read and write data magnetoresistively. The system provides a fast access, non-volatile, radiation hard, high density RAM for high speed computing.
NASA Technical Reports Server (NTRS)
Deckert, W. H.; Rolls, L. S.
1974-01-01
An integrated propulsion/control system for lift-fan transport aircraft is described. System behavior from full-scale experimental and piloted simulator investigations are reported. The lift-fan transport is a promising concept for short-to-medium haul civil transportation and for other missions. The lift-fan transport concept features high cruise airspeed, favorable ride qualities, small perceived noise footprints, high utilization, transportation system flexibility, and adaptability to VTOL, V/STOL, or STOL configurations. The lift-fan transport has high direct operating costs in comparison to conventional aircraft, primarily because of propulsion system and aircraft low-speed control system installation requirements. An integrated lift-fan propulsion system/aircraft low-speed control system that reduces total propulsion system and control system installation requirements is discussed.
Multifunctional millimeter-wave radar system for helicopter safety
NASA Astrophysics Data System (ADS)
Goshi, Darren S.; Case, Timothy J.; McKitterick, John B.; Bui, Long Q.
2012-06-01
A multi-featured sensor solution has been developed that enhances the operational safety and functionality of small airborne platforms, representing an invaluable stride toward enabling higher-risk, tactical missions. This paper demonstrates results from a recently developed multi-functional sensor system that integrates a high performance millimeter-wave radar front end, an evidence grid-based integration processing scheme, and the incorporation into a 3D Synthetic Vision System (SVS) display. The front end architecture consists of a w-band real-beam scanning radar that generates a high resolution real-time radar map and operates with an adaptable antenna architecture currently configured with an interferometric capability for target height estimation. The raw sensor data is further processed within an evidence grid-based integration functionality that results in high-resolution maps in the region surrounding the platform. Lastly, the accumulated radar results are displayed in a fully rendered 3D SVS environment integrated with local database information to provide the best representation of the surrounding environment. The integrated system concept will be discussed and initial results from an experimental flight test of this developmental system will be presented. Specifically, the forward-looking operation of the system demonstrates the system's ability to produce high precision terrain mapping with obstacle detection and avoidance capability, showcasing the system's versatility in a true operational environment.
HPC AND GRID COMPUTING FOR INTEGRATIVE BIOMEDICAL RESEARCH
Kurc, Tahsin; Hastings, Shannon; Kumar, Vijay; Langella, Stephen; Sharma, Ashish; Pan, Tony; Oster, Scott; Ervin, David; Permar, Justin; Narayanan, Sivaramakrishnan; Gil, Yolanda; Deelman, Ewa; Hall, Mary; Saltz, Joel
2010-01-01
Integrative biomedical research projects query, analyze, and integrate many different data types and make use of datasets obtained from measurements or simulations of structure and function at multiple biological scales. With the increasing availability of high-throughput and high-resolution instruments, the integrative biomedical research imposes many challenging requirements on software middleware systems. In this paper, we look at some of these requirements using example research pattern templates. We then discuss how middleware systems, which incorporate Grid and high-performance computing, could be employed to address the requirements. PMID:20107625
Integrated controls pay-off. [for flight/propulsion aircraft systems
NASA Technical Reports Server (NTRS)
Putnam, Terrill W.; Christiansen, Richard S.
1989-01-01
It is shown that the integration of the propulsion and flight control systems for high performance aircraft can help reduce pilot workload while simultaneously increasing overall aircraft performance. Results of the Highly Integrated Digital Electronic Control (HiDEC) flight research program are presented to demonstrate the emerging payoffs of controls integration. Ways in which the performance of fighter aircraft can be improved through the use of propulsion for primary aircraft control are discussed. Research being conducted by NASA with the F-18 High Angle-of Attack Research Vehicle is described.
Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.
1985-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.
Study on UKF based federal integrated navigation for high dynamic aviation
NASA Astrophysics Data System (ADS)
Zhao, Gang; Shao, Wei; Chen, Kai; Yan, Jie
2011-08-01
High dynamic aircraft is a very attractive new generation vehicles, in which provides near space aviation with large flight envelope both speed and altitude, for example the hypersonic vehicles. The complex flight environments for high dynamic vehicles require high accuracy and stability navigation scheme. Since the conventional Strapdown Inertial Navigation System (SINS) and Global Position System (GPS) federal integrated scheme based on EKF (Extended Kalman Filter) is invalidation in GPS single blackout situation because of high speed flight, a new high precision and stability integrated navigation approach is presented in this paper, in which the SINS, GPS and Celestial Navigation System (CNS) is combined as a federal information fusion configuration based on nonlinear Unscented Kalman Filter (UKF) algorithm. Firstly, the new integrated system state error is modeled. According to this error model, the SINS system is used as the navigation solution mathematic platform. The SINS combine with GPS constitute one error estimation filter subsystem based on UKF to obtain local optimal estimation, and the SINS combine with CNS constitute another error estimation subsystem. A non-reset federated configuration filter based on partial information is proposed to fuse two local optimal estimations to get global optimal error estimation, and the global optimal estimation is used to correct the SINS navigation solution. The χ 2 fault detection method is used to detect the subsystem fault, and the fault subsystem is isolation through fault interval to protect system away from the divergence. The integrated system takes advantages of SINS, GPS and CNS to an immense improvement for high accuracy and reliably high dynamic navigation application. Simulation result shows that federated fusion of using GPS and CNS to revise SINS solution is reasonable and availably with good estimation performance, which are satisfied with the demands of high dynamic flight navigation. The UKF is superior than EKF based integrated scheme, in which has smaller estimation error and quickly convergence rate.
V-band integrated quadriphase modulator
NASA Technical Reports Server (NTRS)
Grote, A.; Chang, K.
1983-01-01
A V-band integrated circuit quadriphase shift keyed modulator/exciter for space communications systems was developed. Intersatellite communications systems require direct modulation at 60 GHz to enhance signal processing capability. For most systems, particularly space applications, small and lightweight components are essential to alleviate severe system design constraints. Thus to achieve wideband, high data rate systems, direct modulation techniques at millimeter waves using solid state integrated circuit technology are an integral part of the overall technology developments.
Design distributed simulation platform for vehicle management system
NASA Astrophysics Data System (ADS)
Wen, Zhaodong; Wang, Zhanlin; Qiu, Lihua
2006-11-01
Next generation military aircraft requires the airborne management system high performance. General modules, data integration, high speed data bus and so on are needed to share and manage information of the subsystems efficiently. The subsystems include flight control system, propulsion system, hydraulic power system, environmental control system, fuel management system, electrical power system and so on. The unattached or mixed architecture is changed to integrated architecture. That means the whole airborne system is regarded into one system to manage. So the physical devices are distributed but the system information is integrated and shared. The process function of each subsystem are integrated (including general process modules, dynamic reconfiguration), furthermore, the sensors and the signal processing functions are shared. On the other hand, it is a foundation for power shared. Establish a distributed vehicle management system using 1553B bus and distributed processors which can provide a validation platform for the research of airborne system integrated management. This paper establishes the Vehicle Management System (VMS) simulation platform. Discuss the software and hardware configuration and analyze the communication and fault-tolerant method.
Systems Integration | Photovoltaic Research | NREL
& Engineering pages: Real-Time PV & Solar Resource Testing Accelerated Testing & Analysis integration support, system-level testing, and systems analysis for the Department of Energy's solar issues and develop solutions for high-penetration grid integration of solar technologies into the
Near-optimal integration of facial form and motion.
Dobs, Katharina; Ma, Wei Ji; Reddy, Leila
2017-09-08
Human perception consists of the continuous integration of sensory cues pertaining to the same object. While it has been fairly well shown that humans use an optimal strategy when integrating low-level cues proportional to their relative reliability, the integration processes underlying high-level perception are much less understood. Here we investigate cue integration in a complex high-level perceptual system, the human face processing system. We tested cue integration of facial form and motion in an identity categorization task and found that an optimal model could successfully predict subjects' identity choices. Our results suggest that optimal cue integration may be implemented across different levels of the visual processing hierarchy.
Integrating High Levels of Variable Renewable Energy into Electric Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroposki, Benjamin D.
As more variable renewable energy is integrated into electric power systems, there are a range of challenges and solutions to accommodating very high penetration levels. This presentation highlights some of the recent research in this area.
Scientific Design of a High Contrast Integral Field Spectrograph for the Subaru Telescope
NASA Technical Reports Server (NTRS)
McElwain, Michael W.
2012-01-01
Ground based telescopes equipped with adaptive optics systems and specialized science cameras are now capable of directly detecting extrasolar planets. We present the scientific design for a high contrast integral field spectrograph for the Subaru Telescope. This lenslet based integral field spectrograph will be implemented into the new extreme adaptive optics system at Subaru, called SCExAO.
Gordon, Adam J; Montlack, Melissa L; Freyder, Paul; Johnson, Diane; Bui, Thuy; Williams, Jennifer
2007-03-01
The Allegheny Initiative for Mental Health Integration for the Homeless (AIM-HIGH) was a 3-year urban initiative in Pennsylvania that sought to enhance integration and coordination of medical and behavioral services for homeless persons through system-, provider-, and client-level interventions. On a system level, AIM-HIGH established partnerships between several key medical and behavioral health agencies. On a provider level, AIM-HIGH conducted 5 county-wide conferences regarding homeless integration, attended by 637 attendees from 72 agencies. On a client level, 5 colocated medical and behavioral health care clinics provided care to 1986 homeless patients in 4084 encounters, generating 1917 referrals for care. For a modest investment, AIM-HIGH demonstrated that integration of medical and behavioral health services for homeless persons can occur in a large urban environment.
Gordon, Adam J.; Montlack, Melissa L.; Freyder, Paul; Johnson, Diane; Bui, Thuy; Williams, Jennifer
2007-01-01
The Allegheny Initiative for Mental Health Integration for the Homeless (AIM-HIGH) was a 3-year urban initiative in Pennsylvania that sought to enhance integration and coordination of medical and behavioral services for homeless persons through system-, provider-, and client-level interventions. On a system level, AIM-HIGH established partnerships between several key medical and behavioral health agencies. On a provider level, AIM-HIGH conducted 5 county-wide conferences regarding homeless integration, attended by 637 attendees from 72 agencies. On a client level, 5 colocated medical and behavioral health care clinics provided care to 1986 homeless patients in 4084 encounters, generating 1917 referrals for care. For a modest investment, AIM-HIGH demonstrated that integration of medical and behavioral health services for homeless persons can occur in a large urban environment. PMID:17267708
Integrative Systems Biology for Data Driven Knowledge Discovery
Greene, Casey S.; Troyanskaya, Olga G.
2015-01-01
Integrative systems biology is an approach that brings together diverse high throughput experiments and databases to gain new insights into biological processes or systems at molecular through physiological levels. These approaches rely on diverse high-throughput experimental techniques that generate heterogeneous data by assaying varying aspects of complex biological processes. Computational approaches are necessary to provide an integrative view of these experimental results and enable data-driven knowledge discovery. Hypotheses generated from these approaches can direct definitive molecular experiments in a cost effective manner. Using integrative systems biology approaches, we can leverage existing biological knowledge and large-scale data to improve our understanding of yet unknown components of a system of interest and how its malfunction leads to disease. PMID:21044756
Copernicus Architecture, Phase I: Requirements Definition
1991-08-01
control primarily over maritime patrol aircraft (MPA) and Integrated Undersea Surveillance System (IUSS) units; however, surface ships and other units...Intermediate System Integrated Services Digital Network Integrated Tactical-Stategic Data Network Integrated Undersea Surveillance System Joint Army Navy... TTE Technical Training Equipment TTY Teletype UFO UHF Follow On UHF Ultra High Frequency USA/USAF U. S. Army/U.S. Air Force USCINC U. S
Ship to Shore Data Communication and Prioritization
2011-12-01
First Out FTP File Transfer Protocol GCCS-M Global Command and Control System Maritime HAIPE High Assurance Internet Protocol Encryptor HTTP Hypertext...Transfer Protocol (world wide web protocol ) IBS Integrated Bar Code System IDEF0 Integration Definition IER Information Exchange Requirements...INTEL Intelligence IP Internet Protocol IPT Integrated Product Team ISEA In-Service Engineering Agent ISNS Integrated Shipboard Network System IT
High-Frequency Wireless Communications System: 2.45-GHz Front-End Circuit and System Integration
ERIC Educational Resources Information Center
Chen, M.-H.; Huang, M.-C.; Ting, Y.-C.; Chen, H.-H.; Li, T.-L.
2010-01-01
In this article, a course on high-frequency wireless communications systems is presented. With the 145-MHz baseband subsystem available from a prerequisite course, the present course emphasizes the design and implementation of the 2.45-GHz front-end subsystem as well as system integration issues. In this curriculum, the 2.45-GHz front-end…
NASA Astrophysics Data System (ADS)
Li, Siwei; Li, Jun; Liu, Zhuochu; Wang, Min; Yue, Liang
2017-05-01
After the access of household distributed photovoltaic, conditions of high permeability generally occur, which cut off the connection between distributed power supply and major network rapidly and use energy storage device to realize electrical energy storage. The above operations cannot be adequate for the power grid health after distributed power supply access any more from the perspective of economy and rationality. This paper uses the integration between device and device, integration between device and system and integration between system and system of household microgrid and household energy efficiency management, to design household microgrid building program and operation strategy containing household energy efficiency management, to achieve efficient integration of household energy efficiency management and household microgrid, to effectively solve problems of high permeability of household distributed power supply and so on.
Battery management systems with thermally integrated fire suppression
Bandhauer, Todd M.; Farmer, Joseph C.
2017-07-11
A thermal management system is integral to a battery pack and/or individual cells. It relies on passive liquid-vapor phase change heat removal to provide enhanced thermal protection via rapid expulsion of inert high pressure refrigerant during abnormal abuse events and can be integrated with a cooling system that operates during normal operation. When a thermal runaway event occurs and sensed by either active or passive sensors, the high pressure refrigerant is preferentially ejected through strategically placed passages within the pack to rapidly quench the battery.
Integrated care: learning between high-income, and low- and middle-income country health systems
Mounier-Jack, Sandra; Mayhew, Susannah H; Mays, Nicholas
2017-01-01
Abstract Over the past decade, discussion of integrated care has become more widespread and prominent in both high- and low-income health care systems (LMICs). The trend reflects the mismatch between an increasing burden of chronic disease and local health care systems which are still largely focused on hospital-based treatment of individual clinical episodes and also the long-standing proliferation of vertical donor-funded disease-specific programmes in LMICs which have disrupted horizontal, or integrated, care. Integration is a challenging concept to define, in part because of its multiple dimensions and varied scope: from integrated clinical care for individual patients to broader systems integration—or linkage—involving a wide range of interconnected services (e.g. social services and health care). In this commentary, we compare integrated care in high- and lower-income countries. Although contexts may differ significantly between these settings, there are many common features of how integration has been understood and common challenges in its implementation. We discuss the different approaches to, scope of, and impacts of, integration including barriers and facilitators to the processes of implementation. With the burden of disease becoming more alike across settings, we consider what gains there could be from comparative learning between these settings which have constituted two separate strands of research until now. PMID:29194541
High-level requirements for the US-75 integrated corridor in Dallas, Texas
DOT National Transportation Integrated Search
2008-04-30
This document is intended as a listing and discussion of the high-level Requirements for the US-75 Integrated Corridor Management System (ICMS) in Dallas. This document describes what the system is to do (the functional requirements), how well it is ...
Energy Systems Integration Facility Insight Center | Energy Systems
simulation data. Photo of researchers studying data on a 3-D power system profile depicting the interaction of renewable energy resources on the grid. Capabilities The Insight Center offers the following Integration Facility Insight Center Located adjacent to the Energy System Integration Facility's High
Li, Yang; Ma, Jianguo; Martin, K Heath; Yu, Mingyue; Ma, Teng; Dayton, Paul A; Jiang, Xiaoning; Shung, K Kirk; Zhou, Qifa
2016-09-01
Superharmonic contrast-enhanced ultrasound imaging, also called acoustic angiography, has previously been used for the imaging of microvasculature. This approach excites microbubble contrast agents near their resonance frequency and receives echoes at nonoverlapping superharmonic bandwidths. No integrated system currently exists could fully support this application. To fulfill this need, an integrated dual-channel transmit/receive system for superharmonic imaging was designed, built, and characterized experimentally. The system was uniquely designed for superharmonic imaging and high-resolution B-mode imaging. A complete ultrasound system including a pulse generator, a data acquisition unit, and a signal processing unit were integrated into a single package. The system was controlled by a field-programmable gate array, on which multiple user-defined modes were implemented. A 6-, 35-MHz dual-frequency dual-element intravascular ultrasound transducer was designed and used for imaging. The system successfully obtained high-resolution B-mode images of coronary artery ex vivo with 45-dB dynamic range. The system was capable of acquiring in vitro superharmonic images of a vasa vasorum mimicking phantom with 30-dB contrast. It could detect a contrast agent filled tissue mimicking tube of 200 μm diameter. For the first time, high-resolution B-mode images and superharmonic images were obtained in an intravascular phantom, made possible by the dedicated integrated system proposed. The system greatly reduced the cost and complexity of the superharmonic imaging intended for preclinical study. Significant: The system showed promise for high-contrast intravascular microvascular imaging, which may have significant importance in assessment of the vasa vasorum associated with atherosclerotic plaques.
NASA Astrophysics Data System (ADS)
Martin, J.
1982-04-01
It is shown that the fulfillment of very high speed integrated circuit (VHSIC) device development goals entails the restructuring of military electronics acquisition policy, standardization which produces the maximum number of systems and subsystems by means of the minimum number of flexible, broad-purpose, high-power semiconductors, and especially the standardization of bus structures incorporating a priorization system. It is expected that the Design Specification Handbook currently under preparation by the VHSIC program office of the DOD will make the design of such systems a task whose complexity is comparable to that of present integrated circuit electronics.
[Intelligent watch system for health monitoring based on Bluetooth low energy technology].
Wang, Ji; Guo, Hailiang; Ren, Xiaoli
2017-08-01
According to the development status of wearable technology and the demand of intelligent health monitoring, we studied the multi-function integrated smart watches solution and its key technology. First of all, the sensor technology with high integration density, Bluetooth low energy (BLE) and mobile communication technology were integrated and used in develop practice. Secondly, for the hardware design of the system in this paper, we chose the scheme with high integration density and cost-effective computer modules and chips. Thirdly, we used real-time operating system FreeRTOS to develop the friendly graphical interface interacting with touch screen. At last, the high-performance application software which connected with BLE hardware wirelessly and synchronized data was developed based on android system. The function of this system included real-time calendar clock, telephone message, address book management, step-counting, heart rate and sleep quality monitoring and so on. Experiments showed that the collecting data accuracy of various sensors, system data transmission capacity, the overall power consumption satisfy the production standard. Moreover, the system run stably with low power consumption, which could realize intelligent health monitoring effectively.
Human-Robot Interaction in High Vulnerability Domains
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2016-01-01
Future NASA missions will require successful integration of the human with highly complex systems. Highly complex systems are likely to involve humans, automation, and some level of robotic assistance. The complex environments will require successful integration of the human with automation, with robots, and with human-automation-robot teams to accomplish mission critical goals. Many challenges exist for the human performing in these types of operational environments with these kinds of systems. Systems must be designed to optimally integrate various levels of inputs and outputs based on the roles and responsibilities of the human, the automation, and the robots; from direct manual control, shared human-robotic control, or no active human control (i.e. human supervisory control). It is assumed that the human will remain involved at some level. Technologies that vary based on contextual demands and on operator characteristics (workload, situation awareness) will be needed when the human integrates into these systems. Predictive models that estimate the impact of the technologies on the system performance and the on the human operator are also needed to meet the challenges associated with such future complex human-automation-robot systems in extreme environments.
Vehicular Integration of Wireless Power Transfer Systems and Hardware Interoperability Case Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Campbell, Steven L; Seiber, Larry Eugene
Several wireless charging methods are under development or available as an aftermarket option in the light-duty automotive market. However, there are not a sufficient number of studies detailing the vehicle integration methods, particularly a complete vehicle integration with higher power levels. This paper presents the design, development, implementation, and vehicle integration of wireless power transfer (WPT)-based electric vehicle (EV) charging systems for various test vehicles. Before having the standards effective, it is expected that WPT technology first will be integrated as an aftermarket retrofitting approach. Inclusion of this technology on production vehicles is contingent upon the release of the internationalmore » standards. The power stages of the system are introduced with the design specifications and control systems including the active front-end rectifier with power factor correction, high frequency power inverter, high frequency isolation transformer, coupling coils, vehicle side full-bridge rectifier and filter, and the vehicle battery. The operating principles of the control, and communications, systems are presented. Aftermarket conversion approaches including the WPT on-board charger (OBC) integration, WPT CHAdeMO integration, and WPT direct battery connection scenarios are described. The experiments are carried out using the integrated vehicles and the results obtained to demonstrate the system performance including the stage-by-stage efficiencies.« less
Zhou, Lei; Xu, Zhenming
2012-05-01
Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry. © 2012 American Chemical Society
NASA Technical Reports Server (NTRS)
Gummalla, Mallika; Pandy, Arun; Braun, Robert; Carriere, Thierry; Yamanis, Jean; Vanderspurt, Thomas; Hardin, Larry; Welch, Rick
2006-01-01
The objective of this study is to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future short range commercial aircraft, and to define the technology gaps to enable such a system. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate a baseline aircraft and several SOFC architectures. The technology benefits were captured as reductions of the mission fuel burn, life cycle cost, noise and emissions. As a result of the study, it was recognized that system integration is critical to maximize benefits from the SOFC APU for aircraft application. The mission fuel burn savings for the two SOFC architectures ranged from 4.7 percent for a system with high integration to 6.7 percent for a highly integrated system with certain technological risks. The SOFC APU itself produced zero emissions. The reduction in engine fuel burn achieved with the SOFC systems also resulted in reduced emissions from the engines for both ground operations and in flight. The noise level of the baseline APU with a silencer is 78 dBA, while the SOFC APU produced a lower noise level. It is concluded that a high specific power SOFC system is needed to achieve the benefits identified in this study. Additional areas requiring further development are the processing of the fuel to remove sulfur, either on board or on the ground, and extending the heat sink capability of the fuel to allow greater waste heat recovery, resolve the transient electrical system integration issues, and identification of the impact of the location of the SOFC and its size on the aircraft.
Integrated Avionics System (IAS), Integrating 3-D Technology On A Spacecraft Panel
NASA Technical Reports Server (NTRS)
Hunter, Don J.; Halpert, Gerald
1999-01-01
As spacecraft designs converge toward miniaturization, and with the volumetric and mass challenges placed on avionics, programs will continue to advance the "state of the art" in spacecraft system development with new challenges to reduce power, mass and volume. Traditionally, the trend is to focus on high-density 3-D packaging technologies. Industry has made significant progress in 3-D technologies, and other related internal and external interconnection schemes. Although new technologies have improved packaging densities, a system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and flexibility to accommodate multiple missions while maintaining a low recurring cost. With these challenges in mind, a novel system packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. The Integrated Avionics System (IAS) provides for a low-mass, modular distributed or centralized packaging architecture which combines ridged-flex technologies, high-density COTS hardware and a new 3-D mechanical packaging approach, Horizontal Mounted Cube (HMC). This paper will describe the fundamental elements of the IAS, HMC hardware design, system integration and environmental test results.
An integrated system for land resources supervision based on the IoT and cloud computing
NASA Astrophysics Data System (ADS)
Fang, Shifeng; Zhu, Yunqiang; Xu, Lida; Zhang, Jinqu; Zhou, Peiji; Luo, Kan; Yang, Jie
2017-01-01
Integrated information systems are important safeguards for the utilisation and development of land resources. Information technologies, including the Internet of Things (IoT) and cloud computing, are inevitable requirements for the quality and efficiency of land resources supervision tasks. In this study, an economical and highly efficient supervision system for land resources has been established based on IoT and cloud computing technologies; a novel online and offline integrated system with synchronised internal and field data that includes the entire process of 'discovering breaches, analysing problems, verifying fieldwork and investigating cases' was constructed. The system integrates key technologies, such as the automatic extraction of high-precision information based on remote sensing, semantic ontology-based technology to excavate and discriminate public sentiment on the Internet that is related to illegal incidents, high-performance parallel computing based on MapReduce, uniform storing and compressing (bitwise) technology, global positioning system data communication and data synchronisation mode, intelligent recognition and four-level ('device, transfer, system and data') safety control technology. The integrated system based on a 'One Map' platform has been officially implemented by the Department of Land and Resources of Guizhou Province, China, and was found to significantly increase the efficiency and level of land resources supervision. The system promoted the overall development of informatisation in fields related to land resource management.
Distributed PACS using distributed file system with hierarchical meta data servers.
Hiroyasu, Tomoyuki; Minamitani, Yoshiyuki; Miki, Mitsunori; Yokouchi, Hisatake; Yoshimi, Masato
2012-01-01
In this research, we propose a new distributed PACS (Picture Archiving and Communication Systems) which is available to integrate several PACSs that exist in each medical institution. The conventional PACS controls DICOM file into one data-base. On the other hand, in the proposed system, DICOM file is separated into meta data and image data and those are stored individually. Using this mechanism, since file is not always accessed the entire data, some operations such as finding files, changing titles, and so on can be performed in high-speed. At the same time, as distributed file system is utilized, accessing image files can also achieve high-speed access and high fault tolerant. The introduced system has a more significant point. That is the simplicity to integrate several PACSs. In the proposed system, only the meta data servers are integrated and integrated system can be constructed. This system also has the scalability of file access with along to the number of file numbers and file sizes. On the other hand, because meta-data server is integrated, the meta data server is the weakness of this system. To solve this defect, hieratical meta data servers are introduced. Because of this mechanism, not only fault--tolerant ability is increased but scalability of file access is also increased. To discuss the proposed system, the prototype system using Gfarm was implemented. For evaluating the implemented system, file search operating time of Gfarm and NFS were compared.
Integrated Information and State Differentiation
Marshall, William; Gomez-Ramirez, Jaime; Tononi, Giulio
2016-01-01
Integrated information (Φ) is a measure of the cause-effect power of a physical system. This paper investigates the relationship between Φ as defined in Integrated Information Theory and state differentiation (D), the number of, and difference between potential system states. Here we provide theoretical justification of the relationship between Φ and D, then validate the results using a simulation study. First, we show that a physical system in a state with high Φ necessarily has many elements and specifies many causal relationships. Furthermore, if the average value of integrated information across all states is high, the system must also have high differentiation. Next, we explore the use of D as a proxy for Φ using artificial networks, evolved to have integrated structures. The results show a positive linear relationship between Φ and D for multiple network sizes and connectivity patterns. Finally we investigate the differentiation evoked by sensory inputs and show that, under certain conditions, it is possible to estimate integrated information without a direct perturbation of its internal elements. In concluding, we discuss the need for further validation on larger networks and explore the potential applications of this work to the empirical study of consciousness, especially concerning the practical estimation of Φ from neuroimaging data. PMID:27445896
Partners | Energy Systems Integration Facility | NREL
Renewable Electricity to Grid Integration Evaluation of New Technology IGBT Industry Asetek High Performance Energy Commission High Performance Computing & Visualization Real-Time Data Collection for Institute/Schneider Electric Renewable Electricity to Grid Integration End-to-End Communication and Control
Integrated editing system for Japanese text and image information "Linernote"
NASA Astrophysics Data System (ADS)
Tanaka, Kazuto
Integrated Japanese text editing system "Linernote" developed by Toyo Industries Co. is explained. The system has been developed on the concept of electronic publishing. It is composed of personal computer NEC PC-9801 VX and other peripherals. Sentence, drawing and image data is inputted and edited under the integrated operating environment in the system and final text is printed out by laser printer. Handling efficiency of time consuming work such as pattern input or page make up has been improved by draft image data indication method on CRT. It is the latest DTP system equipped with three major functions, namly, typesetting for high quality text editing, easy drawing/tracing and high speed image processing.
NASA Astrophysics Data System (ADS)
Voskresenskaya, Elena; Vorona-Slivinskaya, Lubov
2018-03-01
The article considers the issues of developing national standards for high-rise construction. The system of standards should provide industrial, operational, economic and terrorist safety of high-rise buildings and facilities. Modern standards of high-rise construction should set the rules for designing engineering systems of high-rise buildings, which will ensure the integrated security of buildings, increase their energy efficiency and reduce the consumption of resources in construction and operation.
ESIF 2016: Modernizing Our Grid and Energy System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Becelaere, Kimberly
This 2016 annual report highlights work conducted at the Energy Systems Integration Facility (ESIF) in FY 2016, including grid modernization, high-performance computing and visualization, and INTEGRATE projects.
Micro-opto-mechanical devices and systems using epitaxial lift off
NASA Technical Reports Server (NTRS)
Camperi-Ginestet, C.; Kim, Young W.; Wilkinson, S.; Allen, M.; Jokerst, N. M.
1993-01-01
The integration of high quality, single crystal thin film gallium arsenide (GaAs) and indium phosphide (InP) based photonic and electronic materials and devices with host microstructures fabricated from materials such as silicon (Si), glass, and polymers will enable the fabrication of the next generation of micro-opto-mechanical systems (MOMS) and optoelectronic integrated circuits. Thin film semiconductor devices deposited onto arbitrary host substrates and structures create hybrid (more than one material) near-monolithic integrated systems which can be interconnected electrically using standard inexpensive microfabrication techniques such as vacuum metallization and photolithography. These integrated systems take advantage of the optical and electronic properties of compound semiconductor devices while still using host substrate materials such as silicon, polysilicon, glass and polymers in the microstructures. This type of materials optimization for specific tasks creates higher performance systems than those systems which must use trade-offs in device performance to integrate all of the function in a single material system. The low weight of these thin film devices also makes them attractive for integration with micromechanical devices which may have difficulty supporting and translating the full weight of a standard device. These thin film devices and integrated systems will be attractive for applications, however, only when the development of low cost, high yield fabrication and integration techniques makes their use economically feasible. In this paper, we discuss methods for alignment, selective deposition, and interconnection of thin film epitaxial GaAs and InP based devices onto host substrates and host microstructures.
FERMI: a digital Front End and Readout MIcrosystem for high resolution calorimetry
NASA Astrophysics Data System (ADS)
Alexanian, H.; Appelquist, G.; Bailly, P.; Benetta, R.; Berglund, S.; Bezamat, J.; Blouzon, F.; Bohm, C.; Breveglieri, L.; Brigati, S.; Cattaneo, P. W.; Dadda, L.; David, J.; Engström, M.; Genat, J. F.; Givoletti, M.; Goggi, V. G.; Gong, S.; Grieco, G. M.; Hansen, M.; Hentzell, H.; Holmberg, T.; Höglund, I.; Inkinen, S. J.; Kerek, A.; Landi, C.; Ledortz, O.; Lippi, M.; Lofstedt, B.; Lund-Jensen, B.; Maloberti, F.; Mutz, S.; Nayman, P.; Piuri, V.; Polesello, G.; Sami, M.; Savoy-Navarro, A.; Schwemling, P.; Stefanelli, R.; Sundblad, R.; Svensson, C.; Torelli, G.; Vanuxem, J. P.; Yamdagni, N.; Yuan, J.; Ödmark, A.; Fermi Collaboration
1995-02-01
We present a digital solution for the front-end electronics of high resolution calorimeters at future colliders. It is based on analogue signal compression, high speed {A}/{D} converters, a fully programmable pipeline and a digital signal processing (DSP) chain with local intelligence and system supervision. This digital solution is aimed at providing maximal front-end processing power by performing waveform analysis using DSP methods. For the system integration of the multichannel device a multi-chip, silicon-on-silicon multi-chip module (MCM) has been adopted. This solution allows a high level of integration of complex analogue and digital functions, with excellent flexibility in mixing technologies for the different functional blocks. This type of multichip integration provides a high degree of reliability and programmability at both the function and the system level, with the additional possibility of customising the microsystem to detector-specific requirements. For enhanced reliability in high radiation environments, fault tolerance strategies, i.e. redundancy, reconfigurability, majority voting and coding for error detection and correction, are integrated into the design.
Application of a high-energy-density permanent magnet material in underwater systems
NASA Astrophysics Data System (ADS)
Cho, C. P.; Egan, C.; Krol, W. P.
1996-06-01
This paper addresses the application of high-energy-density permanent magnet (PM) technology to (1) the brushless, axial-field PM motor and (2) the integrated electric motor/pump system for under-water applications. Finite-element analysis and lumped parameter magnetic circuit analysis were used to calculate motor parameters and performance characteristics and to conduct tradeoff studies. Compact, efficient, reliable, and quiet underwater systems are attainable with the development of high-energy-density PM material, power electronic devices, and power integrated-circuit technology.
2012-09-30
be deployed in geat numbers to autonomously monitor the overall patterns of CO2 emissions and ocean acidification . OBJECTIVES Meet the...Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000TM Annual...challenging requirements for ocean pCO2 monitoring using an innovative sensor design based on high sensitivity fluorescence detection. Assemble the system
2011-09-30
be deployed in geat numbers to autonomously monitor the overall patterns of CO2 emissions and ocean acidification . OBJECTIVES Meet the...Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000TM Annual...challenging requirements for ocean pCO2 monitoring using an innovative sensor design based on high sensitivity fluorescence detection. Assemble the system
Development of Multistep and Degenerate Variational Integrators for Applications in Plasma Physics
NASA Astrophysics Data System (ADS)
Ellison, Charles Leland
Geometric integrators yield high-fidelity numerical results by retaining conservation laws in the time advance. A particularly powerful class of geometric integrators is symplectic integrators, which are widely used in orbital mechanics and accelerator physics. An important application presently lacking symplectic integrators is the guiding center motion of magnetized particles represented by non-canonical coordinates. Because guiding center trajectories are foundational to many simulations of magnetically confined plasmas, geometric guiding center algorithms have high potential for impact. The motivation is compounded by the need to simulate long-pulse fusion devices, including ITER, and opportunities in high performance computing, including the use of petascale resources and beyond. This dissertation uses a systematic procedure for constructing geometric integrators --- known as variational integration --- to deliver new algorithms for guiding center trajectories and other plasma-relevant dynamical systems. These variational integrators are non-trivial because the Lagrangians of interest are degenerate - the Euler-Lagrange equations are first-order differential equations and the Legendre transform is not invertible. The first contribution of this dissertation is that variational integrators for degenerate Lagrangian systems are typically multistep methods. Multistep methods admit parasitic mode instabilities that can ruin the numerical results. These instabilities motivate the second major contribution: degenerate variational integrators. By replicating the degeneracy of the continuous system, degenerate variational integrators avoid parasitic mode instabilities. The new methods are therefore robust geometric integrators for degenerate Lagrangian systems. These developments in variational integration theory culminate in one-step degenerate variational integrators for non-canonical magnetic field line flow and guiding center dynamics. The guiding center integrator assumes coordinates such that one component of the magnetic field is zero; it is shown how to construct such coordinates for nested magnetic surface configurations. Additionally, collisional drag effects are incorporated in the variational guiding center algorithm for the first time, allowing simulation of energetic particle thermalization. Advantages relative to existing canonical-symplectic and non-geometric algorithms are numerically demonstrated. All algorithms have been implemented as part of a modern, parallel, ODE-solving library, suitable for use in high-performance simulations.
Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination
ERIC Educational Resources Information Center
Ladner, David Allen
2009-01-01
Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…
Energy Systems Integration News | Energy Systems Integration Facility |
NREL six people standing at a table with various containers of pet food. NREL's ESI program included with this release. Register for the webinar. Presentations Available from Last Month's High withstand the crucial first minute after severe grid disturbances with high penetrations of wind and solar
ERIC Educational Resources Information Center
Hall, Allison Cohen; Butterworth, John; Winsor, Jean; Gilmore, Dana; Metzel, Deborah
2007-01-01
Organizational variables, including policies, practices, collaborations, and funding mechanisms resulting in high performance in integrated employment, were described through case study research in 3 states. Findings address how contextual factors, system-level strategies, and goals of the system are related as well as how they sustain systems…
5. Exterior view, enclosure at walkin entry level between Test ...
5. Exterior view, enclosure at walk-in entry level between Test Cell 6 (right) and Test Cell 7 (left), Systems Integration Laboratory Building (T-28), looking southwest. High pressure gas tank and generator test firings are conducted in the enclosure. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Xu, Xiaoli; Zhang, Song; Chen, Hui; Kong, Jilie
2009-11-15
Micro-total analysis systems (microTAS) integrate different analytical operations like sample preparation, separation and detection into a single microfabricated device. With the outstanding advantages of low cost, satisfactory analytical efficiency and flexibility in design, highly integrated and miniaturized devices from the concept of microTAS have gained widespread applications, especially in biochemical assays. Electrochemistry is shown to be quite compatible with microanalytical systems for biochemical assays, because of its attractive merits such as simplicity, rapidity, high sensitivity, reduced power consumption, and sample/reagent economy. This review presents recent developments in the integration of electrochemistry in microdevices for biochemical assays. Ingenious microelectrode design and fabrication methods, and versatility of electrochemical techniques are involved. Practical applications of such integrated microsystem in biochemical assays are focused on in situ analysis, point-of-care testing and portable devices. Electrochemical techniques are apparently suited to microsystems, since easy microfabrication of electrochemical elements and a high degree of integration with multi-analytical functions can be achieved at low cost. Such integrated microsystems will play an increasingly important role for analysis of small volume biochemical samples. Work is in progress toward new microdevice design and applications.
Systems and methods for integrating ion mobility and ion trap mass spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Yehia M.; Garimella, Sandilya; Prost, Spencer A.
Described herein are examples of systems and methods for integrating IMS and MS systems. In certain examples, systems and methods for decoding double multiplexed data are described. The systems and methods can also perform multiple refining procedures in order to minimize the demultiplexing artifacts. The systems and methods can be used, for example, for the analysis of proteomic and petroleum samples, where the integration of IMS and high mass resolution are used for accurate assignment of molecular formulae.
Fundamentals of fuel cell system integration
NASA Astrophysics Data System (ADS)
Krumpelt, Michael; Kumar, Romesh; Myles, Kevin M.
1994-04-01
Fuel cells are theoretically very efficient energy conversion devices that have the potential of becoming a commercial product for numerous uses in the civilian economy. We have analyzed several fuel cell system designs with regard to thermal and chemical integration of the fuel cell stack into the rest of the system. Thermal integration permits the use of the stack waste heat for the endothermic steps of fuel reforming. Chemical integration provides the steam needed for fuel reforming from the water produced by the electrochemical cell reaction. High-temperature fuel cells, such as the molten carbonate and the solid oxide fuel cells, permit this system integration in a relatively simple manner. Lower temperature fuel cells, such as the polymer electrolyte and phosphoric acid systems, require added system complexity to achieve such integration. The system economics are affected by capital and fuel costs and technical parameters, such as electrochemical fuel utilization, current density, and system complexity. At today's low fuel prices and the high fuel cell costs (in part, because of the low rates of production of the early prototypes), fuel cell systems are not cost competitive with conventional power generation. With the manufacture and sale of larger numbers of fuel cell systems, the total costs will decrease from the current several thousand dollars per kW, to perhaps less than $100 per kW as production volumes approa ch a million units per year.
Flight-determined benefits of integrated flight-propulsion control systems
NASA Technical Reports Server (NTRS)
Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.
1992-01-01
Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.
Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke
2018-04-09
In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology.
Investigation on navigation patterns of inertial/celestial integrated systems
NASA Astrophysics Data System (ADS)
Luo, Dacheng; Liu, Yan; Liu, Zhiguo; Jiao, Wei; Wang, Qiuyan
2014-11-01
It is known that Strapdown Inertial Navigation System (SINS), Global Navigation Satellite System (GNSS) and Celestial Navigation System (CNS) can complement each other's advantages. The SINS/CNS integrated system, which has the characteristics of strong autonomy, high accuracy and good anti-jamming, is widely used in military and civilian applications. Similar to SINS/GNSS integrated system, the SINS/CNS integrated system can also be divided into three kinds according to the difference of integrating depth, i.e., loosely coupled pattern, tightly coupled pattern and deeply coupled pattern. In this paper, the principle and characteristics of each pattern of SINS/CNS system are analyzed. Based on the comparison of these patterns, a novel deeply coupled SINS/CNS integrated navigation scheme is proposed. The innovation of this scheme is that a new star pattern matching method aided by SINS information is put forward. Thus the complementary features of these two subsystems are reflected.
Asetek's Warm-Water Liquid Cooling System Yields Energy Cost Savings at
NREL | Energy Systems Integration Facility | NREL Asetek Asetek's Warm-Water Liquid Cooling System Yields Energy Cost Savings at NREL Asetek's RackCDU liquid cooling system was installed and tested at the Energy Systems Integration Facility's (ESIF's) ultra-energy-efficient high-performance
NASA Astrophysics Data System (ADS)
Ghaebi, Hadi; Abbaspour, Ghader
2018-05-01
In this research, thermoeconomic analysis of a multi-effect desalination thermal vapor compression (MED-TVC) system integrated with a trigeneration system with a gas turbine prime mover is carried out. The integrated system comprises of a compressor, a combustion chamber, a gas turbine, a triple-pressure (low, medium and high pressures) heat recovery steam generator (HRSG) system, an absorption chiller cycle (ACC), and a multi-effect desalination (MED) system. Low pressure steam produced in the HRSG is used to drive absorption chiller cycle, medium pressure is used in desalination system and high pressure superheated steam is used for heating purposes. For thermodynamic and thermoeconomic analysis of the proposed integrated system, Engineering Equation Solver (EES) is used by employing mass, energy, exergy, and cost balance equations for each component of system. The results of the modeling showed that with the new design, the exergy efficiency in the base design will increase to 57.5%. In addition, thermoeconomic analysis revealed that the net power, heating, fresh water and cooling have the highest production cost, respectively.
NASA's 3D Flight Computer for Space Applications
NASA Technical Reports Server (NTRS)
Alkalai, Leon
2000-01-01
The New Millennium Program (NMP) Integrated Product Development Team (IPDT) for Microelectronics Systems was planning to validate a newly developed 3D Flight Computer system on its first deep-space flight, DS1, launched in October 1998. This computer, developed in the 1995-97 time frame, contains many new computer technologies previously never used in deep-space systems. They include: advanced 3D packaging architecture for future low-mass and low-volume avionics systems; high-density 3D packaged chip-stacks for both volatile and non-volatile mass memory: 400 Mbytes of local DRAM memory, and 128 Mbytes of Flash memory; high-bandwidth Peripheral Component Interface (Per) local-bus with a bridge to VME; high-bandwidth (20 Mbps) fiber-optic serial bus; and other attributes, such as standard support for Design for Testability (DFT). Even though this computer system did not complete on time for delivery to the DS1 project, it was an important development along a technology roadmap towards highly integrated and highly miniaturized avionics systems for deep-space applications. This continued technology development is now being performed by NASA's Deep Space System Development Program (also known as X2000) and within JPL's Center for Integrated Space Microsystems (CISM).
NASA Technical Reports Server (NTRS)
Stanley, Thomas Troy; Alexander, Reginald
1999-01-01
Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. The deficiencies in the scramjet powered concept led to a revival of interest in Rocket-Based Combined-Cycle (RBCC) propulsion systems. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. At this point the transitions to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scram4jet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.
2012-03-13
Enormous military and commercial interests exist in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. Design and development of a portable TE power system using a JP-8 combustor as a high temperature heat source and optimal process flows depend on efficient heat generation, transfer, and recovery within the system are explored. Design optimization of the system required considering the combustion system efficiency and TE conversion efficiency simultaneously. The combustor performance and TE sub-system performance were coupled directlymore » through exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation of this system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed thermoelectric converter thermal/mechanical modeling. To this end, this work reports on design integration of systemlevel process flow simulations using commercial software CHEMCADTM with in-house thermoelectric converter and module optimization, and heat exchanger analyses using COMSOLTM software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem level conversion efficiencies exceeding 10%. These TE advances are integrated with a high performance microtechnology combustion reactor based on recent advances at the Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation established a basis for optimal selection of fuel and air flow rates, thermoelectric module design and operating conditions, and microtechnology heat-exchanger design criteria. This paper will discuss this simulation process that leads directly to system efficiency power maps defining potentially available optimal system operating conditions and regimes. This coupled simulation approach enables pathways for integrated use of high-performance combustor components, high performance TE devices, and microtechnologies to produce a compact, lightweight, combustion driven TE power system prototype that operates on common fuels.« less
High-brightness displays in integrated weapon sight systems
NASA Astrophysics Data System (ADS)
Edwards, Tim; Hogan, Tim
2014-06-01
In the past several years Kopin has demonstrated the ability to provide ultra-high brightness, low power display solutions in VGA, SVGA, SXGA and 2k x 2k display formats. This paper will review various approaches for integrating high brightness overlay displays with existing direct view rifle sights and augmenting their precision aiming and targeting capability. Examples of overlay display systems solutions will be presented and discussed. This paper will review significant capability enhancements that are possible when augmenting the real-world as seen through a rifle sight with other soldier system equipment including laser range finders, ballistic computers and sensor systems.
Integrating a Learning Management System with a Student Assignments Digital Repository. A Case Study
ERIC Educational Resources Information Center
Díaz, Javier; Schiavoni, Alejandra; Osorio, María Alejandra; Amadeo, Ana Paola; Charnelli, María Emilia
2013-01-01
The integration of different platforms and information Systems in the academic environment is highly important and quite a challenge within the field of Information Technology. This integration allows for higher resource availability and improved interaction among intervening actors. In the field of e-Learning, where Learning Management Systems…
NASA Technical Reports Server (NTRS)
Myers, L. P.; Burcham, F. W., Jr.
1984-01-01
The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.
IGMS: An Integrated ISO-to-Appliance Scale Grid Modeling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Hale, Elaine; Hansen, Timothy M.
This paper describes the Integrated Grid Modeling System (IGMS), a novel electric power system modeling platform for integrated transmission-distribution analysis that co-simulates off-the-shelf tools on high performance computing (HPC) platforms to offer unprecedented resolution from ISO markets down to appliances and other end uses. Specifically, the system simultaneously models hundreds or thousands of distribution systems in co-simulation with detailed Independent System Operator (ISO) markets and AGC-level reserve deployment. IGMS uses a new MPI-based hierarchical co-simulation framework to connect existing sub-domain models. Our initial efforts integrate opensource tools for wholesale markets (FESTIV), bulk AC power flow (MATPOWER), and full-featured distribution systemsmore » including physics-based end-use and distributed generation models (many instances of GridLAB-D[TM]). The modular IGMS framework enables tool substitution and additions for multi-domain analyses. This paper describes the IGMS tool, characterizes its performance, and demonstrates the impacts of the coupled simulations for analyzing high-penetration solar PV and price responsive load scenarios.« less
NASA Technical Reports Server (NTRS)
Baer-Riedhart, Jennifer L.; Landy, Robert J.
1987-01-01
The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.
High-performance computing with quantum processing units
Britt, Keith A.; Oak Ridge National Lab.; Humble, Travis S.; ...
2017-03-01
The prospects of quantum computing have driven efforts to realize fully functional quantum processing units (QPUs). Recent success in developing proof-of-principle QPUs has prompted the question of how to integrate these emerging processors into modern high-performance computing (HPC) systems. We examine how QPUs can be integrated into current and future HPC system architectures by accounting for func- tional and physical design requirements. We identify two integration pathways that are differentiated by infrastructure constraints on the QPU and the use cases expected for the HPC system. This includes a tight integration that assumes infrastructure bottlenecks can be overcome as well asmore » a loose integration that as- sumes they cannot. We find that the performance of both approaches is likely to depend on the quantum interconnect that serves to entangle multiple QPUs. As a result, we also identify several challenges in assessing QPU performance for HPC, and we consider new metrics that capture the interplay between system architecture and the quantum parallelism underlying computational performance.« less
High-performance computing with quantum processing units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britt, Keith A.; Oak Ridge National Lab.; Humble, Travis S.
The prospects of quantum computing have driven efforts to realize fully functional quantum processing units (QPUs). Recent success in developing proof-of-principle QPUs has prompted the question of how to integrate these emerging processors into modern high-performance computing (HPC) systems. We examine how QPUs can be integrated into current and future HPC system architectures by accounting for func- tional and physical design requirements. We identify two integration pathways that are differentiated by infrastructure constraints on the QPU and the use cases expected for the HPC system. This includes a tight integration that assumes infrastructure bottlenecks can be overcome as well asmore » a loose integration that as- sumes they cannot. We find that the performance of both approaches is likely to depend on the quantum interconnect that serves to entangle multiple QPUs. As a result, we also identify several challenges in assessing QPU performance for HPC, and we consider new metrics that capture the interplay between system architecture and the quantum parallelism underlying computational performance.« less
Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke
2018-01-01
In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology. PMID:29642549
2014-01-01
The objective of this study was to develop suitable cooling systems for high-power multichip LEDs. To this end, three different active cooling systems were investigated to control the heat generated by the powering of high-power multichip LEDs in two different configurations (30 and 2 × 15 W). The following cooling systems were used in the study: an integrated multi-fin heat sink design with a fan, a cooling system with a thermoelectric cooler (TEC), and a heat pipe cooling device. According to the results, all three systems were observed to be sufficient for cooling high-power LEDs. Furthermore, it was observed that the integrated multifin heat sink design with a fan was the most efficient cooling system for a 30 W high-power multichip LED. The cooling system with a TEC and 46 W input power was the most efficient cooling system for 2 × 15 W high-power multichip LEDs. PMID:25162058
Fabrication Of High-Tc Superconducting Integrated Circuits
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.; Warner, Joseph D.
1992-01-01
Microwave ring resonator fabricated to demonstrate process for fabrication of passive integrated circuits containing high-transition-temperature superconductors. Superconductors increase efficiencies of communication systems, particularly microwave communication systems, by reducing ohmic losses and dispersion of signals. Used to reduce sizes and masses and increase aiming accuracies and tracking speeds of millimeter-wavelength, electronically steerable antennas. High-Tc superconductors preferable for such applications because they operate at higher temperatures than low-Tc superconductors do, therefore, refrigeration systems needed to maintain superconductivity designed smaller and lighter and to consume less power.
Turnkey CAD/CAM systems' integration with IPAD systems
NASA Technical Reports Server (NTRS)
Blauth, R. E.
1980-01-01
Today's commercially available turnkey CAD/CAM systems provide a highly interactive environment, and support many specialized application functions for the design/drafting/manufacturing process. This paper presents an overview of several aerospace companies which have successfully integrated turnkey CAD/CAM systems with their own company wide engineering and manufacturing systems. It also includes a vendor's view of the benefits as well as the disadvantages of such integration efforts. Specific emphasis is placed upon the selection of standards for representing geometric engineering data and for communicating such information between different CAD/CAM systems.
76 FR 48159 - Integrated System Power Rates
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... rates, as are those of Southwestern's transmission facilities, which consist of 1,380 miles of high... system investments within the required number of years. As indicated in the Integrated System Rate Design... decrease slightly to reflect the incorporation of the White River Minimum Flows legislation as applied to...
ERIC Educational Resources Information Center
Daneman, Kathy
1998-01-01
Describes the integration of security systems to provide enhanced security that is both effective and long lasting. Examines combining card-access systems with camera surveillance, and highly visible emergency phones and security officers. as one of many possible combinations. Some systems most capable of being integrated are listed. (GR)
System-Level Integration of Mass Memory
NASA Technical Reports Server (NTRS)
Cox, Brian; Mellstrom, Jeffrey; Wysocky, Terry
2008-01-01
A report discusses integrating multiple memory modules on the high-speed serial interconnect (IEEE 1393) that is used by a spacecraft?s inter-module communications in order to ease data congestion and provide for a scalable, strong, flexible system that can meet new system-level mass memory requirements.
Jeon, Namju; Lee, Hyeongcheol
2016-12-12
An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.
Bassi, Jesdeep; Kushniruk, Andre W; Borycki, Elizabeth M
2013-01-01
The discipline of health informatics is highly immersed in information technology, specifically health information systems. Students graduating from Bachelor degree programs in health informatics are expected to be familiar with a variety of systems upon entering the workforce. The adoption of systems like electronic medical records is on the rise across Canada, therefore it would be highly beneficial for students to have exposure to such systems in their coursework. While some individual instructors have done this to some extent on an ad hoc basis, formal strategies for EMR integration do not exist. A prominent framework for technology integration in learning that has been applied in many scientific disciplines is the Technological Pedagogical Content Knowledge (TPCK) framework. This paper describes how TPCK was used and applied as the guiding conceptual framework for exploring the integration of an educational EMR into undergraduate health informatics education.
ERIC Educational Resources Information Center
Williams, Yamilette
2012-01-01
Many school districts have chosen to invest their federal funds in computer-based integrated learning systems that focus on literacy to increase high-stakes test scores and academic gains (Becker, 1994). Buly and Velencia (2002) supported the belief that a student's reading ability can improve substantially when instruction is integrated with…
Display integration for ground combat vehicles
NASA Astrophysics Data System (ADS)
Busse, David J.
1998-09-01
The United States Army's requirement to employ high resolution target acquisition sensors and information warfare to increase its dominance over enemy forces has led to the need to integrate advanced display devices into ground combat vehicle crew stations. The Army's force structure require the integration of advanced displays on both existing and emerging ground combat vehicle systems. The fielding of second generation target acquisition sensors, color digital terrain maps and high volume digital command and control information networks on these platforms define display performance requirements. The greatest challenge facing the system integrator is the development and integration of advanced displays that meet operational, vehicle and human computer interface performance requirements for the ground combat vehicle fleet. The subject of this paper is to address those challenges: operational and vehicle performance, non-soldier centric crew station configurations, display performance limitations related to human computer interfaces and vehicle physical environments, display technology limitations and the Department of Defense (DOD) acquisition reform initiatives. How the ground combat vehicle Program Manager and system integrator are addressing these challenges are discussed through the integration of displays on fielded, current and future close combat vehicle applications.
Highly integrated Pluto payload system (HIPPS): a sciencecraft instrument for the Pluto mission
NASA Astrophysics Data System (ADS)
Stern, S. Alan; Slater, David C.; Gibson, William; Reitsema, Harold J.; Delamere, W. Alan; Jennings, Donald E.; Reuter, D. C.; Clarke, John T.; Porco, Carolyn C.; Shoemaker, Eugene M.; Spencer, John R.
1995-09-01
We describe the design concept for the highly integrated Pluto payload system (HIPPS): a highly integrated, low-cost, light-weight, low-power instrument payload designed to fly aboard the proposed NASA Pluto flyby spacecraft destined for the Pluto/Charon system. The HIPPS payload is designed to accomplish all of the Pluto flyby prime (IA) science objectives, except radio science, set forth by NASA's Outer Planets Science Working Group (OPSWG) and the Pluto Express Science Definition Team (SDT). HIPPS contains a complement of three instrument components within one common infrastructure; these are: (1) a visible/near UV CCD imaging camera; (2) an infrared spectrograph; and (3) an ultraviolet spectrograph. A detailed description of each instrument is presented along with how they will meet the IA science requirements.
Fenna, D
1977-09-01
For nearly two decades, the development of computerized information systems has struggled for acceptable compromises between the unattainable "total system" and the unacceptable separate applications. Integration of related applications is essential if the computer is to be exploited fully, yet relative simplicity is necessary for systems to be implemented in a reasonable time-scale. This paper discusses a system being progressively developed from minimal beginnings but which, from the outset, had a highly flexible and fully integrated system basis. The system is for batch processing, but can accommodate on-line data input; it is similar in its approach to many transaction-processing real-time systems.
Grid-Integrated Electric Drive Analysis for The Ohio State University |
thermal management analysis and simulations on a high-performance, high-speed drive-developed by The Ohio as a pilot study for the future generation of energy efficient, high power density, high-speed integrated medium/high-voltage drive systems. If successful, the proposed project will significantly advance
Reducing the Risk of Human Space Missions with INTEGRITY
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Dillon-Merill, Robin L.; Tri, Terry O.; Henninger, Donald L.
2003-01-01
The INTEGRITY Program will design and operate a test bed facility to help prepare for future beyond-LEO missions. The purpose of INTEGRITY is to enable future missions by developing, testing, and demonstrating advanced human space systems. INTEGRITY will also implement and validate advanced management techniques including risk analysis and mitigation. One important way INTEGRITY will help enable future missions is by reducing their risk. A risk analysis of human space missions is important in defining the steps that INTEGRITY should take to mitigate risk. This paper describes how a Probabilistic Risk Assessment (PRA) of human space missions will help support the planning and development of INTEGRITY to maximize its benefits to future missions. PRA is a systematic methodology to decompose the system into subsystems and components, to quantify the failure risk as a function of the design elements and their corresponding probability of failure. PRA provides a quantitative estimate of the probability of failure of the system, including an assessment and display of the degree of uncertainty surrounding the probability. PRA provides a basis for understanding the impacts of decisions that affect safety, reliability, performance, and cost. Risks with both high probability and high impact are identified as top priority. The PRA of human missions beyond Earth orbit will help indicate how the risk of future human space missions can be reduced by integrating and testing systems in INTEGRITY.
Role of IAC in large space systems thermal analysis
NASA Technical Reports Server (NTRS)
Jones, G. K.; Skladany, J. T.; Young, J. P.
1982-01-01
Computer analysis programs to evaluate critical coupling effects that can significantly influence spacecraft system performance are described. These coupling effects arise from the varied parameters of the spacecraft systems, environments, and forcing functions associated with disciplines such as thermal, structures, and controls. Adverse effects can be expected to significantly impact system design aspects such as structural integrity, controllability, and mission performance. One such needed design analysis capability is a software system that can integrate individual discipline computer codes into a highly user-oriented/interactive-graphics-based analysis capability. The integrated analysis capability (IAC) system can be viewed as: a core framework system which serves as an integrating base whereby users can readily add desired analysis modules and as a self-contained interdisciplinary system analysis capability having a specific set of fully integrated multidisciplinary analysis programs that deal with the coupling of thermal, structures, controls, antenna radiation performance, and instrument optical performance disciplines.
NASA Astrophysics Data System (ADS)
Zhang, Yunju; Chen, Zhongyi; Guo, Ming; Lin, Shunsheng; Yan, Yinyang
2018-01-01
With the large capacity of the power system, the development trend of the large unit and the high voltage, the scheduling operation is becoming more frequent and complicated, and the probability of operation error increases. This paper aims at the problem of the lack of anti-error function, single scheduling function and low working efficiency for technical support system in regional regulation and integration, the integrated construction of the error prevention of the integrated architecture of the system of dispatching anti - error of dispatching anti - error of power network based on cloud computing has been proposed. Integrated system of error prevention of Energy Management System, EMS, and Operation Management System, OMS have been constructed either. The system architecture has good scalability and adaptability, which can improve the computational efficiency, reduce the cost of system operation and maintenance, enhance the ability of regional regulation and anti-error checking with broad development prospects.
Functionally-fitted energy-preserving integrators for Poisson systems
NASA Astrophysics Data System (ADS)
Wang, Bin; Wu, Xinyuan
2018-07-01
In this paper, a new class of energy-preserving integrators is proposed and analysed for Poisson systems by using functionally-fitted technology. The integrators exactly preserve energy and have arbitrarily high order. It is shown that the proposed approach allows us to obtain the energy-preserving methods derived in [12] by Cohen and Hairer (2011) and in [1] by Brugnano et al. (2012) for Poisson systems. Furthermore, we study the sufficient conditions that ensure the existence of a unique solution and discuss the order of the new energy-preserving integrators.
Huang, Yongyang; Badar, Mudabbir; Nitkowski, Arthur; Weinroth, Aaron; Tansu, Nelson; Zhou, Chao
2017-01-01
Space-division multiplexing optical coherence tomography (SDM-OCT) is a recently developed parallel OCT imaging method in order to achieve multi-fold speed improvement. However, the assembly of fiber optics components used in the first prototype system was labor-intensive and susceptible to errors. Here, we demonstrate a high-speed SDM-OCT system using an integrated photonic chip that can be reliably manufactured with high precisions and low per-unit cost. A three-layer cascade of 1 × 2 splitters was integrated in the photonic chip to split the incident light into 8 parallel imaging channels with ~3.7 mm optical delay in air between each channel. High-speed imaging (~1s/volume) of porcine eyes ex vivo and wide-field imaging (~18.0 × 14.3 mm2) of human fingers in vivo were demonstrated with the chip-based SDM-OCT system. PMID:28856055
NASA Technical Reports Server (NTRS)
Putnam, T. W.; Burcham, F. W., Jr.; Andries, M. G.; Kelly, J. B.
1985-01-01
The NASA highly integrated digital electronic control (HIDEC) program is structured to conduct flight research into the benefits of integrating an aircraft flight control system with the engine control system. A brief description of the HIDEC system installed on an F-15 aircraft is provided. The adaptive engine control system (ADECS) mode is described in detail, together with simulation results and analyses that show the significant excess thrust improvements achievable with the ADECS mode. It was found that this increased thrust capability is accompanied by reduced fan stall margin and can be realized during flight conditions where engine face distortion is low. The results of analyses and simulations also show that engine thrust response is improved and that fuel consumption can be reduced. Although the performance benefits that accrue because of airframe and engine control integration are being demonstrated on an F-15 aircraft, the principles are applicable to advanced aircraft such as the advanced tactical fighter and advanced tactical aircraft.
Broadband image sensor array based on graphene-CMOS integration
NASA Astrophysics Data System (ADS)
Goossens, Stijn; Navickaite, Gabriele; Monasterio, Carles; Gupta, Shuchi; Piqueras, Juan José; Pérez, Raúl; Burwell, Gregory; Nikitskiy, Ivan; Lasanta, Tania; Galán, Teresa; Puma, Eric; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Konstantatos, Gerasimos; Koppens, Frank
2017-06-01
Integrated circuits based on complementary metal-oxide-semiconductors (CMOS) are at the heart of the technological revolution of the past 40 years, enabling compact and low-cost microelectronic circuits and imaging systems. However, the diversification of this platform into applications other than microcircuits and visible-light cameras has been impeded by the difficulty to combine semiconductors other than silicon with CMOS. Here, we report the monolithic integration of a CMOS integrated circuit with graphene, operating as a high-mobility phototransistor. We demonstrate a high-resolution, broadband image sensor and operate it as a digital camera that is sensitive to ultraviolet, visible and infrared light (300-2,000 nm). The demonstrated graphene-CMOS integration is pivotal for incorporating 2D materials into the next-generation microelectronics, sensor arrays, low-power integrated photonics and CMOS imaging systems covering visible, infrared and terahertz frequencies.
Combining endoscopic ultrasound with Time-Of-Flight PET: The EndoTOFPET-US Project
NASA Astrophysics Data System (ADS)
Frisch, Benjamin
2013-12-01
The EndoTOFPET-US collaboration develops a multimodal imaging technique for endoscopic exams of the pancreas or the prostate. It combines the benefits of high resolution metabolic imaging with Time-Of-Flight Positron Emission Tomography (TOF PET) and anatomical imaging with ultrasound (US). EndoTOFPET-US consists of a PET head extension for a commercial US endoscope and a PET plate outside the body in coincidence with the head. The high level of miniaturization and integration creates challenges in fields such as scintillating crystals, ultra-fast photo-detection, highly integrated electronics, system integration and image reconstruction. Amongst the developments, fast scintillators as well as fast and compact digital SiPMs with single SPAD readout are used to obtain the best coincidence time resolution (CTR). Highly integrated ASICs and DAQ electronics contribute to the timing performances of EndoTOFPET. In view of the targeted resolution of around 1 mm in the reconstructed image, we present a prototype detector system with a CTR better than 240 ps FWHM. We discuss the challenges in simulating such a system and introduce reconstruction algorithms based on graphics processing units (GPU).
LIHE Spectral Dynamics and Jaguar Data Acquisition System Measurement Assurance Results 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covert, Timothy T.; Willis, Michael David; Radtke, Gregg Arthur
2015-06-01
The Light Initiated High Explosive (LIHE) facility performs high rigor, high consequence impulse testing for the nuclear weapons (NW) community. To support the facility mission, LIHE's extensive data acquisition system (DAS) is comprised of several discrete components as well as a fully integrated system. Due to the high consequence and high rigor of the testing performed at LIHE, a measurement assurance plan (MAP) was developed in collaboration with NW system customers to meet their data quality needs and to provide assurance of the robustness of the LIHE DAS. While individual components of the DAS have been calibrated by the SNLmore » Primary Standards Laboratory (PSL), the integrated nature of this complex system requires verification of the complete system, from end-to-end. This measurement assurance plan (MAP) report documents the results of verification and validation procedures used to ensure that the data quality meets customer requirements.« less
Poncelet, Ann Noelle; Mazotti, Lindsay A; Blumberg, Bruce; Wamsley, Maria A; Grennan, Tim; Shore, William B
2014-01-01
The longitudinal integrated clerkship is a model of clinical education driven by tenets of social cognitive theory, situated learning, and workplace learning theories, and built on a foundation of continuity between students, patients, clinicians, and a system of care. Principles and goals of this type of clerkship are aligned with primary care principles, including patient-centered care and systems-based practice. Academic medical centers can partner with community health systems around a longitudinal integrated clerkship to provide mutual benefits for both organizations, creating a sustainable model of clinical training that addresses medical education and community health needs. A successful one-year longitudinal integrated clerkship was created in partnership between an academic medical center and an integrated community health system. Compared with traditional clerkship students, students in this clerkship had better scores on Clinical Performance Examinations, internal medicine examinations, and high perceptions of direct observation of clinical skills. Advantages for the academic medical center include mitigating the resources required to run a longitudinal integrated clerkship while providing primary care training and addressing core competencies such as systems-based practice, practice-based learning, and interprofessional care. Advantages for the community health system include faculty development, academic appointments, professional satisfaction, and recruitment. Success factors include continued support and investment from both organizations’ leadership, high-quality faculty development, incentives for community-based physician educators, and emphasis on the mutually beneficial relationship for both organizations. Development of a longitudinal integrated clerkship in a community health system can serve as a model for developing and expanding these clerkship options for academic medical centers. PMID:24867551
Poncelet, Ann Noelle; Mazotti, Lindsay A; Blumberg, Bruce; Wamsley, Maria A; Grennan, Tim; Shore, William B
2014-01-01
The longitudinal integrated clerkship is a model of clinical education driven by tenets of social cognitive theory, situated learning, and workplace learning theories, and built on a foundation of continuity between students, patients, clinicians, and a system of care. Principles and goals of this type of clerkship are aligned with primary care principles, including patient-centered care and systems-based practice. Academic medical centers can partner with community health systems around a longitudinal integrated clerkship to provide mutual benefits for both organizations, creating a sustainable model of clinical training that addresses medical education and community health needs. A successful one-year longitudinal integrated clerkship was created in partnership between an academic medical center and an integrated community health system. Compared with traditional clerkship students, students in this clerkship had better scores on Clinical Performance Examinations, internal medicine examinations, and high perceptions of direct observation of clinical skills.Advantages for the academic medical center include mitigating the resources required to run a longitudinal integrated clerkship while providing primary care training and addressing core competencies such as systems-based practice, practice-based learning, and interprofessional care. Advantages for the community health system include faculty development, academic appointments, professional satisfaction, and recruitment.Success factors include continued support and investment from both organizations' leadership, high-quality faculty development, incentives for community-based physician educators, and emphasis on the mutually beneficial relationship for both organizations. Development of a longitudinal integrated clerkship in a community health system can serve as a model for developing and expanding these clerkship options for academic medical centers.
Microfluidic integration of parallel solid-phase liquid chromatography.
Huft, Jens; Haynes, Charles A; Hansen, Carl L
2013-03-05
We report the development of a fully integrated microfluidic chromatography system based on a recently developed column geometry that allows for robust packing of high-performance separation columns in poly(dimethylsiloxane) microfluidic devices having integrated valves made by multilayer soft lithography (MSL). The combination of parallel high-performance separation columns and on-chip plumbing was used to achieve a fully integrated system for on-chip chromatography, including all steps of automated sample loading, programmable gradient generation, separation, fluorescent detection, and sample recovery. We demonstrate this system in the separation of fluorescently labeled DNA and parallel purification of reverse transcription polymerase chain reaction (RT-PCR) amplified variable regions of mouse immunoglobulin genes using a strong anion exchange (AEX) resin. Parallel sample recovery in an immiscible oil stream offers the advantage of low sample dilution and high recovery rates. The ability to perform nucleic acid size selection and recovery on subnanogram samples of DNA holds promise for on-chip genomics applications including sequencing library preparation, cloning, and sample fractionation for diagnostics.
MR-Compatible Integrated Eye Tracking System
2016-03-10
SECURITY CLASSIFICATION OF: This instrumentation grant was used to purchase state-of-the-art, high-resolution video eye tracker that can be used to...P.O. Box 12211 Research Triangle Park, NC 27709-2211 video eye tracking, eye movments, visual search; camouflage-breaking REPORT DOCUMENTATION PAGE...Report: MR-Compatible Integrated Eye Tracking System Report Title This instrumentation grant was used to purchase state-of-the-art, high-resolution video
Sensitivities of projected 1980 photovoltaic system costs to major system cost drivers
NASA Technical Reports Server (NTRS)
Zimmerman, L. W.; Smith, J. L.
1984-01-01
The sensitivity of projected 1990 photovoltaic (PV) system costs to major system cost drivers was examined. It includes: (1) module costs and module efficiencies; (2) area related balance of system (BOS) costs; (3) inverter costs and efficiencies; and (4) module marketing and distribution markups and system integration fees. Recent PV system cost experiences and the high costs of electricity from the systems are reviewed. The 1990 system costs are projected for five classes of PV systems, including four ground mounted 5-MWp systems and one residential 5-kWp system. System cost projections are derived by first projecting costs and efficiencies for all subsystems and components. Sensitivity analyses reveal that reductions in module cost and engineering and system integration fees seem to have the greatest potential for contributing to system cost reduction. Although module cost is clearly the prime candidate for fruitful PV research and development activities, engineering and system integration fees seem to be more amenable to reduction through appropriate choice of system size and market strategy. Increases in inverter and module efficiency yield significant benefits, especially for systems with high area related costs.
A review of integration strategies for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Zhang, Xiongwen; Chan, S. H.; Li, Guojun; Ho, H. K.; Li, Jun; Feng, Zhenping
Due to increasing oil and gas demand, the depletion of fossil resources, serious global warming, efficient energy systems and new energy conversion processes are urgently needed. Fuel cells and hybrid systems have emerged as advanced thermodynamic systems with great promise in achieving high energy/power efficiency with reduced environmental loads. In particular, due to the synergistic effect of using integrated solid oxide fuel cell (SOFC) and classical thermodynamic cycle technologies, the efficiency of the integrated system can be significantly improved. This paper reviews different concepts/strategies for SOFC-based integration systems, which are timely transformational energy-related technologies available to overcome the threats posed by climate change and energy security.
Sanchez, Richard D.; Hothem, Larry D.
2002-01-01
High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.
Integrated Multi-process Microfluidic Systems for Automating Analysis
Yang, Weichun; Woolley, Adam T.
2010-01-01
Microfluidic technologies have been applied extensively in rapid sample analysis. Some current challenges for standard microfluidic systems are relatively high detection limits, and reduced resolving power and peak capacity compared to conventional approaches. The integration of multiple functions and components onto a single platform can overcome these separation and detection limitations of microfluidics. Multiplexed systems can greatly increase peak capacity in multidimensional separations and can increase sample throughput by analyzing many samples simultaneously. On-chip sample preparation, including labeling, preconcentration, cleanup and amplification, can all serve to speed up and automate processes in integrated microfluidic systems. This paper summarizes advances in integrated multi-process microfluidic systems for automated analysis, their benefits and areas for needed improvement. PMID:20514343
Podor, Renaud; Pailhon, Damien; Ravaux, Johann; Brau, Henri-Pierre
2015-04-01
We have developed two integrated thermocouple (TC) crucible systems that allow precise measurement of sample temperature when using a furnace associated with an environmental scanning electron microscope (ESEM). Sample temperatures measured with these systems are precise (±5°C) and reliable. The TC crucible systems allow working with solids and liquids (silicate melts or ionic liquids), independent of the gas composition and pressure. These sample holder designs will allow end users to perform experiments at high temperature in the ESEM chamber with high precision control of the sample temperature.
Application of fuel cells with heat recovery for integrated utility systems
NASA Technical Reports Server (NTRS)
Shields, V.; King, J. M., Jr.
1975-01-01
This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.
Integrated information in discrete dynamical systems: motivation and theoretical framework.
Balduzzi, David; Tononi, Giulio
2008-06-13
This paper introduces a time- and state-dependent measure of integrated information, phi, which captures the repertoire of causal states available to a system as a whole. Specifically, phi quantifies how much information is generated (uncertainty is reduced) when a system enters a particular state through causal interactions among its elements, above and beyond the information generated independently by its parts. Such mathematical characterization is motivated by the observation that integrated information captures two key phenomenological properties of consciousness: (i) there is a large repertoire of conscious experiences so that, when one particular experience occurs, it generates a large amount of information by ruling out all the others; and (ii) this information is integrated, in that each experience appears as a whole that cannot be decomposed into independent parts. This paper extends previous work on stationary systems and applies integrated information to discrete networks as a function of their dynamics and causal architecture. An analysis of basic examples indicates the following: (i) phi varies depending on the state entered by a network, being higher if active and inactive elements are balanced and lower if the network is inactive or hyperactive. (ii) phi varies for systems with identical or similar surface dynamics depending on the underlying causal architecture, being low for systems that merely copy or replay activity states. (iii) phi varies as a function of network architecture. High phi values can be obtained by architectures that conjoin functional specialization with functional integration. Strictly modular and homogeneous systems cannot generate high phi because the former lack integration, whereas the latter lack information. Feedforward and lattice architectures are capable of generating high phi but are inefficient. (iv) In Hopfield networks, phi is low for attractor states and neutral states, but increases if the networks are optimized to achieve tension between local and global interactions. These basic examples appear to match well against neurobiological evidence concerning the neural substrates of consciousness. More generally, phi appears to be a useful metric to characterize the capacity of any physical system to integrate information.
High-authority smart material integrated electric actuator
NASA Astrophysics Data System (ADS)
Weisensel, G. N.; Pierce, Thomas D.; Zunkel, Gary
1997-05-01
For many current applications, hydraulic power is still the preferred method of gaining mechanical advantage. However, in many of these applications, this power comes with the penalties of high weight, size, cost, and maintenance due to the system's distributed nature and redundancy requirements. A high authority smart material Integrated Electric Actuator (IEA) is a modular, self-contained linear motion device that is capable of producing dynamic output strokes similar to those of hydraulic actuators yet at significantly reduced weight and volume. It provides system simplification and miniaturization. This actuator concept has many innovative features, including a TERFENOL-D-based pump, TERFENOL-D- based active valves, control algorithms, a displacement amplification unit and integrated, unitized packaging. The IEA needs only electrical power and a control command signal as inputs to provide high authority, high response rate actuation. This approach is directly compatible with distributed control strategies. Aircraft control, automotive brakes and fuel injection, and fluid power delivery are just some examples of the IEA's pervasive applications in aerospace, defense and commercial systems.
High-speed railway real-time localization auxiliary method based on deep neural network
NASA Astrophysics Data System (ADS)
Chen, Dongjie; Zhang, Wensheng; Yang, Yang
2017-11-01
High-speed railway intelligent monitoring and management system is composed of schedule integration, geographic information, location services, and data mining technology for integration of time and space data. Assistant localization is a significant submodule of the intelligent monitoring system. In practical application, the general access is to capture the image sequences of the components by using a high-definition camera, digital image processing technique and target detection, tracking and even behavior analysis method. In this paper, we present an end-to-end character recognition method based on a deep CNN network called YOLO-toc for high-speed railway pillar plate number. Different from other deep CNNs, YOLO-toc is an end-to-end multi-target detection framework, furthermore, it exhibits a state-of-art performance on real-time detection with a nearly 50fps achieved on GPU (GTX960). Finally, we realize a real-time but high-accuracy pillar plate number recognition system and integrate natural scene OCR into a dedicated classification YOLO-toc model.
ERIC Educational Resources Information Center
Mangione, Peter L.; Lally, J. Ronald; Poole, Janet L.; Tuesta, Alicia; Paxton, Arlene R.
2011-01-01
States have placed high priority on developing early care and education systems that include early learning guidelines, curriculum, program guidelines or standards, and early childhood educator competencies. To explore how professional development and quality improvement initiatives are being integrated into emerging infant-toddler care systems,…
Installing an Integrated Information System in a Centralized Network.
ERIC Educational Resources Information Center
Mendelson, Andrew D.
1992-01-01
Many schools are looking at ways to centralize the distribution and retrieval of video, voice, and data transmissions in an integrate information system (IIS). A centralized system offers greater control of hardware and software. Describes media network planning to retrofit an Illinois' high school with a fiber optic-based IIS. (MLF)
NASA Astrophysics Data System (ADS)
Raring, James W.
The proliferation of the internet has fueled the explosive growth of telecommunications over the past three decades. As a result, the demand for communication systems providing increased bandwidth and flexibility at lower cost continues to rise. Lightwave communication systems meet these demands. The integration of multiple optoelectronic components onto a single chip could revolutionize the photonics industry. Photonic integrated circuits (PIC) provide the potential for cost reduction, decreased loss, decreased power consumption, and drastic space savings over conventional fiber optic communication systems comprised of discrete components. For optimal performance, each component within the PIC may require a unique epitaxial layer structure, band-gap energy, and/or waveguide architecture. Conventional integration methods facilitating such flexibility are increasingly complex and often result in decreased device yield, driving fabrication costs upward. It is this trade-off between performance and device yield that has hindered the scaling of photonic circuits. This dissertation presents high-functionality PICs operating at 10 and 40 Gb/s fabricated using novel integration technologies based on a robust quantum-well-intermixing (QWI) method and metal organic chemical vapor deposition (MOCVD) regrowth. We optimize the QWI process for the integration of high-performance quantum well electroabsorption modulators (QW-EAM) with sampled-grating (SG) DBR lasers to demonstrate the first widely-tunable negative chirp 10 and 40 Gb/s EAM based transmitters. Alone, QWI does not afford the integration of high-performance semiconductor optical amplifiers (SOA) and photodetectors with the transmitters. To overcome this limitation, we have developed a novel high-flexibility integration scheme combining MOCVD regrowth with QWI to merge low optical confinement factor SOAs and 40 Gb/s uni-traveling carrier (UTC) photodiodes on the same chip as the QW-EAM based transmitters. These high-saturation power receiver structures represent the state-of-the-art technologies for even discrete components. Using the novel integration technology, we present the first widely-tunable single-chip device capable of transmit and receive functionality at 40 Gb/s. This device monolithically integrates tunable lasers, EAMs, SOAs, and photodetectors with performance that rivals optimized discrete components. The high-flexibility integration scheme requires only simple blanket regrowth steps and thus breaks the performance versus yield trade-off plaguing conventional fabrication techniques employed for high-functionality PICs.
An integrated dexterous robotic testbed for space applications
NASA Technical Reports Server (NTRS)
Li, Larry C.; Nguyen, Hai; Sauer, Edward
1992-01-01
An integrated dexterous robotic system was developed as a testbed to evaluate various robotics technologies for advanced space applications. The system configuration consisted of a Utah/MIT Dexterous Hand, a PUMA 562 arm, a stereo vision system, and a multiprocessing computer control system. In addition to these major subsystems, a proximity sensing system was integrated with the Utah/MIT Hand to provide capability for non-contact sensing of a nearby object. A high-speed fiber-optic link was used to transmit digitized proximity sensor signals back to the multiprocessing control system. The hardware system was designed to satisfy the requirements for both teleoperated and autonomous operations. The software system was designed to exploit parallel processing capability, pursue functional modularity, incorporate artificial intelligence for robot control, allow high-level symbolic robot commands, maximize reusable code, minimize compilation requirements, and provide an interactive application development and debugging environment for the end users. An overview is presented of the system hardware and software configurations, and implementation is discussed of subsystem functions.
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
2010-01-01
Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents and reducing them will require a holistic integrated intervention capability. Future onboard integrated system technologies developed for preventing loss of vehicle control accidents must be able to assure safe operation under the associated off-nominal conditions. The transition of these technologies into the commercial fleet will require their extensive validation and verification (V and V) and ultimate certification. The V and V of complex integrated systems poses major nontrivial technical challenges particularly for safety-critical operation under highly off-nominal conditions associated with aircraft loss-of-control events. This paper summarizes the V and V problem and presents a proposed process that could be applied to complex integrated safety-critical systems developed for preventing aircraft loss-of-control accidents. A summary of recent research accomplishments in this effort is also provided.
Chip-scale integrated optical interconnects: a key enabler for future high-performance computing
NASA Astrophysics Data System (ADS)
Haney, Michael; Nair, Rohit; Gu, Tian
2012-01-01
High Performance Computing (HPC) systems are putting ever-increasing demands on the throughput efficiency of their interconnection fabrics. In this paper, the limits of conventional metal trace-based inter-chip interconnect fabrics are examined in the context of state-of-the-art HPC systems, which currently operate near the 1 GFLOPS/W level. The analysis suggests that conventional metal trace interconnects will limit performance to approximately 6 GFLOPS/W in larger HPC systems that require many computer chips to be interconnected in parallel processing architectures. As the HPC communications bottlenecks push closer to the processing chips, integrated Optical Interconnect (OI) technology may provide the ultra-high bandwidths needed at the inter- and intra-chip levels. With inter-chip photonic link energies projected to be less than 1 pJ/bit, integrated OI is projected to enable HPC architecture scaling to the 50 GFLOPS/W level and beyond - providing a path to Peta-FLOPS-level HPC within a single rack, and potentially even Exa-FLOPSlevel HPC for large systems. A new hybrid integrated chip-scale OI approach is described and evaluated. The concept integrates a high-density polymer waveguide fabric directly on top of a multiple quantum well (MQW) modulator array that is area-bonded to the Silicon computing chip. Grayscale lithography is used to fabricate 5 μm x 5 μm polymer waveguides and associated novel small-footprint total internal reflection-based vertical input/output couplers directly onto a layer containing an array of GaAs MQW devices configured to be either absorption modulators or photodetectors. An external continuous wave optical "power supply" is coupled into the waveguide links. Contrast ratios were measured using a test rider chip in place of a Silicon processing chip. The results suggest that sub-pJ/b chip-scale communication is achievable with this concept. When integrated into high-density integrated optical interconnect fabrics, it could provide a seamless interconnect fabric spanning the intra-
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Noh, H. S.; Kim, K. H.; Song, S. H.
2006-09-01
A collective overview and review is presented on the original work conducted on the theory, design, fabrication, and in-tegration of micro/nano-scale optical wires and photonic devices for applications in a newly-conceived photonic systems called "optical printed circuit board" (O-PCBs) and "VLSI photonic integrated circuits" (VLSI-PIC). These are aimed for compact, high-speed, multi-functional, intelligent, light-weight, low-energy and environmentally friendly, low-cost, and high-volume applications to complement or surpass the capabilities of electrical PCBs (E-PCBs) and/or VLSI electronic integrated circuit (VLSI-IC) systems. These consist of 2-dimensional or 3-dimensional planar arrays of micro/nano-optical wires and circuits to perform the functions of all-optical sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards or substrates. The integrated optical devices include micro/nano-scale waveguides, lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices, made of polymer, silicon and other semiconductor materials. For VLSI photonic integration, photonic crystals and plasmonic structures have been used. Scientific and technological issues concerning the processes of miniaturization, interconnection and integration of these systems as applicable to board-to-board, chip-to-chip, and intra-chip integration, are discussed along with applications for future computers, telecommunications, and sensor-systems. Visions and challenges toward these goals are also discussed.
NASA Astrophysics Data System (ADS)
Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun
2016-05-01
In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.
Goswami, Nandu; Batzel, Jerry J; Clément, Gilles; Stein, T Peter; Hargens, Alan R; Sharp, M Keith; Blaber, Andrew P; Roma, Peter G; Hinghofer-Szalkay, Helmut G
2013-07-01
Regulatory systems are affected in space by exposure to weightlessness, high-energy radiation or other spaceflight-induced changes. The impact of spaceflight occurs across multiple scales and systems. Exploring such interactions and interdependencies via an integrative approach provides new opportunities for elucidating these complex responses. This paper argues the case for increased emphasis on integration, systematically archiving, and the coordination of past, present and future space and ground-based analogue experiments. We also discuss possible mechanisms for such integration across disciplines and missions. This article then introduces several discipline-specific reviews that show how such integration can be implemented. Areas explored include: adaptation of the central nervous system to space; cerebral autoregulation and weightlessness; modelling of the cardiovascular system in space exploration; human metabolic response to spaceflight; and exercise, artificial gravity, and physiologic countermeasures for spaceflight. In summary, spaceflight physiology research needs a conceptual framework that extends problem solving beyond disciplinary barriers. Administrative commitment and a high degree of cooperation among investigators are needed to further such a process. Well-designed interdisciplinary research can expand opportunities for broad interpretation of results across multiple physiological systems, which may have applications on Earth.
Knowledge-based approach to system integration
NASA Technical Reports Server (NTRS)
Blokland, W.; Krishnamurthy, C.; Biegl, C.; Sztipanovits, J.
1988-01-01
To solve complex problems one can often use the decomposition principle. However, a problem is seldom decomposable into completely independent subproblems. System integration deals with problem of resolving the interdependencies and the integration of the subsolutions. A natural method of decomposition is the hierarchical one. High-level specifications are broken down into lower level specifications until they can be transformed into solutions relatively easily. By automating the hierarchical decomposition and solution generation an integrated system is obtained in which the declaration of high level specifications is enough to solve the problem. We offer a knowledge-based approach to integrate the development and building of control systems. The process modeling is supported by using graphic editors. The user selects and connects icons that represent subprocesses and might refer to prewritten programs. The graphical editor assists the user in selecting parameters for each subprocess and allows the testing of a specific configuration. Next, from the definitions created by the graphical editor, the actual control program is built. Fault-diagnosis routines are generated automatically as well. Since the user is not required to write program code and knowledge about the process is present in the development system, the user is not required to have expertise in many fields.
Moutsatsos, Ioannis K; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J; Jenkins, Jeremy L; Holway, Nicholas; Tallarico, John; Parker, Christian N
2017-03-01
High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an "off-the-shelf," open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community.
Moutsatsos, Ioannis K.; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J.; Jenkins, Jeremy L.; Holway, Nicholas; Tallarico, John; Parker, Christian N.
2016-01-01
High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an “off-the-shelf,” open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community. PMID:27899692
A dedicated database system for handling multi-level data in systems biology.
Pornputtapong, Natapol; Wanichthanarak, Kwanjeera; Nilsson, Avlant; Nookaew, Intawat; Nielsen, Jens
2014-01-01
Advances in high-throughput technologies have enabled extensive generation of multi-level omics data. These data are crucial for systems biology research, though they are complex, heterogeneous, highly dynamic, incomplete and distributed among public databases. This leads to difficulties in data accessibility and often results in errors when data are merged and integrated from varied resources. Therefore, integration and management of systems biological data remain very challenging. To overcome this, we designed and developed a dedicated database system that can serve and solve the vital issues in data management and hereby facilitate data integration, modeling and analysis in systems biology within a sole database. In addition, a yeast data repository was implemented as an integrated database environment which is operated by the database system. Two applications were implemented to demonstrate extensibility and utilization of the system. Both illustrate how the user can access the database via the web query function and implemented scripts. These scripts are specific for two sample cases: 1) Detecting the pheromone pathway in protein interaction networks; and 2) Finding metabolic reactions regulated by Snf1 kinase. In this study we present the design of database system which offers an extensible environment to efficiently capture the majority of biological entities and relations encountered in systems biology. Critical functions and control processes were designed and implemented to ensure consistent, efficient, secure and reliable transactions. The two sample cases on the yeast integrated data clearly demonstrate the value of a sole database environment for systems biology research.
Integration of image capture and processing: beyond single-chip digital camera
NASA Astrophysics Data System (ADS)
Lim, SukHwan; El Gamal, Abbas
2001-05-01
An important trend in the design of digital cameras is the integration of capture and processing onto a single CMOS chip. Although integrating the components of a digital camera system onto a single chip significantly reduces system size and power, it does not fully exploit the potential advantages of integration. We argue that a key advantage of integration is the ability to exploit the high speed imaging capability of CMOS image senor to enable new applications such as multiple capture for enhancing dynamic range and to improve the performance of existing applications such as optical flow estimation. Conventional digital cameras operate at low frame rates and it would be too costly, if not infeasible, to operate their chips at high frame rates. Integration solves this problem. The idea is to capture images at much higher frame rates than he standard frame rate, process the high frame rate data on chip, and output the video sequence and the application specific data at standard frame rate. This idea is applied to optical flow estimation, where significant performance improvements are demonstrate over methods using standard frame rate sequences. We then investigate the constraints on memory size and processing power that can be integrated with a CMOS image sensor in a 0.18 micrometers process and below. We show that enough memory and processing power can be integrated to be able to not only perform the functions of a conventional camera system but also to perform applications such as real time optical flow estimation.
Training & Personnel Systems Technology. R&D Program Description FY 84-85.
1984-04-01
performance requirements in terms of rapid response times, high rates of information processing, and complex decision making that tax the capabilities...makers to make linguistic and format changes to texts to enhance general literacy rates , (d) begin integrating human and animal data on stress ;ffects...systems are being Integrated Into the force at unprecedented rates , arrival of this sophisticated, high-technology equipment will coincide with increased
Jeon, Namju; Lee, Hyeongcheol
2016-01-01
An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed. PMID:27973431
NASA Technical Reports Server (NTRS)
Benson, H. E.; Monford, L. G., Jr.
1976-01-01
The results of a study of the application of a modular integrated utility system to six typical building types are compared with the application of a conventional utility system to the same facilities. The effects of varying the size and climatic location of the buildings and the size of the powerplants are presented. Construction details of the six building types (garden apartments, a high rise office building, high rise apartments, a shopping center, a high school, and a hospital) and typical site and floor plans are provided. The environmental effects, the unit size determination, and the market potential are discussed. The cost effectiveness of the various design options is not considered.
High-quality weather data for grid integration studies
NASA Astrophysics Data System (ADS)
Draxl, C.
2016-12-01
As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. In this talk we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather prediction to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets will be presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The Solar Integration National Dataset (SIND) is available as time synchronized with the WIND Toolkit, and will allow for combined wind-solar grid integration studies. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. Grid integration studies are also carried out in various countries, which aim at increasing their wind and solar penetration through combined wind and solar integration data sets. We will present a multi-year effort to directly support India's 24x7 energy access goal through a suite of activities aimed at enabling large-scale deployment of clean energy and energy efficiency. Another current effort is the North-American-Renewable-Integration-Study, with the aim of providing a seamless data set across borders for a whole continent, to simulate and analyze the impacts of potential future large wind and solar power penetrations on bulk power system operations.
Markoff, Laurie S; Finkelstein, Norma; Kammerer, Nina; Kreiner, Peter; Prost, Carol A
2005-01-01
This article describes the "relational systems change" model developed by the Institute for Health and Recovery, and the implementation of the model in Massachusetts from 1998-2002 to facilitate systems change to support the delivery of integrated and trauma-informed services for women with co-occurring substance abuse and mental health disorders and histories of violence and empirical evidence of resulting systems changes. The federally funded Women Embracing Life and Living (WELL) Project utilized relational strategies to facilitate systems change within and across 3 systems levels: local treatment providers, community (or region), and state. The WELL Project demonstrates that a highly collaborative, inclusive, and facilitated change process can effect services integration within agencies (intra-agency), strengthen integration within a regional network of agencies (interagency), and foster state support for services integration.
Integrating CLIPS applications into heterogeneous distributed systems
NASA Technical Reports Server (NTRS)
Adler, Richard M.
1991-01-01
SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family of 'wrapper' objects called agents, which incorporate predefined capabilities for distributed communication and control. Developers embed applications within agents and establish interactions between distributed agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL agent that is specialized for integrating C Language Integrated Production System (CLIPS)-based applications. The agent's high-level Application Programming Interface supports bidirectional flow of data, knowledge, and commands to other agents, enabling CLIPS applications to initiate interactions autonomously, and respond to requests and results from heterogeneous remote systems. The design and operation of CLIPS agents are illustrated with two distributed applications that integrate CLIPS-based expert systems with other intelligent systems for isolating and mapping problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center.
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2010-01-01
Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.
Parallel Multi-Step/Multi-Rate Integration of Two-Time Scale Dynamic Systems
NASA Technical Reports Server (NTRS)
Chang, Johnny T.; Ploen, Scott R.; Sohl, Garett. A,; Martin, Bryan J.
2004-01-01
Increasing demands on the fidelity of simulations for real-time and high-fidelity simulations are stressing the capacity of modern processors. New integration techniques are required that provide maximum efficiency for systems that are parallelizable. However many current techniques make assumptions that are at odds with non-cascadable systems. A new serial multi-step/multi-rate integration algorithm for dual-timescale continuous state systems is presented which applies to these systems, and is extended to a parallel multi-step/multi-rate algorithm. The superior performance of both algorithms is demonstrated through a representative example.
Toshiba TDF-500 High Resolution Viewing And Analysis System
NASA Astrophysics Data System (ADS)
Roberts, Barry; Kakegawa, M.; Nishikawa, M.; Oikawa, D.
1988-06-01
A high resolution, operator interactive, medical viewing and analysis system has been developed by Toshiba and Bio-Imaging Research. This system provides many advanced features including high resolution displays, a very large image memory and advanced image processing capability. In particular, the system provides CRT frame buffers capable of update in one frame period, an array processor capable of image processing at operator interactive speeds, and a memory system capable of updating multiple frame buffers at frame rates whilst supporting multiple array processors. The display system provides 1024 x 1536 display resolution at 40Hz frame and 80Hz field rates. In particular, the ability to provide whole or partial update of the screen at the scanning rate is a key feature. This allows multiple viewports or windows in the display buffer with both fixed and cine capability. To support image processing features such as windowing, pan, zoom, minification, filtering, ROI analysis, multiplanar and 3D reconstruction, a high performance CPU is integrated into the system. This CPU is an array processor capable of up to 400 million instructions per second. To support the multiple viewer and array processors' instantaneous high memory bandwidth requirement, an ultra fast memory system is used. This memory system has a bandwidth capability of 400MB/sec and a total capacity of 256MB. This bandwidth is more than adequate to support several high resolution CRT's and also the fast processing unit. This fully integrated approach allows effective real time image processing. The integrated design of viewing system, memory system and array processor are key to the imaging system. It is the intention to describe the architecture of the image system in this paper.
Desai, Monica; Rudge, James W; Adisasmito, Wiku; Mounier-Jack, Sandra; Coker, Richard
2010-11-01
The Global Fund to Fight AIDS, Tuberculosis and Malaria has played an important role in financing the response to HIV/AIDS and tuberculosis (TB) in Indonesia. As part of a series of case studies, we assessed the nature and extent of integration of Global Fund portfolios into the national HIV and TB programmes, integration of the HIV and TB programmes within the general health system, and system-wide effects of Global Fund support on the health care system in Indonesia. The study relied on a literature review and interviews with 22 key informants using the Systemic Rapid Assessment Toolkit and thematic analysis. Global Fund programmes in Indonesia are highly vertical and centralized, in contrast with the decentralized nature of the Indonesian health system. Consequently, there is more integration of all functions at local levels than centrally. There is a high level of integration of planning of Global Fund HIV and TB portfolios into the National AIDS and TB programmes and some limited integration of these programmes with other disease programmes, through joint working groups. Other synergies include strengthening of stewardship and governance and increased staff recruitment encouraged by incentive payments and training. Monitoring and evaluation functions of the Global Fund programmes are not integrated with the disease programmes, with parallel indicators and reporting systems. System-wide effects include greater awareness of governance and stewardship in response to the temporary suspension of Global Fund funding in 2008, and increased awareness of the need to integrate programme planning, financing and service delivery. Global Fund investment has freed up resources for other programmes, particularly at local levels. However, this may hinder a robust exit strategy from Global Fund funding. Furthermore, Global Fund monetary incentives may result in staff shifting into HIV and TB programmes.
A mobile robot system for ground servicing operations on the space shuttle
NASA Astrophysics Data System (ADS)
Dowling, K.; Bennett, R.; Blackwell, M.; Graham, T.; Gatrall, S.; O'Toole, R.; Schempf, H.
1992-11-01
A mobile system for space shuttle servicing, the Tessellator, has been configured, designed and is currently being built and integrated. Robot tasks include chemical injection and inspection of the shuttle's thermal protection system. This paper outlines tasks, rationale, and facility requirements for the development of this system. A detailed look at the mobile system and manipulator follow with a look at mechanics, electronics, and software. Salient features of the mobile robot include omnidirectionality, high reach, high stiffness and accuracy with safety and self-reliance integral to all aspects of the design. The robot system is shown to meet task, facility, and NASA requirements in its design resulting in unprecedented specifications for a mobile-manipulation system.
A mobile robot system for ground servicing operations on the space shuttle
NASA Technical Reports Server (NTRS)
Dowling, K.; Bennett, R.; Blackwell, M.; Graham, T.; Gatrall, S.; O'Toole, R.; Schempf, H.
1992-01-01
A mobile system for space shuttle servicing, the Tessellator, has been configured, designed and is currently being built and integrated. Robot tasks include chemical injection and inspection of the shuttle's thermal protection system. This paper outlines tasks, rationale, and facility requirements for the development of this system. A detailed look at the mobile system and manipulator follow with a look at mechanics, electronics, and software. Salient features of the mobile robot include omnidirectionality, high reach, high stiffness and accuracy with safety and self-reliance integral to all aspects of the design. The robot system is shown to meet task, facility, and NASA requirements in its design resulting in unprecedented specifications for a mobile-manipulation system.
Development and applications of 3-dimensional integration nanotechnologies.
Kim, Areum; Choi, Eunmi; Son, Hyungbin; Pyo, Sung Gyu
2014-02-01
Unlike conventional two-dimensional (2D) planar structures, signal or power is supplied through through-silicon via (TSV) in three-dimensional (3D) integration technology to replace wires for binding the chip/wafer. TSVs have becomes an essential technology, as they satisfy Moore's law. This 3D integration technology enables system and sensor functions at a nanoscale via the implementation of a highly integrated nano-semiconductor as well as the fabrication of a single chip with multiple functions. Thus, this technology is considered to be a new area of development for the systemization of the nano-bio area. In this review paper, the basic technology required for such 3D integration is described and methods to measure the bonding strength in order to measure the void occurring during bonding are introduced. Currently, CMOS image sensors and memory chips associated with nanotechnology are being realized on the basis of 3D integration technology. In this paper, we intend to describe the applications of high-performance nano-biosensor technology currently under development and the direction of development of a high performance lab-on-a-chip (LOC).
Modular integration of electronics and microfluidic systems using flexible printed circuit boards.
Wu, Amy; Wang, Lisen; Jensen, Erik; Mathies, Richard; Boser, Bernhard
2010-02-21
Microfluidic systems offer an attractive alternative to conventional wet chemical methods with benefits including reduced sample and reagent volumes, shorter reaction times, high-throughput, automation, and low cost. However, most present microfluidic systems rely on external means to analyze reaction products. This substantially adds to the size, complexity, and cost of the overall system. Electronic detection based on sub-millimetre size integrated circuits (ICs) has been demonstrated for a wide range of targets including nucleic and amino acids, but deployment of this technology to date has been limited due to the lack of a flexible process to integrate these chips within microfluidic devices. This paper presents a modular and inexpensive process to integrate ICs with microfluidic systems based on standard printed circuit board (PCB) technology to assemble the independently designed microfluidic and electronic components. The integrated system can accommodate multiple chips of different sizes bonded to glass or PDMS microfluidic systems. Since IC chips and flex PCB manufacturing and assembly are industry standards with low cost, the integrated system is economical for both laboratory and point-of-care settings.
Large-Scale Document Automation: The Systems Integration Issue.
ERIC Educational Resources Information Center
Kalthoff, Robert J.
1985-01-01
Reviews current technologies for electronic imaging and its recording and transmission, including digital recording, optical data disks, automated image-delivery micrographics, high-density-magnetic recording, and new developments in telecommunications and computers. The role of the document automation systems integrator, who will bring these…
Associating putative molecular initiating events (MIE) with downstream cell signaling pathways and modeling fetal exposure kinetics is an important challenge for integration in developmental systems toxicology. Here, we describe an integrative systems toxicology model for develop...
Thermal Storage Materials Laboratory | Energy Systems Integration Facility
| NREL Materials Laboratory Thermal Storage Materials Laboratory In the Energy Systems Integration Facility's Thermal Storage Materials Laboratory, researchers investigate materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar
Jiang, Bei; Shi, Shengnan; Song, Lun; Tan, Liang; Li, Meidi; Liu, Jiaxin; Xue, Lanlan
2016-10-01
A novel integrated system in which magnetically immobilized cells coupled with a pair of stainless iron meshes-graphite plate electrodes has been designed and operated to enhance the treatment performance of phenolic wastewater under high salinity. With NaCl concentration increased, phenol, o-cresol, m-cresol, p-cresol and COD removal rates by integrated system increased significantly, which were obviously higher than the sum of removal rates by single magnetically immobilized cells and electrode reaction. This integrated system exhibited higher removal rates for all the compounds than that by single magnetically immobilized cells during six cycles for reuse, and it still performed better, even when the voltage was cut off. These results indicated that there was a coupling effect between biodegradation and electrode reaction. The investigation of phenol hydroxylase activity and cells concentration confirmed that electrode reaction played an important role in this coupling effect. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Owen, Robert B.; Gyekenyesi, Andrew L.; Inman, Daniel J.; Ha, Dong S.
2011-01-01
The Integrated Vehicle Health Management (IVHM) Project, sponsored by NASA's Aeronautics Research Mission Directorate, is conducting research to advance the state of highly integrated and complex flight-critical health management technologies and systems. An effective IVHM system requires Structural Health Monitoring (SHM). The impedance method is one such SHM technique for detection and monitoring complex structures for damage. This position paper on the impedance method presents the current state of the art, future directions, applications and possible flight test demonstrations.
VLSI technology for smaller, cheaper, faster return link systems
NASA Technical Reports Server (NTRS)
Nanzetta, Kathy; Ghuman, Parminder; Bennett, Toby; Solomon, Jeff; Dowling, Jason; Welling, John
1994-01-01
Very Large Scale Integration (VLSI) Application-specific Integrated Circuit (ASIC) technology has enabled substantially smaller, cheaper, and more capable telemetry data systems. However, the rapid growth in available ASIC fabrication densities has far outpaced the application of this technology to telemetry systems. Available densities have grown by well over an order magnitude since NASA's Goddard Space Flight Center (GSFC) first began developing ASIC's for ground telemetry systems in 1985. To take advantage of these higher integration levels, a new generation of ASIC's for return link telemetry processing is under development. These new submicron devices are designed to further reduce the cost and size of NASA return link processing systems while improving performance. This paper describes these highly integrated processing components.
Deconinck, Hedwig; Hallarou, Mahaman Elh; Pesonen, Anais; Gérard, Jean Christophe; Criel, Bart; Donnen, Philippe; Macq, Jean
2016-12-01
Since 2007 to address a high burden, integration of acute malnutrition has been promoted in Niger. This paper studies factors that influenced the integration process of acute malnutrition into the Niger national health system.We used qualitative methods of observation, key informant interviews and focus group discussions at national level, two districts and nine communities selected through convenience sampling, as well as document review. A framework approach constructed around the problem, intervention, adoption system, health system characteristics and broad context guided the analysis. Data were recorded on paper, transcribed in a descriptive record, coded by themes deduced by building on the framework and triangulated for comprehensiveness.Key facilitating factors identified were knowledge and recognition of the problem helped by accurate information; effectiveness of decentralized continuity of care; compatibility with goals, support and involvement of health actors; and leadership for aligning policies and partnerships and mobilizing resources within a favourable political context driven by multisectoral development goals. Key hindering factors identified were not fully understanding severity, causes and consequences of the problem; limited utilization and trust in health interventions; high workload, and health worker turnover and attrition; and high dependence on financial and technical support based on short-term emergency funding within a context of high demographic pressure.The study uncovered influencing factors of integrating acute malnutrition into the national health system and their complex dynamics and relationships. It elicited the need for goal-oriented strategies and alignment of health actors to achieve sustainability, and systems thinking to understand pathways that foster integration. We recommend that context-specific learning of integrating acute malnutrition may expand to include causal modelling and scenario testing to inform strategy designs. The method may also be applied to monitor progress of integrating nutrition by the multisectoral nutrition plan to guide change. © The Author 2016. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Panek, Joseph W.
2001-01-01
The proper operation of the Electronically Scanned Pressure (ESP) System critical to accomplish the following goals: acquisition of highly accurate pressure data for the development of aerospace and commercial aviation systems and continuous confirmation of data quality to avoid costly, unplanned, repeat wind tunnel or turbine testing. Standard automated setup and checkout routines are necessary to accomplish these goals. Data verification and integrity checks occur at three distinct stages, pretest pressure tubing and system checkouts, daily system validation and in-test confirmation of critical system parameters. This paper will give an overview of the existing hardware, software and methods used to validate data integrity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hicks, Michael; Erickson, Paul; Lawrence, Richard
Off-road concerns are related to the effects of shock and vibration and air quality on fuel cell power requirements. Mechanical stresses on differing material makeup and mass distribution within the system may render some components susceptible to impulse trauma while others may show adverse effects from harmonic disturbances or broad band mechanical agitation. One of the recognized challenges in fuel cell systems air purification is in providing a highly efficient particulate and chemical filter with minimal pressure drop. PEM integrators do not want additional parasitic loads added to the system as compensation for a highly efficient yet highly restrictive filter.more » Additionally, there is challenge in integrating multiple functions into a single air intake module tasked with effectively filtering high dust loads, diesel soot, pesticides, ammonias, and other anticipated off-road contaminants. This project has investigated both off-road associated issues cumulating in the prototype build and testing of two light duty off-road vehicles with integrated fuel cell power plant systems.« less
Integrating Social Services and Home-Based Primary Care for High-Risk Patients.
Feinglass, Joe; Norman, Greg; Golden, Robyn L; Muramatsu, Naoko; Gelder, Michael; Cornwell, Thomas
2018-04-01
There is a consensus that our current hospital-intensive approach to care is deeply flawed. This review article describes the research evidence for developing a better system of care for high-cost, high-risk patients. It reviews the evidence that home-centered care and integration of health care with social services are the cornerstones of a more humane and efficient system. The article describes the strengths and weaknesses of research evaluating the effects of social services in addressing social determinants of health, and how social support is critical to successful acute care transition programs. It reviews the history of incorporating social services into care management, and the prospects that recent payment reforms and regulatory initiatives can succeed in stimulating the financial integration of social services into new care coordination initiatives. The article reviews the literature on home-based primary care for the chronically ill and disabled, and suggests that it is the emergence of this care modality that holds the greatest promise for delivery system reform. In the hope of stimulating further discussion and debate, the authors summarize existing viewpoints on how a home-centered system, which integrates social and medical services, might emerge in the next few years.
High-Performance Computing and Visualization | Energy Systems Integration
Facility | NREL High-Performance Computing and Visualization High-Performance Computing and Visualization High-performance computing (HPC) and visualization at NREL propel technology innovation as a . Capabilities High-Performance Computing NREL is home to Peregrine-the largest high-performance computing system
Integrated Flight-propulsion Control Concepts for Supersonic Transport Airplanes
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Gilyard, Glenn B.; Gelhausen, Paul A.
1990-01-01
Integration of propulsion and flight control systems will provide significant performance improvements for supersonic transport airplanes. Increased engine thrust and reduced fuel consumption can be obtained by controlling engine stall margin as a function of flight and engine operating conditions. Improved inlet pressure recovery and decreased inlet drag can result from inlet control system integration. Using propulsion system forces and moments to augment the flight control system and airplane stability can reduce the flight control surface and tail size, weight, and drag. Special control modes may also be desirable for minimizing community noise and for emergency procedures. The overall impact of integrated controls on the takeoff gross weight for a generic high speed civil transport is presented.
NASA Technical Reports Server (NTRS)
Ponchak, Denise (Compiler)
2006-01-01
The Integrated Communications, Navigation and Surveillance (ICNS) Technologies Conference and Workshop provides a forum for government, industry, and academic communities performing research and technology development for advanced digital communications, navigation, and surveillance security systems and associated applications supporting the national and global air transportation systems. The event s goals are to understand current efforts and recent results in near- and far-term research and technology demonstration; identify integrated digital communications, navigation and surveillance research requirements necessary for a safe, high-capacity, advanced air transportation system; foster collaboration and coordination among all stakeholders; and discuss critical issues and develop recommendations to achieve the future integrated CNS vision for the national and global air transportation system.
NASA Technical Reports Server (NTRS)
Fujikawa, Gene (Compiler)
2004-01-01
The Integrated Communications, Navigational and Surveillance (ICNS) Technologies Conference and Workshop provides a forum for Government, industry, and academic communities performing research and technology development for advanced digital communications, navigation, and surveillance security systems and associated applications supporting the national and global air transportation systems. The event's goals are to understand current efforts and recent results in near-and far-term research and technology demonstration; identify integrated digital communications, navigation and surveillance research requirements necessary for a safe, high-capacity, advanced air transportation system; foster collaboration and coordination among all stakeholders; and discuss critical issues and develop recommendations to achieve the future integrated CNS vision for the national and global air transportation system.
Han, Houzeng; Wang, Jian; Wang, Jinling; Tan, Xinglong
2015-01-01
The integration of Global Navigation Satellite Systems (GNSS) carrier phases with Inertial Navigation System (INS) measurements is essential to provide accurate and continuous position, velocity and attitude information, however it is necessary to fix ambiguities rapidly and reliably to obtain high accuracy navigation solutions. In this paper, we present the notion of combining the Global Positioning System (GPS), the BeiDou Navigation Satellite System (BDS) and low-cost micro-electro-mechanical sensors (MEMS) inertial systems for reliable navigation. An adaptive multipath factor-based tightly-coupled (TC) GPS/BDS/INS integration algorithm is presented and the overall performance of the integrated system is illustrated. A twenty seven states TC GPS/BDS/INS model is adopted with an extended Kalman filter (EKF), which is carried out by directly fusing ambiguity fixed double-difference (DD) carrier phase measurements with the INS predicted pseudoranges to estimate the error states. The INS-aided integer ambiguity resolution (AR) strategy is developed by using a dynamic model, a two-step estimation procedure is applied with adaptively estimated covariance matrix to further improve the AR performance. A field vehicular test was carried out to demonstrate the positioning performance of the combined system. The results show the TC GPS/BDS/INS system significantly improves the single-epoch AR reliability as compared to that of GPS/BDS-only or single satellite navigation system integrated strategy, especially for high cut-off elevations. The AR performance is also significantly improved for the combined system with adaptive covariance matrix in the presence of low elevation multipath related to the GNSS-only case. A total of fifteen simulated outage tests also show that the time to relock of the GPS/BDS signals is shortened, which improves the system availability. The results also indicate that TC integration system achieves a few centimeters accuracy in positioning based on the comparison analysis and covariance analysis, even in harsh environments (e.g., in urban canyons), thus we can see the advantage of positioning at high cut-off elevations that the combined GPS/BDS brings. PMID:25875191
Han, Houzeng; Wang, Jian; Wang, Jinling; Tan, Xinglong
2015-04-14
The integration of Global Navigation Satellite Systems (GNSS) carrier phases with Inertial Navigation System (INS) measurements is essential to provide accurate and continuous position, velocity and attitude information, however it is necessary to fix ambiguities rapidly and reliably to obtain high accuracy navigation solutions. In this paper, we present the notion of combining the Global Positioning System (GPS), the BeiDou Navigation Satellite System (BDS) and low-cost micro-electro-mechanical sensors (MEMS) inertial systems for reliable navigation. An adaptive multipath factor-based tightly-coupled (TC) GPS/BDS/INS integration algorithm is presented and the overall performance of the integrated system is illustrated. A twenty seven states TC GPS/BDS/INS model is adopted with an extended Kalman filter (EKF), which is carried out by directly fusing ambiguity fixed double-difference (DD) carrier phase measurements with the INS predicted pseudoranges to estimate the error states. The INS-aided integer ambiguity resolution (AR) strategy is developed by using a dynamic model, a two-step estimation procedure is applied with adaptively estimated covariance matrix to further improve the AR performance. A field vehicular test was carried out to demonstrate the positioning performance of the combined system. The results show the TC GPS/BDS/INS system significantly improves the single-epoch AR reliability as compared to that of GPS/BDS-only or single satellite navigation system integrated strategy, especially for high cut-off elevations. The AR performance is also significantly improved for the combined system with adaptive covariance matrix in the presence of low elevation multipath related to the GNSS-only case. A total of fifteen simulated outage tests also show that the time to relock of the GPS/BDS signals is shortened, which improves the system availability. The results also indicate that TC integration system achieves a few centimeters accuracy in positioning based on the comparison analysis and covariance analysis, even in harsh environments (e.g., in urban canyons), thus we can see the advantage of positioning at high cut-off elevations that the combined GPS/BDS brings.
Reflections on Centaur Upper Stage Integration by the NASA Lewis (Glenn) Research Center
NASA Technical Reports Server (NTRS)
Graham, Scott R.
2015-01-01
The NASA Glenn (then Lewis) Research Center (GRC) led several expendable launch vehicle (ELV) projects from 1963 to 1998, most notably the Centaur upper stage. These major, comprehensive projects included system management, system development, integration (both payload and stage), and launch operations. The integration role that GRC pioneered was truly unique and highly successful. Its philosophy, scope, and content were not just invaluable to the missions and vehicles it supported, but also had significant Agency-wide benefits. An overview of the NASA Lewis Research Center (now the NASA Glenn Research Center) philosophy on ELV integration is provided, focusing on Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur vehicles and programs. The necessity of having a stable, highly technically competent in-house staff is discussed. Significant depth of technical penetration of contractor work is another critical component. Functioning as a cohesive team was more than a concept: GRC senior management, NASA Headquarters, contractors, payload users, and all staff worked together. The scope, content, and history of launch vehicle integration at GRC are broadly discussed. Payload integration is compared to stage development integration in terms of engineering and organization. Finally, the transition from buying launch vehicles to buying launch services is discussed, and thoughts on future possibilities of employing the successful GRC experience in integrating ELV systems like Centaur are explored.
Reflections on Centaur Upper Stage Integration by the NASA Lewis (Glenn) Research Center
NASA Technical Reports Server (NTRS)
Graham, Scott R.
2014-01-01
The NASA Glenn (then Lewis) Research Center (GRC) led several expendable launch vehicle (ELV) projects from 1963 to 1998, most notably the Centaur upper stage. These major, comprehensive projects included system management, system development, integration (both payload and stage), and launch operations. The integration role that GRC pioneered was truly unique and highly successful. Its philosophy, scope, and content were not just invaluable to the missions and vehicles it supported, but also had significant Agencywide benefits. An overview of the NASA Lewis Research Center (now the NASA Glenn Research Center) philosophy on ELV integration is provided, focusing on Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur vehicles and programs. The necessity of having a stable, highly technically competent in-house staff is discussed. Significant depth of technical penetration of contractor work is another critical component. Functioning as a cohesive team was more than a concept: GRC senior management, NASA Headquarters, contractors, payload users, and all staff worked together. The scope, content, and history of launch vehicle integration at GRC are broadly discussed. Payload integration is compared to stage development integration in terms of engineering and organization. Finally, the transition from buying launch vehicles to buying launch services is discussed, and thoughts on future possibilities of employing the successful GRC experience in integrating ELV systems like Centaur are explored.
Brief Communication: A low-cost Arduino®-based wire extensometer for earth flow monitoring
NASA Astrophysics Data System (ADS)
Guerriero, Luigi; Guerriero, Giovanni; Grelle, Gerardo; Guadagno, Francesco M.; Revellino, Paola
2017-06-01
Continuous monitoring of earth flow displacement is essential for the understanding of the dynamic of the process, its ongoing evolution and designing mitigation measures. Despite its importance, it is not always applied due to its expense and the need for integration with additional sensors to monitor factors controlling movement. To overcome these problems, we developed and tested a low-cost Arduino-based wire-rail extensometer integrating a data logger, a power system and multiple digital and analog inputs. The system is equipped with a high-precision position transducer that in the test configuration offers a measuring range of 1023 mm and an associated accuracy of ±1 mm, and integrates an operating temperature sensor that should allow potential thermal drift that typically affects this kind of systems to be identified and corrected. A field test, conducted at the Pietrafitta earth flow where additional monitoring systems had been installed, indicates a high reliability of the measurement and a high monitoring stability without visible thermal drift.
ATD-1 ATM Technology Demonstration-1 and Integrated Scheduling
NASA Technical Reports Server (NTRS)
Quon, Leighton
2014-01-01
Enabling efficient arrivals for the NextGen Air Traffic Management System and developing a set of integrated decision support tools to reduce the high cognitive workload so that controllers are able to simultaneously achieve safe, efficient, and expedient operations at high traffic demand levels.
Park, Heun; Kim, Dong Sik; Hong, Soo Yeong; Kim, Chulmin; Yun, Jun Yeong; Oh, Seung Yun; Jin, Sang Woo; Jeong, Yu Ra; Kim, Gyu Tae; Ha, Jeong Sook
2017-06-08
In this study, we report on the development of a stretchable, transparent, and skin-attachable strain sensor integrated with a flexible electrochromic device as a human skin-inspired interactive color-changing system. The strain sensor consists of a spin-coated conductive nanocomposite film of poly(vinyl alcohol)/multi-walled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) on a polydimethylsiloxane substrate. The sensor exhibits excellent performance of high sensitivity, high durability, fast response, and high transparency. An electrochromic device (ECD) made of electrochemically synthesized polyaniline nanofibers and V 2 O 5 on an indium-tin-oxide-coated polyethylene terephthalate film experiences a change in color from yellow to dark blue on application of voltage. The strain sensor and ECD are integrated on skin via an Arduino circuit for an interactive color change with the variation of the applied strain, which enables a real-time visual display of body motion. This integrated system demonstrates high potential for use in interactive wearable devices, military applications, and smart robots.
High-speed flight propulsion systems. Progress in Astronautics and Aeronautics. Vol. 137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, S.N.B.; Curran, E.T.
1991-01-01
Various papers on high-speed flight propulsion systems are presented. The topics addressed are: propulsion systems from takeoff to high-speed flight, propulsion system performance and integration for high Mach air-breathing flight, energy analysis of high-speed flight systems, waves and thermodynamics in high Mach number propulsive ducts, turbulent free shear layer mixing and combustion, turbulent mixing in supersonic combustion systems, mixing and mixing enhancement in supersonic reacting flowfields, study of combustion and heat-exchange processes in high-enthalpy short-duration facilities, and facility requirements for hypersonic propulsion system testing.
System-level integration of active silicon photonic biosensors
NASA Astrophysics Data System (ADS)
Laplatine, L.; Al'Mrayat, O.; Luan, E.; Fang, C.; Rezaiezadeh, S.; Ratner, D. M.; Cheung, K.; Dattner, Y.; Chrostowski, L.
2017-02-01
Biosensors based on silicon photonic integrated circuits have attracted a growing interest in recent years. The use of sub-micron silicon waveguides to propagate near-infrared light allows for the drastic reduction of the optical system size, while increasing its complexity and sensitivity. Using silicon as the propagating medium also leverages the fabrication capabilities of CMOS foundries, which offer low-cost mass production. Researchers have deeply investigated photonic sensor devices, such as ring resonators, interferometers and photonic crystals, but the practical integration of silicon photonic biochips as part of a complete system has received less attention. Herein, we present a practical system-level architecture which can be employed to integrate the aforementioned photonic biosensors. We describe a system based on 1 mm2 dies that integrate germanium photodetectors and a single light coupling device. The die are embedded into a 16x16 mm2 epoxy package to enable microfluidic and electrical integration. First, we demonstrate a simple process to mimic Fan-Out Wafer-level-Packaging, which enables low-cost mass production. We then characterize the photodetectors in the photovoltaic mode, which exhibit high sensitivity at low optical power. Finally, we present a new grating coupler concept to relax the lateral alignment tolerance down to +/- 50 μm at 1-dB (80%) power penalty, which should permit non-experts to use the biochips in a"plug-and-play" style. The system-level integration demonstrated in this study paves the way towards the mass production of low-cost and highly sensitive biosensors, and can facilitate their wide adoption for biomedical and agro-environmental applications.
Single String Integration Test of the High Voltage Hall Accelerator System
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Haag, Thomas W.; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Shastry, Rohit
2013-01-01
HiVHAc Task Objectives:-Develop and demonstrate low-power, long-life Hall thruster technology to enable cost effective EP for Discovery-class missions-Advance the TRL level of potential power processing units and xenon feed systems to integrate with the HiVHAc thruster.
Development and flight test experiences with a flight-crucial digital control system
NASA Technical Reports Server (NTRS)
Mackall, Dale A.
1988-01-01
Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.
Direct Sensor Orientation of a Land-Based Mobile Mapping System
Rau, Jiann-Yeou; Habib, Ayman F.; Kersting, Ana P.; Chiang, Kai-Wei; Bang, Ki-In; Tseng, Yi-Hsing; Li, Yu-Hua
2011-01-01
A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy. PMID:22164015
High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned
NASA Technical Reports Server (NTRS)
Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig
2014-01-01
The integration and deployment testing of the High Gain Antenna System (HGAS) for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission-degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity-negation mechanism, and use of dynamic modeling is described and lessons learned presented
High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned
NASA Technical Reports Server (NTRS)
Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig
2014-01-01
The integration and deployment testing of the High Gain Antenna System for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based, deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity negation mechanism, and use of dynamic modeling is described and lessons learned presented.
Operability driven space system concept with high leverage technologies
NASA Astrophysics Data System (ADS)
Woo, Henry H.
1997-01-01
One of the common objectives of future launch and space transfer systems is to achieve low-cost and effective operational capability by automating processes from pre-launch to the end of mission. Hierarchical and integrated mission management, system management, autonomous GN&C, and integrated micro-nano avionics technologies are critical to extend or revitalize the exploitation of space. Essential to space transfer, orbital systems, Earth-To-Orbit (ETO), commercial and military aviation, and planetary systems are these high leverage hardware and software technologies. This paper covers the driving issues, goals, and requirements definition supported with typical concepts and utilization of multi-use technologies. The approach and method results in a practical system architecture and lower level design concepts.
A vision for an ultra-high resolution integrated water cycle observation and prediction system
NASA Astrophysics Data System (ADS)
Houser, P. R.
2013-05-01
Society's welfare, progress, and sustainable economic growth—and life itself—depend on the abundance and vigorous cycling and replenishing of water throughout the global environment. The water cycle operates on a continuum of time and space scales and exchanges large amounts of energy as water undergoes phase changes and is moved from one part of the Earth system to another. We must move toward an integrated observation and prediction paradigm that addresses broad local-to-global science and application issues by realizing synergies associated with multiple, coordinated observations and prediction systems. A central challenge of a future water and energy cycle observation strategy is to progress from single variable water-cycle instruments to multivariable integrated instruments in electromagnetic-band families. The microwave range in the electromagnetic spectrum is ideally suited for sensing the state and abundance of water because of water's dielectric properties. Eventually, a dedicated high-resolution water-cycle microwave-based satellite mission may be possible based on large-aperture antenna technology that can harvest the synergy that would be afforded by simultaneous multichannel active and passive microwave measurements. A partial demonstration of these ideas can even be realized with existing microwave satellite observations to support advanced multivariate retrieval methods that can exploit the totality of the microwave spectral information. The simultaneous multichannel active and passive microwave retrieval would allow improved-accuracy retrievals that are not possible with isolated measurements. Furthermore, the simultaneous monitoring of several of the land, atmospheric, oceanic, and cryospheric states brings synergies that will substantially enhance understanding of the global water and energy cycle as a system. The multichannel approach also affords advantages to some constituent retrievals—for instance, simultaneous retrieval of vegetation biomass would improve soil-moisture retrieval by avoiding the need for auxiliary vegetation information. This multivariable water-cycle observation system must be integrated with high-resolution, application relevant prediction systems to optimize their information content and utility is addressing critical water cycle issues. One such vision is a real-time ultra-high resolution locally-moasiced global land modeling and assimilation system, that overlays regional high-fidelity information over a baseline global land prediction system. Such a system would provide the best possible local information for use in applications, while integrating and sharing information globally for diagnosing larger water cycle variability. In a sense, this would constitute a hydrologic telecommunication system, where the best local in-situ gage, Doppler radar, and weather station can be shared internationally, and integrated in a consistent manner with global observation platforms like the multivariable water cycle mission. To realize such a vision, large issues must be addressed, such as international data sharing policy, model-observation integration approaches that maintain local extremes while achieving global consistency, and methods for establishing error estimates and uncertainty.
Design and integration of an all-in-one biomicrofluidic chip
Liu, Liyu; Cao, Wenbin; Wu, Jingbo; Wen, Weijia; Chang, Donald Choy; Sheng, Ping
2008-01-01
We demonstrate a highly integrated microfluidic chip with the function of DNA amplification. The integrated chip combines giant electrorheological-fluid actuated micromixer and micropump with a microheater array, all formed using soft lithography. Internal functional components are based on polydimethylsiloxane (PDMS) and silver∕carbon black-PDMS composites. The system has the advantages of small size with a high degree of integration, high polymerase chain reaction efficiency, digital control and simple fabrication at low cost. This integration approach shows promise for a broad range of applications in chemical synthesis and biological sensing∕analysis, as different components can be combined to target desired functionalities, with flexible designs of different microchips easily realizable through soft lithography. PMID:19693370
Integrating Waste Heat from CO 2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irvin, Nick; Kowalczyk, Joseph
In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO 2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO 2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO 2 Cooler which uses product CO 2 gas from themore » capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO 2 Cooler used waste heat from the 25-MW CO 2 capture plant (but not always from product CO 2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO 2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption, a decrease in toxic air emissions, and better overall air quality control systems performance.« less
A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits.
Bie, Ya-Qing; Grosso, Gabriele; Heuck, Mikkel; Furchi, Marco M; Cao, Yuan; Zheng, Jiabao; Bunandar, Darius; Navarro-Moratalla, Efren; Zhou, Lin; Efetov, Dmitri K; Taniguchi, Takashi; Watanabe, Kenji; Kong, Jing; Englund, Dirk; Jarillo-Herrero, Pablo
2017-12-01
One of the current challenges in photonics is developing high-speed, power-efficient, chip-integrated optical communications devices to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, in part because of the promise that many components, such as waveguides, couplers, interferometers and modulators, could be directly integrated on silicon-based processors. However, light sources and photodetectors present ongoing challenges. Common approaches for light sources include one or few off-chip or wafer-bonded lasers based on III-V materials, but recent system architecture studies show advantages for the use of many directly modulated light sources positioned at the transmitter location. The most advanced photodetectors in the silicon photonic process are based on germanium, but this requires additional germanium growth, which increases the system cost. The emerging two-dimensional transition-metal dichalcogenides (TMDs) offer a path for optical interconnect components that can be integrated with silicon photonics and complementary metal-oxide-semiconductors (CMOS) processing by back-end-of-the-line steps. Here, we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe 2 , a TMD semiconductor with an infrared bandgap. This state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.
A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits
NASA Astrophysics Data System (ADS)
Bie, Ya-Qing; Grosso, Gabriele; Heuck, Mikkel; Furchi, Marco M.; Cao, Yuan; Zheng, Jiabao; Bunandar, Darius; Navarro-Moratalla, Efren; Zhou, Lin; Efetov, Dmitri K.; Taniguchi, Takashi; Watanabe, Kenji; Kong, Jing; Englund, Dirk; Jarillo-Herrero, Pablo
2017-12-01
One of the current challenges in photonics is developing high-speed, power-efficient, chip-integrated optical communications devices to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, in part because of the promise that many components, such as waveguides, couplers, interferometers and modulators, could be directly integrated on silicon-based processors. However, light sources and photodetectors present ongoing challenges. Common approaches for light sources include one or few off-chip or wafer-bonded lasers based on III-V materials, but recent system architecture studies show advantages for the use of many directly modulated light sources positioned at the transmitter location. The most advanced photodetectors in the silicon photonic process are based on germanium, but this requires additional germanium growth, which increases the system cost. The emerging two-dimensional transition-metal dichalcogenides (TMDs) offer a path for optical interconnect components that can be integrated with silicon photonics and complementary metal-oxide-semiconductors (CMOS) processing by back-end-of-the-line steps. Here, we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe2, a TMD semiconductor with an infrared bandgap. This state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.
NASA Technical Reports Server (NTRS)
1991-01-01
Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.
Integrating Variable Renewable Energy - Russia
DOE Office of Scientific and Technical Information (OSTI.GOV)
To foster sustainable, low-emission development, many countries are establishing ambitious renewable energy targets for their electricity supply. Because solar and wind tend to be more variable and uncertain than conventional sources, meeting these targets will involve changes to power system planning and operations. Grid integration is the practice of developing efficient ways to deliver variable renewable energy (VRE) to the grid. Good integration methods maximize the cost-effectiveness of incorporating VRE into the power system while maintaining or increasing system stability and reliability. When considering grid integration, policy makers, regulators, and system operators consider a variety of issues, which can bemore » organized into four broad topics: New Renewable Energy Generation, New Transmission, Increased System Flexibility, Planning for a High RE Future. This is a Russian-language translation of Integrating Variable Renewable Energy into the Grid: Key Issues, Greening the Grid, originally published in English in May 2015.« less
Integrating Variable Renewable Energy into the Grid: Key Issues, Greening the Grid (Spanish Version)
DOE Office of Scientific and Technical Information (OSTI.GOV)
This is the Spanish version of 'Greening the Grid - Integrating Variable Renewable Energy into the Grid: Key Issues'. To foster sustainable, low-emission development, many countries are establishing ambitious renewable energy targets for their electricity supply. Because solar and wind tend to be more variable and uncertain than conventional sources, meeting these targets will involve changes to power system planning and operations. Grid integration is the practice of developing efficient ways to deliver variable renewable energy (VRE) to the grid. Good integration methods maximize the cost-effectiveness of incorporating VRE into the power system while maintaining or increasing system stability andmore » reliability. When considering grid integration, policy makers, regulators, and system operators consider a variety of issues, which can be organized into four broad topics: New Renewable Energy Generation, New Transmission, Increased System Flexibility, and Planning for a High RE Future.« less
System Engineering and Integration of Controls for Advanced Life Support
NASA Technical Reports Server (NTRS)
Overland, David; Hoo, Karlene; Ciskowski, Marvin
2006-01-01
The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies. Although systems such as the water bioreactors exhibit the complexities of interactions between control schemes most vividly, it is apparent that this behavior and its attendant risks will manifest itself among any set of interdependent autonomous control systems. A methodology for developing integration requirements for interdependent and autonomous systems is a goal of this team and this testbed. This paper is a high-level summary of the current status of the investigation, the issues encountered, some tentative conclusions, and the direction expected for further research.
Systems study for an Integrated Digital-Electric Aircraft (IDEA)
NASA Technical Reports Server (NTRS)
Tagge, G. E.; Irish, L. A.; Bailey, A. R.
1985-01-01
The results of the Integrated Digital/Electric Aircraft (IDEA) Study are presented. Airplanes with advanced systems were, defined and evaluated, as a means of identifying potential high payoff research tasks. A baseline airplane was defined for comparison, typical of a 1990's airplane with advanced active controls, propulsion, aerodynamics, and structures technology. Trade studies led to definition of an IDEA airplane, with extensive digital systems and electric secondary power distribution. This airplane showed an improvement of 3% in fuel use and 1.8% in DOC relative to the baseline configuration. An alternate configuration, an advanced technology turboprop, was also evaluated, with greater improvement supported by digital electric systems. Recommended research programs were defined for high risk, high payoff areas appropriate for implementation under NASA leadership.
Chip-scale sensor system integration for portable health monitoring.
Jokerst, Nan M; Brooke, Martin A; Cho, Sang-Yeon; Shang, Allan B
2007-12-01
The revolution in integrated circuits over the past 50 yr has produced inexpensive computing and communications systems that are powerful and portable. The technologies for these integrated chip-scale sensing systems, which will be miniature, lightweight, and portable, are emerging with the integration of sensors with electronics, optical systems, micromachines, microfluidics, and the integration of chemical and biological materials (soft/wet material integration with traditional dry/hard semiconductor materials). Hence, we stand at a threshold for health monitoring technology that promises to provide wearable biochemical sensing systems that are comfortable, inauspicious, wireless, and battery-operated, yet that continuously monitor health status, and can transmit compressed data signals at regular intervals, or alarm conditions immediately. In this paper, we explore recent results in chip-scale sensor integration technology for health monitoring. The development of inexpensive chip-scale biochemical optical sensors, such as microresonators, that are customizable for high sensitivity coupled with rapid prototyping will be discussed. Ground-breaking work in the integration of chip-scale optical systems to support these optical sensors will be highlighted, and the development of inexpensive Si complementary metal-oxide semiconductor circuitry (which makes up the vast majority of computational systems today) for signal processing and wireless communication with local receivers that lie directly on the chip-scale sensor head itself will be examined.
High frequency signal acquisition and control system based on DSP+FPGA
NASA Astrophysics Data System (ADS)
Liu, Xiao-qi; Zhang, Da-zhi; Yin, Ya-dong
2017-10-01
This paper introduces a design and implementation of high frequency signal acquisition and control system based on DSP + FPGA. The system supports internal/external clock and internal/external trigger sampling. It has a maximum sampling rate of 400MBPS and has a 1.4GHz input bandwidth for the ADC. Data can be collected continuously or periodically in systems and they are stored in DDR2. At the same time, the system also supports real-time acquisition, the collected data after digital frequency conversion and Cascaded Integrator-Comb (CIC) filtering, which then be sent to the CPCI bus through the high-speed DSP, can be assigned to the fiber board for subsequent processing. The system integrates signal acquisition and pre-processing functions, which uses high-speed A/D, high-speed DSP and FPGA mixed technology and has a wide range of uses in data acquisition and recording. In the signal processing, the system can be seamlessly connected to the dedicated processor board. The system has the advantages of multi-selectivity, good scalability and so on, which satisfies the different requirements of different signals in different projects.
Integrated network analysis and effective tools in plant systems biology
Fukushima, Atsushi; Kanaya, Shigehiko; Nishida, Kozo
2014-01-01
One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1) network visualization tools, (2) pathway analyses, (3) genome-scale metabolic reconstruction, and (4) the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms. PMID:25408696
Advanced optical manufacturing digital integrated system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong
2012-10-01
It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.
Human Systems Integration: Requirements and Functional Decomposition
NASA Technical Reports Server (NTRS)
Berson, Barry; Gershzohn, Gary; Boltz, Laura; Wolf, Russ; Schultz, Mike
2005-01-01
This deliverable was intended as an input to the Access 5 Policy and Simulation Integrated Product Teams. This document contains high-level pilot functionality for operations in the National Airspace System above FL430. Based on the derived pilot functions the associated pilot information and control requirements are given.
Grid Research | Grid Modernization | NREL
Grid Research Grid Research NREL addresses the challenges of today's electric grid through high researcher in a lab Integrated Devices and Systems Developing and evaluating grid technologies and integrated Controls Developing methods for real-time operations and controls of power systems at any scale Photo of
A Physician's Perspective On Vertical Integration.
Berenson, Robert A
2017-09-01
Vertical integration has been a central feature of health care delivery system change for more than two decades. Recent studies have demonstrated that vertically integrated health care systems raise prices and costs without observable improvements in quality, despite many theoretical reasons why cost control and improved quality might occur. Less well studied is how physicians view their newfound partnerships with hospitals. In this article I review literature findings and other observations on five aspects of vertical integration that affect physicians in their professional and personal lives: patients' access to physicians, physician compensation, autonomy versus system support, medical professionalism and culture, and lifestyle. I conclude that the movement toward physicians' alignment with and employment in vertically integrated systems seems inexorable but that policy should not promote such integration either intentionally or inadvertently. Instead, policy should address the flaws in current payment approaches that reward high prices and excessive service use-outcomes that vertical integration currently produces. Project HOPE—The People-to-People Health Foundation, Inc.
Optimal integration of daylighting and electric lighting systems using non-imaging optics
NASA Astrophysics Data System (ADS)
Scartezzini, J.-L.; Linhart, F.; Kaegi-Kolisnychenko, E.
2007-09-01
Electric lighting is responsible for a significant fraction of electricity consumption within non-residential buildings. Making daylight more available in office and commercial buildings can lead as a consequence to important electricity savings, as well as to the improvement of occupants' visual performance and wellbeing. Over the last decades, daylighting technologies have been developed for that purpose, some of them having proven to be highly efficient such as anidolic daylighting systems. Based on non-imaging optics these optical devices were designed to achieve an efficient collection and redistribution of daylight within deep office rooms. However in order to benefit from the substantial daylight provision obtained through these systems and convert it into effective electricity savings, novel electric lighting strategies are required. An optimal integration of high efficacy light sources and efficient luminaries based on non-imaging optics with anidolic daylighting systems can lead to such novel strategies. Starting from the experience gained through the development of an Anidolic Integrated Ceiling (AIC), this paper presents an optimal integrated daylighting and electric lighting system. Computer simulations based on ray-tracing techniques were used to achieve the integration of 36W fluorescent tubes and non-imaging reflectors with an advanced daylighting system. Lighting power densities lower than 4 W/m2 can be achieved in this way within the corresponding office room. On-site monitoring of an integrated daylighting and electric lighting system carried out on a solar experimental building confirmed the energy and visual performance of such a system: it showed that low lighting power densities can be achieved by combining an anidolic daylighting system with very efficient electric light sources and luminaries.
Code of Federal Regulations, 2010 CFR
2010-10-01
... addressing time dependent and independent threats for a transmission pipeline operating below 30% SMYS not in... pipeline system are covered for purposes of the integrity management program requirements, an operator must... system, or an operator may apply one method to individual portions of the pipeline system. (Refer to...
Human System Integration: Regulatory Analysis
NASA Technical Reports Server (NTRS)
2005-01-01
This document was intended as an input to the Access 5 Policy Integrated Product team. Using a Human System Integration (HIS) perspective, a regulatory analyses of the FARS (specifically Part 91), the Airman s Information Manual (AIM) and the FAA Controllers Handbook (7110.65) was conducted as part of a front-end approach needed to derive HSI requirements for Unmanned Aircraft Systems (UAS) operations in the National Airspace System above FL430. The review of the above aviation reference materials yielded eighty-four functions determined to be necessary or highly desirable for flight within the Air Traffic Management System. They include categories for Flight, Communications, Navigation, Surveillance, and Hazard Avoidance.
A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control
NASA Astrophysics Data System (ADS)
Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi
A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.
Early Flight Fission Test Facilities (EFF-TF) To Support Near-Term Space Fission Systems
NASA Astrophysics Data System (ADS)
van Dyke, Melissa
2004-02-01
Through hardware based design and testing, the EFF-TF investigates fission power and propulsion component, subsystems, and integrated system design and performance. Through demonstration of systems concepts (designed by Sandia and Los Alamos National Laboratories) in relevant environments, previous non-nuclear tests in the EFF-TF have proven to be a highly effective method (from both cost and performance standpoint) to identify and resolve integration issues. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. This paper describes the current efforts for 2003.
Baseline Assessment and Prioritization Framework for IVHM Integrity Assurance Enabling Capabilities
NASA Technical Reports Server (NTRS)
Cooper, Eric G.; DiVito, Benedetto L.; Jacklin, Stephen A.; Miner, Paul S.
2009-01-01
Fundamental to vehicle health management is the deployment of systems incorporating advanced technologies for predicting and detecting anomalous conditions in highly complex and integrated environments. Integrated structural integrity health monitoring, statistical algorithms for detection, estimation, prediction, and fusion, and diagnosis supporting adaptive control are examples of advanced technologies that present considerable verification and validation challenges. These systems necessitate interactions between physical and software-based systems that are highly networked with sensing and actuation subsystems, and incorporate technologies that are, in many respects, different from those employed in civil aviation today. A formidable barrier to deploying these advanced technologies in civil aviation is the lack of enabling verification and validation tools, methods, and technologies. The development of new verification and validation capabilities will not only enable the fielding of advanced vehicle health management systems, but will also provide new assurance capabilities for verification and validation of current generation aviation software which has been implicated in anomalous in-flight behavior. This paper describes the research focused on enabling capabilities for verification and validation underway within NASA s Integrated Vehicle Health Management project, discusses the state of the art of these capabilities, and includes a framework for prioritizing activities.
Integrating Solar PV in Utility System Operations: Analytical Framework and Arizona Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jing; Botterud, Audun; Mills, Andrew
2015-06-01
A systematic framework is proposed to estimate the impact on operating costs due to uncertainty and variability in renewable resources. The framework quantifies the integration costs associated with subhourly variability and uncertainty as well as day-ahead forecasting errors in solar PV (photovoltaics) power. A case study illustrates how changes in system operations may affect these costs for a utility in the southwestern United States (Arizona Public Service Company). We conduct an extensive sensitivity analysis under different assumptions about balancing reserves, system flexibility, fuel prices, and forecasting errors. We find that high solar PV penetrations may lead to operational challenges, particularlymore » during low-load and high solar periods. Increased system flexibility is essential for minimizing integration costs and maintaining reliability. In a set of sensitivity cases where such flexibility is provided, in part, by flexible operations of nuclear power plants, the estimated integration costs vary between $1.0 and $4.4/MWh-PV for a PV penetration level of 17%. The integration costs are primarily due to higher needs for hour-ahead balancing reserves to address the increased sub-hourly variability and uncertainty in the PV resource. (C) 2015 Elsevier Ltd. All rights reserved.« less
Validation of the F-18 high alpha research vehicle flight control and avionics systems modifications
NASA Technical Reports Server (NTRS)
Chacon, Vince; Pahle, Joseph W.; Regenie, Victoria A.
1990-01-01
The verification and validation process is a critical portion of the development of a flight system. Verification, the steps taken to assure the system meets the design specification, has become a reasonably understood and straightforward process. Validation is the method used to ensure that the system design meets the needs of the project. As systems become more integrated and more critical in their functions, the validation process becomes more complex and important. The tests, tools, and techniques which are being used for the validation of the high alpha research vehicle (HARV) turning valve control system (TVCS) are discussed, and their solutions are documented. The emphasis of this paper is on the validation of integrated systems.
Validation of the F-18 high alpha research vehicle flight control and avionics systems modifications
NASA Technical Reports Server (NTRS)
Chacon, Vince; Pahle, Joseph W.; Regenie, Victoria A.
1990-01-01
The verification and validation process is a critical portion of the development of a flight system. Verification, the steps taken to assure the system meets the design specification, has become a reasonably understood and straightforward process. Validation is the method used to ensure that the system design meets the needs of the project. As systems become more integrated and more critical in their functions, the validation process becomes more complex and important. The tests, tools, and techniques which are being used for the validation of the high alpha research vehicle (HARV) turning vane control system (TVCS) are discussed and the problems and their solutions are documented. The emphasis of this paper is on the validation of integrated system.
NASA Astrophysics Data System (ADS)
Heck, Martijn J. R.
2017-01-01
Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.
Integrated and Multi-Function Navigation (Les Systemes de Navigation Integres Multifunctions)
1992-11-01
assistance, as requested, to other NATO bodies and to member nations in connection with research and development problems in the aerospace field. The...SARMCS is aimed at the motion compensation of experience in the development and applications radar returns to achieve high resolution, high of Integrated...development project such as the essentially the same technology and utilize Synthetic Aperture Radar Motion Compensation similar sensors, the mission
Integrated Radio and Optical Communication (iROC)
NASA Technical Reports Server (NTRS)
Raible, Daniel; Romanofsky, Robert; Pease, Gary; Kacpura, Thomas
2016-01-01
This is an overview of the Integrated Radio and Optical Communication (iROC) Project for Space Communication and Navigation Industry Days. The Goal is to develop and demonstrate new, high payoff space technologies that will promote mission utilization of optical communications, thereby expanding the capabilities of NASA's exploration, science, and discovery missions. This is an overview that combines the paramount features of select deep space RF and optical communications elements into an integrated system, scalable from deep space to near earth. It will realize Ka-band RF and 1550 nanometer optical capability. The approach is to prototype and demonstrate performance of key components to increase to TRL-5, leading to integrated hybrid communications system demonstration to increase to TRL-5, leading to integrated hybrid communications system demonstration.
Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review
Chiu, Shih-Wen; Tang, Kea-Tiong
2013-01-01
Electronic noses have potential applications in daily life, but are restricted by their bulky size and high price. This review focuses on the use of chemiresistive gas sensors, metal-oxide semiconductor gas sensors and conductive polymer gas sensors in an electronic nose for system integration to reduce size and cost. The review covers the system design considerations and the complementary metal-oxide-semiconductor integrated technology for a chemiresistive gas sensor electronic nose, including the integrated sensor array, its readout interface, and pattern recognition hardware. In addition, the state-of-the-art technology integrated in the electronic nose is also presented, such as the sensing front-end chip, electronic nose signal processing chip, and the electronic nose system-on-chip. PMID:24152879
NASA Technical Reports Server (NTRS)
Beatty, R.
1971-01-01
Metallization-related failure mechanisms were shown to be a major cause of integrated circuit failures under accelerated stress conditions, as well as in actual use under field operation. The integrated circuit industry is aware of the problem and is attempting to solve it in one of two ways: (1) better understanding of the aluminum system, which is the most widely used metallization material for silicon integrated circuits both as a single level and multilevel metallization, or (2) evaluating alternative metal systems. Aluminum metallization offers many advantages, but also has limitations particularly at elevated temperatures and high current densities. As an alternative, multilayer systems of the general form, silicon device-metal-inorganic insulator-metal, are being considered to produce large scale integrated arrays. The merits and restrictions of metallization systems in current usage and systems under development are defined.
A compact multi-trap optical tweezer system based on CD-ROM technologies
NASA Astrophysics Data System (ADS)
McMenamin, T.; Lee, W. M.
2017-08-01
We implemented an integrated time sharing multiple optical trapping system through the synchronisation of high speed voice coil scanning lens and laser pulsing. The integration is achieved by using commonly available optical pickup unit (OPU) that exists inside optical drives. Scanning frequencies of up to 2 kHz were showed to achieve arbitrary distribution of optical traps within the one-dimensional scan range of the voice coil motor. The functions of the system were demonstrated by the imaging and trapping of 1 μm particles and giant unilamellar vesicles (GUVs). The new device circumvents existing bulky laser scanning systems (4f lens systems) with an integrated laser and lens steering platform that can be integrated on a variety of microscopy platforms (confocal, lightsheet, darkfield).
Propulsion system-flight control integration-flight evaluation and technology transition
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.
1990-01-01
Integration of propulsion and flight control systems and their optimization offering significant performance improvement are assessed. In particular, research programs conducted by NASA on flight control systems and propulsion system-flight control interactions on the YF-12 and F-15 aircraft are addressed; these programs have demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved aircraft performance. Focus is placed on altitude control, speed-Mach control, integrated controller design, as well as flight control systems and digital electronic engine control. A highly integrated digital electronic control program is analyzed and compared with a performance seeking control program. It is shown that the flight evaluation and demonstration of these technologies have been a key part in the transition of the concepts to production and operational use on a timely basis.
Sankaran, Revathy; Show, Pau Loke; Lee, Sze Ying; Yap, Yee Jiun; Ling, Tau Chuan
2018-02-01
Liquid Biphasic Flotation (LBF) is an advanced recovery method that has been effectively applied for biomolecules extraction. The objective of this investigation is to incorporate the fermentation and extraction process of lipase from Burkholderia cepacia using flotation system. Initial study was conducted to compare the performance of bacteria growth and lipase production using flotation and shaker system. From the results obtained, bacteria shows quicker growth and high lipase yield via flotation system. Integration process for lipase separation was investigated and the result showed high efficiency reaching 92.29% and yield of 95.73%. Upscaling of the flotation system exhibited consistent result with the lab-scale which are 89.53% efficiency and 93.82% yield. The combination of upstream and downstream processes in a single system enables the acceleration of product formation, improves the product yield and facilitates downstream processing. This integration system demonstrated its potential for biomolecules fermentation and separation that possibly open new opportunities for industrial production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin
2015-01-01
Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Structural integrated sensor and actuator systems for active flow control
NASA Astrophysics Data System (ADS)
Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael
2016-04-01
An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.
Dimensionality and integrals of motion of the Trappist-1 planetary system
NASA Astrophysics Data System (ADS)
Floß, Johannes; Rein, Hanno; Brumer, Paul
2018-04-01
The number of isolating integrals of motion of the Trappist-1 system - a late M-dwarf orbited by seven Earth-sized planets - was determined numerically, using an adapted version of the correlation dimension method. It was found that over the investigated time-scales of up to 20 000 years the number of isolating integrals of motion is the same as one would find for a system of seven non-interacting planets - despite the fact that the planets in the Trappist-1 system are strongly interacting. Considering perturbed versions of the Trappist-1 system shows that the system may occupy an atypical part of phase-space with high stability. These findings are consistent with earlier studies.
Dimensionality and integrals of motion of the Trappist-1 planetary system
NASA Astrophysics Data System (ADS)
Floß, Johannes; Rein, Hanno; Brumer, Paul
2018-07-01
The number of isolating integrals of motion of the Trappist-1 system - a late M-dwarf orbited by seven Earth-sized planets - was determined numerically, using an adapted version of the correlation dimension method. It was found that over the investigated time-scales of up to 20 000 yr the number of isolating integrals of motion is the same as one would find for a system of seven non-interacting planets - despite the fact that the planets in the Trappist-1 system are strongly interacting. Considering perturbed versions of the Trappist-1 system shows that the system may occupy an atypical part of phase-space with high stability. These findings are consistent with earlier studies.
CMOS compatible fabrication process of MEMS resonator for timing reference and sensing application
NASA Astrophysics Data System (ADS)
Huynh, Duc H.; Nguyen, Phuong D.; Nguyen, Thanh C.; Skafidas, Stan; Evans, Robin
2015-12-01
Frequency reference and timing control devices are ubiquitous in electronic applications. There is at least one resonator required for each of this device. Currently electromechanical resonators such as crystal resonator, ceramic resonator are the ultimate choices. This tendency will probably keep going for many more years. However, current market demands for small size, low power consumption, cheap and reliable products, has divulged many limitations of this type of resonators. They cannot be integrated into standard CMOS (Complement metaloxide- semiconductor) IC (Integrated Circuit) due to material and fabrication process incompatibility. Currently, these devices are off-chip and they require external circuitries to interface with the ICs. This configuration significantly increases the overall size and cost of the entire electronic system. In addition, extra external connection, especially at high frequency, will potentially create negative impacts on the performance of the entire system due to signal degradation and parasitic effects. Furthermore, due to off-chip packaging nature, these devices are quite expensive, particularly for high frequency and high quality factor devices. To address these issues, researchers have been intensively studying on an alternative for type of resonator by utilizing the new emerging MEMS (Micro-electro-mechanical systems) technology. Recent progress in this field has demonstrated a MEMS resonator with resonant frequency of 2.97 GHz and quality factor (measured in vacuum) of 42900. Despite this great achievement, this prototype is still far from being fully integrated into CMOS system due to incompatibility in fabrication process and its high series motional impedance. On the other hand, fully integrated MEMS resonator had been demonstrated but at lower frequency and quality factor. We propose a design and fabrication process for a low cost, high frequency and a high quality MEMS resonator, which can be integrated into a standard CMOS IC. This device is expected to operate in hundreds of Mhz frequency range; quality factor surpasses 10000 and series motional impedance low enough that could be matching into conventional system without enormous effort. This MEMS resonator can be used in the design of many blocks in wireless and RF (Radio Frequency) systems such as low phase noise oscillator, band pass filter, power amplifier and in many sensing application.
NASA Technical Reports Server (NTRS)
Aanstoos, J. V.; Snyder, W. E.
1981-01-01
Anticipated major advances in integrated circuit technology in the near future are described as well as their impact on satellite onboard signal processing systems. Dramatic improvements in chip density, speed, power consumption, and system reliability are expected from very large scale integration. Improvements are expected from very large scale integration enable more intelligence to be placed on remote sensing platforms in space, meeting the goals of NASA's information adaptive system concept, a major component of the NASA End-to-End Data System program. A forecast of VLSI technological advances is presented, including a description of the Defense Department's very high speed integrated circuit program, a seven-year research and development effort.
Nonlinear system identification of smart structures under high impact loads
NASA Astrophysics Data System (ADS)
Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon
2013-05-01
The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure-MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure-MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes.
Test Facilities in Support of High Power Electric Propulsion Systems
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert
2002-01-01
Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.
Kazior, Thomas E.
2014-01-01
Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III–V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III–V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III–V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications. PMID:24567473
Kazior, Thomas E
2014-03-28
Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III-V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III-V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III-V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications.
NASA Technical Reports Server (NTRS)
Geiselhart, Karl A.; Ozoroski, Lori P.; Fenbert, James W.; Shields, Elwood W.; Li, Wu
2011-01-01
This paper documents the development of a conceptual level integrated process for design and analysis of efficient and environmentally acceptable supersonic aircraft. To overcome the technical challenges to achieve this goal, a conceptual design capability which provides users with the ability to examine the integrated solution between all disciplines and facilitates the application of multidiscipline design, analysis, and optimization on a scale greater than previously achieved, is needed. The described capability is both an interactive design environment as well as a high powered optimization system with a unique blend of low, mixed and high-fidelity engineering tools combined together in the software integration framework, ModelCenter. The various modules are described and capabilities of the system are demonstrated. The current limitations and proposed future enhancements are also discussed.
HIDEC F-15 adaptive engine control system flight test results
NASA Technical Reports Server (NTRS)
Smolka, James W.
1987-01-01
NASA-Ames' Highly Integrated Digital Electronic Control (HIDEC) flight test program aims to develop fully integrated airframe, propulsion, and flight control systems. The HIDEC F-15 adaptive engine control system flight test program has demonstrated that significant performance improvements are obtainable through the retention of stall-free engine operation throughout the aircraft flight and maneuver envelopes. The greatest thrust increase was projected for the medium-to-high altitude flight regime at subsonic speed which is of such importance to air combat. Adaptive engine control systems such as the HIDEC F-15's can be used to upgrade the performance of existing aircraft without resort to expensive reengining programs.
Integration of cellular ubiquitin and membrane traffic systems: focus on deubiquitylases.
Clague, Michael J; Urbé, Sylvie
2017-06-01
The cell is comprised of integrated multilevel protein networks or systems. The ubiquitin, protein homeostasis and membrane trafficking systems are highly integrated. Here, we look at the influence of reversible ubiquitylation on membrane trafficking and organelle dynamics. We review the regulation of endocytic sorting, selective autophagy and the secretory pathway by ubiquitin signals, with a particular focus on detailing the contribution of deubiquitylating enzymes. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Nuclear plants gain integrated information systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villavicencio-Ramirez, A.; Rodriquez-Alvarez, J.M.
1994-10-01
With the objective of simplifying the complex mesh of computing devices employed within nuclear power plants, modern technology and integration techniques are being used to form centralized (but backed up) databases and distributed processing and display networks. Benefits are immediate as a result of the integration and the use of standards. The use of a unique data acquisition and database subsystem optimizes the high costs of engineering, as this task is done only once for the life span of the system. This also contributes towards a uniform user interface and allows for graceful expansion and maintenance. This article features anmore » integrated information system, Sistema Integral de Informacion de Proceso (SIIP). The development of this system enabled the Laguna Verde Nuclear Power plant to fully use the already existing universe of signals and its related engineering during all plant conditions, namely, start up, normal operation, transient analysis, and emergency operation. Integrated systems offer many advantages over segregated systems, and this experience should benefit similar development efforts in other electric power utilities, not only for nuclear but also for other types of generating plants.« less
Manufacturing and integration of the SOFIA suspension assembly
NASA Astrophysics Data System (ADS)
Sust, Eberhard; Weis, Ulrich; Bremers, Eckhard; Schubbach, Walter
2003-02-01
The Suspension Assembly is the most complex mechanical subsystem of the SOFIA telescope, responsible for suspending and positioning the telescope in the aircraft on the sky. It is a highly integrated system comprising of a vibration isolating system, a spherical hydraulic bearing, a spherical torque motor, a coarse drive and airworthiness relevant components like brakes, hard-stops etc. The components were manufactured under airworthiness standards by dedicated suppliers and integrated and commissioned in 2001/2002 at MAN Technologie in Augsburg. The paper describes the experience gotten during the manufacturing and integration process.
NASA Astrophysics Data System (ADS)
Hosford, Kyle S.
Clean distributed generation power plants can provide a much needed balance to our energy infrastructure in the future. A high-temperature fuel cell and an absorption chiller can be integrated to create an ideal combined cooling, heat, and power system that is efficient, quiet, fuel flexible, scalable, and environmentally friendly. With few real-world installations of this type, research remains to identify the best integration and operating strategy and to evaluate the economic viability and market potential of this system. This thesis informs and documents the design of a high-temperature fuel cell and absorption chiller demonstration system at a generic office building on the University of California, Irvine (UCI) campus. This work details the extension of prior theoretical work to a financially-viable power purchase agreement (PPA) with regard to system design, equipment sizing, and operating strategy. This work also addresses the metering and monitoring for the system showcase and research and details the development of a MATLAB code to evaluate the economics associated with different equipment selections, building loads, and economic parameters. The series configuration of a high-temperature fuel cell, heat recovery unit, and absorption chiller with chiller exhaust recirculation was identified as the optimal system design for the installation in terms of efficiency, controls, ducting, and cost. The initial economic results show that high-temperature fuel cell and absorption chiller systems are already economically competitive with utility-purchased generation, and a brief case study of a southern California hospital shows that the systems are scalable and viable for larger stationary power applications.
Human factors integration challenges in the traffic flow management (TFM) environment
DOT National Transportation Integrated Search
2005-08-01
This report discusses a high level examination that was conducted to identify human factors issues in the integration of future traffic flow management (TFM) tools. The focus of the examination is on the integration of future systems and was driven b...
An explosively driven high-power microwave pulsed power system.
Elsayed, M A; Neuber, A A; Dickens, J C; Walter, J W; Kristiansen, M; Altgilbers, L L
2012-02-01
The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.
An explosively driven high-power microwave pulsed power system
NASA Astrophysics Data System (ADS)
Elsayed, M. A.; Neuber, A. A.; Dickens, J. C.; Walter, J. W.; Kristiansen, M.; Altgilbers, L. L.
2012-02-01
The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.
The High-Repetition-Rate Advanced Petawatt Laser System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haefner, Constantin; Jarboe, Jeff; Koubikova, Luci
2017-02-02
The High-Repetition-Rate Advanced Petawatt Laser System (HAPLS), being developed at Lawrence Livermore National Laboratory (LLNL), recently completed a significant milestone: demonstration of continuous operation of an all diode-pumped, high-energy femtosecond petawatt laser system. The system is now ready for delivery and integration at the European Extreme Light Infrastructure Beamlines facility project (ELI Beamlines) in the Czech Republic.
ERIC Educational Resources Information Center
Chen, Yixing
2013-01-01
The objective of this study was to develop a "Virtual Design Studio (VDS)": a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. The VDS is intended to assist collaborating architects,…
Headwaters: The Next Stage in High School Integrated Programming
ERIC Educational Resources Information Center
Elrick, Michael
2007-01-01
For 12 years, Centennial High School in Guelph has run an integrated program called the Community Environmental Leadership Program (CELP). In 1995 the program was offered at the grade 11 level. The program ran successfully in the second semester for seven years. In 2001, with the high school system being modified to fit into a four-year model, and…
NASA Technical Reports Server (NTRS)
Tri, Terry O.; Thompson, Clifford D.
1992-01-01
Future NASA manned missions to the moon and Mars will require development of robust regenerative life support system technologies which offer high reliability and minimal resupply. To support the development of such systems, early ground-based test facilities will be required to demonstrate integrated, long-duration performance of candidate regenerative air revitalization, water recovery, and thermal management systems. The advanced life support Systems Integration Research Facility (SIRF) is one such test facility currently being developed at NASA's Johnson Space Center. The SIRF, when completed, will accommodate unmanned and subsequently manned integrated testing of advanced regenerative life support technologies at ambient and reduced atmospheric pressures. This paper provides an overview of the SIRF project, a top-level description of test facilities to support the project, conceptual illustrations of integrated test article configurations for each of the three SIRF systems, and a phased project schedule denoting projected activities and milestones through the next several years.
A comparison of high-speed links, their commercial support and ongoing R&D activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, H.L.; Barsotti, E.; Zimmermann, S.
Technological advances and a demanding market have forced the development of higher bandwidth communication standards for networks, data links and busses. Most of these emerging standards are gathering enough momentum that their widespread availability and lower prices are anticipated. The hardware and software that support the physical media for most of these links is currently available, allowing the user community to implement fairly high-bandwidth data links and networks with commercial components. Also, switches needed to support these networks are available or being developed. The commercial suppose of high-bandwidth data links, networks and switching fabrics provides a powerful base for themore » implementation of high-bandwidth data acquisition systems. A large data acquisition system like the one for the Solenoidal Detector Collaboration (SDC) at the SSC can benefit from links and networks that support an integrated systems engineering approach, for initialization, downloading, diagnostics, monitoring, hardware integration and event data readout. The issue that our current work addresses is the possibility of having a channel/network that satisfies the requirements of an integrated data acquisition system. In this paper we present a brief description of high-speed communication links and protocols that we consider of interest for high energy physic High Performance Parallel Interface (HIPPI). Serial HIPPI, Fibre Channel (FC) and Scalable Coherent Interface (SCI). In addition, the initial work required to implement an SDC-like data acquisition system is described.« less
A comparison of high-speed links, their commercial support and ongoing R D activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, H.L.; Barsotti, E.; Zimmermann, S.
Technological advances and a demanding market have forced the development of higher bandwidth communication standards for networks, data links and busses. Most of these emerging standards are gathering enough momentum that their widespread availability and lower prices are anticipated. The hardware and software that support the physical media for most of these links is currently available, allowing the user community to implement fairly high-bandwidth data links and networks with commercial components. Also, switches needed to support these networks are available or being developed. The commercial suppose of high-bandwidth data links, networks and switching fabrics provides a powerful base for themore » implementation of high-bandwidth data acquisition systems. A large data acquisition system like the one for the Solenoidal Detector Collaboration (SDC) at the SSC can benefit from links and networks that support an integrated systems engineering approach, for initialization, downloading, diagnostics, monitoring, hardware integration and event data readout. The issue that our current work addresses is the possibility of having a channel/network that satisfies the requirements of an integrated data acquisition system. In this paper we present a brief description of high-speed communication links and protocols that we consider of interest for high energy physic High Performance Parallel Interface (HIPPI). Serial HIPPI, Fibre Channel (FC) and Scalable Coherent Interface (SCI). In addition, the initial work required to implement an SDC-like data acquisition system is described.« less
Characterization of low-mass deformable mirrors and ASIC drivers for high-contrast imaging
NASA Astrophysics Data System (ADS)
Mejia Prada, Camilo; Yao, Li; Wu, Yuqian; Roberts, Lewis C.; Shelton, Chris; Wu, Xingtao
2017-09-01
The development of compact, high performance Deformable Mirrors (DMs) is one of the most important technological challenges for high-contrast imaging on space missions. Microscale Inc. has fabricated and characterized piezoelectric stack actuator deformable mirrors (PZT-DMs) and Application-Specific Integrated Circuit (ASIC) drivers for direct integration. The DM-ASIC system is designed to eliminate almost all cables, enabling a very compact optical system with low mass and low power consumption. We report on the optical tests used to evaluate the performance of the DM and ASIC units. We also compare the results to the requirements for space-based high-contrast imaging of exoplanets.
A New Integrated Weighted Model in SNOW-V10: Verification of Categorical Variables
NASA Astrophysics Data System (ADS)
Huang, Laura X.; Isaac, George A.; Sheng, Grant
2014-01-01
This paper presents the verification results for nowcasts of seven categorical variables from an integrated weighted model (INTW) and the underlying numerical weather prediction (NWP) models. Nowcasting, or short range forecasting (0-6 h), over complex terrain with sufficient accuracy is highly desirable but a very challenging task. A weighting, evaluation, bias correction and integration system (WEBIS) for generating nowcasts by integrating NWP forecasts and high frequency observations was used during the Vancouver 2010 Olympic and Paralympic Winter Games as part of the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) project. Forecast data from Canadian high-resolution deterministic NWP system with three nested grids (at 15-, 2.5- and 1-km horizontal grid-spacing) were selected as background gridded data for generating the integrated nowcasts. Seven forecast variables of temperature, relative humidity, wind speed, wind gust, visibility, ceiling and precipitation rate are treated as categorical variables for verifying the integrated weighted forecasts. By analyzing the verification of forecasts from INTW and the NWP models among 15 sites, the integrated weighted model was found to produce more accurate forecasts for the 7 selected forecast variables, regardless of location. This is based on the multi-categorical Heidke skill scores for the test period 12 February to 21 March 2010.
High-speed extended-term time-domain simulation for online cascading analysis of power system
NASA Astrophysics Data System (ADS)
Fu, Chuan
A high-speed extended-term (HSET) time domain simulator (TDS), intended to become a part of an energy management system (EMS), has been newly developed for use in online extended-term dynamic cascading analysis of power systems. HSET-TDS includes the following attributes for providing situational awareness of high-consequence events: (i) online analysis, including n-1 and n-k events, (ii) ability to simulate both fast and slow dynamics for 1-3 hours in advance, (iii) inclusion of rigorous protection-system modeling, (iv) intelligence for corrective action ID, storage, and fast retrieval, and (v) high-speed execution. Very fast on-line computational capability is the most desired attribute of this simulator. Based on the process of solving algebraic differential equations describing the dynamics of power system, HSET-TDS seeks to develop computational efficiency at each of the following hierarchical levels, (i) hardware, (ii) strategies, (iii) integration methods, (iv) nonlinear solvers, and (v) linear solver libraries. This thesis first describes the Hammer-Hollingsworth 4 (HH4) implicit integration method. Like the trapezoidal rule, HH4 is symmetrically A-Stable but it possesses greater high-order precision (h4 ) than the trapezoidal rule. Such precision enables larger integration steps and therefore improves simulation efficiency for variable step size implementations. This thesis provides the underlying theory on which we advocate use of HH4 over other numerical integration methods for power system time-domain simulation. Second, motivated by the need to perform high speed extended-term time domain simulation (HSET-TDS) for on-line purposes, this thesis presents principles for designing numerical solvers of differential algebraic systems associated with power system time-domain simulation, including DAE construction strategies (Direct Solution Method), integration methods(HH4), nonlinear solvers(Very Dishonest Newton), and linear solvers(SuperLU). We have implemented a design appropriate for HSET-TDS, and we compare it to various solvers, including the commercial grade PSSE program, with respect to computational efficiency and accuracy, using as examples the New England 39 bus system, the expanded 8775 bus system, and PJM 13029 buses system. Third, we have explored a stiffness-decoupling method, intended to be part of parallel design of time domain simulation software for super computers. The stiffness-decoupling method is able to combine the advantages of implicit methods (A-stability) and explicit method(less computation). With the new stiffness detection method proposed herein, the stiffness can be captured. The expanded 975 buses system is used to test simulation efficiency. Finally, several parallel strategies for super computer deployment to simulate power system dynamics are proposed and compared. Design A partitions the task via scale with the stiffness decoupling method, waveform relaxation, and parallel linear solver. Design B partitions the task via the time axis using a highly precise integration method, the Kuntzmann-Butcher Method - order 8 (KB8). The strategy of partitioning events is designed to partition the whole simulation via the time axis through a simulated sequence of cascading events. For all strategies proposed, a strategy of partitioning cascading events is recommended, since the sub-tasks for each processor are totally independent, and therefore minimum communication time is needed.
Scramjet nozzle design and analysis as applied to a highly integrated hypersonic research airplane
NASA Technical Reports Server (NTRS)
Small, W. J.; Weidner, J. P.; Johnston, P. J.
1976-01-01
Engine-nozzle airframe integration at hypersonic speeds was conducted by using a high-speed research aircraft concept as a focus. Recently developed techniques for analysis of scramjet-nozzle exhaust flows provide a realistic analysis of complex forces resulting from the engine-nozzle airframe coupling. By properly integrating the engine-nozzle propulsive system with the airframe, efficient, controlled and stable flight results over a wide speed range.
A Methodology to Obtain Learning Effective Laboratories with Learning Management System Integration
ERIC Educational Resources Information Center
Ruano, Ildefonso; Gamez, Javier; Dormido, Sebastian; Gomez, Juan
2016-01-01
Online laboratories are useful and valuable resources in high education, especially in engineering studies. This work presents a methodology to create effective laboratories for learning that interact with a Learning Management System (LMS) to achieve advanced integration. It is based on pedagogical aspects and considers not only the laboratory…
Microclimate landscape design at southern integrated terminal Bandar Tasik Selatan, Kuala Lumpur
NASA Astrophysics Data System (ADS)
Phin, L. H.; Krisantia, I.
2018-01-01
Bandar Tasik Selatan is the integrated transport terminal has high energy consuming, high carbon emission and poor linkage. However, microclimate can be reduced through landscape design. This paper is a study to achieve energy efficiency and improve microclimate in the urban area. The research area is at Southern integrated terminal Bandar Tasik Selatan Kuala Lumpur Malaysia. It is carried out through a case study and microclimate analyzed using System Modeling method. System modelling using in this research is system energy budget of the microclimate at a site is a balance between the radiant energy supplied and the energy removed by all consumers. The finding indicated the microclimatic components that can be modified through landscape design are solar radiation, wind and precipitation can create thermal comfort, energy efficiency and others benefits.Through this research, provide more green space to achieve energy efficiency and improve microclimate of the site, introducing vertical landscape and proper planting selection to improve air quality, introducing green energy as part of the source of power supply and to promote integration of terminal building and rail systems by unify them using softscape
Suarez, Liza M; Belcher, Harolyn M E; Briggs, Ernestine C; Titus, Janet C
2012-06-01
Adolescents are at high risk for violence exposure and initiation of drug use. Co-occurring substance use and trauma exposure are associated with increased risk of mental health disorders, school underachievement, and involvement with multiple systems of care. Coordination and integration of systems of care are of utmost importance for these vulnerable youth. This study delineates the negative sequelae and increased service utilization patterns of adolescents with a history of trauma, substance abuse, and co-occurring trauma and substance abuse to support the need for integrated mental health and substance abuse services for youth. Data from two national sources, the National Child Traumatic Stress Network and Center for Substance Abuse Treatment demonstrate the increased clinical severity (measured by reports of emotional and behavioral problems), dysfunction, and service utilization patterns for youth with co-occurring trauma exposure and substance abuse. We conclude with recommendations for an integrated system of care that includes trauma-informed mental health treatment and substance abuse services aimed at reducing the morbidity and relapse probability of this high-risk group.
NASA Astrophysics Data System (ADS)
Brusberg, Lars; Lang, Günter; Schröder, Henning
2011-01-01
The proposed novel packaging approach merges micro-system packaging and glass integrated optics. It provides 3D optical single-mode intra system links to bridge the gap between novel photonic integrated circuits and the glass fibers for inter system interconnects. We introduce our hybrid 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip links. Optical mirrors and lenses provide optical mode matching for photonic IC assemblies and optical fiber interconnects. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties as reviewed in the paper. That makes it perfect for micro-system packaging. The adopted planar waveguide process based on ion-exchange technology is capable for high-volume manufacturing. This ion-exchange process and the optical propagation are described in detail for thin glass substrates. An extensive characterization of all basic circuit elements like straight and curved waveguides, couplers and crosses proves the low attenuation of the optical circuit elements.
Impact of Vial Capping on Residual Seal Force and Container Closure Integrity.
Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Ovadia, Robert; Lam, Philippe; Stauch, Oliver; Vogt, Martin; Roehl, Holger; Huwyler, Joerg; Mohl, Silke; Streubel, Alexander
2016-01-01
The vial capping process is a critical unit operation during drug product manufacturing, as it could possibly generate cosmetic defects or even affect container closure integrity. Yet there is significant variability in capping equipment and processes, and their relation to potential defects or container closure integrity has not been thoroughly studied. In this study we applied several methods-residual seal force tester, a self-developed system of a piezo force sensor measurement, and computed tomography-to characterize different container closure system combinations that had been sealed using different capping process parameter settings. Additionally, container closure integrity of these samples was measured using helium leakage (physical container closure integrity) and compared to characterization data. The different capping equipment settings lead to residual seal force values from 7 to 115 N. High residual seal force values were achieved with high capping pre-compression force and a short distance between the capping plate and plunge. The choice of container closure system influenced the obtained residual seal force values. The residual seal force tester and piezoelectric measurements showed similar trends. All vials passed physical container closure integrity testing, and no stopper rupture was seen with any of the settings applied, suggesting that container closure integrity was warranted for the studied container closure system with the chosen capping setting ranges. The vial capping process is a critical unit operation during drug product manufacturing, as it could possibly generate cosmetic defects or even affect container closure integrity. Yet there is significant variability in capping equipment and processes, and their relation to potential defects or container closure integrity has not been thoroughly studied. In this study we applied several methods-residual seal force tester, a self-developed system of a piezo force sensor measurement, and computed tomography-to characterize different container closure system combinations that had been sealed using different capping process parameter settings. The residual seal force tester can analyze a variety of different container closure systems independent of the capping equipment. An adequate and safe residual seal force range for each container closure system configuration can be established with the residual seal force tester and additional methods like computed tomography scans and leak testing. In the residual seal force range studied, the physical container closure integrity of the container closure system was warranted. © PDA, Inc. 2016.
Academic Integrity: Information Systems Education Perspective
ERIC Educational Resources Information Center
McHaney, Roger; Cronan, Timothy Paul; Douglas, David E.
2016-01-01
Academic integrity receives a great deal of attention in institutions of higher education. Universities and colleges provide specific honor codes or have administrative units to promote good behaviors and resolve dishonesty allegations. Students, faculty, and staff have stakes in maintaining high levels of academic integrity to ensure their…
Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 1; Formulation
NASA Technical Reports Server (NTRS)
Walsh, J. L.; Townsend, J. C.; Salas, A. O.; Samareh, J. A.; Mukhopadhyay, V.; Barthelemy, J.-F.
2000-01-01
An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a highspeed civil transport configuration. The paper describes the engineering aspects of formulating the optimization by integrating these analysis codes and associated interface codes into the system. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture (CORBA) compliant software product. A companion paper presents currently available results.
NASA Technical Reports Server (NTRS)
Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)
1991-01-01
Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.
IMPAC: An Integrated Methodology for Propulsion and Airframe Control
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Ouzts, Peter J.; Lorenzo, Carl F.; Mattern, Duane L.
1991-01-01
The National Aeronautics and Space Administration is actively involved in the development of enabling technologies that will lead towards aircraft with new/enhanced maneuver capabilities such as Short Take-Off Vertical Landing (STOVL) and high angle of attack performance. Because of the high degree of dynamic coupling between the airframe and propulsion systems of these types of aircraft, one key technology is the integration of the flight and propulsion control. The NASA Lewis Research Center approach to developing Integrated Flight Propulsion Control (IFPC) technologies is an in-house research program referred to as IMPAC (Integrated Methodology for Propulsion and Airframe Control). The goals of IMPAC are to develop a viable alternative to the existing integrated control design methodologies that will allow for improved system performance and simplicity of control law synthesis and implementation, and to demonstrate the applicability of the methodology to a supersonic STOVL fighter aircraft. Based on some preliminary control design studies that included evaluation of the existing methodologies, the IFPC design methodology that is emerging at the Lewis Research Center consists of considering the airframe and propulsion system as one integrated system for an initial centralized controller design and then partitioning the centralized controller into separate airframe and propulsion system subcontrollers to ease implementation and to set meaningful design requirements for detailed subsystem control design and evaluation. An overview of IMPAC is provided and detailed discussion of the various important design and evaluation steps in the methodology are included.
High extinction ratio integrated optical modulator for quantum telecommunication systems
NASA Astrophysics Data System (ADS)
Tronev, A.; Parfenov, M.; Agruzov, P.; Ilichev, I.; Shamray, A.
2018-01-01
A method for increasing the extinction ratio of integrated optical Mach-Zehnder modulators based on LiNbO3 via the photorefractive effect is proposed. The influence of the photorefractive effect on the X- and Y-splitters of intensity modulators is experimentally studied. An increase in the modulator extinction ratio by 17 dB (from 30 to 47 dB) is obtained. It is shown that fabricated modulators with a high extinction ratio are important for quantum key distribution systems.
Technology for Building Systems Integration and Optimization – Landscape Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Guernsey, Matt; Bargach, Youssef
BTO's Commercial Building Integration (CBI) program helps advance a range of innovative building integration and optimization technologies and solutions, paving the way for high-performing buildings that could use 50-70% less energy than typical buildings. CBI’s work focuses on early stage technology innovation, with an emphasis on how components and systems work together and how whole buildings are integrated and optimized. This landscape study outlines the current body of knowledge, capabilities, and the broader array of solutions supporting integration and optimization in commercial buildings. CBI seeks to support solutions for both existing buildings and new construction, which often present very differentmore » challenges.« less
NASA Technical Reports Server (NTRS)
Hall, David W.; Rogan, J. Edward
1989-01-01
A microcomputer-based integration of aircraft design disciplines has been applied theoretically to sailplane, microwave-powered aircraft, and High Altitude Long-Endurance (HALE) aircraft configurational definition efforts. Attention is presently given to the further development of such integrated-discipline approaches through the incorporation of AI techniques; these are then applied to the aforementioned case of the HALE. The windFrame language used, which is based on HyperTalk, will allow designers to write programs using a highly graphical, user interface-oriented environment.
Design and realization of high quality prime farmland planning and management information system
NASA Astrophysics Data System (ADS)
Li, Manchun; Liu, Guohong; Liu, Yongxue; Jiang, Zhixin
2007-06-01
The article discusses the design and realization of a high quality prime farmland planning and management information system based on SDSS. Models in concept integration, management planning are used in High Quality Prime Farmland Planning in order to refine the current model system and the management information system is deigned with a triangular structure. Finally an example of Tonglu county high quality prime farmland planning and management information system is introduced.
High-Throughput Density Measurement Using Magnetic Levitation.
Ge, Shencheng; Wang, Yunzhe; Deshler, Nicolas J; Preston, Daniel J; Whitesides, George M
2018-06-20
This work describes the development of an integrated analytical system that enables high-throughput density measurements of diamagnetic particles (including cells) using magnetic levitation (MagLev), 96-well plates, and a flatbed scanner. MagLev is a simple and useful technique with which to carry out density-based analysis and separation of a broad range of diamagnetic materials with different physical forms (e.g., liquids, solids, gels, pastes, gums, etc.); one major limitation, however, is the capacity to perform high-throughput density measurements. This work addresses this limitation by (i) re-engineering the shape of the magnetic fields so that the MagLev system is compatible with 96-well plates, and (ii) integrating a flatbed scanner (and simple optical components) to carry out imaging of the samples that levitate in the system. The resulting system is compatible with both biological samples (human erythrocytes) and nonbiological samples (simple liquids and solids, such as 3-chlorotoluene, cholesterol crystals, glass beads, copper powder, and polymer beads). The high-throughput capacity of this integrated MagLev system will enable new applications in chemistry (e.g., analysis and separation of materials) and biochemistry (e.g., cellular responses under environmental stresses) in a simple and label-free format on the basis of a universal property of all matter, i.e., density.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Pinero, Luis; Haag, Thomas; Huang, Wensheng; Ahern, Drew; Liang, Ray; Shilo, Vlad
2016-01-01
NASAs Science Mission Directorate is sponsoring the development of a 4 kW-class Hall propulsion system for implementation in NASA science and exploration missions. The main components of the system include the High Voltage Hall Accelerator (HiVHAc), an engineering model power processing unit (PPU) developed by Colorado Power Electronics, and a xenon flow control module (XFCM) developed by VACCO Industries. NASA Glenn Research Center is performing integrated tests of the Hall thruster propulsion system. This presentation presents results from integrated tests of the PPU and XFCM with the HiVHAc engineering development thruster and a SPT-140 thruster provided by Space System Loral. The results presented in this paper demonstrate thruster discharge initiation, open-loop and closed-loop control of the discharge current with anode flow for both the HiVHAc and the SPT-140 thrusters. Integrated tests with the SPT-140 thruster indicated that the PPU was able to repeatedly initiate the thrusters discharge, achieve steady state operation, and successfully throttle the thruster between 1.5 and 4.5 kW. The measured SPT-140 performance was identical to levels reported by Space Systems Loral.
Enabling Airspace Integration for High-Density On-Demand Mobility Operations
NASA Technical Reports Server (NTRS)
Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.
2017-01-01
Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitudethe UAS traffic management (UTM) systemto higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.
Total systems design analysis of high performance structures
NASA Technical Reports Server (NTRS)
Verderaime, V.
1993-01-01
Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.
High Definition Sounding System Test and Integration with NASA Atmospheric Science Program Aircraft
2013-09-30
of the High Definition Sounding System (HDSS) on NASA high altitude Airborne Science Program platforms, specifically the NASA P-3 and NASA WB-57. When...demonstrate the system reliability in a Global Hawk’s 62000’ altitude regime of thin air and very cold temperatures. APPROACH: Mission Profile One or more WB...57 test flights will prove airworthiness and verify the High Definition Sounding System (HDSS) is safe and functional at high altitudes , essentially
Tightly Coupled Inertial Navigation System/Global Positioning System (TCMIG)
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Jackson, Kurt (Technical Monitor)
2002-01-01
Many NASA applications planned for execution later this decade are seeking high performance, miniaturized, low power Inertial Management Units (IMU). Much research has gone into Micro-Electro-Mechanical System (MEMS) over the past decade as a solution to these needs. While MEMS devices have proven to provide high accuracy acceleration measurements, they have not yet proven to have the accuracy required by many NASA missions in rotational measurements. Therefore, a new solution has been formulated integrating the best of all IMU technologies to address these mid-term needs in the form of a Tightly Coupled Micro Inertial Navigation System (INS)/Global Positioning System (GPS) (TCMIG). The TCMIG consists of an INS and a GPS tightly coupled by a Kalman filter executing on an embedded Field Programmable Gate Array (FPGA) processor. The INS consists of a highly integrated Interferometric Fiber Optic Gyroscope (IFOG) and a MEMS accelerometer. The IFOG utilizes a tightly wound fiber coil to reduce volume and the high level of integration and advanced optical components to reduce power. The MEMS accelerometer utilizes a newly developed deep etch process to increase the proof mass and yield a highly accurate accelerometer. The GPS receiver consists of a low power miniaturized version of the Blackjack receiver. Such an IMU configuration is ideal to meet the mid-term needs of the NASA Science Enterprises and the new launch vehicles being developed for the Space Launch Initiative (SLI).
Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.
Lou, Zheng; Li, La; Wang, Lili; Shen, Guozhen
2017-12-01
Wearable/flexible electronic sensing systems are considered to be one of the key technologies in the next generation of smart personal electronics. To realize personal portable devices with mobile electronics application, i.e., wearable electronic sensors that can work sustainably and continuously without an external power supply are highly desired. The recent progress and advantages of wearable self-powered electronic sensing systems for mobile or personal attachable health monitoring applications are presented. An overview of various types of wearable electronic sensors, including flexible tactile sensors, wearable image sensor array, biological and chemical sensor, temperature sensors, and multifunctional integrated sensing systems is provided. Self-powered sensing systems with integrated energy units are then discussed, separated as energy harvesting self-powered sensing systems, energy storage integrated sensing systems, and all-in-on integrated sensing systems. Finally, the future perspectives of self-powered sensing systems for wearable electronics are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Martinez-Cisneros, Cynthia; da Rocha, Zaira; Seabra, Antonio; Valdés, Francisco; Alonso-Chamarro, Julián
2018-06-05
The successful integration of sample pretreatment stages, sensors, actuators and electronics in microfluidic devices enables the attainment of complete micro total analysis systems, also known as lab-on-a-chip devices. In this work, we present a novel monolithic autonomous microanalyzer that integrates microfluidics, electronics, a highly sensitive photometric detection system and a sample pretreatment stage consisting on an embedded microcolumn, all in the same device, for on-line determination of relevant environmental parameters. The microcolumn can be filled/emptied with any resin or powder substrate whenever required, paving the way for its application to several analytical processes: separation, pre-concentration or ionic-exchange. To promote its autonomous operation, avoiding issues caused by bubbles in photometric detection systems, an efficient monolithic bubble removal structure was also integrated. To demonstrate its feasibility, the microanalyzer was successfully used to determine nitrate and nitrite in continuous flow conditions, providing real time and continuous information.
Purdue ionomics information management system. An integrated functional genomics platform.
Baxter, Ivan; Ouzzani, Mourad; Orcun, Seza; Kennedy, Brad; Jandhyala, Shrinivas S; Salt, David E
2007-02-01
The advent of high-throughput phenotyping technologies has created a deluge of information that is difficult to deal with without the appropriate data management tools. These data management tools should integrate defined workflow controls for genomic-scale data acquisition and validation, data storage and retrieval, and data analysis, indexed around the genomic information of the organism of interest. To maximize the impact of these large datasets, it is critical that they are rapidly disseminated to the broader research community, allowing open access for data mining and discovery. We describe here a system that incorporates such functionalities developed around the Purdue University high-throughput ionomics phenotyping platform. The Purdue Ionomics Information Management System (PiiMS) provides integrated workflow control, data storage, and analysis to facilitate high-throughput data acquisition, along with integrated tools for data search, retrieval, and visualization for hypothesis development. PiiMS is deployed as a World Wide Web-enabled system, allowing for integration of distributed workflow processes and open access to raw data for analysis by numerous laboratories. PiiMS currently contains data on shoot concentrations of P, Ca, K, Mg, Cu, Fe, Zn, Mn, Co, Ni, B, Se, Mo, Na, As, and Cd in over 60,000 shoot tissue samples of Arabidopsis (Arabidopsis thaliana), including ethyl methanesulfonate, fast-neutron and defined T-DNA mutants, and natural accession and populations of recombinant inbred lines from over 800 separate experiments, representing over 1,000,000 fully quantitative elemental concentrations. PiiMS is accessible at www.purdue.edu/dp/ionomics.
LTCC interconnects in microsystems
NASA Astrophysics Data System (ADS)
Rusu, Cristina; Persson, Katrin; Ottosson, Britta; Billger, Dag
2006-06-01
Different microelectromechanical system (MEMS) packaging strategies towards high packaging density of MEMS devices and lower expenditure exist both in the market and in research. For example, electrical interconnections and low stress wafer level packaging are essential for improving device performance. Hybrid integration of low temperature co-fired ceramics (LTCC) with Si can be a way for an easier packaging system with integrated electrical interconnection, and as well towards lower costs. Our research on LTCC-Si integration is reported in this paper.
Integrating UniTree with the data migration API
NASA Technical Reports Server (NTRS)
Schrodel, David G.
1994-01-01
The Data Migration Application Programming Interface (DMAPI) has the potential to allow developers of open systems Hierarchical Storage Management (HSM) products to virtualize native file systems without the requirement to make changes to the underlying operating system. This paper describes advantages of virtualizing native file systems in hierarchical storage management systems, the DMAPI at a high level, what the goals are for the interface, and the integration of the Convex UniTree+HSM with DMAPI along with some of the benefits derived in the resulting product.
Silicon Carbide Integrated Circuit Chip
2015-02-17
A multilevel interconnect silicon carbide integrated circuit chip with co-fired ceramic package and circuit board recently developed at the NASA GRC Smart Sensors and Electronics Systems Branch for high temperature applications. High temperature silicon carbide electronics and compatible packaging technologies are elements of instrumentation for aerospace engine control and long term inner-solar planet explorations.
Integration and test of high-speed transmitter electronics for free-space laser communications
NASA Technical Reports Server (NTRS)
Soni, Nitin J.; Lizanich, Paul J.
1994-01-01
The NASA Lewis Research Center in Cleveland, Ohio, has developed the electronics for a free-space, direct-detection laser communications system demonstration. Under the High-Speed Laser Integrated Terminal Electronics (Hi-LITE) Project, NASA Lewis has built a prototype full-duplex, dual-channel electronics transmitter and receiver operating at 325 megabit S per second (Mbps) per channel and using quaternary pulse-position modulation (QPPM). This paper describes the integration and testing of the transmitter portion for future application in free-space, direct-detection laser communications. A companion paper reviews the receiver portion of the prototype electronics. Minor modifications to the transmitter were made since the initial report on the entire system, and this paper addresses them. The digital electronics are implemented in gallium arsenide integrated circuits mounted on prototype boards. The fabrication and implementation issues related to these high-speed devices are discussed. The transmitter's test results are documented, and its functionality is verified by exercising all modes of operation. Various testing issues pertaining to high-speed circuits are addressed. A description of the transmitter electronics packaging concludes the paper.
A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System
Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun
2016-01-01
We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900
Jiaxi, Qiang; Lin, Yang; Jianhui, He; Qisheng, Zhou
2013-01-01
Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application. PMID:24194677
Jiaxi, Qiang; Lin, Yang; Jianhui, He; Qisheng, Zhou
2013-01-01
Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.
Integrator Windup Protection-Techniques and a STOVL Aircraft Engine Controller Application
NASA Technical Reports Server (NTRS)
KrishnaKumar, K.; Narayanaswamy, S.
1997-01-01
Integrators are included in the feedback loop of a control system to eliminate the steady state errors in the commanded variables. The integrator windup problem arises if the control actuators encounter operational limits before the steady state errors are driven to zero by the integrator. The typical effects of windup are large system oscillations, high steady state error, and a delayed system response following the windup. In this study, methods to prevent the integrator windup are examined to provide Integrator Windup Protection (IW) for an engine controller of a Short Take-Off and Vertical Landing (STOVL) aircraft. An unified performance index is defined to optimize the performance of the Conventional Anti-Windup (CAW) and the Modified Anti-Windup (MAW) methods. A modified Genetic Algorithm search procedure with stochastic parameter encoding is implemented to obtain the optimal parameters of the CAW scheme. The advantages and drawbacks of the CAW and MAW techniques are discussed and recommendations are made for the choice of the IWP scheme, given some characteristics of the system.
Legacy system integration using web technology
NASA Astrophysics Data System (ADS)
Kennedy, Richard L.; Seibert, James A.; Hughes, Chris J.
2000-05-01
As healthcare moves towards a completely digital, multimedia environment there is an opportunity to provide for cost- effective, highly distributed physician access to clinical information including radiology-based imaging. In order to address this opportunity a Universal Clinical Desktop (UCD) system was developed. A UCD provides a single point of entry into an integrated view of all types of clinical data available within a network of disparate healthcare information systems. In order to explore the application of a UCD in a hospital environment, a pilot study was established with the University of California Davis Medical Center using technology from Trilix Information Systems. Within this pilot environment the information systems integrated under the UCD include a radiology information system (RIS), a picture archive and communication system (PACS) and a laboratory information system (LIS).
High-accuracy microassembly by intelligent vision systems and smart sensor integration
NASA Astrophysics Data System (ADS)
Schilp, Johannes; Harfensteller, Mark; Jacob, Dirk; Schilp, Michael
2003-10-01
Innovative production processes and strategies from batch production to high volume scale are playing a decisive role in generating microsystems economically. In particular assembly processes are crucial operations during the production of microsystems. Due to large batch sizes many microsystems can be produced economically by conventional assembly techniques using specialized and highly automated assembly systems. At laboratory stage microsystems are mostly assembled by hand. Between these extremes there is a wide field of small and middle sized batch production wherefore common automated solutions rarely are profitable. For assembly processes at these batch sizes a flexible automated assembly system has been developed at the iwb. It is based on a modular design. Actuators like grippers, dispensers or other process tools can easily be attached due to a special tool changing system. Therefore new joining techniques can easily be implemented. A force-sensor and a vision system are integrated into the tool head. The automated assembly processes are based on different optical sensors and smart actuators like high-accuracy robots or linear-motors. A fiber optic sensor is integrated in the dispensing module to measure contactless the clearance between the dispense needle and the substrate. Robot vision systems using the strategy of optical pattern recognition are also implemented as modules. In combination with relative positioning strategies, an assembly accuracy of the assembly system of less than 3 μm can be realized. A laser system is used for manufacturing processes like soldering.
NASA Technical Reports Server (NTRS)
Jacklin, S. A.; Leyland, J. A.; Warmbrodt, W.
1985-01-01
Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, online graphics, and file management. This paper discusses five global design considerations which are useful to integrate array processor, multimicroprocessor, and host computer system architectures into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the nonreal-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration is briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind tunnel environment, the controller architecture can generally be applied to a wide range of automatic control applications.
The Design of Integrated Information System for High Voltage Metering Lab
NASA Astrophysics Data System (ADS)
Ma, Yan; Yang, Yi; Xu, Guangke; Gu, Chao; Zou, Lida; Yang, Feng
2018-01-01
With the development of smart grid, intelligent and informatization management of high-voltage metering lab become increasingly urgent. In the paper we design an integrated information system, which automates the whole transactions from accepting instruments, make experiments, generating report, report signature to instrument claims. Through creating database for all the calibrated instruments, using two-dimensional code, integrating report templates in advance, establishing bookmarks and online transmission of electronical signatures, our manual procedures reduce largely. These techniques simplify the complex process of account management and report transmission. After more than a year of operation, our work efficiency improves about forty percent averagely, and its accuracy rate and data reliability are much higher as well.
UK Environmental Prediction - integration and evaluation at the convective scale
NASA Astrophysics Data System (ADS)
Fallmann, Joachim; Lewis, Huw; Castillo, Juan Manuel; Pearson, David; Harris, Chris; Saulter, Andy; Bricheno, Lucy; Blyth, Eleanor
2016-04-01
It has long been understood that accurate prediction and warning of the impacts of severe weather requires an integrated approach to forecasting. For example, high impact weather is typically manifested through various interactions and feedbacks between different components of the Earth System. Damaging high winds can lead to significant damage from the large waves and storm surge along coastlines. The impact of intense rainfall can be translated through saturated soils and land surface processes, high river flows and flooding inland. The substantial impacts on individuals, businesses and infrastructure of such events indicate a pressing need to understand better the value that might be delivered through more integrated environmental prediction. To address this need, the Met Office, NERC Centre for Ecology & Hydrology and NERC National Oceanography Centre have begun to develop the foundations of a coupled high resolution probabilistic forecast system for the UK at km-scale. This links together existing model components of the atmosphere, coastal ocean, land surface and hydrology. Our initial focus has been on a 2-year Prototype project to demonstrate the UK coupled prediction concept in research mode. This presentation will provide an update on UK environmental prediction activities. We will present the results from the initial implementation of an atmosphere-land-ocean coupled system and discuss progress and initial results from further development to integrate wave interactions. We will discuss future directions and opportunities for collaboration in environmental prediction, and the challenges to realise the potential of integrated regional coupled forecasting for improving predictions and applications.
Energy efficient engine preliminary design and integration study
NASA Technical Reports Server (NTRS)
Gray, D. E.
1978-01-01
The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.
GaAs VLSI for aerospace electronics
NASA Technical Reports Server (NTRS)
Larue, G.; Chan, P.
1990-01-01
Advanced aerospace electronics systems require high-speed, low-power, radiation-hard, digital components for signal processing, control, and communication applications. GaAs VLSI devices provide a number of advantages over silicon devices including higher carrier velocities, ability to integrate with high performance optical devices, and high-resistivity substrates that provide very short gate delays, good isolation, and tolerance to many forms of radiation. However, III-V technologies also have disadvantages, such as lower yield compared to silicon MOS technology. Achieving very large scale integration (VLSI) is particularly important for fast complex systems. At very short gate delays (less than 100 ps), chip-to-chip interconnects severely degrade circuit clock rates. Complex systems, therefore, benefit greatly when as many gates as possible are placed on a single chip. To fully exploit the advantages of GaAs circuits, attention must be focused on achieving high integration levels by reducing power dissipation, reducing the number of devices per logic function, and providing circuit designs that are more tolerant to process and environmental variations. In addition, adequate noise margin must be maintained to ensure a practical yield.
Integrating Academic and Vocational Education: A Model for Secondary Schools.
ERIC Educational Resources Information Center
Penn, Alexandra; Williams, Dennis
The two-track system that divides academic education from vocational education no longer supports students' interests. This book describes a practical approach to integrating academic and vocational education, focusing on achieving a seamlessly integrated curriculum. Chapter 1 describes the rationale of a high school program--the Cocoa Academy for…
Highest integration in microelectronics: Development of digital ASICs for PARS3-LR
NASA Astrophysics Data System (ADS)
Scholler, Peter; Vonlutz, Rainer
Essential electronic system components by PARS3-LR, show high requirements in calculation power, power consumption and reliability, by immediately increasing integration thicknesses. These problems are solved by using integrated circuits, developed by LSI LOGIC, that uses the technical and economic advantages of this leading edge technology.
Best Practices: Power Quality and Integrated Testing at JSC
NASA Technical Reports Server (NTRS)
Davis, Lydia
2018-01-01
This presentation discusses Best Practices for Power Quality and Integrated Testing at JSC in regards to electrical systems. These high-level charts include mostly generic information; however, a specific issue is discussed involving flight hardware that could have been discovered prior to flight with an integrated test.
Optical devices integrated with semiconductor optical amplifier
NASA Astrophysics Data System (ADS)
Oh, Kwang R.; Park, Moon S.; Jeong, Jong S.; Baek, Yongsoon; Oh, Dae-Kon
2000-07-01
Semiconductor optical amplifiers (SOA's) have been used as a key optical component for the high capacity communication systems. The monolithic integration is necessary for the stable operation of these devices and the wider applications. In this paper, the coupling technique between different waveguides and the integration of SSC's are discussed and the research results of optical devices integrated with SOA's are presented.
Ren, Kangning; Liang, Qionglin; Mu, Xuan; Luo, Guoan; Wang, Yiming
2009-03-07
A novel miniaturized, portable fluorescence detection system for capillary array electrophoresis (CAE) on a microfluidic chip was developed, consisting of a scanning light-emitting diode (LED) light source and a single point photoelectric sensor. Without charge coupled detector (CCD), lens, fibers and moving parts, the system was extremely simplified. Pulsed driving of the LED significantly increased the sensitivity, and greatly reduced the power consumption and photobleaching effect. The highly integrated system was robust and easy to use. All the advantages realized the concept of a portable micro-total analysis system (micro-TAS), which could work on a single universal serial bus (USB) port. Compared with traditional CAE detecting systems, the current system could scan the radial capillary array with high scanning rate. An 8-channel CAE of fluorescein isothiocyanate (FITC) labeled arginine (Arg) on chip was demonstrated with this system, resulting in a limit of detection (LOD) of 640 amol.
NASA Astrophysics Data System (ADS)
Meyer, F. J.; McAlpin, D. B.; Gong, W.; Ajadi, O.; Arko, S.; Webley, P. W.; Dehn, J.
2015-02-01
Remote sensing plays a critical role in operational volcano monitoring due to the often remote locations of volcanic systems and the large spatial extent of potential eruption pre-cursor signals. Despite the all-weather capabilities of radar remote sensing and its high performance in monitoring of change, the contribution of radar data to operational monitoring activities has been limited in the past. This is largely due to: (1) the high costs associated with radar data; (2) traditionally slow data processing and delivery procedures; and (3) the limited temporal sampling provided by spaceborne radars. With this paper, we present new data processing and data integration techniques that mitigate some of these limitations and allow for a meaningful integration of radar data into operational volcano monitoring decision support systems. Specifically, we present fast data access procedures as well as new approaches to multi-track processing that improve near real-time data access and temporal sampling of volcanic systems with SAR data. We introduce phase-based (coherent) and amplitude-based (incoherent) change detection procedures that are able to extract dense time series of hazard information from these data. For a demonstration, we present an integration of our processing system with an operational volcano monitoring system that was developed for use by the Alaska Volcano Observatory (AVO). Through an application to a historic eruption, we show that the integration of SAR into systems such as AVO can significantly improve the ability of operational systems to detect eruptive precursors. Therefore, the developed technology is expected to improve operational hazard detection, alerting, and management capabilities.
A knowledge-based system design/information tool for aircraft flight control systems
NASA Technical Reports Server (NTRS)
Mackall, Dale A.; Allen, James G.
1991-01-01
Research aircraft have become increasingly dependent on advanced electronic control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objective. This integration is being accomplished through electronic control systems. Systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary object is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences are reviewed of three highly complex, integrated aircraft programs: the X-29 forward swept wing; the advanced fighter technology integration (AFTI) F-16; and the highly maneuverable aircraft technology (HiMAT) program. Significant operating technologies, and the design errors which cause them, is examined to help identify what functions a system design/informatin tool should provide to assist designers in avoiding errors.
Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays.
Tran, Toan Trong; Wang, Danqing; Xu, Zai-Quan; Yang, Ankun; Toth, Milos; Odom, Teri W; Aharonovich, Igor
2017-04-12
Quantum emitters in two-dimensional materials are promising candidates for studies of light-matter interaction and next generation, integrated on-chip quantum nanophotonics. However, the realization of integrated nanophotonic systems requires the coupling of emitters to optical cavities and resonators. In this work, we demonstrate hybrid systems in which quantum emitters in 2D hexagonal boron nitride (hBN) are deterministically coupled to high-quality plasmonic nanocavity arrays. The plasmonic nanoparticle arrays offer a high-quality, low-loss cavity in the same spectral range as the quantum emitters in hBN. The coupled emitters exhibit enhanced emission rates and reduced fluorescence lifetimes, consistent with Purcell enhancement in the weak coupling regime. Our results provide the foundation for a versatile approach for achieving scalable, integrated hybrid systems based on low-loss plasmonic nanoparticle arrays and 2D materials.
Enabling Airspace Integration for High-Density On-Demand Mobility Operations
NASA Technical Reports Server (NTRS)
Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.
2017-01-01
Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude - the UAS traffic management (UTM) system - to higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODM's economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.
Ultra-Structure database design methodology for managing systems biology data and analyses
Maier, Christopher W; Long, Jeffrey G; Hemminger, Bradley M; Giddings, Morgan C
2009-01-01
Background Modern, high-throughput biological experiments generate copious, heterogeneous, interconnected data sets. Research is dynamic, with frequently changing protocols, techniques, instruments, and file formats. Because of these factors, systems designed to manage and integrate modern biological data sets often end up as large, unwieldy databases that become difficult to maintain or evolve. The novel rule-based approach of the Ultra-Structure design methodology presents a potential solution to this problem. By representing both data and processes as formal rules within a database, an Ultra-Structure system constitutes a flexible framework that enables users to explicitly store domain knowledge in both a machine- and human-readable form. End users themselves can change the system's capabilities without programmer intervention, simply by altering database contents; no computer code or schemas need be modified. This provides flexibility in adapting to change, and allows integration of disparate, heterogenous data sets within a small core set of database tables, facilitating joint analysis and visualization without becoming unwieldy. Here, we examine the application of Ultra-Structure to our ongoing research program for the integration of large proteomic and genomic data sets (proteogenomic mapping). Results We transitioned our proteogenomic mapping information system from a traditional entity-relationship design to one based on Ultra-Structure. Our system integrates tandem mass spectrum data, genomic annotation sets, and spectrum/peptide mappings, all within a small, general framework implemented within a standard relational database system. General software procedures driven by user-modifiable rules can perform tasks such as logical deduction and location-based computations. The system is not tied specifically to proteogenomic research, but is rather designed to accommodate virtually any kind of biological research. Conclusion We find Ultra-Structure offers substantial benefits for biological information systems, the largest being the integration of diverse information sources into a common framework. This facilitates systems biology research by integrating data from disparate high-throughput techniques. It also enables us to readily incorporate new data types, sources, and domain knowledge with no change to the database structure or associated computer code. Ultra-Structure may be a significant step towards solving the hard problem of data management and integration in the systems biology era. PMID:19691849
The Design and Testing of the LSSIF Advanced Thermal Control System
NASA Technical Reports Server (NTRS)
Henson, Robert A.; Keller, John R.
1995-01-01
The Life Support Systems Integration Facility (LSSIF) provides a platform to design and evaluate advanced manned space systems at NASA Johnson Space Center (JSC). The LSSIF Early Human Testing Initiative requires the integration of such subsystems to enable human occupancy of the 6 meter chamber for a 90 day closed volume test. The Advanced Thermal Control System (TCS) is an important component of the integrated system by supplying coolant to the subsystems within the chamber, such as the Air Revitalization System. The TCS incorporates an advanced high efficiency, heat pump to reject waste heat from the chamber to an external sink or 'lift' temperature that emulates a Lunar environment. The heat pump is the High Lift Heat Pump, developed by Foster-Miller, Inc., and is the main test article of the TCS. The heat pump prototype utilizes a non-CFC refrigerant in a design where the thermal requirements exceed existing terrestrial technology. These operating requirements provide a unique opportunity to design and test an advanced integrated thermal system and the associated controls. The design, control, and systems integration of the heat pump and the TCS also have terrestrial technology application. This paper addresses the design of the TCS and the heat pump, along with the control scheme to fully test the heat pump. Design approaches utilized in the LSSIF TCS are promoted for implementation in terrestrial thermal systems. The results of the preliminary thermal and fluid analyses used to develop the control of the thermal systems will also be discussed. The paper includes objectives for the 90 day human test and the test setup. Finally, conclusions will be drawn and recommendations for Earth design application are submitted.
Scramjet nozzle design and analysis as applied to a highly integrated hypersonic research airplane
NASA Technical Reports Server (NTRS)
Small, W. J.; Weidner, J. P.; Johnston, P. J.
1974-01-01
The configuration and performance of the propulsion system for the hypersonic research vehicle are discussed. A study of the interactions between propulsion and aerodynamics of the highly integrated vehicle was conducted. The hypersonic research vehicle is configured to test the technology of structural and thermal protection systems concepts and the operation of the propulsion system under true flight conditions for most of the hypersonic flight regime. The subjects considered are: (1) research vehicle and scramjet engine configurations to determine fundamental engine sizing constraints, (2) analytical methods for computing airframe and propulsion system components, and (3) characteristics of a candidate nozzle to investigate vehicle stability and acceleration performance.
Recruitment recommendation system based on fuzzy measure and indeterminate integral
NASA Astrophysics Data System (ADS)
Yin, Xin; Song, Jinjie
2017-08-01
In this study, we propose a comprehensive evaluation approach based on indeterminate integral. By introducing the related concepts of indeterminate integral and their formulas into the recruitment recommendation system, we can calculate the suitability of each job for different applicants with the defined importance for each criterion listed in the job advertisements, the association between different criteria and subjective assessment as the prerequisite. Thus we can make recommendations to the applicants based on the score of the suitability of each job from high to low. In the end, we will exemplify the usefulness and practicality of this system with samples.
Advanced helmet vision system (AHVS) integrated night vision helmet mounted display (HMD)
NASA Astrophysics Data System (ADS)
Ashcraft, Todd W.; Atac, Robert
2012-06-01
Gentex Corporation, under contract to Naval Air Systems Command (AIR 4.0T), designed the Advanced Helmet Vision System to provide aircrew with 24-hour, visor-projected binocular night vision and HMD capability. AHVS integrates numerous key technologies, including high brightness Light Emitting Diode (LED)-based digital light engines, advanced lightweight optical materials and manufacturing processes, and innovations in graphics processing software. This paper reviews the current status of miniaturization and integration with the latest two-part Gentex modular helmet, highlights the lessons learned from previous AHVS phases, and discusses plans for qualification and flight testing.
Energy Systems Integration News | Energy Systems Integration Facility |
us at the ESIF. NREL Releases High-Pen PV Handbook for Distribution Engineers As solar photovoltaic PV for Ancillary Services NREL, AES, the Puerto Rico Electric Power Authority, First Solar, and the technologies, such as solar, demand response, and smart consumer appliances Advances in grid design and
USDA-ARS?s Scientific Manuscript database
Long-term crop-livestock integration enables constant and high nutrient cycling because animal, pasture and crop residues release nutrients at different rates. Therefore, appropriate management of these systems is needed to maximize the benefits of nutrient cycling. The objective of this study was t...
ERIC Educational Resources Information Center
Chang, Kuo-En; Sung, Yao-Ting; Hou, Huei-Tse
2006-01-01
Educational software for teachers is an important, yet usually ignored, link for integrating information technology into classroom instruction. This study builds a web-based teaching material design and development system. The process in the system is divided into four stages, analysis, design, development, and practice. Eight junior high school…
ERIC Educational Resources Information Center
Berney, Tomi D.; Barrera, Marbella
In its second year, the Bilingual Academic Services and Integrated Career Systems (BASICS) Program served 104 limited-English-proficient students at Bayside High School in Queens (New York City). Project goals were to develop English literacy skills, produce an organizing framework of thinking and language skills across the curriculum, generate a…
ERIC Educational Resources Information Center
Berney, Tomi D.; Carey, Cecilia
The Bilingual Academic Services and Integrated Career Systems Program (Project BASICS) is a federally-funded program of instructional and support services provided to 122 students at a Queens high school. The program's aim was to develop English literacy skills and appreciation of cultural diversity, and to prepare students for the psychosocial…
Integrating Learning Services in the Cloud: An Approach That Benefits Both Systems and Learning
ERIC Educational Resources Information Center
Gutiérrez-Carreón, Gustavo; Daradoumis, Thanasis; Jorba, Josep
2015-01-01
Currently there is an increasing trend to implement functionalities that allow for the development of applications based on Cloud computing. In education there are high expectations for Learning Management Systems since they can be powerful tools to foster more effective collaboration within a virtual classroom. Tools can also be integrated with…
1986-06-30
features of computer aided design systems and statistical quality control procedures that are generic to chip sets and processes. RADIATION HARDNESS -The...System PSP Programmable Signal Processor SSI Small Scale Integration ." TOW Tube Launched, Optically Tracked, Wire Guided TTL Transistor Transitor Logic
Monolithically integrated absolute frequency comb laser system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanke, Michael C.
2016-07-12
Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.
NASA Astrophysics Data System (ADS)
Yan, Zhiqiang; Yan, Xingpeng; Jiang, Xiaoyu; Gao, Hui; Wen, Jun
2017-11-01
An integral imaging based light field display method is proposed by use of holographic diffuser, and enhanced viewing resolution is gained over conventional integral imaging systems. The holographic diffuser is fabricated with controlled diffusion characteristics, which interpolates the discrete light field of the reconstructed points to approximate the original light field. The viewing resolution can thus be improved and independent of the limitation imposed by Nyquist sampling frequency. An integral imaging system with low Nyquist sampling frequency is constructed, and reconstructed scenes of high viewing resolution using holographic diffuser are demonstrated, verifying the feasibility of the method.
The future of automation for high-volume wafer fabrication and ASIC manufacturing
NASA Astrophysics Data System (ADS)
Hughes, Randall A.; Shott, John D.
1986-12-01
A framework is given to analyze the future trends in semiconductor manufacturing automation systems, focusing specifically on the needs of ASIC (application-specific integrated circuit) or custom integrated circuit manufacturing. Advances in technologies such as gate arrays and standard cells now make it significantly easier to obtain system cost and performance advantages by integrating nonstandard functions on silicon. ASICs are attractive to U.S. manufacturers because they place a premium on sophisticated design tools, familiarity with customer needs and applications, and fast turn-around fabrication. These are areas where U.S. manufacturers believe they have an advantage and, consequently, will not suffer from the severe price/manufacturing competition encountered in conventional high-volume semiconductor products. Previously, automation was often considered viable only for high-volume manufacturing, but automation becomes a necessity in the new ASIC environment.
NASA Technical Reports Server (NTRS)
Hurlbert, Eric A.; McManamen, John Patrick; Sooknanen, Josh; Studak, Joseph W.
2011-01-01
This paper describes the advanced development and testing of a compact 5 to 15 lbf LOX/LCH4 thruster for a pressure-fed integrated main engine and RCS propulsion system to be used on a spacecraft "vertical" test bed (VTB). The ability of the RCS thruster and the main engine to operate off the same propellant supply in zero-g reduces mass and improves mission flexibility. This compact RCS engine incorporates several features to dramatically reduce mass and parts count, to ease manufacturing, and to maintain acceptable performance given that specific impulse (Isp) is not the driver. For example, radial injection holes placed on the chamber body for easier drilling, and high temperature Haynes 230 were selected for the chamber over other more expensive options. The valve inlets are rotatable before welding allowing different orientations for vehicle integration. In addition, the engine design effort selected a coil-on-plug ignition system which integrates a relay and coil with the plug electrode, and moves some exciter electronics to avionics driver board. The engine injector design has small dribble volumes to target minimum pulse widths of 20 msec. and an efficient minimum impulse bit of less than 0.05 lbf-sec. The propellants, oxygen and methane, were chosen because together they are a non-toxic, Mars-forward, high density, space storable, and high performance propellant combination that is capable of pressure-fed and pump-fed configurations and integration with life support and power subsystems. This paper will present the results of the advanced development testing to date of the RCS thruster and the integration with a vehicle propulsion system.
Integration of SPS with utility system networks
NASA Technical Reports Server (NTRS)
Kaupang, B. M.
1980-01-01
The integration of Satellite Power System (SPS) power in electric utility power systems is discussed. Specifically, the nature of the power output variations from the spacecraft to the rectenna, the operational characteristics of the rectenna power, and the impacts on the electric utility system from utilizing SPS power to serve part of the system load are treated. It is concluded that if RF beam control is an acceptable method for power control, and that the site distribution of SPS rectennas do not cause a very high local penetration (40 to 50%), SPS may be integrated into electric utility system with a few negative impacts. Increased regulating duty on the conventional generation, and a potential impact on system reliability for SPS penetration in excess of about 25% appear to be two areas of concern.
Photonic content-addressable memory system that uses a parallel-readout optical disk
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Ashok V.; Marchand, Philippe J.; Yayla, Gökçe; Esener, Sadik C.
1995-11-01
We describe a high-performance associative-memory system that can be implemented by means of an optical disk modified for parallel readout and a custom-designed silicon integrated circuit with parallel optical input. The system can achieve associative recall on 128 \\times 128 bit images and also on variable-size subimages. The system's behavior and performance are evaluated on the basis of experimental results on a motionless-head parallel-readout optical-disk system, logic simulations of the very-large-scale integrated chip, and a software emulation of the overall system.
Integration of a CAD System Into an MDO Framework
NASA Technical Reports Server (NTRS)
Townsend, J. C.; Samareh, J. A.; Weston, R. P.; Zorumski, W. E.
1998-01-01
NASA Langley has developed a heterogeneous distributed computing environment, called the Framework for Inter-disciplinary Design Optimization, or FIDO. Its purpose has been to demonstrate framework technical feasibility and usefulness for optimizing the preliminary design of complex systems and to provide a working environment for testing optimization schemes. Its initial implementation has been for a simplified model of preliminary design of a high-speed civil transport. Upgrades being considered for the FIDO system include a more complete geometry description, required by high-fidelity aerodynamics and structures codes and based on a commercial Computer Aided Design (CAD) system. This report presents the philosophy behind some of the decisions that have shaped the FIDO system and gives a brief case study of the problems and successes encountered in integrating a CAD system into the FEDO framework.
NASA Technical Reports Server (NTRS)
Scheper, C.; Baker, R.; Frank, G.; Yalamanchili, S.; Gray, G.
1992-01-01
Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified.
Design, Integration, Certification and Testing of the Orion Crew Module Propulsion System
NASA Technical Reports Server (NTRS)
McKay, Heather; Freeman, Rich; Cain, George; Albright, John D.; Schoenberg, Rich; Delventhal, Rex
2014-01-01
The Orion Multipurpose Crew Vehicle (MPCV) is NASA's next generation spacecraft for human exploration of deep space. Lockheed Martin is the prime contractor for the design, development, qualification and integration of the vehicle. A key component of the Orion Crew Module (CM) is the Propulsion Reaction Control System, a high-flow hydrazine system used during re-entry to orient the vehicle for landing. The system consists of a completely redundant helium (GHe) pressurization system and hydrazine fuel system with monopropellant thrusters. The propulsion system has been designed, integrated, and qualification tested in support of the Orion program's first orbital flight test, Exploration Flight Test One (EFT-1), scheduled for 2014. A subset of the development challenges and lessons learned from this first flight test campaign will be discussed in this paper for consideration when designing future spacecraft propulsion systems. The CONOPS and human rating requirements of the CM propulsion system are unique when compared with a typical satellite propulsion reaction control system. The system requires a high maximum fuel flow rate. It must operate at both vacuum and sea level atmospheric pressure conditions. In order to meet Orion's human rating requirements, multiple parts of the system must be redundant, and capable of functioning after spacecraft system fault events.
Triangulation-based 3D surveying borescope
NASA Astrophysics Data System (ADS)
Pulwer, S.; Steglich, P.; Villringer, C.; Bauer, J.; Burger, M.; Franz, M.; Grieshober, K.; Wirth, F.; Blondeau, J.; Rautenberg, J.; Mouti, S.; Schrader, S.
2016-04-01
In this work, a measurement concept based on triangulation was developed for borescopic 3D-surveying of surface defects. The integration of such measurement system into a borescope environment requires excellent space utilization. The triangulation angle, the projected pattern, the numerical apertures of the optical system, and the viewing angle were calculated using partial coherence imaging and geometric optical raytracing methods. Additionally, optical aberrations and defocus were considered by the integration of Zernike polynomial coefficients. The measurement system is able to measure objects with a size of 50 μm in all dimensions with an accuracy of +/- 5 μm. To manage the issue of a low depth of field while using an optical high resolution system, a wavelength dependent aperture was integrated. Thereby, we are able to control depth of field and resolution of the optical system and can use the borescope in measurement mode with high resolution and low depth of field or in inspection mode with low resolution and higher depth of field. First measurements of a demonstrator system are in good agreement with our simulations.
High Resolution Airborne Laser Scanning and Hyperspectral Imaging with a Small Uav Platform
NASA Astrophysics Data System (ADS)
Gallay, Michal; Eck, Christoph; Zgraggen, Carlo; Kaňuk, Ján; Dvorný, Eduard
2016-06-01
The capabilities of unmanned airborne systems (UAS) have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology) in high spectral and spatial resolution.
The Computing And Interdisciplinary Systems Office: Annual Review and Planning Meeting
NASA Technical Reports Server (NTRS)
Lytle, John K.
2003-01-01
The goal of this research is to develop an advanced engineering analysis system that enables high-fidelity, multi-disciplinary, full propulsion system simulations to be performed early in the design process (a virtual test cell that integrates propulsion and information technologies). This will enable rapid, high-confidence, cost-effective design of revolutionary systems.
A knowledge-based system design/information tool for aircraft flight control systems
NASA Technical Reports Server (NTRS)
Mackall, Dale A.; Allen, James G.
1989-01-01
Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.
Loose and Tight GNSS/INS Integrations: Comparison of Performance Assessed in Real Urban Scenarios.
Falco, Gianluca; Pini, Marco; Marucco, Gianluca
2017-01-29
Global Navigation Satellite Systems (GNSSs) remain the principal mean of positioning in many applications and systems, but in several types of environment, the performance of standalone receivers is degraded. Although many works show the benefits of the integration between GNSS and Inertial Navigation Systems (INSs), tightly-coupled architectures are mainly implemented in professional devices and are based on high-grade Inertial Measurement Units (IMUs). This paper investigates the performance improvements enabled by the tight integration, using low-cost sensors and a mass-market GNSS receiver. Performance is assessed through a series of tests carried out in real urban scenarios and is compared against commercial modules, operating in standalone mode or featuring loosely-coupled integrations. The paper describes the developed tight-integration algorithms with a terse mathematical model and assesses their efficacy from a practical perspective.
Integrated Nationwide Electronic Health Records system: Semi-distributed architecture approach.
Fragidis, Leonidas L; Chatzoglou, Prodromos D; Aggelidis, Vassilios P
2016-11-14
The integration of heterogeneous electronic health records systems by building an interoperable nationwide electronic health record system provides undisputable benefits in health care, like superior health information quality, medical errors prevention and cost saving. This paper proposes a semi-distributed system architecture approach for an integrated national electronic health record system incorporating the advantages of the two dominant approaches, the centralized architecture and the distributed architecture. The high level design of the main elements for the proposed architecture is provided along with diagrams of execution and operation and data synchronization architecture for the proposed solution. The proposed approach effectively handles issues related to redundancy, consistency, security, privacy, availability, load balancing, maintainability, complexity and interoperability of citizen's health data. The proposed semi-distributed architecture offers a robust interoperability framework without healthcare providers to change their local EHR systems. It is a pragmatic approach taking into account the characteristics of the Greek national healthcare system along with the national public administration data communication network infrastructure, for achieving EHR integration with acceptable implementation cost.
Adaptive weld control for high-integrity welding applications
NASA Technical Reports Server (NTRS)
Powell, Bradley W.
1993-01-01
An advanced adaptive control weld system for high-integrity welding applications is presented. The system consists of a state-of-the-art weld control subsystem, motion control subsystem, and sensor subsystem which closes the loop on the process. The adaptive control subsystem (ACS), which is required to totally close the loop on weld process control, consists of a multiprocessor system, data acquisition hardware, and three welding sensors which provide measurements from all areas around the torch in real time. The ACS acquires all 'measurables' and feeds offset trims back into the weld control and motion control subsystems to modify the 'controllables' in order to maintain a previously defined weld quality.
1990-04-01
conception des postes de pilotage et les r6les des pilotes doivent itre difinis avec soin en face des tiches automatis6es ainsi que les pcifications de...from USA and Canada: Commandant M.Mouhamad. FAF AGARD-NATO Executive, GCP Attention : GCP Executive AGARD-OTAN APO New York 09777 7 rue Ancelle F-92200...G.Manfeld 54 UN SYSTEME DE REFERENCES PRIMAIRES DE HAUTE INTEGRITE (A High Integrity Flight Data System) par J.L.Roch et J.Contet 55 ..... 4- K- ’-I
Analyzing Dynamics of Cooperating Spacecraft
NASA Technical Reports Server (NTRS)
Hughes, Stephen P.; Folta, David C.; Conway, Darrel J.
2004-01-01
A software library has been developed to enable high-fidelity computational simulation of the dynamics of multiple spacecraft distributed over a region of outer space and acting with a common purpose. All of the modeling capabilities afforded by this software are available independently in other, separate software systems, but have not previously been brought together in a single system. A user can choose among several dynamical models, many high-fidelity environment models, and several numerical-integration schemes. The user can select whether to use models that assume weak coupling between spacecraft, or strong coupling in the case of feedback control or tethering of spacecraft to each other. For weak coupling, spacecraft orbits are propagated independently, and are synchronized in time by controlling the step size of the integration. For strong coupling, the orbits are integrated simultaneously. Among the integration schemes that the user can choose are Runge-Kutta Verner, Prince-Dormand, Adams-Bashforth-Moulton, and Bulirsh- Stoer. Comparisons of performance are included for both the weak- and strongcoupling dynamical models for all of the numerical integrators.
Compact and Integrated Liquid Bismuth Propellant Feed System
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Stanojev, Boris; Korman, Valentin; Gross, Jeffrey T.
2007-01-01
Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions [1]. There has been considerable effort in the past three years aimed at resuscitating this promising technology and validating earlier experimental results indicating the advantages of a bismuth-fed Hall thruster. A critical element of the present effort is the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre./post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work is to develop a precision liquid bismuth Propellant Management System (PMS) that provides hot, molten bismuth to the thruster while simultaneously monitoring in real-time the propellant mass flow rate. The system is a derivative of our previous propellant feed system [2], but the present system represents a more compact design. In addition, all control electronics are integrated into a single unit and designed to reside on a thrust stand and operate in the relevant vacuum environment where the thruster is operating, significantly increasing the present technology readiness level of liquid metal propellant feed systems. The design of various critical components in a bismuth PMS are described. These include the bismuth reservoir and pressurization system, 'hotspot' flow sensor, power system and integrated control system. Particular emphasis is given to selection of the electronics employed in this system and the methods that were used to isolate the power and control systems from the high-temperature portions of the feed system and thruster. Open loop calibration test results from the 'hotspot' flow sensor are reported, and results of integrated thruster/PMS tests demonstrate operation of the feed system in the relevant environment.
On-clip high frequency reliability and failure test structures
Snyder, Eric S.; Campbell, David V.
1997-01-01
Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.
Integrating Computer Architectures into the Design of High-Performance Controllers
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.; Leyland, Jane A.; Warmbrodt, William
1986-01-01
Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, on-line graphics, and file management. This paper discusses five global design considerations that are useful to integrate array processor, multimicroprocessor, and host computer system architecture into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the non-real-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration will be briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind-tunnel environment, the control architecture can generally be applied to a wide range of automatic control applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, J.H.
1981-01-01
The use of limiter pumps as the principle plasma exhaust system of a magnetic confinement fusion device promises significant simplification, when compared to previously investigating divertor based systems. Further simplifications, such as the integration of the exhaust system with a radio frequency heating system and with the main reactor shield and structure are investigated below. The integrity of limiters in a reactor environment is threatened by many mechanisms, the most severe of which may be erosion by sputtering. Two novel topolgies are suggested which allow high erosion without limiter failure.
Integrated communication and control systems. I - Analysis
NASA Technical Reports Server (NTRS)
Halevi, Yoram; Ray, Asok
1988-01-01
The paper presents the results of an ICCS analysis focusing on discrete-time control systems subject to time-varying delays. The present analytical technique is applicable to integrated dynamic systems such as those encountered in advanced aircraft, spacecraft, and the real-time control of robots and machine tools via a high-speed network within an autonomous manufacturing environment. The significance of data latency and missynchronization between individual system components in ICCS networks is discussed in view of the time-varying delays.
An integrated environment for tactical guidance research and evaluation
NASA Technical Reports Server (NTRS)
Goodrich, Kenneth H.; Mcmanus, John W.
1990-01-01
NASA-Langley's Tactical Guidance Research and Evaluation System (TGRES) constitutes an integrated environment for the development of tactical guidance algorithms and evaluating the effects of novel technologies; the modularity of the system allows easy modification or replacement of system elements in order to conduct evaluations of alternative technologies. TGRES differs from existing systems in its capitalization on AI programming techniques for guidance-logic implementation. Its ability to encompass high-fidelity, six-DOF simulation models will facilitate the analysis of complete aircraft dynamics.
Optical systems fabricated by printing-based assembly
Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred J; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung
2014-05-13
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
Optical systems fabricated by printing-based assembly
Rogers, John [Champaign, IL; Nuzzo, Ralph [Champaign, IL; Meitl, Matthew [Durham, NC; Menard, Etienne [Durham, NC; Baca, Alfred J [Urbana, IL; Motala, Michael [Champaign, IL; Ahn, Jong-Hyun [Suwon, KR; Park, Sang-II [Savoy, IL; Yu,; Chang-Jae, [Urbana, IL; Ko, Heung-Cho [Gwangju, KR; Stoykovich,; Mark, [Dover, NH; Yoon, Jongseung [Urbana, IL
2011-07-05
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
Optical systems fabricated by printing-based assembly
Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong -Hyun; Park, Sang -Il; Yu, Chang -Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung
2015-08-25
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
Optical systems fabricated by printing-based assembly
Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung
2017-03-21
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii.
May, Patrick; Christian, Jan-Ole; Kempa, Stefan; Walther, Dirk
2009-05-04
The unicellular green alga Chlamydomonas reinhardtii is an important eukaryotic model organism for the study of photosynthesis and plant growth. In the era of modern high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the molecular and cellular organization of a single organism. In the framework of the German Systems Biology initiative GoFORSYS, a pathway database and web-portal for Chlamydomonas (ChlamyCyc) was established, which currently features about 250 metabolic pathways with associated genes, enzymes, and compound information. ChlamyCyc was assembled using an integrative approach combining the recently published genome sequence, bioinformatics methods, and experimental data from metabolomics and proteomics experiments. We analyzed and integrated a combination of primary and secondary database resources, such as existing genome annotations from JGI, EST collections, orthology information, and MapMan classification. ChlamyCyc provides a curated and integrated systems biology repository that will enable and assist in systematic studies of fundamental cellular processes in Chlamydomonas. The ChlamyCyc database and web-portal is freely available under http://chlamycyc.mpimp-golm.mpg.de.
2013-12-18
include interactive gene and methylation profiles, interactive heatmaps, cytoscape network views, integrative genomics viewer ( IGV ), and protein-protein...single chart. The website also provides an option to include multiple genes. Integrative Genomics Viewer ( IGV )1, is a high-performance desktop tool for
Flight evaluation of differential GPS aided inertial navigation systems
NASA Technical Reports Server (NTRS)
Mcnally, B. David; Paielli, Russell A.; Bach, Ralph E., Jr.; Warner, David N., Jr.
1992-01-01
Algorithms are described for integration of Differential Global Positioning System (DGPS) data with Inertial Navigation System (INS) data to provide an integrated DGPS/INS navigation system. The objective is to establish the benefits that can be achieved through various levels of integration of DGPS with INS for precision navigation. An eight state Kalman filter integration was implemented in real-time on a twin turbo-prop transport aircraft to evaluate system performance during terminal approach and landing operations. A fully integrated DGPS/INS system is also presented which models accelerometer and rate-gyro measurement errors plus position, velocity, and attitude errors. The fully integrated system was implemented off-line using range-domain (seventeen-state) and position domain (fifteen-state) Kalman filters. Both filter integration approaches were evaluated using data collected during the flight test. Flight-test data consisted of measurements from a 5 channel Precision Code GPS receiver, a strap-down Inertial Navigation Unit (INU), and GPS satellite differential range corrections from a ground reference station. The aircraft was laser tracked to determine its true position. Results indicate that there is no significant improvement in positioning accuracy with the higher levels of DGPS/INS integration. All three systems provided high-frequency (e.g., 20 Hz) estimates of position and velocity. The fully integrated system provided estimates of inertial sensor errors which may be used to improve INS navigation accuracy should GPS become unavailable, and improved estimates of acceleration, attitude, and body rates which can be used for guidance and control. Precision Code DGPS/INS positioning accuracy (root-mean-square) was 1.0 m cross-track and 3.0 m vertical. (This AGARDograph was sponsored by the Guidance and Control Panel.)
Song, Yong-Ha; Ahn, Sang-Joon Kenny; Kim, Min-Wu; Lee, Jeong-Oen; Hwang, Chi-Sun; Pi, Jae-Eun; Ko, Seung-Deok; Choi, Kwang-Wook; Park, Sang-Hee Ko; Yoon, Jun-Bo
2015-03-25
A hybrid complementary logic inverter consisting of a microelectromechanical system switch as a promising alternative for the p-type oxide thin film transistor (TFT) and an n-type oxide TFT is presented for ultralow power integrated circuits. These heterogeneous microdevices are monolithically integrated. The resulting logic device shows a distinctive voltage transfer characteristic curve, very low static leakage, zero-short circuit current, and exceedingly high voltage gain. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
500 C Electronic Packaging and Dielectric Materials for High Temperature Applications
NASA Technical Reports Server (NTRS)
Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.
2016-01-01
High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.
A 128 x 128 CMOS Active Pixel Image Sensor for Highly Integrated Imaging Systems
NASA Technical Reports Server (NTRS)
Mendis, Sunetra K.; Kemeny, Sabrina E.; Fossum, Eric R.
1993-01-01
A new CMOS-based image sensor that is intrinsically compatible with on-chip CMOS circuitry is reported. The new CMOS active pixel image sensor achieves low noise, high sensitivity, X-Y addressability, and has simple timing requirements. The image sensor was fabricated using a 2 micrometer p-well CMOS process, and consists of a 128 x 128 array of 40 micrometer x 40 micrometer pixels. The CMOS image sensor technology enables highly integrated smart image sensors, and makes the design, incorporation and fabrication of such sensors widely accessible to the integrated circuit community.
NASA Astrophysics Data System (ADS)
Uijt de Haag, Maarten; Campbell, Jacob; van Graas, Frank
2005-05-01
Synthetic Vision Systems (SVS) provide pilots with a virtual visual depiction of the external environment. When using SVS for aircraft precision approach guidance systems accurate positioning relative to the runway with a high level of integrity is required. Precision approach guidance systems in use today require ground-based electronic navigation components with at least one installation at each airport, and in many cases multiple installations to service approaches to all qualifying runways. A terrain-referenced approach guidance system is envisioned to provide precision guidance to an aircraft without the use of ground-based electronic navigation components installed at the airport. This autonomy makes it a good candidate for integration with an SVS. At the Ohio University Avionics Engineering Center (AEC), work has been underway in the development of such a terrain referenced navigation system. When used in conjunction with an Inertial Measurement Unit (IMU) and a high accuracy/resolution terrain database, this terrain referenced navigation system can provide navigation and guidance information to the pilot on a SVS or conventional instruments. The terrain referenced navigation system, under development at AEC, operates on similar principles as other terrain navigation systems: a ground sensing sensor (in this case an airborne laser scanner) gathers range measurements to the terrain; this data is then matched in some fashion with an onboard terrain database to find the most likely position solution and used to update an inertial sensor-based navigator. AEC's system design differs from today's common terrain navigators in its use of a high resolution terrain database (~1 meter post spacing) in conjunction with an airborne laser scanner which is capable of providing tens of thousands independent terrain elevation measurements per second with centimeter-level accuracies. When combined with data from an inertial navigator the high resolution terrain database and laser scanner system is capable of providing near meter-level horizontal and vertical position estimates. Furthermore, the system under development capitalizes on 1) The position and integrity benefits provided by the Wide Area Augmentation System (WAAS) to reduce the initial search space size and; 2) The availability of high accuracy/resolution databases. This paper presents results from flight tests where the terrain reference navigator is used to provide guidance cues for a precision approach.
Optimizing point-of-care testing in clinical systems management.
Kost, G J
1998-01-01
The goal of improving medical and economic outcomes calls for leadership based on fundamental principles. The manager of clinical systems works collaboratively within the acute care center to optimize point-of-care testing through systematic approaches such as integrative strategies, algorithms, and performance maps. These approaches are effective and efficacious for critically ill patients. Optimizing point-of-care testing throughout the entire health-care system is inherently more difficult. There is potential to achieve high-quality testing, integrated disease management, and equitable health-care delivery. Despite rapid change and economic uncertainty, a macro-strategic, information-integrated, feedback-systems, outcomes-oriented approach is timely, challenging, effective, and uplifting to the creative human spirit.
Ultra-Low Loss Waveguides with Application to Photonic Integrated Circuits
NASA Astrophysics Data System (ADS)
Bauters, Jared F.
The integration of photonic components using a planar platform promises advantages in cost, size, weight, and power consumption for optoelectronic systems. Yet, the typical propagation loss of 5-10 dB/m in a planar silica waveguide is nearly five orders-of-magnitude larger than that in low loss optical fibers. For some applications, the miniaturization of the photonic system and resulting smaller propagation lengths from integration are enough to overcome the increase in propagation loss. For other more demanding systems or applications, such as those requiring long optical time delays or high-quality-factor (Q factor) resonators, the high propagation loss can degrade system performance to a degree that trumps the potential advantages offered by integration. Thus, the reduction of planar waveguide propagation loss in a Si3-N4 based waveguide platform is a primary focus of this dissertation. The ultra-low loss stoichiometric Si3-N4 waveguide platform offers the additional advantages of fabrication process stability and repeatability. Yet, active devices such as lasers, amplifiers, and photodetectors have not been monolithically integrated with ultra-low loss waveguides due to the incompatibility of the active and ultra-low loss processing thermal budgets (ultra-low loss waveguides are annealed at temperatures exceeding 1000 °C in order to drive out impurities). So a platform that enables the integration of active devices with the ultra-low losses of the Si3- N4 waveguide platform is this dissertation's second focus. The work enables the future fabrication of sensor, gyroscope, true time delay, and low phase noise oscillator photonic integrated circuits.
Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V
2015-08-24
Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.
Truxal, Steven C; Huang, Nien-Tsu; Kurabayashi, Katsuo
2009-01-01
We report a microelectromechanical (MEMS) tunable optical filter and its integration in a fluorescence microscope for high speed on-chip spectral measurements. This integration allows for measurements of any fluorescence sample placed onto the microscope stage. We demonstrate the system capabilities by taking spectral measurements of multicolor fluorescent beads and fluorescently labeled cells passing through a microfluidic cytometer. The system has applications in biological studies where the measurement of multiple fluorescent peaks is restricted by the detection method's speed and sensitivity.
Development and Testing of a USM High Altitude Balloon
NASA Astrophysics Data System (ADS)
Thaheer, A. S. Mohamed; Ismail, N. A.; Yusoff, S. H. Md.; Nasirudin, M. A.
2018-04-01
This paper discusses on tests conducted on the component and subsystem level during development of the USM High Altitude Balloon (HAB). The tests conducted by selecting initial components then tested individually based on several case studies such as reliability test, camera viewing, power consumption, thermal capability, and parachute performance. Then, the component is integrated into sub-system level for integration and functionality test. The preliminary result is utilized to tune the components and sub-systems and trial launch is conducted where the sample images are recorded and atmospheric data successfully collected.
Flat conductor cable for electrical packaging
NASA Technical Reports Server (NTRS)
Angele, W.
1972-01-01
Flat conductor cable (FCC) is relatively new, highly promising means for electrical packaging and system integration. FCC offers numerous desirable traits (weight, volume and cost savings, flexibility, high reliability, predictable and repeatable electrical characteristics) which make it extremely attractive as a packaging medium. FCC, today, finds wide application in everything from integration of lunar equipment to the packaging of electronics in nuclear submarines. Described are cable construction and means of termination, applicable specifications and standards, and total FCC systems. A list of additional sources of data is also included for more intensive study.
Controlling Ethylene for Extended Preservation of Fresh Fruits and Vegetables
2008-12-01
into a process simulation to determine the effects of key design parameters on the overall performance of the system. Integrating process simulation...High Decay [Asian Pears High High Decay [ Avocados High High Decay lBananas Moderate ~igh Decay Cantaloupe High Moderate Decay Cherimoya Very High High...ozonolysis. Process simulation was subsequently used to understand the effect of key system parameters on EEU performance. Using this modeling work
Design and Control of Integrated Systems for Hydrogen Production and Power Generation
NASA Astrophysics Data System (ADS)
Georgis, Dimitrios
Growing concerns on CO2 emissions have led to the development of highly efficient power plants. Options for increased energy efficiencies include alternative energy conversion pathways, energy integration and process intensification. Solid oxide fuel cells (SOFC) constitute a promising alternative for power generation since they convert the chemical energy electrochemically directly to electricity. Their high operating temperature shows potential for energy integration with energy intensive units (e.g. steam reforming reactors). Although energy integration is an essential tool for increased efficiencies, it leads to highly complex process schemes with rich dynamic behavior, which are challenging to control. Furthermore, the use of process intensification for increased energy efficiency imposes an additional control challenge. This dissertation identifies and proposes solutions on design, operational and control challenges of integrated systems for hydrogen production and power generation. Initially, a study on energy integrated SOFC systems is presented. Design alternatives are identified, control strategies are proposed for each alternative and their validity is evaluated under different operational scenarios. The operational range of the proposed control strategies is also analyzed. Next, thermal management of water gas shift membrane reactors, which are a typical application of process intensification, is considered. Design and operational objectives are identified and a control strategy is proposed employing advanced control algorithms. The performance of the proposed control strategy is evaluated and compared with classical control strategies. Finally SOFC systems for combined heat and power applications are considered. Multiple recycle loops are placed to increase design flexibility. Different operational objectives are identified and a nonlinear optimization problem is formulated. Optimal designs are obtained and their features are discussed and compared. The results of the dissertation provide a deeper understanding on the design, operational and control challenges of the above systems and can potentially guide further commercialization efforts. In addition to this, the results can be generalized and used for applications from the transportation and residential sector to large--scale power plants.
Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.
2017-01-01
In support of a facility characterization test, the Integrated Cryogenic Propulsion Test Article (ICPTA) was hotfire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). The ICPTA utilizes liquid oxygen and liquid methane propellants for its main engine and four reaction control engines, and uses a cold helium system for tank pressurization. The hotfire test series included high altitude, high vacuum, ambient temperature, and deep cryogenic environments, and several hundred sensors on the vehicle collected a range of system level data useful to characterize the operation of an integrated LOX/Methane spacecraft in the space environment - a unique data set for this propellant combination.
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Suzuki, A.; Wang, S.; Pottinger, N.; Arter, J.; Netzer, A.; Parker, K.; Viker, K.; Packer, D. L.
2017-03-01
Myocardial scarring creates a substrate for reentrant circuits which can lead to ventricular tachycardia. In ventricular catheter ablation therapy, regions of myocardial scarring are targeted to interrupt arrhythmic electrical pathways. Low voltage regions are a surrogate for myocardial scar and are identified by generating an electro anatomic map at the start of the procedure. Recent efforts have focussed on integration of preoperative scar information generated from delayed contrast-enhanced MR imaging to augment intraprocedural information. In this work, we describe an initial feasibility study of integration of a preoperative MRI derived scar maps into a high-resolution mapping system to improve planning and guidance of VT ablation procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horowitz, Kelsey A; Ding, Fei; Mather, Barry A
This presentation was given at the 2017 NREL Workshop 'Benchmarking Distribution Grid Integration Costs Under High Distributed PV Penetrations.' It provides a brief overview of recent and ongoing NREL work on distribution system grid integration costs, as well as challenges and needs from the community.
Integrated care information technology.
Rowe, Ian; Brimacombe, Phil
2003-02-21
Counties Manukau District Health Board (CMDHB) uses information technology (IT) to drive its Integrated Care strategy. IT enables the sharing of relevant health information between care providers. This information sharing is critical to closing the gaps between fragmented areas of the health system. The tragic case of James Whakaruru demonstrates how people have been falling through those gaps. The starting point of the Integrated Care strategic initiative was the transmission of electronic discharges and referral status messages from CMDHB's secondary provider, South Auckland Health (SAH), to GPs in the district. Successful pilots of a Well Child system and a diabetes disease management system embracing primary and secondary providers followed this. The improved information flowing from hospital to GPs now enables GPs to provide better management for their patients. The Well Child system pilot helped improve reported immunization rates in a high health need area from 40% to 90%. The diabetes system pilot helped reduce the proportion of patients with HbA1c rang:9 from 47% to 16%. IT has been implemented as an integral component of an overall Integrated Care strategic initiative. Within this context, Integrated Care IT has helped to achieve significant improvements in care outcomes, broken down barriers between health system silos, and contributed to the establishment of a system of care continuum that is better for patients.
Enhancing vehicle cornering limit through sideslip and yaw rate control
NASA Astrophysics Data System (ADS)
Lu, Qian; Gentile, Pierangelo; Tota, Antonio; Sorniotti, Aldo; Gruber, Patrick; Costamagna, Fabio; De Smet, Jasper
2016-06-01
Fully electric vehicles with individually controlled drivetrains can provide a high degree of drivability and vehicle safety, all while increasing the cornering limit and the 'fun-to-drive' aspect. This paper investigates a new approach on how sideslip control can be integrated into a continuously active yaw rate controller to extend the limit of stable vehicle cornering and to allow sustained high values of sideslip angle. The controllability-related limitations of integrated yaw rate and sideslip control, together with its potential benefits, are discussed through the tools of multi-variable feedback control theory and non-linear phase-plane analysis. Two examples of integrated yaw rate and sideslip control systems are presented and their effectiveness is experimentally evaluated and demonstrated on a four-wheel-drive fully electric vehicle prototype. Results show that the integrated control system allows safe operation at the vehicle cornering limit at a specified sideslip angle independent of the tire-road friction conditions.
Control and automation of multilayered integrated microfluidic device fabrication.
Kipper, Sarit; Frolov, Ludmila; Guy, Ortal; Pellach, Michal; Glick, Yair; Malichi, Asaf; Knisbacher, Binyamin A; Barbiro-Michaely, Efrat; Avrahami, Dorit; Yavets-Chen, Yehuda; Levanon, Erez Y; Gerber, Doron
2017-01-31
Integrated microfluidics is a sophisticated three-dimensional (multi layer) solution for high complexity serial or parallel processes. Fabrication of integrated microfluidic devices requires soft lithography and the stacking of thin-patterned PDMS layers. Precise layer alignment and bonding is crucial. There are no previously reported standards for alignment of the layers, which is mostly performed using uncontrolled processes with very low alignment success. As a result, integrated microfluidics is mostly used in academia rather than in the many potential industrial applications. We have designed and manufactured a semiautomatic Microfluidic Device Assembly System (μDAS) for full device production. μDAS comprises an electrooptic mechanical system consisting of four main parts: optical system, smart media holder (for PDMS), a micropositioning xyzθ system and a macropositioning XY mechanism. The use of the μDAS yielded valuable information regarding PDMS as the material for device fabrication, revealed previously unidentified errors, and enabled optimization of a robust fabrication process. In addition, we have demonstrated the utilization of the μDAS technology for fabrication of a complex 3 layered device with over 12 000 micromechanical valves and an array of 64 × 64 DNA spots on a glass substrate with high yield and high accuracy. We increased fabrication yield from 25% to about 85% with an average layer alignment error of just ∼4 μm. It also increased our protein expression yields from 80% to over 90%, allowing us to investigate more proteins per experiment. The μDAS has great potential to become a valuable tool for both advancing integrated microfluidics in academia and producing and applying microfluidic devices in the industry.
An integrated multiscale river basin observing system in the Heihe River Basin, northwest China
NASA Astrophysics Data System (ADS)
Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.
2015-12-01
Using the watershed as the unit to establish an integrated watershed observing system has been an important trend in integrated eco-hydrologic studies in the past ten years. Thus far, a relatively comprehensive watershed observing system has been established in the Heihe River Basin, northwest China. In addition, two comprehensive remote sensing hydrology experiments have been conducted sequentially in the Heihe River Basin, including the Watershed Allied Telemetry Experimental Research (WATER) (2007-2010) and the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (2012-2015). Among these two experiments, an important result of WATER has been the generation of some multi-scale, high-quality comprehensive datasets, which have greatly supported the development, improvement and validation of a series of ecological, hydrological and quantitative remote-sensing models. The goal of a breakthrough for solving the "data bottleneck" problem has been achieved. HiWATER was initiated in 2012. This project has established a world-class hydrological and meteorological observation network, a flux measurement matrix and an eco-hydrological wireless sensor network. A set of super high-resolution airborne remote-sensing data has also been obtained. In addition, there has been important progress with regard to the scaling research. Furthermore, the automatic acquisition, transmission, quality control and remote control of the observational data has been realized through the use of wireless sensor network technology. The observation and information systems have been highly integrated, which will provide a solid foundation for establishing a research platform that integrates observation, data management, model simulation, scenario analysis and decision-making support to foster 21st-century watershed science in China.
Purdue Ionomics Information Management System. An Integrated Functional Genomics Platform1[C][W][OA
Baxter, Ivan; Ouzzani, Mourad; Orcun, Seza; Kennedy, Brad; Jandhyala, Shrinivas S.; Salt, David E.
2007-01-01
The advent of high-throughput phenotyping technologies has created a deluge of information that is difficult to deal with without the appropriate data management tools. These data management tools should integrate defined workflow controls for genomic-scale data acquisition and validation, data storage and retrieval, and data analysis, indexed around the genomic information of the organism of interest. To maximize the impact of these large datasets, it is critical that they are rapidly disseminated to the broader research community, allowing open access for data mining and discovery. We describe here a system that incorporates such functionalities developed around the Purdue University high-throughput ionomics phenotyping platform. The Purdue Ionomics Information Management System (PiiMS) provides integrated workflow control, data storage, and analysis to facilitate high-throughput data acquisition, along with integrated tools for data search, retrieval, and visualization for hypothesis development. PiiMS is deployed as a World Wide Web-enabled system, allowing for integration of distributed workflow processes and open access to raw data for analysis by numerous laboratories. PiiMS currently contains data on shoot concentrations of P, Ca, K, Mg, Cu, Fe, Zn, Mn, Co, Ni, B, Se, Mo, Na, As, and Cd in over 60,000 shoot tissue samples of Arabidopsis (Arabidopsis thaliana), including ethyl methanesulfonate, fast-neutron and defined T-DNA mutants, and natural accession and populations of recombinant inbred lines from over 800 separate experiments, representing over 1,000,000 fully quantitative elemental concentrations. PiiMS is accessible at www.purdue.edu/dp/ionomics. PMID:17189337
Integrated analysis of large space systems
NASA Technical Reports Server (NTRS)
Young, J. P.
1980-01-01
Based on the belief that actual flight hardware development of large space systems will necessitate a formalized method of integrating the various engineering discipline analyses, an efficient highly user oriented software system capable of performing interdisciplinary design analyses with tolerable solution turnaround time is planned Specific analysis capability goals were set forth with initial emphasis given to sequential and quasi-static thermal/structural analysis and fully coupled structural/control system analysis. Subsequently, the IAC would be expanded to include a fully coupled thermal/structural/control system, electromagnetic radiation, and optical performance analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmore, Joshua R.; Furches, Anna; Wolff, Gara N.
Pseudomonas putida strains are highly robust bacteria known for their ability to efficiently utilize a variety of carbon sources, including aliphatic and aromatic hydrocarbons. Recently, P. putida has been engineered to valorize the lignin stream of a lignocellulosic biomass pretreatment process. Nonetheless, when compared to platform organisms such as Escherichia coli, the toolkit for engineering P. putida is underdeveloped. Heterologous gene expression in particular is problematic. Plasmid instability and copy number variance provide challenges for replicative plasmids, while use of homologous recombination for insertion of DNA into the chromosome is slow and laborious. Furthermore, heterologous expression efforts to date typicallymore » rely on overexpression of exogenous pathways using a handful of poorly characterized promoters. In order to improve the P. putida toolkit, we developed a rapid genome integration system using the site-specific recombinase from bacteriophage Bxb1 to enable rapid, high efficiency integration of DNA into the P. putida chromosome. We also developed a library of synthetic promoters with various UP elements, -35 sequences, and -10 sequences, as well as different ribosomal binding sites. We tested these promoters using a fluorescent reporter gene, mNeonGreen, to characterize the strength of each promoter, and identified UP-element-promoter-ribosomal binding sites combinations capable of driving a ~150-fold range of protein expression levels. One additional integrating vector was developed that confers more robust kanamycin resistance when integrated at single copy into the chromosome. This genome integration and reporter systems are extensible for testing other genetic parts, such as examining terminator strength, and will allow rapid integration of heterologous pathways for metabolic engineering.« less
1995-09-01
vital processes of a business. process, IDEF, method, methodology, modeling, knowledge acquisition, requirements definition, information systems... knowledge resources. Like manpower, materials, and machines, information and knowledge assets are recognized as vital resources that can be leveraged to...integrated enterprise. These technologies are designed to leverage information and knowledge resources as the key enablers for high quality systems
Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.; Thornton, M.
A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehiclesmore » (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.« less
An Integrated Thermal Compensation System for MEMS Inertial Sensors
Chiu, Sheng-Ren; Teng, Li-Tao; Chao, Jen-Wei; Sue, Chung-Yang; Lin, Chih-Hsiou; Chen, Hong-Ren; Su, Yan-Kuin
2014-01-01
An active thermal compensation system for a low temperature-bias-drift (TBD) MEMS-based gyroscope is proposed in this study. First, a micro-gyroscope is fabricated by a high-aspect-ratio silicon-on-glass (SOG) process and vacuum packaged by glass frit bonding. Moreover, a drive/readout ASIC, implemented by the 0.25 μm 1P5M standard CMOS process, is designed and integrated with the gyroscope by directly wire bonding. Then, since the temperature effect is one of the critical issues in the high performance gyroscope applications, the temperature-dependent characteristics of the micro-gyroscope are discussed. Furthermore, to compensate the TBD of the micro-gyroscope, a thermal compensation system is proposed and integrated in the aforementioned ASIC to actively tune the parameters in the digital trimming mechanism, which is designed in the readout ASIC. Finally, some experimental results demonstrate that the TBD of the micro-gyroscope can be compensated effectively by the proposed compensation system. PMID:24599191
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baggu, Murali
2017-01-01
This project will enable effective utilization of high penetration of photovoltaics (PV) in islanded microgrids, increasing overall system efficiency, decreased fuel costs and resiliency of the overall system to help meet the SunShot goals of enhancing system integration methods to increase penetration of PV. National Renewable Energy Laboratory (NREL) will collaborate with San Diego Gas & Electric (SDG&E) to provide research and testing support to address their needs in energy storage sizing and placement, Integrated Test Facility (ITF) development, Real Time Digital Simulator (RTDS) Modeling and simulation support at ITF, Visualization and Virtual connection to Energy Systems Integration Facility (ESIF),more » and microgrid simulation and testing areas. Specifically in this project a real microgrid scenario with high penetration of PV (existing in SDG&E territory) is tested in the ESIF laboratory. Multiple control cases for firming PV using storage in a microgrid scenario will be investigated and tested in the laboratory setup.« less
A Review on Radio-Over-Fiber Technology-Based Integrated (Optical/Wireless) Networks
NASA Astrophysics Data System (ADS)
Rajpal, Shivika; Goyal, Rakesh
2017-06-01
In the present paper, radio-over-fiber (RoF) technology has been proposed, which is the integration of the optical and radio networks. With a high transmission capacity, comparatively low cost and low attenuation, optical fiber provides an ideal solution for accomplishing the interconnections. In addition, a radio system enables the significant mobility, flexibility and easy access. Therefore, the system integration can meet the increasing demands of subscribers for voice, data and multimedia services that require the access network to support high data rates at any time and any place inexpensively. RoF has the potentiality to the backbone of the wireless access network and it has gained significant momentum in the last decade as a potential last-mile access scheme. This paper gives the comprehensive review of RoF technology used in the communication system. Concept, applications, advantages and limitations of RoF technology are also discussed in this paper.
Gbps wireless transceivers for high bandwidth interconnections in distributed cyber physical systems
NASA Astrophysics Data System (ADS)
Saponara, Sergio; Neri, Bruno
2015-05-01
In Cyber Physical Systems there is a growing use of high speed sensors like photo and video camera, radio and light detection and ranging (Radar/Lidar) sensors. Hence Cyber Physical Systems can benefit from the high communication data rate, several Gbps, that can be provided by mm-wave wireless transceivers. At such high frequency the wavelength is few mm and hence the whole transceiver including the antenna can be integrated in a single chip. To this aim this paper presents the design of 60 GHz transceiver architecture to ensure connection distances up to 10 m and data rate up to 4 Gbps. At 60 GHz there are more than 7 GHz of unlicensed bandwidth (available for free for development of new services). By using a CMOS SOI technology RF, analog and digital baseband circuitry can be integrated in the same chip minimizing noise coupling. Even the antenna is integrated on chip reducing cost and size vs. classic off-chip antenna solutions. Therefore the proposed transceiver can enable at physical layer the implementation of low cost nodes for a Cyber Physical System with data rates of several Gbps and with a communication distance suitable for home/office scenarios, or on-board vehicles such as cars, trains, ships, airplanes
Proof of concept demonstration of novel technologies for lunar spacesuit dust mitigation
NASA Astrophysics Data System (ADS)
Manyapu, Kavya K.; De Leon, Pablo; Peltz, Leora; Gaier, James R.; Waters, Deborah
2017-08-01
A recent report by NASA identified dust/particulate mitigation techniques as a highly relevant study for future long-term planetary exploration missions (NASA, 2015). The deleterious effects of lunar dust on spacesuits discovered during the Apollo missions has compelled NASA to identify dust mitigation as a critical path for potential future lunar, asteroid and Mars missions. The complexity of spacesuit design has however constrained integrating existing dust cleaning technologies, formerly demonstrated on rigid surfaces, into the spacesuit system. Accordingly, this research is investigating novel methods to integrate dust mitigation technologies for use on spacesuits. We examine utilizing a novel combination of active and passive technologies integrated into the spacesuit outerlayer to alleviate dust contamination. Leveraging two specific technologies, the Electrodynamics Dust Shield (EDS) active technology and Work Function Matching Coating (WFM) passive technology, developed by NASA for rigid surfaces, we apply new high performance materials such as the Carbon Nanotube (CNT) flexible fibers to develop a spacesuit-integrated dust cleaning system. Through experiments conducted using JSC-1A lunar dust simulant on coupons made of spacesuit outerlayer material, feasibility of integrating the proposed dust cleaning system and its performance were assessed. Results from these preliminary experiments show that the integrated dust cleaning system is capable of removing 80-95% of dust from the spacesuit material demonstrating proof of concept. This paper describes the techniques and results from the experiments. Future challenges of implementing the proposed approach into fight suits are identified.
Integration of the Remote Agent for the NASA Deep Space One Autonomy Experiment
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.; Bernard, Douglas E.; Gamble, Edward B., Jr.; Kanefsky, Bob; Kurien, James; Muscettola, Nicola; Nayak, P. Pandurang; Rajan, Kanna; Lau, Sonie (Technical Monitor)
1998-01-01
This paper describes the integration of the Remote Agent (RA), a spacecraft autonomy system which is scheduled to control the Deep Space 1 spacecraft during a flight experiment in 1999. The RA is a reusable, model-based autonomy system that is quite different from software typically used to control an aerospace system. We describe the integration challenges we faced, how we addressed them, and the lessons learned. We focus on those aspects of integrating the RA that were either easier or more difficult than integrating a more traditional large software application because the RA is a model-based autonomous system. A number of characteristics of the RA made integration process easier. One example is the model-based nature of RA. Since the RA is model-based, most of its behavior is not hard coded into procedural program code. Instead, engineers specify high level models of the spacecraft's components from which the Remote Agent automatically derives correct system-wide behavior on the fly. This high level, modular, and declarative software description allowed some interfaces between RA components and between RA and the flight software to be automatically generated and tested for completeness against the Remote Agent's models. In addition, the Remote Agent's model-based diagnosis system automatically diagnoses when the RA models are not consistent with the behavior of the spacecraft. In flight, this feature is used to diagnose failures in the spacecraft hardware. During integration, it proved valuable in finding problems in the spacecraft simulator or flight software. In addition, when modifications are made to the spacecraft hardware or flight software, the RA models are easily changed because they only capture a description of the spacecraft. one does not have to maintain procedural code that implements the correct behavior for every expected situation. On the other hand, several features of the RA made it more difficult to integrate than typical flight software. For example, the definition of correct behavior is more difficult to specify for a system that is expected to reason about and flexibly react to its environment than for a traditional flight software system. Consequently, whenever a change is made to the RA it is more time consuming to determine if the resulting behavior is correct. We conclude the paper with a discussion of future work on the Remote Agent as well as recommendations to ease integration of similar autonomy projects.
Threat assessment and sensor management in a modular architecture
NASA Astrophysics Data System (ADS)
Page, S. F.; Oldfield, J. P.; Islip, S.; Benfold, B.; Brandon, R.; Thomas, P. A.; Stubbins, D. J.
2016-10-01
Many existing asset/area protection systems, for example those deployed to protect critical national infrastructure, are comprised of multiple sensors such as EO/IR, radar, and Perimeter Intrusion Detection Systems (PIDS), loosely integrated with a central Command and Control (C2) system. Whilst some sensors provide automatic event detection and C2 systems commonly provide rudimentary multi-sensor rule based alerting, the performance of such systems is limited by the lack of deep integration and autonomy. As a result, these systems have a high degree of operator burden. To address these challenges, an architectural concept termed "SAPIENT" was conceived. SAPIENT is based on multiple Autonomous Sensor Modules (ASMs) connected to a High-Level Decision Making Module (HLDMM) that provides data fusion, situational awareness, alerting, and sensor management capability. The aim of the SAPIENT concept is to allow for the creation of a surveillance system, in a modular plug-and-play manner, that provides high levels of autonomy, threat detection performance, and reduced operator burden. This paper considers the challenges associated with developing an HLDMM aligned with the SAPIENT concept, through the discussion of the design of a realised HLDMM. Particular focus is drawn to how high levels of system level performance can be achieved whilst retaining modularity and flexibility. A number of key aspects of our HLDMM are presented, including an integrated threat assessment and sensor management framework, threat sequence matching, and ASM trust modelling. The results of real-world testing of the HLDMM, in conjunction with multiple Laser, Radar, and EO/IR sensors, in representative semi-urban environments, are discussed.
Computer graphics application in the engineering design integration system
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.
1975-01-01
The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.
Semi-implicit integration factor methods on sparse grids for high-dimensional systems
NASA Astrophysics Data System (ADS)
Wang, Dongyong; Chen, Weitao; Nie, Qing
2015-07-01
Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Pinero, Luis; Haag, Thomas; Huang, Wensheng; Ahern, Drew; Liang, Ray; Shilo, Vlad
2016-01-01
NASA's Science Mission Directorate is sponsoring the development of a 4 kW-class Hall propulsion system for implementation in NASA science and exploration missions. The main components of the system include the High Voltage Hall Accelerator (HiVHAc), an engineering model power processing unit (PPU) developed by Colorado Power Electronics, and a xenon flow control module (XFCM) developed by VACCO Industries. NASA Glenn Research Center is performing integrated tests of the Hall thruster propulsion system. This paper presents results from integrated tests of the PPU and XFCM with the HiVHAc engineering development thruster and a SPT-140 thruster provided by Space System Loral. The results presented in this paper demonstrate thruster discharge initiation along with open-loop and closed-loop control of the discharge current with anode flow for both the HiVHAc and the SPT-140 thrusters. Integrated tests with the SPT-140 thruster indicated that the PPU was able to repeatedly initiate the thruster's discharge, achieve steady state operation, and successfully throttle the thruster between 1.5 and 4.5 kW. The measured SPT-140 performance was identical to levels reported by Space Systems Loral.
Six-component semi-discrete integrable nonlinear Schrödinger system
NASA Astrophysics Data System (ADS)
Vakhnenko, Oleksiy O.
2018-01-01
We suggest the six-component integrable nonlinear system on a quasi-one-dimensional lattice. Due to its symmetrical form, the general system permits a number of reductions; one of which treated as the semi-discrete integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell is considered in considerable details. Besides six truly independent basic field variables, the system is characterized by four concomitant fields whose background values produce three additional types of inter-site resonant interactions between the basic fields. As a result, the system dynamics becomes associated with the highly nonstandard form of Poisson structure. The elementary Poisson brackets between all field variables are calculated and presented explicitly. The richness of system dynamics is demonstrated on the multi-component soliton solution written in terms of properly parameterized soliton characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Hale, Elaine; Hodge, Bri-Mathias
2016-08-11
This paper discusses the development of, approaches for, experiences with, and some results from a large-scale, high-performance-computer-based (HPC-based) co-simulation of electric power transmission and distribution systems using the Integrated Grid Modeling System (IGMS). IGMS was developed at the National Renewable Energy Laboratory (NREL) as a novel Independent System Operator (ISO)-to-appliance scale electric power system modeling platform that combines off-the-shelf tools to simultaneously model 100s to 1000s of distribution systems in co-simulation with detailed ISO markets, transmission power flows, and AGC-level reserve deployment. Lessons learned from the co-simulation architecture development are shared, along with a case study that explores the reactivemore » power impacts of PV inverter voltage support on the bulk power system.« less
Information management systems for pharmacogenomics.
Thallinger, Gerhard G; Trajanoski, Slave; Stocker, Gernot; Trajanoski, Zlatko
2002-09-01
The value of high-throughput genomic research is dramatically enhanced by association with key patient data. These data are generally available but of disparate quality and not typically directly associated. A system that could bring these disparate data sources into a common resource connected with functional genomic data would be tremendously advantageous. However, the integration of clinical and accurate interpretation of the generated functional genomic data requires the development of information management systems capable of effectively capturing the data as well as tools to make that data accessible to the laboratory scientist or to the clinician. In this review these challenges and current information technology solutions associated with the management, storage and analysis of high-throughput data are highlighted. It is suggested that the development of a pharmacogenomic data management system which integrates public and proprietary databases, clinical datasets, and data mining tools embedded in a high-performance computing environment should include the following components: parallel processing systems, storage technologies, network technologies, databases and database management systems (DBMS), and application services.
MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics
Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; ...
2016-10-10
Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. But, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. We designed devices with unique ring-type structures andmore » use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass.« less
Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; Abbaslou, Siamak; Reyes, Pavel; Wang, Szu-Ying; Li, Guangyuan; Lu, Ming; Sheng, Kuang; Lu, Yicheng
2016-10-10
Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. However, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. The devices are designed with unique ring-type structures and use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass.
MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics
Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; Abbaslou, Siamak; Reyes, Pavel; Wang, Szu-Ying; Li, Guangyuan; Lu, Ming; Sheng, Kuang; Lu, Yicheng
2016-01-01
Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. However, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. The devices are designed with unique ring-type structures and use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass. PMID:27721484
Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter
NASA Astrophysics Data System (ADS)
Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim
2016-08-01
This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.
CLIPS: A tool for the development and delivery of expert systems
NASA Technical Reports Server (NTRS)
Riley, Gary
1991-01-01
The C Language Integrated Production System (CLIPS) is a forward chaining rule-based language developed by the Software Technology Branch at the Johnson Space Center. CLIPS provides a complete environment for the construction of rule-based expert systems. CLIPS was designed specifically to provide high probability, low cost, and easy integration with external systems. Other key features of CLIPS include a powerful rule syntax, an interactive development environment, high performance, extensibility, a verification/validation tool, extensive documentation, and source code availability. The current release of CLIPS, version 4.3, is being used by over 2,500 users throughout the public and private community including: all NASA sites and branches of the military, numerous Federal bureaus, government contractors, 140 universities, and many companies.
COOP 3D ARPA Experiment 109 National Center for Atmospheric Research
NASA Technical Reports Server (NTRS)
1998-01-01
Coupled atmospheric and hydrodynamic forecast models were executed on the supercomputing resources of the National Center for Atmospheric Research (NCAR) in Boulder, Colorado and the Ohio Supercomputing Center (OSC)in Columbus, Ohio. respectively. The interoperation of the forecast models on these geographically diverse, high performance Cray platforms required the transfer of large three dimensional data sets at very high information rates. High capacity, terrestrial fiber optic transmission system technologies were integrated with those of an experimental high speed communications satellite in Geosynchronous Earth Orbit (GEO) to test the integration of the two systems. Operation over a spacecraft in GEO orbit required modification of the standard configuration of legacy data communications protocols to facilitate their ability to perform efficiently in the changing environment characteristic of a hybrid network. The success of this performance tuning enabled the use of such an architecture to facilitate high data rate, fiber optic quality data communications between high performance systems not accessible to standard terrestrial fiber transmission systems. Thus obviating the performance degradation often found in contemporary earth/satellite hybrids.
Geoinformatics 2007: data to knowledge
Brady, Shailaja R.; Sinha, A. Krishna; Gundersen, Linda C.
2007-01-01
Geoinformatics is the term used to describe a variety of efforts to promote collaboration between the computer sciences and the geosciences to solve complex scientific questions. It refers to the distributed, integrated digital information system and working environment that provides innovative means for the study of the Earth systems, as well as other planets, through use of advanced information technologies. Geoinformatics activities range from major research and development efforts creating new technologies to provide high-quality, sustained production-level services for data discovery, integration and analysis, to small, discipline-specific efforts that develop earth science data collections and data analysis tools serving the needs of individual communities. The ultimate vision of Geoinformatics is a highly interconnected data system populated with high quality, freely available data, as well as, a robust set of software for analysis, visualization, and modeling.
Recce NG: from Recce sensor to image intelligence (IMINT)
NASA Astrophysics Data System (ADS)
Larroque, Serge
2001-12-01
Recce NG (Reconnaissance New Generation) is presented as a complete and optimized Tactical Reconnaissance System. Based on a new generation Pod integrating high resolution Dual Band sensors, the system has been designed with the operational lessons learnt from the last Peace Keeping Operations in Bosnia and Kosovo. The technical solutions retained as component modules of a full IMINT acquisition system, take benefit of the state of art in the following key technologies: Advanced Mission Planning System for long range stand-off Manned Recce, Aircraft and/or Pod tasking, operating sophisticated back-up software tools, high resolution 3D geo data and improved/combat proven MMI to reduce planning delays, Mature Dual Band sensors technology to achieve the Day and Night Recce Mission, including advanced automatic operational functions, as azimuth and roll tracking capabilities, low risk in Pod integration and in carrier avionics, controls and displays upgrades, to save time in operational turn over and maintenance, High rate Imagery Down Link, for Real Time or Near Real Time transmission, fully compatible with STANAG 7085 requirements, Advanced IMINT Exploitation Ground Segment, combat proven, NATO interoperable (STANAG 7023), integrating high value software tools for accurate location, improved radiometric image processing and open link to the C4ISR systems. The choice of an industrial Prime contractor mastering across the full system, all the prior listed key products and technologies, is mandatory to a successful delivery in terms of low Cost, Risk and Time Schedule.
NASA Technical Reports Server (NTRS)
Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.
1994-01-01
This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.
NASA Astrophysics Data System (ADS)
Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.
1994-11-01
This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.
Wearable smart systems: from technologies to integrated systems.
Lymberis, A
2011-01-01
Wearable technology and integrated systems, so called Smart Wearable Systems (SWS) have demonstrated during the last 10-15 years significant advances in terms of, miniaturisation, seamless integration, data processing & communication, functionalisation and comfort. This is mainly due to the huge progress in sciences and technologies e.g. biomedical and micro & nano technologies, but also to a strong demand for new applications such as continuous personal health monitoring, healthy lifestyle support, human performance monitoring and support of professionals at risk. Development of wearable systems based of smart textile have, in addition, benefited from the eagerness of textile industry to develop new value-added apparel products like functionalized garments and smart clothing. Research and development in these areas has been strongly promoted worldwide. In Europe the major R&D activities were supported through the Information & Communication Technologies (ICT) priority of the R&D EU programs. The paper presents and discusses the main achievements towards integrated systems as well as future challenges to be met in order to reach a market with reliable and high value-added products.
On-clip high frequency reliability and failure test structures
Snyder, E.S.; Campbell, D.V.
1997-04-29
Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer. 22 figs.
NASA Technical Reports Server (NTRS)
Bragg-Sitton, S. M.; Webster, K. L.
2007-01-01
Nonnuclear testing can be a valuable tool in the development of an in-space nuclear power or propulsion system. In a nonnuclear test facility, electric heaters are used to simulate heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response and response characteristics, and assess potential design improvements with a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE 100a heat pipe cooled, electrically heated reactor and heat exchanger hardware. This Technical Memorandum discusses the status of the planned dynamic test methodology for implementation in the direct-drive gas-cooled reactor testing and assesses the additional instrumentation needed to implement high-fidelity dynamic testing.
High Quality Data for Grid Integration Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Andrew; Draxl, Caroline; Sengupta, Manajit
As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. The existing electric grid infrastructure in the US in particular poses significant limitations on wind power expansion. In this presentation we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather predictionmore » to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets are presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. The need for high-resolution weather data pushes modeling towards finer scales and closer synchronization. We also present how we anticipate such datasets developing in the future, their benefits, and the challenges with using and disseminating such large amounts of data.« less
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.
1990-01-01
Integration of propulsion and flight control systems and their optimization offers significant performance improvements. Research programs were conducted which have developed new propulsion and flight control integration concepts, implemented designs on high-performance airplanes, demonstrated these designs in flight, and measured the performance improvements. These programs, first on the YF-12 airplane, and later on the F-15, demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved airplane performance; with improvements in the 5 to 10 percent range achieved with integration and with no changes to hardware. The design, software and hardware developments, and testing requirements were shown to be practical.
Map Matching and Real World Integrated Sensor Data Warehousing (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, E.
2014-02-01
The inclusion of interlinked temporal and spatial elements within integrated sensor data enables a tremendous degree of flexibility when analyzing multi-component datasets. The presentation illustrates how to warehouse, process, and analyze high-resolution integrated sensor datasets to support complex system analysis at the entity and system levels. The example cases presented utilizes in-vehicle sensor system data to assess vehicle performance, while integrating a map matching algorithm to link vehicle data to roads to demonstrate the enhanced analysis possible via interlinking data elements. Furthermore, in addition to the flexibility provided, the examples presented illustrate concepts of maintaining proprietary operational information (Fleet DNA)more » and privacy of study participants (Transportation Secure Data Center) while producing widely distributed data products. Should real-time operational data be logged at high resolution across multiple infrastructure types, map matched to their associated infrastructure, and distributed employing a similar approach; dependencies between urban environment infrastructures components could be better understood. This understanding is especially crucial for the cities of the future where transportation will rely more on grid infrastructure to support its energy demands.« less
Integrated synoptic surveys using an autonomous underwater vehicle and manned boats
Jackson, P. Ryan
2013-01-01
Traditional surface-water surveys are being combined with autonomous technology to produce integrated surveys of bathymetry, water quality, and velocity in inland lakes and reservoirs. This new technology provides valuable, high-resolution, integrated data that allow a systems-based approach to understanding common environmental problems. This fact sheet presents several example applications of integrated surveys within inland lakes and coastal Lake Michigan and Lake Erie.
Handheld probe for portable high frame photoacoustic/ultrasound imaging system
NASA Astrophysics Data System (ADS)
Daoudi, K.; van den Berg, P. J.; Rabot, O.; Kohl, A.; Tisserand, S.; Brands, P.; Steenbergen, W.
2013-03-01
Photoacoustics is a hybrid imaging modality that is based on the detection of acoustic waves generated by absorption of pulsed light by tissue chromophors. In current research, this technique uses large and costly photoacoustic systems with a low frame rate imaging. To open the door for widespread clinical use, a compact, cost effective and fast system is required. In this paper we report on the development of a small compact handset pulsed laser probe which will be connected to a portable ultrasound system for real-time photoacoustic imaging and ultrasound imaging. The probe integrates diode lasers driven by an electrical driver developed for very short high power pulses. It uses specifically developed highly efficient diode stacks with high frequency repetition rate up to 10 kHz, emitting at 800nm wavelength. The emitted beam is collimated and shaped with compact micro optics beam shaping system delivering a homogenized rectangular laser beam intensity distribution. The laser block is integrated with an ultrasound transducer in an ergonomically designed handset probe. This handset is a building block enabling for a low cost high frame rate photoacoustic and ultrasound imaging system. The probe was used with a modified ultrasound scanner and was tested by imaging a tissue mimicking phantom.
Broadband wireless, integrated services, and their application to intelligent transportation systems
DOT National Transportation Integrated Search
2000-06-01
This paper introduces some of the newer broadband wireless communications alternatives and describes how they could be used to provide high-speed connections between fixed, transportable, and mobile facilities. We also describe the new integrated ser...
New Integrated Video and Graphics Technology: Digital Video Interactive.
ERIC Educational Resources Information Center
Optical Information Systems, 1987
1987-01-01
Describes digital video interactive (DVI), a new technology which combines the interactivity of the graphics capabilities in personal computers with the realism of high-quality motion video and multitrack audio in an all-digital integrated system. (MES)
On-the-fly Locata/inertial navigation system integration for precise maritime application
NASA Astrophysics Data System (ADS)
Jiang, Wei; Li, Yong; Rizos, Chris
2013-10-01
The application of Global Navigation Satellite System (GNSS) technology has meant that marine navigators have greater access to a more consistent and accurate positioning capability than ever before. However, GNSS may not be able to meet all emerging navigation performance requirements for maritime applications with respect to service robustness, accuracy, integrity and availability. In particular, applications in port areas (for example automated docking) and in constricted waterways, have very stringent performance requirements. Even when an integrated inertial navigation system (INS)/GNSS device is used there may still be performance gaps. GNSS signals are easily blocked or interfered with, and sometimes the satellite geometry may not be good enough for high accuracy and high reliability applications. Furthermore, the INS accuracy degrades rapidly during GNSS outages. This paper investigates the use of a portable ground-based positioning system, known as ‘Locata’, which was integrated with an INS, to provide accurate navigation in a marine environment without reliance on GNSS signals. An ‘on-the-fly’ Locata resolution algorithm that takes advantage of geometry change via an extended Kalman filter is proposed in this paper. Single-differenced Locata carrier phase measurements are utilized to achieve accurate and reliable solutions. A ‘loosely coupled’ decentralized Locata/INS integration architecture based on the Kalman filter is used for data processing. In order to evaluate the system performance, a field trial was conducted on Sydney Harbour. A Locata network consisting of eight Locata transmitters was set up near the Sydney Harbour Bridge. The experiment demonstrated that the Locata on-the-fly (OTF) algorithm is effective and can improve the system accuracy in comparison with the conventional ‘known point initialization’ (KPI) method. After the OTF and KPI comparison, the OTF Locata/INS integration is then assessed further and its performance improvement on both stand-alone OTF Locata and INS is shown. The Locata/INS integration can achieve centimetre-level accuracy for position solutions, and centimetre-per-second accuracy for velocity determination.
Tomar, Namrata; Choudhury, Olivia; Chakrabarty, Ankush; De, Rajat K
2013-02-01
Biochemical networks comprise many diverse components and interactions between them. It has intracellular signaling, metabolic and gene regulatory pathways which are highly integrated and whose responses are elicited by extracellular actions. Previous modeling techniques mostly consider each pathway independently without focusing on the interrelation of these which actually functions as a single system. In this paper, we propose an approach of modeling an integrated pathway using an event-driven modeling tool, i.e., Petri nets (PNs). PNs have the ability to simulate the dynamics of the system with high levels of accuracy. The integrated set of signaling, regulatory and metabolic reactions involved in Saccharomyces cerevisiae's HOG pathway has been collected from the literature. The kinetic parameter values have been used for transition firings. The dynamics of the system has been simulated and the concentrations of major biological species over time have been observed. The phenotypic characteristics of the integrated system have been investigated under two conditions, viz., under the absence and presence of osmotic pressure. The results have been validated favorably with the existing experimental results. We have also compared our study with the study of idFBA (Lee et al., PLoS Comput Biol 4:e1000-e1086, 2008) and pointed out the differences between both studies. We have simulated and monitored concentrations of multiple biological entities over time and also incorporated feedback inhibition by Ptp2 which has not been included in the idFBA study. We have concluded that our study is the first to the best of our knowledge to model signaling, metabolic and regulatory events in an integrated form through PN model framework. This study is useful in computational simulation of system dynamics for integrated pathways as there are growing evidences that the malfunctioning of the interplay among these pathways is associated with disease.
Navigation Ground Data System Engineering for the Cassini/Huygens Mission
NASA Technical Reports Server (NTRS)
Beswick, R. M.; Antreasian, P. G.; Gillam, S. D.; Hahn, Y.; Roth, D. C.; Jones, J. B.
2008-01-01
The launch of the Cassini/Huygens mission on October 15, 1997, began a seven year journey across the solar system that culminated in the entry of the spacecraft into Saturnian orbit on June 30, 2004. Cassini/Huygens Spacecraft Navigation is the result of a complex interplay between several teams within the Cassini Project, performed on the Ground Data System. The work of Spacecraft Navigation involves rigorous requirements for accuracy and completeness carried out often under uncompromising critical time pressures. To support the Navigation function, a fault-tolerant, high-reliability/high-availability computational environment was necessary to support data processing. Configuration Management (CM) was integrated with fault tolerant design and security engineering, according to the cornerstone principles of Confidentiality, Integrity, and Availability. Integrated with this approach are security benchmarks and validation to meet strict confidence levels. In addition, similar approaches to CM were applied in consideration of the staffing and training of the system administration team supporting this effort. As a result, the current configuration of this computational environment incorporates a secure, modular system, that provides for almost no downtime during tour operations.
ICAROUS - Integrated Configurable Algorithms for Reliable Operations Of Unmanned Systems
NASA Technical Reports Server (NTRS)
Consiglio, María; Muñoz, César; Hagen, George; Narkawicz, Anthony; Balachandran, Swee
2016-01-01
NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This paper describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and contingency control functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.
ICAROUS: Integrated Configurable Architecture for Unmanned Systems
NASA Technical Reports Server (NTRS)
Consiglio, Maria C.
2016-01-01
NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This video describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the auspices of the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and autonomous detect and avoid functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.
Image sensor with high dynamic range linear output
NASA Technical Reports Server (NTRS)
Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor)
2007-01-01
Designs and operational methods to increase the dynamic range of image sensors and APS devices in particular by achieving more than one integration times for each pixel thereof. An APS system with more than one column-parallel signal chains for readout are described for maintaining a high frame rate in readout. Each active pixel is sampled for multiple times during a single frame readout, thus resulting in multiple integration times. The operation methods can also be used to obtain multiple integration times for each pixel with an APS design having a single column-parallel signal chain for readout. Furthermore, analog-to-digital conversion of high speed and high resolution can be implemented.
Telepresence in neurosurgery: the integrated remote neurosurgical system.
Kassell, N F; Downs, J H; Graves, B S
1997-01-01
This paper describes the Integrated Remote Neurosurgical System (IRNS), a remotely-operated neurosurgical microscope with high-speed communications and a surgeon-accessible user interface. The IRNS will allow high quality bidirectional mentoring in the neurosurgical suite. The research goals of this effort are twofold: to develop a clinical system allowing a remote neurosurgeon to lend expertise to the OR-based neurosurgical team and to provide an integrated training environment. The IRNS incorporates a generic microscope/transport model, Called SuMIT (Surgical Manipulator Interface Translator). Our system is currently under test using the Zeiss MKM surgical transport. A SuMIT interface is also being constructed for the Robotics Research 1607. The IRNS Remote Planning and Navigation Workstation incorporates surgical planning capabilities, real-time, 30 fps video from the microscope and overhead video camera. The remote workstation includes a force reflecting handcontroller which gives the remote surgeon an intuitive way to position the microscope head. Bidirectional audio, video whiteboarding, and image archiving are also supported by the remote workstation. A simulation mode permits pre-surgical simulation, post-surgical critique, and training for surgeons without access to an actual microscope transport system. The components of the IRNS are integrated using ATM switching to provide low latency data transfer. The research, along with the more sophisticated systems that will follow, will serve as a foundation and test-bed for extending the surgeon's skills without regard to time zone or geographic boundaries.
On-Field Demonstration Results of Medium Concentration System HSun®
NASA Astrophysics Data System (ADS)
Mendes-Lopes, J.; Pina, L.; Reis, F.; Coelho, S.; Wemans, J.; Sorasio, G.; Pereira, N.
2011-12-01
The paper presents the HSUN®, a new medium concentration photovoltaic (CPV) system, developed and produced by WS Energia S.A. The low cost manufacturing and standard components used by HSUN® technology increases the potential of the system to reach grid parity. The system was designed to have stable performance and low cost manufacturing, with a total active collector area of 1.68 m2 and 6.3 kg/m2 of weight. Based on a 20X integrated parabolic trough with coupled reflective secondary optics, the system uses high efficiency silicon cells, a passive cooling integrated system and is integrated in 1-axis horizontal tracking structure, the WS CPV HORIZON®. The open-chain configuration ensures that the wind drag is greatly reduced, increasing the reliability of the tracker, while the optimized optics design enables a high acceptance angle and uniform distribution of radiation throughout the PV receiver, using low-cost and low-weight components. Ray tracing simulations and experimental imaging acquisitions of the radiation profile were performed and compared, finite element models were used to perform thermal and structural analysis, and a specifically developed model was used to predict the electrical parameters of the receiver as a function of the concentration. All the components that integrate HSUN® technology are produced with machines used in mature industrial sectors thus guarantying mass production and benefiting from economies of scale. The on-field results are presented and discussed.
Mishra, Arima
2014-01-01
A comprehensive and integrated approach to strengthen primary health care has been the major thrust of the National Rural Health Mission (NRHM) that was launched in 2005 to revamp India's rural public health system. Though the logic of horizontal and integrated health care to strengthen health systems has long been acknowledged at policy level, empirical evidence on how such integration operates is rare. Based on recent (2011-2012) ethnographic fieldwork in Odisha, India, this article discusses community health workers' experiences in integrated service delivery through village-level outreach sessions within the NRHM. It shows that for health workers, the notion of integration goes well beyond a technical lens of mixing different health services. Crucially, they perceive 'teamwork' and 'building trust with the community' (beyond trust in health services) to be critical components of their practice. However, the comprehensive NRHM primary health care ideology - which the health workers espouse - is in constant tension with the exigencies of narrow indicators of health system performance. Our ethnography shows how monitoring mechanisms, the institutionalised privileging of statistical evidence over field-based knowledge and the highly hierarchical health bureaucratic structure that rests on top-down communications mitigate efforts towards sustainable health system integration.
Light Detection and Ranging-Based Terrain Navigation: A Concept Exploration
NASA Technical Reports Server (NTRS)
Campbell, Jacob; UijtdeHaag, Maarten; vanGraas, Frank; Young, Steve
2003-01-01
This paper discusses the use of Airborne Light Detection And Ranging (LiDAR) equipment for terrain navigation. Airborne LiDAR is a relatively new technology used primarily by the geo-spatial mapping community to produce highly accurate and dense terrain elevation maps. In this paper, the term LiDAR refers to a scanning laser ranger rigidly mounted to an aircraft, as opposed to an integrated sensor system that consists of a scanning laser ranger integrated with Global Positioning System (GPS) and Inertial Measurement Unit (IMU) data. Data from the laser range scanner and IMU will be integrated with a terrain database to estimate the aircraft position and data from the laser range scanner will be integrated with GPS to estimate the aircraft attitude. LiDAR data was collected using NASA Dryden's DC-8 flying laboratory in Reno, NV and was used to test the proposed terrain navigation system. The results of LiDAR-based terrain navigation shown in this paper indicate that airborne LiDAR is a viable technology enabler for fully autonomous aircraft navigation. The navigation performance is highly dependent on the quality of the terrain databases used for positioning and therefore high-resolution (2 m post-spacing) data was used as the terrain reference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien; Piyush Sabharwall; SuJong Yoon
2001-11-01
Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water.more » Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed« less
Ultrafast optical ranging using microresonator soliton frequency combs
NASA Astrophysics Data System (ADS)
Trocha, P.; Karpov, M.; Ganin, D.; Pfeiffer, M. H. P.; Kordts, A.; Wolf, S.; Krockenberger, J.; Marin-Palomo, P.; Weimann, C.; Randel, S.; Freude, W.; Kippenberg, T. J.; Koos, C.
2018-02-01
Light detection and ranging is widely used in science and industry. Over the past decade, optical frequency combs were shown to offer advantages in optical ranging, enabling fast distance acquisition with high accuracy. Driven by emerging high-volume applications such as industrial sensing, drone navigation, or autonomous driving, there is now a growing demand for compact ranging systems. Here, we show that soliton Kerr comb generation in integrated silicon nitride microresonators provides a route to high-performance chip-scale ranging systems. We demonstrate dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for in-flight sampling of gun projectiles moving at 150 meters per second. Combining integrated soliton-comb ranging systems with chip-scale nanophotonic phased arrays could enable compact ultrafast ranging systems for emerging mass applications.
A second generation 50 Mbps VLSI level zero processing system prototype
NASA Technical Reports Server (NTRS)
Harris, Jonathan C.; Shi, Jeff; Speciale, Nick; Bennett, Toby
1994-01-01
Level Zero Processing (LZP) generally refers to telemetry data processing functions performed at ground facilities to remove all communication artifacts from instrument data. These functions typically include frame synchronization, error detection and correction, packet reassembly and sorting, playback reversal, merging, time-ordering, overlap deletion, and production of annotated data sets. The Data Systems Technologies Division (DSTD) at Goddard Space Flight Center (GSFC) has been developing high-performance Very Large Scale Integration Level Zero Processing Systems (VLSI LZPS) since 1989. The first VLSI LZPS prototype demonstrated 20 Megabits per second (Mbp's) capability in 1992. With a new generation of high-density Application-specific Integrated Circuits (ASIC) and a Mass Storage System (MSS) based on the High-performance Parallel Peripheral Interface (HiPPI), a second prototype has been built that achieves full 50 Mbp's performance. This paper describes the second generation LZPS prototype based upon VLSI technologies.
NASA Astrophysics Data System (ADS)
Li, Jian; Long, Yifei; Xu, Changcheng; Tian, Haifeng; Wu, Yanxia; Zha, Fei
2018-03-01
To resolve the drawbacks that single-mesh involved for oil/water separation, such as batch processing mode, only one phase was purified and the quick decrease in flux et al., herein, a two-way separation T-tube device was designed by integrating a pair of meshes with opposite wettability, i.e., underwater superoleophobic and superhydrophobic/superoleophilic properties. Such integrated system can continuously separate both oil and water phase from the oil/water mixtures simultaneously through one-step procedure with high flux (above 3.675 L m-2 s-1) and high separation efficiency larger than 99.8% regardless of the heavy oil or light oil involved in the mixture. Moreover, the as-prepared two meshes still maintained high separation efficiency larger than above 98.9% even after 50 cycle-usages. It worthy mentioned that this two-way separation mode essentially solves the oil liquid accumulation problem that is the single separation membrane needs to tolerate a large hydrostatic pressure caused by the accumulated liquid. We deeply believe this two-way separation system would provide a new strategy for realizing practical applications in oil spill clean-up via a continuous mode.
Carbon-free hydrogen production from low rank coal
NASA Astrophysics Data System (ADS)
Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao
2018-02-01
Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.
Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers
NASA Astrophysics Data System (ADS)
Mesaritakis, Charis; Kapsalis, Alexandros; Bogris, Adonis; Syvridis, Dimitris
2016-12-01
Neuro-inspired implementations have attracted strong interest as a power efficient and robust alternative to the digital model of computation with a broad range of applications. Especially, neuro-mimetic systems able to produce and process spike-encoding schemes can offer merits like high noise-resiliency and increased computational efficiency. Towards this direction, integrated photonics can be an auspicious platform due to its multi-GHz bandwidth, its high wall-plug efficiency and the strong similarity of its dynamics under excitation with biological spiking neurons. Here, we propose an integrated all-optical neuron based on an InAs/InGaAs semiconductor quantum-dot passively mode-locked laser. The multi-band emission capabilities of these lasers allows, through waveband switching, the emulation of the excitation and inhibition modes of operation. Frequency-response effects, similar to biological neural circuits, are observed just as in a typical two-section excitable laser. The demonstrated optical building block can pave the way for high-speed photonic integrated systems able to address tasks ranging from pattern recognition to cognitive spectrum management and multi-sensory data processing.
Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers
Mesaritakis, Charis; Kapsalis, Alexandros; Bogris, Adonis; Syvridis, Dimitris
2016-01-01
Neuro-inspired implementations have attracted strong interest as a power efficient and robust alternative to the digital model of computation with a broad range of applications. Especially, neuro-mimetic systems able to produce and process spike-encoding schemes can offer merits like high noise-resiliency and increased computational efficiency. Towards this direction, integrated photonics can be an auspicious platform due to its multi-GHz bandwidth, its high wall-plug efficiency and the strong similarity of its dynamics under excitation with biological spiking neurons. Here, we propose an integrated all-optical neuron based on an InAs/InGaAs semiconductor quantum-dot passively mode-locked laser. The multi-band emission capabilities of these lasers allows, through waveband switching, the emulation of the excitation and inhibition modes of operation. Frequency-response effects, similar to biological neural circuits, are observed just as in a typical two-section excitable laser. The demonstrated optical building block can pave the way for high-speed photonic integrated systems able to address tasks ranging from pattern recognition to cognitive spectrum management and multi-sensory data processing. PMID:27991574
Advanced software integration: The case for ITV facilities
NASA Technical Reports Server (NTRS)
Garman, John R.
1990-01-01
The array of technologies and methodologies involved in the development and integration of avionics software has moved almost as rapidly as computer technology itself. Future avionics systems involve major advances and risks in the following areas: (1) Complexity; (2) Connectivity; (3) Security; (4) Duration; and (5) Software engineering. From an architectural standpoint, the systems will be much more distributed, involve session-based user interfaces, and have the layered architectures typified in the layers of abstraction concepts popular in networking. Typified in the NASA Space Station Freedom will be the highly distributed nature of software development itself. Systems composed of independent components developed in parallel must be bound by rigid standards and interfaces, the clean requirements and specifications. Avionics software provides a challenge in that it can not be flight tested until the first time it literally flies. It is the binding of requirements for such an integration environment into the advances and risks of future avionics systems that form the basis of the presented concept and the basic Integration, Test, and Verification concept within the development and integration life cycle of Space Station Mission and Avionics systems.
A System to Integrate Unmanned Undersea Vehicles with a Submarine Host Platform
2011-06-06
Charging pad (while UUV stowed) High Conceptual High based on electric car battery recharging system Technology has not been demonstrated for......and Evaluation EB General Dynamics Corp. – Electric Boat Division EMP Electromagnetic Pulse FMECA Failure Mode Effects and Criticality Analysis
Facilities | Integrated Energy Solutions | NREL
strategies needed to optimize our entire energy system. A photo of the high-performance computer at NREL . High-Performance Computing Data Center High-performance computing facilities at NREL provide high-speed
Electrical Characterization Laboratory | Energy Systems Integration
the ability of electrical equipment to withstand high-voltage surges and high-current faults. A capability. High-Voltage Characterization The high-voltage characterization hub offers a Class 1, Div 2 lab
Efficient high-performance ultrasound beamforming using oversampling
NASA Astrophysics Data System (ADS)
Freeman, Steven R.; Quick, Marshall K.; Morin, Marc A.; Anderson, R. C.; Desilets, Charles S.; Linnenbrink, Thomas E.; O'Donnell, Matthew
1998-05-01
High-performance and efficient beamforming circuitry is very important in large channel count clinical ultrasound systems. Current state-of-the-art digital systems using multi-bit analog to digital converters (A/Ds) have matured to provide exquisite image quality with moderate levels of integration. A simplified oversampling beamforming architecture has been proposed that may a low integration of delta-sigma A/Ds onto the same chip as digital delay and processing circuitry to form a monolithic ultrasound beamformer. Such a beamformer may enable low-power handheld scanners for high-end systems with very large channel count arrays. This paper presents an oversampling beamformer architecture that generates high-quality images using very simple; digitization, delay, and summing circuits. Additional performance may be obtained with this oversampled system for narrow bandwidth excitations by mixing the RF signal down in frequency to a range where the electronic signal to nose ratio of the delta-sigma A/D is optimized. An oversampled transmit beamformer uses the same delay circuits as receive and eliminates the need for separate transmit function generators.
Execution environment for intelligent real-time control systems
NASA Technical Reports Server (NTRS)
Sztipanovits, Janos
1987-01-01
Modern telerobot control technology requires the integration of symbolic and non-symbolic programming techniques, different models of parallel computations, and various programming paradigms. The Multigraph Architecture, which has been developed for the implementation of intelligent real-time control systems is described. The layered architecture includes specific computational models, integrated execution environment and various high-level tools. A special feature of the architecture is the tight coupling between the symbolic and non-symbolic computations. It supports not only a data interface, but also the integration of the control structures in a parallel computing environment.
NASA Technical Reports Server (NTRS)
Verma, Savita Arora
2017-01-01
This presentation describes the objectives and high level setup for the human-in-the-loop simulation of the integrated surface and airsapce simulation of the ATD-2 Integrated Arrival, Departure, Surface (IADS) system. The purpose of the simulation is to evaluate the functionality of the IADS system, including tactical surface scheduler, negotiation of departure times for the flights under Traffic Management Initiatives (TMIs), and data exchange between ATC Tower and airline Ramp. The same presentation was presented to serve the experiment review prior to the simulation.
Unified Approach to Modeling and Simulation of Space Communication Networks and Systems
NASA Technical Reports Server (NTRS)
Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth
2010-01-01
Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks
The x-ray light valve: a low-cost, digital radiographic imaging system-spatial resolution
NASA Astrophysics Data System (ADS)
MacDougall, Robert D.; Koprinarov, Ivaylo; Webster, Christie A.; Rowlands, J. A.
2007-03-01
In recent years, new x-ray radiographic systems based on large area flat panel technology have revolutionized our capability to produce digital x-ray radiographic images. However, these active matrix flat panel imagers (AMFPIs) are extraordinarily expensive compared to the systems they are replacing. Thus there is a need for a low cost digital imaging system for general applications in radiology. Different approaches have been considered to make lower cost, integrated x-ray imaging devices for digital radiography, including: scanned projection x-ray, an integrated approach based on computed radiography technology and optically demagnified x-ray screen/CCD systems. These approaches suffer from either high cost or high mechanical complexity and do not have the image quality of AMFPIs. We have identified a new approach - the X-ray Light Valve (XLV). The XLV has the potential to achieve the immediate readout in an integrated system with image quality comparable to AMFPIs. The XLV concept combines three well-established and hence lowcost technologies: an amorphous selenium (a-Se) layer to convert x-rays to image charge, a liquid crystal (LC) cell as an analog display, and an optical scanner for image digitization. Here we investigate the spatial resolution possible with XLV systems. Both a-Se and LC cells have both been shown separately to have inherently very high spatial resolution. Due to the close electrostatic coupling in the XLV, it can be expected that the spatial resolution of this system will also be very high. A prototype XLV was made and a typical office scanner was used for image digitization. The Modulation Transfer Function was measured and the limiting factor was seen to be the optical scanner. However, even with this limitation the XLV system is able to meet or exceed the resolution requirements for chest radiography.
Refined AFC-Enabled High-Lift System Integration Study
NASA Technical Reports Server (NTRS)
Hartwich, Peter M.; Shmilovich, Arvin; Lacy, Douglas S.; Dickey, Eric D.; Scalafani, Anthony J.; Sundaram, P.; Yadlin, Yoram
2016-01-01
A prior trade study established the effectiveness of using Active Flow Control (AFC) for reducing the mechanical complexities associated with a modern high-lift system without sacrificing aerodynamic performance at low-speed flight conditions representative of takeoff and landing. The current technical report expands on this prior work in two ways: (1) a refined conventional high-lift system based on the NASA Common Research Model (CRM) is presented that is more representative of modern commercial transport aircraft in terms of stall characteristics and maximum Lift/Drag (L/D) ratios at takeoff and landing-approach flight conditions; and (2) the design trade space for AFC-enabled high-lift systems is expanded to explore a wider range of options for improving their efficiency. The refined conventional high-lift CRM (HL-CRM) concept features leading edge slats and slotted trailing edge flaps with Fowler motion. For the current AFC-enhanced high lift system trade study, the refined conventional high-lift system is simplified by substituting simply-hinged trailing edge flaps for the slotted single-element flaps with Fowler motion. The high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. In parallel to the conventional high-lift concept development, parametric studies using CFD guided the development of an effective and efficient AFC-enabled simplified high-lift system. This included parametric trailing edge flap geometry studies addressing the effects of flap chord length and flap deflection. As for the AFC implementation, scaling effects (i.e., wind-tunnel versus full-scale flight conditions) are addressed, as are AFC architecture aspects such as AFC unit placement, number AFC units, operating pressures, mass flow rates, and steady versus unsteady AFC applications. These efforts led to the development of a novel traversing AFC actuation concept which is efficient in that it reduces the AFC mass flow requirements by as much as an order of magnitude compared to previous AFC technologies, and it is predicted to be effective in driving the aerodynamic performance of a mechanical simplified high-lift system close to that of the reference conventional high-lift system. Conceptual system integration studies were conducted for the AFC-enhanced high-lift concept applied to a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. The results from these design integration assessments identify overall system performance improvement opportunities over conventional high-lift systems that suggest the viability of further technology maturation efforts for AFC-enabled high lift flap systems. To that end, technical challenges are identified associated with the application of AFC-enabled high-lift systems to modern transonic commercial transports for future technology maturation efforts.
Schuh, Christian; de Bruin, Jeroen S; Seeling, Walter
2015-12-01
The Allgemeines Krankenhaus Informations Management (AKIM) project was started at the Vienna General Hospital (VGH) several years ago. This led to the introduction of a new hospital information system (HIS), and the installation of the expert system platform (EXP) for the integration of Arden-Syntax-based clinical decision support systems (CDSSs). In this report we take a look at the milestones achieved and the challenges faced in the creation and modification of CDSSs, and their integration into the HIS over the last three years. We introduce a three-stage development method, which is followed in nearly all CDSS projects at the Medical University of Vienna and the VGH. Stage one comprises requirements engineering and system conception. Stage two focuses on the implementation and testing of the system. Finally, stage three describes the deployment and integration of the system in the VGH HIS. The HIS provides a clinical work environment for healthcare specialists using customizable graphical interfaces known as parametric medical documents. Multiple Arden Syntax servers are employed to host and execute the CDSS knowledge bases: two embedded in the EXP for production and development, and a further three in clinical routine for production, development, and quality assurance. Three systems are discussed; the systems serve different purposes in different clinical areas, but are all implemented with Arden Syntax. MONI-ICU is an automated surveillance system for monitoring healthcare-associated infections in the intensive care setting. TSM-CDS is a CDSS used for risk prediction in the formation of cutaneous melanoma metastases. Finally, TacroDS is a CDSS for the manipulation of dosages for tacrolimus, an immunosuppressive agent used after kidney transplantation. Problems in development and integration were related to data quality or availability, although organizational difficulties also caused delays in development and integration. Since the inception of the AKIM project at the VGH and its ability to support standards such as Arden Syntax and integrate CDSSs into clinical routine, the clinicians' interest in, and demand for, decision support has increased substantially. The use of Arden Syntax as a standard for CDSSs played a substantial role in the ability to rapidly create high-quality CDSS systems, whereas the ability to integrate these systems into the HIS made CDSSs more popular among physicians. Despite these successes, challenges such as lack of (consistent and high-quality) electronic data, social acceptance among healthcare personnel, and legislative issues remain. These have to be addressed effectively before CDSSs can be more widely accepted and adopted. Copyright © 2015 Elsevier B.V. All rights reserved.
A global "imaging'' view on systems approaches in immunology.
Ludewig, Burkhard; Stein, Jens V; Sharpe, James; Cervantes-Barragan, Luisa; Thiel, Volker; Bocharov, Gennady
2012-12-01
The immune system exhibits an enormous complexity. High throughput methods such as the "-omic'' technologies generate vast amounts of data that facilitate dissection of immunological processes at ever finer resolution. Using high-resolution data-driven systems analysis, causal relationships between complex molecular processes and particular immunological phenotypes can be constructed. However, processes in tissues, organs, and the organism itself (so-called higher level processes) also control and regulate the molecular (lower level) processes. Reverse systems engineering approaches, which focus on the examination of the structure, dynamics and control of the immune system, can help to understand the construction principles of the immune system. Such integrative mechanistic models can properly describe, explain, and predict the behavior of the immune system in health and disease by combining both higher and lower level processes. Moving from molecular and cellular levels to a multiscale systems understanding requires the development of methodologies that integrate data from different biological levels into multiscale mechanistic models. In particular, 3D imaging techniques and 4D modeling of the spatiotemporal dynamics of immune processes within lymphoid tissues are central for such integrative approaches. Both dynamic and global organ imaging technologies will be instrumental in facilitating comprehensive multiscale systems immunology analyses as discussed in this review. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
GaAs VLSI technology and circuit elements for DSP
NASA Astrophysics Data System (ADS)
Mikkelson, James M.
1990-10-01
Recent progress in digital GaAs circuit performance and complexity is presented to demonstrate the current capabilities of GaAs components. High density GaAs process technology and circuit design techniques are described and critical issues for achieving favorable complexity speed power and cost tradeoffs are reviewed. Some DSP building blocks are described to provide examples of what types of DSP systems could be implemented with present GaAs technology. DIGITAL GaAs CIRCUIT CAPABILITIES In the past few years the capabilities of digital GaAs circuits have dramatically increased to the VLSI level. Major gains in circuit complexity and power-delay products have been achieved by the use of silicon-like process technologies and simple circuit topologies. The very high speed and low power consumption of digital GaAs VLSI circuits have made GaAs a desirable alternative to high performance silicon in hardware intensive high speed system applications. An example of the performance and integration complexity available with GaAs VLSI circuits is the 64x64 crosspoint switch shown in figure 1. This switch which is the most complex GaAs circuit currently available is designed on a 30 gate GaAs gate array. It operates at 200 MHz and dissipates only 8 watts of power. The reasons for increasing the level of integration of GaAs circuits are similar to the reasons for the continued increase of silicon circuit complexity. The market factors driving GaAs VLSI are system design methodology system cost power and reliability. System designers are hesitant or unwilling to go backwards to previous design techniques and lower levels of integration. A more highly integrated system in a lower performance technology can often approach the performance of a system in a higher performance technology at a lower level of integration. Higher levels of integration also lower the system component count which reduces the system cost size and power consumption while improving the system reliability. For large gate count circuits the power per gate must be minimized to prevent reliability and cooling problems. The technical factors which favor increasing GaAs circuit complexity are primarily related to reducing the speed and power penalties incurred when crossing chip boundaries. Because the internal GaAs chip logic levels are not compatible with standard silicon I/O levels input receivers and output drivers are needed to convert levels. These I/O circuits add significant delay to logic paths consume large amounts of power and use an appreciable portion of the die area. The effects of these I/O penalties can be reduced by increasing the ratio of core logic to I/O on a chip. DSP operations which have a large number of logic stages between the input and the output are ideal candidates to take advantage of the performance of GaAs digital circuits. Figure 2 is a schematic representation of the I/O penalties encountered when converting from ECL levels to GaAs
Integrated Wind Power Planning Tool
NASA Astrophysics Data System (ADS)
Rosgaard, M. H.; Giebel, G.; Nielsen, T. S.; Hahmann, A.; Sørensen, P.; Madsen, H.
2012-04-01
This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the working title "Integrated Wind Power Planning Tool". The project commenced October 1, 2011, and the goal is to integrate a numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. With regard to the latter, one such simulation tool has been developed at the Wind Energy Division, Risø DTU, intended for long term power system planning. As part of the PSO project the inferior NWP model used at present will be replaced by the state-of-the-art Weather Research & Forecasting (WRF) model. Furthermore, the integrated simulation tool will be improved so it can handle simultaneously 10-50 times more turbines than the present ~ 300, as well as additional atmospheric parameters will be included in the model. The WRF data will also be input for a statistical short term prediction model to be developed in collaboration with ENFOR A/S; a danish company that specialises in forecasting and optimisation for the energy sector. This integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated prediction tool constitute scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator, and the need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2020, from the current 20%.
Evaluation of Embedded System Component Utilized in Delivery Integrated Design Project Course
NASA Astrophysics Data System (ADS)
Junid, Syed Abdul Mutalib Al; Hussaini, Yusnira; Nazmie Osman, Fairul; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul
2018-03-01
This paper reports the evaluation of the embedded system component utilized in delivering the integrated electronic engineering design project course. The evaluation is conducted based on the report project submitted as to fulfil the assessment criteria for the integrated electronic engineering design project course named; engineering system design. Six projects were assessed in this evaluation. The evaluation covers the type of controller, programming language and the number of embedded component utilization as well. From the evaluation, the C-programming based language is the best solution preferred by the students which provide them flexibility in the programming. Moreover, the Analog to Digital converter is intensively used in the projects which include sensors in their proposed design. As a conclusion, in delivering the integrated design project course, the knowledge over the embedded system solution is very important since the high density of the knowledge acquired in accomplishing the project assigned.
R&D in micro-nano-bio systems and contribution to pHealth.
Lymberis, Andreas
2012-01-01
The capacity to research, develop and manufacture systems that employ components based on nano- and microstructures with biological functionality, and are capable to share, ubiquitously, information is at the forefront of worldwide competition. A new generation of advanced materials, processes and emerging technologies is building up enabling highly integrated, miniaturized and smart micro-nano-bio-systems to be engineered. These fast technology developments are also stimulating the explosive growth in life sciences, which is leading to an ever increasing understanding of life at the sub-cellular and molecular level. By bringing these parallel developments to biomedicine and health, ultrafast and sensitive systems can be developed to prevent illness, to support lifestyle, to make early diagnosis or treat diseases with high accuracy and less invasiveness, and to support body functions or to replace lost functionality. Such systems will enable the delivery of individualized health services with better access and outcomes at lower costs than previously deemed possible, making a substantial contribution to bringing healthcare expenditures under control and increase its productivity. The MNBS (Micro-Nano-Bio Systems) group of EU funded projects aims at speeding up the convergence of micro- and nanotechnology with the life sciences and accelerating the development of highly integrated diagnostic, monitoring and therapeutics devices. This paper presents R&D activities supported through the MNBS group that are relevant to pHealth and discusses directions to be taken in order to overcome the current problems. Finally, it addresses future challenges to build highly integrated and reliable systems including innovation and usability issues.
High Fidelity Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Results
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David
2007-01-01
Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential liquid metal (NaK) cooled reactor design that could be applied for Lunar surface power. Proposed refinements to this simulator design are also presented.
RLE progress report no. 133, 1 January - 31 December 1990
NASA Technical Reports Server (NTRS)
Allen, Jonathan; Kleppner, Daniel; Ziegler, Mary J. (Editor); Passero, Barbara (Editor)
1990-01-01
Activities of the Research Laboratory of Electronics at MIT are summarized. NASA-sponsored research in the area of synthetic aperture radar image interpretation and simulation is described. Other government-sponsored and industry-sponsored studies are also described which address the following topics: microwave and millimeter wave integrated circuits, high-speed integrated circuit interconnects, Instrument Landing System/Microwave Landing System frequency management assessment, and superconducting electronics.
Luo, Wentian; Galvan, Daniel L; Woodard, Lauren E; Dorset, Dan; Levy, Shawn; Wilson, Matthew H
2017-08-21
Integrating DNA delivery systems hold promise for many applications including treatment of diseases; however, targeted integration is needed for improved safety. The piggyBac (PB) transposon system is a highly active non-viral gene delivery system capable of integrating defined DNA segments into host chromosomes without requiring homologous recombination. We systematically compared four different engineered zinc finger proteins (ZFP), four transcription activator-like effector proteins (TALE), CRISPR associated protein 9 (SpCas9) and the catalytically inactive dSpCas9 protein fused to the amino-terminus of the transposase enzyme designed to target the hypoxanthine phosphoribosyltransferase (HPRT) gene located on human chromosome X. Chimeric transposases were evaluated for expression, transposition activity, chromatin immunoprecipitation at the target loci, and targeted knockout of the HPRT gene in human cells. One ZFP-PB and one TALE-PB chimera demonstrated notable HPRT gene targeting. In contrast, Cas9/dCas9-PB chimeras did not result in gene targeting. Instead, the HPRT locus appeared to be protected from transposon integration. Supplied separately, PB permitted highly efficient isolation of Cas9-mediated knockout of HPRT, with zero transposon integrations in HPRT by deep sequencing. In summary, these tools may allow isolation of 'targeted-only' cells, be utilized to protect a genomic locus from transposon integration, and enrich for Cas9-mutated cells. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.
Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Yoo, Kwan-Hee; Baasantseren, Ganbat; Park, Jae-Hyeung; Kim, Eun-Soo; Kim, Nam
2014-04-15
We propose a 360 degree integral-floating display with an enhanced vertical viewing angle. The system projects two-dimensional elemental image arrays via a high-speed digital micromirror device projector and reconstructs them into 3D perspectives with a lens array. Double floating lenses relate initial 3D perspectives to the center of a vertically curved convex mirror. The anamorphic optic system tailors the initial 3D perspectives horizontally and vertically disperse light rays more widely. By the proposed method, the entire 3D image provides both monocular and binocular depth cues, a full-parallax demonstration with high-angular ray density and an enhanced vertical viewing angle.
Monolithic Microwave Integrated Circuits Based on GaAs Mesfet Technology
NASA Astrophysics Data System (ADS)
Bahl, Inder J.
Advanced military microwave systems are demanding increased integration, reliability, radiation hardness, compact size and lower cost when produced in large volume, whereas the microwave commercial market, including wireless communications, mandates low cost circuits. Monolithic Microwave Integrated Circuit (MMIC) technology provides an economically viable approach to meeting these needs. In this paper the design considerations for several types of MMICs and their performance status are presented. Multifunction integrated circuits that advance the MMIC technology are described, including integrated microwave/digital functions and a highly integrated transceiver at C-band.
Unifying Human Centered Design and Systems Engineering for Human Systems Integration
NASA Technical Reports Server (NTRS)
Boy, Guy A.; McGovernNarkevicius, Jennifer
2013-01-01
Despite the holistic approach of systems engineering (SE), systems still fail, and sometimes spectacularly. Requirements, solutions and the world constantly evolve and are very difficult to keep current. SE requires more flexibility and new approaches to SE have to be developed to include creativity as an integral part and where the functions of people and technology are appropriately allocated within our highly interconnected complex organizations. Instead of disregarding complexity because it is too difficult to handle, we should take advantage of it, discovering behavioral attractors and the emerging properties that it generates. Human-centered design (HCD) provides the creativity factor that SE lacks. It promotes modeling and simulation from the early stages of design and throughout the life cycle of a product. Unifying HCD and SE will shape appropriate human-systems integration (HSI) and produce successful systems.
Use of Continuous Integration Tools for Application Performance Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vergara Larrea, Veronica G; Joubert, Wayne; Fuson, Christopher B
High performance computing systems are becom- ing increasingly complex, both in node architecture and in the multiple layers of software stack required to compile and run applications. As a consequence, the likelihood is increasing for application performance regressions to occur as a result of routine upgrades of system software components which interact in complex ways. The purpose of this study is to evaluate the effectiveness of continuous integration tools for application performance monitoring on HPC systems. In addition, this paper also describes a prototype system for application perfor- mance monitoring based on Jenkins, a Java-based continuous integration tool. The monitoringmore » system described leverages several features in Jenkins to track application performance results over time. Preliminary results and lessons learned from monitoring applications on Cray systems at the Oak Ridge Leadership Computing Facility are presented.« less
NASA Astrophysics Data System (ADS)
Thomas, Paul A.; Marshall, Gillian; Faulkner, David; Kent, Philip; Page, Scott; Islip, Simon; Oldfield, James; Breckon, Toby P.; Kundegorski, Mikolaj E.; Clark, David J.; Styles, Tim
2016-05-01
Currently, most land Intelligence, Surveillance and Reconnaissance (ISR) assets (e.g. EO/IR cameras) are simply data collectors. Understanding, decision making and sensor control are performed by the human operators, involving high cognitive load. Any automation in the system has traditionally involved bespoke design of centralised systems that are highly specific for the assets/targets/environment under consideration, resulting in complex, non-flexible systems that exhibit poor interoperability. We address a concept of Autonomous Sensor Modules (ASMs) for land ISR, where these modules have the ability to make low-level decisions on their own in order to fulfil a higher-level objective, and plug in, with the minimum of preconfiguration, to a High Level Decision Making Module (HLDMM) through a middleware integration layer. The dual requisites of autonomy and interoperability create challenges around information fusion and asset management in an autonomous hierarchical system, which are addressed in this work. This paper presents the results of a demonstration system, known as Sensing for Asset Protection with Integrated Electronic Networked Technology (SAPIENT), which was shown in realistic base protection scenarios with live sensors and targets. The SAPIENT system performed sensor cueing, intelligent fusion, sensor tasking, target hand-off and compensation for compromised sensors, without human control, and enabled rapid integration of ISR assets at the time of system deployment, rather than at design-time. Potential benefits include rapid interoperability for coalition operations, situation understanding with low operator cognitive burden and autonomous sensor management in heterogenous sensor systems.
NASA Technical Reports Server (NTRS)
Zeitlin, Nancy; Mueller, Robert; Muscatello, Anthony
2015-01-01
Integrate In Situ Resource Utilization (ISRU) sub-systems and examine advanced capabilities and technologies to verify Mars 2024 Forward architecture precursor pathfinder options: Integrated spacecraft/surface infrastructure fluid architecture: propulsion, power, life support center dot Power system feed and propellant scavenging from propulsion system center dot High quality oxygen for life support and EVA Fluid/cryogenic zero-loss transfer and long-term storage center dot Rapid depot-to-rover/spacecraft center dot Slow ISRU plant-to-ascent vehicle Integration of ISRU consumable production center dot Oxygen only from Mars atmosphere carbon dioxide center dot Oxygen, fuel, water, from extraterrestrial soil/regolith Test bed to evaluate long duration life, operations, maintenance on hardware, sensors, and autonomy
NASA Technical Reports Server (NTRS)
Kerr, Andrew W.
1990-01-01
The utilization of advanced simulation technology in the development of the non-real-time MANPRINT design tools in the Army/NASA Aircrew-Aircraft Integration (A3I) program is described. A description is then given of the Crew Station Research and Development Facilities, the primary tool for the application of MANPRINT principles. The purpose of the A3I program is to develop a rational, predictive methodology for helicopter cockpit system design that integrates human factors engineering with other principles at an early stage in the development process, avoiding the high cost of previous system design methods. Enabling technologies such as the MIDAS work station are examined, and the potential of low-cost parallel-processing systems is indicated.
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Connolly, D. J.
1986-01-01
Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkham, R.; Siddons, D.; Dunn, P.A.
2010-06-23
The Maia detector system is engineered for energy dispersive x-ray fluorescence spectroscopy and elemental imaging at photon rates exceeding 10{sup 7}/s, integrated scanning of samples for pixel transit times as small as 50 {micro}s and high definition images of 10{sup 8} pixels and real-time processing of detected events for spectral deconvolution and online display of pure elemental images. The system developed by CSIRO and BNL combines a planar silicon 384 detector array, application-specific integrated circuits for pulse shaping and peak detection and sampling and optical data transmission to an FPGA-based pipelined, parallel processor. This paper describes the system and themore » underpinning engineering solutions.« less
Nikolic, Dejan; Stojkovic, Nikola; Lekic, Nikola
2018-04-09
To obtain the complete operational picture of the maritime situation in the Exclusive Economic Zone (EEZ) which lies over the horizon (OTH) requires the integration of data obtained from various sensors. These sensors include: high frequency surface-wave-radar (HFSWR), satellite automatic identification system (SAIS) and land automatic identification system (LAIS). The algorithm proposed in this paper utilizes radar tracks obtained from the network of HFSWRs, which are already processed by a multi-target tracking algorithm and associates SAIS and LAIS data to the corresponding radar tracks, thus forming an integrated data pair. During the integration process, all HFSWR targets in the vicinity of AIS data are evaluated and the one which has the highest matching factor is used for data association. On the other hand, if there is multiple AIS data in the vicinity of a single HFSWR track, the algorithm still makes only one data pair which consists of AIS and HFSWR data with the highest mutual matching factor. During the design and testing, special attention is given to the latency of AIS data, which could be very high in the EEZs of developing countries. The algorithm is designed, implemented and tested in a real working environment. The testing environment is located in the Gulf of Guinea and includes a network of HFSWRs consisting of two HFSWRs, several coastal sites with LAIS receivers and SAIS data provided by provider of SAIS data.
Liu, Xilin; Zhang, Milin; Xiong, Tao; Richardson, Andrew G; Lucas, Timothy H; Chin, Peter S; Etienne-Cummings, Ralph; Tran, Trac D; Van der Spiegel, Jan
2016-07-18
Reliable, multi-channel neural recording is critical to the neuroscience research and clinical treatment. However, most hardware development of fully integrated, multi-channel wireless neural recorders to-date, is still in the proof-of-concept stage. To be ready for practical use, the trade-offs between performance, power consumption, device size, robustness, and compatibility need to be carefully taken into account. This paper presents an optimized wireless compressed sensing neural signal recording system. The system takes advantages of both custom integrated circuits and universal compatible wireless solutions. The proposed system includes an implantable wireless system-on-chip (SoC) and an external wireless relay. The SoC integrates 16-channel low-noise neural amplifiers, programmable filters and gain stages, a SAR ADC, a real-time compressed sensing module, and a near field wireless power and data transmission link. The external relay integrates a 32 bit low-power microcontroller with Bluetooth 4.0 wireless module, a programming interface, and an inductive charging unit. The SoC achieves high signal recording quality with minimized power consumption, while reducing the risk of infection from through-skin connectors. The external relay maximizes the compatibility and programmability. The proposed compressed sensing module is highly configurable, featuring a SNDR of 9.78 dB with a compression ratio of 8×. The SoC has been fabricated in a 180 nm standard CMOS technology, occupying 2.1 mm × 0.6 mm silicon area. A pre-implantable system has been assembled to demonstrate the proposed paradigm. The developed system has been successfully used for long-term wireless neural recording in freely behaving rhesus monkey.
ERIC Educational Resources Information Center
Ritz, John M.; And Others
This document--intended to help technology education teachers plan their classroom curriculum for secondary school and college students--contains units on exploring high-impact technology, microcomputers as technological tools, integrated manufacturing systems (the future of design and production), the role of robotics in integrated manufacturing…
Photoacoustic CO2 sensor system: design and potential for miniaturization and integration in silicon
NASA Astrophysics Data System (ADS)
Huber, J.; Wöllenstein, J.
2015-05-01
The detection of CO2 indoors has a large impact on today's sensor market. The ambient room climate is important for human health and wellbeing. The CO2 concentration is a main indicator for indoor climate and correlates with the number of persons inside a room. People in Europe spend more than 90% of their time indoors. This leads to a high demand for miniaturized and energy efficient CO2 sensors. To realize small and energy-efficient mass-market sensors, we develop novel miniaturized photoacoustic sensor systems with optimized design for real-time and selective CO2 detection. The sensor system consists of two chambers, a measurement and a detection chamber. The detection chamber consists of an integrated pressure sensor under special gas atmosphere. As pressure sensor we use a commercially available cell phone microphone. We describe a possible miniaturization process of the developed system by regarding the possibility of integration of all sensor parts. The system is manufactured in precision mechanics with IR-optical sapphire windows as optical connections. During the miniaturization process the sapphire windows are replaced by Si chips with a special IR anti-reflection coating. The developed system is characterized in detail with gas measurements and optical transmission investigations. The results of the characterization process offer a high potential for further miniaturization with high capability for mass market applications.
NASA Astrophysics Data System (ADS)
Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.
2017-09-01
Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.
A low power on-chip class-E power amplifier for remotely powered implantable sensor systems
NASA Astrophysics Data System (ADS)
Ture, Kerim; Kilinc, Enver G.; Dehollain, Catherine
2015-06-01
This paper presents a low power fully integrated class-E power amplifier and its integration with remotely powered sensor system. The class-E power amplifier is suitable solution for low-power applications due to its high power efficiency. However, the required high inductance values which make the on-chip integration of the power amplifier difficult. The designed power amplifier is fully integrated in the remotely powered sensor system and fabricated in 0.18 μm CMOS process. The power is transferred to the implantable sensor system at 13.56 MHz by using an inductively coupled remote powering link. The induced AC voltage on the implant coil is converted into a DC voltage by a passive full-wave rectifier. A voltage regulator is used to suppress the ripples and create a clean and stable 1.8 V supply voltage for the sensor and communication blocks. The data collected from the sensors is transmitted by on-off keying modulated low-power transmitter at 1.2 GHz frequency. The transmitter is composed of a LC tank oscillator and a fully on-chip class-E power amplifier. An additional output network is used for the power amplifier which makes the integration of the power amplifier fully on-chip. The integrated power amplifier with 0.2 V supply voltage has a drain efficiency of 31.5% at -10 dBm output power for 50 Ω load. The measurement results verify the functionality of the power amplifier and the remotely powered implantable sensor system. The data communication is also verified by using a commercial 50 Ω chip antenna and has 600 kbps data rate at 1 m communication distance.
UK Environmental Prediction - integration and evaluation at the convective scale
NASA Astrophysics Data System (ADS)
Fallmann, Joachim; Lewis, Huw; Castillo, Juan Manuel; Pearson, David; Harris, Chris; Saulter, Andy; Bricheno, Lucy; Blyth, Eleanor
2016-04-01
Traditionally, the simulation of regional ocean, wave and atmosphere components of the Earth System have been considered separately, with some information on other components provided by means of boundary or forcing conditions. More recently, the potential value of a more integrated approach, as required for global climate and Earth System prediction, for regional short-term applications has begun to gain increasing research effort. In the UK, this activity is motivated by an understanding that accurate prediction and warning of the impacts of severe weather requires an integrated approach to forecasting. The substantial impacts on individuals, businesses and infrastructure of such events indicate a pressing need to understand better the value that might be delivered through more integrated environmental prediction. To address this need, the Met Office, NERC Centre for Ecology & Hydrology and NERC National Oceanography Centre have begun to develop the foundations of a coupled high resolution probabilistic forecast system for the UK at km-scale. This links together existing model components of the atmosphere, coastal ocean, land surface and hydrology. Our initial focus has been on a 2-year Prototype project to demonstrate the UK coupled prediction concept in research mode. This presentation will provide an update on UK environmental prediction activities. We will present the results from the initial implementation of an atmosphere-land-ocean coupled system, including a new eddy-permitting resolution ocean component, and discuss progress and initial results from further development to integrate wave interactions in this relatively high resolution system. We will discuss future directions and opportunities for collaboration in environmental prediction, and the challenges to realise the potential of integrated regional coupled forecasting for improving predictions and applications.
Real-Time Simulation of Ares I Launch Vehicle
NASA Technical Reports Server (NTRS)
Tobbe, Patrick; Matras, Alex; Wilson, Heath; Alday, Nathan; Walker, David; Betts, Kevin; Hughes, Ryan; Turbe, Michael
2009-01-01
The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory (SIL) at the Marshall Space Flight Center (MSFC). The primary purpose of the Ares SIL is to test the vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time software backbone to stimulate all required Ares components through high-fidelity simulation. ARTEMIS has been designed to take full advantage of the advances in underlying computational power now available to support HWIL testing. A modular real-time design relying on a fully distributed computing architecture has been achieved. Two fundamental requirements drove ARTEMIS to pursue the use of high-fidelity simulation models in a real-time environment. First, ARTEMIS must be used to test a man-rated integrated avionics hardware and software system, thus requiring a wide variety of nominal and off-nominal simulation capabilities to certify system robustness. The second driving requirement - derived from a nationwide review of current state-of-the-art HWIL facilities - was that preserving digital model fidelity significantly reduced overall vehicle lifecycle cost by reducing testing time for certification runs and increasing flight tempo through an expanded operational envelope. These two driving requirements necessitated the use of high-fidelity models throughout the ARTEMIS simulation. The nature of the Ares mission profile imposed a variety of additional requirements on the ARTEMIS simulation. The Ares I vehicle is composed of multiple elements, including the First Stage Solid Rocket Booster (SRB), the Upper Stage powered by the J- 2X engine, the Orion Crew Exploration Vehicle (CEV) which houses the crew, the Launch Abort System (LAS), and various secondary elements that separate from the vehicle. At launch, the integrated vehicle stack is composed of these stages, and throughout the mission, various elements separate from the integrated stack and tumble back towards the earth. ARTEMIS must be capable of simulating the integrated stack through the flight as well as propagating each individual element after separation. In addition, abort sequences can lead to other unique configurations of the integrated stack as the timing and sequence of the stage separations are altered.
Research flight-control system development for the F-18 high alpha research vehicle
NASA Technical Reports Server (NTRS)
Pahle, Joseph W.; Powers, Bruce; Regenie, Victoria; Chacon, Vince; Degroote, Steve; Murnyak, Steven
1991-01-01
The F-18 high alpha research vehicle was recently modified by adding a thrust vectoring control system. A key element in the modification was the development of a research flight control system integrated with the basic F-18 flight control system. Discussed here are design requirements, system development, and research utility of the resulting configuration as an embedded system for flight research in the high angle of attack regime. Particular emphasis is given to control system modifications and control law features required for high angle of attack flight. Simulation results are used to illustrate some of the thrust vectoring control system capabilities and predicted maneuvering improvements.
Knowledge-Based Manufacturing and Structural Design for a High Speed Civil Transport
NASA Technical Reports Server (NTRS)
Marx, William J.; Mavris, Dimitri N.; Schrage, Daniel P.
1994-01-01
The aerospace industry is currently addressing the problem of integrating manufacturing and design. To address the difficulties associated with using many conventional procedural techniques and algorithms, one feasible way to integrate the two concepts is with the development of an appropriate Knowledge-Based System (KBS). The authors present their reasons for selecting a KBS to integrate design and manufacturing. A methodology for an aircraft producibility assessment is proposed, utilizing a KBS for manufacturing process selection, that addresses both procedural and heuristic aspects of designing and manufacturing of a High Speed Civil Transport (HSCT) wing. A cost model is discussed that would allow system level trades utilizing information describing the material characteristics as well as the manufacturing process selections. Statements of future work conclude the paper.
Implementing security in a distributed web-based EHCR.
Sucurovic, Snezana
2007-01-01
In many countries there are initiatives for building an integrated patient-centric electronic health record. There are also initiatives for transnational integrations. These growing demands for integration result from the fact that it can provide improving healthcare treatments and reducing the cost of healthcare services. While in European highly developed countries computerisation in healthcare sector began in the 1970s and reached a high level, some developing countries, and Serbia among them, have started computerisation recently. This is why MEDIS (MEDical Information System) is aimed at integration itself from the very beginning instead of integration of heterogeneous information systems on a middle layer or using HL7 protocol. The implementation of a national healthcare information system requires using standards as integrated and widely accepted solutions. Therefore, we have started building MEDIS to meet the requirements of CEN ENV 13606 and CEN ENV 13729 standards. The prototype version has a distributed component-based architecture with modern security solutions applied. MEDIS has been implemented as a federated system where the central server hosts basic EHCR information about a patient, and clinical servers contain their own part of patients' EHCR. At present, there is an initial version of prototype planned to be deployed at first in a small community. In particular, open source API for X.509 authentication and authorisation has been developed. Our project meets the requirements for education in health informatics, including appropriate knowledge and skills on EHCR. The points included in this article have been presented on several national conferences and widely discussed. MEDIS has explored a federated, component-based EHCR architecture and related security aspects. In its initial version it shows acceptable performances and administrative simplicity. It emphasizes the importance of using standards in building EHCR in our country, in order to prepare it for future integrations.
Propulsion-airframe integration for commercial and military aircraft
NASA Technical Reports Server (NTRS)
Henderson, William P.
1988-01-01
A significant level of research is ongoing at NASA's Langley Research Center on integrating the propulsion system with the aircraft. This program has included nacelle/pylon/wing integration for turbofan transports, propeller/nacelle/wing integration for turboprop transports, and nozzle/afterbody/empennage integration for high performance aircraft. The studies included in this paper focus more specifically on pylon shaping and nacelle location studies for turbofan transports, nacelle and wing contouring and propeller location effects for turboprop transports, and nozzle shaping and empennage effects for high performance aircraft. The studies were primarily conducted in NASA Langley's 16-Foot Transonic Tunnel at Mach numbers up to 1.20. Some higher Mach number data obtained at NASA's Lewis Research Center is also included.
Towards a taxonomy for integrated care: a mixed-methods study
Valentijn, Pim P.; Boesveld, Inge C.; van der Klauw, Denise M.; Ruwaard, Dirk; Struijs, Jeroen N.; Molema, Johanna J.W.; Bruijnzeels, Marc A.; Vrijhoef, Hubertus JM.
2015-01-01
Introduction Building integrated services in a primary care setting is considered an essential important strategy for establishing a high-quality and affordable health care system. The theoretical foundations of such integrated service models are described by the Rainbow Model of Integrated Care, which distinguishes six integration dimensions (clinical, professional, organisational, system, functional and normative integration). The aim of the present study is to refine the Rainbow Model of Integrated Care by developing a taxonomy that specifies the underlying key features of the six dimensions. Methods First, a literature review was conducted to identify features for achieving integrated service delivery. Second, a thematic analysis method was used to develop a taxonomy of key features organised into the dimensions of the Rainbow Model of Integrated Care. Finally, the appropriateness of the key features was tested in a Delphi study among Dutch experts. Results The taxonomy consists of 59 key features distributed across the six integration dimensions of the Rainbow Model of Integrated Care. Key features associated with the clinical, professional, organisational and normative dimensions were considered appropriate by the experts. Key features linked to the functional and system dimensions were considered less appropriate. Discussion This study contributes to the ongoing debate of defining the concept and typology of integrated care. This taxonomy provides a development agenda for establishing an accepted scientific framework of integrated care from an end-user, professional, managerial and policy perspective. PMID:25759607
Towards a taxonomy for integrated care: a mixed-methods study.
Valentijn, Pim P; Boesveld, Inge C; van der Klauw, Denise M; Ruwaard, Dirk; Struijs, Jeroen N; Molema, Johanna J W; Bruijnzeels, Marc A; Vrijhoef, Hubertus Jm
2015-01-01
Building integrated services in a primary care setting is considered an essential important strategy for establishing a high-quality and affordable health care system. The theoretical foundations of such integrated service models are described by the Rainbow Model of Integrated Care, which distinguishes six integration dimensions (clinical, professional, organisational, system, functional and normative integration). The aim of the present study is to refine the Rainbow Model of Integrated Care by developing a taxonomy that specifies the underlying key features of the six dimensions. First, a literature review was conducted to identify features for achieving integrated service delivery. Second, a thematic analysis method was used to develop a taxonomy of key features organised into the dimensions of the Rainbow Model of Integrated Care. Finally, the appropriateness of the key features was tested in a Delphi study among Dutch experts. The taxonomy consists of 59 key features distributed across the six integration dimensions of the Rainbow Model of Integrated Care. Key features associated with the clinical, professional, organisational and normative dimensions were considered appropriate by the experts. Key features linked to the functional and system dimensions were considered less appropriate. This study contributes to the ongoing debate of defining the concept and typology of integrated care. This taxonomy provides a development agenda for establishing an accepted scientific framework of integrated care from an end-user, professional, managerial and policy perspective.
Maeng, Jimin; Meng, Chuizhou; Irazoqui, Pedro P
2015-02-01
We present wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible parylene platform, as progress toward sustainably powering biomedical microsystems suitable for implantable and wearable applications. All-solid-state, low-profile (<30 μm), and high-density (up to ~500 μF/mm(2)) micro-supercapacitors are formed on an ultrathin (~20 μm) freestanding parylene film by a wafer-scale parylene packaging process in combination with a polyaniline (PANI) nanowire growth technique assisted by surface plasma treatment. These micro-supercapacitors are highly flexible and shown to be resilient toward flexural stress. Further, direct integration of micro-supercapacitors into a radio frequency (RF) rectifying circuit is achieved on a single parylene platform, yielding a complete RF energy harvesting microsystem. The system discharging rate is shown to improve by ~17 times in the presence of the integrated micro-supercapacitors. This result suggests that the integrated micro-supercapacitor technology described herein is a promising strategy for sustainably powering biomedical microsystems dedicated to implantable and wearable applications.
Design and Integration of an Actuated Nose Strake Control System
NASA Technical Reports Server (NTRS)
Flick, Bradley C.; Thomson, Michael P.; Regenie, Victoria A.; Wichman, Keith D.; Pahle, Joseph W.; Earls, Michael R.
1996-01-01
Aircraft flight characteristics at high angles of attack can be improved by controlling vortices shed from the nose. These characteristics have been investigated with the integration of the actuated nose strakes for enhanced rolling (ANSER) control system into the NASA F-18 High Alpha Research Vehicle. Several hardware and software systems were developed to enable performance of the research goals. A strake interface box was developed to perform actuator control and failure detection outside the flight control computer. A three-mode ANSER control law was developed and installed in the Research Flight Control System. The thrust-vectoring mode does not command the strakes. The strakes and thrust-vectoring mode uses a combination of thrust vectoring and strakes for lateral- directional control, and strake mode uses strakes only for lateral-directional control. The system was integrated and tested in the Dryden Flight Research Center (DFRC) simulation for testing before installation in the aircraft. Performance of the ANSER system was monitored in real time during the 89-flight ANSER flight test program in the DFRC Mission Control Center. One discrepancy resulted in a set of research data not being obtained. The experiment was otherwise considered a success with the majority of the research objectives being met.
Absil, Philippe P; Verheyen, Peter; De Heyn, Peter; Pantouvaki, Marianna; Lepage, Guy; De Coster, Jeroen; Van Campenhout, Joris
2015-04-06
Silicon photonics integrated circuits are considered to enable future computing systems with optical input-outputs co-packaged with CMOS chips to circumvent the limitations of electrical interfaces. In this paper we present the recent progress made to enable dense multiplexing by exploiting the integration advantage of silicon photonics integrated circuits. We also discuss the manufacturability of such circuits, a key factor for a wide adoption of this technology.
AFC-Enabled Simplified High-Lift System Integration Study
NASA Technical Reports Server (NTRS)
Hartwich, Peter M.; Dickey, Eric D.; Sclafani, Anthony J.; Camacho, Peter; Gonzales, Antonio B.; Lawson, Edward L.; Mairs, Ron Y.; Shmilovich, Arvin
2014-01-01
The primary objective of this trade study report is to explore the potential of using Active Flow Control (AFC) for achieving lighter and mechanically simpler high-lift systems for transonic commercial transport aircraft. This assessment was conducted in four steps. First, based on the Common Research Model (CRM) outer mold line (OML) definition, two high-lift concepts were developed. One concept, representative of current production-type commercial transonic transports, features leading edge slats and slotted trailing edge flaps with Fowler motion. The other CRM-based design relies on drooped leading edges and simply hinged trailing edge flaps for high-lift generation. The relative high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations for steady flow. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. Conceptual design integration studies for the AFC-enhanced high-lift systems were conducted with a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. These design trades identify AFC performance targets that need to be met to produce economically feasible ERA-0003-like concepts with lighter and mechanically simpler high-lift designs that match the performance of conventional high-lift systems. Finally, technical challenges are identified associated with the application of AFC-enabled highlift systems to modern transonic commercial transports for future technology maturation efforts.
A fast low-power optical memory based on coupled micro-ring lasers
NASA Astrophysics Data System (ADS)
Hill, Martin T.; Dorren, Harmen J. S.; de Vries, Tjibbe; Leijtens, Xaveer J. M.; den Besten, Jan Hendrik; Smalbrugge, Barry; Oei, Yok-Siang; Binsma, Hans; Khoe, Giok-Djan; Smit, Meint K.
2004-11-01
The increasing speed of fibre-optic-based telecommunications has focused attention on high-speed optical processing of digital information. Complex optical processing requires a high-density, high-speed, low-power optical memory that can be integrated with planar semiconductor technology for buffering of decisions and telecommunication data. Recently, ring lasers with extremely small size and low operating power have been made, and we demonstrate here a memory element constructed by interconnecting these microscopic lasers. Our device occupies an area of 18 × 40µm2 on an InP/InGaAsP photonic integrated circuit, and switches within 20ps with 5.5fJ optical switching energy. Simulations show that the element has the potential for much smaller dimensions and switching times. Large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit: fast digital optical information processing systems employing large-scale integration should now be viable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The University of Minnesota is studying and planning a grid connected integrated community energy system to include disposal of wastes from health centers and utilizing the heat generated. The University of Minnesota has purchased the so called Southeast Generating Station from the Northern States Power Company. This plant contains two coal-fired boilers that will be retrofitted to burn low-sulfur Montana coal. Building modifications and additions will be made to support the components of the Andco-Torrax system and integrate the system with the rest of the plant. The Andco-Torrax system is a new high-temperature refuse-conversion process known technically as slagging pyrolysis.more » Although the pyrolysis of solid waste is a relatively new innovation, pyrolysis processes have been used for years by industry. This report covers the preliminary design and operation of the system. (MCW)« less
Systems Proteomics for Translational Network Medicine
Arrell, D. Kent; Terzic, Andre
2012-01-01
Universal principles underlying network science, and their ever-increasing applications in biomedicine, underscore the unprecedented capacity of systems biology based strategies to synthesize and resolve massive high throughput generated datasets. Enabling previously unattainable comprehension of biological complexity, systems approaches have accelerated progress in elucidating disease prediction, progression, and outcome. Applied to the spectrum of states spanning health and disease, network proteomics establishes a collation, integration, and prioritization algorithm to guide mapping and decoding of proteome landscapes from large-scale raw data. Providing unparalleled deconvolution of protein lists into global interactomes, integrative systems proteomics enables objective, multi-modal interpretation at molecular, pathway, and network scales, merging individual molecular components, their plurality of interactions, and functional contributions for systems comprehension. As such, network systems approaches are increasingly exploited for objective interpretation of cardiovascular proteomics studies. Here, we highlight network systems proteomic analysis pipelines for integration and biological interpretation through protein cartography, ontological categorization, pathway and functional enrichment and complex network analysis. PMID:22896016
Integration of passive driver-assistance systems with on-board vehicle systems
NASA Astrophysics Data System (ADS)
Savchenko, V. V.; Poddubko, S. N.
2018-02-01
Implementation in OIAS such functions as driver’s state monitoring and high-precision calculation of the current navigation coordinates of the vehicle, modularity of the OIAS construction and the possible increase in the functionality through integration with other onboard systems has a promising development future. The development of intelligent transport systems and their components allows setting and solving fundamentally new tasks for the safety of human-to-machine transport systems, and the automatic analysis of heterogeneous information flows provides a synergistic effect. The analysis of cross-modal information exchange in human-machine transport systems, from uniform methodological points of view, will allow us, with an accuracy acceptable for solving applied problems, to form in real time an integrated assessment of the state of the basic components of the human-to-machine system and the dynamics in changing situation-centered environment, including the external environment, in their interrelations.
A proactive system for maritime environment monitoring.
Moroni, Davide; Pieri, Gabriele; Tampucci, Marco; Salvetti, Ovidio
2016-01-30
The ability to remotely detect and monitor oil spills is becoming increasingly important due to the high demand of oil-based products. Indeed, shipping routes are becoming very crowded and the likelihood of oil slick occurrence is increasing. In this frame, a fully integrated remote sensing system can be a valuable monitoring tool. We propose an integrated and interoperable system able to monitor ship traffic and marine operators, using sensing capabilities from a variety of electronic sensors, along with geo-positioning tools, and through a communication infrastructure. Our system is capable of transferring heterogeneous data, freely and seamlessly, between different elements of the information system (and their users) in a consistent and usable form. The system also integrates a collection of decision support services providing proactive functionalities. Such services demonstrate the potentiality of the system in facilitating dynamic links among different data, models and actors, as indicated by the performed field tests. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Derlaga, Joseph M.; Stoll, Alex M.
2017-01-01
A variety of tools, from fundamental to high order, have been used to better understand applications of distributed electric propulsion to aid the wing and propulsion system design of the Leading Edge Asynchronous Propulsion Technology (LEAPTech) project and the X-57 Maxwell airplane. Three high-fidelity, Navier-Stokes computational fluid dynamics codes used during the project with results presented here are FUN3D, STAR-CCM+, and OVERFLOW. These codes employ various turbulence models to predict fully turbulent and transitional flow. Results from these codes are compared for two distributed electric propulsion configurations: the wing tested at NASA Armstrong on the Hybrid-Electric Integrated Systems Testbed truck, and the wing designed for the X-57 Maxwell airplane. Results from these computational tools for the high-lift wing tested on the Hybrid-Electric Integrated Systems Testbed truck and the X-57 high-lift wing presented compare reasonably well. The goal of the X-57 wing and distributed electric propulsion system design achieving or exceeding the required ?? (sub L) = 3.95 for stall speed was confirmed with all of the computational codes.
Uncooled infrared sensors for an integrated sniper location system
NASA Astrophysics Data System (ADS)
Spera, Timothy J.; Figler, Burton D.
1997-02-01
Since July of 1995, Lockheed Martin IR Imaging Systems of Lexington, Massachusetts has been developing an integrated sniper location system for the Advanced Research Projects Agency (ARPA) and for the Department of the Navy's Naval Command Control & Ocean Surveillance Center, RDTE Division in San Diego, California. This system integrates two technologies to provide an affordable and highly effective sniper detection and location capability. The integrated sniper location system is being developed for use by the military and by law enforcement agencies. It will be man portable and can be used by individuals, at fixed ground sites, on ground vehicles, and on low flying aircraft. The integrated sniper location system combines an acoustic warning system with an uncooled infrared warning system. The acoustic warner is being developed by SenTech, Inc. of Lexington, Massachusetts. This acoustic warner provides sniper detection and coarse location information based upon the muzzle blast of the sniper's weapon and/or upon the shock wave produced by the sniper's bullet, if the bullet is supersonic. The uncooled infrared warning system provides sniper detection and fine location information based upon the weapons's muzzle flash. Combining the two technologies improves detection probability and reduces false alarm rate. This paper describes the integrated sniper location system, focusing on the uncooled infrared sensor and its associated signal processing. In addition, preliminary results from Phase I testing of the system are presented. Finally, the paper addresses the plans for implementing Phases II and III, during which the system will be optimized in terms of detection and location performance, size, weight, power, and cost.
Design of energy storage system to improve inertial response for large scale PV generation
Wang, Xiaoyu; Yue, Meng
2016-07-01
With high-penetration levels of renewable generating sources being integrated into the existing electric power grid, conventional generators are being replaced and grid inertial response is deteriorating. This technical challenge is more severe with photovoltaic (PV) generation than with wind generation because PV generation systems cannot provide inertial response unless special countermeasures are adopted. To enhance the inertial response, this paper proposes to use battery energy storage systems (BESS) as the remediation approach to accommodate the degrading inertial response when high penetrations of PV generation are integrated into the existing power grid. A sample power system was adopted and simulated usingmore » PSS/E software. Here, impacts of different penetration levels of PV generation on the system inertial response were investigated and then BESS was incorporated to improve the frequency dynamics.« less
System level electrochemical principles
NASA Technical Reports Server (NTRS)
Thaller, L. H.
1985-01-01
The traditional electrochemical storage concepts are difficult to translate into high power, high voltage multikilowatt storage systems. The increased use of electronics, and the use of electrochemical couples that minimize the difficulties associated with the corrective measures to reduce the cell to cell capacity dispersion were adopted by battery technology. Actively cooled bipolar concepts are described which represent some attractive alternative system concepts. They are projected to have higher energy densities lower volumes than current concepts. They should be easier to scale from one capacity to another and have a closer cell to cell capacity balance. These newer storage system concepts are easier to manage since they are designed to be a fully integrated battery. These ideas are referred to as system level electrochemistry. The hydrogen-oxygen regenerative fuel cells (RFC) is probably the best example of the integrated use of these principles.
Design considerations for a 10-kW integrated hydrogen-oxygen regenerative fuel cell system
NASA Technical Reports Server (NTRS)
Hoberecht, M. A.; Miller, T. B.; Rieker, L. L.; Gonzalez-Sanabria, O. D.
1984-01-01
Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low earth orbit (LEO) applications characterized by relatively high overall round trip electrical efficiency, long life, and high reliability is possible with present state of the art technology. A hypothetical 10 kW system computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is under development utilizing advanced cell components and standard Shuttle Orbiter system hardware. The alkaline electrolysis technology uses a static water vapor feed technique and scaled up cell hardware is developed. The computer aided study of the performance, operating, and design parameters of the hypothetical system is addressed.
An Integrated Software Package to Enable Predictive Simulation Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Fitzhenry, Erin B.; Jin, Shuangshuang
The power grid is increasing in complexity due to the deployment of smart grid technologies. Such technologies vastly increase the size and complexity of power grid systems for simulation and modeling. This increasing complexity necessitates not only the use of high-performance-computing (HPC) techniques, but a smooth, well-integrated interplay between HPC applications. This paper presents a new integrated software package that integrates HPC applications and a web-based visualization tool based on a middleware framework. This framework can support the data communication between different applications. Case studies with a large power system demonstrate the predictive capability brought by the integrated software package,more » as well as the better situational awareness provided by the web-based visualization tool in a live mode. Test results validate the effectiveness and usability of the integrated software package.« less
ICPS Turnover GSDO Employee Event
2017-11-07
Mike Bolger, Ground Systems Development and Operations Program manager at NASA's Kennedy Space Center, speaks to guests during a ceremony in the high bay of the Space Station Processing Facility. The event marked the milestone of the Space Launch System rocket's Interim Cryogenic Propulsion Stage (ICPS) being turned over from NASA's Spacecraft/Payload Integration and Evolution organization to the spaceport's Ground Systems Development and Operations directorate. The ICPS is the first integrated piece of flight hardware to arrive in preparation for the uncrewed Exploration Mission-1.
2011-08-01
VEHICLE IN AN OFF-ROAD SCENARIO USING INTEGRATED SENSOR, CONTROLLER, AND MULTI-BODY DYNAMICS Paramsothy Jayakumar , PhD William Smith US Army...environment for a control system, mechanical system dynamics , and sensor simulation for an improved assessment of the vehicle system performance...improve vehicle dynamic performance; we must also evaluate and improve the sensor suite employed on the vehicle, and the controller used to operate
Gear Damage Detection Integrating Oil Debris and Vibration Measurement Technologies Developed
NASA Technical Reports Server (NTRS)
Gyekeyeski, Andrew L.; Sawicki, Jerzy T.
2001-01-01
The development of highly reliable health-monitoring systems is one technology area recommended for reducing the number of helicopter accidents. Helicopter transmission diagnostics are an important part of a helicopter health-monitoring system because helicopters depend on the power train for propulsion, lift, and flight maneuvering. One technique currently being tested for increasing the reliability and decreasing the false alarm rate of current transmission diagnostic tools is the replacement of simple single-sensor limits with multisensor systems integrating different measurement technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szyszka, A., E-mail: szyszka@ihp-microelectronics.com, E-mail: adam.szyszka@pwr.wroc.pl; Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw; Lupina, L.
2014-08-28
Based on a novel double step oxide buffer heterostructure approach for GaN integration on Si, we present an optimized Metal-Semiconductor-Metal (MSM)-based Ultraviolet (UV) GaN photodetector system with integrated short-period (oxide/Si) Distributed Bragg Reflector (DBR) and leakage suppressing Metal-Oxide-Semiconductor (MOS) electrode contacts. In terms of structural properties, it is demonstrated by in-situ reflection high energy electron diffraction and transmission electron microscopy-energy dispersive x-ray studies that the DBR heterostructure layers grow with high thickness homogeneity and sharp interface structures sufficient for UV applications; only minor Si diffusion into the Y{sub 2}O{sub 3} films is detected under the applied thermal growth budget. Asmore » revealed by comparative high resolution x-ray diffraction studies on GaN/oxide buffer/Si systems with and without DBR systems, the final GaN layer structure quality is not significantly influenced by the growth of the integrated DBR heterostructure. In terms of optoelectronic properties, it is demonstrated that—with respect to the basic GaN/oxide/Si system without DBR—the insertion of (a) the DBR heterostructures and (b) dark current suppressing MOS contacts enhances the photoresponsivity below the GaN band-gap related UV cut-off energy by almost up to two orders of magnitude. Given the in-situ oxide passivation capability of grown GaN surfaces and the one order of magnitude lower number of superlattice layers in case of higher refractive index contrast (oxide/Si) systems with respect to classical III-N DBR superlattices, virtual GaN substrates on Si via functional oxide buffer systems are thus a promising robust approach for future GaN-based UV detector technologies.« less
Computer hardware and software for robotic control
NASA Technical Reports Server (NTRS)
Davis, Virgil Leon
1987-01-01
The KSC has implemented an integrated system that coordinates state-of-the-art robotic subsystems. It is a sensor based real-time robotic control system performing operations beyond the capability of an off-the-shelf robot. The integrated system provides real-time closed loop adaptive path control of position and orientation of all six axes of a large robot; enables the implementation of a highly configurable, expandable testbed for sensor system development; and makes several smart distributed control subsystems (robot arm controller, process controller, graphics display, and vision tracking) appear as intelligent peripherals to a supervisory computer coordinating the overall systems.
In biochemical systems a host of “nature’s catalysts” conduct chemical transformations at physiological temperatures, high substrate conversion, high optical activity integrity, and single reactive center substrate changes. All of these traits are highly esteemed in the pursuit o...
An integral nuclear power and propulsion system concept
NASA Astrophysics Data System (ADS)
Choong, Phillip T.; Teofilo, Vincent L.; Begg, Lester L.; Dunn, Charles; Otting, William
An integral space power concept provides both the electrical power and propulsion from a common heat source and offers superior performance capabilities over conventional orbital insertion using chemical propulsion systems. This paper describes a hybrid (bimodal) system concept based on a proven, inherently safe solid fuel form for the high temperature reactor core operation and rugged planar thermionic energy converter for long-life steady state electric power production combined with NERVA-based rocket technology for propulsion. The integral system is capable of long-life power operation and multiple propulsion operations. At an optimal thrust level, the integral system can maintain the minimal delta-V requirement while minimizing the orbital transfer time. A trade study comparing the overall benefits in placing large payloads to GEO with the nuclear electric propulsion option shows superiority of nuclear thermal propulsion. The resulting savings in orbital transfer time and the substantial reduction of overall lift requirement enables the use of low-cost launchers for several near-term military satellite missions.
NASA Technical Reports Server (NTRS)
Ray, R. J.; Myers, L. P.
1986-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.
Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.
2015-01-01
Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169
NASA Astrophysics Data System (ADS)
Huang, Lei; Zhou, Chenlu; Zhao, Wenchuan; Choi, Heejoo; Graves, Logan; Kim, Daewook
2017-06-01
We present a high precision deflectometry system (DS) controlled deformable mirror (DM) solution for optical system. Different from wavefront and non-wavefront system, the DS and the DM are set to be an individual integrated DCDM unit and can be installed in one base plate. In the DCDM unit, the DS can directly provide the influence functions and surface shape of the DM to the industrial computer in any adaptive optics system. As an integrated adaptive unit, the DCDM unit could be put into various optical systems to realize aberration compensation. In this paper, the configuration and principle of the DCDM unit is introduced first. Theoretical simulation on the close-loop performance of the DCDM unit is carried out. Finally, a verification experiment is proposed to verify the compensation capability of the DCDM unit.
Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System
Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk
2016-01-01
In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user’s ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user’s high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user’s daily smartphone use. PMID:26978364
Design, Fabrication, and Testing of an Auxiliary Cooling System for Jet Engines
NASA Technical Reports Server (NTRS)
Leamy, Kevin; Griffiths, Jim; Andersen, Paul; Joco, Fidel; Laski, Mark; Balser, Jeffrey (Technical Monitor)
2001-01-01
This report summarizes the technical effort of the Active Cooling for Enhanced Performance (ACEP) program sponsored by NASA. It covers the design, fabrication, and integrated systems testing of a jet engine auxiliary cooling system, or turbocooler, that significantly extends the use of conventional jet fuel as a heat sink. The turbocooler is designed to provide subcooled cooling air to the engine exhaust nozzle system or engine hot section. The turbocooler consists of three primary components: (1) a high-temperature air cycle machine driven by engine compressor discharge air, (2) a fuel/ air heat exchanger that transfers energy from the hot air to the fuel and uses a coating to mitigate fuel deposits, and (3) a high-temperature fuel injection system. The details of the turbocooler component designs and results of the integrated systems testing are documented. Industry Version-Data and information deemed subject to Limited Rights restrictions are omitted from this document.
Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System.
Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk
2016-03-11
In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user's ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user's high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user's daily smartphone use.
NASA Technical Reports Server (NTRS)
Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.
2015-01-01
This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.
NASA Technical Reports Server (NTRS)
Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.
2015-01-01
This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.
NASA Technical Reports Server (NTRS)
Stewart, James F.; Shuck, Thomas L.
1990-01-01
Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.
Intelligent systems technology infrastructure for integrated systems
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.
1991-01-01
Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.
Lin, Lihua; Liu, Shengquan; Nie, Zhou; Chen, Yingzhuang; Lei, Chunyang; Wang, Zhen; Yin, Chao; Hu, Huiping; Huang, Yan; Yao, Shouzhuo
2015-04-21
Nowadays, large-scale screening for enzyme discovery, engineering, and drug discovery processes require simple, fast, and sensitive enzyme activity assay platforms with high integration and potential for high-throughput detection. Herein, a novel automatic and integrated micro-enzyme assay (AIμEA) platform was proposed based on a unique microreaction system fabricated by a engineered green fluorescence protein (GFP)-functionalized monolithic capillary column, with thrombin as an example. The recombinant GFP probe was rationally engineered to possess a His-tag and a substrate sequence of thrombin, which enable it to be immobilized on the monolith via metal affinity binding, and to be released after thrombin digestion. Combined with capillary electrophoresis-laser-induced fluorescence (CE-LIF), all the procedures, including thrombin injection, online enzymatic digestion in the microreaction system, and label-free detection of the released GFP, were integrated in a single electrophoretic process. By taking advantage of the ultrahigh loading capacity of the AIμEA platform and the CE automatic programming setup, one microreaction column was sufficient for many times digestion without replacement. The novel microreaction system showed significantly enhanced catalytic efficiency, about 30 fold higher than that of the equivalent bulk reaction. Accordingly, the AIμEA platform was highly sensitive with a limit of detection down to 1 pM of thrombin. Moreover, the AIμEA platform was robust and reliable to detect thrombin in human serum samples and its inhibition by hirudin. Hence, this AIμEA platform exhibits great potential for high-throughput analysis in future biological application, disease diagnostics, and drug screening.
Night vision imaging system design, integration and verification in spacecraft vacuum thermal test
NASA Astrophysics Data System (ADS)
Shang, Yonghong; Wang, Jing; Gong, Zhe; Li, Xiyuan; Pei, Yifei; Bai, Tingzhu; Zhen, Haijing
2015-08-01
The purposes of spacecraft vacuum thermal test are to characterize the thermal control systems of the spacecraft and its component in its cruise configuration and to allow for early retirement of risks associated with mission-specific and novel thermal designs. The orbit heat flux is simulating by infrared lamp, infrared cage or electric heater. As infrared cage and electric heater do not emit visible light, or infrared lamp just emits limited visible light test, ordinary camera could not operate due to low luminous density in test. Moreover, some special instruments such as satellite-borne infrared sensors are sensitive to visible light and it couldn't compensate light during test. For improving the ability of fine monitoring on spacecraft and exhibition of test progress in condition of ultra-low luminous density, night vision imaging system is designed and integrated by BISEE. System is consist of high-gain image intensifier ICCD camera, assistant luminance system, glare protect system, thermal control system and computer control system. The multi-frame accumulation target detect technology is adopted for high quality image recognition in captive test. Optical system, mechanical system and electrical system are designed and integrated highly adaptable to vacuum environment. Molybdenum/Polyimide thin film electrical heater controls the temperature of ICCD camera. The results of performance validation test shown that system could operate under vacuum thermal environment of 1.33×10-3Pa vacuum degree and 100K shroud temperature in the space environment simulator, and its working temperature is maintains at 5° during two-day test. The night vision imaging system could obtain video quality of 60lp/mm resolving power.
Quantum Accelerators for High-performance Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S.; Britt, Keith A.; Mohiyaddin, Fahd A.
We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, themore » prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.« less
Linking Soil Microbial Ecology to Ecosystem Functioning in Integrated Crop-Livestock Systems
USDA-ARS?s Scientific Manuscript database
Enhanced soil stability, nutrient cycling and C sequestration potential are important ecosystem functions driven by soil microbial processes and are directly influenced by agricultural management. Integrated crop-livestock agroecosystems (ICL) can enhance these functions via high-residue returning c...
Data-driven integration of genome-scale regulatory and metabolic network models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.
Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less
Data-driven integration of genome-scale regulatory and metabolic network models
Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.; ...
2015-05-05
Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less
Thompson, Amibeth H; Knight, Tiffany M
2018-05-01
Both exotic and native plant species rely on insect pollinators for reproductive success, and yet few studies have evaluated whether and how exotic plant species receive services from native pollinators for successful reproduction in their introduced range. Plant species are expected to successfully reproduce in their exotic range if they have low reliance on animal pollinators or if they successfully integrate themselves into resident plant-pollinator networks. Here, we quantify the breeding system, network integration, and pollen limitation for ten focal exotic plant species in North America. Most exotic plant species relied on animal pollinators for reproduction, and these species varied in their network integration. However, plant reproduction was limited by pollen receipt for only one plant species. Our results demonstrate that even poorly integrated exotic plant species can still have high pollination service and high reproductive success. The comprehensive framework considered here provides a method to consider the contribution of plant breeding systems and the pollinator community to pollen limitation, and can be applied to future studies to provide a more synthetic understanding of the factors that determine reproductive success of exotic plant species.
Fluid design studies of integrated modular engine system
NASA Technical Reports Server (NTRS)
Frankenfield, Bruce; Carek, Jerry
1993-01-01
A study was performed to develop a fluid system design and show the feasibility of constructing an integrated modular engine (IME) configuration, using an expander cycle engine. The primary design goal of the IME configuration was to improve the propulsion system reliability. The IME fluid system was designed as a single fault tolerant system, while minimizing the required fluid components. This study addresses the design of the high pressure manifolds, turbopumps and thrust chambers for the IME configuration. A physical layout drawing was made, which located each of the fluid system components, manifolds and thrust chambers. Finally, a comparison was made between the fluid system designs of an IME system and a non-network (clustered) engine system.
An Integrated High Resolution Hydrometeorological Modeling Testbed using LIS and WRF
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Peters-Lidard, Christa D.; Eastman, Joseph L.; Tao, Wei-Kuo
2007-01-01
Scientists have made great strides in modeling physical processes that represent various weather and climate phenomena. Many modeling systems that represent the major earth system components (the atmosphere, land surface, and ocean) have been developed over the years. However, developing advanced Earth system applications that integrates these independently developed modeling systems have remained a daunting task due to limitations in computer hardware and software. Recently, efforts such as the Earth System Modeling Ramework (ESMF) and Assistance for Land Modeling Activities (ALMA) have focused on developing standards, guidelines, and computational support for coupling earth system model components. In this article, the development of a coupled land-atmosphere hydrometeorological modeling system that adopts these community interoperability standards, is described. The land component is represented by the Land Information System (LIS), developed by scientists at the NASA Goddard Space Flight Center. The Weather Research and Forecasting (WRF) model, a mesoscale numerical weather prediction system, is used as the atmospheric component. LIS includes several community land surface models that can be executed at spatial scales as fine as 1km. The data management capabilities in LIS enable the direct use of high resolution satellite and observation data for modeling. Similarly, WRF includes several parameterizations and schemes for modeling radiation, microphysics, PBL and other processes. Thus the integrated LIS-WRF system facilitates several multi-model studies of land-atmosphere coupling that can be used to advance earth system studies.
Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip.
Atabaki, Amir H; Moazeni, Sajjad; Pavanello, Fabio; Gevorgyan, Hayk; Notaros, Jelena; Alloatti, Luca; Wade, Mark T; Sun, Chen; Kruger, Seth A; Meng, Huaiyu; Al Qubaisi, Kenaish; Wang, Imbert; Zhang, Bohan; Khilo, Anatol; Baiocco, Christopher V; Popović, Miloš A; Stojanović, Vladimir M; Ram, Rajeev J
2018-04-01
Electronic and photonic technologies have transformed our lives-from computing and mobile devices, to information technology and the internet. Our future demands in these fields require innovation in each technology separately, but also depend on our ability to harness their complementary physics through integrated solutions 1,2 . This goal is hindered by the fact that most silicon nanotechnologies-which enable our processors, computer memory, communications chips and image sensors-rely on bulk silicon substrates, a cost-effective solution with an abundant supply chain, but with substantial limitations for the integration of photonic functions. Here we introduce photonics into bulk silicon complementary metal-oxide-semiconductor (CMOS) chips using a layer of polycrystalline silicon deposited on silicon oxide (glass) islands fabricated alongside transistors. We use this single deposited layer to realize optical waveguides and resonators, high-speed optical modulators and sensitive avalanche photodetectors. We integrated this photonic platform with a 65-nanometre-transistor bulk CMOS process technology inside a 300-millimetre-diameter-wafer microelectronics foundry. We then implemented integrated high-speed optical transceivers in this platform that operate at ten gigabits per second, composed of millions of transistors, and arrayed on a single optical bus for wavelength division multiplexing, to address the demand for high-bandwidth optical interconnects in data centres and high-performance computing 3,4 . By decoupling the formation of photonic devices from that of transistors, this integration approach can achieve many of the goals of multi-chip solutions 5 , but with the performance, complexity and scalability of 'systems on a chip' 1,6-8 . As transistors smaller than ten nanometres across become commercially available 9 , and as new nanotechnologies emerge 10,11 , this approach could provide a way to integrate photonics with state-of-the-art nanoelectronics.
Genetic selection of cattle for improved immunity and health.
Mallard, Bonnie A; Emam, Mehdi; Paibomesai, Marlene; Thompson-Crispi, Kathleen; Wagter-Lesperance, Lauraine
2015-02-01
The immune system is a sensing structure composed of tissues and molecules that are well integrated with the neuroendocrine system. This integrate system ensures non-self from self-discrimination. In this capacity the immune system provides detection and protection from a wide range of pathogens. In mammals, the immune system is regulated by several thousand genes (8-9% of the genome) which indicate its high genetic priority as a critical fitness trait providing survival of the species. Identifying and selectively breeding livestock with the inherent ability to make superior immune responses can reduce disease occurrence, improve milk quality and increase farm profitability. Healthier animals also may be expected to demonstrate improvements in other traits, including reproductive fitness. Using the University of Guelph's patented High Immune Response technology it is possible to classify animals as high, average, or low responders based on their genetic estimated breeding value for immune responsiveness. High responders have the inherent ability to produce more balanced and robust immune responses compared with average or low responders. High responders dairy cattle essentially have about one-half the disease occurrence of low responders, and can pass their superior immune response genes on to future generations thereby accumulating health benefits within the dairy herd.
NASA Astrophysics Data System (ADS)
Lapidus, Azary; Abramov, Ivan
2018-03-01
Development of efficient algorithms for designing future operations is a vital element in construction business. This paper studies various aspects of a methodology required to determine the integration index for construction crews performing various process-related jobs. The main objective of the study outlined in this paper is to define the notion of integration in respect to a construction crew that performs complete cycles of construction and assembly works in order to find the optimal organizational solutions, using the integrated crew algorithm built specifically for that purpose. As seen in the sequence of algorithm elements, it was designed to focus on the key factors affecting the level of integration of a construction crew depending on the value of each of those elements. The multifactor modelling approach is used to assess the KPI of integrated construction crews involved in large-sale high-rise construction projects. The purpose of this study is to develop a theoretical recommendation and a scientific methodological provision of organizational and technological nature to ensure qualitative formation of integrated construction crews to increase their productivity during integrated implementation of multi-task construction phases. The key difference of the proposed solution from the already existing ones is that it requires identification of the degree of impact of each factor, including the change in the qualification level, on the integration index of each separate element in the organizational and technological system in construction (integrated construction crew).
Song, Jiangxin; Lin, Jintian; Tang, Jialei; Liao, Yang; He, Fei; Wang, Zhaohui; Qiao, Lingling; Sugioka, Koji; Cheng, Ya
2014-06-16
We report on fabrication of a microtoroid resonator of a high-quality factor (i.e., Q-factor of ~3.24 × 10(6) measured under the critical coupling condition) integrated in a microfluidic channel using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. The assembly of the fiber to the microtoroid is achieved by welding the fiber taper onto the sidewall of the microtoroid using CO2 laser irradiation. The integrated microresonator maintains a high Q-factor of 3.21 × 10(5) as measured in air, which should still be sufficient for many sensing applications. We test the functionality of the integrated optofluidic sensor by performing bulk refractive index sensing of purified water doped with tiny amount of salt. It is shown that a detection limit of ~1.2 × 10(-4) refractive index unit can be achieved. Our result showcases the capability of integration of high-Q microresonators with complex microfluidic systems using femtosecond laser 3D micromachining.
Fully integrated biochip platforms for advanced healthcare.
Carrara, Sandro; Ghoreishizadeh, Sara; Olivo, Jacopo; Taurino, Irene; Baj-Rossi, Camilla; Cavallini, Andrea; de Beeck, Maaike Op; Dehollain, Catherine; Burleson, Wayne; Moussy, Francis Gabriel; Guiseppi-Elie, Anthony; De Micheli, Giovanni
2012-01-01
Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.
Fully Integrated Biochip Platforms for Advanced Healthcare
Carrara, Sandro; Ghoreishizadeh, Sara; Olivo, Jacopo; Taurino, Irene; Baj-Rossi, Camilla; Cavallini, Andrea; de Beeck, Maaike Op; Dehollain, Catherine; Burleson, Wayne; Moussy, Francis Gabriel; Guiseppi-Elie, Anthony; De Micheli, Giovanni
2012-01-01
Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications. PMID:23112644
NASA Astrophysics Data System (ADS)
Abramov, Ivan
2018-03-01
Development of design documentation for a future construction project gives rise to a number of issues with the main one being selection of manpower for structural units of the project's overall implementation system. Well planned and competently staffed integrated structural construction units will help achieve a high level of reliability and labor productivity and avoid negative (extraordinary) situations during the construction period eventually ensuring improved project performance. Research priorities include the development of theoretical recommendations for enhancing reliability of a structural unit staffed as an integrated construction crew. The author focuses on identification of destabilizing factors affecting formation of an integrated construction crew; assessment of these destabilizing factors; based on the developed mathematical model, highlighting the impact of these factors on the integration criterion with subsequent identification of an efficiency and reliability criterion for the structural unit in general. The purpose of this article is to develop theoretical recommendations and scientific and methodological provisions of an organizational and technological nature in order to identify a reliability criterion for a structural unit based on manpower integration and productivity criteria. With this purpose in mind, complex scientific tasks have been defined requiring special research, development of corresponding provisions and recommendations based on the system analysis findings presented herein.
NREL's Building-Integrated Supercomputer Provides Heating and Efficient Computing (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-09-01
NREL's Energy Systems Integration Facility (ESIF) is meant to investigate new ways to integrate energy sources so they work together efficiently, and one of the key tools to that investigation, a new supercomputer, is itself a prime example of energy systems integration. NREL teamed with Hewlett-Packard (HP) and Intel to develop the innovative warm-water, liquid-cooled Peregrine supercomputer, which not only operates efficiently but also serves as the primary source of building heat for ESIF offices and laboratories. This innovative high-performance computer (HPC) can perform more than a quadrillion calculations per second as part of the world's most energy-efficient HPC datamore » center.« less
Next Generation Space Telescope Integrated Science Module Data System
NASA Technical Reports Server (NTRS)
Schnurr, Richard G.; Greenhouse, Matthew A.; Jurotich, Matthew M.; Whitley, Raymond; Kalinowski, Keith J.; Love, Bruce W.; Travis, Jeffrey W.; Long, Knox S.
1999-01-01
The Data system for the Next Generation Space Telescope (NGST) Integrated Science Module (ISIM) is the primary data interface between the spacecraft, telescope, and science instrument systems. This poster includes block diagrams of the ISIM data system and its components derived during the pre-phase A Yardstick feasibility study. The poster details the hardware and software components used to acquire and process science data for the Yardstick instrument compliment, and depicts the baseline external interfaces to science instruments and other systems. This baseline data system is a fully redundant, high performance computing system. Each redundant computer contains three 150 MHz power PC processors. All processors execute a commercially available real time multi-tasking operating system supporting, preemptive multi-tasking, file management and network interfaces. These six processors in the system are networked together. The spacecraft interface baseline is an extension of the network, which links the six processors. The final selection for Processor busses, processor chips, network interfaces, and high-speed data interfaces will be made during mid 2002.
Scherer, James R; Liu, Peng; Mathies, Richard A
2010-11-01
We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.