A data seamless interaction scheme between electric power secondary business systems
NASA Astrophysics Data System (ADS)
Ai, Wenkai; Qian, Feng
2018-03-01
At present, the data interaction of electric power secondary business systems is very high, and it is not universal to develop programs when data interaction is carried out by different manufacturers' electric power secondary business systems. There are different interaction schemes for electric power secondary business systems with different manufacturers, which lead to high development cost, low reusability and high maintenance difficulty. This paper introduces a new data seamless interaction scheme between electric power secondary business systems. The scheme adopts the international common Java message service protocol as the transmission protocol, adopts the common JavaScript object symbol format as the data interactive format, unified electric power secondary business systems data interactive way, improve reusability, reduce complexity, monitor the operation of the electric power secondary business systems construction has laid a solid foundation.
Large space system: Charged particle environment interaction technology
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.; Grier, N. T.
1979-01-01
Large, high voltage space power systems are proposed for future space missions. These systems must operate in the charged-particle environment of space and interactions between this environment and the high voltage surfaces are possible. Ground simulation testing indicated that dielectric surfaces that usually surround biased conductors can influence these interactions. For positive voltages greater than 100 volts, it has been found that the dielectrics contribute to the current collection area. For negative voltages greater than-500 volts, the data indicates that the dielectrics contribute to discharges. A large, high-voltage power system operating in geosynchronous orbit was analyzed. Results of this analysis indicate that very strong electric fields exist in these power systems.
Bearing design for flywheel energy storage using high-TC superconductors
Hull, John R.; Mulcahy, Thomas M.
2000-01-01
A high temperature superconductor material bearing system (38) This system (38) includes a rotor (50) having a ring permanent magnet (60), a plurality of permanent magnets (16, 20 and 70) for interacting to generate levitation forces for the system (38). This group of magnets are a push/pull bearing (75). A high temperature superconductor structure (30) interacts with the ting permanent magnet (60) to provide stabilizing forces for the system (38).
Extension of lattice cluster theory to strongly interacting, self-assembling polymeric systems.
Freed, Karl F
2009-02-14
A new extension of the lattice cluster theory is developed to describe the influence of monomer structure and local correlations on the free energy of strongly interacting and self-assembling polymer systems. This extension combines a systematic high dimension (1/d) and high temperature expansion (that is appropriate for weakly interacting systems) with a direct treatment of strong interactions. The general theory is illustrated for a binary polymer blend whose two components contain "sticky" donor and acceptor groups, respectively. The free energy is determined as an explicit function of the donor-acceptor contact probabilities that depend, in turn, on the local structure and both the strong and weak interactions.
System theoretic models for high density VLSI structures
NASA Astrophysics Data System (ADS)
Dickinson, Bradley W.; Hopkins, William E., Jr.
This research project involved the development of mathematical models for analysis, synthesis, and simulation of large systems of interacting devices. The work was motivated by problems that may become important in high density VLSI chips with characteristic feature sizes less than 1 micron: it is anticipated that interactions of neighboring devices will play an important role in the determination of circuit properties. It is hoped that the combination of high device densities and such local interactions can somehow be exploited to increase circuit speed and to reduce power consumption. To address these issues from the point of view of system theory, research was pursued in the areas of nonlinear and stochastic systems and into neural network models. Statistical models were developed to characterize various features of the dynamic behavior of interacting systems. Random process models for studying the resulting asynchronous modes of operation were investigated. The local interactions themselves may be modeled as stochastic effects. The resulting behavior was investigated through the use of various scaling limits, and by a combination of other analytical and simulation techniques. Techniques arising in a variety of disciplines where models of interaction were formulated and explored were considered and adapted for use.
Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space.
Carstensen, Daniel W; Sabatino, Malena; Morellato, Leonor Patricia C
2016-05-01
Mutualistic interaction networks have been shown to be structurally conserved over space and time while pairwise interactions show high variability. In such networks, modularity is the division of species into compartments, or modules, where species within modules share more interactions with each other than they do with species from other modules. Such a modular structure is common in mutualistic networks and several evolutionary and ecological mechanisms have been proposed as underlying drivers. One prominent explanation is the existence of pollination syndromes where flowers tend to attract certain pollinators as determined by a set of traits. We investigate the modularity of seven community level plant-pollinator networks sampled in rupestrian grasslands, or campos rupestres, in SE Brazil. Defining pollination systems as corresponding groups of flower syndromes and pollinator functional groups, we test the two hypotheses that (1) interacting species from the same pollination system are more often assigned to the same module than interacting species from different pollination systems and; that (2) interactions between species from the same pollination system are more consistent across space than interactions between species from different pollination systems. Specifically we ask (1) whether networks are consistently modular across space; (2) whether interactions among species of the same pollination system occur more often inside modules, compared to interactions among species of different pollination systems, and finally; (3) whether the spatial variation in interaction identity, i.e., spatial interaction rewiring, is affected by trait complementarity among species as indicated by pollination systems. We confirm that networks are consistently modular across space and that interactions within pollination systems principally occur inside modules. Despite a strong tendency, we did not find a significant effect of pollination systems on the spatial consistency of pairwise interactions. These results indicate that the spatial rewiring of interactions could be constrained by pollination systems, resulting in conserved network structures in spite of high variation in pairwise interactions. Our findings suggest a relevant role of pollination systems in structuring plant-pollinator networks and we argue that structural patterns at the sub-network level can help us to fully understand how and why interactions vary across space and time.
Comparisons of Attacks on Honeypots With Those on Real Networks
2006-03-01
Oracle , MySQL , or PostgreSQL. Figure 2 shows an incoming packet and the process involved before and after the Snort engine detects the suspicious...stored on a separate, secured system.”[2]. Honeypots have several other uses besides monitoring attackers. They serve to protect real networks and...interaction vs . high-interaction. Although, both low-interaction and high-interaction honeypots are effective in soliciting attacks, high-interaction
ERIC Educational Resources Information Center
Fall, Anna-Maria; Roberts, Greg
2012-01-01
Research suggests that contextual, self-system, and school engagement variables influence dropping out from school. However, it is not clear how different types of contextual and self-system variables interact to affect students' engagement or contribute to decisions to dropout from high school. The self-system model of motivational development…
Wei, Yuping; Ma, Liang; Zhang, Liang; Xu, Xia
2017-01-01
An effective drug delivery system requires efficient drug uptake and release inside cancer cells. Here, we report a novel drug delivery system, in which paclitaxel (PTX) interacts with a novel cell penetrating peptide (CPP) through noncovalent interaction designed based on molecular simulations. This CPP/PTX complex confers high efficiency in delivering PTX into cancer cells not by endocytosis but by an energy-independent pathway. Once inside cells, the noncovalent interaction between PTX and the CPP may allow fast release of PTX within cells due to the direct translocation of CPP/PTX. This drug delivery system exhibits strong capacity for inhibition of tumor growth and offers a new avenue for the development of advanced drug delivery systems for anticancer therapy.
Gigantic Dzyaloshinskii-Moriya interaction in the MnBi ultrathin films
NASA Astrophysics Data System (ADS)
Yu, Jie-Xiang; Zang, Jiadong; Zang's Team
The magnetic skyrmion, a swirling-like spin texture with nontrivial topology, is driven by strong Dzyaloshinskii-Moriya (DM) interaction originated from the spin-orbit coupling in inversion symmetry breaking systems. Here, based on first-principles calculations, we predict a new material, MnBi ultrathin film, with gigantic DM interactions. The ratio of the DM interaction to the Heisenberg exchange is about 0.3, exceeding any values reported so far. Its high Curie temperature, high coercivity, and large perpendicular magnetoanisotropy make MnBi a good candidate for future spintronics studies. Topologically nontrivial spin textures are emergent in this system. We expect further experimental efforts will be devoted into this systems.
High voltage requirements and issues for the 1990's. [for spacecraft power supplies
NASA Technical Reports Server (NTRS)
Dunbar, W. G.; Faymon, K. A.
1984-01-01
The development of high-power high-voltage space systems will require advances in power generation and processing. The systems must be reliable, adaptable, and durable for space mission success. The issues, which must be resolved in order to produce a high power system, are weight and volume reduction of components and modules and the creation of a reliable high repetition pulse power processor. Capacitor energy density must be increased by twice the present capacity and packaging must be reduced by a factor of 10 to 20 times. The packaging must also protect the system from interaction with the natural space environment and the induced environment, produced from spacecraft systems and environment interaction.
Social Anxiety in Online and Real-Life Interaction and Their Associated Factors
Yen, Ju-Yu; Yen, Cheng-Fang; Chen, Cheng-Sheng; Wang, Peng-Wei; Chang, Yi-Hsin
2012-01-01
Abstract Social anxiety was compared between online and real-life interaction in a sample of 2,348 college students. Severity of social anxiety in both real-life and online interaction was tested for associations with depression, Internet addiction, Internet activity type (gaming versus chatting), and scores on Behavioral Inhibition System (BIS)/Behavioral Activation System (BAS) scales. The results showed that social anxiety was lower when interacting online than when interacting offline. Depression, Internet addiction, and high BIS and BAS scores were associated with high social anxiety. The social anxiety decreased more in online interaction among subjects with high social anxiety, depression, BIS, and BAS. This result suggests that the Internet has good potential as an alternative medium for delivering interventions for social anxiety. Further, the effect of BIS on social anxiety is decreased in online interaction. More attention should be paid for BIS when the treatment for social anxiety is delivered online. PMID:22175853
Social anxiety in online and real-life interaction and their associated factors.
Yen, Ju-Yu; Yen, Cheng-Fang; Chen, Cheng-Sheng; Wang, Peng-Wei; Chang, Yi-Hsin; Ko, Chih-Hung
2012-01-01
Social anxiety was compared between online and real-life interaction in a sample of 2,348 college students. Severity of social anxiety in both real-life and online interaction was tested for associations with depression, Internet addiction, Internet activity type (gaming versus chatting), and scores on Behavioral Inhibition System (BIS)/Behavioral Activation System (BAS) scales. The results showed that social anxiety was lower when interacting online than when interacting offline. Depression, Internet addiction, and high BIS and BAS scores were associated with high social anxiety. The social anxiety decreased more in online interaction among subjects with high social anxiety, depression, BIS, and BAS. This result suggests that the Internet has good potential as an alternative medium for delivering interventions for social anxiety. Further, the effect of BIS on social anxiety is decreased in online interaction. More attention should be paid for BIS when the treatment for social anxiety is delivered online.
Trapped atoms along nanophotonic resonators
NASA Astrophysics Data System (ADS)
Fields, Brian; Kim, May; Chang, Tzu-Han; Hung, Chen-Lung
2017-04-01
Many-body systems subject to long-range interactions have remained a very challenging topic experimentally. Ultracold atoms trapped in extreme proximity to the surface of nanophotonic structures provides a dynamic system combining the strong atom-atom interactions mediated by guided mode photons with the exquisite control implemented with trapped atom systems. The hybrid system promises pair-wise tunability of long-range interactions between atomic pseudo spins, allowing studies of quantum magnetism extending far beyond nearest neighbor interactions. In this talk, we will discuss our current status developing high quality nanophotonic ring resonators, engineered on CMOS compatible optical chips with integrated nanostructures that, in combination with a side illuminating beam, can realize stable atom traps approximately 100nm above the surface. We will report on our progress towards loading arrays of cold atoms near the surface of these structures and studying atom-atom interaction mediated by photons with high cooperativity.
High voltage system: Plasma interaction summary
NASA Technical Reports Server (NTRS)
Stevens, N. John
1986-01-01
The possible interactions that could exist between a high voltage system and the space plasma environment are reviewed. A solar array is used as an example of such a system. The emphasis in this review is on the discrepancies that exist in this technology in both flight and ground experiment data. It has been found that, in ground testing, there are facility effects, cell size effects and area scaling uncertainties. For space applications there are area scaling and discharge concerns for an array as well as the influence of the large space structures on the collection process. There are still considerable uncertainties in the high voltage-space plasma interaction technology even after several years of effort.
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1993-01-01
This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.
Working group report on advanced high-voltage high-power and energy-storage space systems
NASA Technical Reports Server (NTRS)
Cohen, H. A.; Cooke, D. L.; Evans, R. W.; Hastings, D.; Jongeward, G.; Laframboise, J. G.; Mahaffey, D.; Mcintyre, B.; Pfizer, K. A.; Purvis, C.
1986-01-01
Space systems in the future will probably include high-voltage, high-power energy-storage and -production systems. Two such technologies are high-voltage ac and dc systems and high-power electrodynamic tethers. The working group identified several plasma interaction phenomena that will occur in the operation of these power systems. The working group felt that building an understanding of these critical interaction issues meant that several gaps in our knowledge had to be filled, and that certain aspects of dc power systems have become fairly well understood. Examples of these current collection are in quiescent plasmas and snap over effects. However, high-voltage dc and almost all ac phenomena are, at best, inadequately understood. In addition, there is major uncertainty in the knowledge of coupling between plasmas and large scale current flows in space plasmas. These gaps in the knowledge are addressed.
Spatial resolution study and power calibration of the high-k scattering system on NSTX.
Lee, W; Park, H K; Cho, M H; Namkung, W; Smith, D R; Domier, C W; Luhmann, N C
2008-10-01
NSTX high-k scattering system has been extensively utilized in studying the microturbulence and coherent waves. An absolute calibration of the scattering system was performed employing a new millimeter-wave source and calibrated attenuators. One of the key parameters essential for the calibration of the multichannel scattering system is the interaction length. This interaction length is significantly different from the conventional one due to the curvature and magnetic shear effect.
Monte Carlo modeling the phase diagram of magnets with the Dzyaloshinskii - Moriya interaction
NASA Astrophysics Data System (ADS)
Belemuk, A. M.; Stishov, S. M.
2017-11-01
We use classical Monte Carlo calculations to model the high-pressure behavior of the phase transition in the helical magnets. We vary values of the exchange interaction constant J and the Dzyaloshinskii-Moriya interaction constant D, which is equivalent to changing spin-spin distances, as occurs in real systems under pressure. The system under study is self-similar at D / J = constant , and its properties are defined by the single variable J / T , where T is temperature. The existence of the first order phase transition critically depends on the ratio D / J . A variation of J strongly affects the phase transition temperature and width of the fluctuation region (the ;hump;) as follows from the system self-similarity. The high-pressure behavior of the spin system depends on the evolution of the interaction constants J and D on compression. Our calculations are relevant to the high pressure phase diagrams of helical magnets MnSi and Cu2OSeO3.
Human Factors Considerations in System Design
NASA Technical Reports Server (NTRS)
Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)
1983-01-01
Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.
Spin Hamiltonian Analysis of the SMM V15 Using High Field ESR
NASA Astrophysics Data System (ADS)
Martens, Mathew; van Tol, Hans; Bertaina, Sylvain; Barbara, Bernard; Muller, Achim; Chiorescu, Irinel
2014-03-01
We have studied molecular magnets using high field / high frequency Electron Spin Resonance. Such molecular structures contain many quantum spins linked by exchange interactions and consequently their energy structure is often complex and require a good understanding of the molecular spin Hamiltonian. In particular, we studied the V15 molecule, comprised of 15 spins 1/2 and a total spin 1/2, which is a system that recently showed quantum Rabi oscillations of its total quantum spin. This type of molecule is an essential system for advancing molecular structures into quantum computing. We used high frequency characterization techniques (of hundreds of GHz) to gain insight into the exchange anisotropy interactions, crystal field, and anti-symmetric interactions present in this system. We analyzed the data using a detailed numerical analysis of spin interactions and our findings regarding the V15 spin Hamiltonian will be discussed. Supported by the NSF Cooperative Agreement Grant No. DMR-0654118 and No. NHMFL UCGP 5059, NSF grant No. DMR-0645408.
A Dynamic Interactive Theory of Person Construal
ERIC Educational Resources Information Center
Freeman, Jonathan B.; Ambady, Nalini
2011-01-01
A dynamic interactive theory of person construal is proposed. It assumes that the perception of other people is accomplished by a dynamical system involving continuous interaction between social categories, stereotypes, high-level cognitive states, and the low-level processing of facial, vocal, and bodily cues. This system permits lower-level…
Speech Perception as a Cognitive Process: The Interactive Activation Model.
ERIC Educational Resources Information Center
Elman, Jeffrey L.; McClelland, James L.
Research efforts to model speech perception in terms of a processing system in which knowledge and processing are distributed over large numbers of highly interactive--but computationally primative--elements are described in this report. After discussing the properties of speech that demand a parallel interactive processing system, the report…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yenan; Dong, Lifang, E-mail: donglfhbu@163.com; Zhao, Longhu
2014-10-15
The interaction between micro-discharges involved in surface discharges (SDs) is studied in dielectric barrier discharge system. Instantaneous images taken by high speed cameras show that the SDs are induced by volume discharges (VDs). They cannot cross the midperpendicular of two neighbouring volume charges at low voltage while they stretch along it at high voltage, indicating that there is interaction between SDs. The differences of plasma parameters between SD and VD are studied by optical emission spectroscopy. The simulation of the electric fields of the wall charges accumulated by VD further confirms the existence of the interaction.
NASA Astrophysics Data System (ADS)
Liu, Y. B.; Zhuge, W. L.; Zhang, Y. J.; Zhang, S. Y.
2016-05-01
To reach the goal of energy conservation and emission reduction, high intake pressure is needed to meet the demand of high power density and high EGR rate for internal combustion engine. Present power density of diesel engine has reached 90KW/L and intake pressure ratio needed is over 5. Two-stage turbocharging system is an effective way to realize high compression ratio. Because turbocharging system compression work derives from exhaust gas energy. Efficiency of exhaust gas energy influenced by design and matching of turbine system is important to performance of high supercharging engine. Conventional turbine system is assembled by single-stage turbocharger turbines and turbine matching is based on turbine MAP measured on test rig. Flow between turbine system is assumed uniform and value of outlet physical quantities of turbine are regarded as the same as ambient value. However, there are three-dimension flow field distortion and outlet physical quantities value change which will influence performance of turbine system as were demonstrated by some studies. For engine equipped with two-stage turbocharging system, optimization of turbine system design will increase efficiency of exhaust gas energy and thereby increase engine power density. However flow interaction of turbine system will change flow in turbine and influence turbine performance. To recognize the interaction characteristics between high pressure turbine and low pressure turbine, flow in turbine system is modeled and simulated numerically. The calculation results suggested that static pressure field at inlet to low pressure turbine increases back pressure of high pressure turbine, however efficiency of high pressure turbine changes little; distorted velocity field at outlet to high pressure turbine results in swirl at inlet to low pressure turbine. Clockwise swirl results in large negative angle of attack at inlet to rotor which causes flow loss in turbine impeller passages and decreases turbine efficiency. However negative angle of attack decreases when inlet swirl is anti-clockwise and efficiency of low pressure turbine can be increased by 3% compared to inlet condition of clockwise swirl. Consequently flow simulation and analysis are able to aid in figuring out interaction mechanism of turbine system and optimizing turbine system design.
Kawamichi, Hiroaki; Sugawara, Sho K.; Hamano, Yuki H.; Makita, Kai; Kochiyama, Takanori; Sadato, Norihiro
2016-01-01
Positive social interactions contribute to the sense that one’s life has meaning. Enjoyment of feelings associated through social interaction motivates humans to build social connections according to their personal preferences. Therefore, we hypothesized that social interaction itself activates the reward system in a manner that depends upon individual interaction preferences. To test this hypothesis, we conducted a functional magnetic resonance imaging (fMRI) study in which 38 participants played a virtual ball-toss game in which the number of ball tosses to the participant was either similar to (normal-frequency condition) or higher than (high-frequency condition) the number of tosses to the other players. Participants reported greater-than-anticipated enjoyment during the high-frequency condition, suggesting that receiving a social reward led to unexpected positive feelings. Consistent with this, the high-frequency condition produced stronger activation in the ventral striatum, which is part of the reward system, and the precuneus, representing positive self-image, which might be translated to social reward. Furthermore, ventral striatal activation covaried with individual participants’ preference for interactions with others. These findings suggest that an elevated frequency of social interaction is represented as a social reward, which might motivate individuals to promote social interaction in a manner that is modulated by personal preference. PMID:27090501
Kawamichi, Hiroaki; Sugawara, Sho K; Hamano, Yuki H; Makita, Kai; Kochiyama, Takanori; Sadato, Norihiro
2016-04-19
Positive social interactions contribute to the sense that one's life has meaning. Enjoyment of feelings associated through social interaction motivates humans to build social connections according to their personal preferences. Therefore, we hypothesized that social interaction itself activates the reward system in a manner that depends upon individual interaction preferences. To test this hypothesis, we conducted a functional magnetic resonance imaging (fMRI) study in which 38 participants played a virtual ball-toss game in which the number of ball tosses to the participant was either similar to (normal-frequency condition) or higher than (high-frequency condition) the number of tosses to the other players. Participants reported greater-than-anticipated enjoyment during the high-frequency condition, suggesting that receiving a social reward led to unexpected positive feelings. Consistent with this, the high-frequency condition produced stronger activation in the ventral striatum, which is part of the reward system, and the precuneus, representing positive self-image, which might be translated to social reward. Furthermore, ventral striatal activation covaried with individual participants' preference for interactions with others. These findings suggest that an elevated frequency of social interaction is represented as a social reward, which might motivate individuals to promote social interaction in a manner that is modulated by personal preference.
Krasowska, Małgorzata; Schneider, Wolfgang B; Mehring, Michael; Auer, Alexander A
2018-05-02
This work reports high-level ab initio calculations and a detailed analysis on the nature of intermolecular interactions of heavy main-group element compounds and π systems. For this purpose we have chosen a set of benchmark molecules of the form MR 3 , in which M=As, Sb, or Bi, and R=CH 3 , OCH 3 , or Cl. Several methods for the description of weak intermolecular interactions are benchmarked including DFT-D, DFT-SAPT, MP2, and high-level coupled cluster methods in the DLPNO-CCSD(T) approximation. Using local energy decomposition (LED) and an analysis of the electron density, details of the nature of this interaction are unraveled. The results yield insight into the nature of dispersion and donor-acceptor interactions in this type of system, including systematic trends in the periodic table, and also provide a benchmark for dispersion interactions in heavy main-group element compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Power management and control for space systems
NASA Technical Reports Server (NTRS)
Finke, R. C.; Myers, I. T.; Terdan, F. F.; Stevens, N. J.
1978-01-01
Power management and control technology for the large, high-power spacecraft of the 1980's is discussed. Systems weight optimization that indicate a need for higher bus voltages are shown. Environmental interactions that are practical limits for the maximum potential on exposed surfaces are shown. A dual-voltage system is proposed that would provide the weight savings of a high-voltage distribution system and take into account the potential environmental interactions. The technology development of new components and circuits is also discussed.
Computer graphics application in the engineering design integration system
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.
1975-01-01
The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.
Interactive Cable Television. Final Report.
ERIC Educational Resources Information Center
Active Learning Systems, Inc., Minneapolis, MN.
This report describes an interactive video system developed by Active Learning Systems which utilizes a cable television (TV) network as its delivery system to transmit computer literacy lessons to high school and college students. The system consists of an IBM PC, Pioneer LDV 4000 videodisc player, and Whitney Supercircuit set up at the head end…
A high-speed drug interaction search system for ease of use in the clinical environment.
Takada, Masahiro; Inada, Hiroshi; Nakazawa, Kazuo; Tani, Shoko; Iwata, Michiaki; Sugimoto, Yoshihisa; Nagata, Satoru
2012-12-01
With the advancement of pharmaceutical development, drug interactions have become increasingly complex. As a result, a computer-based drug interaction search system is required to organize the whole of drug interaction data. To overcome problems faced with the existing systems, we developed a drug interaction search system using a hash table, which offers higher processing speeds and easier maintenance operations compared with relational databases (RDB). In order to compare the performance of our system and MySQL RDB in terms of search speed, drug interaction searches were repeated for all 45 possible combinations of two out of a group of 10 drugs for two cases: 5,604 and 56,040 drug interaction data. As the principal result, our system was able to process the search approximately 19 times faster than the system using the MySQL RDB. Our system also has several other merits such as that drug interaction data can be created in comma-separated value (CSV) format, thereby facilitating data maintenance. Although our system uses the well-known method of a hash table, it is expected to resolve problems common to existing systems and to be an effective system that enables the safe management of drugs.
Subramani, Suresh; Kalpana, Raja; Monickaraj, Pankaj Moses; Natarajan, Jeyakumar
2015-04-01
The knowledge on protein-protein interactions (PPI) and their related pathways are equally important to understand the biological functions of the living cell. Such information on human proteins is highly desirable to understand the mechanism of several diseases such as cancer, diabetes, and Alzheimer's disease. Because much of that information is buried in biomedical literature, an automated text mining system for visualizing human PPI and pathways is highly desirable. In this paper, we present HPIminer, a text mining system for visualizing human protein interactions and pathways from biomedical literature. HPIminer extracts human PPI information and PPI pairs from biomedical literature, and visualize their associated interactions, networks and pathways using two curated databases HPRD and KEGG. To our knowledge, HPIminer is the first system to build interaction networks from literature as well as curated databases. Further, the new interactions mined only from literature and not reported earlier in databases are highlighted as new. A comparative study with other similar tools shows that the resultant network is more informative and provides additional information on interacting proteins and their associated networks. Copyright © 2015 Elsevier Inc. All rights reserved.
Duration of classicality in highly degenerate interacting Bosonic systems
Sikivie, Pierre; Todarello, Elisa M.
2017-04-28
We study sets of oscillators that have high quantum occupancy and that interact by exchanging quanta. It is shown by analytical arguments and numerical simulation that such systems obey classical equations of motion only on time scales of order their relaxation time τ and not longer than that. The results are relevant to the cosmology of axions and axion-like particles.
Thyroid-adrenergic interactions: physiological and clinical implications.
Silva, J Enrique; Bianco, Suzy D C
2008-02-01
The sympathoadrenal system, including the sympathetic nervous system and the adrenal medulla, interacts with thyroid hormone (TH) at various levels. Both systems are evolutionary old and regulate independent functions, playing probably independent roles in poikilothermic species. With the advent of homeothermy, TH acquired a new role, which is to stimulate thermogenic mechanisms and synergize with the sympathoadrenal system to produce heat and maintain body temperature. An important part of this new function is mediated through coordinated and, most of the time, synergistic interactions with the sympathoadrenal system. Catecholamines can in turn activate TH in a tissue-specific manner, most notably in brown adipose tissue. Such interactions are of great adaptive value in cold adaptation and in states needing high-energy output. Conversely, in states of emergency where energy demand should be reduced, such as disease and starvation, both systems are turned down. In pathological states, where one of the systems is fixed at a high or a low level, coordination is lost with disruption of the physiology and development of symptoms. Exaggerated responses to catecholamines dominate the manifestations of thyrotoxicosis, while hypothyroidism is characterized by a narrowing of adaptive responses (e.g., thermogenic, cardiovascular, and lipolytic). Finally, emerging results suggest the possibility that disrupted interactions between the two systems contribute to explain metabolic variability, for example, fuel efficiency, energy expenditure, and lipolytic responses.
Improving Students' Chinese Writing Abilities in Taiwan with the "Conditioned Writing System"
ERIC Educational Resources Information Center
Liu, Yuan-Chen; Lee, Wan-Chun; Huang, Tzu-Hua; Hsieh, Hsiao-Mei
2012-01-01
This research investigates students' performance while writing Chinese essays using an interactive online writing system. Participants include students from two seventh-grade classes of a junior high school in Taoyuan County, Taiwan. The experimental group uses the conditioned writing interactive online system, while the control group receives…
DOT National Transportation Integrated Search
1997-06-01
This report describes analysis tools to predict shift under high-speed vehicle- : track interaction. The analysis approach is based on two fundamental models : developed (as part of this research); the first model computes the track lateral : residua...
Conditions where random phase approximation becomes exact in the high-density limit
NASA Astrophysics Data System (ADS)
Morawetz, Klaus; Ashokan, Vinod; Bala, Renu; Pathak, Kare Narain
2018-04-01
It is shown that, in d -dimensional systems, the vertex corrections beyond the random phase approximation (RPA) or G W approximation scales with the power d -β -α of the Fermi momentum if the relation between Fermi energy and Fermi momentum is ɛf˜pfβ and the interacting potential possesses a momentum power law of ˜p-α . The condition d -β -α <0 specifies systems where RPA is exact in the high-density limit. The one-dimensional structure factor is found to be the interaction-free one in the high-density limit for contact interaction. A cancellation of RPA and vertex corrections render this result valid up to second order in contact interaction. For finite-range potentials of cylindrical wires a large-scale cancellation appears and is found to be independent of the width parameter of the wire. The proposed high-density expansion agrees with the quantum Monte Carlo simulations.
Compassionate love buffers stress-reactive mothers from fight-or-flight parenting.
Miller, Jonas G; Kahle, Sarah; Lopez, Monica; Hastings, Paul D
2015-01-01
The links among mothers' compassionate love for their child, autonomic nervous system activity, and parenting behavior during less and more challenging mother-child interactions were examined. Mothers expressed and reported less negative affect when they exhibited autonomic patterns of increased parasympathetic dominance (high parasympathetic and low sympathetic activation) or autonomic coactivation (high parasympathetic and high sympathetic activation) during the less challenging interaction and autonomic coactivation during the more challenging interaction. Compassionate love predicted less reported and observed negativity in mothers who showed increased sympathetic nervous system dominance (high sympathetic and low parasympathetic activation). Compassionate love appeared to help mothers, and particularly those who experienced strong physiological arousal during difficult parenting situations, establish positive socialization contexts for their children and avoid stress-induced adverse parenting.
Combined use of molindone and guanethidine in patients with schizophrenia and hypertension.
Simpson, L L
1979-11-01
Human sympathetic nerves have a high-affinity norepinephrine uptake system. This uptake system is inhibited competitively by chlorpromazine but not by molindone, which suggests that molindone will not interact adversely with guanethidine, an antihypertensive drug that enters sympathetic nerves via the high-affinity uptake system. Accordingly, patients with concomitant schizophrenia and hypertension were treated simultaneously with molindone and guanethidine; there was no evidence of an adverse drug interaction. The data indicate that molindone and guanethidine can be used in combination safely and effectively.
Creation of Frustrated Systems by d-dot Array
NASA Astrophysics Data System (ADS)
Masahiko, Machida
2004-03-01
When a square shape dot of High-Tc superconductor is embedded in s-wave superconducting matrix, half quantized vortices are spontaneously generated at the corners of the dot. This feature gives the magnetic interactions between neighboring dots in array systems composed of sevaral dots of High-Tc superconductor and allows us to make magnetic interaction systems. We propose that we can create interesting frustrated systems like the spin-ice by setting the dots in various manners. In order to demonstrate which types of frustrated systems are possible, we perform numerical simulations for the time-dependent Ginzburg-Landau equation describing dynamics of the superconducting order parameters with d-wave and s-wave symmetries. The simulations reveal that the proposed system has two parameters originated from the magnetic interaction between emerged half vortices. We tune the parameters and show various patterns of half vortices from the Ising to the ice model.
Independently evolved virulence effectors converge onto hubs in a plant immune system network.
Mukhtar, M Shahid; Carvunis, Anne-Ruxandra; Dreze, Matija; Epple, Petra; Steinbrenner, Jens; Moore, Jonathan; Tasan, Murat; Galli, Mary; Hao, Tong; Nishimura, Marc T; Pevzner, Samuel J; Donovan, Susan E; Ghamsari, Lila; Santhanam, Balaji; Romero, Viviana; Poulin, Matthew M; Gebreab, Fana; Gutierrez, Bryan J; Tam, Stanley; Monachello, Dario; Boxem, Mike; Harbort, Christopher J; McDonald, Nathan; Gai, Lantian; Chen, Huaming; He, Yijian; Vandenhaute, Jean; Roth, Frederick P; Hill, David E; Ecker, Joseph R; Vidal, Marc; Beynon, Jim; Braun, Pascal; Dangl, Jeffery L
2011-07-29
Plants generate effective responses to infection by recognizing both conserved and variable pathogen-encoded molecules. Pathogens deploy virulence effector proteins into host cells, where they interact physically with host proteins to modulate defense. We generated an interaction network of plant-pathogen effectors from two pathogens spanning the eukaryote-eubacteria divergence, three classes of Arabidopsis immune system proteins, and ~8000 other Arabidopsis proteins. We noted convergence of effectors onto highly interconnected host proteins and indirect, rather than direct, connections between effectors and plant immune receptors. We demonstrated plant immune system functions for 15 of 17 tested host proteins that interact with effectors from both pathogens. Thus, pathogens from different kingdoms deploy independently evolved virulence proteins that interact with a limited set of highly connected cellular hubs to facilitate their diverse life-cycle strategies.
A Situated Cultural Festival Learning System Based on Motion Sensing
ERIC Educational Resources Information Center
Chang, Yi-Hsing; Lin, Yu-Kai; Fang, Rong-Jyue; Lu, You-Te
2017-01-01
A situated Chinese cultural festival learning system based on motion sensing is developed in this study. The primary design principle is to create a highly interactive learning environment, allowing learners to interact with Kinect through natural gestures in the designed learning situation to achieve efficient learning. The system has the…
Compassionate Love Buffers Stress-Reactive Mothers From Fight-or-Flight Parenting
Miller, Jonas G.; Kahle, Sarah; Lopez, Monica; Hastings, Paul D.
2015-01-01
The links among mothers’ compassionate love for their child, autonomic nervous system activity, and parenting behavior during less and more challenging mother–child interactions were examined. Mothers expressed and reported less negative affect when they exhibited autonomic patterns of increased parasympathetic dominance (high parasympathetic and low sympathetic activation) or autonomic coactivation (high parasympathetic and high sympathetic activation) during the less challenging interaction and autonomic coactivation during the more challenging interaction. Compassionate love predicted less reported and observed negativity in mothers who showed increased sympathetic nervous system dominance (high sympathetic and low parasympathetic activation). Compassionate love appeared to help mothers, and particularly those who experienced strong physiological arousal during difficult parenting situations, establish positive socialization contexts for their children and avoid stress-induced adverse parenting. PMID:25329554
Plasma interactions with large spacecraft
NASA Technical Reports Server (NTRS)
Sagalyn, Rita C.; Maynard, Nelson C.
1986-01-01
Space is playing a rapidly expanding role in the conduct of the Air Force mission. Larger, more complex, high-power space platforms are planned and military astronauts will provide a new capability in spacecraft servicing. Interactions of operational satellites with the environment have been shown to degrade space sensors and electronics and to constrain systems operations. The environmental interaction effects grow nonlinearly with increasing size and power. Quantification of the interactions and development of mitigation techniques for systems-limiting interactions is essential to the success of future Air Force space operations.
High frequency flow-structural interaction in dense subsonic fluids
NASA Technical Reports Server (NTRS)
Liu, Baw-Lin; Ofarrell, J. M.
1995-01-01
Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.
New Integrated Video and Graphics Technology: Digital Video Interactive.
ERIC Educational Resources Information Center
Optical Information Systems, 1987
1987-01-01
Describes digital video interactive (DVI), a new technology which combines the interactivity of the graphics capabilities in personal computers with the realism of high-quality motion video and multitrack audio in an all-digital integrated system. (MES)
NASA Technical Reports Server (NTRS)
Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.
1993-01-01
The Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, has developed a prototype interactive software system called the Spectral Image Processing System (SIPS) using IDL (the Interactive Data Language) on UNIX-based workstations. SIPS is designed to take advantage of the combination of high spectral resolution and spatial data presentation unique to imaging spectrometers. It streamlines analysis of these data by allowing scientists to rapidly interact with entire datasets. SIPS provides visualization tools for rapid exploratory analysis and numerical tools for quantitative modeling. The user interface is X-Windows-based, user friendly, and provides 'point and click' operation. SIPS is being used for multidisciplinary research concentrating on use of physically based analysis methods to enhance scientific results from imaging spectrometer data. The objective of this continuing effort is to develop operational techniques for quantitative analysis of imaging spectrometer data and to make them available to the scientific community prior to the launch of imaging spectrometer satellite systems such as the Earth Observing System (EOS) High Resolution Imaging Spectrometer (HIRIS).
Graphics Flutter Analysis Methods, an interactive computing system at Lockheed-California Company
NASA Technical Reports Server (NTRS)
Radovcich, N. A.
1975-01-01
An interactive computer graphics system, Graphics Flutter Analysis Methods (GFAM), was developed to complement FAMAS, a matrix-oriented batch computing system, and other computer programs in performing complex numerical calculations using a fully integrated data management system. GFAM has many of the matrix operation capabilities found in FAMAS, but on a smaller scale, and is utilized when the analysis requires a high degree of interaction between the engineer and computer, and schedule constraints exclude the use of batch entry programs. Applications of GFAM to a variety of preliminary design, development design, and project modification programs suggest that interactive flutter analysis using matrix representations is a feasible and cost effective computing tool.
Park, Heun; Kim, Dong Sik; Hong, Soo Yeong; Kim, Chulmin; Yun, Jun Yeong; Oh, Seung Yun; Jin, Sang Woo; Jeong, Yu Ra; Kim, Gyu Tae; Ha, Jeong Sook
2017-06-08
In this study, we report on the development of a stretchable, transparent, and skin-attachable strain sensor integrated with a flexible electrochromic device as a human skin-inspired interactive color-changing system. The strain sensor consists of a spin-coated conductive nanocomposite film of poly(vinyl alcohol)/multi-walled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) on a polydimethylsiloxane substrate. The sensor exhibits excellent performance of high sensitivity, high durability, fast response, and high transparency. An electrochromic device (ECD) made of electrochemically synthesized polyaniline nanofibers and V 2 O 5 on an indium-tin-oxide-coated polyethylene terephthalate film experiences a change in color from yellow to dark blue on application of voltage. The strain sensor and ECD are integrated on skin via an Arduino circuit for an interactive color change with the variation of the applied strain, which enables a real-time visual display of body motion. This integrated system demonstrates high potential for use in interactive wearable devices, military applications, and smart robots.
Glass-like dynamics in confined and congested ant traffic.
Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A D; Goldman, Daniel I
2015-09-07
The collective movement of animal groups often occurs in confined spaces. As animal groups are challenged to move at high density, their mobility dynamics may resemble the flow of densely packed non-living soft materials such as colloids, grains, or polymers. However, unlike inert soft-materials, self-propelled collective living systems often display social interactions whose influence on collective mobility are only now being explored. In this paper, we study the mobility of bi-directional traffic flow in a social insect (the fire ant Solenopsis invicta) as we vary the diameter of confining foraging tunnels. In all tunnel diameters, we observe the emergence of spatially heterogeneous regions of fast and slow traffic that are induced through two phenomena: physical obstruction, arising from the inability of individual ants to interpenetrate, and time-delay resulting from social interaction in which ants stop to briefly antennate. Density correlation functions reveal that the relaxation dynamics of high density traffic fluctuations scale linearly with fluctuation size and are sensitive to tunnel diameter. We separate the roles of physical obstruction and social interactions in traffic flow using cellular automata based simulation. Social interaction between ants is modeled as a dwell time (Tint) over which interacting ants remain stationary in the tunnel. Investigation over a range of densities and Tint reveals that the slowing dynamics of collective motion in social living systems are consistent with dynamics near a fragile glass transition in inert soft-matter systems. In particular, flow is relatively insensitive to density until a critical density is reached. As social interaction affinity is increased (increasing Tint) traffic dynamics change and resemble a strong glass transition. Thus, social interactions play an important role in the mobility of collective living systems at high density. Our experiments and model demonstrate that the concepts of soft-matter physics aid understanding of the mobility of collective living systems, and motivate further inquiry into the dynamics of densely confined social living systems.
The interaction of spacecraft high voltage power systems with the space plasma environment
NASA Technical Reports Server (NTRS)
Domitz, S.; Grier, N. T.
1974-01-01
Research work has shown that the interaction of a spacecraft and its high voltage power systems with the space plasma environment can result in harmful power loss and damage to insulators and metal surfaces. Insulator and solar panel tests were performed and flight tests are planned. High voltage power processing equipment was shown to be affected by power loss, and by transients due to plasma interactions. Power loss was determined to be roughly proportional to the square of the voltage and increases approximately as the square root of the area. Kapton, Teflon, and glass were found to be satisfactory insulating materials and it is concluded that for large space power stations should consider the effect of large pinhole currents.
Learner Control in Hypermedia Environments
ERIC Educational Resources Information Center
Scheiter, Katharina; Gerjets, Peter
2007-01-01
Contrary to system-controlled multimedia learning environments, hypermedia systems are characterized by a high level of interactivity. This interactivity is referred to as learner control in the respective literature. For several reasons this learner control is seen as a major advantage of hypermedia for learning and instruction. For instance,…
Identifying Successful Learners from Interaction Behaviour
ERIC Educational Resources Information Center
McCuaig, Judi; Baldwin, Julia
2012-01-01
The interaction behaviours of successful, high-achieving learners when using a Learning Management System (LMS) are different than the behaviours of learners who are having more difficulty mastering the course material. This paper explores the idea that conventional Learning Management Systems can exploit data mining techniques to predict the…
A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam
NASA Astrophysics Data System (ADS)
Graves, Van; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques
2006-06-01
A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high-Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×1012 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.
A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam
NASA Astrophysics Data System (ADS)
Van Graves; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques
2006-06-01
A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high- Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×10 12 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.
Duan, Lili; Liu, Xiao; Zhang, John Z H
2016-05-04
Efficient and reliable calculation of protein-ligand binding free energy is a grand challenge in computational biology and is of critical importance in drug design and many other molecular recognition problems. The main challenge lies in the calculation of entropic contribution to protein-ligand binding or interaction systems. In this report, we present a new interaction entropy method which is theoretically rigorous, computationally efficient, and numerically reliable for calculating entropic contribution to free energy in protein-ligand binding and other interaction processes. Drastically different from the widely employed but extremely expensive normal mode method for calculating entropy change in protein-ligand binding, the new method calculates the entropic component (interaction entropy or -TΔS) of the binding free energy directly from molecular dynamics simulation without any extra computational cost. Extensive study of over a dozen randomly selected protein-ligand binding systems demonstrated that this interaction entropy method is both computationally efficient and numerically reliable and is vastly superior to the standard normal mode approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in protein-ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this effect.
Model-free inference of direct network interactions from nonlinear collective dynamics.
Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc
2017-12-19
The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.
Interactive Videodisc Learning Systems.
ERIC Educational Resources Information Center
Currier, Richard L.
1983-01-01
Discussion of capabilities of interactive videodisc, which combines video images recorded on disc and random-access, highlights interactivity; teaching techniques with videodiscs (including masking, disassembly, movie maps, tactical maps, action code, and simulation); costs; and games. Illustrative material is provided. (High Technology, P. O. Box…
Microscopy of the interacting Harper-Hofstadter model in the few-body limit
NASA Astrophysics Data System (ADS)
Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Schittko, Robert; Menke, Tim; Borgnia, Dan; Preiss, Philipp; Grusdt, Fabian; Kaufman, Adam; Greiner, Markus
2017-04-01
The interplay of magnetic fields and interacting particles can lead to exotic phases of matter exhibiting topological order and high degrees of spatial entanglement. While these phases were discovered in a solid-state setting, recent techniques have enabled the realization of gauge fields in systems of ultracold neutral atoms, offering a new experimental paradigm for studying these novel states of matter. This complementary platform holds promise for exploring exotic physics in fractional quantum Hall systems due to the microscopic manipulation and precision possible in cold atom systems. However, these experiments thus far have mostly explored the regime of weak interactions. Here, we show how strong interactions can modify the propagation of particles in a 2 × N , real-space ladder governed by the Harper-Hofstadter model. We observe inter-particle interactions affect the populating of chiral bands, giving rise to chiral dynamics whose multi-particle correlations indicate both bound and free-particle character. The novel form of interaction-induced chirality observed in these experiments demonstrates the essential ingredients for future investigations of highly entangled topological phases of many-body systems. We are supported by Grants from the National Science Foundation, Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program, an Army Research Office MURI program, and the NSF GRFP (MNR).
Identification of Modules in Protein-Protein Interaction Networks
NASA Astrophysics Data System (ADS)
Erten, Sinan; Koyutürk, Mehmet
In biological systems, most processes are carried out through orchestration of multiple interacting molecules. These interactions are often abstracted using network models. A key feature of cellular networks is their modularity, which contributes significantly to the robustness, as well as adaptability of biological systems. Therefore, modularization of cellular networks is likely to be useful in obtaining insights into the working principles of cellular systems, as well as building tractable models of cellular organization and dynamics. A common, high-throughput source of data on molecular interactions is in the form of physical interactions between proteins, which are organized into protein-protein interaction (PPI) networks. This chapter provides an overview on identification and analysis of functional modules in PPI networks, which has been an active area of research in the last decade.
Garamszegi, Sara; Franzosa, Eric A.; Xia, Yu
2013-01-01
A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are otherwise hidden in the traditional binary network, highlighting the power and necessity of high-resolution approaches in host-pathogen systems biology. PMID:24339775
Garamszegi, Sara; Franzosa, Eric A; Xia, Yu
2013-01-01
A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are otherwise hidden in the traditional binary network, highlighting the power and necessity of high-resolution approaches in host-pathogen systems biology.
The USL NASA PC R and D interactive presentation development system
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Moreau, Dennis R.
1984-01-01
The Interactive Presentation Development System (IPFS) is a highly interactive system for creating, editing, and displaying video presentation sequences, e.g., for developing and presenting displays of instructional material similiar to overhead transparency or slide presentations. However, since this system is PC-based, users (instructors) can step through sequences forward or backward, focusing attention to areas of the display with special cursor pointers. Additionally, screen displays may be dynamically modified during the presentation to show assignments or to answer questions, much like a traditional blackboard. This system is now implemented at the University of Southwestern Louisiana for use within the piloting phases of the NASA contract work.
Buckyplates and buckybowls: examining the effects of curvature on π-π interactions.
Kennedy, Matthew R; Burns, Lori A; Sherrill, C David
2012-12-06
π-π interactions are integral to many areas of chemistry, biochemistry, and materials science. Here we use electronic structure theory to analyze how π-π interactions change as the π-systems are curved in model complexes based on coronene and corannulene dimers. Curvature redistributes electronic charge in the π-cloud and creates a dipole moment in these systems, leading to enhanced intermolecular electrostatic interactions in the concave-convex (nested) geometries that are the focus of this work. Curvature of both monomers also has a geometric effect on the interaction by decreasing the average C-C distance between monomers and by increasing the magnitude of both favorable London dispersion interactions and unfavorable exchange-repulsion interactions. Overall, increasing curvature in nested π-π interactions leads to more favorable interaction energies regardless of the native state of the monomers, except at short distances where the most highly curved systems are less favorable as exchange repulsion terms begin to dominate the interaction.
Geerse, Daphne J; Coolen, Bert H; Roerdink, Melvyn
2017-05-01
The ability to adapt walking to environmental circumstances is an important aspect of walking, yet difficult to assess. The Interactive Walkway was developed to assess walking adaptability by augmenting a multi-Kinect-v2 10-m walkway with gait-dependent visual context (stepping targets, obstacles) using real-time processed markerless full-body kinematics. In this study we determined Interactive Walkway's usability for walking-adaptability assessments in terms of between-systems agreement and sensitivity to task and subject variations. Under varying task constraints, 21 healthy subjects performed obstacle-avoidance, sudden-stops-and-starts and goal-directed-stepping tasks. Various continuous walking-adaptability outcome measures were concurrently determined with the Interactive Walkway and a gold-standard motion-registration system: available response time, obstacle-avoidance and sudden-stop margins, step length, stepping accuracy and walking speed. The same holds for dichotomous classifications of success and failure for obstacle-avoidance and sudden-stops tasks and performed short-stride versus long-stride obstacle-avoidance strategies. Continuous walking-adaptability outcome measures generally agreed well between systems (high intraclass correlation coefficients for absolute agreement, low biases and narrow limits of agreement) and were highly sensitive to task and subject variations. Success and failure ratings varied with available response times and obstacle types and agreed between systems for 85-96% of the trials while obstacle-avoidance strategies were always classified correctly. We conclude that Interactive Walkway walking-adaptability outcome measures are reliable and sensitive to task and subject variations, even in high-functioning subjects. We therefore deem Interactive Walkway walking-adaptability assessments usable for obtaining an objective and more task-specific examination of one's ability to walk, which may be feasible for both high-functioning and fragile populations since walking adaptability can be assessed at various levels of difficulty. Copyright © 2017 Elsevier B.V. All rights reserved.
Automation effects in a stereotypical multiloop manual control system. [for aircraft
NASA Technical Reports Server (NTRS)
Hess, R. A.; Mcnally, B. D.
1984-01-01
The increasing reliance of state-of-the art, high performance aircraft on high authority stability and command augmentation systems, in order to obtain satisfactory performance and handling qualities, has made critical the achievement of a better understanding of human capabilities, limitations, and preferences during interactions with complex dynamic systems that involve task allocation between man and machine. An analytical and experimental study has been undertaken to investigate human interaction with a simple, multiloop dynamic system in which human activity was systematically varied by changing the levels of automation. Task definition has led to a control loop structure which parallels that for any multiloop manual control system, and may therefore be considered a stereotype.
Loss of functionally unique species may gradually undermine ecosystems
O'Gorman, Eoin J.; Yearsley, Jon M.; Crowe, Tasman P.; Emmerson, Mark C.; Jacob, Ute; Petchey, Owen L.
2011-01-01
Functionally unique species contribute to the functional diversity of natural systems, often enhancing ecosystem functioning. An abundance of weakly interacting species increases stability in natural systems, suggesting that loss of weakly linked species may reduce stability. Any link between the functional uniqueness of a species and the strength of its interactions in a food web could therefore have simultaneous effects on ecosystem functioning and stability. Here, we analyse patterns in 213 real food webs and show that highly unique species consistently tend to have the weakest mean interaction strength per unit biomass in the system. This relationship is not a simple consequence of the interdependence of both measures on body size and appears to be driven by the empirical pattern of size structuring in aquatic systems and the trophic position of each species in the web. Food web resolution also has an important effect, with aggregation of species into higher taxonomic groups producing a much weaker relationship. Food webs with fewer unique and less weakly interacting species also show significantly greater variability in their levels of primary production. Thus, the loss of highly unique, weakly interacting species may eventually lead to dramatic state changes and unpredictable levels of ecosystem functioning. PMID:21106593
Spontaneous emergence of cataclysmic networks in spatially extended systems
NASA Astrophysics Data System (ADS)
Manrubia, Susanna C.; Poyatos, Juan F.; Pérez-Mercader, Juan
2002-11-01
A system of interacting chemical species able to catalyse each others' production is studied. We consider a two-dimensional surface where single molecules attach, diffuse, catalytically interact, and decay. The population of species molecules and the network of interactions among them are dynamical entities. After a short transient time, robust catalytic cycles emerge and a "stationary" state of high diversity and large population numbers settles down. Population dynamics and physical space select among possible graphs of catalytic interactions. The organization of the system is robust: parasitic invaders are short-lived, their populations are kept at low levels, and are unable to sweep away the emerging catalytic cycles.
Electron energy spectrum and magnetic interactions in high-Tc superconductors
NASA Technical Reports Server (NTRS)
Turshevski, S. A.; Liechtenstein, A. I.; Antropov, V. P.; Gubanov, V. A.
1991-01-01
The character of magnetic interactions in La-Sr-Cu-O and Y-Ba-Cu-O systems is of primary importance for analysis of high-T(sub c) superconductivity in these compounds. Neutron diffraction experiments showed the antiferromagnetic ground state for nonsuperconducting La2CuO4 and YBa2Cu3O6 with the strongest antiferromagnetic superexchange being in the ab plane. The nonsuperconducting '1-2-3' system has two Neel temperatures T(sub N1) and T(sub N2). The first one corresponds to the ordering of Cu atoms in the CuO2 planes; T(sub N2) reflects the antiferromagnetic ordering of magnetic moments in CuO chains relatively to the moments in the planes T(sub N1) and T(sub N2) which depend strongly on the oxygen content. Researchers describe magnetic interactions in high-T superconductors based on the Linear Muffin-Tin Orbitals (LMTO) band structure calculations. Exchange interaction parameters can be defined from the effective Heisenberg Hamiltonian. When the magnetic moments are not too large, as copper magnetic moments in superconducting oxides, J(sub ij) parameters can be defined through the non-local magnetic susceptibility of spin restricted solution for the crystal. The results of nonlocal magnetic susceptibility calculations and the values of exchange interaction parameters for La CuO and YBa2Cu3O7 systems are given in tabular form. Strong anisotropy of exchange interactions in the ab plane and along the c axis in La2CuO4 is obviously seen. The value of Neel temperature found agrees well with the experimental data available. In the planes of '1-2-3' system there are quite strong antiferromagnetic Cu-O and O-O interaction which appear due to holes in oxygen subbands. These results are in line with the magnetic model of oxygen holes pairing in high-T(sub c) superconductors.
Electron energy spectrum and magnetic interactions in high-T(sub c) superconductors
NASA Technical Reports Server (NTRS)
Turshevski, S. A.; Liechtenstein, A. I.; Antropov, V. P.; Gubanov, V. A.
1990-01-01
The character of magnetic interactions in La-Sr-Cu-O and Y-Ba-Cu-O systems is of primary importance for analysis of high-T(sub c) superconductivity in these compounds. Neutron diffraction experiments showed the antiferromagnetic ground state for nonsuperconducting La2CuO4 and YBa2Cu3O6 with the strongest antiferromagnetic superexchange being in the ab plane. The nonsuperconducting '1-2-3' system has two Neel temperatures T sub N1 and T sub N2. The first one corresponds to the ordering of Cu atoms in the CuO2 planes; T sub N2 reflects the antiferromagnetic ordering of magnetic moments in CuO chains relatively to the moments in the planes T sub N1 and T sub N2 depend strongly on the oxygen content. Researchers describe magnetic interactions in high-T superconductors based on the Linear Muffin-Tin Orbitals (LMTO) band structure calculations. Exchange interaction parameters can be defined from the effective Heisenberg hamiltonian. When the magnetic moments are not too large, as copper magnetic moments in superconducting oxides, J sub ij parameters can be defined through the non-local magnetic susceptibility of spin restricted solution for the crystal. The results of nonlocal magnetic susceptibility calculations and the values of exchange interaction parameters for La CuO and YBa2Cu3O7 systems are given in tabular form. Strong anisotropy of exchange interactions in the ab plane and along the c axis in La2CuO4 is obviously seen. The value of Neel temperature found agrees well with the experimental data available. In the planes of '1-2-3' system there are quite strong antiferromagnetic Cu-O and O-O interaction which appear due to holes in oxygen subbands. These results are in line with the magnetic model of oxygen holes pairing in high-T(sub c) superconductors.
Telescience operations with the solar array module plasma interaction experiment
NASA Technical Reports Server (NTRS)
Wald, Lawrence W.; Bibyk, Irene K.
1995-01-01
The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).
Psychoneuroimmunology - psyche and autoimmunity.
Ziemssen, Tjalf
2012-01-01
Psychoneuroimmunology is a relatively young field of research that investigates interactions between central nervous and immune system. The brain modulates the immune system by the endocrine and autonomic nervous system. Vice versa, the immune system modulates brain activity including sleep and body temperature. Based on a close functional and anatomical link, the immune and nervous systems act in a highly reciprocal manner. From fever to stress, the influence of one system on the other has evolved in an intricate manner to help sense danger and to mount an appropriate adaptive response. Over recent decades, reasonable evidence has emerged that these brain-to-immune interactions are highly modulated by psychological factors which influence immunity and autoimmune disease. For several diseases, the relevance of psychoneuroimmunological findings has already been demonstrated.
ERIC Educational Resources Information Center
Lin, Kuan-Cheng; Wei, Yu Che; Hung, Jason C.
2012-01-01
Many studies demonstrate that Digital Game Based Learning (DGBL) can foster learning effect. The purpose of this study is to survey whether the online game in junior high school students can encourage learning effect in Taiwan's History. So, the research applied Interactive Game-based Learning System (IGLS) to junior high history teaching as an…
Materials interactions between the thermoelectric converter and the 5kwe reactor system
NASA Technical Reports Server (NTRS)
Ferry, P. B.
1973-01-01
The integration of a compact thermoelectric converter with a 5-kwe reactor system is described. Material interaction uncertainties study is also presented. This includes degradation of the required austenitic - refractory metal transition joint during operation at high temperatures; loss of corrosion resistance; embrittlement by the presence of hydrogen; and loss of design margin by transport of interstitial elements. Analysis and limited experimental evidence indicate that these potential materials interactions can be adequately controlled. Group 5-2 refractory metals can be utilized without unacceptable adverse effect on system reliability.
Spacecraft Environmental Interactions Technology, 1983
NASA Technical Reports Server (NTRS)
1985-01-01
State of the art of environment interactions dealing with low-Earth-orbit plasmas; high-voltage systems; spacecraft charging; materials effects; and direction of future programs are contained in over 50 papers.
Xie, Zhongqiu; Jia, Yuemeng; Li, Hui
2017-01-01
The study of protein-protein interactions represents a key aspect of biological research. Identifying unknown protein binding partners using mass spectrometry (MS)-based proteomics has evolved into an indispensable strategy in drug discovery. The classic approach of immunoprecipitation with specific antibodies against the proteins of interest has limitations, such as the need for immunoprecipitation-qualified antibody. The biotin AP-tag pull-down system has the advantage of high specificity, ease of use, and no requirement for antibody. It is based on the high specificity, high affinity interaction between biotin and streptavidin. After pulldown, in-gel tryptic digestion and tandem mass spectrometry (MS/MS) analysis of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) protein bands can be performed. In this work, we provide protocols that can be used for the identification of proteins that interact with FOXM1, a protein that has recently emerged as a potential biomarker and drug target in oncotherapy, as an example. We focus on the pull-down procedure and assess the efficacy of the pulldown with known FOXM1 interactors such as β-catenin. We use a high performance LTQ Orbitrap MSn system that combines rapid LTQ ion trap data acquisition with high mass accuracy Orbitrap analysis to identify the interacting proteins.
Measured Correlated Motion of theThree Body Coulomb Interacting System H^+ + H^+ + H^-
NASA Astrophysics Data System (ADS)
Wiese, L. M.
1998-05-01
The problem of three bodies interacting through a 1/r potential is a fundamental problem of physics. While its longstanding fame stems from its application to celestial mechanics, in atomic physics its importance arises from application to Coulomb-interacting systems, in which all three bodies carry some net charge. Because the three bodies interact through long range Coulomb forces over their entire path, their motion can be highly correlated. The effect of the interaction among the three bodies and any resulting correlated motion is reflected in how the available energy is ultimately shared among the three particles. By experimentally determining the energy sharing in a three body system, we can gain insight into the interactions governing the system. For the three body Coulomb interacting system of H^+ + H^+ + H^-, we have measured the partitioning of available center of mass (c.m.) energy among the particles when the system is in a near collinear configuration. By colliding 4 keV H_3^+ with a He target gas cell, we produce the H^+ + H^+ + H^- system a few eV above the dissociative limit. All three fragments are laboratory energy and angle resolved. By detecting all three in triple coincidence, we determine unambiguously the final state dynamics for each triply coincident event. Transforming our results to the c.m. frame, we determine the partitioning of available energy among the three particles. We have modified the Dalitz plot of high energy physics to elucidate correlations in the motion of any three body atomic system. Correlated motion in the H^+ + H^+ + H^- system is indicated by a nonuniform distribution on the Dalitz plot. For the near collinear breakup of H_3^+, we have observed the H^- to reside anywhere between the two H^+, from the Coulomb saddle point to the near vicinity of a proton. This work is supported by NSF Grant Number 9419505.
NASA Astrophysics Data System (ADS)
Girón, Andrea; Saiz, Hugo; Bacelar, Flora S.; Andrade, Roberto F. S.; Gómez-Gardeñes, Jesús
2016-06-01
Network science has helped to understand the organization principles of the interactions among the constituents of large complex systems. However, recently, the high resolution of the data sets collected has allowed to capture the different types of interactions coexisting within the same system. A particularly important example is that of systems with positive and negative interactions, a usual feature appearing in social, neural, and ecological systems. The interplay of links of opposite sign presents natural difficulties for generalizing typical concepts and tools applied to unsigned networks and, moreover, poses some questions intrinsic to the signed nature of the network, such as how are negative interactions balanced by positive ones so to allow the coexistence and survival of competitors/foes within the same system? Here, we show that synchronization phenomenon is an ideal benchmark for uncovering such balance and, as a byproduct, to assess which nodes play a critical role in the overall organization of the system. We illustrate our findings with the analysis of synthetic and real ecological networks in which facilitation and competitive interactions coexist.
ERIC Educational Resources Information Center
Binek, Slawomir; Kimla, Damian; Jarosz, Jerzy
2017-01-01
We report on the effectiveness of using interactive personal response systems in teaching physics in secondary schools. Our research were conducted over the period of 2013-2016 using the system called clickers. The idea is based on a reciprocal interaction allowing one to ask questions and receive immediate responses from all the students…
NASA Astrophysics Data System (ADS)
Tavani, Marco; Arons, Jonathan
1997-03-01
We study the physical processes in the system containing the 47 ms radio pulsar PSR B1259-63 orbiting around a Be star in a highly eccentric orbit. This system is the only known binary where a radio pulsar is observed to interact with gaseous material from a Be star. A rapidly rotating radio pulsar such as PSR B1259-63 is expected to produce a wind of electromagnetic emission and relativistic particles, and this binary is an ideal astrophysical laboratory to study the mass outflow/pulsar interaction in a highly time-variable environment. Motivated by the results of a recent multiwavelength campaign during the 1994 January periastron passage of PSR B1259-63, we discuss several issues regarding the mechanism of high-energy emission. Unpulsed power-law emission from the PSR B1259-63 system was detected near periastron in the energy range 1-200 keV. The observed X-ray/soft γ-ray emission is characterized by moderate luminosity, small and constant column density, lack of detectable pulsations, and peculiar spectral and intensity variability. In principle, high-energy (X-ray and gamma-ray) emission from the system can be produced by different mechanisms including (1) mass accretion onto the surface of the neutron star, (2) ``propeller''-like magnetospheric interaction at a small pulsar distance, and (3) shock-powered emission in a pulsar wind termination shock at a large distance from the pulsar. We carry out a series of calculations aimed at modeling the high-energy data of the PSR B1259-63 system throughout its orbit and especially near periastron. We find that the observed high-energy emission from the PSR B1259-63 system is not compatible with accretion or propeller-powered emission. This conclusion is supported by a model based on standard properties of Be stars and for plausible assumptions about the pulsar/outflow interaction geometry. We find that shock-powered high-energy emission produced by the pulsar/outflow interaction is consistent with all the characteristics of the high-energy emission of the PSR B1259-63 system. This opens the possibility of obtaining for the first time constraints on the physical properties of the PSR B1259-63 pulsar wind and its interaction properties in a strongly time-variable nebular environment. By studying the time evolution of the pulsar cavity, we can constrain the magnitude and geometry of the mass outflow as the PSR B1259-63 orbits around its Be star companion. The pulsar/outflow interaction is most likely mediated by a collisionless shock at the internal boundary of the pulsar cavity. The system shows all the characteristics of a binary plerion being diffuse and compact near apastron and periastron, respectively. The PSR B1259-63 system is subject to different radiative regimes depending on whether synchrotron or inverse-Compton (IC) cooling dominates the radiation of electron/positron pairs (e+/- pairs) advected away from the inner boundary of the pulsar cavity. The highly nonthermal nature of the observed X-ray/soft γ-ray emission from the PSR B1259-63 system near periastron establishes the existence of an efficient particle acceleration mechanism within a timescale shown to be less than ~102-103 s. A synchrotron/IC model of emission of e+/- pairs accelerated at the inner shock front of the pulsar cavity and adiabatically expanding in the MHD flow provides an excellent explanation of the observed time-variable X-ray flux and spectrum from the PSR B1259-63 system. We find that the best model for the PSR B1259-63 system is consistent with the pulsar orbital plane being misaligned with the plane of a thick equatorial Be star outflow. The angular width of the equatorially enhanced Be star outflow is constrained to be ~50° at the pulsar distance, and the misalignment angle is >~25°. We calculate the intensity and spectrum of the high-energy emission for the whole PSR B1259-63 orbit and predict the characteristics of the emission near the apastron region based on the periastron results. The mass-loss rate is deduced to be approximately constant in time during a ~2 yr period. Our results for the Be star outflow of the PSR B1259-63 system are consistent with models of the radio eclipses near periastron. The consequences of our analysis have general validity. Our study of the PSR B1259-63 system shows that X-ray emission can be caused by a mechanism alternative to accretion in a system containing an energetic pulsar interacting with nebular material. This fact can have far-reaching consequences for the interpretation of galactic astrophysical systems showing nonthermal X-ray and γ-ray emission. We show that a binary system such as PSR B1259-63 offers a novel way to study the acceleration process of relativistic plasmas subject to strongly time variable radiative environments.
Commercial Motion Sensor Based Low-Cost and Convenient Interactive Treadmill.
Kim, Jonghyun; Gravunder, Andrew; Park, Hyung-Soon
2015-09-17
Interactive treadmills were developed to improve the simulation of overground walking when compared to conventional treadmills. However, currently available interactive treadmills are expensive and inconvenient, which limits their use. We propose a low-cost and convenient version of the interactive treadmill that does not require expensive equipment and a complicated setup. As a substitute for high-cost sensors, such as motion capture systems, a low-cost motion sensor was used to recognize the subject's intention for speed changing. Moreover, the sensor enables the subject to make a convenient and safe stop using gesture recognition. For further cost reduction, the novel interactive treadmill was based on an inexpensive treadmill platform and a novel high-level speed control scheme was applied to maximize performance for simulating overground walking. Pilot tests with ten healthy subjects were conducted and results demonstrated that the proposed treadmill achieves similar performance to a typical, costly, interactive treadmill that contains a motion capture system and an instrumented treadmill, while providing a convenient and safe method for stopping.
DEEP SPACE: High Resolution VR Platform for Multi-user Interactive Narratives
NASA Astrophysics Data System (ADS)
Kuka, Daniela; Elias, Oliver; Martins, Ronald; Lindinger, Christopher; Pramböck, Andreas; Jalsovec, Andreas; Maresch, Pascal; Hörtner, Horst; Brandl, Peter
DEEP SPACE is a large-scale platform for interactive, stereoscopic and high resolution content. The spatial and the system design of DEEP SPACE are facing constraints of CAVETM-like systems in respect to multi-user interactive storytelling. To be used as research platform and as public exhibition space for many people, DEEP SPACE is capable to process interactive, stereoscopic applications on two projection walls with a size of 16 by 9 meters and a resolution of four times 1080p (4K) each. The processed applications are ranging from Virtual Reality (VR)-environments to 3D-movies to computationally intensive 2D-productions. In this paper, we are describing DEEP SPACE as an experimental VR platform for multi-user interactive storytelling. We are focusing on the system design relevant for the platform, including the integration of the Apple iPod Touch technology as VR control, and a special case study that is demonstrating the research efforts in the field of multi-user interactive storytelling. The described case study, entitled "Papyrate's Island", provides a prototypical scenario of how physical drawings may impact on digital narratives. In this special case, DEEP SPACE helps us to explore the hypothesis that drawing, a primordial human creative skill, gives us access to entirely new creative possibilities in the domain of interactive storytelling.
Novel approach using DNA-RNA hybrids in RNA nanotechnology | Center for Cancer Research
Developing simple approaches to detect interactions, modifications, and cellular locations of macromolecules is essential for understanding biochemical processes. The use of protein fragment complementation assays, also called split-protein systems, is a highly sensitive approach for studying protein interactions in biological systems. In this approach, functional proteins are
Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system.
Fourmaux, S; Payeur, S; Buffechoux, S; Lassonde, P; St-Pierre, C; Martin, F; Kieffer, J C
2011-04-25
Laser matter interaction at relativistic intensities using 100 TW class laser systems or higher is becoming more and more widespread. One of the critical issues of such laser systems is to let the laser pulse interact at high intensity with the solid target and avoid any pre-plasma. Thus, a high Laser Pulse Contrast Ratio (LPCR) parameter is of prime importance. We present the LPCR characterization of a high repetition 100 TW class laser system. We demonstrate that the generated Amplified Spontaneous Emission (ASE) degrades the overall LPCR performance. We propose a simple way to clean the pulse after the first amplification stage by introducing a solid state saturable absorber which results in a LPCR improvement to better than 10(10) with only a 30% energy loss at a 10 Hz repetition rate. We finally correlated this cleaning method with experimental results.
NASA Technical Reports Server (NTRS)
Jacklin, S. A.; Leyland, J. A.; Warmbrodt, W.
1985-01-01
Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, online graphics, and file management. This paper discusses five global design considerations which are useful to integrate array processor, multimicroprocessor, and host computer system architectures into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the nonreal-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration is briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind tunnel environment, the controller architecture can generally be applied to a wide range of automatic control applications.
Cárcamo, P Francisco; Gaymer, Carlos F
2013-12-01
Marine protected areas are not established in an institutional and governance vacuum and managers should pay attention to the wider social-ecological system in which they are immersed. This article examines Islas Choros-Damas Marine Reserve, a small marine protected area located in a highly productive and biologically diverse coastal marine ecosystem in northern Chile, and the interactions between human, institutional, and ecological dimensions beyond those existing within its boundaries. Through documents analysis, surveys, and interviews, we described marine reserve implementation (governing system) and the social and natural ecosystem-to-be-governed. We analyzed the interactions and the connections between the marine reserve and other spatially explicit conservation and/or management measures existing in the area and influencing management outcomes and governance. A top-down approach with poor stakeholder involvement characterized the implementation process. The marine reserve is highly connected with other spatially explicit measures and with a wider social-ecological system through various ecological processes and socio-economic interactions. Current institutional interactions with positive effects on the management and governance are scarce, although several potential interactions may be developed. For the study area, any management action must recognize interferences from outside conditions and consider some of them (e.g., ecotourism management) as cross-cutting actions for the entire social-ecological system. We consider that institutional interactions and the development of social networks are opportunities to any collective effort aiming to improve governance of Islas Choros-Damas marine reserve. Communication of connections and interactions between marine protected areas and the wider social-ecological system (as described in this study) is proposed as a strategy to improve stakeholder participation in Chilean marine protected areas.
NASA Astrophysics Data System (ADS)
Cárcamo, P. Francisco; Gaymer, Carlos F.
2013-12-01
Marine protected areas are not established in an institutional and governance vacuum and managers should pay attention to the wider social-ecological system in which they are immersed. This article examines Islas Choros-Damas Marine Reserve, a small marine protected area located in a highly productive and biologically diverse coastal marine ecosystem in northern Chile, and the interactions between human, institutional, and ecological dimensions beyond those existing within its boundaries. Through documents analysis, surveys, and interviews, we described marine reserve implementation (governing system) and the social and natural ecosystem-to-be-governed. We analyzed the interactions and the connections between the marine reserve and other spatially explicit conservation and/or management measures existing in the area and influencing management outcomes and governance. A top-down approach with poor stakeholder involvement characterized the implementation process. The marine reserve is highly connected with other spatially explicit measures and with a wider social-ecological system through various ecological processes and socio-economic interactions. Current institutional interactions with positive effects on the management and governance are scarce, although several potential interactions may be developed. For the study area, any management action must recognize interferences from outside conditions and consider some of them (e.g., ecotourism management) as cross-cutting actions for the entire social-ecological system. We consider that institutional interactions and the development of social networks are opportunities to any collective effort aiming to improve governance of Islas Choros-Damas marine reserve. Communication of connections and interactions between marine protected areas and the wider social-ecological system (as described in this study) is proposed as a strategy to improve stakeholder participation in Chilean marine protected areas.
Surface interactions and high-voltage current collection
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Katz, I.
1985-01-01
Spacecraft of the future will be larger and have higher power requirements than any flown to date. For several reasons, it is desirable to operate a high power system at high voltage. While the optimal voltages for many future missions are in the range 500 to 5000 volts, the highest voltage yet flown is approximately 100 volts. The NASCAP/LEO code is being developed to embody the phenomenology needed to model the environmental interactions of high voltage spacecraft. Some plasma environment are discussed. The treatment of the surface conductivity associated with emitted electrons and some simulations by NASCAP/LEO of ground based high voltage interaction experiments are described.
NASA Astrophysics Data System (ADS)
Lauzurica, Sara; Márquez, Andrés.; Molpeceres, Carlos; Notario, Laura; Gómez-Fontela, Miguel; Lauzurica, Pilar
2017-02-01
The immune system is a very complex system that comprises a network of genetic and signaling pathways subtending a network of interacting cells. The location of the cells in a network, along with the gene products they interact with, rules the behavior of the immune system. Therefore, there is a great interest in understanding properly the role of a cell in such networks to increase our knowledge of the immune system response. In order to acquire a better understanding of these processes, cell printing with high spatial resolution emerges as one of the promising approaches to organize cells in two and three-dimensional patterns to enable the study the geometry influence in these interactions. In particular, laser assisted bio-printing techniques using sub-nanosecond laser sources have better characteristics for application in this field, mainly due to its higher spatial resolution, cell viability percentage and process automation. This work presents laser assisted bio-printing of antigen-presenting cells (APCs) in two-dimensional geometries, placing cellular components on a matrix previously generated on demand, permitting to test the molecular interactions between APCs and lymphocytes; as well as the generation of two-dimensional structures designed ad hoc in order to study the mechanisms of mobilization of immune system cells. The use of laser assisted bio-printing, along with APCs and lymphocytes emulate the structure of different niches of the immune system so that we can analyse functional requirement of these interaction.
Winett, Richard A.; Geller, E. Scott; Mundy, Laurie L.; Moore, John F.; Wagner, Jana L.; Hite, Lee A.; Leahy, Michael; Neubauer, Tamara E.; Walberg, Janet L.; Walker, W. Bruce; Lombard, David
1991-01-01
This study reports the results of one effort to help supermarket shoppers alter food purchases to make purchases (and meals) that are lower in fat and higher in fiber. A prototype interactive information system using instructional video programs, feedback on purchases with specific goals for change, weekly programs, and the ability to track user interactions and intended purchases was evaluated. The major dependent measure was users' actual food purchases as derived from participants' highly detailed supermarket receipts. After a 5- to 7-week baseline phase, participants were randomly assigned to an experimental or control condition for the 7- to 8-week intervention phase. A follow-up phase began 5 to 8 weeks after participants completed the intervention and discontinued use of the system. The results indicated that experimental participants, when compared to control participants, decreased high fat purchases and increased high fiber purchases during intervention, with evidence for some maintenance of effect in follow-up. Plans for increasing the use and impact of the system are discussed. ImagesFigure 1 PMID:1647387
A common-path phase-shift interferometry surface plasmon imaging system
NASA Astrophysics Data System (ADS)
Su, Y.-T.; Chen, Shean-Jen; Yeh, T.-L.
2005-03-01
A biosensing imaging system is proposed based on the integration of surface plasmon resonance (SPR) and common-path phase-shift interferometry (PSI) techniques to measure the two-dimensional spatial phase variation caused by biomolecular interactions upon a sensing chip. The SPR phase imaging system can offer high resolution and high-throughout screening capabilities to analyze microarray biomolecular interaction without the need for additional labeling. With the long-term stability advantage of the common-path PSI technique even with external disturbances such as mechanical vibration, buffer flow noise, and laser unstable issue, the system can match the demand of real-time kinetic study for biomolecular interaction analysis (BIA). The SPR-PSI imaging system has achieved a detection limit of 2×10-7 refraction index change, a long-term phase stability of 2.5x10-4π rms over four hours, and a spatial phase resolution of 10-3 π with a lateral resolution of 100μm.
NASA Astrophysics Data System (ADS)
Hsiu, Feng-Ming; Chen, Shean-Jen; Tsai, Chien-Hung; Tsou, Chia-Yuan; Su, Y.-D.; Lin, G.-Y.; Huang, K.-T.; Chyou, Jin-Jung; Ku, Wei-Chih; Chiu, S.-K.; Tzeng, C.-M.
2002-09-01
Surface plasmon resonance (SPR) imaging system is presented as a novel technique based on modified Mach-Zehnder phase-shifting interferometry (PSI) for biomolecular interaction analysis (BIA), which measures the spatial phase variation of a resonantly reflected light in biomolecular interaction. In this technique, the micro-array SPR biosensors with over a thousand probe NDA spots can be detected simultaneously. Owing to the feasible and swift measurements, the micro-array SPR biosensors can be extensively applied to the nonspecific adsorption of protein, the membrane/protein interactions, and DNA hybridization. The detection sensitivity of the SPR PSI imaging system is improved to about 1 pg/mm2 for each spot over the conventional SPR imaging systems. The SPR PSI imaging system and its SPR sensors have been successfully used to observe slightly index change in consequence of argon gas flow through the nitrogen in real time, with high sensitivity, and at high-throughout screening rates.
Two-dimensional melting of colloids with long-range attractive interactions.
Du, Di; Doxastakis, Manolis; Hilou, Elaa; Biswal, Sibani Lisa
2017-02-22
The solid-liquid melting transition in a two-dimensional (2-D) attractive colloidal system is visualized using superparamagnetic colloids that interact through a long-range isotropic attractive interaction potential, which is induced using a high-frequency rotating magnetic field. Various experiments, supported by Monte Carlo simulations, are carried out over a range of interaction potentials and densities to determine structure factors, Lindermann parameters, and translational and orientational order parameters. The system shows a first-order solid-liquid melting transition. Simulations and experiments suggest that dislocations and disclinations simultaneously unbind during melting. This is in direct contrast with reports of 2-D melting of paramagnetic particles that interact with a repulsive interaction potential.
Nasim, M. T.; Trembath, R. C.
2005-01-01
Methods for determining protein–protein interactions in mammalian cells typically rely on single reporter functions and are susceptible to variations between samples particularly in regard to levels of transcription, processing and translation. A method has been developed for determining protein–protein interactions in mammalian cells, which bypasses these variables confounding single reporter assays. The approach utilizes two units of gene expression linked to reporter functions that are interposed by a deactivation–activation unit in such a way that the downstream expression unit is switched off. Hence upstream expression occurs regardless of protein–protein interaction, leading to the production of the upstream reporter. In the event of protein–protein interactions, the downstream expression unit is switched on leading to dual reporter read outs. Thus, the ratio of the two reporter activities provides a measure to determine the efficiency of protein–protein interactions. To access the system we screened a mutant of BMPR2 where the interaction between BMPR-II and LIMK is abrogated. BMPR-II is a type II receptor of the TGFβ superfamily and plays a key role in the pathogenesis of familial pulmonary arterial hypertension. This system has potential for high-throughput screening of libraries (peptide, chemical, cDNA, etc.) to isolate agents that are capable of interfering with highly selective protein–protein interaction. PMID:15824058
Toivo, T M; Mikkola, J A V; Laine, K; Airaksinen, M
2016-01-01
Drug-drug interactions (DDIs) are a significant cause for adverse drug events (ADEs). DDIs are often predictable and preventable, but their prevention and management require systematic service development. Most DDI studies focus on interaction rates in hospitalized patients. Less is known of DDIs in outpatients, particularly how community pharmacists could contribute to DDI management by applying their surveillance systems for identifying high-risk medications. The study was related to the implementation of the first online DDI surveillance system in Finnish community pharmacies. The goal was to demonstrate how community pharmacies can utilize their prospective surveillance system 1) for identifying high risk medications causing potential DDIs in outpatients, 2) for collaborative service development with local physicians, and 3) for academic risk management research purposes. All DDI alerts given by the online surveillance system were collected during a one-month period in 16 out of 17 University Pharmacy outlets in Finland, covering approximately 10% of the national outpatient prescription volume. The surveillance system was based on the FASS database, which categorizes DDIs into four classes (A-D) according to their clinical significance. Potential drug-drug DDIs were analyzed for 276,891 dispensed community pharmacy prescriptions. Potential DDIs were associated with 10.8%, or 31,110 of these prescriptions. Clinically significant interaction alerts categorized as FASS classes D (most severe, should be avoided) and C (clinically significant but controllable) were associated with 0.5% and 7.0% of the prescriptions, respectively. Methotrexate and warfarin had the highest risk of causing potentially serious (class D) interactions. These interaction alerts were most frequently between methotrexate and NSAIDs and warfarin and NSAIDs. In general, NSAIDs were the most commonly interacting drugs in this study. This study demonstrates that community pharmacies can actively contribute to DDI risk management and systematically use their surveillance systems for identifying patients having clinically significant DDIs. The findings also indicate that the majority of potentially serious interactions in outpatients involve a limited number of drugs, particularly NSAIDs, warfarin and methotrexate. Further research should focus on community pharmacists' involvement in DDI risk management in collaboration with local health care providers. Copyright © 2015 Elsevier Inc. All rights reserved.
Sexual Interaction in Nonclinical Couples.
ERIC Educational Resources Information Center
Woody, Jane D.; D'Souza, Henry J.
1997-01-01
Reports on the sexual functioning and interaction of 58 nonclinical heterosexual couples as measured by the Sexual Interaction System Scale (SISS). On all five SISS factors, the nonclinical sample scored significantly better than persons in therapy for sexual dysfunction; they also reported satisfactory relationship adjustment and high levels of…
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Gordon, M. F.; Mclaughlin, R. H.; Marshall, R. E.
1975-01-01
The MIDAS (Multivariate Interactive Digital Analysis System) processor is a high-speed processor designed to process multispectral scanner data (from Landsat, EOS, aircraft, etc.) quickly and cost-effectively to meet the requirements of users of remote sensor data, especially from very large areas. MIDAS consists of a fast multipipeline preprocessor and classifier, an interactive color display and color printer, and a medium scale computer system for analysis and control. The system is designed to process data having as many as 16 spectral bands per picture element at rates of 200,000 picture elements per second into as many as 17 classes using a maximum likelihood decision rule.
Mereghetti, Paolo; Wade, Rebecca C
2012-07-26
High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. In this paper, we describe the implementation of mean field models of translational and rotational hydrodynamic interactions into an atomically detailed many-protein brownian dynamics simulation method. Concentrated solutions (30-40% volume fraction) of myoglobin, hemoglobin A, and sickle cell hemoglobin S were simulated, and static structure factors, oligomer formation, and translational and rotational self-diffusion coefficients were computed. Good agreement of computed properties with available experimental data was obtained. The results show the importance of both solvent mediated interactions and weak protein-protein interactions for accurately describing the dynamics and the association properties of concentrated protein solutions. Specifically, they show a qualitative difference in the translational and rotational dynamics of the systems studied. Although the translational diffusion coefficient is controlled by macromolecular shape and hydrodynamic interactions, the rotational diffusion coefficient is affected by macromolecular shape, direct intermolecular interactions, and both translational and rotational hydrodynamic interactions.
Self assembly of anisotropic colloidal particles
NASA Astrophysics Data System (ADS)
Florea, Daniel; Wyss, Hans
2012-02-01
Colloidal particles have been successfully used as ''model atoms'', as their behavior can be more directly studied than that of atoms or molecules by direct imaging in a confocal microscope. Most studies have focussed on spherical particles with isotropic interactions. However, a range of interesting materials such as many supramolecular polymers or biopolymers exhibit highly directional interactions. To capture their behavior in colloidal model systems, particles with anisotropic interactions are clearly required. Here we use a colloidal system of nonspherical colloids, where highly directional interactions can be induced via depletion. By biaxially stretching spherical PMMA particles we create oblate spheroidal particles. We induce attractive interactions between these particles by adding a non-adsorbing polymer to the background liquid. The resulting depletion interaction is stronger along the minor axis of the oblate spheroids. We study the phase behavior of these materials as a function of the ellipsoid aspect ratio, the strength of the depletion interactions, and the particle concentration. The resulting morphologies are qualitatively different from those observed with spherical particles. This can be exploited for creating new materials with tailored structures.
NASA Astrophysics Data System (ADS)
Chang, Gang; Zhang, Zhibin
2014-02-01
Network structure in plant-animal systems has been widely investigated but the roles of functional traits of plants and animals in formation of mutualism and predation interactions and community structure are still not fully understood. In this study, we quantitatively assessed interaction strength of mutualism and predation between 5 tree species and 7 rodent species by using semi-natural enclosures in a subtropical forest in southwest China. Seeds with high handling-time and nutrition traits (for both rat and mouse species) or high tannin trait (for mouse species) show high mutualism but low predation with rodents; while seeds with low handling-time and low nutrition traits show high predation but low mutualism with rodents. Large-sized rat species are more linked to seeds with high handling-time and high nutrition traits, while small-sized mouse species are more connected with seeds with low handling-time, low nutrition value and high tannin traits. Anti-predation seed traits tend to increase chance of mutualism instead of reducing predation by rodents, suggesting formation of mutualism may be connected with that of predation. Our study demonstrates that seed and animal traits play significant roles in the formation of mutualism and predation and network structure of the seed-rodent dispersal system.
NASA Technical Reports Server (NTRS)
Buckner, J. D.; Council, H. W.; Edwards, T. R.
1974-01-01
Description of the hardware and software implementing the system of time-lapse reproduction of images through interactive graphics (TRIIG). The system produces a quality hard copy of processed images in a fast and inexpensive manner. This capability allows for optimal development of processing software through the rapid viewing of many image frames in an interactive mode. Three critical optical devices are used to reproduce an image: an Optronics photo reader/writer, the Adage Graphics Terminal, and Polaroid Type 57 high speed film. Typical sources of digitized images are observation satellites, such as ERTS or Mariner, computer coupled electron microscopes for high-magnification studies, or computer coupled X-ray devices for medical research.
Structural transitions in vortex systems with anisotropic interactions
Olszewski, Maciej W.; Eskildsen, M. R.; Reichhardt, Charles; ...
2017-12-29
We introduce a model of vortices in type-II superconductors with a four-fold anisotropy in the vortex–vortex interaction potential. Using numerical simulations we show that the vortex lattice undergoes structural transitions as the anisotropy is increased, with a triangular lattice at low anisotropy, a rhombic intermediate state, and a square lattice for high anisotropy. In some cases we observe a multi-q state consisting of an Archimedean tiling that combines square and triangular local ordering. At very high anisotropy, domains of vortex chain states appear. We discuss how this model can be generalized to higher order anisotropy as well as its applicabilitymore » to other particle-based systems with anisotropic particle–particle interactions.« less
High temperature material interactions of thermoelectric systems using silicon germanium.
NASA Technical Reports Server (NTRS)
Stapfer, G.; Truscello, V. C.
1973-01-01
The efficient use of silicon germanium thermoelectric material for radioisotope thermoelectric generators (RTG) is achieved by operation at relatively high temperatures. The insulation technique which is most appropriate for this application uses multiple layers of molybdenum foil and astroquartz. Even so, the long term operation of these materials at elevated temperatures can cause material interaction to occur within the system. To investigate these material interactions, the Jet Propulsion Laboratory is currently testing a number of thermoelectric modules which use four silicon germanium thermoelectric couples in conjunction with the multifoil thermal insulation. The paper discusses the results of the ongoing four-couple module test program and correlates test results with those of a basic material test program.
LEAP: biomarker inference through learning and evaluating association patterns.
Jiang, Xia; Neapolitan, Richard E
2015-03-01
Single nucleotide polymorphism (SNP) high-dimensional datasets are available from Genome Wide Association Studies (GWAS). Such data provide researchers opportunities to investigate the complex genetic basis of diseases. Much of genetic risk might be due to undiscovered epistatic interactions, which are interactions in which combination of several genes affect disease. Research aimed at discovering interacting SNPs from GWAS datasets proceeded in two directions. First, tools were developed to evaluate candidate interactions. Second, algorithms were developed to search over the space of candidate interactions. Another problem when learning interacting SNPs, which has not received much attention, is evaluating how likely it is that the learned SNPs are associated with the disease. A complete system should provide this information as well. We develop such a system. Our system, called LEAP, includes a new heuristic search algorithm for learning interacting SNPs, and a Bayesian network based algorithm for computing the probability of their association. We evaluated the performance of LEAP using 100 1,000-SNP simulated datasets, each of which contains 15 SNPs involved in interactions. When learning interacting SNPs from these datasets, LEAP outperformed seven others methods. Furthermore, only SNPs involved in interactions were found to be probable. We also used LEAP to analyze real Alzheimer's disease and breast cancer GWAS datasets. We obtained interesting and new results from the Alzheimer's dataset, but limited results from the breast cancer dataset. We conclude that our results support that LEAP is a useful tool for extracting candidate interacting SNPs from high-dimensional datasets and determining their probability. © 2015 The Authors. *Genetic Epidemiology published by Wiley Periodicals, Inc.
Multidisciplinary propulsion simulation using the numerical propulsion system simulator (NPSS)
NASA Technical Reports Server (NTRS)
Claus, Russel W.
1994-01-01
Implementing new technology in aerospace propulsion systems is becoming prohibitively expensive. One of the major contributions to the high cost is the need to perform many large scale system tests. The traditional design analysis procedure decomposes the engine into isolated components and focuses attention on each single physical discipline (e.g., fluid for structural dynamics). Consequently, the interactions that naturally occur between components and disciplines can be masked by the limited interactions that occur between individuals or teams doing the design and must be uncovered during expensive engine testing. This overview will discuss a cooperative effort of NASA, industry, and universities to integrate disciplines, components, and high performance computing into a Numerical propulsion System Simulator (NPSS).
Prethermal time crystals in a one-dimensional periodically driven Floquet system
NASA Astrophysics Data System (ADS)
Zeng, Tian-Sheng; Sheng, D. N.
2017-09-01
Motivated by experimental observations of time-symmetry breaking behavior in a periodically driven (Floquet) system, we study a one-dimensional spin model to explore the stability of such Floquet discrete time crystals (DTCs) under the interplay between interaction and the microwave driving. For intermediate interactions and high drivings, from the time evolution of both stroboscopic spin polarization and mutual information between two ends, we show that Floquet DTCs can exist in a prethermal time regime without the tuning of strong disorder. For much weak interactions the system is a symmetry-unbroken phase, while for strong interactions it gives its way to a thermal phase. Through analyzing the entanglement dynamics, we show that large driving fields protect the prethermal DTCs from many-body localization and thermalization. Our results suggest that by increasing the spin interaction, one can drive the experimental system into optimal regime for observing a robust prethermal DTC phase.
The interaction of high voltage systems with the environments of the Moon and Mars
NASA Technical Reports Server (NTRS)
Hillard, G. Barry; Kolecki, Joseph C.
1993-01-01
High voltage systems designed for use on the lunar and Martian surfaces or in orbit will interact with environmental components such as electrically charged dust, low pressure atmospheres, ionospheric plasmas and neutrals, and chemically reactive species. As the Space Exploration Initiative (SEI) advances from the realm of feasibility study to that of conceptual design, guidelines will be required to ensure that these effects are properly accounted for. A first step in providing such guidelines is the prioritization of interactions for each of the space or surface environments that will be encountered. For those issues that are identified as high priority, the state of environmental knowledge, emphasizing essential data, must be determined. This report describes possible means of obtaining such information, including ground tests, modeling and analysis, and flight experiments. The development of computational tools which will enable engineers to simulate and thereby quantify the interactions will be especially considered. Our analysis is drawn from various study and workshop activities undertaken within the last two years.
Elliptic flow from Coulomb interaction and low density elastic scattering
NASA Astrophysics Data System (ADS)
Sun, Yuliang; Li, Qingfeng; Wang, Fuqiang
2018-04-01
In high energy heavy ion collisions and interacting cold atom systems, large elliptic flow anisotropies have been observed. For the large opacity (ρ σ L ˜103 ) of the latter hydrodynamics is a natural consequence, but for the small opacity (ρ σ L ˜1 ) of the former the hydrodynamic description is questionable. To shed light onto the situation, we simulate the expansion of a low density argon ion (or atom) system, initially trapped in an elliptical region, under the Coulomb interaction (or elastic scattering). Significant elliptic anisotropy is found in both cases, and the anisotropy depends on the initial spatial eccentricity and the density of the system. The results may provide insights into the physics of anisotropic flow in high energy heavy ion collisions and its role in the study of quantum chromodynamics.
High-Speed, High-Power Active Control Coils for HBT-EP
NASA Astrophysics Data System (ADS)
Debono, Bryan
2010-11-01
We report the performance of a newly installed high-speed, high-power active control system for the application of non-symmetric magnetic fields and the study of rotating MHD and resistive wall modes in the HBTEP tokamak. The new control system consists of an array of 120 modular control coils and 40 solid-state, high-power amplifiers that can apply non-symmetric control fields that are more than 10 times larger than previous studies in HBT-EP and exceed 5% of the equilibrium poloidal field strength. Measurements of the current and field response of the control system are presented as a function of frequency and control coil geometry, and these demonstrate the effectiveness of the system to interact with both growing RWM instabilities and long-wavelength modes rotating with the plasma. We describe a research plan to study the interaction of both kink and tearing mode fluctuations with applied static and rotating magnetic perturbations while systematically changing the plasma rotation with a biased molybdenum electrode inserted into the edge plasma.
Bibliography of In-House and Contract Reports, Supplement 12.
1984-03-01
A134 952 Karow, Kenneth ADVANCE EDIT SYSTEM January 1983 Sonicraft, Inc. DAAK70-79-C-0 180 Keywords: Automated Cartography, Digital Data Editing...Interactive Graphics. An advanced edit system with high resolution interactive graphic workstations and support software for editing digital cartographic...J.R. OF INERTIAL SURVEY DATA Wei, S.Y. December 1982 Litton Guidance and Control Systems DAAK-70-81-C-0082 Keywords: Collocation, Gravity vector
Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems
NASA Astrophysics Data System (ADS)
Kucska, Nóra; Gulácsi, Zsolt
2018-06-01
A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.
Improved Interactive Medical-Imaging System
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Twombly, Ian A.; Senger, Steven
2003-01-01
An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.
An Audience Response System May Influence Student Performance on Anatomy Examination Questions
ERIC Educational Resources Information Center
Hoyt, Amy; McNulty, John A.; Gruener, Gregory; Chandrasekhar, Arcot; Espiritu, Baltazar; Ensminger, David; Price, Ron, Jr.; Naheedy, Ross
2010-01-01
This study integrated an in-house audience response system (ARS) in the human anatomy course over two years to determine whether students performed better on high-stakes examinations following exposure to similar interactive questions in a large lecture format. Questions in an interactive ARS format were presented in lectures via PowerPoint…
He, Ling Yan; Wang, Tie-Jun; Wang, Chuan
2016-07-11
High-dimensional quantum system provides a higher capacity of quantum channel, which exhibits potential applications in quantum information processing. However, high-dimensional universal quantum logic gates is difficult to achieve directly with only high-dimensional interaction between two quantum systems and requires a large number of two-dimensional gates to build even a small high-dimensional quantum circuits. In this paper, we propose a scheme to implement a general controlled-flip (CF) gate where the high-dimensional single photon serve as the target qudit and stationary qubits work as the control logic qudit, by employing a three-level Λ-type system coupled with a whispering-gallery-mode microresonator. In our scheme, the required number of interaction times between the photon and solid state system reduce greatly compared with the traditional method which decomposes the high-dimensional Hilbert space into 2-dimensional quantum space, and it is on a shorter temporal scale for the experimental realization. Moreover, we discuss the performance and feasibility of our hybrid CF gate, concluding that it can be easily extended to a 2n-dimensional case and it is feasible with current technology.
2015-12-24
simulation of the electromagnetic- plasma interaction and the high-power microwave breakdown in air. Under the high pressure and high frequency condition of...the high-power air breakdown, the physical phenomenon is described using a nonlinearly coupled full-wave Maxwell and fluid plasma system. This...Challenges ........................................................................... 3 3.1.1 Plasma Fluid Model
Yang, Fang; Lei, Yingying; Zhou, Meiling; Yao, Qili; Han, Yichao; Wu, Xiang; Zhong, Wanshun; Zhu, Chenghang; Xu, Weize; Tao, Ran; Chen, Xi; Lin, Da; Rahman, Khaista; Tyagi, Rohit; Habib, Zeshan; Xiao, Shaobo; Wang, Dang; Yu, Yang; Chen, Huanchun; Fu, Zhenfang; Cao, Gang
2018-02-16
Protein-protein interaction (PPI) network maintains proper function of all organisms. Simple high-throughput technologies are desperately needed to delineate the landscape of PPI networks. While recent state-of-the-art yeast two-hybrid (Y2H) systems improved screening efficiency, either individual colony isolation, library preparation arrays, gene barcoding or massive sequencing are still required. Here, we developed a recombination-based 'library vs library' Y2H system (RLL-Y2H), by which multi-library screening can be accomplished in a single pool without any individual treatment. This system is based on the phiC31 integrase-mediated integration between bait and prey plasmids. The integrated fragments were digested by MmeI and subjected to deep sequencing to decode the interaction matrix. We applied this system to decipher the trans-kingdom interactome between Mycobacterium tuberculosis and host cells and further identified Rv2427c interfering with the phagosome-lysosome fusion. This concept can also be applied to other systems to screen protein-RNA and protein-DNA interactions and delineate signaling landscape in cells.
Integrating Computer Architectures into the Design of High-Performance Controllers
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.; Leyland, Jane A.; Warmbrodt, William
1986-01-01
Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, on-line graphics, and file management. This paper discusses five global design considerations that are useful to integrate array processor, multimicroprocessor, and host computer system architecture into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the non-real-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration will be briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind-tunnel environment, the control architecture can generally be applied to a wide range of automatic control applications.
Mono and Multivalency In Tethered Protein-Carbohydrate Bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratto, T V; Langry, K C; Rudd, R E
2004-01-29
Molecular recognition in biological systems typically involves large numbers of interactions simultaneously. By using a multivalent approach, weak interactions with fairly low specificity can become strong highly specific interactions. Additionally, this allows an organism to control the strength and specificity of an interaction simply by controlling the number of binding molecules (or binding sites), which in turn can be controlled through transcriptional regulation.
Asymmetric cooperative catalysis of strong Brønsted acid-promoted reactions using chiral ureas.
Xu, Hao; Zuend, Stephan J; Woll, Matthew G; Tao, Ye; Jacobsen, Eric N
2010-02-19
Cationic organic intermediates participate in a wide variety of useful synthetic transformations, but their high reactivity can render selectivity in competing pathways difficult to control. Here, we describe a strategy for inducing enantioselectivity in reactions of protio-iminium ions, wherein a chiral catalyst interacts with the highly reactive intermediate through a network of noncovalent interactions. This interaction leads to an attenuation of the reactivity of the iminium ion and allows high enantioselectivity in cycloadditions with electron-rich alkenes (the Povarov reaction). A detailed experimental and computational analysis of this catalyst system has revealed the precise nature of the catalyst-substrate interactions and the likely basis for enantioinduction.
Improving aircraft conceptual design - A PHIGS interactive graphics interface for ACSYNT
NASA Technical Reports Server (NTRS)
Wampler, S. G.; Myklebust, A.; Jayaram, S.; Gelhausen, P.
1988-01-01
A CAD interface has been created for the 'ACSYNT' aircraft conceptual design code that permits the execution and control of the design process via interactive graphics menus. This CAD interface was coded entirely with the new three-dimensional graphics standard, the Programmer's Hierarchical Interactive Graphics System. The CAD/ACSYNT system is designed for use by state-of-the-art high-speed imaging work stations. Attention is given to the approaches employed in modeling, data storage, and rendering.
Interactions measurement payload for Shuttle
NASA Technical Reports Server (NTRS)
Guidice, D. A.; Pike, C. P.
1985-01-01
The Interactions Measurement Payload for Shuttle (IMPS) consisted of engineering experiments to determine the effects of the space environment on projected Air Force space systems. Measurements by IMPS on a polar-orbit Shuttle flight will lead to detailed knowledge of the interaction of the low-altitude polar-auroral environment on materials, equipment and technologies to be used in future large, high-power space systems. The results from the IMPS measurements will provide direct input to MIL-STD design guidelines and test standards that properly account for space-environment effects.
ERIC Educational Resources Information Center
Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen
2016-01-01
The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to…
ERIC Educational Resources Information Center
Charles, Laurie L.
2007-01-01
This qualitative study examined the interactional communication strategies used by law enforcement officers during a hostage-taking incident at a high school. The research involved analysis of the negotiation conversation between police crisis (hostage) negotiators and a hostage taker who entered his former high school to take revenge on a…
NASA Astrophysics Data System (ADS)
Zhang, Tingting; Holford, D. F.; Gu, Hang; Kreouzis, T.; Zhang, Sijie; Gillin, W. P.
2016-01-01
The magnetic field effects on the electroluminescence of aluminium tris-(8-hydroxyqinoline) (Alq3) based organic light emitting diodes have been investigated by varying the electron/hole ratio in the emissive layer. Experimental results reveal that a negative high field effect in the magneto-electroluminescence (MEL) can be found in devices with very low triplet exciton concentration at room temperature. This suggests triplet-triplet annihilation cannot be used to explain the negative high field MEL in the Alq3 system. Our results suggest that hole-exciton interaction may be the origin of the negative high field MEL and also, in parallel with this interaction, there is also the more common positive high field process occurring which has been tentatively attributed to electron-exciton interactions. The competition between these different processes decides the final shape of the MEL at high fields.
High friction interactive aircraft tire-runway systems
NASA Technical Reports Server (NTRS)
Clark, S. K.
1974-01-01
The principle of utilizing geometric interaction between runway asperities and tire pattern design is discussed, and a theoretical basis is presented for substantial enhancement of frictional effects by this process. Test data confirming this is given. First order analytical expressions are given for the increased friction coefficients and for the engagement distances required. High speed friction data on a 7.00 x 8 aircraft tire is presented confirming this. Example design geometries are shown for the tire tread groove pattern, and designs and materials are discussed for the asperity grid and its attachment system.
The interaction of spacecraft high voltage power systems with the space plasma environment
NASA Technical Reports Server (NTRS)
Domitz, S.; Grier, N. T.
1974-01-01
The development of spacecraft with electrical loads that require high voltage power is discussed. The high voltage solar array has been considered for supplying d.c. power directly to high voltage loads such as ion thrusters and communication tubes without intermediate power processing. Space power stations for transferring solar power to earth are being studied in the 40 kilovolt, multikilowatt regime. Analytical and experimental studies have determined that with the advent of high voltage power, new problems will arise through the interaction of the high voltage surfaces with the charged particle environment of space. The interactive environment has been identified and duplicated to some extent in simulation facilities at NASA-Lewis Research Center and at several contractor locations.
Modeling and Verification of Dependable Electronic Power System Architecture
NASA Astrophysics Data System (ADS)
Yuan, Ling; Fan, Ping; Zhang, Xiao-fang
The electronic power system can be viewed as a system composed of a set of concurrently interacting subsystems to generate, transmit, and distribute electric power. The complex interaction among sub-systems makes the design of electronic power system complicated. Furthermore, in order to guarantee the safe generation and distribution of electronic power, the fault tolerant mechanisms are incorporated in the system design to satisfy high reliability requirements. As a result, the incorporation makes the design of such system more complicated. We propose a dependable electronic power system architecture, which can provide a generic framework to guide the development of electronic power system to ease the development complexity. In order to provide common idioms and patterns to the system *designers, we formally model the electronic power system architecture by using the PVS formal language. Based on the PVS model of this system architecture, we formally verify the fault tolerant properties of the system architecture by using the PVS theorem prover, which can guarantee that the system architecture can satisfy high reliability requirements.
Kitchen, James L.; Allaby, Robin G.
2013-01-01
Selection and adaptation of individuals to their underlying environments are highly dynamical processes, encompassing interactions between the individual and its seasonally changing environment, synergistic or antagonistic interactions between individuals and interactions amongst the regulatory genes within the individual. Plants are useful organisms to study within systems modeling because their sedentary nature simplifies interactions between individuals and the environment, and many important plant processes such as germination or flowering are dependent on annual cycles which can be disrupted by climate behavior. Sedentism makes plants relevant candidates for spatially explicit modeling that is tied in with dynamical environments. We propose that in order to fully understand the complexities behind plant adaptation, a system that couples aspects from systems biology with population and landscape genetics is required. A suitable system could be represented by spatially explicit individual-based models where the virtual individuals are located within time-variable heterogeneous environments and contain mutable regulatory gene networks. These networks could directly interact with the environment, and should provide a useful approach to studying plant adaptation. PMID:27137364
NASA Astrophysics Data System (ADS)
Kuno, Yoshihito; Shimizu, Keita; Ichinose, Ikuo
2017-12-01
In this paper, we study a one-dimensional boson system in a superlattice potential. This system is experimentally feasible by using ultracold atomic gases, and attracts much attention these days. It is expected that the system has a topological phase called a topological Mott insulator (TMI). We show that in strongly-interacting cases, the competition between the superlattice potential and the on-site interaction leads to various TMIs with a non-vanishing integer Chern number. Compared to the hard-core case, the soft-core boson system exhibits rich phase diagrams including various non-trivial TMIs. By using the exact diagonalization, we obtain detailed bulk-global phase diagrams including the TMIs with high Chern numbers and also various non-topological phases. We also show that in adiabatic experimental setups, the strongly-interacting bosonic TMIs exhibit the topological particle transfer, i.e., the topological charge pumping phenomenon, similarly to weakly-interacting systems. The various TMIs are characterized by topological charge pumping as it is closely related to the Chern number, and therefore the Chern number is to be observed in feasible experiments.
NASA Astrophysics Data System (ADS)
Kopera, M. A.; Maslowski, W.; Giraldo, F.
2015-12-01
One of the key outstanding challenges in modeling of climate change and sea-level rise is the ice-sheet/ocean interaction in narrow, elongated and geometrically complicated fjords around Greenland. To address this challenge we propose a new approach, a separate fjord model using discontinuous Galerkin (DG) methods, or FDG. The goal of this project is to build a separate, high-resolution module for use in Earth System Models (ESMs) to realistically represent the fjord bathymetry, coastlines, exchanges with the outside ocean, circulation and fine-scale processes occurring within the fjord and interactions at the ice shelf interface. FDG is currently at the first stage of development. The DG method provides FDG with high-order accuracy as well as geometrical flexibility, including the capacity to handle non-conforming adaptive mesh refinement to resolve the processes occurring near the ice-sheet/ocean interface without introducing prohibitive computational costs. Another benefit of this method is its excellent performance on multi- and many-core architectures, which allows for utilizing modern high performance computing systems for high-resolution simulations. The non-hydrostatic model of the incompressible Navier-Stokes equation will account for the stationary ice-shelf with sub-shelf ocean interaction, basal melting and subglacial meltwater influx and with boundary conditions at the surface to account for floating sea ice. The boundary conditions will be provided to FDG via a flux coupler to emulate the integration with an ESM. Initially, FDG will be tested for the Sermilik Fjord settings, using real bathymetry, boundary and initial conditions, and evaluated against available observations and other model results for this fjord. The overarching goal of the project is to be able to resolve the ice-sheet/ocean interactions around the entire coast of Greenland and two-way coupling with regional and global climate models such as the Regional Arctic System Model (RASM), Community Earth System Model (CESM) or Advanced Climate Model for Energy (ACME).
van Ooijen, P M A; Broekema, A; Oudkerk, M
2011-08-01
To develop, implement and test a novel audience response system (ARS) that allows image based interaction for radiology education. The ARS developed in this project is based on standard Personal Digital Assistants (PDAs) (HP iPAQ 114 classic handheld) running Microsoft® Windows Mobile® 6 Classic with a large 3.5 in. TFT touch screen (320×240 pixel resolution), high luminance and integrated IEEE 802.11b/g wireless. For software development Visual Studio 2008 professional (Microsoft) was used and all components were written in C#. Two test sessions were conducted to test the software technically followed by two real classroom tests in a radiology class for medical students on thoracic radiology. The novel ARS, called I2Vote, was successfully implemented and provided an easy to use, stable setup. The acceptance of both students and teachers was very high and the interaction with the students improved because of the anonymous interaction possibility. An easy to use handheld based ARS that enables interactive, image-based, teaching is achieved. The system effectively adds an extra dimension to the use of an ARS. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1974-01-01
The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations: the edge illuminated-multijunction cells, the teflon encased cells, and the violet cells.
Revealing physical interaction networks from statistics of collective dynamics
Nitzan, Mor; Casadiego, Jose; Timme, Marc
2017-01-01
Revealing physical interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Current reconstruction methods require access to a system’s model or dynamical data at a level of detail often not available. We exploit changes in invariant measures, in particular distributions of sampled states of the system in response to driving signals, and use compressed sensing to reveal physical interaction networks. Dynamical observations following driving suffice to infer physical connectivity even if they are temporally disordered, are acquired at large sampling intervals, and stem from different experiments. Testing various nonlinear dynamic processes emerging on artificial and real network topologies indicates high reconstruction quality for existence as well as type of interactions. These results advance our ability to reveal physical interaction networks in complex synthetic and natural systems. PMID:28246630
3D Graphics For Interactive Surgical Simulation And Implant Design
NASA Astrophysics Data System (ADS)
Dev, P.; Fellingham, L. L.; Vassiliadis, A.; Woolson, S. T.; White, D. N.; Young, S. L.
1984-10-01
The combination of user-friendly, highly interactive software, 3D graphics, and the high-resolution detailed views of anatomy afforded by X-ray computer tomography and magnetic resonance imaging can provide surgeons with the ability to plan and practice complex surgeries. In addition to providing a realistic and manipulable 3D graphics display, this system can drive a milling machine in order to produce physical models of the anatomy or prosthetic devices and implants which have been designed using its interactive graphics editing facilities.
Changing optical band structure with single photons
NASA Astrophysics Data System (ADS)
Albrecht, Andreas; Caneva, Tommaso; Chang, Darrick E.
2017-11-01
Achieving strong interactions between individual photons enables a wide variety of exciting possibilities in quantum information science and many-body physics. Cold atoms interfaced with nanophotonic structures have emerged as a platform to realize novel forms of nonlinear interactions. In particular, when atoms are coupled to a photonic crystal waveguide, long-range atomic interactions can arise that are mediated by localized atom-photon bound states. We theoretically show that in such a system, the absorption of a single photon can change the band structure for a subsequent photon. This occurs because the first photon affects the atoms in the chain in an alternating fashion, thus leading to an effective period doubling of the system and a new optical band structure for the composite atom-nanophotonic system. We demonstrate how this mechanism can be engineered to realize a single-photon switch, where the first incoming photon switches the system from being highly transmissive to highly reflective, and analyze how signatures can be observed via non-classical correlations of the outgoing photon field.
McLerran, Larry; Skokov, Vladimir V.
2016-09-19
We modify the McLerran–Venugopalan model to include only a finite number of sources of color charge. In the effective action for such a system of a finite number of sources, there is a point-like interaction and a Coulombic interaction. The point interaction generates the standard fluctuation term in the McLerran–Venugopalan model. The Coulomb interaction generates the charge screening originating from well known evolution in x. Such a model may be useful for computing angular harmonics of flow measured in high energy hadron collisions for small systems. In this study we provide a basic formulation of the problem on a lattice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Adam T.; Yagnik, Gargey B.; Hohenstein, Jessica D.
Mass spectrometry imaging (MSI) is an emerging technology for high-resolution plant biology. It has been utilized to study plant–pest interactions, but limited to the surface interfaces. Here we expand the technology to explore the chemical interactions occurring inside the plant tissues. Two sample preparation methods, imprinting and fracturing, were developed and applied, for the first time, to visualize internal metabolites of leaves in matrix-assisted laser desorption ionization (MALDI)-MSI. This is also the first time nanoparticle-based ionization was implemented to ionize diterpenoid phytochemicals that were difficult to analyze with traditional organic matrices. The interactions between rice–bacterium and soybean–aphid were investigated asmore » two model systems to demonstrate the capability of high-resolution MSI based on MALDI. Localized molecular information on various plant- or pest-derived chemicals provided valuable insight for the molecular processes occurring during the plant–pest interactions. Basically, salicylic acid and isoflavone based resistance was visualized in the soybean–aphid system and antibiotic diterpenoids in rice–bacterium interactions.« less
Klein, Adam T.; Yagnik, Gargey B.; Hohenstein, Jessica D.; ...
2015-04-27
Mass spectrometry imaging (MSI) is an emerging technology for high-resolution plant biology. It has been utilized to study plant–pest interactions, but limited to the surface interfaces. Here we expand the technology to explore the chemical interactions occurring inside the plant tissues. Two sample preparation methods, imprinting and fracturing, were developed and applied, for the first time, to visualize internal metabolites of leaves in matrix-assisted laser desorption ionization (MALDI)-MSI. This is also the first time nanoparticle-based ionization was implemented to ionize diterpenoid phytochemicals that were difficult to analyze with traditional organic matrices. The interactions between rice–bacterium and soybean–aphid were investigated asmore » two model systems to demonstrate the capability of high-resolution MSI based on MALDI. Localized molecular information on various plant- or pest-derived chemicals provided valuable insight for the molecular processes occurring during the plant–pest interactions. Basically, salicylic acid and isoflavone based resistance was visualized in the soybean–aphid system and antibiotic diterpenoids in rice–bacterium interactions.« less
Detection of light-matter interaction in the weak-coupling regime by quantum light
NASA Astrophysics Data System (ADS)
Bin, Qian; Lü, Xin-You; Zheng, Li-Li; Bin, Shang-Wu; Wu, Ying
2018-04-01
"Mollow spectroscopy" is a photon statistics spectroscopy, obtained by scanning the quantum light scattered from a source system. Here, we apply this technique to detect the weak light-matter interaction between the cavity and atom (or a mechanical oscillator) when the strong system dissipation is included. We find that the weak interaction can be measured with high accuracy when exciting the target cavity by quantum light scattered from the source halfway between the central peak and each side peak. This originally comes from the strong correlation of the injected quantum photons. In principle, our proposal can be applied into the normal cavity quantum electrodynamics system described by the Jaynes-Cummings model and an optomechanical system. Furthermore, it is state of the art for experiment even when the interaction strength is reduced to a very small value.
ERIC Educational Resources Information Center
Bringula, Rex P.; Basa, Roselle S.; Dela Cruz, Cecilio; Rodrigo, Ma. Mercedes T.
2016-01-01
This study attempted to determine the influence of prior knowledge in mathematics of students on learner-interface interactions in a learning-by-teaching intelligent tutoring system. One hundred thirty-nine high school students answered a pretest (i.e., the prior knowledge in mathematics) and a posttest. In between the pretest and posttest, they…
Siakaluk, Paul D; Pexman, Penny M; Aguilera, Laura; Owen, William J; Sears, Christopher R
2008-01-01
We examined the effects of sensorimotor experience in two visual word recognition tasks. Body-object interaction (BOI) ratings were collected for a large set of words. These ratings assess perceptions of the ease with which a human body can physically interact with a word's referent. A set of high BOI words (e.g., mask) and a set of low BOI words (e.g., ship) were created, matched on imageability and concreteness. Facilitatory BOI effects were observed in lexical decision and phonological lexical decision tasks: responses were faster for high BOI words than for low BOI words. We discuss how our findings may be accounted for by (a) semantic feedback within the visual word recognition system, and (b) an embodied view of cognition (e.g., Barsalou's perceptual symbol systems theory), which proposes that semantic knowledge is grounded in sensorimotor interactions with the environment.
NASA Technical Reports Server (NTRS)
Katz, Randy H.; Anderson, Thomas E.; Ousterhout, John K.; Patterson, David A.
1991-01-01
Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications.
Integrating distributed multimedia systems and interactive television networks
NASA Astrophysics Data System (ADS)
Shvartsman, Alex A.
1996-01-01
Recent advances in networks, storage and video delivery systems are about to make commercial deployment of interactive multimedia services over digital television networks a reality. The emerging components individually have the potential to satisfy the technical requirements in the near future. However, no single vendor is offering a complete end-to-end commercially-deployable and scalable interactive multimedia applications systems over digital/analog television systems. Integrating a large set of maturing sub-assemblies and interactive multimedia applications is a major task in deploying such systems. Here we deal with integration issues, requirements and trade-offs in building delivery platforms and applications for interactive television services. Such integration efforts must overcome lack of standards, and deal with unpredictable development cycles and quality problems of leading- edge technology. There are also the conflicting goals of optimizing systems for video delivery while enabling highly interactive distributed applications. It is becoming possible to deliver continuous video streams from specific sources, but it is difficult and expensive to provide the ability to rapidly switch among multiple sources of video and data. Finally, there is the ever- present challenge of integrating and deploying expensive systems whose scalability and extensibility is limited, while ensuring some resiliency in the face of inevitable changes. This proceedings version of the paper is an extended abstract.
Soft Electronics Enabled Ergonomic Human-Computer Interaction for Swallowing Training
Lee, Yongkuk; Nicholls, Benjamin; Sup Lee, Dong; Chen, Yanfei; Chun, Youngjae; Siang Ang, Chee; Yeo, Woon-Hong
2017-01-01
We introduce a skin-friendly electronic system that enables human-computer interaction (HCI) for swallowing training in dysphagia rehabilitation. For an ergonomic HCI, we utilize a soft, highly compliant (“skin-like”) electrode, which addresses critical issues of an existing rigid and planar electrode combined with a problematic conductive electrolyte and adhesive pad. The skin-like electrode offers a highly conformal, user-comfortable interaction with the skin for long-term wearable, high-fidelity recording of swallowing electromyograms on the chin. Mechanics modeling and experimental quantification captures the ultra-elastic mechanical characteristics of an open mesh microstructured sensor, conjugated with an elastomeric membrane. Systematic in vivo studies investigate the functionality of the soft electronics for HCI-enabled swallowing training, which includes the application of a biofeedback system to detect swallowing behavior. The collection of results demonstrates clinical feasibility of the ergonomic electronics in HCI-driven rehabilitation for patients with swallowing disorders. PMID:28429757
Soft Electronics Enabled Ergonomic Human-Computer Interaction for Swallowing Training
NASA Astrophysics Data System (ADS)
Lee, Yongkuk; Nicholls, Benjamin; Sup Lee, Dong; Chen, Yanfei; Chun, Youngjae; Siang Ang, Chee; Yeo, Woon-Hong
2017-04-01
We introduce a skin-friendly electronic system that enables human-computer interaction (HCI) for swallowing training in dysphagia rehabilitation. For an ergonomic HCI, we utilize a soft, highly compliant (“skin-like”) electrode, which addresses critical issues of an existing rigid and planar electrode combined with a problematic conductive electrolyte and adhesive pad. The skin-like electrode offers a highly conformal, user-comfortable interaction with the skin for long-term wearable, high-fidelity recording of swallowing electromyograms on the chin. Mechanics modeling and experimental quantification captures the ultra-elastic mechanical characteristics of an open mesh microstructured sensor, conjugated with an elastomeric membrane. Systematic in vivo studies investigate the functionality of the soft electronics for HCI-enabled swallowing training, which includes the application of a biofeedback system to detect swallowing behavior. The collection of results demonstrates clinical feasibility of the ergonomic electronics in HCI-driven rehabilitation for patients with swallowing disorders.
Methodical foundations of the preparation of highly valued personnel for high-rise construction
NASA Astrophysics Data System (ADS)
Belyaeva, Svetlana; Belyantseva, Oksana; Safonova, Nataliya; Vasilyeva, Olga
2018-03-01
When carrying out design and survey and construction and installation works for such an innovative type of activity as high-rise construction, the problem of personnel qualification becomes urgent. The article poses a research problem, identifies the main reasons for the need for training highly qualified specialists in construction, and suggests areas for improving training. The expediency of development of mentoring system was proved, the corresponding model of interaction between educational institutions and construction enterprises was offered, key interaction effects were evaluated.
Optical diagnostics of mercury jet for an intense proton target.
Park, H; Tsang, T; Kirk, H G; Ladeinde, F; Graves, V B; Spampinato, P T; Carroll, A J; Titus, P H; McDonald, K T
2008-04-01
An optical diagnostic system is designed and constructed for imaging a free mercury jet interacting with a high intensity proton beam in a pulsed high-field solenoid magnet. The optical imaging system employs a backilluminated, laser shadow photography technique. Object illumination and image capture are transmitted through radiation-hard multimode optical fibers and flexible coherent imaging fibers. A retroreflected illumination design allows the entire passive imaging system to fit inside the bore of the solenoid magnet. A sequence of synchronized short laser light pulses are used to freeze the transient events, and the images are recorded by several high speed charge coupled devices. Quantitative and qualitative data analysis using image processing based on probability approach is described. The characteristics of free mercury jet as a high power target for beam-jet interaction at various levels of the magnetic induction field is reported in this paper.
Fall, Anna-Mária; Roberts, Greg
2012-08-01
Research suggests that contextual, self-system, and school engagement variables influence dropping out from school. However, it is not clear how different types of contextual and self-system variables interact to affect students' engagement or contribute to decisions to dropout from high school. The self-system model of motivational development represents a promising theory for understanding this complex phenomenon. The self-system model acknowledges the interactive and iterative roles of social context, self-perceptions, school engagement, and academic achievement as antecedents to the decision to dropout of school. We analyzed data from the Education Longitudinal Study of 2002-2004 in the context of the self-system model, finding that perception of social context (teacher support and parent support) predicts students' self-perceptions (perception of control and identification with school), which in turn predict students' academic and behavioral engagement, and academic achievement. Further, students' academic and behavioral engagement and achievement in 10th grade were associated with decreased likelihood of dropping out of school in 12th grade. Published by Elsevier Ltd.
Fall, Anna-Mária; Roberts, Greg
2012-01-01
Research suggests that contextual, self-system, and school engagement variables influence dropping out from school. However, it is not clear how different types of contextual and self-system variables interact to affect students’ engagement or contribute to decisions to dropout from high school. The self-system model of motivational development represents a promising theory for understanding this complex phenomenon. The self-system model acknowledges the interactive and iterative roles of social context, self-perceptions, school engagement, and academic achievement as antecedents to the decision to dropout of school. We analyzed data from the Education Longitudinal Study of 2002–2004 in the context of the self-system model, finding that perception of social context (teacher support and parent support) predicts students’ self-perceptions (perception of control and identification with school), which in turn predict students’ academic and behavioral engagement, and academic achievement. Further, students’ academic and behavioral engagement and achievement in 10th grade were associated with decreased likelihood of dropping out of school in 12th grade. PMID:22153483
Isotropic–Nematic Phase Transitions in Gravitational Systems. II. Higher Order Multipoles
NASA Astrophysics Data System (ADS)
Takács, Ádám; Kocsis, Bence
2018-04-01
The gravitational interaction among bodies orbiting in a spherical potential leads to the rapid relaxation of the orbital planes’ distribution, a process called vector resonant relaxation. We examine the statistical equilibrium of this process for a system of bodies with similar semimajor axes and eccentricities. We extend the previous model of Roupas et al. by accounting for the multipole moments beyond the quadrupole, which dominate the interaction for radially overlapping orbits. Nevertheless, we find no qualitative differences between the behavior of the system with respect to the model restricted to the quadrupole interaction. The equilibrium distribution resembles a counterrotating disk at low temperature and a spherical structure at high temperature. The system exhibits a first-order phase transition between the disk and the spherical phase in the canonical ensemble if the total angular momentum is below a critical value. We find that the phase transition erases the high-order multipoles, i.e., small-scale structure in angular momentum space, most efficiently. The system admits a maximum entropy and a maximum energy, which lead to the existence of negative temperature equilibria.
A High Resolution Graphic Input System for Interactive Graphic Display Terminals. Appendix B.
ERIC Educational Resources Information Center
Van Arsdall, Paul Jon
The search for a satisfactory computer graphics input system led to this version of an analog sheet encoder which is transparent and requires no special probes. The goal of the research was to provide high resolution touch input capabilities for an experimental minicomputer based intelligent terminal system. The technique explored is compatible…
A collaborative virtual reality environment for neurosurgical planning and training.
Kockro, Ralf A; Stadie, Axel; Schwandt, Eike; Reisch, Robert; Charalampaki, Cleopatra; Ng, Ivan; Yeo, Tseng Tsai; Hwang, Peter; Serra, Luis; Perneczky, Axel
2007-11-01
We have developed a highly interactive virtual environment that enables collaborative examination of stereoscopic three-dimensional (3-D) medical imaging data for planning, discussing, or teaching neurosurgical approaches and strategies. The system consists of an interactive console with which the user manipulates 3-D data using hand-held and tracked devices within a 3-D virtual workspace and a stereoscopic projection system. The projection system displays the 3-D data on a large screen while the user is working with it. This setup allows users to interact intuitively with complex 3-D data while sharing this information with a larger audience. We have been using this system on a routine clinical basis and during neurosurgical training courses to collaboratively plan and discuss neurosurgical procedures with 3-D reconstructions of patient-specific magnetic resonance and computed tomographic imaging data or with a virtual model of the temporal bone. Working collaboratively with the 3-D information of a large, interactive, stereoscopic projection provides an unambiguous way to analyze and understand the anatomic spatial relationships of different surgical corridors. In our experience, the system creates a unique forum for open and precise discussion of neurosurgical approaches. We believe the system provides a highly effective way to work with 3-D data in a group, and it significantly enhances teaching of neurosurgical anatomy and operative strategies.
NASA Astrophysics Data System (ADS)
Ye, Long; Hu, Huawei; Ghasemi, Masoud; Wang, Tonghui; Collins, Brian A.; Kim, Joo-Hyun; Jiang, Kui; Carpenter, Joshua H.; Li, Hong; Li, Zhengke; McAfee, Terry; Zhao, Jingbo; Chen, Xiankai; Lai, Joshua Lin Yuk; Ma, Tingxuan; Bredas, Jean-Luc; Yan, He; Ade, Harald
2018-03-01
Although it is known that molecular interactions govern morphology formation and purity of mixed domains of conjugated polymer donors and small-molecule acceptors, and thus largely control the achievable performance of organic solar cells, quantifying interaction-function relations has remained elusive. Here, we first determine the temperature-dependent effective amorphous-amorphous interaction parameter, χaa(T), by mapping out the phase diagram of a model amorphous polymer:fullerene material system. We then establish a quantitative `constant-kink-saturation' relation between χaa and the fill factor in organic solar cells that is verified in detail in a model system and delineated across numerous high- and low-performing materials systems, including fullerene and non-fullerene acceptors. Our experimental and computational data reveal that a high fill factor is obtained only when χaa is large enough to lead to strong phase separation. Our work outlines a basis for using various miscibility tests and future simulation methods that will significantly reduce or eliminate trial-and-error approaches to material synthesis and device fabrication of functional semiconducting blends and organic blends in general.
Core commands across airway facilities systems.
DOT National Transportation Integrated Search
2003-05-01
This study takes a high-level approach to evaluate computer systems without regard to the specific method of : interaction. This document analyzes the commands that Airway Facilities (AF) use across different systems and : the meanings attributed to ...
Inverse design of multicomponent assemblies
NASA Astrophysics Data System (ADS)
Piñeros, William D.; Lindquist, Beth A.; Jadrich, Ryan B.; Truskett, Thomas M.
2018-03-01
Inverse design can be a useful strategy for discovering interactions that drive particles to spontaneously self-assemble into a desired structure. Here, we extend an inverse design methodology—relative entropy optimization—to determine isotropic interactions that promote assembly of targeted multicomponent phases, and we apply this extension to design interactions for a variety of binary crystals ranging from compact triangular and square architectures to highly open structures with dodecagonal and octadecagonal motifs. We compare the resulting optimized (self- and cross) interactions for the binary assemblies to those obtained from optimization of analogous single-component systems. This comparison reveals that self-interactions act as a "primer" to position particles at approximately correct coordination shell distances, while cross interactions act as the "binder" that refines and locks the system into the desired configuration. For simpler binary targets, it is possible to successfully design self-assembling systems while restricting one of these interaction types to be a hard-core-like potential. However, optimization of both self- and cross interaction types appears necessary to design for assembly of more complex or open structures.
Multisites Coordination in Shared Multicast Trees
1999-01-01
conferencing, distributed interactive simulations, and collaborative systems. We de- scribe a novel protocol to coordinate multipoint groupwork in the IP...multicast framework. The pro- tocol supports Internet-wide coordination for large and highly-interactive groupwork , relying on trans- mission of
Robustness Elasticity in Complex Networks
Matisziw, Timothy C.; Grubesic, Tony H.; Guo, Junyu
2012-01-01
Network robustness refers to a network’s resilience to stress or damage. Given that most networks are inherently dynamic, with changing topology, loads, and operational states, their robustness is also likely subject to change. However, in most analyses of network structure, it is assumed that interaction among nodes has no effect on robustness. To investigate the hypothesis that network robustness is not sensitive or elastic to the level of interaction (or flow) among network nodes, this paper explores the impacts of network disruption, namely arc deletion, over a temporal sequence of observed nodal interactions for a large Internet backbone system. In particular, a mathematical programming approach is used to identify exact bounds on robustness to arc deletion for each epoch of nodal interaction. Elasticity of the identified bounds relative to the magnitude of arc deletion is assessed. Results indicate that system robustness can be highly elastic to spatial and temporal variations in nodal interactions within complex systems. Further, the presence of this elasticity provides evidence that a failure to account for nodal interaction can confound characterizations of complex networked systems. PMID:22808060
NASA Technical Reports Server (NTRS)
Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator)
1975-01-01
The author has identified the following significant results. It was found that the high speed man machine interaction capability is a distinct advantage of the image 100; however, the small size of the digital computer in the system is a definite limitation. The system can be highly useful in an analysis mode in which it complements a large general purpose computer. The image 100 was found to be extremely valuable in the analysis of aircraft MSS data where the spatial resolution begins to approach photographic quality and the analyst can exercise interpretation judgements and readily interact with the machine.
Robot graphic simulation testbed
NASA Technical Reports Server (NTRS)
Cook, George E.; Sztipanovits, Janos; Biegl, Csaba; Karsai, Gabor; Springfield, James F.
1991-01-01
The objective of this research was twofold. First, the basic capabilities of ROBOSIM (graphical simulation system) were improved and extended by taking advantage of advanced graphic workstation technology and artificial intelligence programming techniques. Second, the scope of the graphic simulation testbed was extended to include general problems of Space Station automation. Hardware support for 3-D graphics and high processing performance make high resolution solid modeling, collision detection, and simulation of structural dynamics computationally feasible. The Space Station is a complex system with many interacting subsystems. Design and testing of automation concepts demand modeling of the affected processes, their interactions, and that of the proposed control systems. The automation testbed was designed to facilitate studies in Space Station automation concepts.
Multichannel-Hadamard calibration of high-order adaptive optics systems.
Guo, Youming; Rao, Changhui; Bao, Hua; Zhang, Ang; Zhang, Xuejun; Wei, Kai
2014-06-02
we present a novel technique of calibrating the interaction matrix for high-order adaptive optics systems, called the multichannel-Hadamard method. In this method, the deformable mirror actuators are firstly divided into a series of channels according to their coupling relationship, and then the voltage-oriented Hadamard method is applied to these channels. Taking the 595-element adaptive optics system as an example, the procedure is described in detail. The optimal channel dividing is discussed and tested by numerical simulation. The proposed method is also compared with the voltage-oriented Hadamard only method and the multichannel only method by experiments. Results show that the multichannel-Hadamard method can produce significant improvement on interaction matrix measurement.
Size-exclusion chromatography system for macromolecular interaction analysis
Stevens, Fred J.
1988-01-01
A low pressure, microcomputer controlled system employing high performance liquid chromatography (HPLC) allows for precise analysis of the interaction of two reversibly associating macromolecules such as proteins. Since a macromolecular complex migrates faster than its components during size-exclusion chromatography, the difference between the elution profile of a mixture of two macromolecules and the summation of the elution profiles of the two components provides a quantifiable indication of the degree of molecular interaction. This delta profile is used to qualitatively reveal the presence or absence of significant interaction or to rank the relative degree of interaction in comparing samples and, in combination with a computer simulation, is further used to quantify the magnitude of the interaction in an arrangement wherein a microcomputer is coupled to analytical instrumentation in a novel manner.
Universality of emergent states in diverse physical systems
NASA Astrophysics Data System (ADS)
Guidry, Mike
2017-12-01
Our physics textbooks are dominated by examples of simple weakly-interacting microscopic states, but most of the real world around us is most effectively described in terms of emergent states that have no clear connection to simple textbook states. Emergent states are strongly-correlated and dominated by properties that emerge as a consequence of interactions and are not part of the description of the corresponding weakly-interacting system. This paper proposes a connection of weakly-interacting textbook states and realistic emergent states through fermion dynamical symmetries having fully-microscopic generators of the emergent states. These imply unique truncation of the Hilbert space for the weakly-interacting system to a collective subspace where the emergent states live. Universality arises because the possible symmetries under commutation of generators, which transcend the microscopic structure of the generators, are highly restricted in character and determine the basic structure of the emergent state, with the microscopic structure of the generators influencing emergent state only parametrically. In support of this idea we show explicit evidence that high-temperature superconductors, collective states in heavy atomic nuclei, and graphene quantum Hall states in strong magnetic fields exhibit a near-universal emergent behavior in their microscopically-computed total energy surfaces, even though these systems share essentially nothing in common at the microscopic level and their emergent states are characterized by fundamentally different order parameters.
Interactive Mapping on Virtual Terrain Models Using RIMS (Real-time, Interactive Mapping System)
NASA Astrophysics Data System (ADS)
Bernardin, T.; Cowgill, E.; Gold, R. D.; Hamann, B.; Kreylos, O.; Schmitt, A.
2006-12-01
Recent and ongoing space missions are yielding new multispectral data for the surfaces of Earth and other planets at unprecedented rates and spatial resolution. With their high spatial resolution and widespread coverage, these data have opened new frontiers in observational Earth and planetary science. But they have also precipitated an acute need for new analytical techniques. To address this problem, we have developed RIMS, a Real-time, Interactive Mapping System that allows scientists to visualize, interact with, and map directly on, three-dimensional (3D) displays of georeferenced texture data, such as multispectral satellite imagery, that is draped over a surface representation derived from digital elevation data. The system uses a quadtree-based multiresolution method to render in real time high-resolution (3 to 10 m/pixel) data over large (800 km by 800 km) spatial areas. It allows users to map inside this interactive environment by generating georeferenced and attributed vector-based elements that are draped over the topography. We explain the technique using 15 m ASTER stereo-data from Iraq, P.R. China, and other remote locations because our particular motivation is to develop a technique that permits the detailed (10 m to 1000 m) neotectonic mapping over large (100 km to 1000 km long) active fault systems that is needed to better understand active continental deformation on Earth. RIMS also includes a virtual geologic compass that allows users to fit a plane to geologic surfaces and thereby measure their orientations. It also includes tools that allow 3D surface reconstruction of deformed and partially eroded surfaces such as folded bedding planes. These georeferenced map and measurement data can be exported to, or imported from, a standard GIS (geographic information systems) file format. Our interactive, 3D visualization and analysis system is designed for those who study planetary surfaces, including neotectonic geologists, geomorphologists, marine geophysicists, and planetary scientists. The strength of our system is that it combines interactive rendering with interactive mapping and measurement of features observed in topographic and texture data. Comparison with commercially available software indicates that our system improves mapping accuracy and efficiency. More importantly, it enables Earth scientists to rapidly achieve a deeper level of understanding of remotely sensed data, as observations can be made that are not possible with existing systems.
Exploration Medical System Technical Architecture Overview
NASA Technical Reports Server (NTRS)
Cerro, J.; Rubin, D.; Mindock, J.; Middour, C.; McGuire, K.; Hanson, A.; Reilly, J.; Burba, T.; Urbina, M.
2018-01-01
The Exploration Medical Capability (ExMC) Element Systems Engineering (SE) goals include defining the technical system needed to support medical capabilities for a Mars exploration mission. A draft medical system architecture was developed based on stakeholder needs, system goals, and system behaviors, as captured in an ExMC concept of operations document and a system model. This talk will discuss a high-level view of the medical system, as part of a larger crew health and performance system, both of which will support crew during Deep Space Transport missions. Other mission components, such as the flight system, ground system, caregiver, and patient, will be discussed as aspects of the context because the medical system will have important interactions with each. Additionally, important interactions with other aspects of the crew health and performance system are anticipated, such as health & wellness, mission task performance support, and environmental protection. This talk will highlight areas in which we are working with other disciplines to understand these interactions.
dos-Santos, M; Fujino, A
2012-01-01
Radiology teaching usually employs a systematic and comprehensive set of medical images and related information. Databases with representative radiological images and documents are highly desirable and widely used in Radiology teaching programs. Currently, computer-based teaching file systems are widely used in Medicine and Radiology teaching as an educational resource. This work addresses a user-centered radiology electronic teaching file system as an instance of MIRC compliant medical image database. Such as a digital library, the clinical cases are available to access by using a web browser. The system has offered great opportunities to some Radiology residents interact with experts. This has been done by applying user-centered techniques and creating usage context-based tools in order to make available an interactive system.
Berwanger, Anja; Eyrisch, Susanne; Schuster, Inge; Helms, Volkhard; Bernhardt, Rita
2010-02-01
Modulations of protein-protein interactions are a key step in regulating protein function, especially in networks. Modulators of these interactions are supposed to be candidates for the development of novel drugs. Here, we describe the role of the small, polycationic and highly abundant natural polyamines that could efficiently bind to charged spots at protein interfaces as modulators of such protein-protein interactions. Using the mitochondrial cytochrome P45011A1 (CYP11A1) electron transfer system as a model, we have analyzed the capability of putrescine, spermidine, and spermine at physiologically relevant concentrations to affect the protein-protein interactions between adrenodoxin reductase (AdR), adrenodoxin (Adx), and CYP11A1. The actions of polyamines on the individual components, on their association/dissociation, on electron transfer, and on substrate conversion were examined. These studies revealed modulating effects of polyamines on distinct interactions and on the entire system in a complex way. Modulation via changed protein-protein interactions appeared plausible from docking experiments that suggested favourable high-affinity binding sites of polyamines (spermine>spermidine>putrescine) at the AdR-Adx interface. Our findings imply for the first time that small endogenous compounds are capable of interfering with distinct components of transient protein complexes and might control protein functions by modulating electrostatic protein-protein interactions.
AOIPS data base management systems support for GARP data sets
NASA Technical Reports Server (NTRS)
Gary, J. P.
1977-01-01
A data base management system is identified, developed to provide flexible access to data sets produced by GARP during its data systems tests. The content and coverage of the data base are defined and a computer-aided, interactive information storage and retrieval system, implemented to facilitate access to user specified data subsets, is described. The computer programs developed to provide the capability were implemented on the highly interactive, minicomputer-based AOIPS and are referred to as the data retrieval system (DRS). Implemented as a user interactive but menu guided system, the DRS permits users to inventory the data tape library and create duplicate or subset data sets based on a user selected window defined by time and latitude/longitude boundaries. The DRS permits users to select, display, or produce formatted hard copy of individual data items contained within the data records.
Interplay of interaction and disorder in the steady state of an open quantum system
NASA Astrophysics Data System (ADS)
Xu, Xiansong; Guo, Chu; Poletti, Dario
2018-04-01
Many types of dissipative processes can be found in nature or be engineered, and their interplay with a system can give rise to interesting phases of matter. Here we study the interplay among interaction, tunneling, and disorder in the steady state of a spin chain coupled to a tailored bath. We consider a dissipation which, in contrast to disorder, tends to generate a homogeneously polarized steady state. We find that the steady state can be highly sensitive even to weak disorder. We also establish that, in the presence of such dissipation, even in the absence of interaction, a finite amount of disorder is needed for localization. Last, we show that for strong disorder the system reveals signatures of localization both in the weakly and strong interacting regimes.
Interactions between large space power systems and low-Earth-orbit plasmas
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1985-01-01
There is a growing tendency to plan space missions that will incorporate very large space power systems. These space power systems must function in the space plasma environment, which can impose operational limitations. As the power output increases, the operating voltage also must increase and this voltage, exposed at solar array interconnects, interacts with the local plasma. The implications of such interactions are considered. The available laboratory data for biased array segment tests are reviewed to demonstrate the basic interactions considered. A data set for a floating high voltage array test was used to generate approximate relationships for positive and negative current collection from plasmas. These relationships were applied to a hypothetical 100 kW power system operating in a 400 km, near equatorial orbit. It was found that discharges from the negative regions of the array are the most probable limiting factor in array operation.
NASA Astrophysics Data System (ADS)
Burin, Alexander L.
2015-09-01
Many-body localization in an XY model with a long-range interaction is investigated. We show that in the regime of a high strength of disordering compared to the interaction an off-resonant flip-flop spin-spin interaction (hopping) generates the effective Ising interactions of spins in the third order of perturbation theory in a hopping. The combination of hopping and induced Ising interactions for the power-law distance dependent hopping V (R ) ∝R-α always leads to the localization breakdown in a thermodynamic limit of an infinite system at α <3 d /2 where d is a system dimension. The delocalization takes place due to the induced Ising interactions U (R ) ∝R-2 α of "extended" resonant pairs. This prediction is consistent with the numerical finite size scaling in one-dimensional systems. Many-body localization in an XY model is more stable with respect to the long-range interaction compared to a many-body problem with similar Ising and Heisenberg interactions requiring α ≥2 d which makes the practical implementations of this model more attractive for quantum information applications. The full summary of dimension constraints and localization threshold size dependencies for many-body localization in the case of combined Ising and hopping interactions is obtained using this and previous work and it is the subject for the future experimental verification using cold atomic systems.
NASA Astrophysics Data System (ADS)
Atalay, Bora; Berker, A. Nihat
2018-05-01
Discrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or asymmetric, ferromagnetic or antiferromagnetic, including off-diagonal disorder, are studied, for the number of states q =3 ,4 in d dimensions. We use renormalization-group theory that is exact for hierarchical lattices and approximate (Migdal-Kadanoff) for hypercubic lattices. For all d >1 and all noninfinite temperatures, the system eventually renormalizes to a random single state, thus signaling q ×q degenerate ordering. Note that this is the maximally degenerate ordering. For high-temperature initial conditions, the system crosses over to this highly degenerate ordering only after spending many renormalization-group iterations near the disordered (infinite-temperature) fixed point. Thus, a temperature range of short-range disorder in the presence of long-range order is identified, as previously seen in underfrustrated Ising spin-glass systems. The entropy is calculated for all temperatures, behaves similarly for ferromagnetic and antiferromagnetic interactions, and shows a derivative maximum at the short-range disordering temperature. With a sharp immediate contrast of infinitesimally higher dimension 1 +ɛ , the system is as expected disordered at all temperatures for d =1 .
High-Level Data-Abstraction System
NASA Technical Reports Server (NTRS)
Fishwick, P. A.
1986-01-01
Communication with data-base processor flexible and efficient. High Level Data Abstraction (HILDA) system is three-layer system supporting data-abstraction features of Intel data-base processor (DBP). Purpose of HILDA establishment of flexible method of efficiently communicating with DBP. Power of HILDA lies in its extensibility with regard to syntax and semantic changes. HILDA's high-level query language readily modified. Offers powerful potential to computer sites where DBP attached to DEC VAX-series computer. HILDA system written in Pascal and FORTRAN 77 for interactive execution.
ISS Plasma Interaction: Measurements and Modeling
NASA Technical Reports Server (NTRS)
Barsamian, H.; Mikatarian, R.; Alred, J.; Minow, J.; Koontz, S.
2004-01-01
Ionospheric plasma interaction effects on the International Space Station are discussed in the following paper. The large structure and high voltage arrays of the ISS represent a complex system interacting with LEO plasma. Discharge current measurements made by the Plasma Contactor Units and potential measurements made by the Floating Potential Probe delineate charging and magnetic induction effects on the ISS. Based on theoretical and physical understanding of the interaction phenomena, a model of ISS plasma interaction has been developed. The model includes magnetic induction effects, interaction of the high voltage solar arrays with ionospheric plasma, and accounts for other conductive areas on the ISS. Based on these phenomena, the Plasma Interaction Model has been developed. Limited verification of the model has been performed by comparison of Floating Potential Probe measurement data to simulations. The ISS plasma interaction model will be further tested and verified as measurements from the Floating Potential Measurement Unit become available, and construction of the ISS continues.
de Groot, Carolin; Müller-Goymann, Christel C
2016-12-01
Saponins are used in medicine due to their pharmacological and immunological effects. To better understand interactions of saponins with model membranes and natural membranes of, for example, erythrocytes, Langmuir film balance experiments are well established. For most saponins, a strong interaction with cholesterol was demonstrated in dependence of both the aglycone part and the sugar moieties and is suggested to be correlated with a strong hemolytic activity, high toxicity, and high surface activity, as was demonstrated for the steroid saponin digitonin. In general, changes in the sugar chain or in substituents of the aglycone result in a modification of the saponin properties. A promising saponin with regard to fairly low hemolytic activity and high adjuvant effect is α -tomatine, which still shows a high affinity for cholesterol. An interaction with cholesterol and lipids has also been proven for the Quillaja saponin from the bark of Quillaja saponaria Molina. This triterpene saponin was approved in marketed vaccines as an adjuvant due to the formation of immunostimulating complexes. Immunostimulating complexes consist of a Quillaja saponin, cholesterol, phospholipids, and a corresponding antigen. Recently, another saponin from Quillaja brasiliensis was successfully tested in immunostimulating complexes, too. Based on the results of interaction studies, the formation of drug delivery systems such as immunostimulating complexes or similar self-assembled colloids is postulated for a variety of saponins. Georg Thieme Verlag KG Stuttgart · New York.
Lecture-Free High School Biology Using an Audience Response System
ERIC Educational Resources Information Center
Barnes, Larry J.
2008-01-01
Audience Response Systems (ARS) represent a powerful new tool for increasing student engagement. ARS technology (known variously as electronic voting systems, personal response systems, interactive student response systems, and classroom performance systems) includes one hand-held remote per student, a receiver (infrared or radio frequency,…
NASA Astrophysics Data System (ADS)
Binek, Sławomir; Kimla, Damian; Jarosz, Jerzy
2017-01-01
We report on the effectiveness of using interactive personal response systems in teaching physics in secondary schools. Our research were conducted over the period of 2013-2016 using the system called clickers. The idea is based on a reciprocal interaction allowing one to ask questions and receive immediate responses from all the students simultaneously. Our investigation has confirmed this method to be highly effective and powerful. In particular, students’ ability to acquire knowledge increased with the time spent using clickers. We have successfully applied the system also to entire physics courses. As a result, a positive feedback from students has been observed: not only did they learn more but also the teachers were able to improve their own methods.
NASA Astrophysics Data System (ADS)
Lee, Joonseong; Kim, Seonghoon; Chang, Rakwoo; Jayanthi, Lakshmi; Gebremichael, Yeshitila
2013-01-01
The present study examines the effects of the model dependence, ionic strength, divalent ions, and hydrophobic interaction on the structural organization of the human neurofilament (NF) brush, using canonical ensemble Monte Carlo (MC) simulations of a coarse-grained model with the amino-acid resolution. The model simplifies the interactions between the NF core and the sidearm or between the sidearms by the sum of excluded volume, electrostatic, and hydrophobic interactions, where both monovalent salt ions and solvents are implicitly incorporated into the electrostatic interaction potential. Several important observations are made from the MC simulations of the coarse-grained model NF systems. First, the mean-field type description of monovalent salt ions works reasonably well in the NF system. Second, the manner by which the NF sidearms are arranged on the surface of the NF backbone core has little influence on the lateral extension of NF sidearms. Third, the lateral extension of the NF sidearms is highly affected by the ionic strength of the system: at low ionic strength, NF-M is most extended but at high ionic strength, NF-H is more stretched out because of the effective screening of the electrostatic interaction. Fourth, the presence of Ca2 + ions induces the attraction between negatively charged residues, which leads to the contraction of the overall NF extension. Finally, the introduction of hydrophobic interaction does not change the general structural organization of the NF sidearms except that the overall extension is contracted.
NASA Astrophysics Data System (ADS)
Bessonov, O.; Silvestrov, P.
2017-02-01
This paper describes the general idea and the first implementation of the Interactive information and simulation system - an integrated environment that combines computational modules for modeling the aerodynamics and aerothermodynamics of re-entry space vehicles with the large collection of different information materials on this topic. The internal organization and the composition of the system are described and illustrated. Examples of the computational and information output are presented. The system has the unified implementation for Windows and Linux operation systems and can be deployed on any modern high-performance personal computer.
OFMspert: An architecture for an operator's associate that evolves to an intelligent tutor
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1991-01-01
With the emergence of new technology for both human-computer interaction and knowledge-based systems, a range of opportunities exist which enhance the effectiveness and efficiency of controllers of high-risk engineering systems. The design of an architecture for an operator's associate is described. This associate is a stand-alone model-based system designed to interact with operators of complex dynamic systems, such as airplanes, manned space systems, and satellite ground control systems in ways comparable to that of a human assistant. The operator function model expert system (OFMspert) architecture and the design and empirical validation of OFMspert's understanding component are described. The design and validation of OFMspert's interactive and control components are also described. A description of current work in which OFMspert provides the foundation in the development of an intelligent tutor that evolves to an assistant, as operator expertise evolves from novice to expert, is provided.
The vertex and large angle detectors of a spectrometer system for high energy muon physics
NASA Astrophysics Data System (ADS)
Albanese, J. P.; Allkofer, O. C.; Arneodo, M.; Aubert, J. J.; Becks, K. H.; Bee, C.; Benchouk, C.; Bernaudin, B.; Bertsch, Y.; Bianchi, F.; Bibby, J.; Bird, I.; Blum, D.; Böhm, E.; Botterill, D.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Callebaut, D.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Cornelssen, M.; Costa, F.; Coughlan, J.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Davis, A.; Dengler, F.; Derado, I.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Dumont, J. J.; Eckardt, V.; Edwards, A.; Edwards, M.; Falley, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gebauer, H. J.; Gössling, C.; Haas, J.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kahl, T.; Kellner, G.; Koll, J.; Korbel, V.; Krüger, J.; Landgraf, U.; Lanske, D.; Lebeau, M.; Loken, J.; Maire, M.; Manz, A.; Mermet-Guyennet, M.; Minssieux, H.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Moynot, M.; Müller, H.; Nagy, E.; Nassalski, J.; Noppe, J. M.; Norton, P. R.; Osborne, A. M.; Pascaud, C.; Paul, L.; Payre, P.; Peroni, C.; Perrot, G.; Pessard, H.; Pettingale, J.; Pötsch, M.; Preissner, H.; Renton, P.; Ribarics, P.; Rith, K.; Röhner, F.; Rondio, E.; Rousseau, M. D.; Schlagböhmer, A.; Schmitz, N.; Scaramelli, A.; Schneegans, M.; Schultze, K.; Scory, M.; Shiers, J.; Singer, G.; Sloan, T.; Smith, R.; Sproston, M.; Stier, H. E.; Stockhausen, W.; Studt, M.; Thénard, J. M.; Thiele, K.; Thompson, J. C.; De La Torre, A.; Wahlen, H.; Wallucks, W.; Watson, E.; Whalley, M.; Williams, D. A.; Williams, W. S. C.; Wimpenny, S.; Windmolders, R.; Winklmüller, G.; Wolf, G.; Zank, P.; European Muon Collaboration
1983-07-01
A description is given of the detector system which forms the large angle spectrometer and vertex detector of the EMC spectrometer. The apparatus is used in the NA9 experiment which studies the complete hadronic final state from the interaction of high energy muons.
Beer, Meike V; Rech, Claudia; Diederichs, Sylvia; Hahn, Kathrin; Bruellhoff, Kristina; Möller, Martin; Elling, Lothar; Groll, Jürgen
2012-04-01
Precise determination of biomolecular interactions in high throughput crucially depends on a surface coating technique that allows immobilization of a variety of interaction partners in a non-interacting environment. We present a one-step hydrogel coating system based on isocyanate functional six-arm poly(ethylene oxide)-based star polymers for commercially available 96-well microtiter plates that combines a straightforward and robust coating application with versatile bio-functionalization. This system generates resistance to unspecific protein adsorption and cell adhesion, as demonstrated with fluorescently labeled bovine serum albumin and primary human dermal fibroblasts (HDF), and high specificity for the assessment of biomolecular recognition processes when ligands are immobilized on this surface. One particular advantage is the wide range of biomolecules that can be immobilized and convert the per se inert coating into a specifically interacting surface. We here demonstrate the immobilization and quantification of a broad range of biochemically important ligands, such as peptide sequences GRGDS and GRGDSK-biotin, the broadly applicable coupler molecule biocytin, the protein fibronectin, and the carbohydrates N-acetylglucosamine and N-acetyllactosamine. A simplified protocol for an enzyme-linked immunosorbent assay was established for the detection and quantification of ligands on the coating surface. Cell adhesion on the peptide and protein-modified surfaces was assessed using HDF. All coatings were applied using a one-step preparation technique, including bioactivation, which makes the system suitable for high-throughput screening in a format that is compatible with the most routinely used testing systems.
ERIC Educational Resources Information Center
Rizvi, Rubina Fatima
2017-01-01
Despite high Electronic Health Record (EHR) system adoption rates by hospital and office-based practices, many users remain highly dissatisfied with the current state of EHRs. Sub-optimal EHR usability as a result of insufficient incorporation of User-Centered Design (UCD) approach during System Development Life Cycle process (SDLC) is considered…
NASA Astrophysics Data System (ADS)
Dessup, Tommy; Coste, Christophe; Saint Jean, Michel
2017-01-01
We study the path toward equilibrium of pairs of solitary wave envelopes (bubbles) that modulate a regular zigzag pattern in an annular channel. We evidence that bubble pairs are metastable states, which spontaneously evolve toward a stable single bubble. We exhibit the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive, whereas it is repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: It is attractive for NF systems and repulsive for F systems and decreases exponentially with the bubbles distance. Moreover, for NF systems, the bubbles come closer and eventually merge as a single bubble, in a coalescence process. We also evidence a collapse process, in which one bubble shrinks in favor of the other one, overcoming an energetic barrier in phase space. This process is relevant for both NF systems and F systems. In NF systems, the coalescence prevails at low temperature, whereas thermally activated jumps make the collapse prevail at high temperature. In F systems, the path toward equilibrium involves a collapse process regardless of the temperature.
A Vision for Co-optimized T&D System Interaction with Renewables and Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Lindsay; Zéphyr, Luckny; Cardell, Judith B.
The evolution of the power system to the reliable, efficient and sustainable system of the future will involve development of both demand- and supply-side technology and operations. The use of demand response to counterbalance the intermittency of renewable generation brings the consumer into the spotlight. Though individual consumers are interconnected at the low-voltage distribution system, these resources are typically modeled as variables at the transmission network level. In this paper, a vision for cooptimized interaction of distribution systems, or microgrids, with the high-voltage transmission system is described. In this framework, microgrids encompass consumers, distributed renewables and storage. The energy managementmore » system of the microgrid can also sell (buy) excess (necessary) energy from the transmission system. Preliminary work explores price mechanisms to manage the microgrid and its interactions with the transmission system. Wholesale market operations are addressed through the development of scalable stochastic optimization methods that provide the ability to co-optimize interactions between the transmission and distribution systems. Modeling challenges of the co-optimization are addressed via solution methods for large-scale stochastic optimization, including decomposition and stochastic dual dynamic programming.« less
A Vision for Co-optimized T&D System Interaction with Renewables and Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C. Lindsay; Zéphyr, Luckny; Liu, Jialin
The evolution of the power system to the reliable, effi- cient and sustainable system of the future will involve development of both demand- and supply-side technology and operations. The use of demand response to counterbalance the intermittency of re- newable generation brings the consumer into the spotlight. Though individual consumers are interconnected at the low-voltage distri- bution system, these resources are typically modeled as variables at the transmission network level. In this paper, a vision for co- optimized interaction of distribution systems, or microgrids, with the high-voltage transmission system is described. In this frame- work, microgrids encompass consumers, distributed renewablesmore » and storage. The energy management system of the microgrid can also sell (buy) excess (necessary) energy from the transmission system. Preliminary work explores price mechanisms to manage the microgrid and its interactions with the transmission system. Wholesale market operations are addressed through the devel- opment of scalable stochastic optimization methods that provide the ability to co-optimize interactions between the transmission and distribution systems. Modeling challenges of the co-optimization are addressed via solution methods for large-scale stochastic op- timization, including decomposition and stochastic dual dynamic programming.« less
NASA Astrophysics Data System (ADS)
Ojima, D. S.; Chuluun, T.; Temirbekov, S. S.; Mahowald, N.; Hicke, J.
2004-12-01
Dramatic changes occurred in pastoral systems of Eurasia ranging from Mongolia, China and Central Asia for the past decades. Recently, evaluation of the pastoral systems has been conducted in the region. Pastoral systems, where humans depend on livestock, exist largely in arid or semi-arid ecosystems where climate is highly variable. Interaction between ecosystems and nomadic land use systems co-shaped them in mutual adaptive ways for hundreds of years, thus making both the Mongolian rangeland ecosystem and nomadic pastoral system resilient and sustainable. Current changes in environmental conditions are affecting land-atmosphere interactions. Regional dust events, changes in hydrological cycle, and land use changes contribute to changing interactions between ecosystem and landscape processes which affect regional climate. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. This set of drivers is orthogonal to the above described climate drivers. Thus we expect climate-land use-land cover relationships to be crucially modified by the socio-economic forces.
Query2Question: Translating Visualization Interaction into Natural Language.
Nafari, Maryam; Weaver, Chris
2015-06-01
Richly interactive visualization tools are increasingly popular for data exploration and analysis in a wide variety of domains. Existing systems and techniques for recording provenance of interaction focus either on comprehensive automated recording of low-level interaction events or on idiosyncratic manual transcription of high-level analysis activities. In this paper, we present the architecture and translation design of a query-to-question (Q2Q) system that automatically records user interactions and presents them semantically using natural language (written English). Q2Q takes advantage of domain knowledge and uses natural language generation (NLG) techniques to translate and transcribe a progression of interactive visualization states into a visual log of styled text that complements and effectively extends the functionality of visualization tools. We present Q2Q as a means to support a cross-examination process in which questions rather than interactions are the focus of analytic reasoning and action. We describe the architecture and implementation of the Q2Q system, discuss key design factors and variations that effect question generation, and present several visualizations that incorporate Q2Q for analysis in a variety of knowledge domains.
NASA Technical Reports Server (NTRS)
1998-01-01
SYMED, Inc., developed a unique electronic medical records and information management system. The S2000 Medical Interactive Care System (MICS) incorporates both a comprehensive and interactive medical care support capability and an extensive array of digital medical reference materials in either text or high resolution graphic form. The system was designed, in cooperation with NASA, to improve the effectiveness and efficiency of physician practices. The S2000 is a MS (Microsoft) Windows based software product which combines electronic forms, medical documents, records management, and features a comprehensive medical information system for medical diagnostic support and treatment. SYMED, Inc. offers access to its medical systems to all companies seeking competitive advantages.
Do volatiles produced by nectar-dwelling microbes affect honey bee preferences?
USDA-ARS?s Scientific Manuscript database
The microbiome of plants mediates many interactions in natural and managed systems. Among these, plant-pollinator interactions are important for ensuring high crop yields, pollinator health and successful plant reproduction. Despite initial work demonstrating effects of floral microbes on pollinatio...
USDA-ARS?s Scientific Manuscript database
Interspecies specific interactions are generally regarded as drivers of plant productivity in multispecies agroecosystems. Positive interactions such as facilitation can dominate over competition under high abiotic stress conditions. Furthermore, complementary use of resource in diverse communities ...
Guided exploration in virtual environments
NASA Astrophysics Data System (ADS)
Beckhaus, Steffi; Eckel, Gerhard; Strothotte, Thomas
2001-06-01
We describe an application supporting alternating interaction and animation for the purpose of exploration in a surround- screen projection-based virtual reality system. The exploration of an environment is a highly interactive and dynamic process in which the presentation of objects of interest can give the user guidance while exploring the scene. Previous systems for automatic presentation of models or scenes need either cinematographic rules, direct human interaction, framesets or precalculation (e.g. precalculation of paths to a predefined goal). We report on the development of a system that can deal with rapidly changing user interest in objects of a scene or model as well as with dynamic models and changes of the camera position introduced interactively by the user. It is implemented as a potential-field based camera data generating system. In this paper we describe the implementation of our approach in a virtual art museum on the CyberStage, our surround-screen projection-based stereoscopic display. The paradigm of guided exploration is introduced describing the freedom of the user to explore the museum autonomously. At the same time, if requested by the user, guided exploration provides just-in-time navigational support. The user controls this support by specifying the current field of interest in high-level search criteria. We also present an informal user study evaluating this approach.
Kahn, Rachel E; Chiu, Pearl H; Deater-Deckard, Kirby; Hochgraf, Anna K; King-Casas, Brooks; Kim-Spoon, Jungmeen
2018-01-08
Within the dual systems perspective, high reward sensitivity and low punishment sensitivity in conjunction with deficits in cognitive control may contribute to high levels of risk taking, such as substance use. The current study examined whether the individual components of effortful control (inhibitory control, attentional control, and activation control) serve as regulators and moderate the association between reward or punishment sensitivity and substance use behaviors. A total of 1,808 emerging adults from a university setting (Mean age = 19.48; 72% female) completed self-report measures of reward and punishment sensitivity, effortful control, and substance use. Findings indicated significant two-way interactions for punishment sensitivity and inhibitory control for alcohol and marijuana use. The form of these interactions revealed a significant negative association between punishment sensitivity and alcohol and marijuana use at low levels of inhibitory control. No significant interactions emerged for reward sensitivity or other components of effortful control. The current findings provide preliminary evidence suggesting the dual systems theorized to influence risk taking behavior interact to make joint contributions to health risk behaviors such as substance use in emerging adults.
An interactive Doppler velocity dealiasing scheme
NASA Astrophysics Data System (ADS)
Pan, Jiawen; Chen, Qi; Wei, Ming; Gao, Li
2009-10-01
Doppler weather radars are capable of providing high quality wind data at a high spatial and temporal resolution. However, operational application of Doppler velocity data from weather radars is hampered by the infamous limitation of the velocity ambiguity. This paper reviews the cause of velocity folding and presents the unfolding method recently implemented for the CINRAD systems. A simple interactive method for velocity data, which corrects de-aliasing errors, has been developed and tested. It is concluded that the algorithm is very efficient and produces high quality velocity data.
Focused Wind Mass Accretion in Mira AB
NASA Astrophysics Data System (ADS)
Karovska, Margarita; de Val-Borro, M.; Hack, W.; Raymond, J.; Sasselov, D.; Lee, N. P.
2011-05-01
At a distance of about only 100pc, Mira AB is the nearest symbiotic system containing an Asymptotic Giant Branch (AGB) star (Mira A), and a compact accreting companion (Mira B) at about 0.5" from Mira A. Symbiotic systems are interacting binaries with a key evolutionary importance as potential progenitors of a fraction of asymmetric Planetary Nebulae, and SN type Ia, cosmological distance indicators. The region of interaction has been studied using high-angular resolution, multiwavelength observations ranging from radio to X-ray wavelengths. Our results, including high-angular resolution Chandra imaging, show a "bridge" between Mira A and Mira B, indicating gravitational focusing of the Mira A wind, whereby components exchange matter directly in addition to the wind accretion. We carried out a study using 2-D hydrodynamical models of focused wind mass accretion to determine the region of wind acceleration and the characteristics of the accretion in Mira AB. We highlight some of our results and discuss the impact on our understanding of accretion processes in symbiotic systems and other detached and semidetached interacting systems.
De Nobrega, Aliza K.
2017-01-01
Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the use of personal electronics. The circadian clock modulates alcohol- and drug-induced behaviors with circadian misalignment contributing to increased substance use and abuse. Invertebrate models, such as Drosophila melanogaster, have proven invaluable for the identification of genetic and molecular mechanisms underlying highly conserved processes including the circadian clock, drug tolerance, and reward systems. In this review, we highlight the contributions of Drosophila as a model system for understanding the bidirectional interactions between the circadian system and the drugs of abuse, alcohol and cocaine, and illustrate the highly conserved nature of these interactions between Drosophila and mammalian systems. Research in Drosophila provides mechanistic insights into the corresponding behaviors in higher organisms and can be used as a guide for targeted inquiries in mammals. PMID:29391952
Momentum sharing in imbalanced Fermi systems
NASA Astrophysics Data System (ADS)
Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16
2014-10-01
The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.
Converting laserdisc video to digital video: a demonstration project using brain animations.
Jao, C S; Hier, D B; Brint, S U
1995-01-01
Interactive laserdiscs are of limited value in large group learning situations due to the expense of establishing multiple workstations. The authors implemented an alternative to laserdisc video by using indexed digital video combined with an expert system. High-quality video was captured from a laserdisc player and combined with waveform audio into an audio-video-interleave (AVI) file format in the Microsoft Video-for-Windows environment (Microsoft Corp., Seattle, WA). With the use of an expert system, a knowledge-based computer program provided random access to these indexed AVI files. The program can be played on any multimedia computer without the need for laserdiscs. This system offers a high level of interactive video without the overhead and cost of a laserdisc player.
Minimization In Digital Design As A Meta-Planning Problem
NASA Astrophysics Data System (ADS)
Ho, William P. C.; Wu, Jung-Gen
1987-05-01
In our model-based expert system for automatic digital system design, we formalize the design process into three sub-processes - compiling high-level behavioral specifications into primitive behavioral operations, grouping primitive operations into behavioral functions, and grouping functions into modules. Consideration of design minimization explicitly controls decision-making in the last two subprocesses. Design minimization, a key task in the automatic design of digital systems, is complicated by the high degree of interaction among the time sequence and content of design decisions. In this paper, we present an AI approach which directly addresses these interactions and their consequences by modeling the minimization prob-lem as a planning problem, and the management of design decision-making as a meta-planning problem.
Zilian, Eva; Maiss, Edgar
2011-12-01
In previous studies, protein interaction maps of different potyviruses have been generated using yeast two-hybrid (YTH) systems, and these maps have demonstrated a high diversity of interactions of potyviral proteins. Using an optimized bimolecular fluorescence complementation (BiFC) system, a complete interaction matrix for proteins of a potyvirus was developed for the first time under in planta conditions with ten proteins from plum pox virus (PPV). In total, 52 of 100 possible interactions were detected, including the self-interactions of CI, 6K2, VPg, NIa-Pro, NIb and CP, which is more interactions than have ever been detected for any other potyvirus in a YTH approach. Moreover, the BiFC system was shown to be able to localize the protein interactions, which was typified for the protein self-interactions indicated above. Additionally, experiments were carried out with the P3N-PIPO protein, revealing an interaction with CI but not with CP and supporting the involvement of P3N-PIPO in the cell-to-cell movement of potyviruses. No self-interaction of the PPV helper component-proteinase (HC-Pro) was detected using BiFC in planta. Therefore, additional experiments with turnip mosaic virus (TuMV) HC-Pro, PPV_HC-Pro and their mutants were conducted. The self-interaction of TuMV_HCpro, as recently demonstrated, and the self-interaction of the TuMV_ and PPV_HC-Pro mutants were shown by BiFC in planta, indicating that HC-Pro self-interactions may be species-specific. BiFC is a very useful and reliable method for the detection and localization of protein interactions in planta, thus enabling investigations under more natural conditions than studies in yeast cells.
An Overview of Starfish: A Table-Centric Tool for Interactive Synthesis
NASA Technical Reports Server (NTRS)
Tsow, Alex
2008-01-01
Engineering is an interactive process that requires intelligent interaction at many levels. My thesis [1] advances an engineering discipline for high-level synthesis and architectural decomposition that integrates perspicuous representation, designer interaction, and mathematical rigor. Starfish, the software prototype for the design method, implements a table-centric transformation system for reorganizing control-dominated system expressions into high-level architectures. Based on the digital design derivation (DDD) system a designer-guided synthesis technique that applies correctness preserving transformations to synchronous data flow specifications expressed as co- recursive stream equations Starfish enhances user interaction and extends the reachable design space by incorporating four innovations: behavior tables, serialization tables, data refinement, and operator retiming. Behavior tables express systems of co-recursive stream equations as a table of guarded signal updates. Developers and users of the DDD system used manually constructed behavior tables to help them decide which transformations to apply and how to specify them. These design exercises produced several formally constructed hardware implementations: the FM9001 microprocessor, an SECD machine for evaluating LISP, and the SchemEngine, garbage collected machine for interpreting a byte-code representation of compiled Scheme programs. Bose and Tuna, two of DDD s developers, have subsequently commercialized the design derivation methodology at Derivation Systems, Inc. (DSI). DSI has formally derived and validated PCI bus interfaces and a Java byte-code processor; they further executed a contract to prototype SPIDER-NASA's ultra-reliable communications bus. To date, most derivations from DDD and DRS have targeted hardware due to its synchronous design paradigm. However, Starfish expressions are independent of the synchronization mechanism; there is no commitment to hardware or globally broadcast clocks. Though software back-ends for design derivation are limited to the DDD stream-interpreter, targeting synchronous or real-time software is not substantively different from targeting hardware.
Applications of High Technology to Communication Instruction.
ERIC Educational Resources Information Center
Behnke, Ralph R.; O'Hair, H. Dan
1984-01-01
Discusses classroom design and uses of interactive media. Covers the design of public speaking/interpersonal/small group communication classrooms, the simulation laboratory, the communication effectiveness trainer (ComET system), audience response systems, speech evaluation using computers, and system design considerations. (PD)
Crowell, Sheila E; Baucom, Brian R; McCauley, Elizabeth; Potapova, Natalia V; Fitelson, Martha; Barth, Heather; Smith, Cindy J; Beauchaine, Theodore P
2013-01-01
According to developmental theories of self-injury, both child characteristics and environmental contexts shape and maintain problematic behaviors. Although progress has been made toward identifying biological vulnerabilities to self-injury, mechanisms underlying psychosocial risk have received less attention. In the present study, we compared self-injuring adolescents (n = 17) with typical controls (n = 20) during a mother-child conflict discussion. Dyadic interactions were coded using both global and microanalytic systems, allowing for a highly detailed characterization of mother-child interactions. We also assessed resting state psychophysiological regulation, as indexed by respiratory sinus arrhythmia (RSA). Global coding revealed that maternal invalidation was associated with adolescent anger. Furthermore, maternal invalidation and coerciveness were both related to adolescent opposition/defiance. Results from the microanalytic system indicated that self-injuring dyads were more likely to escalate conflict, suggesting a potential mechanism through which emotion dysregulation is shaped and maintained over time. Finally, mother and teen aversiveness interacted to predict adolescent resting RSA. Low-aversive teens with highly aversive mothers had the highest RSA, whereas teens in high-high dyads showed the lowest RSA. These findings are consistent with theories that emotion invalidation and conflict escalation are possible contextual risk factors for self-injury.
Crowell, Sheila E.; Baucom, Brian R.; McCauley, Elizabeth; Potapova, Natalia V.; Fitelson, Martha; Barth, Heather; Smith, Cindy J.; Beauchaine, Theodore P.
2013-01-01
OBJECTIVE According to developmental theories of self-injury, both child characteristics and environmental contexts shape and maintain problematic behaviors. Although progress has been made toward identifying biological vulnerabilities to self-injury, mechanisms underlying psychosocial risk have received less attention. METHOD In the present study, we compared self-injuring adolescents (n=17) with typical controls (n=20) during a mother-child conflict discussion. Dyadic interactions were coded using both global and microanalytic systems, allowing for a highly detailed characterization of mother-child interactions. We also assessed resting state psychophysiological regulation, as indexed by respiratory sinus arrhythmia (RSA). RESULTS Global coding revealed that maternal invalidation was associated with adolescent anger. Furthermore, maternal invalidation and coerciveness were both related to adolescent opposition/defiance. Results from the microanalytic system indicated that self-injuring dyads were more likely to escalate conflict, suggesting a potential mechanism through which emotion dysregulation is shaped and maintained over time. Finally, mother and teen aversiveness interacted to predict adolescent resting RSA. Low-aversive teens with highly aversive mothers had the highest RSA, whereas teens in high-high dyads showed the lowest RSA. CONCLUSIONS These findings are consistent with theories that emotion invalidation and conflict escalation are possible contextual risk factors for self-injury. PMID:23581508
The emerging genomics and systems biology research lead to systems genomics studies.
Yang, Mary Qu; Yoshigoe, Kenji; Yang, William; Tong, Weida; Qin, Xiang; Dunker, A; Chen, Zhongxue; Arbania, Hamid R; Liu, Jun S; Niemierko, Andrzej; Yang, Jack Y
2014-01-01
Synergistically integrating multi-layer genomic data at systems level not only can lead to deeper insights into the molecular mechanisms related to disease initiation and progression, but also can guide pathway-based biomarker and drug target identification. With the advent of high-throughput next-generation sequencing technologies, sequencing both DNA and RNA has generated multi-layer genomic data that can provide DNA polymorphism, non-coding RNA, messenger RNA, gene expression, isoform and alternative splicing information. Systems biology on the other hand studies complex biological systems, particularly systematic study of complex molecular interactions within specific cells or organisms. Genomics and molecular systems biology can be merged into the study of genomic profiles and implicated biological functions at cellular or organism level. The prospectively emerging field can be referred to as systems genomics or genomic systems biology. The Mid-South Bioinformatics Centre (MBC) and Joint Bioinformatics Ph.D. Program of University of Arkansas at Little Rock and University of Arkansas for Medical Sciences are particularly interested in promoting education and research advancement in this prospectively emerging field. Based on past investigations and research outcomes, MBC is further utilizing differential gene and isoform/exon expression from RNA-seq and co-regulation from the ChiP-seq specific for different phenotypes in combination with protein-protein interactions, and protein-DNA interactions to construct high-level gene networks for an integrative genome-phoneme investigation at systems biology level.
Toshiba TDF-500 High Resolution Viewing And Analysis System
NASA Astrophysics Data System (ADS)
Roberts, Barry; Kakegawa, M.; Nishikawa, M.; Oikawa, D.
1988-06-01
A high resolution, operator interactive, medical viewing and analysis system has been developed by Toshiba and Bio-Imaging Research. This system provides many advanced features including high resolution displays, a very large image memory and advanced image processing capability. In particular, the system provides CRT frame buffers capable of update in one frame period, an array processor capable of image processing at operator interactive speeds, and a memory system capable of updating multiple frame buffers at frame rates whilst supporting multiple array processors. The display system provides 1024 x 1536 display resolution at 40Hz frame and 80Hz field rates. In particular, the ability to provide whole or partial update of the screen at the scanning rate is a key feature. This allows multiple viewports or windows in the display buffer with both fixed and cine capability. To support image processing features such as windowing, pan, zoom, minification, filtering, ROI analysis, multiplanar and 3D reconstruction, a high performance CPU is integrated into the system. This CPU is an array processor capable of up to 400 million instructions per second. To support the multiple viewer and array processors' instantaneous high memory bandwidth requirement, an ultra fast memory system is used. This memory system has a bandwidth capability of 400MB/sec and a total capacity of 256MB. This bandwidth is more than adequate to support several high resolution CRT's and also the fast processing unit. This fully integrated approach allows effective real time image processing. The integrated design of viewing system, memory system and array processor are key to the imaging system. It is the intention to describe the architecture of the image system in this paper.
Hierarchy of Modes in an Interacting One-Dimensional System
NASA Astrophysics Data System (ADS)
Tsyplyatyev, O.; Schofield, A. J.; Jin, Y.; Moreno, M.; Tan, W. K.; Ford, C. J. B.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.
2015-05-01
Studying interacting fermions in one dimension at high energy, we find a hierarchy in the spectral weights of the excitations theoretically, and we observe evidence for second-level excitations experimentally. Diagonalizing a model of fermions (without spin), we show that levels of the hierarchy are separated by powers of R2/L2, where R is a length scale related to interactions and L is the system length. The first-level (strongest) excitations form a mode with parabolic dispersion, like that of a renormalized single particle. The second-level excitations produce a singular power-law line shape to the first-level mode and multiple power laws at the spectral edge. We measure momentum-resolved tunneling of electrons (fermions with spin) from or to a wire formed within a GaAs heterostructure, which shows parabolic dispersion of the first-level mode and well-resolved spin-charge separation at low energy with appreciable interaction strength. We find structure resembling the second-level excitations, which dies away quite rapidly at high momentum.
Observation of a hierarchy of modes in an interacting one-dimensional system
NASA Astrophysics Data System (ADS)
Ford, Christopher; Moreno, Maria; Jin, Yiqing; Tan, Wooi Kiat; Griffiths, Jon; Farrer, Ian; Jones, Geb; Anthore, Anne; Ritchie, David; Tsyplyatyev, Oleksandr; Schofield, Andrew
2015-03-01
Studying interacting fermions in 1D at high energy, we find a hierarchy in the spectral weights of the excitations theoretically and we observe evidence for second-level excitations experimentally. Diagonalising a model of fermions (without spin), we show that levels of the hierarchy are separated by powers of 2 /L2 , where is a length-scale related to interactions and L is the system length. The first-level (strongest) excitations form a mode with parabolic dispersion, like that of a renormalised single particle. The second-level excitations produce a singular power-law line shape to the first-level mode and multiple power-laws at the spectral edge. We measure momentum-resolved tunneling of electrons (fermions with spin) from/to a wire formed within a GaAs heterostructure, which shows parabolic dispersion of the first-level mode and well-resolved spin-charge separation at low energy with appreciable interaction strength. We find structure resembling the second-level excitations, which dies away quite rapidly at high momentum.
Coriano, Carlos; Powell, Emily; Xu, Wei
2016-01-01
The bioluminescent resonance energy transfer (BRET) assay has been extensively used in cell-based and in vivo imaging systems for detecting protein-protein interactions in the native environment of living cells. These protein-protein interactions are essential for the functional response of many signaling pathways to environmental chemicals. BRET has been used as a toxicological tool for identifying chemicals that either induce or inhibit these protein-protein interactions. This chapter focuses on describing the toxicological applications of BRET and its optimization as a high-throughput detection system in live cells. Here we review the construction of BRET fusion proteins, describe the BRET methodology, and outline strategies to overcome obstacles that may arise. Furthermore, we describe the advantage of BRET over other resonance energy transfer methods for monitoring protein-protein interactions.
YASS: A System Simulator for Operating System and Computer Architecture Teaching and Learning
ERIC Educational Resources Information Center
Mustafa, Besim
2013-01-01
A highly interactive, integrated and multi-level simulator has been developed specifically to support both the teachers and the learners of modern computer technologies at undergraduate level. The simulator provides a highly visual and user configurable environment with many pedagogical features aimed at facilitating deep understanding of concepts…
A compact imaging spectroscopic system for biomolecular detections on plasmonic chips.
Lo, Shu-Cheng; Lin, En-Hung; Wei, Pei-Kuen; Tsai, Wan-Shao
2016-10-17
In this study, we demonstrate a compact imaging spectroscopic system for high-throughput detection of biomolecular interactions on plasmonic chips, based on a curved grating as the key element of light diffraction and light focusing. Both the curved grating and the plasmonic chips are fabricated on flexible plastic substrates using a gas-assisted thermal-embossing method. A fiber-coupled broadband light source and a camera are included in the system. Spectral resolution within 1 nm is achieved in sensing environmental index solutions and protein bindings. The detected sensitivities of the plasmonic chip are comparable with a commercial spectrometer. An extra one-dimensional scanning stage enables high-throughput detection of protein binding on a designed plasmonic chip consisting of several nanoslit arrays with different periods. The detected resonance wavelengths match well with the grating equation under an air environment. Wavelength shifts between 1 and 9 nm are detected for antigens of various concentrations binding with antibodies. A simple, mass-productive and cost-effective method has been demonstrated on the imaging spectroscopic system for real-time, label-free, highly sensitive and high-throughput screening of biomolecular interactions.
NASA Astrophysics Data System (ADS)
Brendryen, J.; Hannisdal, B.; Haaga, K. A.; Haflidason, H.; Castro, D. D.; Grasmo, K. J.; Sejrup, H. P.; Edwards, R. L.; Cheng, H.; Kelly, M. J.; Lu, Y.
2016-12-01
Abrupt millennial scale climatic events known as Dansgaard-Oeschger events are a defining feature of the Quaternary climate system dynamics in the North Atlantic and beyond. We present a high-resolution multi-proxy record of ocean-ice sheet interactions in the Norwegian Sea spanning the interval between 50 and 150 ka BP. A comparison with low latitude records indicates a very close connection between the high northern latitude ocean-ice sheet interactions and large scale changes in low latitude atmospheric circulation and hydrology even on sub-millennial scales. The records are placed on a common precise radiometric chronology based on correlations to U/Th dated speleothem records from China and the Alps. This enables a comparison of the records to orbital and other climatically important parameters such as U/Th dated sea-level data from corals and speleothems. We explore the drive-response relationships in these coupled systems with the information transfer (IT) and the convergent cross mapping (CCM) analytical techniques. These methods employ conceptually different approaches to detect the relative strength and directionality of potentially chaotic and nonlinearly coupled systems. IT is a non-parametric measure of information transfer between data records based on transfer entropy, while CCM relies on delay reconstructions using Takens' theorem. This approach enables us to address how the climate system processes interact and how this interaction is affected by external forcing from for example greenhouse gases and orbital variability.
Probing of high density plasmas using the multi-beam, high power TiSa laser system ARCTURUS
NASA Astrophysics Data System (ADS)
Willi, Oswald; Aktan, Esin; Brauckmann, Stephannie; Aurand, Bastian; Cerchez, Mirela; Prasad, Rajendra; Schroer, Anna Marie
2017-10-01
The understanding of relativistic laser plasma interaction at ultra-high intensities has advanced considerably during the last decade with the availability of multi-beam, high power TiSa laser systems. These laser systems allow pump-probe experiments to be carried out. The ARCTURUS laser at the University of Duesseldorf is ideally suited for various kinds of pump-probe experiments as it consists of two identical, high power beams with energies of 5J in 30 fs and a third beam for optical probing with energy of 30mJ in a 30fs pulse. All three beams are synchronised and have flexible time delays with respect to each other. Several different processes were studied where one of the beams was used as an interaction beam and the second one was incident on a thin solid gold foil to generate a proton beam. For example, thin foil targets were irradiated either with a linear or circular polarized pulse and probed with protons at different times. The expansion of foils for the two cases was clearly different consistent with numerical simulations. In addition, the interaction of gas targets was probed with protons and separately with an optical probe. With both diagnostics the formation of a channel was observed. In the presentation various two beam measurements will be discussed.
Mills, M G
1993-12-01
Differences in the social systems and behaviour of two potentially important hosts of rabies, the African wild dog and the spotted hyaena, may lead to differences in the epizootiology of the disease in the two species. Wild dogs are highly social animals in which pack members are in constant physical contact with each other, but in which inter-pack interactions are rare. Spotted hyaenas are more flexible in their social systems and behaviour. Clan members interact less frequently than do wild dogs, but inter-clan contact rates may be high in high density populations. Rabies transmission within wild dog packs should be rapid, but rare between packs. In spotted hyaenas rabies transmission between clan members may partially depend on the social status of the animals involved and between packs on the density of hyaenas in the area.
Interactive Ice Sheet Flowline Model for High School and College Students
NASA Astrophysics Data System (ADS)
Stearns, L. A.; Rezvanbehbahani, S.; Shankar, S.
2017-12-01
Teaching about climate and climate change is conceptually challenging. While teaching tools and lesson plans are rapidly evolving to help teachers and students improve their understanding of climate processes, there are very few tools targeting ice sheet and glacier dynamics. We have built an interactive ice sheet model that allows students to explore how Antarctic glaciers respond to different climate perturbations. Interactive models offer advantages that are hard to obtain in traditional classroom settings; users can systematically investigate hypothetical situations, explore the effects of modifying systems, and repeatedly observe how systems interrelate. As a result, this project provides a much-needed bridge between the data and models used by the scientific community and students in high school and college. We target our instructional and assessment activities to three high school and college students with the overall aim of increasing understanding of ice sheet dynamics and the different ways that ice sheets are impacted by climate change, while also improving their fundamental math skills.
Novel approach using DNA-RNA hybrids in RNA nanotechnology | Center for Cancer Research
Developing simple approaches to detect interactions, modifications, and cellular locations of macromolecules is essential for understanding biochemical processes. The use of protein fragment complementation assays, also called split-protein systems, is a highly sensitive approach for studying protein interactions in biological systems. In this approach, functional proteins are split into non-functional fragments, and when attached to possible interacting partners, can reassemble and become functional again. Use of split-protein assays can establish differences between a healthy and a diseased state in the cell as well as determine the outcome of a therapeutic intervention.
Highlights of GeV Gamma-Ray Astronomy
NASA Technical Reports Server (NTRS)
Thompson, David J.
2010-01-01
Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.
Asymmetric Cooperative Catalysis of Strong Brønsted Acid-Promoted Reactions Using Chiral Ureas
Xu, Hao; Zuend, Stephan J.; Woll, Matthew G.; Tao, Ye; Jacobsen, Eric N.
2010-01-01
Cationic organic intermediates participate in a wide variety of useful synthetic transformations, but their high reactivity can render selectivity in competing pathways difficult to control. We describe a strategy for inducing enantioselectivity in reactions of protio-iminium ions, wherein a chiral catalyst interacts with the highly reactive intermediate through a network of non-covalent interactions. This leads to an attenuation of the reactivity of the iminium ion, and allows high enantioselectivity in cycloadditions with electron-rich alkenes (the Povarov reaction). A detailed experimental and computational analysis of this catalyst system has revealed the precise nature of the catalyst-substrate interactions and the likely basis for enantioinduction. PMID:20167783
High-Performance Monitoring Architecture for Large-Scale Distributed Systems Using Event Filtering
NASA Technical Reports Server (NTRS)
Maly, K.
1998-01-01
Monitoring is an essential process to observe and improve the reliability and the performance of large-scale distributed (LSD) systems. In an LSD environment, a large number of events is generated by the system components during its execution or interaction with external objects (e.g. users or processes). Monitoring such events is necessary for observing the run-time behavior of LSD systems and providing status information required for debugging, tuning and managing such applications. However, correlated events are generated concurrently and could be distributed in various locations in the applications environment which complicates the management decisions process and thereby makes monitoring LSD systems an intricate task. We propose a scalable high-performance monitoring architecture for LSD systems to detect and classify interesting local and global events and disseminate the monitoring information to the corresponding end- points management applications such as debugging and reactive control tools to improve the application performance and reliability. A large volume of events may be generated due to the extensive demands of the monitoring applications and the high interaction of LSD systems. The monitoring architecture employs a high-performance event filtering mechanism to efficiently process the large volume of event traffic generated by LSD systems and minimize the intrusiveness of the monitoring process by reducing the event traffic flow in the system and distributing the monitoring computation. Our architecture also supports dynamic and flexible reconfiguration of the monitoring mechanism via its Instrumentation and subscription components. As a case study, we show how our monitoring architecture can be utilized to improve the reliability and the performance of the Interactive Remote Instruction (IRI) system which is a large-scale distributed system for collaborative distance learning. The filtering mechanism represents an Intrinsic component integrated with the monitoring architecture to reduce the volume of event traffic flow in the system, and thereby reduce the intrusiveness of the monitoring process. We are developing an event filtering architecture to efficiently process the large volume of event traffic generated by LSD systems (such as distributed interactive applications). This filtering architecture is used to monitor collaborative distance learning application for obtaining debugging and feedback information. Our architecture supports the dynamic (re)configuration and optimization of event filters in large-scale distributed systems. Our work represents a major contribution by (1) survey and evaluating existing event filtering mechanisms In supporting monitoring LSD systems and (2) devising an integrated scalable high- performance architecture of event filtering that spans several kev application domains, presenting techniques to improve the functionality, performance and scalability. This paper describes the primary characteristics and challenges of developing high-performance event filtering for monitoring LSD systems. We survey existing event filtering mechanisms and explain key characteristics for each technique. In addition, we discuss limitations with existing event filtering mechanisms and outline how our architecture will improve key aspects of event filtering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadat, M E; Patel, Ronak; Sookoor, Jason
2014-09-01
In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe3O4) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe3O4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization. All magnetic nanoparticle (MNP) systems were constructed using equivalent ~10nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe3O4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while themore » unconfined was the free Fe3O4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Néel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems.« less
Method and Apparatus for Virtual Interactive Medical Imaging by Multiple Remotely-Located Users
NASA Technical Reports Server (NTRS)
Ross, Muriel D. (Inventor); Twombly, Ian Alexander (Inventor); Senger, Steven O. (Inventor)
2003-01-01
A virtual interactive imaging system allows the displaying of high-resolution, three-dimensional images of medical data to a user and allows the user to manipulate the images, including rotation of images in any of various axes. The system includes a mesh component that generates a mesh to represent a surface of an anatomical object, based on a set of data of the object, such as from a CT or MRI scan or the like. The mesh is generated so as to avoid tears, or holes, in the mesh, providing very high-quality representations of topographical features of the object, particularly at high- resolution. The system further includes a virtual surgical cutting tool that enables the user to simulate the removal of a piece or layer of a displayed object, such as a piece of skin or bone, view the interior of the object, manipulate the removed piece, and reattach the removed piece if desired. The system further includes a virtual collaborative clinic component, which allows the users of multiple, remotely-located computer systems to collaboratively and simultaneously view and manipulate the high-resolution, three-dimensional images of the object in real-time.
Protein-protein interactions: an application of Tus-Ter mediated protein microarray system.
Sitaraman, Kalavathy; Chatterjee, Deb K
2011-01-01
In this chapter, we present a novel, cost-effective microarray strategy that utilizes expression-ready plasmid DNAs to generate protein arrays on-demand and its use to validate protein-protein interactions. These expression plasmids were constructed in such a way so as to serve a dual purpose of synthesizing the protein of interest as well as capturing the synthesized protein. The microarray system is based on the high affinity binding of Escherichia coli "Tus" protein to "Ter," a 20 bp DNA sequence involved in the regulation of DNA replication. The protein expression is carried out in a cell-free protein synthesis system, with rabbit reticulocyte lysates, and the target proteins are detected either by labeled incorporated tag specific or by gene-specific antibodies. This microarray system has been successfully used for the detection of protein-protein interaction because both the target protein and the query protein can be transcribed and translated simultaneously in the microarray slides. The utility of this system for detecting protein-protein interaction is demonstrated by a few well-known examples: Jun/Fos, FRB/FKBP12, p53/MDM2, and CDK4/p16. In all these cases, the presence of protein complexes resulted in the localization of fluorophores at the specific sites of the immobilized target plasmids. Interestingly, during our interactions studies we also detected a previously unknown interaction between CDK2 and p16. Thus, this Tus-Ter based system of protein microarray can be used for the validation of known protein interactions as well as for identifying new protein-protein interactions. In addition, it can be used to examine and identify targets of nucleic acid-protein, ligand-receptor, enzyme-substrate, and drug-protein interactions.
Research methods of plasma stream interaction with heat-resistant materials
NASA Astrophysics Data System (ADS)
Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Chinnov, V. F.; Demirov, N. A.; Kavyrshin, D. I.; Ageev, A. G.; Khromov, M. A.
2016-11-01
An experimental automated system was designed and constructed for studying the parameters and characteristics of non-stationary interacting system high-enthalpy-plasma stream-investigated sample: enthalpy of plasma in the incident stream; speed and temperature of plasma stream; temperature of electrons and heavy particles, ionic composition and their spatial distribution; heat flux incident on the sample (kW/cm2); surface temperature of the sample; ablation of the sample material, and others. Measurements of achievable plasma heat flux levels are carried out by calorimetry of plasma streams incident on the surface of multisection copper calorimeter. Determination of acceleration characteristics for profiled plasma torch nozzle, as well as the gas flow rate is produced by measuring the total pressure using the Pitot tube. Video visualization of interacting system is carried out using synchronized high-speed cameras. Micropyrometry of the selected zone on the sample surface is carried out by high-speed, three-wavelength pyrometer. To measure the rate of mass loss of the sample, in addition to the weighing method of evaluation the methods of laser knife and two-position stereoscopy are used. Plasma and sample emission characteristics are performed with two separate spectrometers.
NASA Astrophysics Data System (ADS)
Kirschmeier, Benjamin; Summerour, Jacob; Bryant, Matthew
2017-04-01
Interest in clean, stable, and renewable energy harvesting devices has increased dramatically with the volatility of petroleum markets. Specifically, research in aero/hydro kinetic devices has created numerous new horizontal and vertical axis wind turbines, and oscillating wing turbines. Oscillating wing turbines (OWTs) differ from their wind turbine cousins by having a rectangular swept area compared to a circular swept area. The OWT systems also possess a lower tip speed that reduces the overall noise produced by the system. OWTs have undergone significant computational analysis to uncover the underlying flow physics that can drive the system to high efficiencies for single wing oscillations. When two of these devices are placed in tandem configuration, i.e. one placed downstream of the other, they either can constructively or destructively interact. When constructive interactions occurred, they enhance the system efficiency to greater than that of two devices on their own. A new experimental design investigates the dependency of interaction modes on the pitch stiffness of the downstream wing. The experimental results demonstrated that interaction modes are functions of convective time scale and downstream wing pitch stiffness. Heterogeneous combinations of pitch stiffness exhibited constructive and destructive lock-in phenomena whereas the homogeneous combination exhibited only destructive interactions.
pH-driven colloidal transformations based on the vasoactive drug nicergoline.
Salentinig, Stefan; Tangso, Kristian J; Hawley, Adrian; Boyd, Ben J
2014-12-16
The structure of colloidal self-assembled drug delivery systems can be influenced by intermolecular interactions between drug and amphiphilic molecules, and is important to understand in the context of designing improved delivery systems. Controlling these structures can enable controlled or targeted release systems for poorly water-soluble drugs. Here we present the interaction of the hydrophobic vasoactive drug nicergoline with the internal structure of nanostructured emulsion particles based on the monoglyceride-water system. Addition of this drug leads to modification of the internal bicontinuous cubic structure to generate highly pH-responsive systems. The colloidal structures were characterized with small-angle X-ray scattering and visualized using cryogenic transmission electron microscopy. Reversible transformations to inverse micelles at high pH, vesicles at low pH, and the modification of the spacing of the bicontinuous cubic structure at intermediate pH were observed, and enabled the in situ determination of an apparent pKa for the drug in this system--a difficult task using solution-based approaches. The characterization of this phase behavior is also highly interesting for the design of pH-responsive controlled release systems for poorly water-soluble drug molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, C. J., E-mail: c.price10@imperial.ac.uk; Giltrap, S.; Stuart, N. H.
2015-03-15
We report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 μm spatial resolution. Optical trapping of 10 ± 4 μm oil droplets inmore » vacuum was demonstrated, over timescales of >1 h at extended distances of ∼40 mm from the final focusing optic. The stability of the levitated droplet was such that it would stay in alignment with a ∼7 μm irradiating beam focal spot for up to 5 min without the need for re-adjustment. The performance of the trap was assessed in a series of high-intensity (10{sup 17} W cm{sup −2}) laser experiments that measured the X-ray source size and inferred free-electron temperature of a single isolated droplet target, along with a measurement of the emitted radio-frequency pulse. These initial tests demonstrated the use of optically levitated microdroplets as a robust target platform for further high-intensity laser interaction and point source studies.« less
NASA Astrophysics Data System (ADS)
Price, C. J.; Donnelly, T. D.; Giltrap, S.; Stuart, N. H.; Parker, S.; Patankar, S.; Lowe, H. F.; Drew, D.; Gumbrell, E. T.; Smith, R. A.
2015-03-01
We report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 μm spatial resolution. Optical trapping of 10 ± 4 μm oil droplets in vacuum was demonstrated, over timescales of >1 h at extended distances of ˜40 mm from the final focusing optic. The stability of the levitated droplet was such that it would stay in alignment with a ˜7 μm irradiating beam focal spot for up to 5 min without the need for re-adjustment. The performance of the trap was assessed in a series of high-intensity (1017 W cm-2) laser experiments that measured the X-ray source size and inferred free-electron temperature of a single isolated droplet target, along with a measurement of the emitted radio-frequency pulse. These initial tests demonstrated the use of optically levitated microdroplets as a robust target platform for further high-intensity laser interaction and point source studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ba, Qian; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing; Li, Junyang
2015-03-01
Benzo(a)pyrene is a common environmental and foodborne pollutant that has been identified as a human carcinogen. Although the carcinogenicity of benzo(a)pyrene has been extensively reported, its precise molecular mechanisms and the influence on system-level protein networks are not well understood. To investigate the system-level influence of benzo(a)pyrene on protein interactions and regulatory networks, a benzo(a)pyrene-rewired protein interaction network was constructed based on 769 key proteins derived from more than 500 literature reports. The protein interaction network rewired by benzo(a)pyrene was a scale-free, highly-connected biological system. Ten modules were identified, and 25 signaling pathways were enriched, most of which belong tomore » the human diseases category, especially cancer and infectious disease. In addition, two lung-specific and two liver-specific pathways were identified. Three pathways were specific in short and medium-term networks (< 48 h), and five pathways were enriched only in the medium-term network (6 h–48 h). Finally, the expression of linker genes in the network was validated by Western blotting. These findings establish the overall, tissue- and time-specific benzo(a)pyrene-rewired protein interaction networks and provide insights into the biological effects and molecular mechanisms of action of benzo(a)pyrene. - Highlights: • Benzo(a)pyrene induced scale-free, highly-connected protein interaction networks. • 25 signaling pathways were enriched through modular analysis. • Tissue- and time-specific pathways were identified.« less
Review of biased solar arraay. Plasma interaction studies
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1981-01-01
The Solar Electric Propulsion System (SEPS) is proposed for a variety of space missions. Power for operating SEPS is obtained from large solar array wings capable of generating tens of kilowatts of power. To minimize resistive losses in the solar array bus lines, the array is designed to operate at voltages up to 400 volts. This use of high voltage can increase interactions between the biased solar cell interconnects and plasma environments. With thrusters operating, the system ground is maintained at space plasma potential which exposes large areas of the arrays at the operating voltages. This can increase interactions with both the natural and enhanced charged particle environments. Available data on interactions between biased solar array surfaces and plasma environments are summarized. The apparent relationship between collection phenomena and solar cell size and effects of array size on interactions are discussed. The impact of these interactions on SEPS performance is presented.
NASA Astrophysics Data System (ADS)
Setiawan, Widagdo
Recent advances in using microscopes in ultracold atom experiment have allowed experimenters for the first time to directly observe and manipulate individual atoms in individual lattice sites. This technique enhances our capability to simulate strongly correlated systems such as Mott insulator and high temperature superconductivity. Currently, all ultracold atom experiments with high resolution imaging capability use bosonic atoms. In this thesis, I present our progress towards creating the fermionic version of the microscope experiment which is more suitable for simulating real condensed matter systems. Lithium is ideal due to the existence of both fermionic and bosonic isotopes, its light mass, which means faster experiment time scales that suppresses many sources of technical noise, and also due to the existence of a broad Feshbach resonance, which can be used to tune the inter-particle interaction strength over a wide range from attractive, non-interacting, and repulsive interactions. A high numerical aperture objective will be used to image and manipulate the atoms with single lattice site resolution. This setup should allow us to implement the Hubbard hamiltonian which could describe interesting quantum phases such as antiferromagnetism, d-wave superfluidity, and high temperature superconductivity. I will also discuss the feasibility of the Raman sideband cooling method for cooling the atoms during the imaging process. We have also developed a new electronic control system to control the sequence of the experiment. This electronic system is very scalable in order to keep up with the increasing complexity of atomic physics experiments. Furthermore, the system is also designed to be more precise in order to keep up with the faster time scale of lithium experiment.
Structural study of surfactant-dependent interaction with protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in; Kohlbrecher, Joachim
2015-06-24
Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.
Structural study of surfactant-dependent interaction with protein
NASA Astrophysics Data System (ADS)
Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim
2015-06-01
Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, J.S.; Evans, P.; Politzer, P.
1990-01-01
An ab initio STO-5G computational analysis of the electrostatic potentials of four structural analogs of the highly toxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and four related aromatic systems (benzo(a)pyrene, benz(a)anthracene and two isomeric benzoflavones) was carried out. The systems, to varying degrees, induce aryl hydrocarbon hydroxylase activity and are believed to interact with the same cytosolic receptor in initiating their biochemical responses. It was found that a high degree of activity appears to require negative potentials that are non-overlapping above all or most of the lateral regions, with an observed optimum range of magnitudes. In systems with central oxygens, it is required thatmore » the negative oxygen potentials be small and weak; however, oxygen negative regions in the molecule are not necessary for high activity. The observed differences between the potential patterns of the four aromatic systems and those of TCDD and its active analogs may reflect an inherent dissimilarity in the nature of their interactions with the cytosolic receptor.« less
Manda, Katrin; Glasow, Annegret; Paape, Daniel; Hildebrandt, Guido
2012-01-01
Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Tingting; Holford, D. F.; Gu, Hang
The magnetic field effects on the electroluminescence of aluminium tris-(8-hydroxyqinoline) (Alq{sub 3}) based organic light emitting diodes have been investigated by varying the electron/hole ratio in the emissive layer. Experimental results reveal that a negative high field effect in the magneto-electroluminescence (MEL) can be found in devices with very low triplet exciton concentration at room temperature. This suggests triplet-triplet annihilation cannot be used to explain the negative high field MEL in the Alq{sub 3} system. Our results suggest that hole-exciton interaction may be the origin of the negative high field MEL and also, in parallel with this interaction, there ismore » also the more common positive high field process occurring which has been tentatively attributed to electron-exciton interactions. The competition between these different processes decides the final shape of the MEL at high fields.« less
High-throughput analysis of peptide binding modules
Liu, Bernard A.; Engelmann, Brett; Nash, Piers D.
2014-01-01
Modular protein interaction domains that recognize linear peptide motifs are found in hundreds of proteins within the human genome. Some protein interaction domains such as SH2, 14-3-3, Chromo and Bromo domains serve to recognize post-translational modification of amino acids (such as phosphorylation, acetylation, methylation etc.) and translate these into discrete cellular responses. Other modules such as SH3 and PDZ domains recognize linear peptide epitopes and serve to organize protein complexes based on localization and regions of elevated concentration. In both cases, the ability to nucleate specific signaling complexes is in large part dependent on the selectivity of a given protein module for its cognate peptide ligand. High throughput analysis of peptide-binding domains by peptide or protein arrays, phage display, mass spectrometry or other HTP techniques provides new insight into the potential protein-protein interactions prescribed by individual or even whole families of modules. Systems level analyses have also promoted a deeper understanding of the underlying principles that govern selective protein-protein interactions and how selectivity evolves. Lastly, there is a growing appreciation for the limitations and potential pitfalls of high-throughput analysis of protein-peptide interactomes. This review will examine some of the common approaches utilized for large-scale studies of protein interaction domains and suggest a set of standards for the analysis and validation of datasets from large-scale studies of peptide-binding modules. We will also highlight how data from large-scale studies of modular interaction domain families can provide insight into systems level properties such as the linguistics of selective interactions. PMID:22610655
Dimensionality and integrals of motion of the Trappist-1 planetary system
NASA Astrophysics Data System (ADS)
Floß, Johannes; Rein, Hanno; Brumer, Paul
2018-04-01
The number of isolating integrals of motion of the Trappist-1 system - a late M-dwarf orbited by seven Earth-sized planets - was determined numerically, using an adapted version of the correlation dimension method. It was found that over the investigated time-scales of up to 20 000 years the number of isolating integrals of motion is the same as one would find for a system of seven non-interacting planets - despite the fact that the planets in the Trappist-1 system are strongly interacting. Considering perturbed versions of the Trappist-1 system shows that the system may occupy an atypical part of phase-space with high stability. These findings are consistent with earlier studies.
Dimensionality and integrals of motion of the Trappist-1 planetary system
NASA Astrophysics Data System (ADS)
Floß, Johannes; Rein, Hanno; Brumer, Paul
2018-07-01
The number of isolating integrals of motion of the Trappist-1 system - a late M-dwarf orbited by seven Earth-sized planets - was determined numerically, using an adapted version of the correlation dimension method. It was found that over the investigated time-scales of up to 20 000 yr the number of isolating integrals of motion is the same as one would find for a system of seven non-interacting planets - despite the fact that the planets in the Trappist-1 system are strongly interacting. Considering perturbed versions of the Trappist-1 system shows that the system may occupy an atypical part of phase-space with high stability. These findings are consistent with earlier studies.
Interaction entropy for protein-protein binding
NASA Astrophysics Data System (ADS)
Sun, Zhaoxi; Yan, Yu N.; Yang, Maoyou; Zhang, John Z. H.
2017-03-01
Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interaction entropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interaction entropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.
Investigating the nature of chiral near-field interactions
NASA Astrophysics Data System (ADS)
Barr, Lauren E.; Horsley, Simon A. R.; Hooper, Ian R.; Eager, Jake K.; Gallagher, Cameron P.; Hornett, Samuel M.; Hibbins, Alastair P.; Hendry, Euan
2018-04-01
In recent years, there have been reports of enhanced chiroptical interactions in the near-fields of antennas, postulated to be mediated by high spatial gradients in the electromagnetic fields. Here, using gigahertz experimentation, we investigate the nature of the chiral near-field generated by an array of staggered-rod antennas through its interaction with an array of aligned, subwavelength metallic helices. This allows us to eliminate many potential origins of enhancements, such as those associated with plasmon-exciton interactions, and search solely for enhancements due to the high spatial gradients in the chirality of the fields around chiral antennas (so-called `superchiral fields'). By comparing the strength of the chiral interaction with our helices to that of a homogeneous chiral layer with effective material parameters, we find that the strength of this chiral interaction can be predicted using a completely local effective medium approximation. This suggests no obvious enhancement in the chiral interaction in the near-field and indicates that nonlocal interactions are negligible in this system.
Emerging Computer Media: On Image Interaction
NASA Astrophysics Data System (ADS)
Lippman, Andrew B.
1982-01-01
Emerging technologies such as inexpensive, powerful local computing, optical digital videodiscs, and the technologies of human-machine interaction are initiating a revolution in both image storage systems and image interaction systems. This paper will present a review of new approaches to computer media predicated upon three dimensional position sensing, speech recognition, and high density image storage. Examples will be shown such as the Spatial Data Management Systems wherein the free use of place results in intuitively clear retrieval systems and potentials for image association; the Movie-Map, wherein inherently static media generate dynamic views of data, and conferencing work-in-progress wherein joint processing is stressed. Application to medical imaging will be suggested, but the primary emphasis is on the general direction of imaging and reference systems. We are passing the age of simple possibility of computer graphics and image porcessing and entering the age of ready usability.
MIDAS - ESO's new image processing system
NASA Astrophysics Data System (ADS)
Banse, K.; Crane, P.; Grosbol, P.; Middleburg, F.; Ounnas, C.; Ponz, D.; Waldthausen, H.
1983-03-01
The Munich Image Data Analysis System (MIDAS) is an image processing system whose heart is a pair of VAX 11/780 computers linked together via DECnet. One of these computers, VAX-A, is equipped with 3.5 Mbytes of memory, 1.2 Gbytes of disk storage, and two tape drives with 800/1600 bpi density. The other computer, VAX-B, has 4.0 Mbytes of memory, 688 Mbytes of disk storage, and one tape drive with 1600/6250 bpi density. MIDAS is a command-driven system geared toward the interactive user. The type and number of parameters in a command depends on the unique parameter invoked. MIDAS is a highly modular system that provides building blocks for the undertaking of more sophisticated applications. Presently, 175 commands are available. These include the modification of the color-lookup table interactively, to enhance various image features, and the interactive extraction of subimages.
Diversity of multilayer networks and its impact on collaborating epidemics
NASA Astrophysics Data System (ADS)
Min, Yong; Hu, Jiaren; Wang, Weihong; Ge, Ying; Chang, Jie; Jin, Xiaogang
2014-12-01
Interacting epidemics on diverse multilayer networks are increasingly important in modeling and analyzing the diffusion processes of real complex systems. A viral agent spreading on one layer of a multilayer network can interact with its counterparts by promoting (cooperative interaction), suppressing (competitive interaction), or inducing (collaborating interaction) its diffusion on other layers. Collaborating interaction displays different patterns: (i) random collaboration, where intralayer or interlayer induction has the same probability; (ii) concentrating collaboration, where consecutive intralayer induction is guaranteed with a probability of 1; and (iii) cascading collaboration, where consecutive intralayer induction is banned with a probability of 0. In this paper, we develop a top-bottom framework that uses only two distributions, the overlaid degree distribution and edge-type distribution, to model collaborating epidemics on multilayer networks. We then state the response of three collaborating patterns to structural diversity (evenness and difference of network layers). For viral agents with small transmissibility, we find that random collaboration is more effective in networks with higher diversity (high evenness and difference), while the concentrating pattern is more suitable in uneven networks. Interestingly, the cascading pattern requires a network with moderate difference and high evenness, and the moderately uneven coupling of multiple network layers can effectively increase robustness to resist cascading failure. With large transmissibility, however, we find that all collaborating patterns are more effective in high-diversity networks. Our work provides a systemic analysis of collaborating epidemics on multilayer networks. The results enhance our understanding of biotic and informative diffusion through multiple vectors.
NASA Astrophysics Data System (ADS)
Donner, Tobias
2015-03-01
A Bose-Einstein condensate whose motional degrees of freedom are coupled to a high-finesse optical cavity via a transverse pump beam constitutes a dissipative quantum many-body system with long range interactions. These interactions can induce a structural phase transition from a flat to a density-modulated state. The transverse pump field simultaneously represents a probe of the atomic density via cavity- enhanced Bragg scattering. By spectrally analyzing the light field leaking out of the cavity, we measure non-destructively the dynamic structure factor of the fluctuating atomic density while the system undergoes the phase transition. An observed asymmetry in the dynamic structure factor is attributed to the coupling to dissipative baths. Critical exponents for both sides of the phase transition can be extracted from the data. We further discuss our progress in adding strong short-range interactions to this system, in order to explore Bose-Hubbard physics with cavity-mediated long-range interactions and self-organization in lower dimensions.
Correlation Decay in Fermionic Lattice Systems with Power-Law Interactions at Nonzero Temperature
NASA Astrophysics Data System (ADS)
Hernández-Santana, Senaida; Gogolin, Christian; Cirac, J. Ignacio; Acín, Antonio
2017-09-01
We study correlations in fermionic lattice systems with long-range interactions in thermal equilibrium. We prove a bound on the correlation decay between anticommuting operators and generalize a long-range Lieb-Robinson-type bound. Our results show that in these systems of spatial dimension D with, not necessarily translation invariant, two-site interactions decaying algebraically with the distance with an exponent α ≥2 D , correlations between such operators decay at least algebraically to 0 with an exponent arbitrarily close to α at any nonzero temperature. Our bound is asymptotically tight, which we demonstrate by a high temperature expansion and by numerically analyzing density-density correlations in the one-dimensional quadratic (free, exactly solvable) Kitaev chain with long-range pairing.
NASA Technical Reports Server (NTRS)
Fink, Pamela K.
1991-01-01
Two intelligent tutoring systems were developed. These tutoring systems are being used to study the effectiveness of intelligent tutoring systems in training high performance tasks and the interrelationship of high performance and cognitive tasks. The two tutoring systems, referred to as the Console Operations Tutors, were built using the same basic approach to the design of an intelligent tutoring system. This design approach allowed researchers to more rapidly implement the cognitively based tutor, the OMS Leak Detect Tutor, by using the foundation of code generated in the development of the high performance based tutor, the Manual Select Keyboard (MSK). It is believed that the approach can be further generalized to develop a generic intelligent tutoring system implementation tool.
Bulk crystalline optomechanics
NASA Astrophysics Data System (ADS)
Renninger, W. H.; Kharel, P.; Behunin, R. O.; Rakich, P. T.
2018-06-01
Control of long-lived, high-frequency phonons using light offers a path towards creating robust quantum links, and could lead to tools for precision metrology with applications to quantum information processing. Optomechanical systems based on bulk acoustic-wave resonators are well suited for this goal in light of their high quality factors, and because they do not suffer from surface interactions as much as their microscale counterparts. However, so far these phonons have been accessible only electromechanically, using piezoelectric interactions. Here, we demonstrate customizable optomechanical coupling to macroscopic phonon modes of a bulk acoustic-wave resonator at cryogenic temperatures. These phonon modes, which are formed by shaping the surfaces of a crystal into a plano-convex phononic resonator, yield appreciable optomechanical coupling rates, providing access to high acoustic quality factors (4.2 × 107) at high phonon frequencies (13 GHz). This simple approach, which uses bulk properties rather than nanostructural control, is appealing for the ability to engineer optomechanical systems at high frequencies that are robust against thermal decoherence. Moreover, we show that this optomechanical system yields a unique form of dispersive symmetry-breaking that enables phonon heating or cooling without an optical cavity.
High spin systems with orbital degeneracy.
Shen, Shun-Qing; Xie, X C; Zhang, F C
2002-01-14
High-spin systems with orbital degeneracy are studied in the large spin limit. In the absence of Hund's coupling, the classical spin model is mapped onto disconnected orbital systems with spins up and down, respectively. The ground state of the isotropic model is an orbital valence bond state where each bond is an orbital singlet with parallel spins, and neighboring bonds interact antiferromagnetically. Possible relevance to the transition metal oxides is discussed.
A systems model for immune cell interactions unravels the mechanism of inflammation in human skin.
Valeyev, Najl V; Hundhausen, Christian; Umezawa, Yoshinori; Kotov, Nikolay V; Williams, Gareth; Clop, Alex; Ainali, Crysanthi; Ouzounis, Christos; Tsoka, Sophia; Nestle, Frank O
2010-12-02
Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.
NASA Astrophysics Data System (ADS)
Dou, Zhi-Wu
2010-08-01
To solve the inherent safety problem puzzling the coal mining industry, analyzing the characteristic and the application of distributed interactive simulation based on high level architecture (DIS/HLA), a new method is proposed for developing coal mining industry inherent safety distributed interactive simulation adopting HLA technology. Researching the function and structure of the system, a simple coal mining industry inherent safety is modeled with HLA, the FOM and SOM are developed, and the math models are suggested. The results of the instance research show that HLA plays an important role in developing distributed interactive simulation of complicated distributed system and the method is valid to solve the problem puzzling coal mining industry. To the coal mining industry, the conclusions show that the simulation system with HLA plays an important role to identify the source of hazard, to make the measure for accident, and to improve the level of management.
Irradiation of Frozen Solutions of Ferrous Sulphate as Dosimeter for Low Temperature Irradiations
NASA Astrophysics Data System (ADS)
Sánchez-Mejorada, G.; Frias, D.
2006-09-01
A theoretical model is presented for the evaluation of the energy transferred during the interaction of high energy radiation with icy bodies. Numerical simulations of the chemical reaction system reproduce the behavior of the icy systems (frozen solution of iron salts) after its interaction with the gamma radiation. Simulation experiments of extraterrestrial bodies are useful for space research, where low temperature dosimetry is necessary, especially in trips with humans or in the International Space Station (ISS) where humans are exposed to high radiation doses. The results showed that theoretical model applied for the irradiated system for different doses (from 10 to 2500Gy) and at different temperature (from 77 to 298 °K). The system under study was frozen solutions of iron salts and were analyzed (after Melting) by UV-spectroscopy. The systems were irradiates with gamma radiation. It is also shown that the response of the system is a function of the temperature and it was linear with as a function of dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Mejorada, G.; Frias, D.
A theoretical model is presented for the evaluation of the energy transferred during the interaction of high energy radiation with icy bodies. Numerical simulations of the chemical reaction system reproduce the behavior of the icy systems (frozen solution of iron salts) after its interaction with the gamma radiation. Simulation experiments of extraterrestrial bodies are useful for space research, where low temperature dosimetry is necessary, especially in trips with humans or in the International Space Station (ISS) where humans are exposed to high radiation doses. The results showed that theoretical model applied for the irradiated system for different doses (from 10more » to 2500Gy) and at different temperature (from 77 to 298 deg. K). The system under study was frozen solutions of iron salts and were analyzed (after Melting) by UV-spectroscopy. The systems were irradiates with gamma radiation. It is also shown that the response of the system is a function of the temperature and it was linear with as a function of dose.« less
IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.
Ha, Vi Q; Lykotrafitis, George
2016-12-08
We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Data analysis and interpretation related to space system/environment interactions at LEO altitude
NASA Technical Reports Server (NTRS)
Raitt, W. John; Schunk, Robert W.
1991-01-01
Several studies made on the interaction of active systems with the LEO space environment experienced from orbital or suborbital platforms are covered. The issue of high voltage space interaction is covered by theoretical modeling studies of the interaction of charged solar cell arrays with the ionospheric plasma. The theoretical studies were complemented by experimental measurements made in a vacuum chamber. The other active system studied was the emission of effluent from a space platform. In one study the emission of plasma into the LEO environment was studied by using initially a 2-D model, and then extending this model to 3-D to correctly take account of plasma motion parallel to the geomagnetic field. The other effluent studies related to the releases of neutral gas from an orbiting platform. One model which was extended and used determined the density, velocity, and energy of both an effluent gas and the ambient upper atmospheric gases over a large volume around the platform. This model was adapted to study both ambient and contaminant distributions around smaller objects in the orbital frame of reference with scale sizes of 1 m. The other effluent studies related to the interaction of the released neutral gas with the ambient ionospheric plasma. An electrostatic model was used to help understand anomalously high plasma densities measured at times in the vicinity of the space shuttle orbiter.
NASA Astrophysics Data System (ADS)
Zhang, Zu-Quan; Lü, Jing-Tao
2017-09-01
Using the nonequilibrium Green's function method, we consider heat transport in an insulating ferromagnetic spin chain model with spin-phonon interaction under an external magnetic field. Employing the Holstein-Primakoff transformation to the spin system, we treat the resulted magnon-phonon interaction within the self-consistent Born approximation. We find the magnon-phonon coupling can change qualitatively the magnon thermal conductance in the high-temperature regime. At a spectral mismatched ferromagnetic-normal insulator interface, we also find thermal rectification and negative differential thermal conductance due to the magnon-phonon interaction. We show that these effects can be effectively tuned by the external applied magnetic field, a convenient advantage absent in anharmonic phonon and electron-phonon systems studied before.
Jiao, Dazhi; Wild, David J
2009-02-01
This paper proposes a system that automatically extracts CYP protein and chemical interactions from journal article abstracts, using natural language processing (NLP) and text mining methods. In our system, we employ a maximum entropy based learning method, using results from syntactic, semantic, and lexical analysis of texts. We first present our system architecture and then discuss the data set for training our machine learning based models and the methods in building components in our system, such as part of speech (POS) tagging, Named Entity Recognition (NER), dependency parsing, and relation extraction. An evaluation of the system is conducted at the end, yielding very promising results: The POS, dependency parsing, and NER components in our system have achieved a very high level of accuracy as measured by precision, ranging from 85.9% to 98.5%, and the precision and the recall of the interaction extraction component are 76.0% and 82.6%, and for the overall system are 68.4% and 72.2%, respectively.
Momentum sharing in imbalanced Fermi systems
Hen, O.; Sargsian, M.; Weinstein, L. B.; ...
2014-10-16
The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron starsmore » and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.« less
Nuclear physics. Momentum sharing in imbalanced Fermi systems.
Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I
2014-10-31
The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.
A Simple Interactive Software Package for Plotting, Animating, and Calculating
ERIC Educational Resources Information Center
Engelhardt, Larry
2012-01-01
We introduce a new open source (free) software package that provides a simple, highly interactive interface for carrying out certain mathematical tasks that are commonly encountered in physics. These tasks include plotting and animating functions, solving systems of coupled algebraic equations, and basic calculus (differentiating and integrating…
System Quality Characteristics for Selecting Mobile Learning Applications
ERIC Educational Resources Information Center
Sarrab, Mohamed; Al-Shihi, Hafedh; Al-Manthari, Bader
2015-01-01
The majority of M-learning (Mobile learning) applications available today are developed for the formal learning and education environment. These applications are characterized by the improvement in the interaction between learners and instructors to provide high interaction and flexibility to the learning process. M-learning is gaining increased…
2014-01-01
The study of high-affinity protein interactions with equilibrium dissociation constants (KD) in the picomolar range is of significant interest in many fields, but the characterization of stoichiometry and free energy of such high-affinity binding can be far from trivial. Analytical ultracentrifugation has long been considered a gold standard in the study of protein interactions but is typically applied to systems with micromolar KD. Here we present a new approach for the study of high-affinity interactions using fluorescence detected sedimentation velocity analytical ultracentrifugation (FDS-SV). Taking full advantage of the large data sets in FDS-SV by direct boundary modeling with sedimentation coefficient distributions c(s), we demonstrate detection and hydrodynamic resolution of protein complexes at low picomolar concentrations. We show how this permits the characterization of the antibody–antigen interactions with low picomolar binding constants, 2 orders of magnitude lower than previously achieved. The strongly size-dependent separation and quantitation by concentration, size, and shape of free and complex species in free solution by FDS-SV has significant potential for studying high-affinity multistep and multicomponent protein assemblies. PMID:24552356
Pedersen, Marie Østergaard; Borch, Jonas; Højrup, Peter; Cox, Raymond P; Miller, Mette
2006-09-01
Green sulfur bacteria possess two external light-harvesting antenna systems, the chlorosome and the FMO protein, which participate in a sequential energy transfer to the reaction centers embedded in the cytoplasmic membrane. However, little is known about the physical interaction between these two antenna systems. We have studied the interaction between the major chlorosome protein, CsmA, and the FMO protein in Chlorobium tepidum using surface plasmon resonance (SPR). Our results show an interaction between the FMO protein and an immobilized synthetic peptide corresponding to 17 amino acids at the C terminal of CsmA. This interaction is dependent on the presence of a motif comprising six amino acids that are highly conserved in all the currently available CsmA protein sequences.
Integrated computer-aided design using minicomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.
1980-01-01
Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.
Cornu, Pieter; Phansalkar, Shobha; Seger, Diane L; Cho, Insook; Pontefract, Sarah; Robertson, Alexandra; Bates, David W; Slight, Sarah P
2018-03-01
To investigate whether alert warnings for high-priority and low-priority drug-drug interactions (DDIs) were present in five international electronic health record (EHR) systems, to compare and contrast the severity level assigned to them, and to establish the proportion of alerts that were overridden. We conducted a comparative, retrospective, multinational study using a convenience sample of 5 EHRs from the U.S., U.K., Republic of Korea and Belgium. Of the 15 previously defined, high-priority, class-based DDIs, alert warnings were found to exist for 11 in both the Korean and UK systems, 9 in the Belgian system, and all 15 in the two US systems. The specific combinations that were included in these class-based DDIs varied considerably in number, type and level of severity amongst systems. Alerts were only active for 8.4% (52/619) and 52.4% (111/212) of the specific drug-drug combinations contained in the Belgian and UK systems, respectively. Hard stops (not possible to override) existed in the US and UK systems only. The override rates for high-priority alerts requiring provider action ranged from 56.7% to 83.3%. Of the 33 previously defined low-priority DDIs, active alerts existed only in the US systems, for three class-based DDIs. The majority were non-interruptive. Alert warnings existed for most of the high-priority DDIs in the different EHRs but overriding them was easy in most of the systems. In addition to validating the high- and low-priority DDIs, this study reported a lack of standardization in DDI levels across different international knowledge bases. Copyright © 2017. Published by Elsevier B.V.
Gupta, Surya; De Puysseleyr, Veronic; Van der Heyden, José; Maddelein, Davy; Lemmens, Irma; Lievens, Sam; Degroeve, Sven; Tavernier, Jan; Martens, Lennart
2017-05-01
Protein-protein interaction (PPI) studies have dramatically expanded our knowledge about cellular behaviour and development in different conditions. A multitude of high-throughput PPI techniques have been developed to achieve proteome-scale coverage for PPI studies, including the microarray based Mammalian Protein-Protein Interaction Trap (MAPPIT) system. Because such high-throughput techniques typically report thousands of interactions, managing and analysing the large amounts of acquired data is a challenge. We have therefore built the MAPPIT cell microArray Protein Protein Interaction-Data management & Analysis Tool (MAPPI-DAT) as an automated data management and analysis tool for MAPPIT cell microarray experiments. MAPPI-DAT stores the experimental data and metadata in a systematic and structured way, automates data analysis and interpretation, and enables the meta-analysis of MAPPIT cell microarray data across all stored experiments. MAPPI-DAT is developed in Python, using R for data analysis and MySQL as data management system. MAPPI-DAT is cross-platform and can be ran on Microsoft Windows, Linux and OS X/macOS. The source code and a Microsoft Windows executable are freely available under the permissive Apache2 open source license at https://github.com/compomics/MAPPI-DAT. jan.tavernier@vib-ugent.be or lennart.martens@vib-ugent.be. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Multimedia courseware in an open-systems environment: a DoD strategy
NASA Astrophysics Data System (ADS)
Welsch, Lawrence A.
1991-03-01
The federal government is about to invest billions of dollars to develop multimedia training materials for delivery on computer-based interactive training systems. Acquisition of a variety of computers and peripheral devices hosting various operating systems and suites of authoring system software will be necessary to facilitate the development of this courseware. There is no single source that will satisfy all needs. Although high-performance, low-cost interactive training hardware is available, the products have proprietary software interfaces. Because the interfaces are proprietary, expensive reprogramming is usually required to adapt such software products to other platforms. This costly reprogramming could be eliminated by adopting standard software interfaces. DoD's Portable Courseware Project (PORTCO) is typical of projects worldwide that require standard software interfaces. This paper articulates the strategy whereby PORTCO leverages the open systems movement and the new realities of information technology. These realities encompass changes in the pace at which new technology becomes available, changes in organizational goals and philosophy, new roles of vendors and users, changes in the procurement process, and acceleration toward open system environments. The PORTCO strategy is applicable to all projects and systems that require open systems to achieve mission objectives. The federal goal is to facilitate the creation of an environment in which high quality portable courseware is available as commercial off-the-shelf products and is competitively supplied by a variety of vendors. In order to achieve this goal a system architecture incorporating standards to meet the users' needs must be established. The Request for Architecture (RFA) developed cooperatively by DoD and the National Institute of Standards and Technology (NIST) will generate the PORTCO systems architecture. This architecture must freely integrate the courseware and authoring software from the lower levels of machine architecture and systems service implementation. In addition, the systems architecture will establish how the application-specific technologies relate to other technologies. Further, a computer-based interactive training applications profile must be developed. This profile, along with the systems architecture derived as a result of the RFA, provides the basis for identifying the needed standards. NIST will then accelerate the development of these standards using, but not restricted to, existing standards activities within established standards forums. The federal multimedia courseware effort has adopted the Interactive Multimedia Association (INA) Recommended Practices for Interactive Video Portability as the baseline for the migration of computer-based interactive training systems to an open systems environment based upon international standards. The PORTCO strategy includes an evolutionary migration to a standards-based, Open System Environments (OSE). An important aspect of this migration strategy is to move to open systems via stepwise evolution rather than via quantum leaps. Another area of concern is that of infrastructure issues, such as maintaining and supporting the technologies required for computer-based interactive training. The federal multimedia initiative will use the RFA-based architecture to differentiate between those technologies that can be maintained and supported by existing infrastructure mechanisms and those that require new mechanisms. Existing infrastructure mechanisms will be used and where infrastructure mechanisms do not exist, the approach will be to place high priority on establishing the appropriate mechanisms. Establishing an infrastructure mechanism is a nontrivial task requiring sustained investment of resources.
Human-Computer Interaction and Virtual Environments
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler)
1995-01-01
The proceedings of the Workshop on Human-Computer Interaction and Virtual Environments are presented along with a list of attendees. The objectives of the workshop were to assess the state-of-technology and level of maturity of several areas in human-computer interaction and to provide guidelines for focused future research leading to effective use of these facilities in the design/fabrication and operation of future high-performance engineering systems.
NASA Astrophysics Data System (ADS)
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
NASA Astrophysics Data System (ADS)
Curme, Chester
Technological advances have provided scientists with large high-dimensional datasets that describe the behaviors of complex systems: from the statistics of energy levels in complex quantum systems, to the time-dependent transcription of genes, to price fluctuations among assets in a financial market. In this environment, where it may be difficult to infer the joint distribution of the data, network science has flourished as a way to gain insight into the structure and organization of such systems by focusing on pairwise interactions. This work focuses on a particular setting, in which a system is described by multivariate time series data. We consider time-lagged correlations among elements in this system, in such a way that the measured interactions among elements are asymmetric. Finally, we allow these interactions to be characteristically weak, so that statistical uncertainties may be important to consider when inferring the structure of the system. We introduce a methodology for constructing statistically validated networks to describe such a system, extend the methodology to accommodate interactions with a periodic component, and show how consideration of bipartite community structures in these networks can aid in the construction of robust statistical models. An example of such a system is a financial market, in which high frequency returns data may be used to describe contagion, or the spreading of shocks in price among assets. These data provide the experimental testing ground for our methodology. We study NYSE data from both the present day and one decade ago, examine the time scales over which the validated lagged correlation networks exist, and relate differences in the topological properties of the networks to an increasing economic efficiency. We uncover daily periodicities in the validated interactions, and relate our findings to explanations of the Epps Effect, an empirical phenomenon of financial time series. We also study bipartite community structures in networks composed of market returns and news sentiment signals for 40 countries. We compare the degrees to which markets anticipate news, and news anticipate markets, and use the community structures to construct a recommender system for inputs to prediction models. Finally, we complement this work with novel investigations of the exogenous news items that may drive the financial system using topic models. This includes an analysis of how investors and the general public may interact with these news items using Internet search data, and how the diversity of stories in the news both responds to and influences market movements.
NASA Astrophysics Data System (ADS)
Qin, Tao; Hofstetter, Walter
2018-03-01
Time-periodically driven systems are a versatile toolbox for realizing interesting effective Hamiltonians. Heating, caused by excitations to high-energy states, is a challenge for experiments. While most setups so far address the relatively weakly interacting regime, it is of general interest to study heating in strongly correlated systems. Using Floquet dynamical mean-field theory, we study nonequilibrium steady states (NESS) in the Falicov-Kimball model, with time-periodically driven kinetic energy or interaction. We systematically investigate the nonequilibrium properties of the NESS. For a driven kinetic energy, we show that resonant tunneling, where the interaction is an integer multiple of the driving frequency, plays an important role in the heating. In the strongly correlated regime, we show that this can be well understood using Fermi's golden rule and the Schrieffer-Wolff transformation for a time-periodically driven system. We furthermore demonstrate that resonant tunneling can be used to control the population of Floquet states to achieve "photodoping." For driven interactions introduced by an oscillating magnetic field near a widely adopted Feshbach resonance, we find that the double occupancy is strongly modulated. Our calculations apply to shaken ultracold-atom systems and to solid-state systems in a spatially uniform but time-dependent electric field. They are also closely related to lattice modulation spectroscopy. Our calculations are helpful to understand the latest experiments on strongly correlated Floquet systems.
Coletti, Cecilia; Re, Nazzareno
2009-02-26
High level ab initio calculations were performed on the interaction of halide anions (F(-), Cl(-), Br(-), and I(-)) to benzene. For these systems recent experimental and theoretical data are rather scarce, in spite of their growingly acknowledged importance for binding in complex biological systems. We have thus explored the complete basis set limit and the effect of counterpoise basis set superposition error corrections on the minimum geometries and energies of benzene-halide adducts in their possible interaction modes. The binding energy and enthalpy values (ranging from -15.3 kcal/mol for fluoride to -6.1 kcal/mol for iodide) show that the hydrogen bonding occurring in these complexes cannot be described as a weak interaction. We have furthermore investigated the topology of the minima and of other selected sections of the potential energy surface, so to gain further insight on the nature of the halide-benzene interaction. In particular, the geometry corresponding to the C(6v) symmetry, although being overall repulsive, has displayed the unprecedented presence of a small flex (a minimum in C(6v) symmetry) with interaction energy close to zero or slightly attractive.
Characterisation of high temperature refractory ceramics for nuclear applications
NASA Astrophysics Data System (ADS)
Bottomley, P. D. W.; Wiss, Th; Janssen, A.; Cremer, B.; Thiele, H.; Manara, D.; Scheindlin, M.; Murray-Farthing, M.; Lajarge, P.; Menna, M.; Bouexière, D.; Rondinella, V. V.
2012-03-01
The ternary oxide ceramic system UO2-ZrO2-FeO is a refractory system that is of great relevance to the nuclear industry as it represents one of the main systems resulting from the interaction of the Zircaloy cladding, the UO2 fuel and the structural elements of a nuclear reactor. It is particularly the high temperature properties that require investigation; that is, when substantial overheating of the nuclear core occurs and interactions can lead to its degradation, melting and result in a severe nuclear accident. There has been much work on the UO2-ZrO2 system and also on the ternary system with FeO but there is still a need to examine 2 further aspects; firstly the effect of sub-oxidized systems, the UO2-Zr and FeO-Zr systems, and secondly the effect of Fe/Zr or Fe/U ratios on the melting point of the U-Zr-Fe oxide system. Samples of UO2-Zr and UO2-ZrO2-FeO were fabricated at ITU and then characterized by optical microscopy (OM) and X-ray diffraction to determine the ceramic's structure and verify the composition. Thereafter the samples are to be melted by laser flash heating and their liquidus and solidus temperatures determined by pyrometry. This programme is currently ongoing. The frozen samples, after testing, were then sectioned, polished and the molten zone micro-analytically examined by OM & SEM-EDS in order to determine its structure and composition and to compare with the existing phase diagrams. Examples of results from these systems will be given. Finally, a reacted Zr-FeO thermite mixture was examined, which had been used to generate high temperatures during tests of reactor melt-concrete interactions. The aim was to assess the reaction and estimate the heat generation from this novel technique. These results allow verification or improvement of the phase diagram and are of primary importance as input to models used to predict materials interactions in a severe nuclear accident.
Effect of shock interactions on the attitude stability of a toroidal ballute for reentry vehicles
NASA Astrophysics Data System (ADS)
Otsu, Hirotaka; Abe, Takashi
2016-11-01
The effect of shock interactions on the attitude stability of a reentry vehicle system with a toroidal ballute was investigated. The hypersonic wind tunnel experimental results showed that when the shock interaction occurred near or outside the ballute, an unstable oscillation of the ballute was observed. This was caused by the local high-pressure region on the ballute surface created by the shock interaction between the shock from the reentry capsule and the shock from the ballute. To avoid this unstable oscillation, the radius of the ballute should be designed to be large enough so that the shock from the capsule will be located inside the ballute, which can avoid the local high-pressure region on the ballute surface.
Metal and Metal Oxide Interactions and Their Catalytic Consequences for Oxygen Reduction Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Qingying; Ghoshal, Shraboni; Li, Jingkun
2017-06-01
Many industrial catalysts are composed of metal particles supported on metal oxides (MMO). It is known that the catalytic activity of MMO materials is governed by metal and metal oxide interactions (MMOI), but how to optimize MMO systems via manipulation of MMOI remains unclear, due primarily to the ambiguous nature of MMOI. Herein, we develop a Pt/NbOx/C system with tunable structural and electronic properties via a modified arc plasma deposition method. We unravel the nature of MMOI by characterizing this system under reactive conditions utilizing combined electrochemical, microscopy, and in situ spectroscopy. We show that Pt interacts with the Nbmore » in unsaturated NbOx owing to the oxygen deficiency in the MMO interface, whereas Pt interacts with the O in nearly saturated NbOx, and further interacts with Nb when the oxygen atoms penetrate into the Pt cluster at elevated potentials. While the Pt–Nb interactions do not benefit the inherent activity of Pt toward oxygen reduction reaction (ORR), the Pt–O interactions improve the ORR activity by shortening the Pt–Pt bond distance. Pt donates electrons to NbOx in both Pt–Nb and Pt–O cases. The resultant electron efficiency stabilizes low-coordinated Pt sites, hereby stabilizing small Pt particles. This determines the two characteristic features of MMO systems: dispersion of small metal particles and high catalytic durability. These findings contribute to our understandings of MMO catalytic systems.« less
Use of high-throughput mass spectrometry to elucidate host pathogen interactions in Salmonella
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodland, Karin D.; Adkins, Joshua N.; Ansong, Charles
Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis, and most important, from the standpoint of this review, much higher throughput allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host-pathogen interactions using Salmonella as a model system. This approach enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions, and new insights into virulence and expression of Salmonella proteins within host cell cells. One of the most significant findingsmore » is that a very high percentage of the all annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high throughput mass spectrometry provides a new view of pathogen-host interactions emphasizing the protein products and defining how protein interactions determine the outcome of infection.« less
Accumulating Evidence for a Drug–Drug Interaction Between Methotrexate and Proton Pump Inhibitors
Mackey, Ann Corken; Kluetz, Paul; Jappar, Dilara; Korvick, Joyce
2012-01-01
Background. A number of medications are known to interact with methotrexate through various mechanisms. The aim of this article is to apprise practitioners of a new labeling change based on the accumulating evidence for a possible drug–drug interaction between methotrexate (primarily at high doses) and proton pump inhibitors (PPIs). Methods. The U.S. Food and Drug Administration (FDA) Adverse Event Reporting System (AERS) database of spontaneous adverse event reports and the published literature were searched for cases reporting an interaction between methotrexate and PPIs. Results. A search of the AERS database and existing literature found several individual case reports of drug–drug interactions and three additional supportive studies that suggest potential underlying mechanisms for the interaction. Conclusion. There is evidence to suggest that concomitant use of methotrexate (primarily at high doses) with PPIs such as omeprazole, esomeprazole, and pantoprazole may decrease methotrexate clearance, leading to elevated serum levels of methotrexate and/or its metabolite hydroxymethotrexate, possibly leading to methotrexate toxicities. In several case reports, no methotrexate toxicity was found when a histamine H2 blocker was substituted for a PPI. Based on the reviewed data, the FDA updated the methotrexate label to include the possible drug–drug interaction between high-dose methotrexate and PPIs. Physicians should be alerted to this potential drug–drug interaction in patients receiving concomitant high-dose methotrexate and PPIs. PMID:22477728
On-Line Systems: Promise and Pitfalls
ERIC Educational Resources Information Center
Cuadra, Carlos A.
1971-01-01
The virtues of interactive systems are speed, intimacy, and - if time-sharing is involved - economy. The major problems are the cost of the large computers and files necessary for bibliographic data, the still-high cost of communications, and the generally poor design of the user-system interfaces. (Author)
Investigation of high voltage spacecraft system interactions with plasma environments
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Berkopec, F. D.; Purvis, C. K.; Grier, N.; Staskus, J. V.
1978-01-01
An experimental investigation was undertaken for insulator and conductor test surfaces biased up to + or - 1kV in a simulated low earth orbit charged particle environment. It was found that these interactions are controlled by the insulator surfaces surrounding the biased conductors. For positive applied voltages the electron current collection can be enhanced by the insulators. For negative applied voltages the insulator surface confines the voltage to the conductor region. Understanding these interactions and the technology to control their impact on system operation is essential to the design of solar cell arrays for ion drive propulsion applications that use direct drive power processing.
Interaction and particle{endash}hole symmetry of Laughlin quasiparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojs, Arkadiusz
2001-06-15
The pseudopotentials describing interaction of Laughlin quasielectrons (QE) and quasiholes (QH) in an infinite fractional quantum Hall system are studied. The QE and QH pseudopotentials are similar, which suggests the (approximate) particle{endash}hole symmetry recovered in the thermodynamical limit. The problem of the hypothetical symmetry-breaking QE hard-core repulsion is resolved by the estimate that the {open_quotes}forbidden{close_quotes} QE pair state has too high an energy and is unstable. Strong oscillations of the QE and QH pseudopotentials persist in an infinite system, and the analogous QE and QH pair states with small relative angular momentum and nearly vanishing interaction energy are predicted.
Thermal Investigation of Interaction between High-power CW-laser Radiation and a Water-jet
NASA Astrophysics Data System (ADS)
Brecher, Christian; Janssen, Henning; Eckert, Markus; Schmidt, Florian
The technology of a water guided laser beam has been industrially established for micro machining. Pulsed laser radiation is guided via a water jet (diameter: 25-250 μm) using total internal reflection. Due to the cylindrical jet shape the depth of field increases to above 50 mm, enabling parallel kerfs compared to conventional laser systems. However higher material thicknesses and macro geometries cannot be machined economically viable due to low average laser powers. Fraunhofer IPT has successfully combined a high-power continuous-wave (CW) fiber laser (6 kW) and water jet technology. The main challenge of guiding high-power laser radiation in water is the energy transferred to the jet by absorption, decreasing its stability. A model of laser water interaction in the water jet has been developed and validated experimentally. Based on the results an upscaling of system technology to 30 kW is discussed, enabling a high potential in cutting challenging materials at high qualities and high speeds.
Many-body physics using cold atoms
NASA Astrophysics Data System (ADS)
Sundar, Bhuvanesh
Advances in experiments on dilute ultracold atomic gases have given us access to highly tunable quantum systems. In particular, there have been substantial improvements in achieving different kinds of interaction between atoms. As a result, utracold atomic gases oer an ideal platform to simulate many-body phenomena in condensed matter physics, and engineer other novel phenomena that are a result of the exotic interactions produced between atoms. In this dissertation, I present a series of studies that explore the physics of dilute ultracold atomic gases in different settings. In each setting, I explore a different form of the inter-particle interaction. Motivated by experiments which induce artificial spin-orbit coupling for cold fermions, I explore this system in my first project. In this project, I propose a method to perform universal quantum computation using the excitations of interacting spin-orbit coupled fermions, in which effective p-wave interactions lead to the formation of a topological superfluid. Motivated by experiments which explore the physics of exotic interactions between atoms trapped inside optical cavities, I explore this system in a second project. I calculate the phase diagram of lattice bosons trapped in an optical cavity, where the cavity modes mediates effective global range checkerboard interactions between the atoms. I compare this phase diagram with one that was recently measured experimentally. In two other projects, I explore quantum simulation of condensed matter phenomena due to spin-dependent interactions between particles. I propose a method to produce tunable spin-dependent interactions between atoms, using an optical Feshbach resonance. In one project, I use these spin-dependent interactions in an ultracold Bose-Fermi system, and propose a method to produce the Kondo model. I propose an experiment to directly observe the Kondo effect in this system. In another project, I propose using lattice bosons with a large hyperfine spin, which have Feshbach-induced spin-dependent interactions, to produce a quantum dimer model. I propose an experiment to detect the ground state in this system. In a final project, I develop tools to simulate the dynamics of fermionic superfluids in which fermions interact via a short-range interaction.
Yu, Xiaobo; Bian, Xiaofang; Throop, Andrea; Song, Lusheng; Moral, Lerys Del; Park, Jin; Seiler, Catherine; Fiacco, Michael; Steel, Jason; Hunter, Preston; Saul, Justin; Wang, Jie; Qiu, Ji; Pipas, James M.; LaBaer, Joshua
2014-01-01
Throughout the long history of virus-host co-evolution, viruses have developed delicate strategies to facilitate their invasion and replication of their genome, while silencing the host immune responses through various mechanisms. The systematic characterization of viral protein-host interactions would yield invaluable information in the understanding of viral invasion/evasion, diagnosis and therapeutic treatment of a viral infection, and mechanisms of host biology. With more than 2,000 viral genomes sequenced, only a small percent of them are well investigated. The access of these viral open reading frames (ORFs) in a flexible cloning format would greatly facilitate both in vitro and in vivo virus-host interaction studies. However, the overall progress of viral ORF cloning has been slow. To facilitate viral studies, we are releasing the initiation of our panviral proteome collection of 2,035 ORF clones from 830 viral genes in the Gateway® recombinational cloning system. Here, we demonstrate several uses of our viral collection including highly efficient production of viral proteins using human cell-free expression system in vitro, global identification of host targets for rubella virus using Nucleic Acid Programmable Protein Arrays (NAPPA) containing 10,000 unique human proteins, and detection of host serological responses using micro-fluidic multiplexed immunoassays. The studies presented here begin to elucidate host-viral protein interactions with our systemic utilization of viral ORFs, high-throughput cloning, and proteomic technologies. These valuable plasmid resources will be available to the research community to enable continued viral functional studies. PMID:24955142
Yu, Xiaobo; Bian, Xiaofang; Throop, Andrea; Song, Lusheng; Moral, Lerys Del; Park, Jin; Seiler, Catherine; Fiacco, Michael; Steel, Jason; Hunter, Preston; Saul, Justin; Wang, Jie; Qiu, Ji; Pipas, James M; LaBaer, Joshua
2014-01-01
Throughout the long history of virus-host co-evolution, viruses have developed delicate strategies to facilitate their invasion and replication of their genome, while silencing the host immune responses through various mechanisms. The systematic characterization of viral protein-host interactions would yield invaluable information in the understanding of viral invasion/evasion, diagnosis and therapeutic treatment of a viral infection, and mechanisms of host biology. With more than 2,000 viral genomes sequenced, only a small percent of them are well investigated. The access of these viral open reading frames (ORFs) in a flexible cloning format would greatly facilitate both in vitro and in vivo virus-host interaction studies. However, the overall progress of viral ORF cloning has been slow. To facilitate viral studies, we are releasing the initiation of our panviral proteome collection of 2,035 ORF clones from 830 viral genes in the Gateway® recombinational cloning system. Here, we demonstrate several uses of our viral collection including highly efficient production of viral proteins using human cell-free expression system in vitro, global identification of host targets for rubella virus using Nucleic Acid Programmable Protein Arrays (NAPPA) containing 10,000 unique human proteins, and detection of host serological responses using micro-fluidic multiplexed immunoassays. The studies presented here begin to elucidate host-viral protein interactions with our systemic utilization of viral ORFs, high-throughput cloning, and proteomic technologies. These valuable plasmid resources will be available to the research community to enable continued viral functional studies.
A multiscale interaction model for the origin of the tropospheric QBO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, B.N.
1995-03-01
A conceptual model for the origin of the tropospheric quasi-biennial oscillation (QBO) is presented. It is argued that the tropospheric QBO may not be a fundamental mode of oscillation of the tropical coupled system. It is proposed that it may arise due to multiscale interactions between high-frequency synoptic and intraseasonal oscillations of the atmosphere and a low-frequency oscillation of the couple system in the presence of the annual cycle. This is demonstrated using a conceptual low-order system consisting of three variables representing the nonlinear atmospheric oscillations and a linear oscillator representing the low-frequency coupled mode. The annual cycle and couplingmore » to the low-frequency linear oscillator provide slowly varying forcings for the atmospheric high-frequency oscillations. The atmospheric oscillations go through a chaotic regime during a certain part of the slowly varying forcing. Such variable forcing introduces a low-frequency tail in the spectrum of the atmospheric high-frequency oscillations. The low-frequency tail resonantly interacts with the low-frequency oscillation and produces the QBO in addition to broadening the spectrum of the low-frequency oscillator. The conceptual model simulates features similar to many observed features of the tropospheric QBO but depends on the assumption that there is an inherent low-frequency El Nino-Southern Oscillation oscillation with a four-year period that occurs independently of the high-frequency forcing or the QBO.« less
High-resolution modeling of local air-sea interaction within the Marine Continent using COAMPS
NASA Astrophysics Data System (ADS)
Jensen, T. G.; Chen, S.; Flatau, M. K.; Smith, T.; Rydbeck, A.
2016-12-01
The Maritime Continent (MC) is a region of intense deep atmospheric convection that serves as an important source of forcing for the Hadley and Walker circulations. The convective activity in the MC region spans multiple scales from local mesoscales to regional scales, and impacts equatorial wave propagation, coupled air-sea interaction and intra seasonal oscillations. The complex distribution of islands, shallow seas with fairly small heat storage and deep seas with large heat capacity is challenging to model. Diurnal convection over land-sea is part of a land-sea breeze system on a small scale, and is highly influenced by large variations in orography over land and marginal seas. Daytime solar insolation, run-off from the Archipelago and nighttime rainfall tends to stabilize the water column, while mixing by tidal currents and locally forced winds promote vertical mixing. The runoff from land and rivers and high net precipitation result in fresh water lenses that enhance vertical stability in the water column and help maintain high SST. We use the fully coupled atmosphere-ocean-wave version of the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) developed at NRL with resolution of a few kilometers to investigate the air-sea interaction associated with the land-sea breeze system in the MC under active and inactive phases of the Madden-Julian Oscillation. The high resolution enables simulation of strong SST gradients associated with local upwelling in deeper waters and strong salinity gradients near rivers and from heavy precipitation.
Some aspects of the scientific significance of high energy gamma ray astrophysics
NASA Technical Reports Server (NTRS)
Fichtel, Carl E.
1991-01-01
The attraction of high energy gamma-ray astronomy lies in this radiation relating directly to those processes in astrophysical situations which deviate most from thermo-dynamic equilibrium. Some examples of these phenomena which are known to or expected to emit gamma rays are cosmic rays as they interact in intergalactic space, the high energy particles in the magnetic fields of neutron stars, the death of a black hole, the explosion and residual of a supernova, lumps of Weakly Interacting Massive Particles, energetic solar particles interacting near the sun, and very high energy particles in the extreme conditions associated with active galaxies. Although the intensities are known to be low as seen near the earth, a partially compensating characteristic is that the very penetrating nature of high energy gamma rays increases the probability that they can escape from their origin and reach the solar system.
Occupational stress in human computer interaction.
Smith, M J; Conway, F T; Karsh, B T
1999-04-01
There have been a variety of research approaches that have examined the stress issues related to human computer interaction including laboratory studies, cross-sectional surveys, longitudinal case studies and intervention studies. A critical review of these studies indicates that there are important physiological, biochemical, somatic and psychological indicators of stress that are related to work activities where human computer interaction occurs. Many of the stressors of human computer interaction at work are similar to those stressors that have historically been observed in other automated jobs. These include high workload, high work pressure, diminished job control, inadequate employee training to use new technology, monotonous tasks, por supervisory relations, and fear for job security. New stressors have emerged that can be tied primarily to human computer interaction. These include technology breakdowns, technology slowdowns, and electronic performance monitoring. The effects of the stress of human computer interaction in the workplace are increased physiological arousal; somatic complaints, especially of the musculoskeletal system; mood disturbances, particularly anxiety, fear and anger; and diminished quality of working life, such as reduced job satisfaction. Interventions to reduce the stress of computer technology have included improved technology implementation approaches and increased employee participation in implementation. Recommendations for ways to reduce the stress of human computer interaction at work are presented. These include proper ergonomic conditions, increased organizational support, improved job content, proper workload to decrease work pressure, and enhanced opportunities for social support. A model approach to the design of human computer interaction at work that focuses on the system "balance" is proposed.
Model-based safety analysis of human-robot interactions: the MIRAS walking assistance robot.
Guiochet, Jérémie; Hoang, Quynh Anh Do; Kaaniche, Mohamed; Powell, David
2013-06-01
Robotic systems have to cope with various execution environments while guaranteeing safety, and in particular when they interact with humans during rehabilitation tasks. These systems are often critical since their failure can lead to human injury or even death. However, such systems are difficult to validate due to their high complexity and the fact that they operate within complex, variable and uncertain environments (including users), in which it is difficult to foresee all possible system behaviors. Because of the complexity of human-robot interactions, rigorous and systematic approaches are needed to assist the developers in the identification of significant threats and the implementation of efficient protection mechanisms, and in the elaboration of a sound argumentation to justify the level of safety that can be achieved by the system. For threat identification, we propose a method called HAZOP-UML based on a risk analysis technique adapted to system description models, focusing on human-robot interaction models. The output of this step is then injected in a structured safety argumentation using the GSN graphical notation. Those approaches have been successfully applied to the development of a walking assistant robot which is now in clinical validation.
McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.
2002-01-01
The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.
Preliminary Human Factors Design Guidelines For Driver Information Systems
DOT National Transportation Integrated Search
2001-01-01
During the summer and fall of 2000, a group of high level public safety and transportation officials was brought together by the US Department of Transportations (USDOT) Intelligent Transportation Systems (ITS) Program to consider the interaction bet...
Theoretical study on the photoabsorption in the Herzberg I band system of the O 2 molecule
NASA Astrophysics Data System (ADS)
Takegami, Ryuta; Yabushita, Satoshi
2005-01-01
The Herzberg I band system of the oxygen molecule is electric-dipole forbidden and its absorption strength has been explained by intensity borrowing models which include the spin-orbit (SO) and L-uncoupling (RO) interactions as perturbations. We employed three different levels of theoretical models to evaluate these two interactions, and obtained the rotational and vibronic absorption strengths using the ab initio method. The first model calculates the transition moments induced by the SO interaction variationally with the SO configuration interaction method (SOCI), and uses the first-order perturbation theory for the RO interaction, and is called SOCI. The second is based on the first-order perturbation theory for both the SO and RO interactions, and is called Pert(Full). The last is a limited version of Pert(Full), in that the first-order perturbation wavefunction for the initial and final state is represented by only one dominant basis, namely the 1 3Π g and B3Σu- state, respectively, as originally used by England et al. [Can. J. Phys. 74 (1996) 185], and is called Pert(England). The vibronic oscillator strengths calculated by these three models were in good agreement with the experimental values. As for the integrated rotational linestrengths, the SOCI and Pert(Full) models reproduced the experimental results very well, however the Pert(England) model did not give satisfactory results. Since the Pert(England) model takes only the 1 3Π g and B3Σu- states into consideration, it cannot contain the complicated configuration interactions with highly excited states induced by the SO and RO interaction, which plays an important role for calculating the delicate integrated rotational linestrength. This result suggests that the configuration interaction with highly excited states due to some perturbations cannot be neglected in the case of very weak absorption band systems.
Single-photon nonlinearities in the propagation of focused beams through dense atomic clouds
NASA Astrophysics Data System (ADS)
Wang, Yidan; Gorshkov, Alexey; Gullans, Michael
2017-04-01
We theoretically study single-photon nonlinearities realized when a highly focused Gaussian beam passes through a dense atomic cloud. In this system, strong dipole-dipole interactions arise between closely spaced atoms and significantly affect light propagation. We find that the highly focused Gaussian beam can be treated as an effective one-dimensional waveguide, which simplifies the calculation of photon transmission and correlation functions. The formalism we develop is also applicable to the case where additional atom-atom interactions, such as interactions between Rydberg atoms, are involved. This work was supported by the ARL, NSF PFC at the JQI, AFOSR, NSF PIF, ARO, and AFOSR MURI.
Chiu, Michael H.; Prenner, Elmar J.
2011-01-01
Differential Scanning Calorimetry (DSC) is a highly sensitive technique to study the thermotropic properties of many different biological macromolecules and extracts. Since its early development, DSC has been applied to the pharmaceutical field with excipient studies and DNA drugs. In recent times, more attention has been applied to lipid-based drug delivery systems and drug interactions with biomimetic membranes. Highly reproducible phase transitions have been used to determine values, such as, the type of binding interaction, purity, stability, and release from a drug delivery mechanism. This review focuses on the use of DSC for biochemical and pharmaceutical applications. PMID:21430954
Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-T c cuprates
Harrison, N.; Ramshaw, B. J.; Shekhter, A.
2015-06-03
The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high T c. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems,more » whose primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y« less
High-performance biocomputing for simulating the spread of contagion over large contact networks
2012-01-01
Background Many important biological problems can be modeled as contagion diffusion processes over interaction networks. This article shows how the EpiSimdemics interaction-based simulation system can be applied to the general contagion diffusion problem. Two specific problems, computational epidemiology and human immune system modeling, are given as examples. We then show how the graphics processing unit (GPU) within each compute node of a cluster can effectively be used to speed-up the execution of these types of problems. Results We show that a single GPU can accelerate the EpiSimdemics computation kernel by a factor of 6 and the entire application by a factor of 3.3, compared to the execution time on a single core. When 8 CPU cores and 2 GPU devices are utilized, the speed-up of the computational kernel increases to 9.5. When combined with effective techniques for inter-node communication, excellent scalability can be achieved without significant loss of accuracy in the results. Conclusions We show that interaction-based simulation systems can be used to model disparate and highly relevant problems in biology. We also show that offloading some of the work to GPUs in distributed interaction-based simulations can be an effective way to achieve increased intra-node efficiency. PMID:22537298
Flow of water and sediments through Southwestern riparian systems
Leonard F. DeBano; Peter F. Ffolliott; Kenneth N. Brooks
1996-01-01
The paper describes streamflow, sediment movement and vegetation interactions within riparian systems of the southwestern United States. Riparian systems are found in a wide range of vegetation types, ranging from lower elevation desert environments to high elevation conifer forests. The climatic, vegetative and hydrologic processes operating in the southwestern...
CODAP: Source Program Listings for the Univac 1108.
ERIC Educational Resources Information Center
Weissmuller, Johnny J.; And Others
Documentation of the Univac 1108 Comprehensive Occupational Data Analysis Programs (CODAP) system is being published in a series of three technical reports covering the control card and programing aspects of the system, which is a highly interactive and efficient system of computer routines for analyzing, organizing, and reporting occupational…
Diefenbach, Michael A; Butz, Brian P
2004-01-21
A cancer diagnosis is highly distressing. Yet, to make informed treatment choices patients have to learn complicated disease and treatment information that is often fraught with medical and statistical terminology. Thus, patients need accurate and easy-to-understand information. To introduce the development and preliminary evaluation through focus groups of a novel highly-interactive multimedia-education software program for patients diagnosed with localized prostate cancer. The prostate interactive education system uses the metaphor of rooms in a virtual health center (ie, reception area, a library, physician offices, group meeting room) to organize information. Text information contained in the library is tailored to a person's information-seeking preference (ie, high versus low information seeker). We conducted a preliminary evaluation through 5 separate focus groups with prostate cancer survivors (N = 18) and their spouses (N = 15). Focus group results point to the timeliness and high acceptability of the software among the target audience. Results also underscore the importance of a guide or tutor who assists in navigating the program and who responds to queries to facilitate information retrieval. Focus groups have established the validity of our approach and point to new directions to further enhance the user interface.
2013-12-18
include interactive gene and methylation profiles, interactive heatmaps, cytoscape network views, integrative genomics viewer ( IGV ), and protein-protein...single chart. The website also provides an option to include multiple genes. Integrative Genomics Viewer ( IGV )1, is a high-performance desktop tool for
Many regional and global climate models include aerosol indirect effects (AIE) on grid-scale/resolved clouds. However, the interaction between aerosols and convective clouds remains highly uncertain, as noted in the IPCC AR4 report. The objective of this work is to help fill in ...
ERIC Educational Resources Information Center
Hargrove, Byron K.; Inman, Arpana G.; Crane, Randy L.
2005-01-01
The purpose of the current study was to examine how perceptions of family interaction patterns as defined along three dimensions of family environment (quality of family relationships, family goal-orientations, and degree of organization and control within the family system) predict vocational identity and career planning attitudes among male and…
Myxoma virus in the European rabbit: interactions between the virus and its susceptible host.
Stanford, Marianne M; Werden, Steven J; McFadden, Grant
2007-01-01
Myxoma virus (MV) is a poxvirus that evolved in Sylvilagus lagomorphs, and is the causative agent of myxomatosis in European rabbits (Oryctolagus cuniculus). This virus is not a natural pathogen of O. cuniculus, yet is able to subvert the host rabbit immune system defenses and cause a highly lethal systemic infection. The interaction of MV proteins and the rabbit immune system has been an ideal model to help elucidate host/poxvirus interactions, and has led to a greater understanding of how other poxvirus pathogens are able to cause disease in their respective hosts. This review will examine how MV causes myxomatosis, by examining a selection of the identified immunomodulatory proteins that this virus expresses to subvert the immune and inflammatory pathways of infected rabbit hosts.
Predictability, Force and (Anti-)Resonance in Complex Object Control.
Maurice, Pauline; Hogan, Neville; Sternad, Dagmar
2018-04-18
Manipulation of complex objects as in tool use is ubiquitous and has given humans an evolutionary advantage. This study examined the strategies humans choose when manipulating an object with underactuated internal dynamics, such as a cup of coffee. The object's dynamics renders the temporal evolution complex, possibly even chaotic, and difficult to predict. A cart-and-pendulum model, loosely mimicking coffee sloshing in a cup, was implemented in a virtual environment with a haptic interface. Participants rhythmically manipulated the virtual cup containing a rolling ball; they could choose the oscillation frequency, while the amplitude was prescribed. Three hypotheses were tested: 1) humans decrease interaction forces between hand and object; 2) humans increase the predictability of the object dynamics; 3) humans exploit the resonances of the coupled object-hand system. Analysis revealed that humans chose either a high-frequency strategy with anti-phase cup-and-ball movements or a low-frequency strategy with in-phase cup-and-ball movements. Counter Hypothesis 1, they did not decrease interaction force; instead, they increased the predictability of the interaction dynamics, quantified by mutual information, supporting Hypothesis 2. To address Hypothesis 3, frequency analysis of the coupled hand-object system revealed two resonance frequencies separated by an anti-resonance frequency. The low-frequency strategy exploited one resonance, while the high-frequency strategy afforded more choice, consistent with the frequency response of the coupled system; both strategies avoided the anti-resonance. Hence, humans did not prioritize interaction force, but rather strategies that rendered interactions predictable. These findings highlight that physical interactions with complex objects pose control challenges not present in unconstrained movements.
Virtual interactive presence and augmented reality (VIPAR) for remote surgical assistance.
Shenai, Mahesh B; Dillavou, Marcus; Shum, Corey; Ross, Douglas; Tubbs, Richard S; Shih, Alan; Guthrie, Barton L
2011-03-01
Surgery is a highly technical field that combines continuous decision-making with the coordination of spatiovisual tasks. We designed a virtual interactive presence and augmented reality (VIPAR) platform that allows a remote surgeon to deliver real-time virtual assistance to a local surgeon, over a standard Internet connection. The VIPAR system consisted of a "local" and a "remote" station, each situated over a surgical field and a blue screen, respectively. Each station was equipped with a digital viewpiece, composed of 2 cameras for stereoscopic capture, and a high-definition viewer displaying a virtual field. The virtual field was created by digitally compositing selected elements within the remote field into the local field. The viewpieces were controlled by workstations mutually connected by the Internet, allowing virtual remote interaction in real time. Digital renderings derived from volumetric MRI were added to the virtual field to augment the surgeon's reality. For demonstration, a fixed-formalin cadaver head and neck were obtained, and a carotid endarterectomy (CEA) and pterional craniotomy were performed under the VIPAR system. The VIPAR system allowed for real-time, virtual interaction between a local (resident) and remote (attending) surgeon. In both carotid and pterional dissections, major anatomic structures were visualized and identified. Virtual interaction permitted remote instruction for the local surgeon, and MRI augmentation provided spatial guidance to both surgeons. Camera resolution, color contrast, time lag, and depth perception were identified as technical issues requiring further optimization. Virtual interactive presence and augmented reality provide a novel platform for remote surgical assistance, with multiple applications in surgical training and remote expert assistance.
SILVA tree viewer: interactive web browsing of the SILVA phylogenetic guide trees.
Beccati, Alan; Gerken, Jan; Quast, Christian; Yilmaz, Pelin; Glöckner, Frank Oliver
2017-09-30
Phylogenetic trees are an important tool to study the evolutionary relationships among organisms. The huge amount of available taxa poses difficulties in their interactive visualization. This hampers the interaction with the users to provide feedback for the further improvement of the taxonomic framework. The SILVA Tree Viewer is a web application designed for visualizing large phylogenetic trees without requiring the download of any software tool or data files. The SILVA Tree Viewer is based on Web Geographic Information Systems (Web-GIS) technology with a PostgreSQL backend. It enables zoom and pan functionalities similar to Google Maps. The SILVA Tree Viewer enables access to two phylogenetic (guide) trees provided by the SILVA database: the SSU Ref NR99 inferred from high-quality, full-length small subunit sequences, clustered at 99% sequence identity and the LSU Ref inferred from high-quality, full-length large subunit sequences. The Tree Viewer provides tree navigation, search and browse tools as well as an interactive feedback system to collect any kinds of requests ranging from taxonomy to data curation and improving the tool itself.
Interacting shells in AdS spacetime and chaos
NASA Astrophysics Data System (ADS)
Brito, Richard; Cardoso, Vitor; Rocha, Jorge V.
2016-07-01
We study the simplest two-body problem in asymptotically anti-de Sitter spacetime: two, infinitely thin, concentric spherical shells of matter. We include only gravitational interaction between the two shells, but we show that the dynamics of this system is highly nontrivial. We observe prompt collapse to a black hole, delayed collapse and even perpetual oscillatory motion, depending on the initial location of the shells (or their energy content). The system exhibits critical behavior, and we show strong hints that it is also chaotic.
Numerical investigation of electron localization in polymer chains
NASA Astrophysics Data System (ADS)
Paulsson, Magnus; Stafström, Sven
1998-01-01
Using finite-size scaling, we have calculated the localization-delocalization phase diagrams for electronic wave functions in different disordered polymeric systems. The disorder considered here simulates finite polymer chain lengths, breaks in the conjugation, and disorder in an external potential. It is shown that a system of interacting chains, even at rather weak interchain interactions, allows for enough flexibility for the scattered waves to avoid dephasing and localization. Localization and the metal-insulator transition in highly conducting polymers are discussed in view of these results.
NASA Astrophysics Data System (ADS)
Tong, Qiujie; Wang, Qianqian; Li, Xiaoyang; Shan, Bin; Cui, Xuntai; Li, Chenyu; Peng, Zhong
2016-11-01
In order to satisfy the requirements of the real-time and generality, a laser target simulator in semi-physical simulation system based on RTX+LabWindows/CVI platform is proposed in this paper. Compared with the upper-lower computers simulation platform architecture used in the most of the real-time system now, this system has better maintainability and portability. This system runs on the Windows platform, using Windows RTX real-time extension subsystem to ensure the real-time performance of the system combining with the reflective memory network to complete some real-time tasks such as calculating the simulation model, transmitting the simulation data, and keeping real-time communication. The real-time tasks of simulation system run under the RTSS process. At the same time, we use the LabWindows/CVI to compile a graphical interface, and complete some non-real-time tasks in the process of simulation such as man-machine interaction, display and storage of the simulation data, which run under the Win32 process. Through the design of RTX shared memory and task scheduling algorithm, the data interaction between the real-time tasks process of RTSS and non-real-time tasks process of Win32 is completed. The experimental results show that this system has the strongly real-time performance, highly stability, and highly simulation accuracy. At the same time, it also has the good performance of human-computer interaction.
Optimal free descriptions of many-body theories
NASA Astrophysics Data System (ADS)
Turner, Christopher J.; Meichanetzidis, Konstantinos; Papić, Zlatko; Pachos, Jiannis K.
2017-04-01
Interacting bosons or fermions give rise to some of the most fascinating phases of matter, including high-temperature superconductivity, the fractional quantum Hall effect, quantum spin liquids and Mott insulators. Although these systems are promising for technological applications, they also present conceptual challenges, as they require approaches beyond mean-field and perturbation theory. Here we develop a general framework for identifying the free theory that is closest to a given interacting model in terms of their ground-state correlations. Moreover, we quantify the distance between them using the entanglement spectrum. When this interaction distance is small, the optimal free theory provides an effective description of the low-energy physics of the interacting model. Our construction of the optimal free model is non-perturbative in nature; thus, it offers a theoretical framework for investigating strongly correlated systems.
NASA Astrophysics Data System (ADS)
Fales, B. Scott; Shu, Yinan; Levine, Benjamin G.; Hohenstein, Edward G.
2017-09-01
A new complete active space configuration interaction (CASCI) method was recently introduced that uses state-averaged natural orbitals from the configuration interaction singles method (configuration interaction singles natural orbital CASCI, CISNO-CASCI). This method has been shown to perform as well or better than state-averaged complete active space self-consistent field for a variety of systems. However, further development and testing of this method have been limited by the lack of available analytic first derivatives of the CISNO-CASCI energy as well as the derivative coupling between electronic states. In the present work, we present a Lagrangian-based formulation of these derivatives as well as a highly efficient implementation of the resulting equations accelerated with graphical processing units. We demonstrate that the CISNO-CASCI method is practical for dynamical simulations of photochemical processes in molecular systems containing hundreds of atoms.
Fales, B Scott; Shu, Yinan; Levine, Benjamin G; Hohenstein, Edward G
2017-09-07
A new complete active space configuration interaction (CASCI) method was recently introduced that uses state-averaged natural orbitals from the configuration interaction singles method (configuration interaction singles natural orbital CASCI, CISNO-CASCI). This method has been shown to perform as well or better than state-averaged complete active space self-consistent field for a variety of systems. However, further development and testing of this method have been limited by the lack of available analytic first derivatives of the CISNO-CASCI energy as well as the derivative coupling between electronic states. In the present work, we present a Lagrangian-based formulation of these derivatives as well as a highly efficient implementation of the resulting equations accelerated with graphical processing units. We demonstrate that the CISNO-CASCI method is practical for dynamical simulations of photochemical processes in molecular systems containing hundreds of atoms.
Modify the Histone to Win the Battle: Chromatin Dynamics in Plant–Pathogen Interactions
Ramirez-Prado, Juan S.; Piquerez, Sophie J. M.; Bendahmane, Abdelhafid; Hirt, Heribert; Raynaud, Cécile; Benhamed, Moussa
2018-01-01
Relying on an immune system comes with a high energetic cost for plants. Defense responses in these organisms are therefore highly regulated and fine-tuned, permitting them to respond pertinently to the attack of a microbial pathogen. In recent years, the importance of the physical modification of chromatin, a highly organized structure composed of genomic DNA and its interacting proteins, has become evident in the research field of plant–pathogen interactions. Several processes, including DNA methylation, changes in histone density and variants, and various histone modifications, have been described as regulators of various developmental and defense responses. Herein, we review the state of the art in the epigenomic aspects of plant immunity, focusing on chromatin modifications, chromatin modifiers, and their physiological consequences. In addition, we explore the exciting field of understanding how plant pathogens have adapted to manipulate the plant epigenomic regulation in order to weaken their immune system and thrive in their host, as well as how histone modifications in eukaryotic pathogens are involved in the regulation of their virulence. PMID:29616066
High Times for Painful Blues: The Endocannabinoid System in Pain-Depression Comorbidity
Fitzgibbon, Marie; Finn, David P.
2016-01-01
Depression and pain are two of the most debilitating disorders worldwide and have an estimated cooccurrence of up to 80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-related quality of life than either condition alone, resulting in enormous social and economic cost. Several neural substrates have been identified as potential mediators in the association between depression and pain, including neuroanatomical reorganization, monoamine and neurotrophin depletion, dysregulation of the hypothalamo-pituitary-adrenal axis, and neuroinflammation. However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive processing, and thus, alterations in this system may play a key role in reciprocal interactions between depression and pain. This review will provide an overview of the preclinical evidence supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system in this interaction. PMID:26342110
Systems and methods for interactive virtual reality process control and simulation
Daniel, Jr., William E.; Whitney, Michael A.
2001-01-01
A system for visualizing, controlling and managing information includes a data analysis unit for interpreting and classifying raw data using analytical techniques. A data flow coordination unit routes data from its source to other components within the system. A data preparation unit handles the graphical preparation of the data and a data rendering unit presents the data in a three-dimensional interactive environment where the user can observe, interact with, and interpret the data. A user can view the information on various levels, from a high overall process level view, to a view illustrating linkage between variables, to view the hard data itself, or to view results of an analysis of the data. The system allows a user to monitor a physical process in real-time and further allows the user to manage and control the information in a manner not previously possible.
NASA Astrophysics Data System (ADS)
Gudmundsson, Vidar; Abdulla, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei
2018-02-01
We show that a Rabi-splitting of the states of strongly interacting electrons in parallel quantum dots embedded in a short quantum wire placed in a photon cavity can be produced by either the para- or the dia-magnetic electron-photon interactions when the geometry of the system is properly accounted for and the photon field is tuned close to a resonance with the electron system. We use these two resonances to explore the electroluminescence caused by the transport of electrons through the one- and two-electron ground states of the system and their corresponding conventional and vacuum electroluminescense as the central system is opened up by coupling it to external leads acting as electron reservoirs. Our analysis indicates that high-order electron-photon processes are necessary to adequately construct the cavity-photon dressed electron states needed to describe both types of electroluminescence.
Corzo-Martínez, M; Mohan, M; Dunlap, J; Harte, F
2015-03-01
The aim of this work was to develop a milk-based powder formulation appropriate for pediatric delivery of ritonavir (RIT). Ultra-high pressure homogenization (UHPH) at 0.1, 300 and 500 MPa was used to process a dispersion of pasteurized skim milk (SM) and ritonavir. Loading efficiency was determined by RP-HPLC-UV; characterization of RIT:SM systems was carried out by apparent average hydrodynamic diameter and rheological measurements as well as different analytical techniques including Trp fluorescence, UV spectroscopy, DSC, FTIR and SEM; and delivery capacity of casein micelles was determined by in vitro experiments promoting ritonavir release. Ritonavir interacted efficiently with milk proteins, especially, casein micelles, regardless of the processing pressure; however, results suggest that, at 0.1 MPa, ritonavir interacts with caseins at the micellar surface, whilst, at 300 and 500 MPa, ritonavir is integrated to the protein matrix during UHPH treatment. Likewise, in vitro experiments showed that ritonavir release from micellar casein systems is pH dependent; with a high retention of ritonavir during simulated gastric digestion and a rapid delivery under conditions simulating the small intestine environment. Skim milk powder, especially, casein micelles are potentially suitable and efficient carrier systems to develop novel milk-based and low-ethanol powder formulations of ritonavir appropriate for pediatric applications.
Extended magnetic exchange interactions in the high-temperature ferromagnet MnBi
Christianson, Andrew D.; Hahn, Steven E.; Fishman, Randy Scott; ...
2016-05-09
Here, the high-temperature ferromagnet MnBi continues to receive attention as a candidate to replace rare-earth-containing permanent magnets in applications above room temperature. This is due to a high Curie temperature, large magnetic moments, and a coercivity that increases with temperature. The synthesis of MnBi also allows for crystals that are free of interstitial Mn, enabling more direct access to the key interactions underlying the physical properties of binary Mn-based ferromagnets. In this work, we use inelastic neutron scattering to measure the spin waves of MnBi in order to characterize the magnetic exchange at low temperature. Consistent with the spin reorientationmore » that occurs below 140~K, we do not observe a spin gap in this system above our experimental resolution. A Heisenberg model was fit to the spin wave data in order to characterize the long-range nature of the exchange. It was found that interactions up to sixth nearest neighbor are required to fully parameterize the spin waves. Surprisingly, the nearest-neighbor term is antiferromagnetic, and the realization of a ferromagnetic ground state relies on the more numerous ferromagnetic terms beyond nearest neighbor, suggesting that the ferromagnetic ground state arises as a consequence of the long-ranged interactions in the system.« less
Surprises from quenches in long-range-interacting systems: temperature inversion and cooling
NASA Astrophysics Data System (ADS)
Gupta, Shamik; Casetti, Lapo
2016-10-01
What happens when one of the parameters governing the dynamics of a long-range interacting system of particles in thermal equilibrium is abruptly changed (quenched) to a different value? While a short-range system, under the same conditions, will relax in time to a new thermal equilibrium with a uniform temperature across the system, a long-range system shows a fast relaxation to a non-equilibrium quasistationary state (QSS). The lifetime of such an off-equilibrium state diverges with the system size, and the temperature is non-uniform across the system. Quite surprisingly, the density profile in the QSS obtained after the quench is anticorrelated with the temperature profile in space, thus exhibiting the phenomenon of temperature inversion: denser regions are colder than sparser ones. We illustrate with extensive molecular dynamics simulations the ubiquity of this scenario in a prototypical long-range interacting system subject to a variety of quenching protocols, and in a model that mimics an experimental setup of atoms interacting with light in an optical cavity. We further demonstrate how a procedure of iterative quenching combined with filtering out the high-energy particles in the system may be employed to cool the system. Temperature inversion is observed in nature in some astrophysical settings; our results imply that such a phenomenon should be observable, and could even be exploitable to advantage, also in controlled laboratory experiments.
Alvim, Mariana Macedo; da Silva, Lidiane Ayres; Leite, Isabel Cristina Gonçalves; Silvério, Marcelo Silva
2015-01-01
Objective To evaluate the incidence of potential drug-drug interactions in an intensive care unit of a hospital, focusing on antimicrobial drugs. Methods This cross-sectional study analyzed electronic prescriptions of patients admitted to the intensive care unit of a teaching hospital between January 1 and March 31, 2014 and assessed potential drug-drug interactions associated with antimicrobial drugs. Antimicrobial drug consumption levels were expressed in daily doses per 100 patient-days. The search and classification of the interactions were based on the Micromedex® system. Results The daily prescriptions of 82 patients were analyzed, totaling 656 prescriptions. Antimicrobial drugs represented 25% of all prescription drugs, with meropenem, vancomycin and ceftriaxone being the most prescribed medications. According to the approach of daily dose per 100 patient-days, the most commonly used antimicrobial drugs were cefepime, meropenem, sulfamethoxazole + trimethoprim and ciprofloxacin. The mean number of interactions per patient was 2.6. Among the interactions, 51% were classified as contraindicated or significantly severe. Highly significant interactions (clinical value 1 and 2) were observed with a prevalence of 98%. Conclusion The current study demonstrated that antimicrobial drugs are frequently prescribed in intensive care units and present a very high number of potential drug-drug interactions, with most of them being considered highly significant. PMID:26761473
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takata, J.; Tam, P. H. T.; Ng, C. W.
PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting around a high-mass Be type star with a very long orbital period of 25–50 years, and is approaching periastron, which will occur in late 2017/early 2018. This system comprises a young pulsar and a Be type star, which is similar to the so-called gamma-ray binary PSR B1259–63/LS2883. It is expected therefore that PSR J2032+4127 shows an enhancement of high-energy emission caused by the interaction between the pulsar wind and Be wind/disk around periastron. Ho et al. recently reported a rapid increase in the X-ray flux from this system. In thismore » paper, we also confirm a rapid increase in the X-ray flux along the orbit, while the GeV flux shows no significant change. We discuss the high-energy emissions from the shock caused by the pulsar wind and stellar wind interaction and examine the properties of the pulsar wind in this binary system. We argue that the rate of increase of the X-ray flux observed by Swift indicates (1) a variation of the momentum ratio of the two-wind interaction region along the orbit, or (2) an evolution of the magnetization parameter of the pulsar wind with the radial distance from the pulsar. We also discuss the pulsar wind/Be disk interaction at the periastron passage, and propose the possibility of formation of an accretion disk around the pulsar. We model high-energy emissions through the inverse-Compton scattering process of the cold-relativistic pulsar wind off soft photons from the accretion disk.« less
Buffet induced structural/flight-control system interaction of the X-29A aircraft
NASA Technical Reports Server (NTRS)
Voracek, David F.; Clarke, Robert
1991-01-01
High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.
Detection of pulsed bremsstrahlung-induced prompt neutron capture gamma rays with a HPGe detector
NASA Astrophysics Data System (ADS)
Jones, James L.
1997-02-01
The Idaho National Engineering Laboratory (INEL) is developing a novel photoneutron-based nondestructive evaluation technique which uses a pulsed, high-energy electron accelerator and gamma-ray spectrometry. Highly penetrating pulses of bremsstrahlung photons are produced by each pulse of electrons. Interrogating neutrons are generated by the bremsstrahlung photons interacting within a photoneutron source material. The interactions of the neutrons within a target result in the emission of elemental characteristic gamma-rays. Spectrometry is performed by analyzing the photoneutron-induced, prompt gama-rays acquired between accelerator pulses with a unique, high- purity germanium gamma-ray detection system using a modified transistor reset preamplifier. The detection system, the experimental configuration, and the accelerator operation used to characterize the detection systems performance are described. Using a 6.5-MeV electron accelerator and a beryllium metal photoneutron source, gamma-ray spectra were successfully acquired for Al, Cu, polyethylene, NaCl, and depleted uranium targets as soon as 30 microsecond(s) after each bremsstrahlung flash.
Practical and generalizable architecture for an intelligent tutoring system
NASA Astrophysics Data System (ADS)
Kaplan, Randy M.; Trenholm, Harriet
1993-03-01
In this paper we describe an intelligent tutoring system (ITS) called HYDRIVE (hydraulics interactive video experience). This system is built using several novel approaches to intelligent tutoring. The underlying rationale for HYDRIVE is based on the results of a cognitive task analysis. The reasoning component of the system makes extensive use of a hierarchical knowledge representation. Reasoning within the system is accomplished using a logic-based approach and is linked to a highly interactive interface using multimedia. The knowledge representation contains information that drives the multimedia elements of the system, and the reasoning components select the appropriate information to assess student knowledge or guide the student at any particular moment. As this system will be deployed throughout the Air Force maintenance function, the implementation platform is the IBM PC.
Demonstration of protein-fragment complementation assay using purified firefly luciferase fragments
2013-01-01
Background Human interactome is predicted to contain 150,000 to 300,000 protein-protein interactions, (PPIs). Protein-fragment complementation assay (PCA) is one of the most widely used methods to detect PPI, as well as Förster resonance energy transfer (FRET). To date, successful applications of firefly luciferase (Fluc)-based PCA have been reported in vivo, in cultured cells and in cell-free lysate, owing to its high sensitivity, high signal-to-background (S/B) ratio, and reversible response. Here we show the assay also works with purified proteins with unexpectedly rapid kinetics. Results Split Fluc fragments both fused with a rapamycin-dependently interacting protein pair were made and expressed in E. coli system, and purified to homogeneity. When the proteins were used for PCA to detect rapamycin-dependent PPI, they enabled a rapid detection (~1 s) of PPI with high S/B ratio. When Fn7-8 domains (7 nm in length) that was shown to abrogate GFP mutant-based FRET was inserted between split Fluc and FKBP12 as a rigid linker, it still showed some response, suggesting less limitation in interacting partner’s size. Finally, the stability of the probe was investigated. Preincubation of the probes at 37 degreeC up to 1 h showed marked decrease of the luminescent signal to 1.5%, showing the limited stability of this system. Conclusion Fluc PCA using purified components will enable a rapid and handy detection of PPIs with high S/B ratio, avoiding the effects of concomitant components. Although the system might not be suitable for large-scale screening due to its limited stability, it can detect an interaction over larger distance than by FRET. This would be the first demonstration of Fluc PCA in vitro, which has a distinct advantage over other PPI assays. Our system enables detection of direct PPIs without risk of perturbation by PPI mediators in the complex cellular milieu. PMID:23536995
Aero-Mechanical Design Methodology for Subsonic Civil Transport High-Lift Systems
NASA Technical Reports Server (NTRS)
vanDam, C. P.; Shaw, S. G.; VanderKam, J. C.; Brodeur, R. R.; Rudolph, P. K. C.; Kinney, D.
2000-01-01
In today's highly competitive and economically driven commercial aviation market, the trend is to make aircraft systems simpler and to shorten their design cycle which reduces recurring, non-recurring and operating costs. One such system is the high-lift system. A methodology has been developed which merges aerodynamic data with kinematic analysis of the trailing-edge flap mechanism with minimum mechanism definition required. This methodology provides quick and accurate aerodynamic performance prediction for a given flap deployment mechanism early on in the high-lift system preliminary design stage. Sample analysis results for four different deployment mechanisms are presented as well as descriptions of the aerodynamic and mechanism data required for evaluation. Extensions to interactive design capabilities are also discussed.
Two-leg ladder systems with dipole–dipole Fermion interactions
NASA Astrophysics Data System (ADS)
Mosadeq, Hamid; Asgari, Reza
2018-05-01
The ground-state phase diagram of a two-leg fermionic dipolar ladder with inter-site interactions is studied using density matrix renormalization group (DMRG) techniques. We use a state-of-the-art implementation of the DMRG algorithm and finite size scaling to simulate large system sizes with high accuracy. We also consider two different model systems and explore stable phases in half and quarter filling factors. We find that in the half filling, the charge and spin gaps emerge in a finite value of the dipole–dipole and on-site interactions. In the quarter filling case, s-wave superconducting state, charge density wave, homogenous insulating and phase separation phases occur depend on the interaction values. Moreover, in the dipole–dipole interaction, the D-Mott phase emerges when the hopping terms along the chain and rung are the same, whereas, this phase has been only proposed for the anisotropic Hubbard model. In the half filling case, on the other hand, there is either charge-density wave or charged Mott order phase depends on the orientation of the dipole moments of the particles with respect to the ladder geometry.
Systems Biology Approaches for Host–Fungal Interactions: An Expanding Multi-Omics Frontier
Culibrk, Luka; Croft, Carys A.
2016-01-01
Abstract Opportunistic fungal infections are an increasing threat for global health, and for immunocompromised patients in particular. These infections are characterized by interaction between fungal pathogen and host cells. The exact mechanisms and the attendant variability in host and fungal pathogen interaction remain to be fully elucidated. The field of systems biology aims to characterize a biological system, and utilize this knowledge to predict the system's response to stimuli such as fungal exposures. A multi-omics approach, for example, combining data from genomics, proteomics, metabolomics, would allow a more comprehensive and pan-optic “two systems” biology of both the host and the fungal pathogen. In this review and literature analysis, we present highly specialized and nascent methods for analysis of multiple -omes of biological systems, in addition to emerging single-molecule visualization techniques that may assist in determining biological relevance of multi-omics data. We provide an overview of computational methods for modeling of gene regulatory networks, including some that have been applied towards the study of an interacting host and pathogen. In sum, comprehensive characterizations of host–fungal pathogen systems are now possible, and utilization of these cutting-edge multi-omics strategies may yield advances in better understanding of both host biology and fungal pathogens at a systems scale. PMID:26885725
Influence of predator density on nonindependent effects of multiple predator species.
Griffen, Blaine D; Williamson, Tucker
2008-02-01
Interactions between multiple predator species are frequent in natural communities and can have important implications for shared prey survival. Predator density may be an important component of these interactions between predator species, as the frequency of interactions between species is largely determined by species density. Here we experimentally examine the importance of predator density for interactions between predator species and subsequent impacts on prey. We show that aggressive interactions between the predatory shore crabs Carcinus maenas and Hemigrapsus sanguineus increased with predator density, yet did not increase as fast as negative interactions between conspecifics. At low density, interactions between conspecific and heterospecific predators had similar inhibitory impacts on predator function, whereas conspecific interference was greater than interference from heterospecifics at high predator density. Thus the impact of conspecific interference at high predator density was sufficient in itself that interactions with a second predator species had no additional impact on per capita predation. Spatial and temporal variability in predator density is a ubiquitous characteristic of natural systems that should be considered in studies of multiple predator species.
The Pathway Active Learning Environment: An interactive web-based tool for physics education
NASA Astrophysics Data System (ADS)
Nakamura, Christopher Matthew
The work described here represents an effort to design, construct, and test an interactive online multimedia learning environment that can provide physics instruction to students in their homes. The system was designed with one-on-one human tutoring in mind as the mode of instruction. The system uses an original combination of a video-based tutor that incorporates natural language processing video-centered lessons and additional illustrative multimedia. Our Synthetic Interview (SI) tutor provides pre-recorded video answers from expert physics instructors in response to students' typed natural language questions. Our lessons cover Newton's laws and provide a context for the tutoring interaction to occur, connect physics ideas to real-world behavior of mechanical systems, and allow for quantitative testing of physics. Additional multimedia can be used to supplement the SI tutors' explanations and illustrate the physics of interest. The system is targeted at students of algebra-based and concept-based physics at the college and high school level. The system logs queries to the SI tutor, responses to lesson questions and several other interactions with the system, tagging those interactions with a username and timestamp. We have provided several groups of students with access to our system under several different conditions ranging from the controlled conditions of our interview facility to the naturalistic conditions of use at home. In total nearly two-hundred students have accessed the system. To gain insight into the ways students might use the system and understand the utility of its various components we analyzed qualitative interview data collected with 22 algebra-based physics students who worked with our system in our interview facility. We also performed a descriptive analysis of data from the system's log of user interactions. Finally we explored the use of machine learning to explore the possibility of using automated assessment to augment the interactive capabilities of the system as well as to identify productive and unproductive use patterns. This work establishes a proof-of-concept level demonstration of the feasibility of deploying this type of system. The impact of this work and the possibility of future research efforts are discussed in the context of Internet technologies that are changing rapidly.
Anawar, Hossain M; Rengel, Zed; Damon, Paul; Tibbett, Mark
2018-02-01
High arsenic (As) concentrations in the soil, water and plant systems can pose a direct health risk to humans and ecosystems. Phosphate (Pi) ions strongly influence As availability in soil, its uptake and toxicity to plants. Better understanding of As(V)-Pi interactions in soils and plants will facilitate a potential remediation strategy for As contaminated soils, reducing As uptake by crop plants and toxicity to human populations via manipulation of soil Pi content. However, the As(V)-Pi interactions in soil-plant systems are complex, leading to contradictory findings among different studies. Therefore, this review investigates the role of soil type, soil properties, minerals, Pi levels in soil and plant, Pi transporters, mycorrhizal association and microbial activities on As-Pi interactions in soils and hydroponics, and uptake by plants, elucidate the key mechanisms, identify key knowledge gaps and recommend new research directions. Although Pi suppresses As uptake by plants in hydroponic systems, in soils it could either increase or decrease As availability and toxicity to plants depending on the soil types, properties and charge characteristics. In soil, As(V) availability is typically increased by the addition of Pi. At the root surface, the Pi transport system has high affinity for Pi over As(V). However, Pi concentration in plant influences the As transport from roots to shoots. Mycorrhizal association may reduce As uptake via a physiological shift to the mycorrhizal uptake pathway, which has a greater affinity for Pi over As(V) than the root epidermal uptake pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self-Supporting Nanodiamond Gels: Elucidating Colloidal Interactions Through Rheology_
NASA Astrophysics Data System (ADS)
Adhikari, Prajesh; Tripathi, Anurodh; Vogel, Nancy A.; Rojas, Orlando J.; Raghavan, Sriunivasa R.; Khan, Saad A.
This work investigates the colloidal interactions and rheological behavior of nanodiamond (ND) dispersions. While ND represents a promising class of nanofiller due to its high surface area, superior mechanical strength, tailorable surface functionality and biocompatibility, much remains unknown about the behavior of ND dispersions. We hypothesize that controlling interactions in ND dispersions will lead to highly functional systems with tunable modulus and shear response. Steady and dynamic rheology techniques are thus employed to systematically investigate nanodiamonds dispersed in model polar and non-polar media. We find that low concentrations of ND form gels almost instantaneously in a non-polar media. In contrast, ND's in polar media show a time-dependent behavior with the modulus increasing with time. We attribute the difference in behavior to variations in inter-particle interactions as well as the interaction of the ND with the media. Large steady and oscillatory strains are applied to ND colloidal gels to investigate the role of shear in gel microstructure breakdown and recovery. For colloidal gels in non-polar medium, the incomplete recovery of elastic modulus at high strain amplitudes indicates dominance of particle-particle interactions; however, in polar media the complete recovery of elastic modulus even at high strain amplitudes indicates dominance of particle-solvent interactions. These results taken together provide a platform to develop self-supporting gels with tunable properties in terms of ND concentration, and solvent type.
Impact of cation-π interactions on the cell voltage of carbon nanotube-based Li batteries.
Gao, Shaohua; Shi, Guosheng; Fang, Haiping
2016-01-21
Carbon nanotube (CNT)-based Li batteries have attracted wide attention because of their high capacity, high cyclability and high energy density and are believed to be one of the most promising electrochemical energy storage systems. In CNT-based Li batteries, the main interaction between the Li(+) ions and the CNT is the cation-π interaction. However, up to now, it is still not clear how this interaction affects the storage characteristics of CNT-based Li batteries. Here, using density functional theory (DFT) calculations, we report a highly favorable impact of cation-π interactions on the cell voltage of CNT-based Li batteries. Considering both Li(+)-π interaction and Li-π interaction, we show that cell voltage enhances with the increase of the CNT diameter. In addition, when the Li(+) ion adsorbs on the external wall, the cell voltage is larger than that when it adsorbs on the internal wall. This suggests that CNTs with a large diameter and a low array density are more advantageous to enhance storage performance of CNT-based Li batteries. Compared with Li(+) ions on the (4,4) CNT internal wall, the cell voltage of Li(+) on the (10,10) CNT external wall is 0.55 V higher, which indicates an improvement of about 38%. These results will be helpful for the design of more efficient CNT-based Li batteries.
Ziegler, Jacob P.; Golebie, Elizabeth J.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.
2017-01-01
Many ecosystems continue to experience rapid transformations due to processes like land use change and resource extraction. A systems approach to maintaining natural resources focuses on how interactions and feedbacks among components of complex social‐ecological systems generate social and ecological outcomes. In recreational fisheries, residential shoreline development and fish stocking are two widespread human behaviors that influence fisheries, yet emergent social‐ecological outcomes from these potentially interacting behaviors remain under explored. We applied a social‐ecological systems framework using a simulation model and empirical data to determine whether lakeshore development is likely to promote stocking through its adverse effects on coarse woody habitat and thereby also on survival of juvenile and adult fish. We demonstrate that high lakeshore development is likely to generate dependency of the ecosystem on the social system, in the form of stocking. Further, lakeshore development can interact with social‐ecological processes to create deficits for state‐level governments, which threatens the ability to fund further ecosystem subsidies. Our results highlight the value of a social‐ecological framework for maintaining ecosystem services like recreational fisheries.
Di Benedetto, Svetlana; Müller, Ludmila; Wenger, Elisabeth; Düzel, Sandra; Pawelec, Graham
2017-04-01
It is widely accepted that the brain and the immune system continuously interact during normal as well as pathological functioning. Human aging is commonly accompanied by low-grade inflammation in both the immune and central nervous systems, thought to contribute to many age-related diseases. This review of the current literature focuses first on the normal neuroimmune interactions occurring in the brain, which promote learning, memory and neuroplasticity. Further, we discuss the protective and dynamic role of barriers to neuroimmune interactions, which have become clearer with the recent discovery of the meningeal lymphatic system. Next, we consider age-related changes of the immune system and possible deleterious influences of immunosenescence and low-grade inflammation (inflammaging) on neurodegenerative processes in the normally aging brain. We survey the major immunomodulators and neuroregulators in the aging brain and their highly tuned dynamic and reciprocal interactions. Finally, we consider our current understanding of how physical activity, as well as a combination of physical and cognitive interventions, may mediate anti-inflammatory effects and thus positively impact brain aging. Copyright © 2017 Elsevier Ltd. All rights reserved.
Roles for Agent Assistants in Field Science: Understanding Personal Projects and Collaboration
NASA Technical Reports Server (NTRS)
Clancey, William J.
2003-01-01
A human-centered approach to computer systems design involves reframing analysis in terms of the people interacting with each other. The primary concern is not how people can interact with computers, but how shall we design work systems (facilities, tools, roles, and procedures) to help people pursue their personal projects, as they work independently and collaboratively? Two case studies provide empirical requirements. First, an analysis of astronaut interactions with CapCom on Earth during one traverse of Apollo 17 shows what kind of information was conveyed and what might be automated today. A variety of agent and robotic technologies are proposed that deal with recurrent problems in communication and coordination during the analyzed traverse. Second, an analysis of biologists and a geologist working at Haughton Crater in the High Canadian Arctic reveals how work interactions between people involve independent personal projects, sensitively coordinated for mutual benefit. In both cases, an agent or robotic system's role would be to assist people, rather than collaborating, because today's computer systems lack the identity and purpose that consciousness provides.
NASA Astrophysics Data System (ADS)
Penoyre, Zephyr; Haiman, Zoltán
2018-01-01
In symmetric gravitating systems experiencing rapid mass-loss, particle orbits change almost instantaneously, which can lead to the development of a sharply contoured density profile, including singular caustics for collisionless systems. This framework can be used to model a variety of dynamical systems, such as accretion discs following a massive black hole merger and dwarf galaxies following violent early star formation feedback. Particle interactions in the high-density peaks seem a promising source of observable signatures of these mass-loss events (i.e. a possible EM counterpart for black hole mergers or strong gamma-ray emission from dark matter annihilation around young galaxies), because the interaction rate depends on the square of the density. We study post-mass-loss density profiles, both analytic and numerical, in idealized cases and present arguments and methods to extend to any general system. An analytic derivation is presented for particles on Keplerian orbits responding to a drop in the central mass. We argue that this case, with initially circular orbits, gives the most sharply contoured profile possible. We find that despite the presence of a set of singular caustics, the total particle interaction rate is reduced compared to the unperturbed system; this is a result of the overall expansion of the system dominating over the steep caustics. Finally, we argue that this result holds more generally, and the loss of central mass decreases the particle interaction rate in any physical system.
Bounds on Energy Absorption and Prethermalization in Quantum Systems with Long-Range Interactions
NASA Astrophysics Data System (ADS)
Ho, Wen Wei; Protopopov, Ivan; Abanin, Dmitry A.
2018-05-01
Long-range interacting systems such as nitrogen vacancy centers in diamond and trapped ions serve as experimental setups to probe a range of nonequilibrium many-body phenomena. In particular, via driving, various effective Hamiltonians with physics potentially quite distinct from short-range systems can be realized. In this Letter, we derive general rigorous bounds on the linear response energy absorption rates of periodically driven systems of spins or fermions with long-range interactions that are sign changing and fall off as 1 /rα with α >d /2 . We show that the disorder averaged energy absorption rate at high temperatures decays exponentially with the driving frequency. This strongly suggests the presence of a prethermal plateau in which dynamics is governed by an effective, static Hamiltonian for long times, and we provide numerical evidence to support such a statement. Our results are relevant for understanding timescales of heating and new dynamical regimes described by effective Hamiltonians in such long-range systems.
Kohrs, Christin; Hrabal, David; Angenstein, Nicole; Brechmann, André
2014-11-01
System response time research is an important issue in human-computer interactions. Experience with technical devices and general rules of human-human interactions determine the user's expectation, and any delay in system response time may lead to immediate physiological, emotional, and behavioral consequences. We investigated such effects on a trial-by-trial basis during a human-computer interaction by measuring changes in skin conductance (SC), heart rate (HR), and the dynamics of button press responses. We found an increase in SC and a deceleration of HR for all three delayed system response times (0.5, 1, 2 s). Moreover, the data on button press dynamics was highly informative since subjects repeated a button press with more force in response to delayed system response times. Furthermore, the button press dynamics could distinguish between correct and incorrect decisions and may thus even be used to infer the uncertainty of a user's decision. Copyright © 2014 Society for Psychophysiological Research.
Lattice cluster theory of associating polymers. I. Solutions of linear telechelic polymer chains.
Dudowicz, Jacek; Freed, Karl F
2012-02-14
The lattice cluster theory (LCT) for the thermodynamics of a wide array of polymer systems has been developed by using an analogy to Mayer's virial expansions for non-ideal gases. However, the high-temperature expansion inherent to the LCT has heretofore precluded its application to systems exhibiting strong, specific "sticky" interactions. The present paper describes a reformulation of the LCT necessary to treat systems with both weak and strong, "sticky" interactions. This initial study concerns solutions of linear telechelic chains (with stickers at the chain ends) as the self-assembling system. The main idea behind this extension of the LCT lies in the extraction of terms associated with the strong interactions from the cluster expansion. The generalized LCT for sticky systems reduces to the quasi-chemical theory of hydrogen bonding of Panyioutou and Sanchez when correlation corrections are neglected in the LCT. A diagrammatic representation is employed to facilitate the evaluation of the corrections to the zeroth-order approximation from short range correlations. © 2012 American Institute of Physics
NASA Astrophysics Data System (ADS)
Lomsadze, Bachana; Cundiff, Steven T.
2018-06-01
Frequency-comb based multidimensional coherent spectroscopy is a novel optical method that enables high-resolution measurement in a short acquisition time. The method's resolution makes multidimensional coherent spectroscopy relevant for atomic systems that have narrow resonances. We use double-quantum multidimensional coherent spectroscopy to reveal collective hyperfine resonances in rubidium vapor at 100 °C induced by dipole-dipole interactions. We observe tilted and elongated line shapes in the double-quantum 2D spectra, which have never been reported for Doppler-broadened systems. The elongated line shapes suggest that the signal is predominately from the interacting atoms that have a near zero relative velocity.
Local condensate depletion at trap center under strong interactions
NASA Astrophysics Data System (ADS)
Yukalov, V. I.; Yukalova, E. P.
2018-04-01
Cold trapped Bose-condensed atoms, interacting via hard-sphere repulsive potentials are considered. Simple mean-field approximations show that the condensate distribution inside a harmonic trap always has the shape of a hump with the maximum condensate density occurring at the trap center. However, Monte Carlo simulations at high density and strong interactions display the condensate depletion at the trap center. The explanation of this effect of local condensate depletion at trap center is suggested in the frame of self-consistent theory of Bose-condensed systems. The depletion is shown to be due to the existence of the anomalous average that takes into account pair correlations and appears in systems with broken gauge symmetry.
Exchange interactions in two-state systems: rare earth pyrochlores.
Curnoe, S H
2018-06-13
The general form of the nearest neighbour exchange interaction for rare earth pyrochlores is derived based on symmetry. Generally, the rare earth angular momentum degeneracy is lifted by the crystal electric field (CEF) into singlets and doublets. When the CEF ground state is a doublet that is well-separated from the first excited state the CEF ground state doublet can be treated as a pseudo-spin of some kind. The general form of the nearest neighbour exchange interaction for pseudo-spins on the pyrochlore lattice is derived for three different types of pseudo-spins. The methodology presented in this paper can be applied to other two-state spin systems with a high space group symmetry.
Exchange interactions in two-state systems: rare earth pyrochlores
NASA Astrophysics Data System (ADS)
Curnoe, S. H.
2018-06-01
The general form of the nearest neighbour exchange interaction for rare earth pyrochlores is derived based on symmetry. Generally, the rare earth angular momentum degeneracy is lifted by the crystal electric field (CEF) into singlets and doublets. When the CEF ground state is a doublet that is well-separated from the first excited state the CEF ground state doublet can be treated as a pseudo-spin of some kind. The general form of the nearest neighbour exchange interaction for pseudo-spins on the pyrochlore lattice is derived for three different types of pseudo-spins. The methodology presented in this paper can be applied to other two-state spin systems with a high space group symmetry.
Fluid dynamic mechanisms and interactions within separated flows
NASA Astrophysics Data System (ADS)
Dutton, J. C.; Addy, A. L.
1990-02-01
The significant results of a joint research effort investigating the fundamental fluid dynamic mechanisms and interactions within high-speed separated flows are presented in detail. The results have obtained through analytical and numerical approaches, but with primary emphasis on experimental investigations of missile and projectile base flow-related configurations. The objectives of the research program focus on understanding the component mechanisms and interactions which establish and maintain high-speed separated flow regions. The analytical and numerical efforts have centered on unsteady plume-wall interactions in rocket launch tubes and on predictions of the effects of base bleed on transonic and supersonic base flowfields. The experimental efforts have considered the development and use of a state-of-the-art two component laser Doppler velocimeter (LDV) system for experiments with planar, two-dimensional, small-scale models in supersonic flows. The LDV experiments have yielded high quality, well documented mean and turbulence velocity data for a variety of high-speed separated flows including initial shear layer development, recompression/reattachment processes for two supersonic shear layers, oblique shock wave/turbulent boundary layer interactions in a compression corner, and two-stream, supersonic, near-wake flow behind a finite-thickness base.
Seamless 3D interaction for virtual tables, projection planes, and CAVEs
NASA Astrophysics Data System (ADS)
Encarnacao, L. M.; Bimber, Oliver; Schmalstieg, Dieter; Barton, Robert J., III
2000-08-01
The Virtual Table presents stereoscopic graphics to a user in a workbench-like setting. This device shares with other large- screen display technologies (such as data walls and surround- screen projection systems) the lack of human-centered unencumbered user interfaces and 3D interaction technologies. Such shortcomings present severe limitations to the application of virtual reality (VR) technology to time- critical applications as well as employment scenarios that involve heterogeneous groups of end-users without high levels of computer familiarity and expertise. Traditionally such employment scenarios are common in planning-related application areas such as mission rehearsal and command and control. For these applications, a high grade of flexibility with respect to the system requirements (display and I/O devices) as well as to the ability to seamlessly and intuitively switch between different interaction modalities and interaction are sought. Conventional VR techniques may be insufficient to meet this challenge. This paper presents novel approaches for human-centered interfaces to Virtual Environments focusing on the Virtual Table visual input device. It introduces new paradigms for 3D interaction in virtual environments (VE) for a variety of application areas based on pen-and-clipboard, mirror-in-hand, and magic-lens metaphors, and introduces new concepts for combining VR and augmented reality (AR) techniques. It finally describes approaches toward hybrid and distributed multi-user interaction environments and concludes by hypothesizing on possible use cases for defense applications.
Interaction dynamics of temporal and spatial separated cavitation bubbles in water
NASA Astrophysics Data System (ADS)
Tinne, N.; Ripken, T.; Lubatschowski, H.
2010-02-01
The LASIK procedure is a well established laser based treatment in ophthalmology. Nowadays it includes a cutting of the corneal tissue bases on ultra short pulses which are focused below the tissue surface to create an optical breakdown and hence a dissection of the tissue. The energy of the laser pulse is absorbed by non-linear processes that result in an expansion of a cavitation bubble and rupturing of the tissue. Due to a reduction of the duration of treatment the current development of ultra short laser systems points to higher repetition rates. This in turn results in a probable interaction between different cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. We present a high-speed photography analysis of cavitation bubble interaction for two spatial separated laser-induced optical breakdowns varying the laser pulse energy as well as the spatial distance. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape, asymmetric water streams and jet formation were observed. The results of this research can be used to comprehend and optimize the cutting effect of ultra short pulse laser systems with high repetition rates (> 1 MHz).
NASA Technical Reports Server (NTRS)
Yliniemi, Logan; Agogino, Adrian K.; Tumer, Kagan
2014-01-01
Accurate simulation of the effects of integrating new technologies into a complex system is critical to the modernization of our antiquated air traffic system, where there exist many layers of interacting procedures, controls, and automation all designed to cooperate with human operators. Additions of even simple new technologies may result in unexpected emergent behavior due to complex human/ machine interactions. One approach is to create high-fidelity human models coming from the field of human factors that can simulate a rich set of behaviors. However, such models are difficult to produce, especially to show unexpected emergent behavior coming from many human operators interacting simultaneously within a complex system. Instead of engineering complex human models, we directly model the emergent behavior by evolving goal directed agents, representing human users. Using evolution we can predict how the agent representing the human user reacts given his/her goals. In this paradigm, each autonomous agent in a system pursues individual goals, and the behavior of the system emerges from the interactions, foreseen or unforeseen, between the agents/actors. We show that this method reflects the integration of new technologies in a historical case, and apply the same methodology for a possible future technology.
Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.
Sharma, Ankur; Yan, Han; Zhang, Linglong; Sun, Xueqian; Liu, Boqing; Lu, Yuerui
2018-05-15
Atomically thin two-dimensional (2D) semiconductors have presented a plethora of opportunities for future optoelectronic devices and photonics applications, made possible by the strong light matter interactions at the 2D quantum limit. Many body interactions between fundamental particles in 2D semiconductors are strongly enhanced compared with those in bulk semiconductors because of the reduced dimensionality and, thus, reduced dielectric screening. These enhanced many body interactions lead to the formation of robust quasi-particles, such as excitons, trions, and biexcitons, which are extremely important for the optoelectronics device applications of 2D semiconductors, such as light emitting diodes, lasers, and optical modulators, etc. Recently, the emerging anisotropic 2D semiconductors, such as black phosphorus (termed as phosphorene) and phosphorene-like 2D materials, such as ReSe 2 , 2D-perovskites, SnS, etc., show strong anisotropic optical and electrical properties, which are different from conventional isotropic 2D semiconductors, such as transition metal dichalcogenide (TMD) monolayers. This anisotropy leads to the formation of quasi-one-dimensional (quasi-1D) excitons and trions in a 2D system, which results in even stronger many body interactions in anisotropic 2D materials, arising from the further reduced dimensionality of the quasi-particles and thus reduced dielectric screening. Many body interactions have been heavily investigated in TMD monolayers in past years, but not in anisotropic 2D materials yet. The quasi-particles in anisotropic 2D materials have fractional dimensionality which makes them perfect candidates to serve as a platform to study fundamental particle interactions in fractional dimensional space. In this Account, we present our recent progress related to 2D phosphorene, a 2D system with quasi-1D excitons and trions. Phosphorene, because of its unique anisotropic properties, provides a unique 2D platform for investigating the dynamics of excitons, trions, and biexcitons in reduced dimensions and fundamental many body interactions. We begin by explaining the fundamental reasons for the highly enhanced interactions in the 2D systems influenced by dielectric screening, resulting in high binding energies of excitons and trions, which are supported by theoretical calculations and experimental observations. Phosphorene has shown much higher binding energies of excitons and trions than TMD monolayers, which allows robust quasi-particles in anisotropic materials at room temperature. We also discuss the role of extrinsic defects induced in phosphorene, resulting in localized excitonic emissions in the near-infrared range, making it suitable for optical telecommunication applications. Finally, we present our vision of the exciting device applications based on the highly enhanced many body interactions in phosphorene, including exciton-polariton devices, polariton lasers, single-photon emitters, and tunable light emitting diodes (LEDs).
Student Response (Clicker) Systems: Preferences of Biomedical Physiology Students in Asian Classes
ERIC Educational Resources Information Center
Hwang, Isabel; Wong, Kevin; Lam, Shun Leung; Lam, Paul
2015-01-01
Student response systems (commonly called "clickers") are valuable tools for engaging students in classroom interactions. In this study, we investigated the use of two types of response systems (a traditional clicker and a mobile device) by students in human physiology courses. Our results showed high student satisfaction with the use of…
NASA Technical Reports Server (NTRS)
Grams, R. R.
1982-01-01
A system designed to access a large range of available medical textbook information in an online interactive fashion is described. A high level query type database manager, INQUIRE, is used. Operating instructions, system flow diagrams, database descriptions, text generation, and error messages are discussed. User information is provided.
High Burn-Up Spent Nuclear Fuel Vibration Integrity Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong; Jiang, Hao
2015-01-01
The Oak Ridge National Laboratory (ORNL) has developed the cyclic integrated reversible-bending fatigue tester (CIRFT) approach to successfully demonstrate the controllable fatigue fracture on high burnup (HBU) spent nuclear fuel (SNF) in a normal vibration mode. CIRFT enables examination of the underlying mechanisms of SNF system dynamic performance. Due to the inhomogeneous composite structure of the SNF system, the detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained from a CIRFT system measurement. Therefore, finite element analyses (FEAs) are used to translate the global moment-curvature measurement into localmore » stress-strain profiles for further investigation. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance. Fuel structure contributes to SNF system stiffness. There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interactions. SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous.« less
ERIC Educational Resources Information Center
Martel, Guillaume; Millard, Annabelle; Jaffard, Robert; Guillou, Jean-Louis
2006-01-01
Procedural and declarative memory systems are postulated to interact in either a synergistic or a competitive manner, and memory consolidation appears to be a highly critical stage for this process. However, the precise cellular mechanisms subserving these interactions remain unknown. To investigate this issue, 24-h retention performances were…
NASA Astrophysics Data System (ADS)
Fagereng, A.; Hodge, M.; Biggs, J.; Mdala, H. S.; Goda, K.
2016-12-01
Faults grow through the interaction and linkage of isolated fault segments. Continuous fault systems are those where segments interact, link and may slip synchronously, whereas non-continuous fault systems comprise isolated faults. As seismic moment is related to fault length (Wells and Coppersmith, 1994), understanding whether a fault system is continuous or not is critical in evaluating seismic hazard. Maturity may be a control on fault continuity: immature, low displacement faults are typically assumed to be non-continuous. Here, we study two overlapping, 20 km long, normal fault segments of the N-S striking Bilila-Mtakataka fault, Malawi, in the southern section of the East African Rift System. Despite its relative immaturity, previous studies concluded the Bilila-Mtakataka fault is continuous for its entire 100 km length, with the most recent event equating to an Mw8.0 earthquake (Jackson and Blenkinsop, 1997). We explore whether segment geometry and relationship to pre-existing high-grade metamorphic foliation has influenced segment interaction and fault development. Fault geometry and scarp height is constrained by DEMs derived from SRTM, Pleiades and `Structure from Motion' photogrammetry using a UAV, alongside direct field observations. The segment strikes differ on average by 10°, but up to 55° at their adjacent tips. The southern segment is sub-parallel to the foliation, whereas the northern segment is highly oblique to the foliation. Geometrical surface discontinuities suggest two isolated faults; however, displacement-length profiles and Coulomb stress change models suggest segment interaction, with potential for linkage at depth. Further work must be undertaken on other segments to assess the continuity of the entire fault, concluding whether an earthquake greater than that of the maximum instrumentally recorded (1910 M7.4 Rukwa) is possible.
Fischer, Michael
2015-10-14
The chabazite-type silicoaluminophosphate SAPO-34 is a promising adsorbent for applications in thermal energy storage using water adsorption-desorption cycles. In order to develop a microscopic understanding of the impact of local heterogeneities and defects on the water adsorption properties, the interaction of different models of SAPO-34 with water was studied using dispersion-corrected density-functional theory (DFT-D) calculations. In addition to SAPO-34 with isolated silicon atoms, the calculations considered models incorporating two types of heterogeneities (silicon islands, aluminosilicate domains), and two defect-containing (partially and fully desilicated) systems. DFT-D optimisations were performed for systems with small amounts of adsorbed water, in which all H2O molecules can interact with framework protons, and systems with large amounts of adsorbed water (30 H2O molecules per unit cell). At low loadings, the host-guest interaction energy calculated for SAPO-34 with isolated Si atoms amounts to approximately -90 kJ mol(-1). While the presence of local heterogeneities leads to the creation of some adsorption sites that are energetically slightly more favourable, the interaction strength is drastically reduced in systems with defects. At high water loadings, energies in the range of -70 kJ mol(-1) are obtained for all models. The DFT-D interaction energies are in good agreement with experimentally measured heats of water adsorption. A detailed analysis of the equilibrium structures was used to gain insights into the binding modes at low coverages, and to assess the extent of framework deprotonation and changes in the coordination environment of aluminium atoms at high water loadings.
Selectivity of phenothiazine cholinesterase inhibitors for neurotransmitter systems.
Darvesh, Sultan; Macdonald, Ian R; Martin, Earl
2013-07-01
Synthetic derivatives of phenothiazine have been used for over a century as well-tolerated drugs against a variety of human ailments from psychosis to cancer. This implies a considerable diversity in the mechanisms of action produced by structural changes to the phenothiazine scaffold. For example, chlorpromazine treatment of psychosis is related to its interaction with dopaminergic receptors. On the other hand, antagonistic action of such drugs on cholinergic receptor systems would be counter-productive for treatment of Alzheimer's disease. In a search for phenothiazines that are inhibitors of cholinesterases, especially butyrylcholinesterase, with potential to treat Alzheimer's disease, we wished to ascertain that such molecules could be devoid of neurotransmitter receptor interactions. To that end, a number of our synthetic N-10-carbonyl phenothiazine derivatives, with cholinesterase inhibitory activity, were tested for interaction with a variety of neurotransmitter receptor systems. We demonstrate that phenothiazines can be prepared without significant neurotransmitter receptor interactions while retaining high potency as cholinesterase ligands for treatment of Alzheimer's disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
Assembly of one-dimensional supramolecular objects: From monomers to networks
NASA Astrophysics Data System (ADS)
Sayar, Mehmet; Stupp, Samuel I.
2005-07-01
One-dimensional supramolecular aggregates can form networks at exceedingly low concentrations. Recent experiments in several laboratories, including our own, have demonstrated the formation of gels by these systems at concentrations well under 1% by weight. The systems of interest in our laboratory form either cylindrical nanofibers or ribbons as a result of strong noncovalent interactions among monomers. The stiffness and interaction energies among these thread-like objects can vary significantly depending on the chemical structure of the monomers used. We have used Monte Carlo simulations to study the structure of the threads and their ability to form networks through bundle formation. The persistence length of the threads was found to be strongly affected not only by stiffness, but also by the strength of attractive two-body interactions among thread segments. The relative values of stiffness and attractive two-body interaction strength determine if threads collapse or create bundles. Only in the presence of sufficiently long threads and bundle formation can these systems assemble into networks of high connectivity.
Talking to your car can drive you to distraction.
Strayer, David L; Cooper, Joel M; Turrill, Jonna; Coleman, James R; Hopman, Rachel J
2016-01-01
This research examined the impact of in-vehicle information system (IVIS) interactions on the driver's cognitive workload; 257 subjects participated in a weeklong evaluation of the IVIS interaction in one of ten different model-year 2015 automobiles. After an initial assessment of the cognitive workload associated with using the IVIS, participants took the vehicle home for 5 days and practiced using the system. At the end of the 5 days of practice, participants returned and the workload of these IVIS interactions was reassessed. The cognitive workload was found to be moderate to high, averaging 3.34 on a 5-point scale and ranged from 2.37 to 4.57. The workload was associated with the intuitiveness and complexity of the system and the time it took participants to complete the interaction. The workload experienced by older drivers was significantly greater than that experienced by younger drivers performing the same operations. Practice did not eliminate the interference from IVIS interactions. In fact, IVIS interactions that were difficult on the first day were still relatively difficult to perform after a week of practice. Finally, there were long-lasting residual costs after the IVIS interactions had terminated. The higher levels of workload should serve as a caution that these voice-based interactions can be cognitively demanding and ought not to be used indiscriminately while operating a motor vehicle.
Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
Gabor, Nathaniel M
2013-06-18
In semiconductor photovoltaics, photoconversion efficiency is governed by a simple competition: the incident photon energy is either transferred to the crystal lattice (heat) or transferred to electrons. In conventional materials, energy loss to the lattice is more efficient than energy transferred to electrons, thus limiting the power conversion efficiency. Quantum electronic systems, such as quantum dots, nanowires, and two-dimensional electronic membranes, promise to tip the balance in this competition by simultaneously limiting energy transfer to the lattice and enhancing energy transfer to electrons. By exploring the optical, thermal, and electronic properties of quantum materials, we may perhaps find an ideal optoelectronic material that provides low cost fabrication, facile systems integration, and a means to surpass the standard limit for photoconversion efficiency. Nanoscale carbon materials, such as graphene and carbon nanotubes, provide ideal experimental quantum systems in which to explore optoelectronic behavior for applications in solar energy harvesting. Within essentially the same material, researchers can achieve a broad spectrum of energetic configurations, from a gapless semimetal to a large band-gap semiconducting nanowire. Owing to their nanoscale dimensions, graphene and carbon nanotubes exhibit electronic and optical properties that reflect strong electron-electron interactions. Such strong interactions may lead to exotic low-energy electron transport behavior and high-energy electron scattering processes such as impact excitation and the inverse process of Auger recombination. High-energy processes, which become very important under photoexcitation, may be particularly efficient in nanoscale carbon materials due to the relativistic-like, charged particle band structure and sensitivity to the dielectric environment. In addition, due to the covalently bonded carbon framework that makes up these materials, electron-phonon coupling is very weak. In carbon nanomaterials, strong electron-electron interactions combined with weak electron-phonon interactions results in excellent optical, thermal and electronic properties, the exploration of which promises to reveal fundamentally new physical processes and deliver advanced nanotechnologies. In this Account, we review the results of novel optoelectronic experiments that explore the intrinsic photoresponse of carbon nanomaterials integrated into nanoscale devices. By fabricating gate voltage-controlled photodetectors composed of atomically thin sheets of graphene and individual carbon nanotubes, we are able to fully explore electron transport in these systems under optical illumination. We find that strong electron-electron interactions play a key role in the intrinsic photoresponse of both materials, as evidenced by hot carrier transport in graphene and highly efficient multiple electron-hole pair generation in nanotubes. In both of these quantum systems, photoexcitation leads to high-energy electron-hole pairs that relax energy predominantly into the electronic system, rather than heating the lattice. Due to highly efficient energy transfer from photons into electrons, graphene and carbon nanotubes may be ideal materials for solar energy harvesting devices with efficiencies that could exceed the Shockley-Queisser limit.
An agent based architecture for high-risk neonate management at neonatal intensive care unit.
Malak, Jaleh Shoshtarian; Safdari, Reza; Zeraati, Hojjat; Nayeri, Fatemeh Sadat; Mohammadzadeh, Niloofar; Farajollah, Seide Sedighe Seied
2018-01-01
In recent years, the use of new tools and technologies has decreased the neonatal mortality rate. Despite the positive effect of using these technologies, the decisions are complex and uncertain in critical conditions when the neonate is preterm or has a low birth weight or malformations. There is a need to automate the high-risk neonate management process by creating real-time and more precise decision support tools. To create a collaborative and real-time environment to manage neonates with critical conditions at the NICU (Neonatal Intensive Care Unit) and to overcome high-risk neonate management weaknesses by applying a multi agent based analysis and design methodology as a new solution for NICU management. This study was a basic research for medical informatics method development that was carried out in 2017. The requirement analysis was done by reviewing articles on NICU Decision Support Systems. PubMed, Science Direct, and IEEE databases were searched. Only English articles published after 1990 were included; also, a needs assessment was done by reviewing the extracted features and current processes at the NICU environment where the research was conducted. We analyzed the requirements and identified the main system roles (agents) and interactions by a comparative study of existing NICU decision support systems. The Universal Multi Agent Platform (UMAP) was applied to implement a prototype of our multi agent based high-risk neonate management architecture. Local environment agents interacted inside a container and each container interacted with external resources, including other NICU systems and consultation centers. In the NICU container, the main identified agents were reception, monitoring, NICU registry, and outcome prediction, which interacted with human agents including nurses and physicians. Managing patients at the NICU units requires online data collection, real-time collaboration, and management of many components. Multi agent systems are applied as a well-known solution for management, coordination, modeling, and control of NICU processes. We are currently working on an outcome prediction module using artificial intelligence techniques for neonatal mortality risk prediction. The full implementation of the proposed architecture and evaluation is considered the future work.
Artificial ferroic systems: novel functionality from structure, interactions and dynamics.
Heyderman, L J; Stamps, R L
2013-09-11
Lithographic processing and film growth technologies are continuing to advance, so that it is now possible to create patterned ferroic materials consisting of arrays of sub-1 μm elements with high definition. Some of the most fascinating behaviour of these arrays can be realised by exploiting interactions between the individual elements to create new functionality. The properties of these artificial ferroic systems differ strikingly from those of their constituent components, with novel emergent behaviour arising from the collective dynamics of the interacting elements, which are arranged in specific designs and can be activated by applying magnetic or electric fields. We first focus on artificial spin systems consisting of arrays of dipolar-coupled nanomagnets and, in particular, review the field of artificial spin ice, which demonstrates a wide range of fascinating phenomena arising from the frustration inherent in particular arrangements of nanomagnets, including emergent magnetic monopoles, domains of ordered macrospins, and novel avalanche behaviour. We outline how demagnetisation protocols have been employed as an effective thermal anneal in an attempt to reach the ground state, comment on phenomena that arise in thermally activated systems and discuss strategies for selectively generating specific configurations using applied magnetic fields. We then move on from slow field and temperature driven dynamics to high frequency phenomena, discussing spinwave excitations in the context of magnonic crystals constructed from arrays of patterned magnetic elements. At high frequencies, these arrays are studied in terms of potential applications including magnetic logic, linear and non-linear microwave optics, and fast, efficient switching, and we consider the possibility to create tunable magnonic crystals with artificial spin ice. Finally, we discuss how functional ferroic composites can be incorporated to realise magnetoelectric effects. Specifically, we discuss artificial multiferroics (or multiferroic composites), which hold promise for new applications that involve electric field control of magnetism, or electric and magnetic field responsive devices for high frequency integrated circuit design in microwave and terahertz signal processing. We close with comments on how enhanced functionality can be realised through engineering of nanostructures with interacting ferroic components, creating opportunities for novel spin electronic devices that, for example, make use of the transport of magnetic charges, thermally activated elements, and reprogrammable nanomagnet systems.
Tangential blowing for control of strong normal shock - Boundary layer interactions on inlet ramps
NASA Technical Reports Server (NTRS)
Schwendemann, M. F.; Sanders, B. W.
1982-01-01
The use of tangential blowing from a row of holes in an aft facing step is found to provide good control of the ramp boundary layer, normal shock interaction on a fixed geometry inlet over a wide range of inlet mass flow ratios. Ramp Mach numbers of 1.36 and 1.96 are investigated. The blowing geometry is found to have a significant effect on system performance at the highest Mach number. The use of high-temperature air in the blowing system, however, has only a slight effect on performance. The required blowing rates are significantly high for the most severe test conditions. In addition, the required blowing coefficient is found to be proportional to the normal shock pressure rise.
Redox-mediated dissolution of paramagnetic nanolids to achieve a smart theranostic system
NASA Astrophysics Data System (ADS)
Wang, Aifei; Guo, Mingyi; Wang, Nan; Zhao, Jianyun; Qi, Wenxiu; Muhammad, Faheem; Chen, Liang; Guo, Yingjie; Nguyen, Nam-Trung; Zhu, Guangshan
2014-04-01
Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance imaging and responsive anticancer drug delivery. Contrary to previous reports, we firstly prepared high quality amine terminated hydrophilic Mn3O4 nanolids, without using multistep ligand exchange strategies. The resulting water stable and small-sized Mn3O4 nanolids were subsequently used as nanolids to cap drug loaded nanochannels of a porous carrier. Exposure to highly prevalent intracellular reducing environment resulted in the steady-state dissolution of these nanolids and attained an intelligent drug release. Furthermore, the redox receptive dissolution of paramagnetic Mn3O4 nanolids into Mn2+ in turn increases the T1 signal to twofold, providing an added opportunity to even track the feedback of therapy. This study, in addition to simultaneously realizing drug delivery and imaging, also provides a new insight into the fate and interaction of manganese oxide nanoparticles with components of biological systems.Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance imaging and responsive anticancer drug delivery. Contrary to previous reports, we firstly prepared high quality amine terminated hydrophilic Mn3O4 nanolids, without using multistep ligand exchange strategies. The resulting water stable and small-sized Mn3O4 nanolids were subsequently used as nanolids to cap drug loaded nanochannels of a porous carrier. Exposure to highly prevalent intracellular reducing environment resulted in the steady-state dissolution of these nanolids and attained an intelligent drug release. Furthermore, the redox receptive dissolution of paramagnetic Mn3O4 nanolids into Mn2+ in turn increases the T1 signal to twofold, providing an added opportunity to even track the feedback of therapy. This study, in addition to simultaneously realizing drug delivery and imaging, also provides a new insight into the fate and interaction of manganese oxide nanoparticles with components of biological systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05687b
Automated synthesis and composition of taskblocks for control of manufacturing systems.
Holloway, L E; Guan, X; Sundaravadivelu, R; Ashley, J R
2000-01-01
Automated control synthesis methods for discrete-event systems promise to reduce the time required to develop, debug, and modify control software. Such methods must be able to translate high-level control goals into detailed sequences of actuation and sensing signals. In this paper, we present such a technique. It relies on analysis of a system model, defined as a set of interacting components, each represented as a form of condition system Petri net. Control logic modules, called taskblocks, are synthesized from these individual models. These then interact hierarchically and sequentially to drive the system through specified control goals. The resulting controller is automatically converted to executable control code. The paper concludes with a discussion of a set of software tools developed to demonstrate the techniques on a small manufacturing system.
Tagliazucchi, Mario; de la Cruz, Mónica Olvera; Szleifer, Igal
2010-03-23
The competition between chemical equilibrium, for example protonation, and physical interactions determines the molecular organization and functionality of biological and synthetic systems. Charge regulation by displacement of acid-base equilibrium induced by changes in the local environment provides a feedback mechanism that controls the balance between electrostatic, van der Waals, steric interactions and molecular organization. Which strategies do responsive systems follow to globally optimize chemical equilibrium and physical interactions? We address this question by theoretically studying model layers of end-grafted polyacids. These layers spontaneously form self-assembled aggregates, presenting domains of controlled local pH and whose morphologies can be manipulated by the composition of the solution in contact with the film. Charge regulation stabilizes micellar domains over a wide range of pH by reducing the local charge in the aggregate at the cost of chemical free energy and gaining in hydrophobic interactions. This balance determines the boundaries between different aggregate morphologies. We show that a qualitatively new form of organization arises from the coupling between physical interactions and protonation equilibrium. This optimization strategy presents itself with polyelectrolytes coexisting in two different and well-defined protonation states. Our results underline the need of considering the coupling between chemical equilibrium and physical interactions due to their highly nonadditive behavior. The predictions provide guidelines for the creation of responsive polymer layers presenting self-organized patterns with functional properties and they give insights for the understanding of competing interactions in highly inhomogeneous and constrained environments such as those relevant in nanotechnology and those responsible for biological cells function.
Nearly Interactive Parabolized Navier-Stokes Solver for High Speed Forebody and Inlet Flows
NASA Technical Reports Server (NTRS)
Benson, Thomas J.; Liou, May-Fun; Jones, William H.; Trefny, Charles J.
2009-01-01
A system of computer programs is being developed for the preliminary design of high speed inlets and forebodies. The system comprises four functions: geometry definition, flow grid generation, flow solver, and graphics post-processor. The system runs on a dedicated personal computer using the Windows operating system and is controlled by graphical user interfaces written in MATLAB (The Mathworks, Inc.). The flow solver uses the Parabolized Navier-Stokes equations to compute millions of mesh points in several minutes. Sample two-dimensional and three-dimensional calculations are demonstrated in the paper.
Understanding the Effect of Workload on Automation Use for Younger and Older Adults
McBride, Sara E.; Rogers, Wendy A.; Fisk, Arthur D.
2018-01-01
Objective This study examined how individuals, younger and older, interacted with an imperfect automated system. The impact of workload on performance and automation use was also investigated. Background Automation is used in situations characterized by varying levels of workload. As automated systems spread to domains such as transportation and the home, a diverse population of users will interact with automation. Research is needed to understand how different segments of the population use automation. Method Workload was systematically manipulated to create three levels (low, moderate, high) in a dual-task scenario in which participants interacted with a 70% reliable automated aid. Two experiments were conducted to assess automation use for younger and older adults. Results Both younger and older adults relied on the automation more than they complied with it. Among younger adults, high workload led to poorer performance and higher compliance, even when that compliance was detrimental. Older adults’ performance was negatively affected by workload, but their compliance and reliance were unaffected. Conclusion Younger and older adults were both able to use and double-check an imperfect automated system. Workload affected how younger adults complied with automation, particularly with regard to detecting automation false alarms. Older adults tended to comply and rely at fairly high rates overall, and this did not change with increased workload. Application Training programs for imperfect automated systems should vary workload and provide feedback about error types, and strategies for identifying errors. The ability to identify automation errors varies across individuals, thereby necessitating training. PMID:22235529
Understanding the effect of workload on automation use for younger and older adults.
McBride, Sara E; Rogers, Wendy A; Fisk, Arthur D
2011-12-01
This study examined how individuals, younger and older, interacted with an imperfect automated system. The impact of workload on performance and automation use was also investigated. Automation is used in situations characterized by varying levels of workload. As automated systems spread to domains such as transportation and the home, a diverse population of users will interact with automation. Research is needed to understand how different segments of the population use automation. Workload was systematically manipulated to create three levels (low, moderate, high) in a dual-task scenario in which participants interacted with a 70% reliable automated aid. Two experiments were conducted to assess automation use for younger and older adults. Both younger and older adults relied on the automation more than they complied with it. Among younger adults, high workload led to poorer performance and higher compliance, even when that compliance was detrimental. Older adults' performance was negatively affected by workload, but their compliance and reliance were unaffected. Younger and older adults were both able to use and double-check an imperfect automated system. Workload affected how younger adults complied with automation, particularly with regard to detecting automation false alarms. Older adults tended to comply and rely at fairly high rates overall, and this did not change with increased workload. Training programs for imperfect automated systems should vary workload and provide feedback about error types, and strategies for identifying errors. The ability to identify automation errors varies across individuals, thereby necessitating training.
de Araujo, Gabriel L. B.; Benmore, Chris J.; Byrn, Stephen R.
2017-04-11
For many years, the idea of analyzing atom-atom contacts in amorphous drug-polymer systems has been of major interest, because this method has always had the potential to differentiate between amorphous systems with domains and amorphous systems which are molecular mixtures. In this study, local structure of ionic and noninonic interactions were studied by High-Energy X-ray Diffraction and Pair Distribution Function (PDF) analysis in amorphous solid dispersions of lapatinib in hypromellose phthalate (HPMCP) and hypromellose (HPMC-E3). The strategy of extracting lapatinib intermolecular drug interactions from the total PDF x-ray pattern was successfully applied allowing the detection of distinct nearest neighbor contactsmore » for the HPMC-E3 rich preparations showing that lapatinib molecules do not cluster in the same way as observed in HPMC-P, where ionic interactions are present. Orientational correlations up to nearest neighbor molecules at about 4.3 Å were observed for polymer rich samples; both observations showed strong correlation to the stability of the systems. Lasty, the superior physical stability of 1:3 LP:HPMCP was consistent with the absence of significant intermolecular interactions in (ΔD inter LP(r)) in the range of 3.0 to 6.0 Å, which are attributed to C-C, C-N and C-O nearest neighbor contacts present in drug-drug interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Araujo, Gabriel L. B.; Benmore, Chris J.; Byrn, Stephen R.
For many years, the idea of analyzing atom-atom contacts in amorphous drug-polymer systems has been of major interest, because this method has always had the potential to differentiate between amorphous systems with domains and amorphous systems which are molecular mixtures. In this study, local structure of ionic and noninonic interactions were studied by High-Energy X-ray Diffraction and Pair Distribution Function (PDF) analysis in amorphous solid dispersions of lapatinib in hypromellose phthalate (HPMCP) and hypromellose (HPMC-E3). The strategy of extracting lapatinib intermolecular drug interactions from the total PDF x-ray pattern was successfully applied allowing the detection of distinct nearest neighbor contactsmore » for the HPMC-E3 rich preparations showing that lapatinib molecules do not cluster in the same way as observed in HPMC-P, where ionic interactions are present. Orientational correlations up to nearest neighbor molecules at about 4.3 Å were observed for polymer rich samples; both observations showed strong correlation to the stability of the systems. Lasty, the superior physical stability of 1:3 LP:HPMCP was consistent with the absence of significant intermolecular interactions in (ΔD inter LP(r)) in the range of 3.0 to 6.0 Å, which are attributed to C-C, C-N and C-O nearest neighbor contacts present in drug-drug interactions.« less
NASA Astrophysics Data System (ADS)
de Araujo, Gabriel L. B.; Benmore, Chris J.; Byrn, Stephen R.
2017-04-01
For many years, the idea of analyzing atom-atom contacts in amorphous drug-polymer systems has been of major interest, because this method has always had the potential to differentiate between amorphous systems with domains and amorphous systems which are molecular mixtures. In this study, local structure of ionic and noninonic interactions were studied by High-Energy X-ray Diffraction and Pair Distribution Function (PDF) analysis in amorphous solid dispersions of lapatinib in hypromellose phthalate (HPMCP) and hypromellose (HPMC-E3). The strategy of extracting lapatinib intermolecular drug interactions from the total PDF x-ray pattern was successfully applied allowing the detection of distinct nearest neighbor contacts for the HPMC-E3 rich preparations showing that lapatinib molecules do not cluster in the same way as observed in HPMC-P, where ionic interactions are present. Orientational correlations up to nearest neighbor molecules at about 4.3 Å were observed for polymer rich samples; both observations showed strong correlation to the stability of the systems. Finally, the superior physical stability of 1:3 LP:HPMCP was consistent with the absence of significant intermolecular interactions in (Δ) in the range of 3.0 to 6.0 Å, which are attributed to C-C, C-N and C-O nearest neighbor contacts present in drug-drug interactions.
Bacterial chemoreceptors: high-performance signaling in networked arrays.
Hazelbauer, Gerald L; Falke, Joseph J; Parkinson, John S
2008-01-01
Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thousands of molecules. Recently, these patches have been imaged in native cells, important features of chemoreceptor structure and on-off switching have been identified, and new insights have been gained into the structural basis and functional consequences of higher order interactions among sensory components. These new data suggest multiple levels of molecular interactions, each of which contribute specific functional features and together create a sophisticated signaling device.
Bacterial chemoreceptors: high-performance signaling in networked arrays
Hazelbauer, Gerald L.; Falke, Joseph J.; Parkinson, John S.
2010-01-01
Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thousands of molecules. Recently, these patches have been imaged in native cells, important features of chemoreceptor structure and on–off switching have been identified, and new insights have been gained into the structural basis and functional consequences of higher order interactions among sensory components. These new data suggest multiple levels of molecular interactions, each of which contribute specific functional features and together create a sophisticated signaling device. PMID:18165013
Exact kinetic energy enables accurate evaluation of weak interactions by the FDE-vdW method.
Sinha, Debalina; Pavanello, Michele
2015-08-28
The correlation energy of interaction is an elusive and sought-after interaction between molecular systems. By partitioning the response function of the system into subsystem contributions, the Frozen Density Embedding (FDE)-vdW method provides a computationally amenable nonlocal correlation functional based on the adiabatic connection fluctuation dissipation theorem applied to subsystem density functional theory. In reproducing potential energy surfaces of weakly interacting dimers, we show that FDE-vdW, either employing semilocal or exact nonadditive kinetic energy functionals, is in quantitative agreement with high-accuracy coupled cluster calculations (overall mean unsigned error of 0.5 kcal/mol). When employing the exact kinetic energy (which we term the Kohn-Sham (KS)-vdW method), the binding energies are generally closer to the benchmark, and the energy surfaces are also smoother.
Exact kinetic energy enables accurate evaluation of weak interactions by the FDE-vdW method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Debalina; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu
2015-08-28
The correlation energy of interaction is an elusive and sought-after interaction between molecular systems. By partitioning the response function of the system into subsystem contributions, the Frozen Density Embedding (FDE)-vdW method provides a computationally amenable nonlocal correlation functional based on the adiabatic connection fluctuation dissipation theorem applied to subsystem density functional theory. In reproducing potential energy surfaces of weakly interacting dimers, we show that FDE-vdW, either employing semilocal or exact nonadditive kinetic energy functionals, is in quantitative agreement with high-accuracy coupled cluster calculations (overall mean unsigned error of 0.5 kcal/mol). When employing the exact kinetic energy (which we term themore » Kohn-Sham (KS)-vdW method), the binding energies are generally closer to the benchmark, and the energy surfaces are also smoother.« less
Kinetic Analyses of Data from a Human Serum Albumin Assay Using the liSPR System.
Henseleit, Anja; Pohl, Carolin; Kaltenbach, Hans-Michael; Hettwer, Karina; Simon, Kirsten; Uhlig, Steffen; Haustein, Natalie; Bley, Thomas; Boschke, Elke
2015-01-19
We used the interaction between human serum albumin (HSA) and a high-affinity antibody to evaluate binding affinity measurements by the bench-top liSPR system (capitalis technology GmbH). HSA was immobilized directly onto a carboxylated sensor layer, and the mechanism of interaction between the antibody and HSA was investigated. The bivalence and heterogeneity of the antibody caused a complex binding mechanism. Three different interaction models (1:1 binding, heterogeneous analyte, bivalent analyte) were compared, and the bivalent analyte model best fit the curves obtained from the assay. This model describes the interaction of a bivalent analyte with one or two ligands (A + L ↔ LA + L ↔ LLA). The apparent binding affinity for this model measured 37 pM for the first reaction step, and 20 pM for the second step.
Kinetic Analyses of Data from a Human Serum Albumin Assay Using the liSPR System
Henseleit, Anja; Pohl, Carolin; Kaltenbach, Hans-Michael; Hettwer, Karina; Simon, Kirsten; Uhlig, Steffen; Haustein, Natalie; Bley, Thomas; Boschke, Elke
2015-01-01
We used the interaction between human serum albumin (HSA) and a high-affinity antibody to evaluate binding affinity measurements by the bench-top liSPR system (capitalis technology GmbH). HSA was immobilized directly onto a carboxylated sensor layer, and the mechanism of interaction between the antibody and HSA was investigated. The bivalence and heterogeneity of the antibody caused a complex binding mechanism. Three different interaction models (1:1 binding, heterogeneous analyte, bivalent analyte) were compared, and the bivalent analyte model best fit the curves obtained from the assay. This model describes the interaction of a bivalent analyte with one or two ligands (A + L ↔ LA + L ↔ LLA). The apparent binding affinity for this model measured 37 pM for the first reaction step, and 20 pM for the second step. PMID:25607476
Fuel system technology overview
NASA Technical Reports Server (NTRS)
Friedman, R.
1980-01-01
Fuel system research and technology studies are being conducted to investigate the correlations and interactions of aircraft fuel system design and environment with applicable characteristics of the fuel. Topics include: (1) analysis of in-flight fuel temperatures; (2) fuel systems for high freezing point fuels; (3) experimental study of low temperature pumpability; (4) full scale fuel tank simulation; and (5) rapid freezing point measurement.
Energy Systems Integration Facility Insight Center | Energy Systems
simulation data. Photo of researchers studying data on a 3-D power system profile depicting the interaction of renewable energy resources on the grid. Capabilities The Insight Center offers the following Integration Facility Insight Center Located adjacent to the Energy System Integration Facility's High
ERIC Educational Resources Information Center
Sapone, Carmelo V.
CURMIS (Curriculum Management Information System) is a conceptual system, the framework of which is designed to identify and reveal relationships among complex related interacting phenomena. This paper is a description of the system which will centralize and make conveniently available information needed for developing and monitoring instructional…
Spatial Imaging of Strongly Interacting Rydberg Atoms
NASA Astrophysics Data System (ADS)
Thaicharoen, Nithiwadee
The strong interactions between Rydberg excitations can result in spatial correlations between the excitations. The ability to control the interaction strength and the correlations between Rydberg atoms is applicable in future technological implementations of quantum computation. In this thesis, I investigates how both the character of the Rydberg-Rydberg interactions and the details of the excitation process affect the nature of the spatial correlations and the evolution of those correlations in time. I first describes the experimental apparatus and methods used to perform high-magnification Rydberg-atom imaging, as well as three experiments in which these methods play an important role. The obtained Rydberg-atom positions reveal the correlations in the many-body Rydberg-atom system and their time dependence with sub-micron spatial resolution. In the first experiment, atoms are excited to a Rydberg state that experiences a repulsive van der Waals interaction. The Rydberg excitations are prepared with a well-defined initial separation, and the effect of van der Waals forces is observed by tracking the interatomic distance between the Rydberg atoms. The atom trajectories and thereby the interaction coefficient C6 are extracted from the pair correlation functions of the Rydberg atom positions. In the second experiment, the Rydberg atoms are prepared in a highly dipolar state by using adiabatic state transformation. The atom-pair kinetics that follow from the strong dipole-dipole interactions are observed. The pair correlation results provide the first direct visualization of the electric-dipole interaction and clearly exhibit its anisotropic nature. In both the first and the second experiment, results of semi-classical simulations of the atom-pair trajectories agree well with the experimental data. In the analysis, I use energy conservation and measurements of the initial positions and the terminal velocities of the atom pairs to extract the C6 and C 3 interaction coefficients. The final experiment demonstrates the ability to enhance or suppress the degree of spatial correlation in a system of Rydberg excitations, using a rotary-echo excitation process in concert with particular excitation laser detunings. The work in this thesis demonstrates an ability to control long-range interactions between Rydberg atoms, which paves the way towards preparing and studying increasingly complex many-body systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstad, H.
The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstad, H.
The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less
NASA Astrophysics Data System (ADS)
Su, Shih-Wei; Lu, Zhen-Kai; Gou, Shih-Chuan; Liao, Wen-Te
2016-10-01
Cavity quantum electrodynamics (CQED) has played a central role in demonstrating the fundamental principles of the quantum world, and in particular those of atom-light interactions. Developing fast, dynamical and non-mechanical control over a CQED system is particularly desirable for controlling atomic dynamics and building future quantum networks at high speed. However conventional mirrors do not allow for such flexible and fast controls over their coupling to intracavity atoms mediated by photons. Here we theoretically investigate a novel all-optical CQED system composed of a binary Bose-Einstein condensate (BEC) sandwiched by two atomic ensembles. The highly tunable atomic dispersion of the CQED system enables the medium to act as a versatile, all-optically controlled atomic mirror that can be employed to manipulate the vacuum-induced diffraction of matter-wave superradiance. Our study illustrates a innovative all-optical element of atomtroics and sheds new light on controlling light-matter interactions.
Interactions of calcium and fulvic acid at the goethite-water interface
NASA Astrophysics Data System (ADS)
Weng, Li Ping; Koopal, Luuk K.; Hiemstra, Tjisse; Meeussen, Johannes C. L.; Van Riemsdijk, Willem H.
2005-01-01
Interactions of calcium and fulvic acid (Strichen ) with the surface of goethite were studied with batch and titration experiments. The mutual influence of the interactions on the adsorption of fulvic acid, calcium ions and protons were examined. Adsorption of the fulvic acid to goethite decreased with increase in pH (pH range 3-11). Addition of Ca (1.0 mM) at intermediate and high pH significantly enhanced the adsorption of fulvic acid. Compared to the adsorption to pure goethite, the presence of fulvic acid enhanced the adsorption of Ca significantly. In comparison to the simple linear sum of Ca bound to fulvic acid and goethite, the interactions between goethite and fulvic acid led to a reduced adsorption of Ca at low pH and an enhanced adsorption at high pH. With the adsorption of fulvic acid, protons were released at low pH and coadsorbed at high pH. When Ca was added, fewer protons were released at low pH and fewer coadsorbed at high pH. The experimental results can be adequately described using a surface complexation model, the Ligand and Charge Distribution (LCD) model, in which the CD-MUSIC model for ion adsorption to mineral oxides and the NICA model for ion binding to humics are integrated. In the model calculations, adequate descriptions of the ternary system data (Ca-fulvic acid-goethite) were obtained with parameters derived from three binary systems (fulvic acid-goethite, Ca-goethite and Ca-fulvic acid) without further adjustment. The model calculations suggest that the interactions between Ca and fulvic acid at the surface of goethite are mainly due to the electrostatic effects.
High-Lift Engine Aeroacoustics Technology (HEAT) Test Program Overview
NASA Technical Reports Server (NTRS)
Zuniga, Fanny A.; Smith, Brian E.
1999-01-01
The NASA High-Speed Research program developed the High-Lift Engine Aeroacoustics Technology (HEAT) program to demonstrate satisfactory interaction between the jet noise suppressor and high-lift system of a High-Speed Civil Transport (HSCT) configuration at takeoff, climb, approach and landing conditions. One scheme for reducing jet exhaust noise generated by an HSCT is the use of a mixer-ejector system which would entrain large quantities of ambient air into the nozzle exhaust flow through secondary inlets in order to cool and slow the jet exhaust before it exits the nozzle. The effectiveness of such a noise suppression device must be evaluated in the presence of an HSCT wing high-lift system before definitive assessments can be made concerning its acoustic performance. In addition, these noise suppressors must provide the required acoustic attenuation while not degrading the thrust efficiency of the propulsion system or the aerodynamic performance of the high-lift devices on the wing. Therefore, the main objective of the HEAT program is to demonstrate these technologies and understand their interactions on a large-scale HSCT model. The HEAT program is a collaborative effort between NASA-Ames, Boeing Commercial Airplane Group, Douglas Aircraft Corp., Lockheed-Georgia, General Electric and NASA - Lewis. The suppressor nozzles used in the tests were Generation 1 2-D mixer-ejector nozzles made by General Electric. The model used was a 13.5%-scale semi-span model of a Boeing Reference H configuration.
NASA Technical Reports Server (NTRS)
Frady, Greg; Nesman, Thomas; Zoladz, Thomas; Szabo, Roland
2010-01-01
For many years, the capabilities to determine the root-cause failure of component failures have been limited to the analytical tools and the state of the art data acquisition systems. With this limited capability, many anomalies have been resolved by adding material to the design to increase robustness without the ability to determine if the design solution was satisfactory until after a series of expensive test programs were complete. The risk of failure and multiple design, test, and redesign cycles were high. During the Space Shuttle Program, many crack investigations in high energy density turbomachines, like the SSME turbopumps and high energy flows in the main propulsion system, have led to the discovery of numerous root-cause failures and anomalies due to the coexistences of acoustic forcing functions, structural natural modes, and a high energy excitation, such as an edge tone or shedding flow, leading the technical community to understand many of the primary contributors to extremely high frequency high cycle fatique fluid-structure interaction anomalies. These contributors have been identified using advanced analysis tools and verified using component and system tests during component ground tests, systems tests, and flight. The structural dynamics and fluid dynamics communities have developed a special sensitivity to the fluid-structure interaction problems and have been able to adjust and solve these problems in a time effective manner to meet budget and schedule deadlines of operational vehicle programs, such as the Space Shuttle Program over the years.
Mechanism for the occurrence of paramagnetic planes within magnetically ordered cerium systems
NASA Astrophysics Data System (ADS)
Kioussis, Nicholas; Cooper, Bernard R.; Banerjea, Amitava
1988-11-01
Hybridization of moderately delocalized f electrons with band electrons gives rise to a highly anisotropic two-ion interaction. Previously it has been shown that such an interaction explains the experimentally observed unusual magnetic behavior of CeBi, yielding a phase transition from a higher-temperature type-I (↑↓) to a lower-temperature type-IA (↑↑↓↓) antiferromagnetic structure. If the hybridization-mediated interaction is the key to understanding the magnetic behavior of such moderately delocalized f-electron systems, we should expect to be able to understand on this basis the even more unusual magnetic behavior of CeSb. In CeSb, there is a sequence of magnetic structures in which the higher-temperature structures involve a periodic stacking of paramagnetic \\{001\\} planes alternating with magnetically ordered \\{001\\} planes of [001]-moment alignment. In this paper we show that such a coexistence of paramagnetic and magnetically ordered Ce3+ sites can be understood on the basis of the hybridization-mediated interionic interaction when there are cubic crystal-field (CF) interactions of comparable strength. The tendency to form paramagnetic planes is found to increase with increasing CF strength (Γ7 ground state); and the stability of the up-down paramagnetic plane arrangement at high temperatures is shown to arise from the reconciliation of the magnetic ordering with the CF interactions. We also find that for a certain range of parameters a different novel situation occurs, with a fully nonmagnetic (singlet) ground state for the Ce3+ ion. This singlet state is not Kondo-like, and occurs in such a way that the system would be expected to fluctuate between two differently polarized states, one of which is the singlet state.
Improving the driver-automation interaction: an approach using automation uncertainty.
Beller, Johannes; Heesen, Matthias; Vollrath, Mark
2013-12-01
The aim of this study was to evaluate whether communicating automation uncertainty improves the driver-automation interaction. A false system understanding of infallibility may provoke automation misuse and can lead to severe consequences in case of automation failure. The presentation of automation uncertainty may prevent this false system understanding and, as was shown by previous studies, may have numerous benefits. Few studies, however, have clearly shown the potential of communicating uncertainty information in driving. The current study fills this gap. We conducted a driving simulator experiment, varying the presented uncertainty information between participants (no uncertainty information vs. uncertainty information) and the automation reliability (high vs.low) within participants. Participants interacted with a highly automated driving system while engaging in secondary tasks and were required to cooperate with the automation to drive safely. Quantile regressions and multilevel modeling showed that the presentation of uncertainty information increases the time to collision in the case of automation failure. Furthermore, the data indicated improved situation awareness and better knowledge of fallibility for the experimental group. Consequently, the automation with the uncertainty symbol received higher trust ratings and increased acceptance. The presentation of automation uncertaintythrough a symbol improves overall driver-automation cooperation. Most automated systems in driving could benefit from displaying reliability information. This display might improve the acceptance of fallible systems and further enhances driver-automation cooperation.
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-26
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 10(20) N m(-3). This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-01-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m−3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics. PMID:27225287
A gas-puff-driven theta pinch for plasma-surface interaction studies
NASA Astrophysics Data System (ADS)
Jung, Soonwook; Kesler, Leigh; Yun, Hyun-Ho; Curreli, Davide; Andruczyk, Daniel; Ruzic, David
2012-10-01
DEVeX is a theta pinch device used to investigate fusion-related material interaction such as vapor shielding and ICRF antenna interactions with plasma-pulses in a laboratory setting. The simulator is required to produce high heat-flux plasma enough to induce temperature gradient high enough to study extreme conditions happened in a plasma fusion reactor. In order to achieve it, DEVeX is reconfigured to be combined with gas puff system as gas puffing may reduce heat flux loss resulting from collisions with neutral. A gas puff system as well as a conical gas nozzle is manufactured and several diagnostics including hot wire anemometer and fast ionization gauge are carried out to quantitatively estimate the supersonic flow of gas. Energy deposited on the target for gas puffing and static-filled conditions is measured with thermocouples and its application to TELS, an innovative concept utilizing a thermoelectric-driven liquid metal flow for plasma facing component, is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorrer, C.; Consentino, A.; Irwin, D.
Characterizing the prepulse temporal contrast of optical pulses is required to understand their interaction with matter. Light with relatively low intensity can interact with the target before the main high-intensity pulse. Estimating the intensity contrast, instead of the spatially averaged power contrast, is important to understand intensity-dependent laser–matter interactions. A direct optical approach to determining the on-shot intensity of the incoherent pedestal on an aberrated high-intensity laser system is presented. The spatially resolved focal spot of the incoherent pedestal preceding the main coherent pulse and the intensity contrast are calculated using experimental data. Furthermore, this technique is experimentally validated onmore » one of the chirped pulse amplification beamlines of the OMEGA EP Laser System. The intensity contrast of a 1-kJ, 10-ps laser pulse is shown to be ~10× higher than the power contrast because of the larger spatial extent of the incoherent focal spot relative to the coherent focal spot.« less
Building biochips: a protein production pipeline
NASA Astrophysics Data System (ADS)
de Carvalho-Kavanagh, Marianne G. S.; Albala, Joanna S.
2004-06-01
Protein arrays are emerging as a practical format in which to study proteins in high-throughput using many of the same techniques as that of the DNA microarray. The key advantage to array-based methods for protein study is the potential for parallel analysis of thousands of samples in an automated, high-throughput fashion. Building protein arrays capable of this analysis capacity requires a robust expression and purification system capable of generating hundreds to thousands of purified recombinant proteins. We have developed a method to utilize LLNL-I.M.A.G.E. cDNAs to generate recombinant protein libraries using a baculovirus-insect cell expression system. We have used this strategy to produce proteins for analysis of protein/DNA and protein/protein interactions using protein microarrays in order to understand the complex interactions of proteins involved in homologous recombination and DNA repair. Using protein array techniques, a novel interaction between the DNA repair protein, Rad51B, and histones has been identified.
Dorrer, C.; Consentino, A.; Irwin, D.
2016-05-18
Characterizing the prepulse temporal contrast of optical pulses is required to understand their interaction with matter. Light with relatively low intensity can interact with the target before the main high-intensity pulse. Estimating the intensity contrast, instead of the spatially averaged power contrast, is important to understand intensity-dependent laser–matter interactions. A direct optical approach to determining the on-shot intensity of the incoherent pedestal on an aberrated high-intensity laser system is presented. The spatially resolved focal spot of the incoherent pedestal preceding the main coherent pulse and the intensity contrast are calculated using experimental data. Furthermore, this technique is experimentally validated onmore » one of the chirped pulse amplification beamlines of the OMEGA EP Laser System. The intensity contrast of a 1-kJ, 10-ps laser pulse is shown to be ~10× higher than the power contrast because of the larger spatial extent of the incoherent focal spot relative to the coherent focal spot.« less
Network community-based model reduction for vortical flows
NASA Astrophysics Data System (ADS)
Gopalakrishnan Meena, Muralikrishnan; Nair, Aditya G.; Taira, Kunihiko
2018-06-01
A network community-based reduced-order model is developed to capture key interactions among coherent structures in high-dimensional unsteady vortical flows. The present approach is data-inspired and founded on network-theoretic techniques to identify important vortical communities that are comprised of vortical elements that share similar dynamical behavior. The overall interaction-based physics of the high-dimensional flow field is distilled into the vortical community centroids, considerably reducing the system dimension. Taking advantage of these vortical interactions, the proposed methodology is applied to formulate reduced-order models for the inter-community dynamics of vortical flows, and predict lift and drag forces on bodies in wake flows. We demonstrate the capabilities of these models by accurately capturing the macroscopic dynamics of a collection of discrete point vortices, and the complex unsteady aerodynamic forces on a circular cylinder and an airfoil with a Gurney flap. The present formulation is found to be robust against simulated experimental noise and turbulence due to its integrating nature of the system reduction.
Compensatory Effort Parallels Midbrain Deactivation during Mental Fatigue: An fMRI Study
Nakagawa, Seishu; Sugiura, Motoaki; Akitsuki, Yuko; Hosseini, S. M. Hadi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Yomogida, Yukihito; Yokoyama, Ryoichi; Takeuchi, Hikaru; Kawashima, Ryuta
2013-01-01
Fatigue reflects the functioning of our physiological negative feedback system, which prevents us from overworking. When fatigued, however, we often try to suppress this system in an effort to compensate for the resulting deterioration in performance. Previous studies have suggested that the effect of fatigue on neurovascular demand may be influenced by this compensatory effort. The primary goal of the present study was to isolate the effect of compensatory effort on neurovascular demand. Healthy male volunteers participated in a series of visual and auditory divided attention tasks that steadily increased fatigue levels for 2 hours. Functional magnetic resonance imaging scans were performed during the first and last quarter of the study (Pre and Post sessions, respectively). Tasks with low and high attentional load (Low and High conditions, respectively) were administrated in alternating blocks. We assumed that compensatory effort would be greater under the High-attentional-load condition compared with the Low-load condition. The difference was assessed during the two sessions. The effect of compensatory effort on neurovascular demand was evaluated by examining the interaction between load (High vs. Low) and time (Pre vs. Post). Significant fatigue-induced deactivation (i.e., Pre>Post) was observed in the frontal, temporal, occipital, and parietal cortices, in the cerebellum, and in the midbrain in both the High and Low conditions. The interaction was significantly greater in the High than in the Low condition in the midbrain. Neither significant fatigue-induced activation (i.e., Pre
Data Intensive Systems (DIS) Benchmark Performance Summary
2003-08-01
models assumed by today’s conventional architectures. Such applications include model- based Automatic Target Recognition (ATR), synthetic aperture...radar (SAR) codes, large scale dynamic databases/battlefield integration, dynamic sensor- based processing, high-speed cryptanalysis, high speed...distributed interactive and data intensive simulations, data-oriented problems characterized by pointer- based and other highly irregular data structures
The interactions of peripheral membrane proteins with biological membranes
Johs, Alexander; Whited, A. M.
2015-07-29
The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approachesmore » continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.« less
Resolving the Massive Binary Wind Interaction Of Eta Carinae with HST/STIS
NASA Technical Reports Server (NTRS)
Gull, Theodore; Nielsen, K.; Corcoran, M.; Hillier, J.; Madura, T.; Hamaguchi, K.; Kober, G.; Owocki, S.; Russell, C.; Okazaki, A.;
2009-01-01
We have resolved the outer structures of the massive binary interacting wind of Eta Carinae using the HST/STIS. They extend as much as 0.7' (1600AU) and are highly distorted due to the very elliptical orbit of the binary system. Observations conducted from 1998.0 to 2004.3 show spatial and temporal variations consistent with a massive, low excitation wind, seen by spatially resolved, velocity-broadened [Fe II], and a high excitation extended wind interaction region, seen by[Fe III], in the shape of a distorted paraboloid. The highly excited [Fe III] structure is visible for 90% of the 5.5-year period, but disappears as periastron occurs along with the drop of X-Rays as seen by RXTE. Some components appear in [Fe II] emission across the months long minimum. We will discuss the apparent differences between the bowshock orientation derived from the RXTE light curve and these structures seen by HST/STIS. Monitoring the temporal variations with phase using high spatial resolution with appropriate spectral dispersions proves to be a valuable tool for understanding massive wind interactions.
Multiwavelength Study of Powerful New Jet Activity in the Symbiotic Binary System R Aqr
NASA Astrophysics Data System (ADS)
Karovska, Margarita
2016-09-01
We propose to carry out coordinated high-spatial resolution Chandra ACIS-S and HST/WFC3 observations of R Aqr, a very active symbiotic interacting binary system. Our main goal is to study the physical characteristics of multi-scale components of the powerful jet; from near the central binary (within a few AU) to the jet-circumbinary material interaction region (2500 AU) and beyond , and especially of the recently discovered inner jet, to gain insight on early jet formation and propagation, such as jet kinematics and precession.
A database system to support image algorithm evaluation
NASA Technical Reports Server (NTRS)
Lien, Y. E.
1977-01-01
The design is given of an interactive image database system IMDB, which allows the user to create, retrieve, store, display, and manipulate images through the facility of a high-level, interactive image query (IQ) language. The query language IQ permits the user to define false color functions, pixel value transformations, overlay functions, zoom functions, and windows. The user manipulates the images through generic functions. The user can direct images to display devices for visual and qualitative analysis. Image histograms and pixel value distributions can also be computed to obtain a quantitative analysis of images.
Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations
Stein, Hannah; Spindler, Susann; Bonakdar, Navid; Wang, Chun; Sandoghdar, Vahid
2017-01-01
The cell membrane forms a dynamic and complex barrier between the living cell and its environment. However, its in vivo studies are difficult because it consists of a high variety of lipids and proteins and is continuously reorganized by the cell. Therefore, membrane model systems with precisely controlled composition are used to investigate fundamental interactions of membrane components under well-defined conditions. Giant unilamellar vesicles (GUVs) offer a powerful model system for the cell membrane, but many previous studies have been performed in unphysiologically low ionic strength solutions which might lead to altered membrane properties, protein stability and lipid-protein interaction. In the present work, we give an overview of the existing methods for GUV production and present our efforts on forming single, free floating vesicles up to several tens of μm in diameter and at high yield in various buffer solutions with physiological ionic strength and pH. PMID:28243205
Quantifying Groundwater Fluctuations in the Southern High Plains with GIS and Geostatistics
NASA Astrophysics Data System (ADS)
Whitehead, B.
2008-12-01
Groundwater as a dwindling non-renewable natural resource has been an important research theme in agricultural studies coupled with human-environment interaction. This research incorporated contemporary Geographic Information System (GIS) methodologies and a universal kriging interpolator (geostatistics) to develop depth to groundwater surfaces for the southern portion of the High Plains, or Ogallala, aquifer. The variations in the interpolated surfaces were used to calculate the volume of water mined from the aquifer from 1980 to 2005. The findings suggest a nearly inverse relationship to the water withdrawal scenarios derived by the United States Geological Survey (USGS) during the Regional Aquifer System Analysis (RASA) performed in the early 1980's. These results advocate further research into regional climate change, groundwater-surface water interaction, and recharge mechanisms in the region, and provide a substantial contribution to the continuing and contentious issue concerning the environmental sustainability of the High Plains.
Cui, Boyu; Wang, Yao; Song, Yunhong; Wang, Tietao; Li, Changfu; Wei, Yahong; Luo, Zhao-Qing; Shen, Xihui
2014-05-20
Protein-protein interactions are important for virtually every biological process, and a number of elegant approaches have been designed to detect and evaluate such interactions. However, few of these methods allow the detection of dynamic and real-time protein-protein interactions in bacteria. Here we describe a bioluminescence resonance energy transfer (BRET) system based on the bacterial luciferase LuxAB. We found that enhanced yellow fluorescent protein (eYFP) accepts the emission from LuxAB and emits yellow fluorescence. Importantly, BRET occurred when LuxAB and eYFP were fused, respectively, to the interacting protein pair FlgM and FliA. Furthermore, we observed sirolimus (i.e., rapamycin)-inducible interactions between FRB and FKBP12 and a dose-dependent abolishment of such interactions by FK506, the ligand of FKBP12. Using this system, we showed that osmotic stress or low pH efficiently induced multimerization of the regulatory protein OmpR and that the multimerization induced by low pH can be reversed by a neutralizing agent, further indicating the usefulness of this system in the measurement of dynamic interactions. This method can be adapted to analyze dynamic protein-protein interactions and the importance of such interactions in bacterial processes such as development and pathogenicity. Real-time measurement of protein-protein interactions in prokaryotes is highly desirable for determining the roles of protein complex in the development or virulence of bacteria, but methods that allow such measurement are not available. Here we describe the development of a bioluminescence resonance energy transfer (BRET) technology that meets this need. The use of endogenous excitation light in this strategy circumvents the requirement for the sophisticated instrument demanded by standard fluorescence resonance energy transfer (FRET). Furthermore, because the LuxAB substrate decanal is membrane permeable, the assay can be performed without lysing the bacterial cells, thus allowing the detection of protein-protein interactions in live bacterial cells. This BRET system added another useful tool to address important questions in microbiological studies. Copyright © 2014 Cui et al.
NASA Astrophysics Data System (ADS)
Farkas, Attila J.; Hajnal, Alen; Shiratuddin, Mohd F.; Szatmary, Gabriella
In this paper, we propose a novel approach of using interactive virtual environment technology in Vision Restoration Therapy caused by Traumatic Brain Injury. We called the new system Interactive Visuotactile Virtual Environment and it holds a promise of expanding the scope of already existing rehabilitation techniques. Traditional vision rehabilitation methods are based on passive psychophysical training procedures, and can last up to six months before any modest improvements can be seen in patients. A highly immersive and interactive virtual environment will allow the patient to practice everyday activities such as object identification and object manipulation through the use 3D motion sensoring handheld devices such data glove or the Nintendo Wiimote. Employing both perceptual and action components in the training procedures holds the promise of more efficient sensorimotor rehabilitation. Increased stimulation of visual and sensorimotor areas of the brain should facilitate a comprehensive recovery of visuomotor function by exploiting the plasticity of the central nervous system. Integrated with a motion tracking system and an eye tracking device, the interactive virtual environment allows for the creation and manipulation of a wide variety of stimuli, as well as real-time recording of hand-, eye- and body movements and coordination. The goal of the project is to design a cost-effective and efficient vision restoration system.
High efficiency Raman memory by suppressing radiation trapping
NASA Astrophysics Data System (ADS)
Thomas, S. E.; Munns, J. H. D.; Kaczmarek, K. T.; Qiu, C.; Brecht, B.; Feizpour, A.; Ledingham, P. M.; Walmsley, I. A.; Nunn, J.; Saunders, D. J.
2017-06-01
Raman interactions in alkali vapours are used in applications such as atomic clocks, optical signal processing, generation of squeezed light and Raman quantum memories for temporal multiplexing. To achieve a strong interaction the alkali ensemble needs both a large optical depth and a high level of spin-polarisation. We implement a technique known as quenching using a molecular buffer gas which allows near-perfect spin-polarisation of over 99.5 % in caesium vapour at high optical depths of up to ˜ 2× {10}5; a factor of 4 higher than can be achieved without quenching. We use this system to explore efficient light storage with high gain in a GHz bandwidth Raman memory.
Interaction between colloidal particles on an oil-water interface in dilute and dense phases.
Parolini, Lucia; Law, Adam D; Maestro, Armando; Buzza, D Martin A; Cicuta, Pietro
2015-05-20
The interaction between micron-sized charged colloidal particles at polar/non-polar liquid interfaces remains surprisingly poorly understood for a relatively simple physical chemistry system. By measuring the pair correlation function g(r) for different densities of polystyrene particles at the decane-water interface, and using a powerful predictor-corrector inversion scheme, effective pair-interaction potentials can be obtained up to fairly high densities, and these reproduce the experimental g(r) in forward simulations, so are self consistent. While at low densities these potentials agree with published dipole-dipole repulsion, measured by various methods, an apparent density dependence and long range attraction are obtained when the density is higher. This condition is thus explored in an alternative fashion, measuring the local mobility of colloids when confined by their neighbors. This method of extracting interaction potentials gives results that are consistent with dipolar repulsion throughout the concentration range, with the same magnitude as in the dilute limit. We are unable to rule out the density dependence based on the experimental accuracy of our data, but we show that incomplete equilibration of the experimental system, which would be possible despite long waiting times due to the very strong repulsions, is a possible cause of artefacts in the inverted potentials. We conclude that to within the precision of these measurements, the dilute pair potential remains valid at high density in this system.
High-Density Quantum Sensing with Dissipative First Order Transitions
NASA Astrophysics Data System (ADS)
Raghunandan, Meghana; Wrachtrup, Jörg; Weimer, Hendrik
2018-04-01
The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of N independent particles is proportional to √{N }. However, interactions invariably occurring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be transformed from a nuisance into an advantage when strong interactions trigger a dissipative phase transition in an open quantum system. We demonstrate this behavior by analyzing dissipative quantum sensors based upon nitrogen-vacancy defect centers in diamond. Using both a variational method and a numerical simulation of the master equation describing the open quantum many-body system, we establish the existence of a dissipative first order transition that can be used for quantum sensing. We investigate the properties of this phase transition for two- and three-dimensional setups, demonstrating that the transition can be observed using current experimental technology. Finally, we show that quantum sensors based on dissipative phase transitions are particularly robust against imperfections such as disorder or decoherence, with the sensitivity of the sensor not being limited by the T2 coherence time of the device. Our results can readily be applied to other applications in quantum sensing and quantum metrology where interactions are currently a limiting factor.
AMI: Augmented Michelson Interferometer
NASA Astrophysics Data System (ADS)
Furió, David; Hachet, Martin; Guillet, Jean-Paul; Bousquet, Bruno; Fleck, Stéphanie; Reuter, Patrick; Canioni, Lionel
2015-10-01
Experiments in optics are essential for learning and understanding physical phenomena. The problem with these experiments is that they are generally time consuming for both their construction and their maintenance, potentially dangerous through the use of laser sources, and often expensive due to high technology optical components. We propose to simulate such experiments by way of hybrid systems that exploit both spatial augmented reality and tangible interaction. In particular, we focus on one of the most popular optical experiments: the Michelson interferometer. In our approach, we target a highly interactive system where students are able to interact in real time with the Augmented Michelson Interferometer (AMI) to observe, test hypotheses and then to enhance their comprehension. Compared to a fully digital simulation, we are investigating an approach that benefits from both physical and virtual elements, and where the students experiment by manipulating 3D-printed physical replicas of optical components (e.g. lenses and mirrors). Our objective is twofold. First, we want to ensure that the students will learn with our simulator the same concepts and skills that they learn with traditional methods. Second, we hypothesis that such a system opens new opportunities to teach optics in a way that was not possible before, by manipulating concepts beyond the limits of observable physical phenomena. To reach this goal, we have built a complementary team composed of experts in the field of optics, human-computer interaction, computer graphics, sensors and actuators, and education science.
High-Density Quantum Sensing with Dissipative First Order Transitions.
Raghunandan, Meghana; Wrachtrup, Jörg; Weimer, Hendrik
2018-04-13
The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of N independent particles is proportional to sqrt[N]. However, interactions invariably occurring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be transformed from a nuisance into an advantage when strong interactions trigger a dissipative phase transition in an open quantum system. We demonstrate this behavior by analyzing dissipative quantum sensors based upon nitrogen-vacancy defect centers in diamond. Using both a variational method and a numerical simulation of the master equation describing the open quantum many-body system, we establish the existence of a dissipative first order transition that can be used for quantum sensing. We investigate the properties of this phase transition for two- and three-dimensional setups, demonstrating that the transition can be observed using current experimental technology. Finally, we show that quantum sensors based on dissipative phase transitions are particularly robust against imperfections such as disorder or decoherence, with the sensitivity of the sensor not being limited by the T_{2} coherence time of the device. Our results can readily be applied to other applications in quantum sensing and quantum metrology where interactions are currently a limiting factor.
Karimi Shervedani, Reza; Mirhosseini, Hadiseh; Samiei Foroushani, Marzieh; Torabi, Mostafa; Rahsepar, Fatemeh Rahnemaye; Norouzi-Barough, Leila
2018-02-01
Immobilization of methotrexate (MTX) anticancer drug onto the graphene surface is reported through three methods, including either covalent linkage via (a) EDC/NHS organic activators and (b) electrografting of MTX diazonium salt, or (c) noncovalent bonding, resulting in three different systems. To evaluate the interaction ability of the immobilized MTX with biological species, calf thymus DNA (ctDNA), mouse 4T1 breast tumor, and Human foreskin fibroblast (hFF) cells as models of the primary intracellular target of anticancer drugs, cancer and normal cells, respectively, are examined. The features of the constructed systems and their interactions with ctDNA are followed by surface analysis techniques and electrochemical methods. The results indicate that (i) the amount of the immobilized MTX on the graphene surface is affected by type of the immobilization method; and a maximum value of (Γ=9.3±0.9pmolcm -2 ) is found via electrografting method, (ii) graphene-modified-MTX has high affinity for ctDNA in a wide dynamic range of concentrations, and (iii) the nature of the interaction is of electrostatic and/or hydrogen bonding type, formed most probably between OH, NH and CO groups of MTX and different DNA functions. Finally, electrochemical impedance spectroscopy results approved the high affinity of the systems for 4T1 cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Social complexity as a proximate and ultimate factor in communicative complexity
Freeberg, Todd M.; Dunbar, Robin I. M.; Ord, Terry J.
2012-01-01
The ‘social complexity hypothesis’ for communication posits that groups with complex social systems require more complex communicative systems to regulate interactions and relations among group members. Complex social systems, compared with simple social systems, are those in which individuals frequently interact in many different contexts with many different individuals, and often repeatedly interact with many of the same individuals in networks over time. Complex communicative systems, compared with simple communicative systems, are those that contain a large number of structurally and functionally distinct elements or possess a high amount of bits of information. Here, we describe some of the historical arguments that led to the social complexity hypothesis, and review evidence in support of the hypothesis. We discuss social complexity as a driver of communication and possible causal factor in human language origins. Finally, we discuss some of the key current limitations to the social complexity hypothesis—the lack of tests against alternative hypotheses for communicative complexity and evidence corroborating the hypothesis from modalities other than the vocal signalling channel. PMID:22641818
A new synoptic scale resolving global climate simulation using the Community Earth System Model
NASA Astrophysics Data System (ADS)
Small, R. Justin; Bacmeister, Julio; Bailey, David; Baker, Allison; Bishop, Stuart; Bryan, Frank; Caron, Julie; Dennis, John; Gent, Peter; Hsu, Hsiao-ming; Jochum, Markus; Lawrence, David; Muñoz, Ernesto; diNezio, Pedro; Scheitlin, Tim; Tomas, Robert; Tribbia, Joseph; Tseng, Yu-heng; Vertenstein, Mariana
2014-12-01
High-resolution global climate modeling holds the promise of capturing planetary-scale climate modes and small-scale (regional and sometimes extreme) features simultaneously, including their mutual interaction. This paper discusses a new state-of-the-art high-resolution Community Earth System Model (CESM) simulation that was performed with these goals in mind. The atmospheric component was at 0.25° grid spacing, and ocean component at 0.1°. One hundred years of "present-day" simulation were completed. Major results were that annual mean sea surface temperature (SST) in the equatorial Pacific and El-Niño Southern Oscillation variability were well simulated compared to standard resolution models. Tropical and southern Atlantic SST also had much reduced bias compared to previous versions of the model. In addition, the high resolution of the model enabled small-scale features of the climate system to be represented, such as air-sea interaction over ocean frontal zones, mesoscale systems generated by the Rockies, and Tropical Cyclones. Associated single component runs and standard resolution coupled runs are used to help attribute the strengths and weaknesses of the fully coupled run. The high-resolution run employed 23,404 cores, costing 250 thousand processor-hours per simulated year and made about two simulated years per day on the NCAR-Wyoming supercomputer "Yellowstone."
Harper, Marvin B; Longhurst, Christopher A; McGuire, Troy L; Tarrago, Rod; Desai, Bimal R; Patterson, Al
2014-03-01
The study aims to develop a core set of pediatric drug-drug interaction (DDI) pairs for which electronic alerts should be presented to prescribers during the ordering process. A clinical decision support working group composed of Children's Hospital Association (CHA) members was developed. CHA Pharmacists and Chief Medical Information Officers participated. Consensus was reached on a core set of 19 DDI pairs that should be presented to pediatric prescribers during the order process. We have provided a core list of 19 high value drug pairs for electronic drug-drug interaction alerts to be recommended for inclusion as high value alerts in prescriber order entry software used with a pediatric patient population. We believe this list represents the most important pediatric drug interactions for practical implementation within computerized prescriber order entry systems.
High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, Emmanuel; Keiser, Jr., Dennis D.; Forsmann, Bryan
High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or betweenmore » the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.« less
High energy neutrino absorption and its effects on stars in close X-ray binaries
NASA Technical Reports Server (NTRS)
Gaisser, T. K.; Stecker, F. W.
1986-01-01
The physics and astrophysics of high energy neutrino production and interactions in close X-ray binary systems are studied. These studies were stimulated by recent observations of ultrahigh energy gamma-rays and possibly other ultrahigh energy particles coming from the directions of Cygnus X-3 and other binary systems and possessing the periodicity characteristics of these systems. Systems in which a compact object, such as a neutron star, is a strong source of high energy particles which, in turn, produce photons, neutronos and other secondary particles by interactions in the atmosphere of the companion star were considered. The highest energy neutrinos are absorbed deep in the companion and the associated energy deposition may be large enough to effect its structure or lead to its ultimate disruption. This neutrino heating was evaluated, starting with a detailed numerical calculation of the hadronic cascade induced in the atmosphere of the companion star. For some theoretical models, the resulting energy deposition from neutrino absorption may be so great as to disrupt the companion star over an astronomically small timescale of the order of 10,000 years. Even if the energy deposition is smaller, it may still be high enough to alter the system substantially, perhaps leading to quenching of high energy signals from the source. Given the cosmic ray luminosities required to produce the observed gamma rays from cygnus X-3 and LMX X-4, such a situation may occur in these sources.
Butz, Brian P
2004-01-01
Background A cancer diagnosis is highly distressing. Yet, to make informed treatment choices patients have to learn complicated disease and treatment information that is often fraught with medical and statistical terminology. Thus, patients need accurate and easy-to-understand information. Objective To introduce the development and preliminary evaluation through focus groups of a novel highly-interactive multimedia-education software program for patients diagnosed with localized prostate cancer. Methods The prostate interactive education system uses the metaphor of rooms in a virtual health center (ie, reception area, a library, physician offices, group meeting room) to organize information. Text information contained in the library is tailored to a person's information-seeking preference (ie, high versus low information seeker). We conducted a preliminary evaluation through 5 separate focus groups with prostate cancer survivors (N = 18) and their spouses (N = 15). Results Focus group results point to the timeliness and high acceptability of the software among the target audience. Results also underscore the importance of a guide or tutor who assists in navigating the program and who responds to queries to facilitate information retrieval. Conclusions Focus groups have established the validity of our approach and point to new directions to further enhance the user interface. PMID:15111269
Energy coupling in short pulse laser solid interactions and its impact for space debris removal.
Neely, David; Allott, Ric; Bingham, Bob; Collier, John; Greenhalgh, Justin; Michaelis, Max; Phillips, Jonathan; Phipps, Claude R; McKenna, Paul
2014-11-01
Significant advances have been made over the last decade to improve the performance, efficiency, and contrast of high peak and average power laser systems, driven by their use in a wide variety of fields, from the industrial to the scientific. As the contrast of the lasers has improved, interactions with contrasts of 1012 are now routinely undertaken. At such high contrasts, there is negligible preplasma formation and the ionized surface layer created by subpicosecond-duration pulses typically forms a highly reflective "plasma mirror" capable of reflecting between 70% and 90% of the incident energy. Although such interactions are of significant interest for applications such as harmonic source production and to enable the underlying physics to be studied, their low absorption can limit their usefulness for applications such as space debris removal.
Khalaf, Kinda; Jelinek, Herbert F; Robinson, Caroline; Cornforth, David J; Tarvainen, Mika P; Al-Aubaidy, Hayder
2015-01-01
Physiological interactions are abundant within, and between, body systems. These interactions may evolve into discrete states during pathophysiological processes resulting from common mechanisms. An association between arterial stenosis, identified by low ankle-brachial pressure index (ABPI) and cardiovascular disease (CVD) as been reported. Whether an association between vascular calcification-characterized by high ABPI and a different pathophysiology-is similarly associated with CVD, has not been established. The current study aims to investigate the association between ABPI, and cardiac rhythm, as an indicator of cardiovascular health and functionality, utilizing heart rate variability (HRV). Two hundred and thirty six patients underwent ABPI assessment. Standard time and frequency domain, and non-linear HRV measures were determined from 5-min electrocardiogram. ABPI data were divided into normal (n = 101), low (n = 67) and high (n = 66) and compared to HRV measures.(DFAα1 and SampEn were significantly different between the low ABPI, high ABPI and control groups (p < 0.05). A possible coupling between arterial stenosis and vascular calcification with decreased and increased HRV respectively was observed. Our results suggest a model for interpreting the relationship between vascular pathophysiology and cardiac rhythm. The cardiovascular system may be viewed as a complex system comprising a number of interacting subsystems. These cardiac and vascular subsystems/networks may be coupled and undergo transitions in response to internal or external perturbations. From a clinical perspective, the significantly increased sample entropy compared to the normal ABPI group and the decreased and increased complex correlation properties measured by DFA for the low and high ABPI groups respectively, may be useful indicators that a more holistic treatment approach in line with this more complex clinical picture is required.
Exploring the drivers of health and healthcare access in Zambian prisons: a health systems approach
Topp, Stephanie M.; Moonga, Clement N.; Luo, Nkandu; Kaingu, Michael; Chileshe, Chisela; Magwende, George; Heymann, S. Jody; Henostroza, German
2016-01-01
Background Prison populations in sub-Saharan Africa (SSA) experience a high burden of disease and poor access to health care. Although it is generally understood that environmental conditions are dire and contribute to disease spread, evidence of how environmental conditions interact with facility-level social and institutional factors is lacking. This study aimed to unpack the nature of interactions and their influence on health and healthcare access in the Zambian prison setting. Methods We conducted in-depth interviews of a clustered random sample of 79 male prisoners across four prisons, as well as 32 prison officers, policy makers and health care workers. Largely inductive thematic analysis was guided by the concepts of dynamic interaction and emergent behaviour, drawn from the theory of complex adaptive systems. Results A majority of inmates, as well as facility-based officers reported anxiety linked to overcrowding, sanitation, infectious disease transmission, nutrition and coercion. Due in part to differential wealth of inmates and their support networks on entering prison, and in part to the accumulation of authority and material wealth within prison, we found enormous inequity in the standard of living among prisoners at each site. In the context of such inequities, failure of the Zambian prison system to provide basic necessities (including adequate and appropriate forms of nutrition, or access to quality health care) contributed to high rates of inmate-led and officer-led coercion with direct implications for health and access to healthcare. Conclusions This systems-oriented analysis provides a more comprehensive picture of the way resource shortages and human interactions within Zambian prisons interact and affect inmate and officer health. While not a panacea, our findings highlight some strategic entry-points for important upstream and downstream reforms including urgent improvement in the availability of human resources for health; strengthening of facility-based health services systems and more comprehensive pre-service health education for prison officers. PMID:27220354
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Christopher J; Ahrens, James P; Wang, Jun
2010-10-15
Petascale simulations compute at resolutions ranging into billions of cells and write terabytes of data for visualization and analysis. Interactive visuaUzation of this time series is a desired step before starting a new run. The I/O subsystem and associated network often are a significant impediment to interactive visualization of time-varying data; as they are not configured or provisioned to provide necessary I/O read rates. In this paper, we propose a new I/O library for visualization applications: VisIO. Visualization applications commonly use N-to-N reads within their parallel enabled readers which provides an incentive for a shared-nothing approach to I/O, similar tomore » other data-intensive approaches such as Hadoop. However, unlike other data-intensive applications, visualization requires: (1) interactive performance for large data volumes, (2) compatibility with MPI and POSIX file system semantics for compatibility with existing infrastructure, and (3) use of existing file formats and their stipulated data partitioning rules. VisIO, provides a mechanism for using a non-POSIX distributed file system to provide linear scaling of 110 bandwidth. In addition, we introduce a novel scheduling algorithm that helps to co-locate visualization processes on nodes with the requested data. Testing using VisIO integrated into Para View was conducted using the Hadoop Distributed File System (HDFS) on TACC's Longhorn cluster. A representative dataset, VPIC, across 128 nodes showed a 64.4% read performance improvement compared to the provided Lustre installation. Also tested, was a dataset representing a global ocean salinity simulation that showed a 51.4% improvement in read performance over Lustre when using our VisIO system. VisIO, provides powerful high-performance I/O services to visualization applications, allowing for interactive performance with ultra-scale, time-series data.« less
Modeling and simulating networks of interdependent protein interactions.
Stöcker, Bianca K; Köster, Johannes; Zamir, Eli; Rahmann, Sven
2018-05-21
Protein interactions are fundamental building blocks of biochemical reaction systems underlying cellular functions. The complexity and functionality of these systems emerge not only from the protein interactions themselves but also from the dependencies between these interactions, as generated by allosteric effects or mutual exclusion due to steric hindrance. Therefore, formal models for integrating and utilizing information about interaction dependencies are of high interest. Here, we describe an approach for endowing protein networks with interaction dependencies using propositional logic, thereby obtaining constrained protein interaction networks ("constrained networks"). The construction of these networks is based on public interaction databases as well as text-mined information about interaction dependencies. We present an efficient data structure and algorithm to simulate protein complex formation in constrained networks. The efficiency of the model allows fast simulation and facilitates the analysis of many proteins in large networks. In addition, this approach enables the simulation of perturbation effects, such as knockout of single or multiple proteins and changes of protein concentrations. We illustrate how our model can be used to analyze a constrained human adhesome protein network, which is responsible for the formation of diverse and dynamic cell-matrix adhesion sites. By comparing protein complex formation under known interaction dependencies versus without dependencies, we investigate how these dependencies shape the resulting repertoire of protein complexes. Furthermore, our model enables investigating how the interplay of network topology with interaction dependencies influences the propagation of perturbation effects across a large biochemical system. Our simulation software CPINSim (for Constrained Protein Interaction Network Simulator) is available under the MIT license at http://github.com/BiancaStoecker/cpinsim and as a Bioconda package (https://bioconda.github.io).
Potential drug-drug interactions between anti-cancer agents and community pharmacy dispensed drugs.
Voll, Marsha L; Yap, Kim D; Terpstra, Wim E; Crul, Mirjam
2010-10-01
To identify the prevalence of potential drug-drug interactions between hospital pharmacy dispensed anti-cancer agents and community pharmacy dispensed drugs. A retrospective cohort study was conducted on the haematology/oncology department of the internal medicine ward in a large teaching hospital in Amsterdam, the Netherlands. Prescription data from the last 100 patients treated with anti-cancer agents were obtained from Paracelsus, the chemotherapy prescribing system in the hospital. The community pharmacy dispensed drugs of these patients were obtained by using OZIS, a system that allows regionally linked pharmacies to call up active medication on any patient. Both medication lists were manually screened for potential drug-drug interactions by using several information sources on interactions, e.g. Pubmed, the Flockhart P450 table, Micromedex and Dutch reference books. Prevalence of potential drug-drug interactions between anti-cancer agents provided by the hospital pharmacy and drugs dispensed by the community pharmacy. Ninety-one patients were included in the study. A total of 31 potential drug-drug interactions were found in 16 patients, of which 15 interactions were clinically relevant and would have required an intervention. Of these interactions 1 had a level of severity ≥ D, meaning the potential drug-drug interaction could lead to long lasting or permanent damage, or even death. The majority of the interactions requiring an intervention (67%) had a considerable level of evidence (≥ 2) and were based on well-documented case reports or controlled interaction studies. Most of the potential drug-drug interactions involved the antiretroviral drugs (40%), proton pump inhibitors (20%) and antibiotics (20%). The anti-cancer drug most involved in the drug-drug interactions is methotrexate (33%). This study reveals a high prevalence of potential drug-drug interactions between anti-cancer agents provided by the hospital pharmacy and drugs dispensed by the community pharmacy. It shows us there is need for an optimal medication surveillance mechanism to detect potential drug-drug interactions between these two groups of medication, especially because of the high toxicity of anticancer drugs and thus the severe consequences these interactions can have for the patient.
Plascencia-Villa, Germán; Starr, Clarise R; Armstrong, Linda S; Ponce, Arturo; José-Yacamán, Miguel
2012-11-01
Use of engineered metal oxide nanoparticles in a plethora of biological applications and custom products has warned about some possible dose-dependent cytotoxic effects. Macrophages are key components of the innate immune system used to study possible toxic effects and internalization of different nanoparticulate materials. In this work, ultra-high resolution field emission scanning electron microscopy (FE-SEM) was used to offer new insights into the dynamical processes of interaction of nanomaterials with macrophage cells dosed with different concentrations of metal oxide nanoparticles (CeO(2), TiO(2) and ZnO). The versatility of FE-SEM has allowed obtaining a detailed characterization of processes of adsorption and endocytosis of nanoparticles, by using advanced analytical and imaging techniques on complete unstained uncoated cells, including secondary electron imaging, high-sensitive backscattered electron imaging, X-ray microanalysis and stereoimaging. Low voltage BF/DF-STEM confirmed nanoparticle adsorption and internalization into endosomes of CeO(2) and TiO(2), whereas ZnO develop apoptosis after 24 h of interaction caused by dissolution and invasion of cell nucleus. Ultra-high resolution scanning electron microscopy techniques provided new insights into interactions of inorganic nanoparticles with macrophage cells with high spatial resolution.
Immune-Neuroendocrine Interactions and Autoimmune Diseases
Jara, Luis J.; Navarro, Carmen; Medina, Gabriela; Vera-Lastra, Olga; Blanco, Francisco
2006-01-01
The relationship between immune-neuroendocrine system is firmly established. The messengers of this connection are hormones, neuropeptides, neurotransmitters and cytokines. The immune-neuroendocrine system have the capacity to synthesize and release these molecules, which, in turn, can stimulate or suppress the activity of immune or neuroendocrine cells by binding to receptors. In fact, hormones, neuropeptides and neurotransmitters participate in innate and adaptive immune response.Autoimmune rheumatic diseases (ARD) are characterized by aberrant production of pro-inflammatory cytokines, which are a potent activator of the HPA axis. In consequence, high levels of pro-inflammatory hormones such as estrogens and prolactin, and low levels of glucocorticoids, an anti-inflammatory hormone, have been described in the active phase of ARD. In addition, high levels of pro-inflammatory hormones and cytokines have also been frequently detected in organ involvement of patients with ARD, suggesting an abnormal local neuroendocrine immune interaction. There is evidence that hormonal changes may appear before the symptomatic phase of the disease. Therefore, it is possible that a pro-inflammatory hormone favors the rupture of tolerance, which is a key feature of autoimmune diseases. The interactions between the immune-neuroendocrine system have a major impact on our understanding of the pathogenic mechanisms, diagnosis and therapy of ARD. PMID:17162354
RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.
Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana
2015-11-26
Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.
MR imaging guidance for minimally invasive procedures
NASA Astrophysics Data System (ADS)
Wong, Terence Z.; Kettenbach, Joachim; Silverman, Stuart G.; Schwartz, Richard B.; Morrison, Paul R.; Kacher, Daniel F.; Jolesz, Ferenc A.
1998-04-01
Image guidance is one of the major challenges common to all minimally invasive procedures including biopsy, thermal ablation, endoscopy, and laparoscopy. This is essential for (1) identifying the target lesion, (2) planning the minimally invasive approach, and (3) monitoring the therapy as it progresses. MRI is an ideal imaging modality for this purpose, providing high soft tissue contrast and multiplanar imaging, capability with no ionizing radiation. An interventional/surgical MRI suite has been developed at Brigham and Women's Hospital which provides multiplanar imaging guidance during surgery, biopsy, and thermal ablation procedures. The 0.5T MRI system (General Electric Signa SP) features open vertical access, allowing intraoperative imaging to be performed. An integrated navigational system permits near real-time control of imaging planes, and provides interactive guidance for positioning various diagnostic and therapeutic probes. MR imaging can also be used to monitor cryotherapy as well as high temperature thermal ablation procedures sing RF, laser, microwave, or focused ultrasound. Design features of the interventional MRI system will be discussed, and techniques will be described for interactive image acquisition and tracking of interventional instruments. Applications for interactive and near-real-time imaging will be presented as well as examples of specific procedures performed using MRI guidance.
The Vesalius Project: Interactive Computers in Anatomical Instruction.
ERIC Educational Resources Information Center
McCracken, Thomas O.; Spurgeon, Thomas L.
1991-01-01
Described is a high-resolution, interactive 3-D atlas of human/animal anatomy that students will use to learn the structure of the body and to understand their own bodies in health and disease. This system can be used to reinforce cadaver study or to serve as a substitute for institutions where it is not practical to use cadavers. (KR)
Atomic oxygen effects measurements for shuttle missions STS-8 and 41-G
NASA Technical Reports Server (NTRS)
Visentine, James T. (Compiler)
1988-01-01
The effects of the atomic oxygen interactions upon optical coatings, thin metallized films, and advanced spacecraft materials, such as high temperature coatings for infrared optical systems are summarized. Also included is a description of a generic model proposed by JPL, which may explain the atomic oxygen interaction mechanisms that lead to surface recession and weight loss.
Modelling the Evolution of Social Structure
Sutcliffe, A. G.; Dunbar, R. I. M.; Wang, D.
2016-01-01
Although simple social structures are more common in animal societies, some taxa (mainly mammals) have complex, multi-level social systems, in which the levels reflect differential association. We develop a simulation model to explore the conditions under which multi-level social systems of this kind evolve. Our model focuses on the evolutionary trade-offs between foraging and social interaction, and explores the impact of alternative strategies for distributing social interaction, with fitness criteria for wellbeing, alliance formation, risk, stress and access to food resources that reward social strategies differentially. The results suggest that multi-level social structures characterised by a few strong relationships, more medium ties and large numbers of weak ties emerge only in a small part of the overall fitness landscape, namely where there are significant fitness benefits from wellbeing and alliance formation and there are high levels of social interaction. In contrast, ‘favour-the-few’ strategies are more competitive under a wide range of fitness conditions, including those producing homogeneous, single-level societies of the kind found in many birds and mammals. The simulations suggest that the development of complex, multi-level social structures of the kind found in many primates (including humans) depends on a capacity for high investment in social time, preferential social interaction strategies, high mortality risk and/or differential reproduction. These conditions are characteristic of only a few mammalian taxa. PMID:27427758
NASA Astrophysics Data System (ADS)
Shallcross, Gregory; Capecelatro, Jesse
2017-11-01
Compressible particle-laden flows are common in engineering systems. Applications include but are not limited to water injection in high-speed jet flows for noise suppression, rocket-plume surface interactions during planetary landing, and explosions during coal mining operations. Numerically, it is challenging to capture these interactions due to the wide range of length and time scales. Additionally, there are many forms of the multiphase compressible flow equations with volume fraction effects, some of which are conflicting in nature. The purpose of this presentation is to develop the capability to accurately capture particle-shock interactions in systems with a large number of particles from dense to dilute regimes. A thorough derivation of the volume filtered equations is presented. The volume filtered equations are then implemented in a high-order, energy-stable Eulerian-Lagrangian framework. We show this framework is capable of decoupling the fluid mesh from the particle size, enabling arbitrary particle size distributions in the presence of shocks. The proposed method is then assessed against particle-laden shock tube data. Quantities of interest include fluid-phase pressure profiles and particle spreading rates. The effect of collisions in 2D and 3D are also evaluated.
Meisburger, Steve P.; Sutton, Julie L.; Chen, Huimin; Pabit, Suzette A.; Kirmizialtin, Serdal; Elber, Ron; Pollack, Lois
2013-01-01
Nucleic acids are highly charged polyelectrolytes that interact strongly with salt ions. Rigid, base-paired regions are successfully described with worm like chain models, but non base-paired single stranded regions have fundamentally different polymer properties because of their greater flexibility. Recently, attention has turned to single stranded nucleic acids due to the growing recognition of their biological importance, as well as the availability of sophisticated experimental techniques sensitive to the conformation of individual molecules. We investigate polyelectrolyte properties of poly(dT), an important and widely studied model system for flexible single stranded nucleic acids, in physiologically important mixed mono- and di-valent salt. We report measurements of the form factor and interparticle interactions using SAXS, end to end distances using smFRET, and number of excess ions using ASAXS. We present a coarse-grained model that accounts for flexibility, excluded volume, and electrostatic interactions in these systems. Predictions of the model are validated against experiment. We also discuss the state of all-atom, explicit solvent Molecular Dynamics simulations of poly(dT), the next step in understanding the complexities of ion interactions with these highly charged and flexible polymers. PMID:23606337
Jagusiak, Anna; Piekarska, Barbara; Pańczyk, Tomasz; Jemioła-Rzemińska, Małgorzata; Bielańska, Elżbieta; Stopa, Barbara; Zemanek, Grzegorz; Rybarska, Janina; Roterman, Irena; Konieczny, Leszek
2017-01-01
A method of dispersion of single-wall carbon nanotubes (SWNTs) in aqueous media using Congo red (CR) is proposed. Nanotubes covered with CR constitute the high capacity system that provides the possibility of binding and targeted delivery of different drugs, which can intercalate into the supramolecular, ribbon-like CR structure. The study revealed the presence of strong interactions between CR and the surface of SWNTs. The aim of the study was to explain the mechanism of this interaction. The interaction of CR and carbon nanotubes was studied using spectral analysis of the SWNT-CR complex, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and microscopic methods: atomic force microscopy (AFM), transmission (TEM), scanning (SEM) and optical microscopy. The results indicate that the binding of supramolecular CR structures to the surface of the nanotubes is based on the "face to face stacking". CR molecules attached directly to the surface of the nanotubes can bind further, parallel-oriented molecules and form supramolecular and protruding structures. This explains the high CR binding capacity of carbon nanotubes. The presented system - containing SWNTs covered with CR - offers a wide range of biomedical applications.
Corzo-Martínez, M.; Mohan, M.; Dunlap, J.; Harte, F.
2014-01-01
Purpose The aim of this work was to develop a milk-based powder formulation appropriate for pediatric delivery of ritonavir (RIT). Methods Ultra-high pressure homogenization (UHPH) at 0.1, 300 and 500 MPa was used to process a dispersion of pasteurized skim milk (SM) and ritonavir. Loading efficiency was determined by RP-HPLC-UV; characterization of RIT:SM systems was carried out by apparent average hydrodynamic diameter and rheological measurements as well as different analytical techniques including Trp fluorescence, UV spectroscopy, DSC, FTIR and SEM; and delivery capacity of casein micelles was determined by in vitro experiments promoting ritonavir release. Results Ritonavir interacted efficiently with milk proteins, especially, casein micelles, regardless of the processing pressure; however, results suggest that, at 0.1 MPa, ritonavir interacts with caseins at the micellar surface, whilst, at 300 and 500 MPa, ritonavir is integrated to the protein matrix during UHPH treatment. Likewise, in vitro experiments showed that ritonavir release from micellar casein systems is pH dependent; with a high retention of ritonavir during simulated gastric digestion and a rapid delivery under conditions simulating the small intestine environment. Conclusions Skim milk powder, especially, casein micelles are potentially suitable and efficient carrier systems to develop novel milk-based and low-ethanol powder formulations of ritonavir appropriate for pediatric applications. PMID:25270571
GEOS S2S-2_1: GMAO's New High Resolution Seasonal Prediction System
NASA Technical Reports Server (NTRS)
Molod, Andrea; Akella, Santha; Andrews, Lauren; Barahona, Donifan; Borovikov, Anna; Chang, Yehui; Cullather, Richard; Hackert, Eric; Kovach, Robin; Koster, Randal;
2017-01-01
A new version of the modeling and analysis system used to produce sub-seasonal to seasonal forecasts has just been released by the NASA Goddard Global Modeling and Assimilation Office. The new version runs at higher atmospheric resolution (approximately 12 degree globally), contains a substantially improved model description of the cryosphere, and includes additional interactive earth system model components (aerosol model). In addition, the Ocean data assimilation system has been replaced with a Local Ensemble Transform Kalman Filter. Here will describe the new system, along with the plans for the future (GEOS S2S-3_0) which will include a higher resolution ocean model and more interactive earth system model components (interactive vegetation, biomass burning from fires). We will also present results from a free-running coupled simulation with the new system and results from a series of retrospective seasonal forecasts. Results from retrospective forecasts show significant improvements in surface temperatures over much of the northern hemisphere and a much improved prediction of sea ice extent in both hemispheres. The precipitation forecast skill is comparable to previous S2S systems, and the only trade off is an increased double ITCZ, which is expected as we go to higher atmospheric resolution.
Solar array experiments on the Sphinx satellite
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1973-01-01
The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations; the edge illuminated-multijunction cells, the Teflon encased cells and the violet cells.
Kar, Rajiv K; Mroue, Kamal H; Kumar, Dinesh; Tejo, Bimo A; Bhunia, Anirban
2016-02-11
Antifreeze proteins (AFPs) are the key biomolecules that enable species to survive under subzero temperature conditions. The physiologically relevant activities of AFPs are based on the adsorption to ice crystals, followed by the inhibition of subsequent crystal layer growth of ice, routed with depression in freezing point in a noncolligative manner. The functional attributes governing the mechanism by which AFPs inhibit freezing of body fluids in bacteria, fungi, plants, and fishes are mainly attributed to their adsorption onto the surface of ice within the physiological system. Importantly, AFPs are also known for their application in cryopreservation of biological samples that might be related to membrane interaction. To date, there is a paucity of information detailing the interaction of AFPs with membrane structures. Here, we focus on elucidating the biophysical properties of the interactions between AFPs and micelle models that mimic the membrane system. Micelle model systems of zwitterionic DPC and negatively charged SDS were utilized in this study, against which a significant interaction is experienced by two AFP molecules, namely, Peptide 1m and wfAFP (the popular AFP sourced from winter flounder). Using low- and high-resolution biophysical characterization techniques, such as circular dichroism (CD) and NMR spectroscopy, a strong evidence for the interactions of these AFPs with the membrane models is revealed in detail and is corroborated by in-depth residue-specific information derived from molecular dynamics simulation. Altogether, these results not only strengthen the fact that AFPs interact actively with membrane systems, but also demonstrate that membrane-associated AFPs are dynamic and capable of adopting a number of conformations rendering fluidity to the system.
Cunningham, Alexander J; Robinson, Mattieu; Banquy, Xavier; Leblond, Jeanne; Zhu, X X
2018-03-05
Doxorubicin (Dox) is a drug of choice in the design of drug delivery systems directed toward breast cancers, but is often limited by loading and control over its release from polymer micelles. Bile acid-based block copolymers present certain advantages over traditional polymer-based systems for drug delivery purposes, since they can enable a higher drug loading via the formation of a reservoir through their aggregation process. In this study, hydrophobic and electrostatic interactions are compared for their influence on Dox loading inside cholic acid based block copolymers. Poly(allyl glycidyl ether) (PAGE) and poly(ethylene glycol) (PEG) were grafted from the cholic acid (CA) core yielding a star-shaped block copolymer with 4 arms (CA-(PAGE- b-PEG) 4 ) and then loaded with Dox via a nanoprecipitation technique. A high Dox loading of 14 wt % was achieved via electrostatic as opposed to hydrophobic interactions with or without oleic acid as a cosurfactant. The electrostatic interactions confer a pH responsiveness to the system. 50% of the loaded Dox was released at pH 5 in comparison to 12% at pH 7.4. The nanoparticles with Dox loaded via hydrophobic interactions did not show such a pH responsiveness. The systems with Dox loaded via electrostatic interactions showed the lowest IC 50 and highest cellular internalization, indicating the pre-eminence of this interaction in Dox loading. The blank formulations are biocompatible and did not show cytotoxicity up to 0.17 mg/mL. The new functionalized star block copolymers based on cholic acid show great potential as drug delivery carriers.
Development of inorganic resists for electron beam lithography: Novel materials and simulations
NASA Astrophysics Data System (ADS)
Jeyakumar, Augustin
Electron beam lithography is gaining widespread utilization as the semiconductor industry progresses towards both advanced optical and non-optical lithographic technologies for high resolution patterning. The current resist technologies are based on organic systems that are imaged most commonly through chain scission, networking, or a chemically amplified polarity change in the material. Alternative resists based on inorganic systems were developed and characterized in this research for high resolution electron beam lithography and their interactions with incident electrons were investigated using Monte Carlo simulations. A novel inorganic resist imaging scheme was developed using metal-organic precursors which decompose to form metal oxides upon electron beam irradiation that can serve as inorganic hard masks for hybrid bilayer inorganic-organic imaging systems and also as directly patternable high resolution metal oxide structures. The electron beam imaging properties of these metal-organic materials were correlated to the precursor structure by studying effects such as interactions between high atomic number species and the incident electrons. Optimal single and multicomponent precursors were designed for utilization as viable inorganic resist materials for sub-50nm patterning in electron beam lithography. The electron beam imaging characteristics of the most widely used inorganic resist material, hydrogen silsesquioxane (HSQ), was also enhanced using a dual processing imaging approach with thermal curing as well as a sensitizer catalyzed imaging approach. The interaction between incident electrons and the high atomic number species contained in these inorganic resists was also studied using Monte Carlo simulations. The resolution attainable using inorganic systems as compared to organic systems can be greater for accelerating voltages greater than 50 keV due to minimized lateral scattering in the high density inorganic systems. The effects of loading nanoparticles in an electron beam resist was also investigated using a newly developed hybrid Monte Carlo approach that accounts for multiple components in a solid film. The resolution of the nanocomposite resist process was found to degrade with increasing nanoparticle loading. Finally, the electron beam patterning of self-assembled monolayers, which were found to primarily utilize backscattered electrons from the high atomic number substrate materials to form images, was also investigated and characterized. It was found that backscattered electrons limit the resolution attainable at low incident electron energies.
Neuroendocrine control in social relationships in non-human primates: Field based evidence.
Ziegler, Toni E; Crockford, Catherine
2017-05-01
Primates maintain a variety of social relationships and these can have fitness consequences. Research has established that different types of social relationships are unpinned by different or interacting hormonal systems, for example, the neuropeptide oxytocin influences social bonding, the steroid hormone testosterone influences dominance relationships, and paternal care is characterized by high oxytocin and low testosterone. Although the oxytocinergic system influences social bonding, it can support different types of social bonds in different species, whether pair bonds, parent-offspring bonds or friendships. It seems that selection processes shape social and mating systems and their interactions with neuroendocrine pathways. Within species, there are individual differences in the development of the neuroendocrine system: the social environment individuals are exposed to during ontogeny alters their neuroendocrine and socio-cognitive development, and later, their social interactions as adults. Within individuals, neuroendocrine systems can also have short-term effects, impacting on social interactions, such as those during hunting, intergroup encounters or food sharing, or the likelihood of cooperating, winning or losing. To understand these highly dynamic processes, extending research beyond animals in laboratory settings to wild animals living within their natural social and ecological setting may bring insights that are otherwise unreachable. Field endocrinology with neuropeptides is still emerging. We review the current status of this research, informed by laboratory studies, and identify questions particularly suited to future field studies. We focus on primate social relationships, specifically social bonds (mother-offspring, father-offspring, cooperative breeders, pair bonds and adult platonic friendships), dominance, cooperation and in-group/out-group relationships, and examine evidence with respect to the 'tend and defend' hypothesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Review of hardware-in-the-loop simulation and its prospects in the automotive area
NASA Astrophysics Data System (ADS)
Fathy, Hosam K.; Filipi, Zoran S.; Hagena, Jonathan; Stein, Jeffrey L.
2006-05-01
Hardware-in-the-loop (HIL) simulation is rapidly evolving from a control prototyping tool to a system modeling, simulation, and synthesis paradigm synergistically combining many advantages of both physical and virtual prototyping. This paper provides a brief overview of the key enablers and numerous applications of HIL simulation, focusing on its metamorphosis from a control validation tool into a system development paradigm. It then describes a state-of-the art engine-in-the-loop (EIL) simulation facility that highlights the use of HIL simulation for the system-level experimental evaluation of powertrain interactions and development of strategies for clean and efficient propulsion. The facility comprises a real diesel engine coupled to accurate real-time driver, driveline, and vehicle models through a highly responsive dynamometer. This enables the verification of both performance and fuel economy predictions of different conventional and hybrid powertrains. Furthermore, the facility can both replicate the highly dynamic interactions occurring within a real powertrain and measure their influence on transient emissions and visual signature through state-of-the-art instruments. The viability of this facility for integrated powertrain system development is demonstrated through a case study exploring the development of advanced High Mobility Multipurpose Wheeled Vehicle (HMMWV) powertrains.
How does information congruence influence diagnosis performance?
Chen, Kejin; Li, Zhizhong
2015-01-01
Diagnosis performance is critical for the safety of high-consequence industrial systems. It depends highly on the information provided, perceived, interpreted and integrated by operators. This article examines the influence of information congruence (congruent information vs. conflicting information vs. missing information) and its interaction with time pressure (high vs. low) on diagnosis performance on a simulated platform. The experimental results reveal that the participants confronted with conflicting information spent significantly more time generating correct hypotheses and rated the results with lower probability values than when confronted with the other two levels of information congruence and were more prone to arrive at a wrong diagnosis result than when they were provided with congruent information. This finding stresses the importance of the proper processing of non-congruent information in safety-critical systems. Time pressure significantly influenced display switching frequency and completion time. This result indicates the decisive role of time pressure. Practitioner Summary: This article examines the influence of information congruence and its interaction with time pressure on human diagnosis performance on a simulated platform. For complex systems in the process control industry, the results stress the importance of the proper processing of non-congruent information in safety-critical systems.
Long lifetimes of ultrahot particles in interacting Fermi systems
NASA Astrophysics Data System (ADS)
Bard, M.; Protopopov, I. V.; Mirlin, A. D.
2018-05-01
The energy dependence of the relaxation rate of hot electrons due to interaction with the Fermi sea is studied. We consider 2D and 3D systems, quasi-1D quantum wires with multiple transverse bands, as well as single-channel 1D wires. Our analysis includes both spinful and spin-polarized setups, with short-range and Coulomb interactions. We show that, quite generally, the relaxation rate is a nonmonotonic function of the electron energy and decays as a power law at high energies. In other words, ultrahot electrons regain their coherence with increasing energy. Such a behavior was observed in a recent experiment on multiband quantum wires, J. Reiner et al., Phys. Rev. X 7, 021016 (2017)., 10.1103/PhysRevX.7.021016
Stellar properties of dwarf galaxies and their connections with the Milky Way halo
NASA Astrophysics Data System (ADS)
Revaz, Yves; Pascale Jablonka
2018-06-01
In this talk, relying on recent chemo-dynamical simulations, I will describe the stellar properties and in particular the abundances ratios of dwarf galaxies emerging from a LCDM framework. Faint systems quenched by the UV-background as well as luminous ones exhibiting an extended star formation history nicely reproduce observations, without necessary requiring a strong interaction with the Milky Way. However, dwarf galaxies with complex star formation histories like Carina and Fornax are much more difficult to reproduce. Those systems are often believed to result from an interaction with the Milky Way. I will show that when such interaction is taken into account in our high resolution simulations through ram pressure stripping, a much more complex reality appears.
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1979-01-01
Cases where the charged-particle environment acts on the spacecraft (e.g., spacecraft charging phenomena) and cases where a system on the spacecraft causes the interaction (e.g., high voltage space power systems) are considered. Both categories were studied in ground simulation facilities to understand the processes involved and to measure the pertinent parameters. Computer simulations are based on the NASA Charging Analyzer Program (NASCAP) code. Analytical models are developed in this code and verified against the experimental data. Extrapolation from the small test samples to space conditions are made with this code. Typical results from laboratory and computer simulations are presented for both types of interactions. Extrapolations from these simulations to performance in space environments are discussed.
The role of quench rate in colloidal gels.
Royall, C Patrick; Malins, Alex
2012-01-01
Interactions between colloidal particles have hitherto usually been fixed by the suspension composition. Recent experimental developments now enable the control of interactions in situ. Here we use Brownian dynamics simulations to investigate the effect of controlling interactions upon gelation, by "quenching" the system from an equilibrium fluid to a gel. We find that, contrary to the normal case of an instantaneous quench, where the local structure of the gel is highly disordered, controlled quenching results in a gel with a much higher degree of local order. Under sufficiently slow quenching, local crystallisation is found, which is strongly enhanced when a monodisperse system is used. The higher the degree of local order, the smaller the mean squared displacement, indicating an enhancement of gel stability.
Schulenburg, Hinrich; Ewbank, Jonathan J
2004-11-22
Co-evolutionary arms races between parasites and hosts are considered to be of immense importance in the evolution of living organisms, potentially leading to highly dynamic life-history changes. The outcome of such arms races is in many cases thought to be determined by frequency dependent selection, which relies on genetic variation in host susceptibility and parasite virulence, and also genotype-specific interactions between host and parasite. Empirical evidence for these two prerequisites is scarce, however, especially for invertebrate hosts. We addressed this topic by analysing the interaction between natural isolates of the soil nematode Caenorhabditis elegans and the pathogenic soil bacterium Serratia marcescens. Our analysis reveals the presence of i) significant variation in host susceptibility, ii) significant variation in pathogen virulence, and iii) significant strain- and genotype-specific interactions between the two species. The results obtained support the previous notion that highly specific interactions between parasites and animal hosts are generally widespread. At least for C. elegans, the high specificity is observed among isolates from the same population, such that it may provide a basis for and/or represent the outcome of co-evolutionary adaptations under natural conditions. Since both C. elegans and S. marcescens permit comprehensive molecular analyses, these two species provide a promising model system for inference of the molecular basis of such highly specific interactions, which are as yet unexplored in invertebrate hosts.
Schulenburg, Hinrich; Ewbank, Jonathan J
2004-01-01
Background Co-evolutionary arms races between parasites and hosts are considered to be of immense importance in the evolution of living organisms, potentially leading to highly dynamic life-history changes. The outcome of such arms races is in many cases thought to be determined by frequency dependent selection, which relies on genetic variation in host susceptibility and parasite virulence, and also genotype-specific interactions between host and parasite. Empirical evidence for these two prerequisites is scarce, however, especially for invertebrate hosts. We addressed this topic by analysing the interaction between natural isolates of the soil nematode Caenorhabditis elegans and the pathogenic soil bacterium Serratia marcescens. Results Our analysis reveals the presence of i) significant variation in host susceptibility, ii) significant variation in pathogen virulence, and iii) significant strain- and genotype-specific interactions between the two species. Conclusions The results obtained support the previous notion that highly specific interactions between parasites and animal hosts are generally widespread. At least for C. elegans, the high specificity is observed among isolates from the same population, such that it may provide a basis for and/or represent the outcome of co-evolutionary adaptations under natural conditions. Since both C. elegans and S. marcescens permit comprehensive molecular analyses, these two species provide a promising model system for inference of the molecular basis of such highly specific interactions, which are as yet unexplored in invertebrate hosts. PMID:15555070
Assembly of Colloidal Materials Using Bioadhesive Interactions
NASA Technical Reports Server (NTRS)
Hammer, Daniel A.; Hiddessen, Amy L.; Tohver, Valeria; Crocker, John C.; Weitz, David A.
2002-01-01
We have pursued the use of biological crosslinking molecules of several types to make colloidal materials at relatively low volume fraction of colloidal particles. The objective is to make binary alloys of colloidal particles, made of two different colloidal particles coated with complementary biological lock-and-key binding molecules, which assemble due to the biological specificity. The long-term goal is to use low affinity lock-and-key biological interactions, so that the can anneal to form crystalline states. We have used a variety of different surface chemistries in order to make colloidal materials. Our first system involved using selectin-carbohydrate (sialyl-Lewis) interactions; this chemistry is derived from immune system. This chemical interaction is of relatively low affinity, with timescales for dissociation of several seconds. Furthermore, the adhesion mediated by these molecules can be reversed by the chelation of calcium atoms; thus assembled structures can be disassembled reversibly. Our second system employed avidin-biotin chemistry. This well-studied system is of high affinity, and is generally irreversible on a laboratory time-scale. Thus, we would expect selectin-carbohydrate interactions at high molecular density and avidin-biotin interactions to give kinetically-trapped structures; however, at low densities, we would expect significant differences in the structure and dynamics of the two materials, owing to their very different release rates. We have also begun to use a third chemistry - DNA hybridization. By attaching single stranded DNA oligonucleotide chains to beads, we can drive the assembly of colloidal materials by hybridization of complementary DNA chains. It is well known that DNA adenosine-thymine (A-T) and guanine-cytosine (G-C) bases hybridize pairwise with a Gibbs free energy change of 1.7 kcal/mol per base; thus, the energy of the assembly can be modulated by altering the number of complementary bases in the DNA chains. Using these different crosslinking molecules, we have assembled colloidal materials from different-sized colloidal particles, A and B. In the first sets of experiment, we used high densities of adhesion molecules, and 0.96 micron (A) and 5.5 micron (B) diameter particles. The high density of adhesion molecules means that the structures are kinetically trapped in nonequilibrium configurations. The structure of the suspension can be varied by changing the number ratio of the two types of colloidal particles, NA and NB, where A is the smaller particle. With carbohydrate-selectin or avidin-biotin interactions, large NA/NB leads to the formation of colloidal micelles, with the large center B particle surrounded by many smaller A particles. As the ratio NA/NB decreases, the structures become more extended, approaching the formation of macro-Rouse polymers - extended linear chains where A beads are connected with intervening small B linkers.
Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila
2016-10-20
The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.
HOW MANY ULTRA-HIGH ENERGY COSMIC RAYS COULD WE EXPECT FROM CENTAURUS A?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraija, N.; Gonzalez, M. M.; Perez, M.
2012-07-01
The Pierre Auger Observatory has associated a few ultra-high energy cosmic rays (UHECRs) with the direction of Centaurus A. This source has been deeply studied in radio, infrared, X-ray, and {gamma}-rays (MeV-TeV) because it is the nearest radio-loud active galactic nucleus. Its spectral energy distribution or spectrum shows two main peaks, the low-energy peak, at an energy of 10{sup -2} eV, and the high-energy peak, at about 150 keV. There is also a faint very high energy (VHE; E {>=} 100 GeV) {gamma}-ray emission fully detected by the High Energy Stereoscopic System experiment. In this work, we describe the entiremore » spectrum: the two main peaks with a synchrotron/synchrotron self-Compton model, and the VHE emission with a hadronic model. We consider p{gamma} and pp interactions. For the p{gamma} interaction, we assume that the target photons are those produced at 150 keV in leptonic processes. On the other hand, for the pp interaction we consider as targets the thermal particle densities in the lobes. Requiring a satisfactory description of the spectra at very high energies with p{gamma} interaction, we obtain an excessive luminosity in UHECRs (even exceeding the Eddington luminosity). However, when considering the pp interaction to describe the {gamma}-spectrum, the number of UHECRs obtained is in agreement with Pierre Auger observations. We also calculate the possible neutrino signal from pp interactions on a Km{sup 3} neutrino telescope using Monte Carlo simulations.« less
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Fan, Jie; Gao, You
2015-12-01
Identifying the mutual interaction is a crucial problem that facilitates the understanding of emerging structures in complex system. We here focus on aero-engine dynamic as an example of complex system. By applying the detrended cross-correlation analysis (DCCA) coefficient method to aero-engine gas path system, we find that the low-spool rotor speed (N1) and high-spool rotor speed (N2) fluctuation series exhibit cross-correlation characteristic. Further, we employ detrended cross-correlation coefficient matrix and rooted tree to investigate the mutual interactions of other gas path variables. The results can infer that the exhaust gas temperature (EGT), N1, N2, fuel flow (WF) and engine pressure ratio (EPR) are main gas path parameters.
Pfundner, Alexander; Schönberg, Tobias; Horn, John; Boyce, Richard D; Samwald, Matthias
2015-05-05
Wikipedia is an important source of medical information for both patients and medical professionals. Given its wide reach, improving the quality, completeness, and accessibility of medical information on Wikipedia could have a positive impact on global health. We created a prototypical implementation of an automated system for keeping drug-drug interaction (DDI) information in Wikipedia up to date with current evidence about clinically significant drug interactions. Our work is based on Wikidata, a novel, graph-based database backend of Wikipedia currently in development. We set up an automated process for integrating data from the Office of the National Coordinator for Health Information Technology (ONC) high priority DDI list into Wikidata. We set up exemplary implementations demonstrating how the DDI data we introduced into Wikidata could be displayed in Wikipedia articles in diverse languages. Finally, we conducted a pilot analysis to explore if adding the ONC high priority data would substantially enhance the information currently available on Wikipedia. We derived 1150 unique interactions from the ONC high priority list. Integration of the potential DDI data from Wikidata into Wikipedia articles proved to be straightforward and yielded useful results. We found that even though the majority of current English Wikipedia articles about pharmaceuticals contained sections detailing contraindications, only a small fraction of articles explicitly mentioned interaction partners from the ONC high priority list. For 91.30% (1050/1150) of the interaction pairs we tested, none of the 2 articles corresponding to the interacting substances explicitly mentioned the interaction partner. For 7.21% (83/1150) of the pairs, only 1 of the 2 associated Wikipedia articles mentioned the interaction partner; for only 1.48% (17/1150) of the pairs, both articles contained explicit mentions of the interaction partner. Our prototype demonstrated that automated updating of medical content in Wikipedia through Wikidata is a viable option, albeit further refinements and community-wide consensus building are required before integration into public Wikipedia is possible. A long-term endeavor to improve the medical information in Wikipedia through structured data representation and automated workflows might lead to a significant improvement of the quality of medical information in one of the world's most popular Web resources.
Pfundner, Alexander; Schönberg, Tobias; Horn, John; Boyce, Richard D
2015-01-01
Background Wikipedia is an important source of medical information for both patients and medical professionals. Given its wide reach, improving the quality, completeness, and accessibility of medical information on Wikipedia could have a positive impact on global health. Objective We created a prototypical implementation of an automated system for keeping drug-drug interaction (DDI) information in Wikipedia up to date with current evidence about clinically significant drug interactions. Our work is based on Wikidata, a novel, graph-based database backend of Wikipedia currently in development. Methods We set up an automated process for integrating data from the Office of the National Coordinator for Health Information Technology (ONC) high priority DDI list into Wikidata. We set up exemplary implementations demonstrating how the DDI data we introduced into Wikidata could be displayed in Wikipedia articles in diverse languages. Finally, we conducted a pilot analysis to explore if adding the ONC high priority data would substantially enhance the information currently available on Wikipedia. Results We derived 1150 unique interactions from the ONC high priority list. Integration of the potential DDI data from Wikidata into Wikipedia articles proved to be straightforward and yielded useful results. We found that even though the majority of current English Wikipedia articles about pharmaceuticals contained sections detailing contraindications, only a small fraction of articles explicitly mentioned interaction partners from the ONC high priority list. For 91.30% (1050/1150) of the interaction pairs we tested, none of the 2 articles corresponding to the interacting substances explicitly mentioned the interaction partner. For 7.21% (83/1150) of the pairs, only 1 of the 2 associated Wikipedia articles mentioned the interaction partner; for only 1.48% (17/1150) of the pairs, both articles contained explicit mentions of the interaction partner. Conclusions Our prototype demonstrated that automated updating of medical content in Wikipedia through Wikidata is a viable option, albeit further refinements and community-wide consensus building are required before integration into public Wikipedia is possible. A long-term endeavor to improve the medical information in Wikipedia through structured data representation and automated workflows might lead to a significant improvement of the quality of medical information in one of the world’s most popular Web resources. PMID:25944105
Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.
Grosu, Victor; Grosu, Svetlana; Vanderborght, Bram; Lefeber, Dirk; Rodriguez-Guerrero, Carlos
2017-06-05
Human-robot interaction sensing is a compulsory feature in modern robotic systems where direct contact or close collaboration is desired. Rehabilitation and assistive robotics are fields where interaction forces are required for both safety and increased control performance of the device with a more comfortable experience for the user. In order to provide an efficient interaction feedback between the user and rehabilitation device, high performance sensing units are demanded. This work introduces a novel design of a multi-axis force sensor dedicated for measuring pelvis interaction forces in a rehabilitation exoskeleton device. The sensor is conceived such that it has different sensitivity characteristics for the three axes of interest having also movable parts in order to allow free rotations and limit crosstalk errors. Integrated sensor electronics make it easy to acquire and process data for a real-time distributed system architecture. Two of the developed sensors are integrated and tested in a complex gait rehabilitation device for safe and compliant control.
Two-fluid model of a Bose-Einstein condensate in the cavity optomechanical regime
NASA Astrophysics Data System (ADS)
Goldbaum, Dan; Zhang, Keye; Meystre, Pierre
2010-03-01
We analyze an atomic Bose-Einstein condensate trapped in a high-Q optical cavity driven by a feeble optical field. The dynamics of the resulting collective density excitation of the condensate are formally analogous to the central model system of cavity optomechanics: a radiation pressure driven mechanical oscillator [Brennecke et al., Science 322, 235 (2008)]. However, although BEC-based optomechanical systems have several desirable properties, one must also take into account the effect of atom-atom interactions. We treat these interactions via a two-fluid model that retains the intuitive appeal of the non-interacting two-mode description. We find that the Bogoliubov excitation spectrum of this system comprises a gapped upper branch and a lower branch that can include an unstable excitation mode. [4pt] D. S. Goldbaum, K. Zhang and P. Meystre, Two-fluid model of a Bose-Einstein condensate in the cavity optomechanical regime, arXiv:0911.3234.
Phase Space Approach to Dynamics of Interacting Fermions
NASA Astrophysics Data System (ADS)
Davidson, Shainen; Sels, Dries; Kasper, Valentin; Polkovnikov, Anatoli
Understanding the behavior of interacting fermions is of fundamental interest in many fields ranging from condensed matter to high energy physics. Developing numerically efficient and accurate simulation methods is an indispensable part of this. Already in equilibrium, fermions are notoriously hard to handle due to the sign problem. Out of equilibrium, an important outstanding problem is the efficient numerical simulation of the dynamics of these systems. In this work we develop a new semiclassical phase-space approach (a.k.a. the truncated Wigner approximation) for simulating the dynamics of interacting lattice fermions in arbitrary dimensions. We demonstrate the strength of the method by comparing the results to exact diagonalization (ED) on small 1D and 2D systems. We furthermore present results on Many-Body Localized (MBL) systems in 1D and 2D, and demonstrate how the method can be used to determine the MBL transition.
Intersegmental Eye-Head-Body Interactions during Complex Whole Body Movements
von Laßberg, Christoph; Beykirch, Karl A.; Mohler, Betty J.; Bülthoff, Heinrich H.
2014-01-01
Using state-of-the-art technology, interactions of eye, head and intersegmental body movements were analyzed for the first time during multiple twisting somersaults of high-level gymnasts. With this aim, we used a unique combination of a 16-channel infrared kinemetric system; a three-dimensional video kinemetric system; wireless electromyography; and a specialized wireless sport-video-oculography system, which was able to capture and calculate precise oculomotor data under conditions of rapid multiaxial acceleration. All data were synchronized and integrated in a multimodal software tool for three-dimensional analysis. During specific phases of the recorded movements, a previously unknown eye-head-body interaction was observed. The phenomenon was marked by a prolonged and complete suppression of gaze-stabilizing eye movements, in favor of a tight coupling with the head, spine and joint movements of the gymnasts. Potential reasons for these observations are discussed with regard to earlier findings and integrated within a functional model. PMID:24763143
A walk on the tundra: Host-parasite interactions in an extreme environment.
Kutz, Susan J; Hoberg, Eric P; Molnár, Péter K; Dobson, Andy; Verocai, Guilherme G
2014-08-01
Climate change is occurring very rapidly in the Arctic, and the processes that have taken millions of years to evolve in this very extreme environment are now changing on timescales as short as decades. These changes are dramatic, subtle and non-linear. In this article, we discuss the evolving insights into host-parasite interactions for wild ungulate species, specifically, muskoxen and caribou, in the North American Arctic. These interactions occur in an environment that is characterized by extremes in temperature, high seasonality, and low host species abundance and diversity. We believe that lessons learned in this system can guide wildlife management and conservation throughout the Arctic, and can also be generalized to more broadly understand host-parasite interactions elsewhere. We specifically examine the impacts of climate change on host-parasite interactions and focus on: (I) the direct temperature effects on parasites; (II) the importance of considering the intricacies of host and parasite ecology for anticipating climate change impacts; and (III) the effect of shifting ecological barriers and corridors. Insights gained from studying the history and ecology of host-parasite systems in the Arctic will be central to understanding the role that climate change is playing in these more complex systems.
A walk on the tundra: Host–parasite interactions in an extreme environment
Kutz, Susan J.; Hoberg, Eric P.; Molnár, Péter K.; Dobson, Andy; Verocai, Guilherme G.
2014-01-01
Climate change is occurring very rapidly in the Arctic, and the processes that have taken millions of years to evolve in this very extreme environment are now changing on timescales as short as decades. These changes are dramatic, subtle and non-linear. In this article, we discuss the evolving insights into host–parasite interactions for wild ungulate species, specifically, muskoxen and caribou, in the North American Arctic. These interactions occur in an environment that is characterized by extremes in temperature, high seasonality, and low host species abundance and diversity. We believe that lessons learned in this system can guide wildlife management and conservation throughout the Arctic, and can also be generalized to more broadly understand host–parasite interactions elsewhere. We specifically examine the impacts of climate change on host–parasite interactions and focus on: (I) the direct temperature effects on parasites; (II) the importance of considering the intricacies of host and parasite ecology for anticipating climate change impacts; and (III) the effect of shifting ecological barriers and corridors. Insights gained from studying the history and ecology of host–parasite systems in the Arctic will be central to understanding the role that climate change is playing in these more complex systems. PMID:25180164
Ringo: Interactive Graph Analytics on Big-Memory Machines
Perez, Yonathan; Sosič, Rok; Banerjee, Arijit; Puttagunta, Rohan; Raison, Martin; Shah, Pararth; Leskovec, Jure
2016-01-01
We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads. PMID:27081215
Ringo: Interactive Graph Analytics on Big-Memory Machines.
Perez, Yonathan; Sosič, Rok; Banerjee, Arijit; Puttagunta, Rohan; Raison, Martin; Shah, Pararth; Leskovec, Jure
2015-01-01
We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads.
Global biogeography of mating system variation in seed plants.
Moeller, David A; Briscoe Runquist, Ryan D; Moe, Annika M; Geber, Monica A; Goodwillie, Carol; Cheptou, Pierre-Olivier; Eckert, Christopher G; Elle, Elizabeth; Johnston, Mark O; Kalisz, Susan; Ree, Richard H; Sargent, Risa D; Vallejo-Marin, Mario; Winn, Alice A
2017-03-01
Latitudinal gradients in biotic interactions have been suggested as causes of global patterns of biodiversity and phenotypic variation. Plant biologists have long speculated that outcrossing mating systems are more common at low than high latitudes owing to a greater predictability of plant-pollinator interactions in the tropics; however, these ideas have not previously been tested. Here, we present the first global biogeographic analysis of plant mating systems based on 624 published studies from 492 taxa. We found a weak decline in outcrossing rate towards higher latitudes and among some biomes, but no biogeographic patterns in the frequency of self-incompatibility. Incorporating life history and growth form into biogeographic analyses reduced or eliminated the importance of latitude and biome in predicting outcrossing or self-incompatibility. Our results suggest that biogeographic patterns in mating system are more likely a reflection of the frequency of life forms across latitudes rather than the strength of plant-pollinator interactions. © 2017 John Wiley & Sons Ltd/CNRS.
Operator-coached machine vision for space telerobotics
NASA Technical Reports Server (NTRS)
Bon, Bruce; Wilcox, Brian; Litwin, Todd; Gennery, Donald B.
1991-01-01
A prototype system for interactive object modeling has been developed and tested. The goal of this effort has been to create a system which would demonstrate the feasibility of high interactive operator-coached machine vision in a realistic task environment, and to provide a testbed for experimentation with various modes of operator interaction. The purpose for such a system is to use human perception where machine vision is difficult, i.e., to segment the scene into objects and to designate their features, and to use machine vision to overcome limitations of human perception, i.e., for accurate measurement of object geometry. The system captures and displays video images from a number of cameras, allows the operator to designate a polyhedral object one edge at a time by moving a 3-D cursor within these images, performs a least-squares fit of the designated edges to edge data detected with a modified Sobel operator, and combines the edges thus detected to form a wire-frame object model that matches the Sobel data.
Qubit Coupled Mechanical Resonator in an Electromechanical System
NASA Astrophysics Data System (ADS)
Hao, Yu
This thesis describes the development of a hybrid quantum electromechanical system. In this system the mechanical resonator is capacitively coupled to a superconducting transmon which is embedded in a superconducting coplanar waveguide (CPW) cavity. The difficulty of achieving high quality of superconducting qubit in a high-quality voltage-biased cavity is overcome by integrating a superconducting reflective T-filter to the cavity. Further spectroscopic and pulsed measurements of the hybrid system demonstrate interactions between the ultra-high frequency mechanical resonator and transmon qubit. The noise of mechanical resonator close to ground state is measured by looking at the spectroscopy of the transmon. At last, fabrication and tests of membrane resonators are discussed.
Sharma, P; Postel, S; Sundberg, E J; Kranz, D M
2013-12-01
Staphylococcal food poisoning is a gastrointestinal disorder caused by the consumption of food containing Staphylococcal enterotoxins. Staphylococcal enterotoxin A (SEA) is the most common enterotoxin recovered from food poisoning outbreaks in the USA. In addition to its enteric activity, SEA also acts as a potent superantigen through stimulation of T cells, although less is known about its interactions than the superantigens SEB, SEC and toxic shock syndrome toxin-1. To understand more about SEA:receptor interactions, and to develop toxin-detection systems for use in food testing, we engineered various SEA-binding receptor mutants. The extracellular domain of the receptor, a variable region of the beta chain (Vβ22) of the T-cell receptor, was engineered for stability as a soluble protein and for high affinity, using yeast-display technology. The highest affinity mutant was shown to bind SEA with a Kd value of 4 nM. This was a 25 000-fold improvement in affinity compared with the wild-type receptor, which bound to SEA with low affinity (Kd value of 100 µM), similar to other superantigen:Vβ interactions. The SEA:Vβ interface was centered around residues within the complementarity determining region 2 loop. The engineered receptor was specific for SEA, in that it did not bind to two other closely related enterotoxins SEE or SED, providing information on the SEA residues possibly involved in the interaction. The specificity and affinity of these high-affinity Vβ proteins also provide useful agents for the design of more sensitive and specific systems for SEA detection.
Sharma, P.; Postel, S.; Sundberg, E.J.; Kranz, D.M.
2013-01-01
Staphylococcal food poisoning is a gastrointestinal disorder caused by the consumption of food containing Staphylococcal enterotoxins. Staphylococcal enterotoxin A (SEA) is the most common enterotoxin recovered from food poisoning outbreaks in the USA. In addition to its enteric activity, SEA also acts as a potent superantigen through stimulation of T cells, although less is known about its interactions than the superantigens SEB, SEC and toxic shock syndrome toxin-1. To understand more about SEA:receptor interactions, and to develop toxin-detection systems for use in food testing, we engineered various SEA-binding receptor mutants. The extracellular domain of the receptor, a variable region of the beta chain (Vβ22) of the T-cell receptor, was engineered for stability as a soluble protein and for high affinity, using yeast-display technology. The highest affinity mutant was shown to bind SEA with a Kd value of 4 nM. This was a 25 000-fold improvement in affinity compared with the wild-type receptor, which bound to SEA with low affinity (Kd value of 100 µM), similar to other superantigen:Vβ interactions. The SEA:Vβ interface was centered around residues within the complementarity determining region 2 loop. The engineered receptor was specific for SEA, in that it did not bind to two other closely related enterotoxins SEE or SED, providing information on the SEA residues possibly involved in the interaction. The specificity and affinity of these high-affinity Vβ proteins also provide useful agents for the design of more sensitive and specific systems for SEA detection. PMID:24167300
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad Allen
EDENx is a multivariate data visualization tool that allows interactive user driven analysis of large-scale data sets with high dimensionality. EDENx builds on our earlier system, called EDEN to enable analysis of more dimensions and larger scale data sets. EDENx provides an initial overview of summary statistics for each variable in the data set under investigation. EDENx allows the user to interact with graphical summary plots of the data to investigate subsets and their statistical associations. These plots include histograms, binned scatterplots, binned parallel coordinate plots, timeline plots, and graphical correlation indicators. From the EDENx interface, a user can selectmore » a subsample of interest and launch a more detailed data visualization via the EDEN system. EDENx is best suited for high-level, aggregate analysis tasks while EDEN is more appropriate for detail data investigations.« less
Zehender, Hartmut; Mayr, Lorenz M
2007-10-01
In recent years, mass spectrometry has gained widespread use as an assay and screening technology in drug discovery because it enables sensitive, label-free detection of low-molecular weight modulators of biomolecules as well as sensitive and accurate detection of high-molecular weight modifications of biomolecules. Electrospray and matrix-assisted laser desorption ionization are the most widely used ionization techniques to identify chemical compounds interfering with enzymatic function, receptor-ligand binding or molecules modulating a protein-protein interaction of interest. Mass spectrometry based techniques are no longer restricted to screening in biochemical assay systems but have now become also applicable to imaging of biomolecules and chemical compounds in cell-based assay systems and even in highly complex tissue sections.
Actin - Lysozyme Interactions in Model Cystic Fibrosis Sputum
NASA Astrophysics Data System (ADS)
Sanders, Lori; Slimmer, Scott; Angelini, Thomas; Wong, Gerard C. L.
2003-03-01
Cystic fibrosis sputum is a complex fluid consisting of mucin (a glycoprotein), lysozyme (a cationic polypeptide), water, salt, as well as a high concentration of a number of anionic biological polyelectrolytes such as DNA and F-actin. The interactions governing these components are poorly understood, but may have important clinical consequences. For example, the formation of these biological polyelectrolytes into ordered gel phases may contribute significantly to the observed high viscosity of CF sputum. In this work, a number of model systems containing actin, lysozyme, and KCl were created to simulate CF sputum in vitro. These model systems were studied using small angle x-ray scattering and confocal fluorescence microscopy. Preliminary results will be presented. This work was supported by NSF DMR-0071761, the Beckman Young Investigator Program, and the Cystic Fibrosis Foundation.
Li, Hua; Li, Fei; Zhang, Biaobiao; Zhou, Xu; Yu, Fengshou; Sun, Licheng
2015-04-08
A highly active supramolecular system for visible light-driven water oxidation was developed with cyclodextrin-modified ruthenium complex as the photosensitizer, phenyl-modified ruthenium complexes as the catalysts, and sodium persulfate as the sacrificial electron acceptor. The catalysts were found to form 1:1 host-guest adducts with the photosensitizer. Stopped-flow measurement revealed the host-guest interaction is essential to facilitate the electron transfer from catalyst to sensitizer. As a result, a remarkable quantum efficiency of 84% was determined under visible light irradiation in neutral aqueous phosphate buffer. This value is nearly 1 order of magnitude higher than that of noninteraction system, indicating that the noncovalent incorporation of sensitizer and catalyst is an appealing approach for efficient conversion of solar energy into fuels.
Formation of Double Neutron Star Systems
NASA Astrophysics Data System (ADS)
Tauris, T. M.; Kramer, M.; Freire, P. C. C.; Wex, N.; Janka, H.-T.; Langer, N.; Podsiadlowski, Ph.; Bozzo, E.; Chaty, S.; Kruckow, M. U.; van den Heuvel, E. P. J.; Antoniadis, J.; Breton, R. P.; Champion, D. J.
2017-09-01
Double neutron star (DNS) systems represent extreme physical objects and the endpoint of an exotic journey of stellar evolution and binary interactions. Large numbers of DNS systems and their mergers are anticipated to be discovered using the Square Kilometre Array searching for radio pulsars, and the high-frequency gravitational wave detectors (LIGO/VIRGO), respectively. Here we discuss all key properties of DNS systems, as well as selection effects, and combine the latest observational data with new theoretical progress on various physical processes with the aim of advancing our knowledge on their formation. We examine key interactions of their progenitor systems and evaluate their accretion history during the high-mass X-ray binary stage, the common envelope phase, and the subsequent Case BB mass transfer, and argue that the first-formed NSs have accreted at most ˜ 0.02 {M}⊙ . We investigate DNS masses, spins, and velocities, and in particular correlations between spin period, orbital period, and eccentricity. Numerous Monte Carlo simulations of the second supernova (SN) events are performed to extrapolate pre-SN stellar properties and probe the explosions. All known close-orbit DNS systems are consistent with ultra-stripped exploding stars. Although their resulting NS kicks are often small, we demonstrate a large spread in kick magnitudes that may, in general, depend on the past interaction history of the exploding star and thus correlate with the NS mass. We analyze and discuss NS kick directions based on our SN simulations. Finally, we discuss the terminal evolution of close-orbit DNS systems until they merge and possibly produce a short γ-ray burst.
Lipp, R
1998-12-01
The purpose of this study was to stabilize transdermal drug-delivery systems (TDDS) highly loaded with sex steroids against recrystallization of drugs during storage. To facilitate the selection of potential crystallization inhibitors a drug-excipient interaction test was also established. Analysis of the thermal behaviour of 1:1 steroid-excipient mixtures by differential scanning calorimetry (DSC) revealed that oestradiol and gestodene interact strongly with silicone dioxide and povidones, e.g. povidone K12. The addition of povidone K12 to polyacrylate-based matrix TDDS containing either 3% oestradiol or 2% gestodene resulted in stable systems which did not recrystallize during storage at 25 degrees C for more than 5 years. Significant recrystallization was, on the other hand, observed in non-stabilized reference patches even after 1 to 2 months storage. The DSC screening model proved very effective for selection of inhibitors of the crystallization of sex steroids in matrix TDDS. The crystallization inhibitor approach is a highly versatile stabilization tool for matrix patches containing high concentrations of sex steroids.
A Multimodal Emotion Detection System during Human-Robot Interaction
Alonso-Martín, Fernando; Malfaz, María; Sequeira, João; Gorostiza, Javier F.; Salichs, Miguel A.
2013-01-01
In this paper, a multimodal user-emotion detection system for social robots is presented. This system is intended to be used during human–robot interaction, and it is integrated as part of the overall interaction system of the robot: the Robotics Dialog System (RDS). Two modes are used to detect emotions: the voice and face expression analysis. In order to analyze the voice of the user, a new component has been developed: Gender and Emotion Voice Analysis (GEVA), which is written using the Chuck language. For emotion detection in facial expressions, the system, Gender and Emotion Facial Analysis (GEFA), has been also developed. This last system integrates two third-party solutions: Sophisticated High-speed Object Recognition Engine (SHORE) and Computer Expression Recognition Toolbox (CERT). Once these new components (GEVA and GEFA) give their results, a decision rule is applied in order to combine the information given by both of them. The result of this rule, the detected emotion, is integrated into the dialog system through communicative acts. Hence, each communicative act gives, among other things, the detected emotion of the user to the RDS so it can adapt its strategy in order to get a greater satisfaction degree during the human–robot dialog. Each of the new components, GEVA and GEFA, can also be used individually. Moreover, they are integrated with the robotic control platform ROS (Robot Operating System). Several experiments with real users were performed to determine the accuracy of each component and to set the final decision rule. The results obtained from applying this decision rule in these experiments show a high success rate in automatic user emotion recognition, improving the results given by the two information channels (audio and visual) separately. PMID:24240598
Jobst, Johannes; van der Torren, Alexander J H; Krasovskii, Eugene E; Balgley, Jesse; Dean, Cory R; Tromp, Rudolf M; van der Molen, Sense Jan
2016-11-29
High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.
The effect of band Jahn-Teller distortion on the magnetoresistivity of manganites: a model study.
Rout, G C; Panda, Saswati; Behera, S N
2011-10-05
We present a model study of magnetoresistance through the interplay of magnetisation, structural distortion and external magnetic field for the manganite systems. The manganite system is described by the Hamiltonian which consists of the s-d type double exchange interaction, Heisenberg spin-spin interaction among the core electrons, and the static and dynamic band Jahn-Teller (JT) interaction in the e(g) band. The relaxation time of the e(g) electron is found from the imaginary part of the Green's function using the total Hamiltonian consisting of the interactions due to the electron and phonon. The calculated resistivity exhibits a peak in the pure JT distorted insulating phase separating the low temperature metallic ferromagnetic phase and the high temperature paramagnetic phase. The resistivity is suppressed with the increase of the external magnetic field. The e(g) electron band splitting and its effect on magnetoresistivity is reported here. © 2011 IOP Publishing Ltd
A rice kinase-protein interaction map.
Ding, Xiaodong; Richter, Todd; Chen, Mei; Fujii, Hiroaki; Seo, Young Su; Xie, Mingtang; Zheng, Xianwu; Kanrar, Siddhartha; Stevenson, Rebecca A; Dardick, Christopher; Li, Ying; Jiang, Hao; Zhang, Yan; Yu, Fahong; Bartley, Laura E; Chern, Mawsheng; Bart, Rebecca; Chen, Xiuhua; Zhu, Lihuang; Farmerie, William G; Gribskov, Michael; Zhu, Jian-Kang; Fromm, Michael E; Ronald, Pamela C; Song, Wen-Yuan
2009-03-01
Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed.
Long-ranged contributions to solvation free energies from theory and short-ranged models
Remsing, Richard C.; Liu, Shule; Weeks, John D.
2016-01-01
Long-standing problems associated with long-ranged electrostatic interactions have plagued theory and simulation alike. Traditional lattice sum (Ewald-like) treatments of Coulomb interactions add significant overhead to computer simulations and can produce artifacts from spurious interactions between simulation cell images. These subtle issues become particularly apparent when estimating thermodynamic quantities, such as free energies of solvation in charged and polar systems, to which long-ranged Coulomb interactions typically make a large contribution. In this paper, we develop a framework for determining very accurate solvation free energies of systems with long-ranged interactions from models that interact with purely short-ranged potentials. Our approach is generally applicable and can be combined with existing computational and theoretical techniques for estimating solvation thermodynamics. We demonstrate the utility of our approach by examining the hydration thermodynamics of hydrophobic and ionic solutes and the solvation of a large, highly charged colloid that exhibits overcharging, a complex nonlinear electrostatic phenomenon whereby counterions from the solvent effectively overscreen and locally invert the integrated charge of the solvated object. PMID:26929375
NASA Astrophysics Data System (ADS)
Tinne, N.; Ripken, T.; Lubatschowski, H.; Heisterkamp, A.
2011-07-01
A today well-known laser based treatment in ophthalmology is the LASIK procedure which nowadays includes cutting of the corneal tissue with ultra-short laser pulses. Instead of disposing a microkeratome for cutting a corneal flap, a focused ultra-short laser pulse is scanned below the surface of biological tissue causing the effect of an optical breakdown and hence obtaining a dissection. Inside the tissue, the energy of the laser pulses is absorbed by non-linear processes; as a result a cavitation bubble expands and ruptures the tissue. Hence, positioning of several optical breakdowns side by side generates an incision. Due to a reduction of the amount of laser energy, with a moderate duration of treatment at the same time, the current development of ultra-short pulse laser systems points to higher repetition rates in the range of even Megahertz instead of tens or hundreds of Kilohertz. In turn, this results in a pulse overlap and therefor a probable occurrence of interaction between different optical breakdowns and respectively cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. Thus, the aim of this study is to analyse the dynamic and interaction of two cavitation bubbles by using high speed photography. The applied laser pulse energy, the energy ratio and the spot distance between different cavitation bubbles were varied. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape or jet formation are observed. The effects will be discussed regarding the medical ophthalmic application of fs-lasers. Based on these results a further research seems to be inevitable to comprehend and optimize the cutting effect of ultra-short pulse laser systems with high (> 500 kHz) repetition rates.
Effect of three-body interactions on the zero-temperature equation of state of HCP solid 4He
NASA Astrophysics Data System (ADS)
Barnes, Ashleigh L.; Hinde, Robert J.
2017-03-01
Previous studies have pointed to the importance of three-body interactions in high density 4He solids. However the computational cost often makes it unfeasible to incorporate these interactions into the simulation of large systems. We report the implementation and evaluation of a computationally efficient perturbative treatment of three-body interactions in hexagonal close packed solid 4He utilizing the recently developed nonadditive three-body potential of Cencek et al. This study represents the first application of the Cencek three-body potential to condensed phase 4He systems. Ground state energies from quantum Monte Carlo simulations, with either fully incorporated or perturbatively treated three-body interactions, are calculated in systems with molar volumes ranging from 21.3 cm3/mol down to 2.5 cm3/mol. These energies are used to derive the zero-temperature equation of state for comparison against existing experimental and theoretical data. The equations of state derived from both perturbative and fully incorporated three-body interactions are found to be in very good agreement with one another, and reproduce the experimental pressure-volume data with significantly better accuracy than is obtained when only two-body interactions are considered. At molar volumes below approximately 4.0 cm3/mol, neither two-body nor three-body equations of state are able to accurately reproduce the experimental pressure-volume data, suggesting that below this molar volume four-body and higher many-body interactions are becoming important.
Neutron yields from 155 MeV/nucleon carbon and helium stopping in aluminum
NASA Technical Reports Server (NTRS)
Heilbronn, L.; Cary, R. S.; Cronqvist, M.; Deak, F.; Frankel, K.; Galonsky, A.; Holabird, K.; Horvath, A.; Kiss, A.; Kruse, J.;
1999-01-01
Neutron fluences have been measured from 155 MeV/nucleon 4He and 12C ions stopping in an Al target at laboratory angles between 10 and 160 deg. The resultant spectra were integrated over angle and energy above 10 MeV to produce total neutron yields. Comparison of the two systems shows that approximately two times as many neutrons are produced from 155 MeV/nucleon 4He stopping in Al and 155 MeV/nucleon 12C stopping in Al. Using an energy-dependent geometric cross-section formula to calculate the expected number of primary nuclear interactions shows that the 12C + Al system has, within uncertainties, the same number of neutrons per interaction (0.99 +/- 0.03) as does the 4He + Al system (1.02 +/- 0.04), despite the fact that 12C has three times as many neutrons as does 4He. Energy and angular distributions for both systems are also reported. No major differences can be seen between the two systems in those distributions, except for the overall magnitude. Where possible, the 4He + Al spectra are compared with previously measured spectra from 160 and 177.5 MeV/nucleon 4He interactions in a variety of stopping targets. The reported spectra are consistent with previously measured spectra. The data were acquired to provide data applicable to problems dealing with the determination of the radiation risk to humans engaged in long-term missions in space; however, the data are also of interest for issues related to the determination of the radiation environment in high-altitude flight, with shielding at high-energy heavy-ion accelerators and with doses delivered outside tumor sites treated with high-energy hadronic beams.
CSTI high capacity power. [Civil Space Technology Initiative
NASA Technical Reports Server (NTRS)
Winter, Jerry M.
1989-01-01
In FY-88, the Advanced Technology Program was incorporated into NASA's Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Converrsion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems.
Wang, Zhiping; Chen, Jinyu; Yu, Benli
2017-02-20
We investigate the two-dimensional (2D) and three-dimensional (3D) atom localization behaviors via spontaneously generated coherence in a microwave-driven four-level atomic system. Owing to the space-dependent atom-field interaction, it is found that the detecting probability and precision of 2D and 3D atom localization behaviors can be significantly improved via adjusting the system parameters, the phase, amplitude, and initial population distribution. Interestingly, the atom can be localized in volumes that are substantially smaller than a cubic optical wavelength. Our scheme opens a promising way to achieve high-precision and high-efficiency atom localization, which provides some potential applications in high-dimensional atom nanolithography.
Jayme, Cristiano Ceron; Calori, Italo Rodrigo; Cunha, Elise Marques Freire; Tedesco, Antonio Claudio
2018-08-05
The aim of this study was to evaluate the interaction of aluminum phthalocyanine chloride (AlClPc) with double-stranded DNA. Absorption and fluorescence spectra, resonance light scattering, and circular dichroism were evaluated in water and water/ethanol mixtures with different concentrations of DNA or AlClPc. AlClPc showed a high ability to bind to DNA in both water and 4/6 water/ethanol mixture (v/v), with a majority of monomeric and aggregated initial forms of AlClPc, respectively. In this interaction, AlClPc bound preferentially to the grooves of DNA. The monomeric/aggregate state of AlClPc in DNA was dependent on the AlClPc/DNA ratio. At low concentrations of AlClPc, the interaction of AlClPc with few DNA sites caused a curvature in the DNA structure that provided a favorable environment for the intercalation of AlClPc aggregates. Increase in AlClPc concentration induced interactions with a high number of binding sites on DNA, which prevented bending and therefore aggregation of AlClPc molecules throughout the double-stranded DNA. These results are relevant to the understanding of the behavior and interaction of AlClPc with double-stranded DNA in the design of novel drug delivery systems for clinical application in photodynamic therapy as a new approach to treat skin or oral cancer, scars, or wound healing. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pazzona, Federico G.; Pireddu, Giovanni; Gabrieli, Andrea; Pintus, Alberto M.; Demontis, Pierfranco
2018-05-01
We investigate the coarse-graining of host-guest systems under the perspective of the local distribution of pore occupancies, along with the physical meaning and actual computability of the coarse-interaction terms. We show that the widely accepted approach, in which the contributions to the free energy given by the molecules located in two neighboring pores are estimated through Monte Carlo simulations where the two pores are kept separated from the rest of the system, leads to inaccurate results at high sorbate densities. In the coarse-graining strategy that we propose, which is based on the Bethe-Peierls approximation, density-independent interaction terms are instead computed according to local effective potentials that take into account the correlations between the pore pair and its surroundings by means of mean-field correction terms without the need for simulating the pore pair separately. Use of the interaction parameters obtained this way allows the coarse-grained system to reproduce more closely the equilibrium properties of the original one. Results are shown for lattice-gases where the local free energy can be computed exactly and for a system of Lennard-Jones particles under the effect of a static confining field.
Control dynamics of interaction quenched ultracold bosons in periodically driven lattices
NASA Astrophysics Data System (ADS)
Mistakidis, Simeon; Schmelcher, Peter; Group of Fundamental Processes in Quantum Physics Team
2016-05-01
The out-of-equilibrium dynamics of ultracold bosons following an interaction quench upon a periodically driven optical lattice is investigated. It is shown that an interaction quench triggers the inter-well tunneling dynamics, while for the intra-well dynamics breathing and cradle-like processes can be generated. In particular, the occurrence of a resonance between the cradle and tunneling modes is revealed. On the other hand, the employed periodic driving enforces the bosons in the mirror wells to oscillate out-of-phase and to exhibit a dipole mode, while in the central well the cloud experiences a breathing mode. The dynamical behaviour of the system is investigated with respect to the driving frequency revealing a resonant behaviour of the intra-well dynamics. To drive the system in a highly non-equilibrium state an interaction quench upon the driving is performed giving rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result of the quench the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Deutsche Forschungsgemeinschaft, SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
Validation of the Fully-Coupled Air-Sea-Wave COAMPS System
NASA Astrophysics Data System (ADS)
Smith, T.; Campbell, T. J.; Chen, S.; Gabersek, S.; Tsu, J.; Allard, R. A.
2017-12-01
A fully-coupled, air-sea-wave numerical model, COAMPS®, has been developed by the Naval Research Laboratory to further enhance understanding of oceanic, atmospheric, and wave interactions. The fully-coupled air-sea-wave system consists of an atmospheric component with full physics parameterizations, an ocean model, NCOM (Navy Coastal Ocean Model), and two wave components, SWAN (Simulating Waves Nearshore) and WaveWatch III. Air-sea interactions between the atmosphere and ocean components are accomplished through bulk flux formulations of wind stress and sensible and latent heat fluxes. Wave interactions with the ocean include the Stokes' drift, surface radiation stresses, and enhancement of the bottom drag coefficient in shallow water due to the wave orbital velocities at the bottom. In addition, NCOM surface currents are provided to SWAN and WaveWatch III to simulate wave-current interaction. The fully-coupled COAMPS system was executed for several regions at both regional and coastal scales for the entire year of 2015, including the U.S. East Coast, Western Pacific, and Hawaii. Validation of COAMPS® includes observational data comparisons and evaluating operational performance on the High Performance Computing (HPC) system for each of these regions.
Ziegler, Jacob P; Golebie, Elizabeth J; Jones, Stuart E; Weidel, Brian C; Solomon, Christopher T
2017-01-01
Many ecosystems continue to experience rapid transformations due to processes like land use change and resource extraction. A systems approach to maintaining natural resources focuses on how interactions and feedbacks among components of complex social-ecological systems generate social and ecological outcomes. In recreational fisheries, residential shoreline development and fish stocking are two widespread human behaviors that influence fisheries, yet emergent social-ecological outcomes from these potentially interacting behaviors remain under explored. We applied a social-ecological systems framework using a simulation model and empirical data to determine whether lakeshore development is likely to promote stocking through its adverse effects on coarse woody habitat and thereby also on survival of juvenile and adult fish. We demonstrate that high lakeshore development is likely to generate dependency of the ecosystem on the social system, in the form of stocking. Further, lakeshore development can interact with social-ecological processes to create deficits for state-level governments, which threatens the ability to fund further ecosystem subsidies. Our results highlight the value of a social-ecological framework for maintaining ecosystem services like recreational fisheries. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Hargart, F.; Roy-Choudhury, K.; John, T.; Portalupi, S. L.; Schneider, C.; Höfling, S.; Kamp, M.; Hughes, S.; Michler, P.
2016-12-01
In this work we present an extensive experimental and theoretical investigation of different regimes of strong field light-matter interaction for cavity-driven quantum dot (QD) cavity systems. The electric field enhancement inside a high-Q micropillar cavity facilitates exceptionally strong interaction with few cavity photons, enabling the simultaneous investigation for a wide range of QD-laser detuning. In case of a resonant drive, the formation of dressed states and a Mollow triplet sideband splitting of up to 45 μeV is measured for a mean cavity photon number < {n}c> ≤slant 1. In the asymptotic limit of the linear AC Stark effect we systematically investigate the power and detuning dependence of more than 400 QDs. Some QD-cavity systems exhibit an unexpected anomalous Stark shift, which can be explained by an extended dressed 4-level QD model. We provide a detailed analysis of the QD-cavity systems properties enabling this novel effect. The experimental results are successfully reproduced using a polaron master equation approach for the QD-cavity system, which includes the driving laser field, exciton-cavity and exciton-phonon interactions.
DOT National Transportation Integrated Search
2001-01-01
During the summer and fall of 2000, a group of high level public safety and transportation officials was brought together by the US Department of Transportations (USDOT) Intelligent Transportation Systems (ITS) Program to consider the interaction bet...
Repetitive Domain-Referenced Testing Using Computers: the TITA System.
ERIC Educational Resources Information Center
Olympia, P. L., Jr.
The TITA (Totally Interactive Testing and Analysis) System algorithm for the repetitive construction of domain-referenced tests utilizes a compact data bank, is highly portable, is useful in any discipline, requires modest computer hardware, and does not present a security problem. Clusters of related keyphrases, statement phrases, and distractors…
Development of Communication Technology in Japan: The Hi-OVIS Project.
ERIC Educational Resources Information Center
Murata, Toshihiko
1981-01-01
Describes the two-way Highly Interactive Optical Visual Information System (Hi-OVIS), involving the transmission and reception of educational, advertising, and public service programing, which has been in experimental use in Japan since 1978. Utilizing fiber optics, the system equips each house with a keyboard, television, television camera, and…
NASA Technical Reports Server (NTRS)
Merwarth, P., D.
1983-01-01
The Common Software Module Repository (CSMR) is computerized library system with high product and service visibility to potential users. Online capabilities of system allow both librarian and user to interact with library. Librarian is responsible for maintaining information in CSMR library. User searches library to locate software modules that meet his or her current needs.
An interactive visualization tool for mobile objects
NASA Astrophysics Data System (ADS)
Kobayashi, Tetsuo
Recent advancements in mobile devices---such as Global Positioning System (GPS), cellular phones, car navigation system, and radio-frequency identification (RFID)---have greatly influenced the nature and volume of data about individual-based movement in space and time. Due to the prevalence of mobile devices, vast amounts of mobile objects data are being produced and stored in databases, overwhelming the capacity of traditional spatial analytical methods. There is a growing need for discovering unexpected patterns, trends, and relationships that are hidden in the massive mobile objects data. Geographic visualization (GVis) and knowledge discovery in databases (KDD) are two major research fields that are associated with knowledge discovery and construction. Their major research challenges are the integration of GVis and KDD, enhancing the ability to handle large volume mobile objects data, and high interactivity between the computer and users of GVis and KDD tools. This dissertation proposes a visualization toolkit to enable highly interactive visual data exploration for mobile objects datasets. Vector algebraic representation and online analytical processing (OLAP) are utilized for managing and querying the mobile object data to accomplish high interactivity of the visualization tool. In addition, reconstructing trajectories at user-defined levels of temporal granularity with time aggregation methods allows exploration of the individual objects at different levels of movement generality. At a given level of generality, individual paths can be combined into synthetic summary paths based on three similarity measures, namely, locational similarity, directional similarity, and geometric similarity functions. A visualization toolkit based on the space-time cube concept exploits these functionalities to create a user-interactive environment for exploring mobile objects data. Furthermore, the characteristics of visualized trajectories are exported to be utilized for data mining, which leads to the integration of GVis and KDD. Case studies using three movement datasets (personal travel data survey in Lexington, Kentucky, wild chicken movement data in Thailand, and self-tracking data in Utah) demonstrate the potential of the system to extract meaningful patterns from the otherwise difficult to comprehend collections of space-time trajectories.
Andrews, Casey T.
2013-01-01
Although it is now commonly accepted that the highly crowded conditions encountered inside biological cells have the potential to significantly alter the thermodynamic properties of biomolecules, it is not known to what extent the thermodynamics of fundamental types of interactions such as salt bridges and hydrophobic interactions are strengthened or weakened by high biomolecular concentrations. As one way of addressing this question we have performed a series of all-atom explicit solvent molecular dynamics (MD) simulations to investigate the effect of increasing solute concentration on the behavior of four types of zwitterionic amino acids in aqueous solution. We have simulated systems containing glycine, valine, phenylalanine or asparagine at concentrations of 50, 100, 200 and 300 mg/ml. Each molecular system has been simulated for 1 μs in order to obtain statistically converged estimates of thermodynamic parameters, and each has been conducted with 8 different force fields and water models; the combined simulation time is 128 μs. The density, viscosity, and dielectric increments of the four amino acids calculated from the simulations have been compared to corresponding experimental measurements. While all of the force fields perform well at reproducing the density increments, discrepancies for the viscosity and dielectric increments raise questions both about the accuracy of the simulation force fields and, in certain cases, the experimental data. We also observe large differences between the various force fields' descriptions of the interaction thermodynamics of salt bridges and, surprisingly, these differences also lead to qualitatively different predictions of their dependences on solute concentration. For the aliphatic interactions of valine sidechains, fewer differences are observed between the force fields, but significant differences are again observed for aromatic interactions of phenylalanine sidechains. Taken together, the results highlight the potential power of using explicit-solvent simulation methods to understand behavior in concentrated systems but also hint at potential difficulties in using these methods to obtain consistent views of behavior in intracellular environments. PMID:24409104
The Interaction between Semantic Representation and Episodic Memory.
Fang, Jing; Rüther, Naima; Bellebaum, Christian; Wiskott, Laurenz; Cheng, Sen
2018-02-01
The experimental evidence on the interrelation between episodic memory and semantic memory is inconclusive. Are they independent systems, different aspects of a single system, or separate but strongly interacting systems? Here, we propose a computational role for the interaction between the semantic and episodic systems that might help resolve this debate. We hypothesize that episodic memories are represented as sequences of activation patterns. These patterns are the output of a semantic representational network that compresses the high-dimensional sensory input. We show quantitatively that the accuracy of episodic memory crucially depends on the quality of the semantic representation. We compare two types of semantic representations: appropriate representations, which means that the representation is used to store input sequences that are of the same type as those that it was trained on, and inappropriate representations, which means that stored inputs differ from the training data. Retrieval accuracy is higher for appropriate representations because the encoded sequences are less divergent than those encoded with inappropriate representations. Consistent with our model prediction, we found that human subjects remember some aspects of episodes significantly more accurately if they had previously been familiarized with the objects occurring in the episode, as compared to episodes involving unfamiliar objects. We thus conclude that the interaction with the semantic system plays an important role for episodic memory.
Teaching Human Poses Interactively to a Social Robot
Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A.
2013-01-01
The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics. PMID:24048336
Teaching human poses interactively to a social robot.
Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A
2013-09-17
The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics.
NASA Astrophysics Data System (ADS)
Friesdorf, Florian; Pangercic, Dejan; Bubb, Heiner; Beetz, Michael
In mac, an ergonomic dialog-system and algorithms will be developed that enable human experts and companions to be integrated into knowledge gathering and decision making processes of highly complex cognitive systems (e.g. Assistive Household as manifested further in the paper). In this event we propose to join algorithms and methodologies coming from Ergonomics and Artificial Intelligence that: a) make cognitive systems more congenial for non-expert humans, b) facilitate their comprehension by utilizing a high-level expandable control code for human experts and c) augment representation of such cognitive system into “deep representation” obtained through an interaction with human companions.
Vision Systems with the Human in the Loop
NASA Astrophysics Data System (ADS)
Bauckhage, Christian; Hanheide, Marc; Wrede, Sebastian; Käster, Thomas; Pfeiffer, Michael; Sagerer, Gerhard
2005-12-01
The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed.