Sample records for highly luminescent polymer

  1. Highly sensitive gas-phase explosive detection by luminescent microporous polymer networks.

    PubMed

    Räupke, André; Palma-Cando, Alex; Shkura, Eugen; Teckhausen, Peter; Polywka, Andreas; Görrn, Patrick; Scherf, Ullrich; Riedl, Thomas

    2016-07-04

    We propose microporous networks (MPNs) of a light emitting spiro-carbazole based polymer (PSpCz) as luminescent sensor for nitro-aromatic compounds. The MPNs used in this study can be easily synthesized on arbitrarily sized/shaped substrates by simple and low-cost electrochemical deposition. The resulting MPN afford an extremely high specific surface area of 1300 m(2)/g, more than three orders of magnitude higher than that of the thin films of the respective monomer. We demonstrate, that the luminescence of PSpCz is selectively quenched by nitro-aromatic analytes, e.g. nitrobenzene, 2,4-DNT and TNT. In striking contrast to a control sample based on non-porous spiro-carbazole, which does not show any luminescence quenching upon exposure to TNT at levels of 3 ppm and below, the microporous PSpCz shows a clearly detectable response even at TNT concentrations as low as 5 ppb, clearly demonstrating the advantage of microporous films as luminescent sensors for traces of explosive analytes. This level states the vapor pressure of TNT at room temperature.

  2. Highly sensitive gas-phase explosive detection by luminescent microporous polymer networks

    PubMed Central

    Räupke, André; Palma-Cando, Alex; Shkura, Eugen; Teckhausen, Peter; Polywka, Andreas; Görrn, Patrick; Scherf, Ullrich; Riedl, Thomas

    2016-01-01

    We propose microporous networks (MPNs) of a light emitting spiro-carbazole based polymer (PSpCz) as luminescent sensor for nitro-aromatic compounds. The MPNs used in this study can be easily synthesized on arbitrarily sized/shaped substrates by simple and low-cost electrochemical deposition. The resulting MPN afford an extremely high specific surface area of 1300 m2/g, more than three orders of magnitude higher than that of the thin films of the respective monomer. We demonstrate, that the luminescence of PSpCz is selectively quenched by nitro-aromatic analytes, e.g. nitrobenzene, 2,4-DNT and TNT. In striking contrast to a control sample based on non-porous spiro-carbazole, which does not show any luminescence quenching upon exposure to TNT at levels of 3 ppm and below, the microporous PSpCz shows a clearly detectable response even at TNT concentrations as low as 5 ppb, clearly demonstrating the advantage of microporous films as luminescent sensors for traces of explosive analytes. This level states the vapor pressure of TNT at room temperature. PMID:27373905

  3. Helically assembled π-conjugated polymers with circularly polarized luminescence.

    PubMed

    Watanabe, Kazuyoshi; Akagi, Kazuo

    2014-08-01

    We review the recent progress in the field of helically assembled π -conjugated polymers, focusing on aromatic conjugated polymers with interchain helical π -stacking that exhibit circularly polarized luminescence (CPL). In Part 1, we discuss optically active polymers with white-colored CPL and the amplification of the circular polarization through liquid crystallinity. In Part 2, we focus on the stimuli-responsive CPL that results from changes in the conformation and aggregation state of π -conjugated molecules and polymers. In Part 3, we discuss the self-assembly of achiral cationic π -conjugated polymers into circularly polarized luminescent supramolecular nanostructures with the aid of other chiral molecules.

  4. Refractive Index Tuning of Hybrid Materials for Highly Transmissive Luminescent Lanthanide Particle-Polymer Composites.

    PubMed

    Kim, Paul; Li, Cheng; Riman, Richard E; Watkins, James

    2018-03-14

    High-refractive-index ZrO 2 nanoparticles were used to tailor the refractive index of a polymer matrix to match that of luminescent lanthanide-ion-doped (La 0.92 Yb 0.075 Er 0.005 F 3 ) light-emitting particles, thereby reducing scattering losses to yield highly transparent emissive composites. Photopolymerization of blends of an amine-modified poly(ether acrylate) oligomer and tailored quantities of ZrO 2 nanoparticles yielded optically transparent composites with tailored refractive indices between 1.49 and 1.69. By matching the refractive index of the matrix to that of La 0.92 Yb 0.075 Er 0.005 F 3 , composites with high transmittance (>85%) and low haze from the visible to infrared regions, bright 1530 nm optical emissions were achieved at solids loadings of La 0.92 Yb 0.075 Er 0.005 F 3 , ranging from 5 to 30 vol %. These optical results suggest that a hybrid matrix approach is a versatile strategy for the fabrication of functional luminescent optical composites of high transparency.

  5. Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity

    NASA Astrophysics Data System (ADS)

    Chelebaeva, Elena; Larionova, Joulia; Guari, Yannick; Ferreira, Rute A. S.; Carlos, Luis D.; Trifonov, Alexander A.; Kalaivani, Thangavel; Lascialfari, Alessandro; Guérin, Christian; Molvinger, Karine; Datas, Lucien; Maynadier, Marie; Gary-Bobo, Magali; Garcia, Marcel

    2011-03-01

    This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.333+Gdx3+/[Mo(CN)8]3- (Ln = Eu (x = 0.34), Tb (x = 0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0 --> 7F0-4 (Eu3+) or the 5D4 --> 7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.333+Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd-DTPA® or Omniscan® indicating that our samples may potentially be considered as a positive contrast agent for MRI. The in vitro studies performed on these nanoparticles show that they maybe internalized into human cancer and normal cells and well detected by fluorescence at the single cell level. They present high stability even at low pH and lack of cytotoxicity both in human cancer and normal cells.This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.333+Gdx3+/[Mo(CN)8]3- (Ln = Eu (x = 0.34), Tb (x = 0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0 --> 7F0-4 (Eu3+) or the 5D4 --> 7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.333+Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd

  6. Luminescent Porous Polymers Based on Aggregation-Induced Mechanism: Design, Synthesis and Functions.

    PubMed

    Dalapati, Sasanka; Gu, Cheng; Jiang, Donglin

    2016-12-01

    Enormous research efforts are focusing on the design and synthesis of advanced luminescent systems, owing to their diverse capability in scientific studies and technological developments. In particular, fluorescence systems based on aggregation-induced emission (AIE) have emerged to show great potential for sensing, bio-imaging, and optoelectronic applications. Among them, integrating AIE mechanisms to design porous polymers is unique because it enables the combination of porosity and luminescence activity in one molecular skeleton for functional design. In recent years rapid progress in exploring AIE-based porous polymers has developed a new class of luminescent materials that exhibit broad structural diversity, outstanding properties and functions and promising applications. By classifying the structural nature of the skeleton, herein the design principle, synthetic development and structural features of different porous luminescent materials are elucidated, including crystalline covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and amorphous porous organic polymers (POPs). The functional exploration of these luminescent porous polymers are highlighted by emphasizing electronic interplay within the confined nanospace, fundamental issues to be addressed are disclosed, and future directions from chemistry, physics and materials science perspectives are proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xue-Qin, E-mail: songxq@mail.lzjtu.cn; Lei, Yao-Kun; Wang, Xiao-Run

    2014-10-15

    The new semirigid exo-bidentate ligand incorporating furfurysalicylamide terminal groups, namely, 1,4-bis([(2′-furfurylaminoformyl)phenoxyl]methyl)-2,5-bismethylbenzene (L) was synthesized and used as building blocks for constructing lanthanide coordination polymers with luminescent properties. The series of lanthanide nitrate complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray diffraction analysis. The semirigid ligand L, as a bridging ligand, reacts with lanthanide nitrates forming three distinct structure types: chiral noninterpenetrated two-dimensional (2D) honeycomblike (6,3) (hcb, Schläfli symbol 6{sup 3}, vertex symbol 6 6 6) topological network as type I, 1D zigzag chain as type II and 1D trapezoid ladder-like chain as type III. The structural diversitiesmore » indicate that lanthanide contraction effect played significant roles in the structural self-assembled process. The luminescent properties of Eu{sup III}, Tb{sup III} and Dy{sup III} complexes are discussed in detail. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, the lanthanide ions in Eu{sup III}, Tb{sup III} and Dy{sup III} complexes can be efficiently sensitized by the ligand. - Graphical abstract: We present herein six lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display diverse structures but also possess strong luminescence properties. - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit diverse structures. • The luminescent properties of Tb{sup III}, Eu{sup III} and Dy{sup III} complexes are discussed in detail.« less

  8. A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal-Organic Framework Materials.

    PubMed

    Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T

    2017-05-15

    Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.

  9. Luminescent properties of Europium(III) nitrate with 1,10-phenantroline and cinnamic acid in light - Transforming polymer materials

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.; Zadorozhnaya, A. N.

    2018-04-01

    Influence of cinnamic acid on the luminescent properties of the europium(III) nitrate with 1,10-phenantroline in a polymer materials was studied. It was shown that combined use of these rare earth complexes leads to intense luminescence in the 400-700 nm region. Samples containing polymer europium nitrate with 1,10-phenantroline and cinnamic acid at a molar ratio of 1:2,0 had the maximum luminescence intensity and photostability.

  10. A luminescent zinc(ii) coordination polymer with unusual (3,4,4)-coordinated self-catenated 3D network for selective detection of nitroaromatics and ferric and chromate ions: a versatile luminescent sensor.

    PubMed

    Zhang, Ya-Qian; Blatov, Vladislav A; Zheng, Tian-Rui; Yang, Chang-Hao; Qian, Lin-Lu; Li, Ke; Li, Bao-Long; Wu, Bing

    2018-05-01

    A zinc(ii) coordination polymer {[Zn3(mtrb)3(btc)2]·3H2O}n (1) was synthesized and characterized (mtrb = 1,3-bis(1,2,4-triazole-4-ylmethyl)benzene, btc = 1,3,5-benzenetricarboxylate). The polymer 1 shows an unusual (3,4,4)-coordinated self-catenated 3D network with the point symbol of {63}2{62·82·102}{64·82}2. The polymer 1 is the first luminescent sensor for the detection of 2-amino-4-nitrophenol (ANP). The polymer 1 is also a good luminescence sensor for detection of TNP, 2,4-DNP, 4-NP, ANP and 2-NP in MeOH, particularly for TNP. The order of detection efficiency is TNP > 2,4-DNP > 4-NP > ANP > 2-NP. The polymer 1 also exhibits high sensitivity and selectivity as a luminescence sensor for the detection of Fe3+, Cr2O72- and CrO42- in aqueous solution. Our experiments showed that the presence of interfering ions had no significant effect on the sensing of Fe3+, Cr2O72- or CrO42- ions. The detection limits for TNP, ANP, Fe3+, Cr2O72- and CrO42- are 0.22 μM, 4.12 μM, 1.78 μM, 2.83 μM, and 4.52 μM, respectively. The luminescence sensor is stable and can be recycled for detection at least five times. The possible quenching mechanisms are discussed. The polymer 1 is also an effective photocatalyst for degradation of methylene blue (MB) under visible or UV light irradiation.

  11. Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors.

    PubMed

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-11-13

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  12. Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors

    PubMed Central

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-01-01

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics. PMID:24232455

  13. Structure and luminescence of nanocrystalline gallium nitride synthesized by a novel polymer pyrolysis route

    NASA Astrophysics Data System (ADS)

    Garcia, Rafael; Hirata, Gustavo A.; Thomas, Alan C.; Ponce, Fernando A.

    2006-10-01

    Thermal decomposition in a horizontal quartz tube reactor of a polymer [-(CH 6N 4O) 3Ga(NO 3) 3-] in a nitrogen atmosphere, yield directly nano-structured gallium nitride (GaN) powder. The polymer was obtained by the reaction between high purity gallium nitrate (Ga(NO 3) 3) dissolved in toluene and carbohydrazide as an azotic ligand. The powder synthesized by this method showed a yellow color and elemental analysis suggested that the color is due to some carbon and oxygen impurities in the as-synthesized powder. Electron microscopy showed that the as-synthesized powders consist of a mixture of various porous particles containing nanowires and nano-sized platelets. The size of the crystallites can be controlled by annealing processes under ammonia. Photoluminescence analysis at 10 K on as-synthesized powders showed a broad red luminescence around 668 nm under UV laser excitation (He-Cd laser, 325 nm). However after annealing process the red luminescence disappears and the typical band edge emission of GaN around 357 nm (3.47 eV) and the UV band were the dominant emissions in the PL spectra.

  14. Enhanced radiation detectors using luminescent materials

    DOEpatents

    Vardeny, Zeev V.; Jeglinski, Stefan A.; Lane, Paul A.

    2001-01-01

    A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.

  15. Luminescent detection of hydrazine and hydrazine derivatives

    DOEpatents

    Swager, Timothy M [Newton, MA; Thomas, III, Samuel W.

    2012-04-17

    The present invention generally relates to methods for modulating the optical properties of a luminescent polymer via interaction with a species (e.g., an analyte). In some cases, the present invention provides methods for determination of an analyte by monitoring a change in an optical signal of a luminescent polymer upon exposure to an analyte. Methods of the present invention may be useful for the vapor phase detection of analytes such as explosives and toxins. The present invention also provides methods for increasing the luminescence intensity of a polymer, such as a polymer that has been photobleached, by exposing the luminescent polymer to a species such as a reducing agent.

  16. Highly luminescent and triboluminescent coordination polymers assembled from lanthanide β-diketonates and aromatic bidentate O-donor ligands.

    PubMed

    Eliseeva, Svetlana V; Pleshkov, Dmitry N; Lyssenko, Konstantin A; Lepnev, Leonid S; Bünzli, Jean-Claude G; Kuzmina, Natalia P

    2010-10-18

    The reaction of hydrated lanthanide hexafluoroacetylacetonates, [Ln(hfa)(3)(H(2)O)(2)], with 1,4-disubstituted benzenes afforded a new series of one-dimensional coordination polymers [Ln(hfa)(3)(Q)](∞), where Ln = Eu, Gd, Tb, and Lu and Q = 1,4-diacetylbenzene (acbz), 1,4-diacetoxybenzene (acetbz), or 1,4-dimethyltherephtalate (dmtph). X-ray single crystal analyses reveal [Ln(hfa)(3)(acbz)](∞) (Ln = Eu, Gd, Tb) consisting of zigzag polymeric chains with Ln-Ln-Ln angles equal to 128°, while the arrays are more linear in [Eu(hfa)(3)(acetbz)](∞) and [Eu(hfa)(3)(dmtph)](∞), with Ln-Ln-Ln angles of 165° and 180°, respectively. In all structures, Ln(III) ions are 8-coordinate and lie in distorted square-antiprismatic environments. The coordination polymers are thermally stable up to 180-210 °C under a nitrogen atmosphere. Their volatility has been tested in vacuum sublimation experiments at 200-250 °C and 10(-2) Torr: the metal-organic frameworks with acetbz and dmtph can be quantitatively sublimed, while [Ln(hfa)(3)(acbz)](∞) undergoes thermal decomposition. The triplet state energies of the ancillary ligands, 21,600 (acetbz), 22,840 (acbz), and 24,500 (dmtph) cm(-1), lie in an ideal range for sensitizing the luminescence of Eu(III) and/or Tb(III). As a result, all of the [Ln(hfa)(3)(Q)](∞) polymers display bright red or green luminescence due to the characteristic (5)D(0) → (7)F(J) (J = 0-4) or (5)D(4) → (7)F(J) (J = 6-0) transitions, respectively. Absolute quantum yields reach 51(Eu) and 56(Tb) % for the frameworks built from dmtph. Thin films of [Eu(hfa)(3)(Q)](∞) with 100-170 nm thickness can be obtained by thermal evaporation (P < 3 × 10(-5) Torr, 200-250 °C). They are stable over a long period of time, and their photophysical parameters are similar to those of the bulk samples so that their use as active materials in luminescent devices can be envisaged. Mixtures of [Ln(hfa)(3)(dmpth)](∞) with Ln = Eu and Tb yield color

  17. Highly Luminescent Dual Mode Polymeric Nanofiber-Based Flexible Mat for White Security Paper and Encrypted Nanotaggant Applications.

    PubMed

    Gangwar, Amit Kumar; Gupta, Ashish; Kedawat, Garima; Kumar, Pawan; Singh, Bhanu Pratap; Singh, Nidhi; Srivastava, Avanish K; Dhakate, Sanjay R; Gupta, Bipin Kumar

    2018-05-23

    Increasing counterfeiting of important data, currency, stamp papers, branded products etc., has become a major security threat which could lead to serious damage to the global economy. Consequences of such damage are compelling for researchers to develop new high-end security features to address full-proof solutions. Herein, we report a dual mode flexible highly luminescent white security paper and nanotaggants composed of nanophosphors incorporated in polymer matrix to form a nanofiber-based mat for anti-counterfeiting applications. The dual mode nanofibers are fabricated by electrospinning technique by admixing the composite of NaYF 4 :Eu 3+ @NaYF 4 :Yb 3+ , Er 3+ nanophosphors in the polyvinyl alcohol solution. This flexible polymer mat derived from nanofibers appears white in daylight, while emitting strong red (NaYF 4 :Eu 3+ ) and green (NaYF 4 :Yb 3+ , Er 3+ ) colors at excitation wavelengths of 254 nm and 980 nm, respectively. These luminescent nanofibers can also be encrypted as a new class of nanotaggants to protect confidential documents. These obtained results suggest that highly luminescent dual mode polymeric nanofiber-based flexible white security paper and nanotaggants could offer next-generation high-end unique security features against counterfeiting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Influence of ZnO nanorod on the luminescent and electrical properties of fluorescent dye-doped polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Xu, Z.; Qian, L.; Tao, D. L.; Teng, F.; Xu, X. R.

    2006-11-01

    The luminescent properties of fluorescent dye-doped polymer dispersed with ZnO nanorods were investigated. Embedding ZnO nanorods in blend film results in a blue-shifted emission of fluorescent dye. It is accounted for in terms of the difference in permittivity between inorganic oxide nano-material and dye-doped polymer. Moreover, polymer light-emitting diodes with the addition of ZnO nanorods showed the lower threshold voltage and the higher charge current and electroluminescence efficiency.

  19. Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices

    PubMed Central

    Willander, Magnus; Nur, Omer; Sadaf, Jamil Rana; Qadir, Muhammad Israr; Zaman, Saima; Zainelabdin, Ahmed; Bano, Nargis; Hussain, Ijaz

    2010-01-01

    Zinc oxide (ZnO) is a strong luminescent material, as are several polymers. These two materials have distinct drawbacks and advantages, and they can be combined to form nanostructures with many important applications, e.g., large-area white lighting. This paper discusses the origin of visible emission centers in ZnO nanorods grown with different approaches. White light emitting diodes (LEDs) were fabricated by combining n-ZnO nanorods and hollow nanotubes with different p-type materials to form heterojunctions. The p-type component of the hybrids includes p-SiC, p-GaN, and polymers. We conclude by analyzing the electroluminescence of the different light emitting diodes we fabricated. The observed optical, electrical, and electro-optical characteristics of these LEDs are discussed with an emphasis on the deep level centers that cause the emission.

  20. Rethinking Sensitized Luminescence in Lanthanide Coordination Polymers and MOFs: Band Sensitization and Water Enhanced Eu Luminescence in [Ln(C15H9O5)3(H2O)3]n (Ln = Eu, Tb).

    PubMed

    Einkauf, Jeffrey D; Kelley, Tanya T; Chan, Benny C; de Lill, Daniel T

    2016-08-15

    A coordination polymer [Ln(C15H9O9)3(H2O)3]n (1-Ln = Eu(III), Tb(III)) assembled from benzophenonedicarboxylate was synthesized and characterized. The organic component is shown to sensitize lanthanide-based emission in both compounds, with quantum yields of 36% (Eu) and 6% (Tb). Luminescence of lanthanide coordination polymers is currently described from a molecular approach. This methodology fails to explain the luminescence of this system. It was found that the band structure of the organic component rather than the molecular triplet state was able to explain the observed luminescence. Deuterated (Ln(C15H9O9)3(D2O)3) and dehydrated (Ln(C15H9O9)3) analogues were also studied. When bound H2O was replaced by D2O, lifetime and emission increased as expected. Upon dehydration, lifetimes increased again, but emission of 1-Eu unexpectedly decreased. This reduction is reasoned through an unprecedented enhancement effect of the compound's luminescence by the OH/OD oscillators in the organic-to-Eu(III) energy transfer process.

  1. Synthesis, structure, luminescence and photocatalytic properties of an uranyl-2,5-pyridinedicarboxylate coordination polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, Zhen-Xiu; Xu, Wei, E-mail: xuwei@nbu.edu.cn; Zheng, Yue-Qing, E-mail: yqzhengmc@163.com

    2016-07-15

    An uranium coordination polymer, namely [(UO{sub 2}(pydc)(H{sub 2}O)]·H{sub 2}O (1) (H{sub 2}pydc=2,5-pyridinedicarboxylic acid), has been obtained by hydrothermal method and characterized by X-ray single crystal structure determination. Structural analysis reveals that complex 1 exhibits 1D chain coordination polymer, in which UO{sub 2}{sup 2+} ions are bridged by 2,5-pyridinedicarboxylate ligands and the chains are connected into a 3D supramolecular network by O–H···O hydrogen bond interactions and π–π stacking interactions. The photocatalytic properties of 1 for degradation of methylene blue (MB), Rhodamine B (RhB) and methyl orange (MO) under Hg-lamp irradiation have been performed, and the amount of the catalyst as wellmore » as Hg-lamp irradiation with different power on the photodegradation efficiency of MB have been investigated. Elemental analyses, infrared spectroscopy, TG-DTA analyses and luminescence properties were also discussed. - Graphical abstract: Complex 1 exhibits 1D chain coordination polymer in which UO{sub 2}{sup 2+} ions are bridged by 2,5-pyridinedicarboxylate ligand. Photoluminescence studies reveal that complex 1 exhibits characteristic emissions of uranyl centers. The compound is selective to degraded dye and displays good photocatalytic activities for the degradation of MB under Hg-lamp. Display Omitted - Highlights: • Complex 1 exhibits 1D chain coordination polymer. • Complex 1 could degrade methylene blue and Rhodamine B under Hg-lamp irradiation. • Luminescent property of 1 has been studied.« less

  2. A novel stable 3D luminescent uranyl complex for highly efficient and sensitive recognition of Ru3+ and biomolecules

    NASA Astrophysics Data System (ADS)

    Tian, Hong-Hong; Chen, Liang-Ting; Zhang, Rong-Lan; Zhao, Jian-She; Liu, Chi-Yang; Weng, Ng Seik

    2018-02-01

    A novel highly stable 3D luminescent uranyl coordination polymer, namely {[UO2(L)]·DMA}n (1), was assembled with uranyl salt and a glycine-derivative ligand [6-(carboxymethyl-amino)-4-oxo-4,5-dihydro-[1,3,5]triazin-2-ylamino]-acetic acid (H2L) under solvothermal reaction. Besides, It was found that complex 1 possesses excellent luminescent properties, particularly the efficient selectivity and sensitivity in the recognition of Ru3+, biomacromolecule bovine serum albumin (BSA), biological small molecules dopamine (DA), ascorbic acid (AA) and uric acid (UA) in the water solution based on a "turn-off" mechanism. Accordingly, the luminescent explorations also demonstrated that complex 1 could be acted as an efficient luminescent probe with high quenching efficiency and low detection limit for selectively detecting Ru3+ and biomolecules (DA, AA, UA and BSA). It was noted that the framework structure of complex 1 still remains highly stable after quenching, which was verified by powder X-ray diffraction (PXRD).

  3. Synthesis and luminescence properties of polymer-rare earth complexes containing salicylaldehyde-type bidentate Schiff base ligand.

    PubMed

    Zhang, Dandan; Gao, Baojiao; Li, Yanbin

    2017-08-01

    Using molecular design and polymer reactions, two types of bidentate Schiff base ligands, salicylaldehyde-aniline (SAN) and salicylaldehyde-cyclohexylamine (SCA), were synchronously synthesized and bonded onto the side chain of polysulfone (PSF), giving two bidentate Schiff base ligand-functionalized PSFs, PSF-SAN and PSF-SCA, referred to as macromolecular ligands. Following coordination reactions between the macromolecular ligands and Eu(III) and Tb(III) ions (the reaction occurred between the bonded ligands SAN or SCA and the lanthanide ion), two series of luminescent polymer-rare earth complexes, PSF-SAN-Eu(III) and PSF-SCA-Tb(III), were obtained. The two macromolecular ligands were fully characterized by Fourier transform infrared (FTIR), 1 H NMR and UV absorption spectroscopy, and the prepared complexes were also characterized by FTIR, UV absorption spectroscopy and thermo-gravity analysis. On this basis, the photoluminescence properties of these complexes and the relationships between their structure and luminescence were investigated in depth. The results show that the bonded bidentate Schiff base ligands, SAN and SCA, can effectively sensitize the fluorescence emission of Eu(III) and Tb(III) ions, respectively. PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SAN) 3 -Eu(III) and the ternary complex PSF-(SAN) 3 -Eu(III)-(Phen) 1 (Phen is the small-molecule ligand 1,10-phenanthroline), produce strong red luminescence, suggesting that the triplet state energy level of SAN is lower and well matched with the resonant energy level of the Eu(III) ion. By contrast, PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SCA) 3 -Tb(III) and the ternary complex PSF-(SCA) 3 -Tb(III)-(Phen) 1 , display strong green luminescence, suggesting that the triplet state energy level of SCA is higher and is well matched with the resonant energy level of Tb(III). Copyright © 2017 John Wiley & Sons, Ltd.

  4. Extending the lanthanide-terephthalate system: Isolation of an unprecedented Tb(III)-based coordination polymer with high potential porosity and luminescence properties

    NASA Astrophysics Data System (ADS)

    Le Natur, François; Calvez, Guillaume; Freslon, Stéphane; Daiguebonne, Carole; Bernot, Kevin; Guillou, Olivier

    2015-04-01

    A novel coordination polymer with chemical formula {[Tb(bdc)1.5(H2O)]ṡ(DMF)(H2O)}∞ (1) has been synthesized by reaction between 1,4-benzene-dicarboxylic acid (H2bdc) and di-cationic hexanuclear entity [Tb6O(OH)8(NO3)6(H2O)12]2+ in an ethylene glycol (EG)/N,N-dimethylformamide (DMF) mixture. This compound has been obtained as single crystals by slow evaporation in air at room temperature. If the hexanuclear entity is destroyed during the reaction, the coordination polymer that is obtained is original and presents promising potential micro-porosity and luminescent properties. It crystallizes in the monoclinic system, space group C12/c1 (No. 15) with the cell parameters a = 23.7540(1) Å, b = 10.5390(4) Å, c = 19.7580(3) Å, β = 125.8100(1)° and Z = 8.

  5. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores.

    PubMed

    Gao, Nan; Zhang, Yunfang; Huang, Pengcheng; Xiang, Zhehao; Wu, Fang-Ying; Mao, Lanqun

    2018-06-05

    Lanthanide-based luminescent sensors have been widely used for the detection of the anthrax biomarker dipicolinic acid (DPA). However, mainly based on DPA sensitization to the lanthanide core, most of them failed to realize robust detection of DPA in bacterial spores. We proposed a new strategy for reliable detection of DPA by perturbing a tandem energy transfer in heterobinuclear lanthanide coordination polymer nanoparticles simply constructed by two kinds of lanthanide ions, Tb 3+ and Eu 3+ , and guanosine 5'-monophosphate. This smart luminescent probe was demonstrated to exhibit highly sensitive and selective visual luminescence color change upon exposure to DPA, enabling accurate detection of DPA in complex biosystems such as bacterial spores. DPA release from bacterial spores on physiological germination was also successfully monitored in real time by confocal imaging. This probe is thus expected to be a powerful tool for efficient detection of bacterial spores in responding to anthrax threats.

  6. Luminescent nanocomposites of conducting polymers and in-situ grown CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Borriello, C.; Masala, S.; Bizzarro, V.; Nenna, G.; Re, M.; Pesce, E.; Minarini, C.; Di Luccio, T.

    2010-06-01

    Luminescent PVK:CdS and P3HT:CdS nanocomposites with enhanced electrooptical properties have been synthesized. The nucleation and growth of CdS nanoparticles have been obtained by the thermolysis of a single Cd and S precursor dispersed in the polymers. The size distribution and morphology of the nanoparticles have been studied by TEM analyses. Monodispersive and very small nanoparticles of diameter below 3 nm in PVK and 2 nm in P3HT, have been obtained. The application of such nanocomposites as emitting layers in OLED devices is discussed.

  7. Luminescent nanocomposites of conducting polymers and in-situ grown CdS quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borriello, C.; Masala, S.; Nenna, G.

    2010-06-02

    Luminescent PVK:CdS and P3HT:CdS nanocomposites with enhanced electrooptical properties have been synthesized. The nucleation and growth of CdS nanoparticles have been obtained by the thermolysis of a single Cd and S precursor dispersed in the polymers. The size distribution and morphology of the nanoparticles have been studied by TEM analyses. Monodispersive and very small nanoparticles of diameter below 3 nm in PVK and 2 nm in P3HT, have been obtained. The application of such nanocomposites as emitting layers in OLED devices is discussed.

  8. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection

    PubMed Central

    Li, Xiaoming; Zhang, Shengli; Kulinich, Sergei A.; Liu, Yanli; Zeng, Haibo

    2014-01-01

    Luminescent carbon dots (L-CDs) with high quantum yield value (44.7%) and controllable emission wavelengths were prepared via a facile hydrothermal method. Importantly, the surface states of the materials could be engineered so that their photoluminescence was either excitation-dependent or distinctly independent. This was achieved by changing the density of amino-groups on the L-CD surface. The above materials were successfully used to prepare multicolor L-CDs/polymer composites, which exhibited blue, green, and even white luminescence. In addition, the excellent excitation-independent luminescence of L-CDs prepared at low temperature was tested for detecting various metal ions. As an example, the detection limit of toxic Be2+ ions, tested for the first time, was as low as 23 μM.

  9. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN

    2017-01-15

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox){sub 0.5}(H{sub 2}O)]{sub n}·2n(H{sub 2}O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H{sub 2}sfpip)(ox)(H{sub 2}O){sub 4}]{sub n}·2n(H{sub 2}O) (Ln=Nd (8) Sm (9)), [H{sub 2}ox=oxalic acid, H{sub 3}sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H{sub 3}sfpip resulted in two types of structures. Compounds 1–7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox{sup 2−} anions as linkers to bridge themore » adjacent layers. Compounds 8–9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1–9 were also investigated. - Graphical abstract: Nine new lanthanide coordination polymers have been synthesized under hydrothermal conditions. Compounds 1–7 exhibit a 3D tfz-d network. Compounds 8–9 display a 1D chain structure. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. - Highlights: • Nine lanthanide coordination polymers were prepared under hydrothermal conditions. • Their crystal structures have been determined. • The luminescence and thermal stabilities were studied in the solid state.« less

  10. Glue-Free Stacked Luminescent Nanosheets Enable High-Resolution Ratiometric Temperature Mapping in Living Small Animals.

    PubMed

    Miyagawa, Takuya; Fujie, Toshinori; Ferdinandus; Vo Doan, Tat Thang; Sato, Hirotaka; Takeoka, Shinji

    2016-12-14

    In this paper, a microthermograph, temperature mapping with high spatial resolution, was established using luminescent molecules embedded ultrathin polymeric films (nanosheets), and demonstrated in a living small animal to map out and visualize temperature shift due to animal's muscular activity. Herein, we report super flexible and self-adhesive (no need of glue) nanothermosensor consisting of stacked two different polymeric nanosheets with thermosensitive (Eu-tris (dinaphthoylmethane)-bis-trioctylphosphine oxide: EuDT) and insensitive (Rhodamine 800) dyes being embedded. Such stacked nanosheets allow for the ratiometric thermometry, with which the undesired luminescence intensity shift due to focal drift or animal's z-axis displacement is eliminated and the desired intensity shift solely due to the temperature shift of the sample (living muscle) can be acquired. With the stacked luminescent nanosheets, we achieved the first-ever demonstration of video filming of chronologically changing temperature-shift distribution from the rest state to the active state of the muscles in the living animal. The polymer nanosheet engineering and in vivo microthermography presented in the paper are promising technologies to microscopically explore the heat production and heat transfer in living cells, tissues, and organisms with high spatial resolution beyond what existing thermometric technologies such as infrared thermography have ever achieved.

  11. Applicability of samarium(III) complexes for the role of luminescent molecular sensors for monitoring progress of photopolymerization processes and control of the thickness of polymer coatings

    NASA Astrophysics Data System (ADS)

    Topa, Monika; Ortyl, Joanna; Chachaj-Brekiesz, Anna; Kamińska-Borek, Iwona; Pilch, Maciej; Popielarz, Roman

    2018-06-01

    Applicability of 15 trivalent samarium complexes as novel luminescent probes for monitoring progress of photopolymerization processes or thickness of polymer coatings by the Fluorescence Probe Technique (FPT) was studied. Three groups of samarium(III) complexes were evaluated in cationic photopolymerization of triethylene glycol divinyl ether monomer (TEGDVE) and free-radical photopolymerization of trimethylolpropane triacrylate (TMPTA). The complexes were the derivatives of tris(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionate)samarium(III), tris(4,4,4-trifluoro-1-phenyl-1,3-butanedionate)samarium(III) and tris(4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedionate)samarium(III), which were further coordinated with auxiliary ligands, such as 1,10-phenanthroline, triphenylphosphine oxide, tributylphosphine oxide and trioctylphosphine oxide. It has been found that most of the complexes studied are sensitive enough to be used as luminescent probes for monitoring progress of cationic photopolymerization of vinyl ether monomers over entire range of monomer conversions. In the case of free-radical polymerization processes, the samarium(III) complexes are not sensitive enough to changes of microviscosity and/or micropolarity of the medium, so they cannot be used to monitor progress of the polymerization. However, high stability of luminescence intensity of some of these complexes under free-radical polymerization conditions makes them good candidates for application as thickness sensors for polymer coatings prepared by free-radical photopolymerization. A quantitative relationship between a coating thickness and the luminescence intensity of the samarium(III) probes has been derived and verified experimentally within a broad range of the thicknesses.

  12. Luminescent Thermochromism of 2D Coordination Polymers Based on Copper(I) Halides with 4-Hydroxythiophenol

    PubMed Central

    Troyano, Javier; Perles, Josefina; Amo-Ochoa, Pilar; Martínez, Jose Ignacio; Concepción Gimeno, Maria; Fernández-Moreira, Vanesa; Zamora, Félix; Delgado, Salomé

    2016-01-01

    Solvothermal reactions between copper(I) halides and 4-mercaptophenol give rise to the formation of three coordination polymers with general formula [Cu3X(HT)2]n (X= Cl, 1; Br, 2; and I, 3). The structures of these coordination polymers have been determined by X-ray diffraction at both room temperature and low temperature (110 K), showing a general shortening in Cu-S, Cu-X and Cu···Cu bond distances at low temperatures. 1 and 2 are isostructural consisting of layers in which the halogen ligands act as μ3-bridges joining two Cu1 and one Cu2 atoms whereas in 3 the iodine ligands is as μ4-mode but the layers are quasi-isostructural with 1 or 2. These compounds show a reversible thermochromic luminescence, with strong orange emission for 1 and 2, but weaker for 3 at room temperature, while upon cooling at 77 K 1 and 2 show stronger yellow as well as 3 displays stronger green emission. DFT calculations have been used to rationalise these observations. These results suggest a high potential for this novel and promising stimuli-responsive materials. PMID:27809369

  13. Luminescent Thermochromism of 2D Coordination Polymers Based on Copper(I) Halides with 4-Hydroxythiophenol.

    PubMed

    Troyano, Javier; Perles, Josefina; Amo-Ochoa, Pilar; Martínez, Jose Ignacio; Concepción Gimeno, Maria; Fernández-Moreira, Vanesa; Zamora, Félix; Delgado, Salomé

    2016-12-12

    Solvothermal reactions between copper(I) halides and 4-mercaptophenol give rise to the formation of three coordination polymers with general formula [Cu 3 X(HT) 2 ] n (X=Cl, 1; Br, 2; and I, 3). The structures of these coordination polymers have been determined by X-ray diffraction at both room- and low temperature (110 K), showing a general shortening in Cu-S, Cu-X and Cu-Cu bond lengths at low temperatures. 1 and 2 are isostructural, consisting of layers in which the halogen ligands act as μ 3 -bridges joining two Cu1 and one Cu2 atoms whereas in 3 the iodine ligands is as μ 4 -mode but the layers are quasi-isostructural with 1 or 2. These compounds show a reversible thermochromic luminescence, with strong orange emission for 1 and 2, but weaker for 3 at room temperature, whereas upon cooling at 77 K 1 and 2 show stronger yellow emission, and 3 displays stronger green emission. DFT calculations have been used to rationalize these observations. These results suggest a high potential for this novel and promising stimuli-responsive materials. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Manufacturing polymer light emitting diode with high luminance efficiency by solution process

    NASA Astrophysics Data System (ADS)

    Kim, Miyoung; Jo, SongJin; Yang, Ho Chang; Yoon, Dang Mo; Kwon, Jae-Taek; Lee, Seung-Hyun; Choi, Ju Hwan; Lee, Bum-Joo; Shin, Jin-Koog

    2012-06-01

    While investigating polymer light emitting diodes (polymer-LEDs) fabricated by solution process, surface roughness influences electro-optical (E-O) characteristics. We expect that E-O characteristics such as luminance and power efficiency related to surface roughness and layer thickness of emitting layer with poly-9-Vinylcarbazole. In this study, we fabricated polymer organic light emitting diodes by solution process which guarantees easy, eco-friendly and low cost manufacturing for flexible display applications. In order to obtain high luminescence efficiency, E-O characteristics of these devices by varying parameters for printing process have been investigated. Therefore, we optimized process condition for polymer-LEDs by adjusting annealing temperatures of emission, thickness of emission layer showing efficiency (10.8 cd/A) at 10 mA/cm2. We also checked wavelength dependent electroluminescence spectrum in order to find the correlation between the variation of efficiency and the thickness of the layer.

  15. A Eu/Tb-mixed MOF for luminescent high-temperature sensing

    NASA Astrophysics Data System (ADS)

    Wang, Huizhen; Zhao, Dian; Cui, Yuangjing; Yang, Yu; Qian, Guodong

    2017-02-01

    Temperature measurements and thermal mapping using luminescent MOF operating in the high-temperature range are of great interest in the micro-electronic diagnosis. In this paper, we report a thermostable Eu/Tb-mixed MOF Eu0.37Tb0.63-BTC-a exhibiting strong luminescence at elevated temperature, which can serve as a ratiometric luminescent thermometer for high-temperature range. The high-temperature operating range (313-473 K), high relative sensitivity and accurate temperature resolution, make such a Eu/Tb-mixed MOF useful for micro-electronic diagnosis.

  16. Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer.

    PubMed

    Liu, Wei; Dai, Xing; Xie, Jian; Silver, Mark A; Zhang, Duo; Wang, Yanlong; Cai, Yawen; Diwu, Juan; Wang, Jian; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-07

    The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO 2 (L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10 -7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.

  17. Syntheses, structures and luminescent properties of two novel Zn (II) coordination polymers

    NASA Astrophysics Data System (ADS)

    Huang, Ya-Ru; Gao, Ling-Ling; Wang, Xiao-Qing; Fan, Li-Ming; Hu, Tuo-Ping

    2018-02-01

    Two new coordination polymers, namely [Zn(TZMB)]n (1) and {[Zn(TZMB)](H2TZMB)]·(C2H5OH)0.5(H2O)2.5}n (2), (H2TZMB = 4,4‧-(1H-1,2,4-triazol-1-yl)methylene-bis(benzonic acid), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction analysis, elemental analysis (EA), IR spectrum analysis (IR), powder X-ray diffraction (PXRD), and thermogravimetric (TG) analysis. Single X-ray diffraction analysis reveals that complex 1 is a 3D 3,6-connected net with the point symbol of (6110.84)(63)2 and complex 2 is a 2D 3-connected net with the point symbol of (63). Furthermore, luminescent properties of complexes 1 and 2 were also investigated in detail.

  18. Luminescence properties and molecular mechanics calculation of bis-β-diketonate Eu3+ complex/polymer hybrid fibers

    NASA Astrophysics Data System (ADS)

    Bai, Jinyuan; Gu, Huiquan; Hou, Yanjun; Wang, Shuhong

    2018-05-01

    Two series of bis-β-diketonate Eu3+ complex/polymer hybrid fibers, namely, Eu2(BTP)3(H2O)4/PMMA (Eu/PMMA) and Eu2(BTP)3(H2O)4/PVP (Eu/PVP) have been prepared by electrospinning technology (BTP = 1,3-bis(4,4,4-trifluoro-1,3-dioxobutyl)phenyl, PVP = poly (vinyl pyrrolidone) and PMMA = poly (methyl methacrylate)). The effect of complex Eu2(BTP)3(H2O)4 on the luminescence, thermal stability and morphology of composite fibers were studied by characterization techniques. The Judd-Ofelt theory was applied to this study for explaining the effect of the distribution of Eu2(BTP)3(H2O)4 and the mutual effect of the Eu2(BTP)3(H2O)4 coordination compound and neighboring chain segments of PMMA and PVP polymer matrix.

  19. Luminescent spectroscopy and structural properties of Ce3+-doped low-temperature X1-Y2SiO5 material prepared by polymer-assisted sol-gel method

    NASA Astrophysics Data System (ADS)

    Hamroun, M. S. E.; Guerbous, L.; Bensafi, A.

    2016-04-01

    Cerium (Ce3+)-doped monoclinic X1-Y2SiO5 (YSO)-type oxyorthosilicates powders were prepared by monomer and polymer-assisted sol-gel method. The present work aims to study the influence of ethylene glycol (EG) monomer, polyethylene glycol (PEG) polymer and polyvinyl alcohol (PVA) polymer, as fuels and nucleating agents for the crystallization, on structural and luminescence properties of the Ce3+ (xCe = 0.01)-doped Y2SiO5. The X-ray diffraction technique, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and steady photoluminescence have been used to characterize the samples. It is found that the types of fuels affect the phase purity and luminescent characteristics of phosphors. All samples exhibit intense violet-blue asymmetric emission band in the range of 370-540 nm with a maximum intensity centered at around 420 nm assigned to the 5d → 4f (2F5/2, 2F7/2) interconfigurational transitions of Ce3+ ion in YSO nanomaterial. Finally, the vibronic coupling parameters are estimated and discussed.

  20. High-Temperature Thermometer Using Cr-Doped GdAlO3 Broadband Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey; Chambers, Matthew

    2011-01-01

    A new concept has been developed for a high-temperature luminescence-based optical thermometer that both shows the desired temperature sensitivity in the upper temperature range of present state-of-the-art luminescence thermometers (above 1,300 C), while maintaining substantial stronger luminescence signal intensity that will allow these optical thermometers to operate in the presence of the high thermal background radiation typical of industrial applications. This objective is attained by using a Cr-doped GdAlO3 (Cr:GdAlO3) sensor with an orthorhombic perovskite structure, resulting in broadband luminescence that remains strong at high temperature due to the favorable electron energy level spacing of Cr:GdAlO3. The Cr:GdAlO3 temperature (and pressure) sensor can be incorporated into, or applied onto, a component s surface when a non-contact surface temperature measurement is desired, or alternatively, the temperature sensor can be attached to the end of a fiber-optic probe that can then be positioned at the location where the temperature measurement is desired. In the case of the fiber-optic probe, both the pulsed excitation and the luminescence emission travel through the fiber-optic light guide. In either case, a pulsed light source provides excitation of the luminescence, and the broadband luminescence emission is collected. Real-time temperature measurements are obtain ed using a least-squares fitting algorithm that determines the luminescence decay time, which has a known temperature dependence established by calibration. Due to the broad absorption and emission bands for Cr:GdAlO3, there is considerable flexibility in the choice of excitation wavelength and emission wavelength detection bands. The strategic choice of the GdAlO3 host is based on its high crystal field, phase stability, and distorted symmetry at the Cr3+ occupation sites. The use of the broadband emission for temperature sensing at high temperatures is a key feature of the invention and is

  1. Dynamics of polydots: Soft luminescent polymeric nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maskey, Sabina; Osti, Naresh C.; Grest, Gary S.

    The conformation and dynamics of luminescent polymers collapsed into nanoparticles or polydots were studied using fully atomistic molecular dynamics (MD) simulations, providing a first insight into their internal dynamics. Controlling the conformation and dynamics of confined polymers is essential for realization of the full potential of polydots in nanomedicine and biotechnology. Specifically, the shape and internal dynamics of polydots that consist of highly rigid dialkyl p-phenylene ethynylene (PPE) are probed as a function of temperature. At room temperature, the polydots are spherical without any correlations between the aromatic rings on the PPE backbone. With increasing temperature, they expand and becomemore » slightly aspherical; however, the polymers remain confined. The coherent dynamic structure factor reveals that the internal motion of the polymer backbone is arrested, and the side chains dominate the internal dynamics of the polydots. Lastly, these new soft nanoparticles retain their overall shape and dynamics over an extended temperature range, and their conformation is tunable via their degree of expansion.« less

  2. Dynamics of polydots: Soft luminescent polymeric nanoparticles

    DOE PAGES

    Maskey, Sabina; Osti, Naresh C.; Grest, Gary S.; ...

    2016-03-04

    The conformation and dynamics of luminescent polymers collapsed into nanoparticles or polydots were studied using fully atomistic molecular dynamics (MD) simulations, providing a first insight into their internal dynamics. Controlling the conformation and dynamics of confined polymers is essential for realization of the full potential of polydots in nanomedicine and biotechnology. Specifically, the shape and internal dynamics of polydots that consist of highly rigid dialkyl p-phenylene ethynylene (PPE) are probed as a function of temperature. At room temperature, the polydots are spherical without any correlations between the aromatic rings on the PPE backbone. With increasing temperature, they expand and becomemore » slightly aspherical; however, the polymers remain confined. The coherent dynamic structure factor reveals that the internal motion of the polymer backbone is arrested, and the side chains dominate the internal dynamics of the polydots. Lastly, these new soft nanoparticles retain their overall shape and dynamics over an extended temperature range, and their conformation is tunable via their degree of expansion.« less

  3. Hybrid materials based on novel 2D lanthanide coordination polymers covalently bonded to amine-modified SBA-15 and MCM-41: assembly, characterization, structural features, thermal and luminescence properties.

    PubMed

    Wang, Jun; Dou, Wei; Kirillov, Alexander M; Liu, Weisheng; Xu, Cailing; Fang, Ran; Yang, Lizi

    2016-11-22

    Three novel 2D coordination polymers [Tb 2 (μ 4 -L) 2 (μ-HL)(μ-HCOO)(DEF)] n (Tb-L), [Eu(μ 4 -L)(L)(H 2 O) 2 ] n (Eu-L), and [Nd(μ 4 -L)(L)(H 2 O) 2 ] n (Nd-L) were assembled from the corresponding lanthanide(iii) nitrates and 5 methoxy-(4-benzaldehyde)-1,3-benzenedicarboxylic acid (H 2 L) as a main multifunctional building block bearing carboxylate and aldehyde functional groups, using H 2 O/DEF {DEF = N,N-diethylformamide} as a reaction medium. The obtained coordination polymers were isolated as stable microcrystalline solids and fully characterized by elemental analysis, FT-IR spectroscopy, TGA, BET, PXRD, and single-crystal X-ray diffraction methods. Their structures feature intricate 2D metal-organic networks, which were topologically classified as underlying layers with the 4,6L26 (for Tb-L) or sql (for Eu-L and Nd-L) topologies. Besides, a novel series of mesoporous hybrid materials wherein the Tb-L, Eu-L, or Nd-L coordination polymers are covalently grafted into the amine-functionalized SBA-15-NH 2 or MCM-41-NH 2 matrices (via the formation of Schiff-base groups) was also synthesized and fully characterized. These hybrid materials show high thermal and photoluminescence stability, as well as remarkable chemical resistance to boiling water, and acidic or alkaline medium. Luminescent properties of the parent coordination polymers and derived hybrid materials are investigated in detail, showing that the latter combine the luminescent characteristics (intense green or red emissions and excellent stability) of lanthanide coordination polymers and structural features of ordered mesoporous silica molecular sieves. Moreover, light emitting devices were assembled, by coating the hybrid materials onto the surface of UV-LED bulbs, and showed excellent light emitting properties.

  4. Surface pressure field mapping using luminescent coatings

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Kavandi, J. L.; Callis, J. B.; Gouterman, M.; Green, E.; Khalil, G.; Burns, D.

    1993-01-01

    In recent experiments we demonstrated the feasibility of using the oxygen dependence of luminescent molecules for surface pressure measurement in aerodynamic testing. This technique is based on the observation that for many luminescent molecules the light emitted increases as the oxygen partial pressure, and thus the air pressure, the molecules see decreases. In practice the surface to be observed is coated with an oxygen permeable polymer containing a luminescent molecule and illuminated with ultraviolet radiation. The airflow induced surface pressure field is seen as a luminescence intensity distribution which can be measured using quantitative video techniques. Computer processing converts the video data into a map of the surface pressure field. The experiments consisted of evaluating a trial luminescent coating in measuring the static surface pressure field over a two-dimensional NACA-0012 section model airfoil for Mach numbers ranging from 0.3 and 0.66. Comparison of the luminescent coating derived pressures were made to those obtained from conventional pressure taps. The method along with the experiment and its results will be described.

  5. A series of Zn/Cd coordination polymers constructed from 1,4-naphthalenedicarboxylate and N-donor ligands: Syntheses, structures and luminescence sensing of Cr{sup 3+} in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Dong-Cheng; Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063; Fan, Yan

    A novel series of Zn/Cd coordination polymers based on H{sub 3}L, namely, [Zn{sub 2}(HL){sub 2}(bipy){sub 2}(H{sub 2}O){sub 6}]{sub n} (1), [Zn(HL)(phen)]{sub n} (2), [Cd{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (3), [Zn{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (4) [(H{sub 3}L =4-[(1-carboxynaphthalen-2-yl)oxy]phthalic acid, bipy =4,4′-bipyridine, phen =1,10-phenanthroline, bbi =1,1′-(1,4-butanediyl)bis(imidazole] have been successfully synthesized by solvothermal reaction. Compound 1 possesses two diverse 1D chains constructed by different bipy coligands, which were further connected to form a 3D supramolecular architecture by hydrogen bonding interactions. Compound 2 possesses a complicated 1D chain based on secondary building unit (SBU) with binuclear Zn cluster. Compounds 3 and 4 exhibitmore » similar 2D→3D framework, which can be rationalized as (3,4,4)-connected 3D net with a Schläfli symbol of (6{sup 3}.8.10{sup 2}){sub 2}(6{sup 3}){sub 2}(6{sup 4}.8.10). In particular, compound 3 exhibited a high sensitivity for Cr{sup 3+} in aqueous solutions, which suggest that compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+}. - Graphical abstract: A series of novel Zn/Cd coordination polymers have been successfully synthesized by solvothermal reaction. The unique 3D Cd{sup 2+} polymer containing bbi as second ligand demonstrates high sensitivity for detection of toxic Cr{sup 3+} in aqueous solutions. Display Omitted - Highlights: • π-conjugated semirigid tricarboxylate ligands with naphthalene rings(H{sub 3}L) were rationally designed. • Four Zn/Cd coordination polymers based on H{sub 3}L have been successfully synthesized by solvothermal reaction. • Compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+} with high sensitivity in aqueous solutions.« less

  6. Multi-component lanthanide hybrids based on zeolite A/L and zeolite A/L-polymers for tunable luminescence.

    PubMed

    Chen, Lei; Yan, Bing

    2015-02-01

    Some multi-component hybrids based on zeolite L/A are prepared. Firstly, zeolite A/L is loaded with lanthanide complexes (Eu-DBM or Tb-AA (acetylacetone = AA, dibenzoylmethane = DBM)) into its channels. Secondly, 3-methacryloyloxypropyltrimethoxysilane (γ-MPS) is used to covalently graft onto the surface of functionalized zeolite A/L (Si-[ZA/L⊃Eu-DBM(Tb-AA)]). Thirdly, lanthanide ions (Eu(3+)/Tb(3+)) are coordinated to the functionalized zeolite A/L and ligands (phen(1,10-phenanthroline) or bipy (2,2'-bipyridyl)) are introduced by a ship-in-bottle method. The inside-outside double modifications of ZA/L with lanthanide complexes afford the final hybrids and these are characterized by means of XRD, FT-IR, UV-vis DRS, SEM and luminescence spectroscopy, some of which display white or near-white light emission. Furthermore, selected above-mentioned hybrids are incorporated into PEMA/PMMA (poly ethyl methylacryate/poly methyl methacrylate) hosts to prepare luminescent polymer films. These results provide abundant data that these hybrid materials can be expected to have potential application in various practical fields.

  7. Luminescence enhancement in nanocomposite consisting of polyvinyl alcohol incorporated gold nanoparticles and Nile blue 690 perchlorate.

    PubMed

    Chubinidze, Ketevan; Partsvania, Besarion; Sulaberidze, Tamaz; Khuskivadze, Aleksandre; Davitashvili, Elene; Koshoridze, Nana

    2014-11-01

    We have experimentally demonstrated that the emission of visible light from the polymer matrix doped with luminescent dye and gold nanoparticles (GNPs) can be enhanced with the use of surface plasmon coupling. GNPs can enhance the luminescence intensity of nearby luminescent dye because of the interactions between the dipole moments of the dye and the surface plasmon field of the GNPs. The electric charge on the GNPs and the distance between GNPs and luminescent dye molecules have a significant effect on the luminescence intensity, and this enhancement depends strongly upon the excitation wavelength of the pumping laser source. In particular, by matching the plasmon frequency of GNPs to the frequency of the laser light source we have observed a strong luminescence enhancement of the nanocomposite consisting of GNPs coupled with luminescent dye Nile blue 690 perchlorate. This ability of controlling luminescence can be beneficially used in developing contrast agents for highly sensitive and specific optical sensing and imaging. This opens new possibilities for plasmonic applications in the solar energy field.

  8. High performance polymer development

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1991-01-01

    The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications.

  9. Excited-State Complexes of Conjugated Polymers: Novel Photophysical Processes and Optoelectronic Materials.

    DTIC Science & Technology

    1995-03-20

    corresponding excited-state complexes were only recently discovered. The results of our extensive studies of intermolecular excimers and exciplexes of many...the luminescence of conjugated polymers. The luminescence and charge photogeneration in exciplexes of conjugated polymers with donor triarylamines will also be presented. jg

  10. Preparation and luminescent properties of the novel polymer-rare earth complexes composed of Poly(ethylene-co-acrylic acid) and Europium ions

    NASA Astrophysics Data System (ADS)

    Wu, Yuewen; Hao, Haixia; Wu, Qingyao; Gao, Zihan; Xie, Hongde

    2018-06-01

    A series of novel polymer-rare earth complexes with Eu3+ ions have been synthesized and investigated successfully, including the binary complexes containing the single ligand poly(ethylene-co-acrylic acid) (EAA) and the ternary complexes using 1,10-phenanthroline (phen), dibenzoylmethane (DBM) or thenoyltrifluoroacetone (TTA) as the second ligand. Their structures have been characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis and X-ray diffraction (XRD), which confirm that both EAA and small molecules participate in the coordination reaction with rare earth ions, and they can disperse homogeneously in the polymer matrixes. Both ultraviolet-visible (UV-vis) absorption and photoluminescence tests for the complexes have been recorded. The relationship between fluorescence intensity of polymer-rare earth complexes and the quantity of ligand EAA has been studied and discussed. The films casted from the complexes solution can emit strong characteristic red light under UV light excitation. All these results suggest that the complexes possess potential application as luminescent materials.

  11. Anti-Stokes Luminescence in High Quality Quantum Wells

    NASA Astrophysics Data System (ADS)

    Vinattieri, A.; Bogani, F.; Miotto, A.; Ceccherini, S.

    1997-11-01

    We present a detailed investigation of the anti-Stokes (AS) luminescence which originates from exciton recombination when below gap excitation is used, in a set of high quality quantum well structures. We observe strong excitonic resonances in the AS signal as measured from photoluminescence and photoluminescence excitation spectra. We demonstrate that neither the electromagnetic coupling between the wells nor the morphological disorder can explain this up-conversion effect. Time-resolved luminescence data after ps excitation and fs correlation spectroscopy results provide clear evidence of the occurrence of a two-step absorption which is assisted by the exciton population resonantly excited by the first photon.

  12. Liquid scintillators with near infrared emission based on organoboron conjugated polymers.

    PubMed

    Tanaka, Kazuo; Yanagida, Takayuki; Yamane, Honami; Hirose, Amane; Yoshii, Ryousuke; Chujo, Yoshiki

    2015-11-15

    The organic liquid scintillators based on the emissive polymers are reported. A series of conjugated polymers containing organoboron complexes which show the luminescence in the near infrared (NIR) region were synthesized. The polymers showed good solubility in common organic solvents. From the comparison of the luminescent properties of the synthesized polymers between optical and radiation excitation, similar emission bands were detected. In addition, less significant degradation was observed. These data propose that the organoboron conjugated polymers are attractive platforms to work as an organic liquid scintillator with the emission in the NIR region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Ethylene sensing by silver(I) salt-impregnated luminescent films

    USDA-ARS?s Scientific Manuscript database

    Luminescent oligomer /polymer films impregnated with Ag(I) salts are effective sensors for small gas molecules such as ethylene. Films composed of various Ag(I) salts (i.e. AgBF4, AgSbF6, AgB(C6F5)4, AgClO4 and AgOTf) and polymers (i.e. poly(vinylphenylketone) (PVPK), polystyrene (PS) or oligomers (...

  14. Rare-earth doped polymer waveguides and light emitting diodes

    NASA Astrophysics Data System (ADS)

    Slooff, L. H.

    2000-11-01

    Polymer-based optical waveguide amplifiers offer a low-cost alternative for inorganic waveguide amplifiers. Due to the fact that their refractive index is almost similar to that of standard optical fibers, they can be easily coupled with existing fibers at low coupling losses. Doping the polymer with rare-earth ions that can yield optical gain is not straightforward, as the rare-earth salts are poorly soluble in the polymer matrix. This thesis studies two different approaches to dope a polymer waveguide with rare-earth ions. The first one is based on organic cage-like complexes that encapsulate the rare-earth ion and are designed to provide enough coordination sites to bind the rare-earth ion and to shield it from the surrounding matrix. Chapter 2 describes the optical properties of Er-doped organic polydentate cage complexes. The complexes show clear photoluminescence at 1.54 mm with a bandwidth of 70 nm, the highest reported for an erbium-doped material so far. The luminescence lifetime is very short (~1 ms) due to coupling to vibrational overtones of O-H and C-H bonds. Due to this short luminescence lifetime, high pump powers (~1 W) are needed for optical gain in a waveguide amplifier based on these complexes. The pump power can be reduced if the Er is excited via the aromatic part of the complex, which has a higher absorption cross section. In Chapter 3 a lissamine-functionalised neodymium complex is studied in which the highly absorbing lissamine acts as a sensitiser. The lissamine is first excited into the singlet state from which intersystem crossing to the triplet state can take place. From there it can transfer its energy to the Nd ion by a Dexter transfer mechanism. Room-temperature photoluminescence at 890, 1060, and 1340 nm from Nd is observed, together with luminescence from the lissamine sensitiser at 600 nm. Photodegradation of the lissamine sensitiser is observed, which is studied in more detail in Chapter 4. The observed change in time of the

  15. Bismuth as a versatile cation for luminescence in coordination polymers from BiX3/4,4'-bipy: understanding of photophysics by quantum chemical calculations and structural parallels to lanthanides.

    PubMed

    Sorg, Jens R; Wehner, Tobias; Matthes, Philipp R; Sure, Rebecca; Grimme, Stefan; Heine, Johanna; Müller-Buschbaum, Klaus

    2018-05-16

    Coordination polymers (CPs) with bismuth(iii) as a connectivity centre have been prepared from BiX3 (X = Cl-I) and 4,4'-bipyridine (bipy) in order to implement Bi-based luminescence. The products were obtained via different synthetic routes such as solution chemistry, melt syntheses or mechanochemical reactions. Five neutral and anionic 1D-CPs are presented that show a chemical parallel to trivalent lanthanides forming isostructural or closely related 1D-CPs, of which five additional compounds are described. Bi3+ proves to be a versatile cation for luminescence resulting from energy transfer processes between a metal and a ligand in the presented CPs. Quantum chemical calculations were carried out to investigate Bi3+-participation in the luminescence processes. The calculated results allow an assignment of the bright transitions composed of mainly metal-to-ligand-charge transfer (MLCT) character. These results show that Bi3+ can form strongly luminescent coordination compounds with N-donor ligands.

  16. Influence of dehydrated nanotubed titanic acid on charge transport and luminescent properties of polymer light-emitting diodes with fluorescent dye

    NASA Astrophysics Data System (ADS)

    Qian, Lei; Bera, Debasis; Jin, Zhen-Sheng; Du, Zu-Liang; Xu, Zheng; Teng, Feng; Liu, Wei

    2007-09-01

    In this paper, we discuss the influence of dehydrated nanotubed titanic acid (DNTA) on charge transport and luminescent properties of polymer light-emitting diodes (PLEDs) doped with fluorescent dye. Photoluminescence results confirm the efficient energy transfer from PVK to 4-(dicyanom-ethylene)-2- t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) and tris-(8-hydroxtquinoline) aluminum (Alq 3) in a DNTA-doped device. The device showed lower turn-on voltages and higher charge current by doping with DNTA, which also caused a shift in the exciton's recombination region.

  17. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Y.; Gonzalez, R.; Summers, G.P.

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of MgO or CaO and possessing a concentration ratio of H/sup -/ ions to F centers in the range of about 0.05 to about 10.

  18. A family of entangled coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and auxiliary N-donor ligands: Luminescent sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000; Bai, Chao

    Eight Zn(II)-based coordination polymers, namely, [Zn{sub 2}L{sub 2}(2,2’-bipy)]{sub n}·nH{sub 2}O (1), [Zn{sub 2}L{sub 2}(phen)]{sub n}·nH{sub 2}O (2), [ZnL(phen)(H{sub 2}O)]{sub n} (3), [Zn{sub 3}L{sub 3}(4,4’-bipy)]{sub n} (4), [Zn{sub 2}L{sub 2}(4,4’-bipy){sub 2}]{sub n} [Zn{sub 2}L{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (5), [Zn{sub 4}L{sub 4}(bpp){sub 2}]{sub n} (6), [ZnL(bbi){sub 0.5}]{sub n} (7), [ZnL(bpz)]{sub n} (8) (H{sub 2}L=4,4’-([1,2-phenylenebis-(methylene)]bis(oxy))dibenzoic acid, 2,2’-bipy =2,2’-bipyridine, phen =1,10-phenanthroline, 4,4’-bpy=4,4’-bipyridine, bpp =1,3-bis(4-pyridyl)propane, bbi=1,4-bis(imidazol-1-yl)butane, bpz=3,3′,5,5′-tetramethyl-4,4′-bipyrazole), have been hydrothermally synthesized and structurally characterized. 1–8 display various coordination motifs with different entangled forms and conformations due to the effect of the assistant N-donor ligands. The photoluminescent properties of compounds 1–8 in solid statemore » were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for Cu{sup 2+} cations and CrO{sub 4}{sup 2-} anions, as well as detection ability for the different organic solvents and nitro explosives. These results indicated that it could be utilized as a multi-responsive luminescent sensor. Furthermore, compound 3 also shows good chemical resistance to both acidity and alkalinity solutions with pH ranging from 2 to 13. Thus, multi-photofunctionality and fluorescent response to pH have been combined in the 3, which is the first example in the Zn-based hybrid materials. - Graphical abstract: Eight new Zn(II)-based coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and different N-donor ligands have been hydrothermally synthesized through fixing the metal salts and the solvent systems. The photoluminescent properties of complexes 1−8 in solid state were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for

  19. Four one-dimensional lanthanide-phenylacetate polymers exhibiting luminescence and magnetic cooling/spin-glass behavior.

    PubMed

    Li, Zhong-Yi; Xu, Ya-Lan; Zhang, Xiang-Fei; Zhai, Bin; Zhang, Fu-Li; Zhang, Jian-Jun; Zhang, Chi; Li, Su-Zhi; Cao, Guang-Xiu

    2017-12-21

    Four isostructural lanthanide coordination polymers with a phenylacetate (PAA - ) ligand, [Ln(PAA) 3 (H 2 O)] n (Ln = Eu (1); Gd (2); Tb (3); Dy (4)), were synthesized under hydrothermal conditions. Complexes 1-4 display a one-dimensional (1D) wave chain structure bridged by the carboxylate of the PAA - ligand, which was generated via the in situ decarboxylation of phenylmalonic acid. Magnetic studies suggest the presence of ferromagnetic LnLn coupling in the 1D chain of 1-4. Meanwhile, 2 has a significant cryogenic magnetocaloric effect with the maximum -ΔS m of 26.73 at 3 K and 7 T, and 3 and 4 show interesting spin-glass behavior, which is rarely reported for Ln-containing complexes. Additionally, the solid-state photophysical properties of 1 and 3 display strong characteristic Eu 3+ and Tb 3+ photoluminescence emission in the visible region, indicating that Eu- and Tb-based luminescence are sensitized by the effective energy transfer from the ligand to the metal centers.

  20. Highly sensitive nonlinear luminescent ceramics for volumetric and multilayer data carriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martynovich, E F; Dresvyanskiy, V P; Voitovich, A P

    2015-10-31

    The interaction of optical ceramics based on wide-bandgap crystals with near-IR femtosecond laser radiation is studied experimentally. The formation of luminescent centres in LiF and MgF{sub 2} ceramics under the action of single laser pulses is considered. Two interaction regimes are used. In the regime of low-aperture focusing of laser radiation (800 nm, 30 fs, 0.3 mJ), multiple selffocusing and filamentation in the samples are observed. The luminescent centres are formed in thin channels induced by light filaments. The average effective self-focusing length is ∼100 μm; the formation of luminescent centres begins at this length and ceases at a wavelengthmore » of about 380 mm. The luminescent trace (spur) induced by a single laser filament was ∼30 μm long and 1.3 μm in diameter. The second regime of light interaction with the sample was based on high-aperture focusing with a simultaneous decrease in the laser pulse energy. This led to the formation of single pits with a diameter smaller than the optical diffraction limit. The luminescent centres induced by the laser radiation were aggregated colour centres. The mechanism of their creation included the highly-nonlinear generation of electron – hole pairs in the filamentation region, their recombination with the formation of anion excitons and the decay of excitons into Fresnel defects by the Lushchik – Vitol – Hersh – Pooley mechanism, as well as their recharging, migration and aggregation. (laser applications and other topics in quantum electronics)« less

  1. A new three-dimensional bis(benzimidazole)-based cadmium(II) coordination polymer

    NASA Astrophysics Data System (ADS)

    Hao, Shao Yun; Hou, Suo Xia; Hao, Zeng Chuan; Cui, Guang Hua

    2018-01-01

    A new coordination polymer (CP), formulated as [Cd(L)(DCTP)]n (1) (L = 1,1‧-(1,4-butanediyl)bis(2-methylbenzimidazole), H2DCTP = 2,5-dichloroterephthalic acid), was synthesized under hydrothermal conditions and the performance as luminescent probe was also investigated. Single-crystal X-ray diffraction reveals CP 1 is a 3D 3-fold interpenetrated dia network with large well-defined pores. It is found that CP 1 revealed highly sensitive luminescence sensing for Fe3 + ions in acetonitrile solution with a high quenching efficiency of KSV = 2541.238 L·mol- 1 and a low detection limit of 3.2 μM (S/N = 3). Moreover, the photocatalytic efficiency of 1 for degradation of methylene blue could reach 82.8% after 135 min. Therefore, this coordination polymer could be viewed as multifunctional material for selectively sensing Fe3 + ions and effectively degrading dyes.

  2. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Yok; Gonzalez, Roberto; Summers, Geoffrey P.

    1984-01-01

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of an oxide selected from the group consisting of magnesium oxide and calcium oxide and possessing a concentration ratio of H.sup.- ions to F centers in the range of about 0.05 to about 10.

  3. Self-assemble nanoparticles based on polypeptides containing C-terminal luminescent Pt-cysteine complex

    NASA Astrophysics Data System (ADS)

    Vlakh, E. G.; Grachova, E. V.; Zhukovsky, D. D.; Hubina, A. V.; Mikhailova, A. S.; Shakirova, J. R.; Sharoyko, V. V.; Tunik, S. P.; Tennikova, T. B.

    2017-02-01

    The growing attention to the luminescent nanocarriers is strongly stimulated by their potential application as drug delivery systems and by the necessity to monitor their distribution in cells and tissues. In this communication we report on the synthesis of amphiphilic polypeptides bearing C-terminal phosphorescent label together with preparation of nanoparticles using the polypeptides obtained. The approach suggested is based on a unique and highly technological process where the new phosphorescent Pt-cysteine complex serves as initiator of the ring-opening polymerization of α-amino acid N-carboxyanhydrides to obtain the polypeptides bearing intact the platinum chromophore covalently bound to the polymer chain. It was established that the luminescent label retains unchanged its emission characteristics not only in the polypeptides but also in more complicated nanoaggregates such as the polymer derived amphiphilic block-copolymers and self-assembled nanoparticles. The phosphorescent nanoparticles display no cytotoxicity and hemolytic activity in the tested range of concentrations and easily internalize into living cells that makes possible in vivo cell visualization, including prospective application in time resolved imaging and drug delivery monitoring.

  4. Syntheses, structures and luminescent properties of a series of 3D lanthanide coordination polymers with tripodal semirigid ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Junsheng; Department of Applied Chemistry, Jilin Institute of Chemical Technology, Jilin 132022; Du Dongying

    2011-02-15

    Reactions of the tripodal bridging ligand 5-(4-carboxy-phenoxy)-isophthalic acid (abbreviated as H{sub 3}cpia) with lanthanide salts lead to the formation of a family of different coordination polymers, that is, [Ln(cpia)(H{sub 2}O){sub 2}]{sub n}.nH{sub 2}O (Ln=Ce (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Dy (7), Er (8), Tm (9) and Y (10)) in the presence of formic acid or diethylamine, which are characterized by elemental analysis, IR spectrum, thermogravimetric analysis (TGA), XRPD spectrum and single-crystal X-ray diffraction. Compounds 1-10 are isostructural and exhibit three-dimensional microporous frameworks. Furthermore, the photoluminescent properties of 4, 5 and 7 have been studiedmore » in detail. -- Graphical abstract: Reactions of the tripodal bridging ligand (H{sub 3}cpia) with lanthanide ions lead to the formation of a series of coordination polymers in the presence of formic acid or diethylamine. Display Omitted Research Highlights: {yields} Ten new lanthanides-based coordination polymers (1-10) have been synthesized. {yields} 1-10 exhibit 3D (4,8)-connected fluorite topology networks with 1D channel parallel to the b-axis. {yields} Compounds 4, 5 and 7 exhibit characteristic luminescence of Sm{sup 3+}, Eu{sup 3+} and Dy{sup 3+} ions, respectively.« less

  5. Achieving High Luminescent Performance K2SiF6:Mn4+ Phosphor by Co-precipitation Process with Controlling the Reaction Temperature

    NASA Astrophysics Data System (ADS)

    Tran, Tat-Dat; Nguyen, Duy-Hung; Pham, Thanh-Huy; Nguyen, Duy-Cuong; Duong, Thanh-Tung

    2018-05-01

    K2SiF6:Mn4+ (KSF:Mn) phosphor was synthesized by the one-step co-precipitation process, at different temperatures. It was found that the reaction temperature played a key role in photoluminescence performance of the product. When the reaction temperature decreased from 0°C to - 20°C, the doping concentration, Mn/Si ratio, increased from 2% to 10%. However, further decrement of temperature (to - 30°C) reduced the Mn/Si ratio to 7%. The photo-luminescence (PL) intensity was maximized at the highest Mn/Si (10%), which corresponds to a reaction temperature of - 20°C. The KSF:Mn phosphor showed excellent luminescent properties at a wide range of temperatures (from room temperature to 470 K), especially after being dispersed in a polymer matrix. When combined with a commercial white light emitting diode (WLED), KSF:Mn significantly improved luminescent properties, such as color rendering index (CRI), correlated color temperature (CCT) and luminous efficiency. In particular, CRI increased from 67.3 to 87.4, while the CCT decreased from 7800 K to 3204 K. The luminous efficiency increased from 82.0 lm/W to 95.3 lm/W. The results indicated that the high quality KSF:Mn red phosphor could be achieved by a simple one-step co-precipitation method with a fine control of reaction temperature.

  6. Synthesis of high luminescent carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Gvozdyuk, Alina A.; Petrova, Polina S.; Goryacheva, Irina Y.; Sukhorukov, Gleb B.

    2017-03-01

    In this article we report an effective and simple method for synthesis of high luminescent carbon nanodots (CDs). In our work as a carbon source sodium dextran sulfate (DS) was used because it is harmless, its analogs are used in medicine as antithrombotic compounds and blood substitutes after hemorrhage. was used as a substrate We investigated the influence of temperature parameters of hydrothermal synthesis on the photoluminescence (PL) intensity and position of emission maxima. We discovered that the PL intensity can be tuned by changing of synthesis temperature and CD concentration.

  7. Monitoring Delamination of Thermal Barrier Coatings During Interrupted High-Heat-Flux Laser Testing using Luminescence Imaging

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Zhu, Dongming; Wolfe, Douglas E.

    2011-01-01

    This presentation showed progress made in extending luminescence-base delamination monitoring to TBCs exposed to high heat fluxes, which is an environment that much better simulates actual turbine engine conditions. This was done by performing upconversion luminescence imaging during interruptions in laser testing, where a high-power CO2 laser was employed to create the desired heat flux. Upconverison luminescence refers to luminescence where the emission is at a higher energy (shorter wavelength) than the excitation. Since there will be negligible background emission at higher energies than the excitation, this methods produces superb contrast. Delamination contrast is produced because both the excitation and emission wavelengths are reflected at delamination cracks so that substantially higher luminescence intensity is observed in regions containing delamination cracks. Erbium was selected as the dopant for luminescence specifically because it exhibits upconversion luminescence. The high power CO2 10.6 micron wavelength laser facility at NASA GRC was used to produce the heat flux in combination with forced air backside cooling. Testing was performed at a lower (95 W/sq cm) and higher (125 W/sq cm) heat flux as well as furnace cycling at 1163C for comparison. The lower heat flux showed the same general behavior as furnace cycling, a gradual, "spotty" increase in luminescence associated with debond progression; however, a significant difference was a pronounced incubation period followed by acceleration delamination progression. These results indicate that extrapolating behavior from furnace cycling measurements will grossly overestimate remaining life under high heat flux conditions. The higher heat flux results were not only accelerated, but much different in character. Extreme bond coat rumpling occurred, and delamination propagation extended over much larger areas before precipitating macroscopic TBC failure. This indicates that under the higher heat flux (and

  8. Effective Detection of Mycotoxins by a Highly Luminescent Metal–Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zhichao; Lustig, William P.; Zhang, Jingming

    In this paper, we designed and synthesized a new luminescent metal–organic framework (LMOF). LMOF-241 is highly porous and emits strong blue light with high efficiency. We demonstrate for the first time that very fast and extremely sensitive optical detection can be achieved, making use of the fluorescence quenching of an LMOF material. The compound is responsive to Aflatoxin B1 at parts per billion level, which makes it the best performing luminescence-based chemical sensor to date. We studied the electronic properties of LMOF-241 and selected mycotoxins, as well as the extent of mycotoxin–LMOF interactions, employing theoretical methods. Finally, possible electron andmore » energy transfer mechanisms are discussed.« less

  9. Effective Detection of Mycotoxins by a Highly Luminescent Metal–Organic Framework

    DOE PAGES

    Hu, Zhichao; Lustig, William P.; Zhang, Jingming; ...

    2015-12-11

    In this paper, we designed and synthesized a new luminescent metal–organic framework (LMOF). LMOF-241 is highly porous and emits strong blue light with high efficiency. We demonstrate for the first time that very fast and extremely sensitive optical detection can be achieved, making use of the fluorescence quenching of an LMOF material. The compound is responsive to Aflatoxin B1 at parts per billion level, which makes it the best performing luminescence-based chemical sensor to date. We studied the electronic properties of LMOF-241 and selected mycotoxins, as well as the extent of mycotoxin–LMOF interactions, employing theoretical methods. Finally, possible electron andmore » energy transfer mechanisms are discussed.« less

  10. Two luminescent d10 metal coordination polymers assembled from a semirigid terpyridyl carboxylate ligand with high selective detecting of Cu2+, Cr2O72- and acetone

    NASA Astrophysics Data System (ADS)

    Yuan, Fei; Wang, Ting-Ting; Hu, Huai-Ming; Li, Chuan-Ti; Zhou, Chun-Sheng; Wang, Xiaofang; Xue, Ganglin

    2017-07-01

    Using a carboxylic oligopyridine ligand, 4‧-(4-carboxyphenyl)-4,2‧:6‧,4″- terpyridine (Hcptpy), and imidazole-4,5-dicarboxylic acid (H3idc), two metal(II)-cptpy compounds formulated as [Zn2(cptpy)4]n·nH2O (1), [Zn2(cptpy)2(Hidc)(H2O)2]n·nH2O (2) have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Compound 1 shows a 2D +2D →3D supramolecular framework structure generated by two-fold interpenetrating 3-connected 2D framework (2D+2D→2D) with the sql topological net and the Schläfli symbol of {44·62}. Compound 2 displays a 1D ladder chain structure. The luminescent properties of 1 and the ones immersed in various kinds of organic compounds and nitrate@DMF solutions have been investigated. Importantly, 1 shows highly selective and sensitive response to acetone and Cu2+ through luminescence quenching effects, making it a promising luminescent sensor for acetone molecule and Cu2+. Meaningwhile, compound 2 shows highly selective sensitivity for Cr2O72-.

  11. Toward lanthanide containing coordination polymers and nanomaterials

    NASA Astrophysics Data System (ADS)

    Greig, Natalie E.

    The focus of this thesis is to develop lanthanide (Ln) luminescent materials through the exploration of coordination polymers and nanomaterials. Herein, dimethyl-3,4-furanedicarboxylate acid undergoes hydrolysis under hydrothermal conditions to form coordination polymers with lanthanide ions. The resulting coordination polymers exhibited luminescent properties, with quantum yields and lifetimes for the Eu- and Tb-CP of 1.14±0.31% and 0.387±0.0001 ms, and 3.33±0.82% and 0.769±0.006 ms, respectively. While the incorporation of lanthanides was not achieved in this work, progress toward the production of pure phase InP in the nanoregime has been made, using a low-cost, hydrothermal method. Though SEM and PXRD conflict, it is believed that pure InP particles with a size range of 58-81 nm were successfully synthesized.

  12. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-01

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox)0.5(H2O)]n·2n(H2O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H2sfpip)(ox)(H2O)4]n·2n(H2O) (Ln=Nd (8) Sm (9)), [H2ox=oxalic acid, H3sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H3sfpip resulted in two types of structures. Compounds 1-7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox2- anions as linkers to bridge the adjacent layers. Compounds 8-9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1-7 to 8-9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1-9 were also investigated.

  13. High-Performance CuInS 2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergren, Matthew R.; Makarov, Nikolay S.; Ramasamy, Karthik

    Building-integrated sunlight harvesting utilizing laminated glass luminescent solar concentrators (LSCs) is proposed. By incorporating high quantum yield (>90%), NIR-emitting CuInS2/ZnS quantum dots into the polymer interlayer between two sheets of low-iron float glass, a record optical efficiency of 8.1% is demonstrated for a 10 cm x 10 cm device that transmits ~44% visible light. After completing prototypes by attaching silicon solar cells along the perimeter of the device, the electrical power conversion efficiency was certified at 2.2% with a black background and at 2.9% using a reflective substrate. This 'drop-in' LSC solution is particularly attractive because it fits within themore » existing glazing industry value chain with only modest changes to typical glazing products. Performance modeling predicts >1 GWh annual electricity production for a typical urban skyscraper in most major U.S. cities, enabling significant energy cost savings and potentially 'net-zero' buildings.« less

  14. Rapid microwave-assisted synthesis of highly luminescent nitrogen-doped carbon dots for white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wang, Yaling; Zheng, Jingxia; Wang, Junli; Yang, Yongzhen; Liu, Xuguang

    2017-11-01

    Highly luminescent nitrogen-doped carbon dots (N-CDs) were synthesized rapidly by one-step microwave-assisted hydrothermal method using citric acid as carbon source and ethylenediamine as dopant. The influences of reaction temperature, reaction time and raw material ratio on the fluorescence performance of N-CDs were investigated. Then N-CDs with the highest quantum yield were selected as fluorescent materials for fabricating white light-emitting diodes (LEDs). Highly luminescent N-CDs with the quantum yield of 75.96% and blue-to-red spectral composition of 51.48% were obtained at the conditions of 180 °C, 8 min and the molar ratio of citric acid to ethylenediamine 2:1. As-prepared highly luminescent N-CDs have an average size of 6.06 nm, possess extensive oxygen- and nitrogen-containing functional groups on their surface, and exhibit strong absorption in ultraviolet region. White LEDs based on the highly luminescent N-CDs emit warm white light with color coordinates of (0.42, 0.40) and correlated color temperature of 3416 K.

  15. Nanometrization of Lanthanide-Based Coordination Polymers.

    PubMed

    Neaime, Chrystelle; Daiguebonne, Carole; Calvez, Guillaume; Freslon, Stéphane; Bernot, Kevin; Grasset, Fabien; Cordier, Stéphane; Guillou, Olivier

    2015-11-23

    Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A new (4, 6)-connected Cu(I) coordination polymer based on rare tetranuclear [Cu4I2] clusters: Synthesis, crystal structure, luminescent and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Cui, Li-Jing; Liu, Chun-Yan; Bian, Ming; Yu, Li-Jun

    2018-03-01

    A new Cu(I) coordination polymer, namely [Cu5I3(L)2]n (1 HL = 3-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazolyl), was solvothermally synthesized using CuI, HL and NaI as the starting materials. Single crystal X-ray structural analysis shows that compound 1 features a (4, 6)-connected 3D framework employing rare tetranuclear [Cu4I2] clusters as building subunits. It exhibits intense metal-to-ligand luminescence and excellent photocatalytic activity on degradation of methylene blue (MB).

  17. Measurement of luminescence decays: High performance at low cost

    NASA Astrophysics Data System (ADS)

    Sulkes, Mark; Sulkes, Zoe

    2011-11-01

    The availability of inexpensive ultra bright LEDs spanning the visible and near-ultraviolet combined with the availability of inexpensive electronics equipment makes it possible to construct a high performance luminescence lifetime apparatus (˜5 ns instrumental response or better) at low cost. A central need for time domain measurement systems is the ability to obtain short (˜1 ns or less) excitation light pulses from the LEDs. It is possible to build the necessary LED driver using a simple avalanche transistor circuit. We describe first a circuit to test for small signal NPN transistors that can avalanche. We then describe a final optimized avalanche mode circuit that we developed on a prototyping board by measuring driven light pulse duration as a function of the circuit on the board and passive component values. We demonstrate that the combination of the LED pulser and a 1P28 photomultiplier tube used in decay waveform acquisition has a time response that allows for detection and lifetime determination of luminescence decays down to ˜5 ns. The time response and data quality afforded with the same components in time-correlated single photon counting are even better. For time-correlated single photon counting an even simpler NAND-gate based LED driver circuit is also applicable. We also demonstrate the possible utility of a simple frequency domain method for luminescence lifetime determinations.

  18. Reduced bleaching in organic nanofibers by bilayer polymer/oxide coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavares, L.; Kjelstrup-Hansen, J.; Rubahn, H.-G.

    2010-05-15

    Para-hexaphenylene (p-6P) molecules exhibit a characteristic photoinduced reaction (bleaching) resulting in a decrease in luminescence intensity upon UV light exposure, which could render the technological use of the nanofibers problematic. In order to investigate the photoinduced reaction in nanofibers, optical bleaching experiments have been performed by irradiating both pristine and coated nanofibers with UV light. Oxide coating materials (SiO{sub x} and Al{sub 2}O{sub 3}) were applied onto p-6P nanofibers. These treatments caused a reduction in the bleaching reaction but in addition, the nanofiber luminescence spectrum was significantly altered. It was observed that some polymer coatings [a statistical copolymer of tetrafluoroethylenemore » and 2,2-bis-trifluoromethyl-4,5-difluoro-1,3-dioxole, P(TFE-PDD), and poly(methyl methacrylate), PMMA] do not interfere with the luminescence spectrum from the p-6P but are not effective in stopping the bleaching. Bilayer coatings with first a polymer material, which should work as a protection layer to avoid modifications of the p-6P luminescence spectrum, and second an oxide layer used as oxygen blocker were tested and it was found that a particular bilayer polymer/oxide combination results in a significant reduction in bleaching without affecting significantly the emission spectrum from the nanofibers.« less

  19. Conformal and highly luminescent monolayers of Alq3 prepared by gas-phase molecular layer deposition.

    PubMed

    Räupke, André; Albrecht, Fabian; Maibach, Julia; Behrendt, Andreas; Polywka, Andreas; Heiderhoff, Ralf; Helzel, Jonatan; Rabe, Torsten; Johannes, Hans-Hermann; Kowalsky, Wolfgang; Mankel, Eric; Mayer, Thomas; Görrn, Patrick; Riedl, Thomas

    2014-01-22

    The gas-phase molecular layer deposition (MLD) of conformal and highly luminescent monolayers of tris(8-hydroxyquinolinato)aluminum (Alq3) is reported. The controlled formation of Alq3 monolayers is achieved for the first time by functionalization of the substrate with amino groups, which serve as initial docking sites for trimethyl aluminum (TMA) molecules binding datively to the amine. Thereby, upon exposure to 8-hydroxyquinoline (8-HQ), the self-limiting formation of highly luminescent Alq3 monolayers is afforded. The growth process and monolayer formation were studied and verified by in situ quartz crystal monitoring, optical emission and absorption spectroscopy, and X-ray photoelectron spectroscopy. The nature of the MLD process provides an avenue to coat arbitrarily shaped 3D surfaces and porous structures with high surface areas, as demonstrated in this work for silica aerogels. The concept presented here paves the way to highly sensitive luminescent sensors and dye-sensitized metal oxides for future applications (e.g., in photocatalysis and solar cells).

  20. High elastic modulus polymer electrolytes

    DOEpatents

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  1. Temperature sensing of adipose tissue heating with the luminescent upconversion nanoparticles as nanothermometer: in vitro study

    NASA Astrophysics Data System (ADS)

    Yanina, I. Yu.; Volkova, E. K.; Zaharevich, A. M.; Konyukhova, J. G.; Kochubey, V. I.; Tuchin, V. V.

    2017-03-01

    The luminescence spectra of upconversion nanoparticles (UCNPs) imbedded in fat tissue were measured in a wide temperature range, from room to human body and further to hyperthermic temperatures. The two types of synthesized UCNP [NaYF4:Yb3+, Er3+] specimens, namely, powdered as-is and embedded into polymer film, were used. The results show that the luminescence of UCNPs placed under the adipose tissue layer is reasonably good sensitive to temperature change and reflects phase transitions of lipids in tissue cells. The most likely, multiple phase transitions are associated with the different components of fat cells such as phospholipids of cell membrane and lipids of fat droplets. In the course of fat cell heating, lipids of fat droplet first transit from a crystalline form to a liquid crystal form and then to a liquid form, which is characterized by much less scattering. The phase transitions of lipids were observed as the changes of the slope of the temperature dependence of UCNP luminescence intensity. The obtained results confirm a high sensitivity of the luminescent UCNPs to the temperature variations within tissues and show a strong potential for providing a controllable tissue thermolysis.

  2. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  3. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  4. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  5. Hot luminescence from gold nanoflowers and its application in high-density optical data storage.

    PubMed

    Zheng, Yunbao; Liu, Haiying; Xiang, Jin; Dai, Qiaofeng; Ouyang, Min; Tie, Shaolong; Lan, Sheng

    2017-04-17

    Gold nanoflowers with feature sizes ranging from several tenths to several hundred nanometers were synthesized by using the one-pot method. They were formed by the self-organization of gold nanoparticles of several nanometers and exhibited broad extinction spectra in the near infrared spectral range. Randomly distributed hot spots originating from the strongly localized modes were generated in gold nanoflowers and their appearances exhibited strong dependences on both the polarization and wavelength of the excitation light. Under the excitation of femtosecond laser pulses, such hot spots emitted efficient hot luminescence spanning the visible to near infrared spectral range. Distinct from the hot luminescence of single hot spots formed on rough gold and silver surfaces, the hot luminescence from gold nanoflowers composed of a large number of hot spots exhibited excitation-intensity dependence quite similar to the emission spectrum. It was demonstrated that the polarization- and wavelength-dependent hot luminescence of gold nanoflowers can be utilized to realize optical data storage with high density and low energy.

  6. Recent developments in luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    van Sark, W. G. J. H. M.

    2014-10-01

    High efficiency photovoltaic devices combine full solar spectrum absorption and effective generation and collection of charge carriers, while commercial success depends on cost effectiveness in manufacturing. Spectrum modification using down shifting has been demonstrated in luminescent solar concentrators (LSCs) since the 1970s, as a cheap alternative for standard c-Si technology. LSCs consist of a highly transparent plastic plate, in which luminescent species are dispersed, which absorb incident light and emit light at a red-shifted wavelength, with high quantum efficiency. Material issues have hampered efficiency improvements, in particular re-absorption of light emitted by luminescent species and stability of these species. In this contribution, approaches are reviewed on minimizing re-absorption, which should allow surpassing the 10% luminescent solar concentrator efficiency barrier.

  7. Selective high capacity adsorption of Congo red, luminescence and antibacterial assessment of two new cadmium(II) coordination polymers

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Nozarian, Kimia; Ghamari, Narges; Mayer, Peter; Motamedi, Hossein

    2018-02-01

    Coordination polymers [CdCl(NCS)L]n (1) and {[Cd2I4(L)2]·H2O·DMF}n (2) (where L = 1, 1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione)) were synthesized and structurally characterized. Compounds 1 and 2 both possess a tetrahedral arrangement with CdS2NCl and CdS2I2 cores, respectively. In these structures, the flexible thione ligands adopt a μ- bridging coordination mode to form 1D chains along the b-axis. The 1D chains are join together by C-H--Cl hydrogen bonds (in 1) and water molecules (in 2) to create a 2D supramolecular framework with an ABAB…packing mode. Remarkably, compounds 1 and 2 in particular polymer 1 exhibit excellent capacity to adsorb Congo red (CR) with high selectivity. The experimental data demonstrate that the mechanism of sorption process can be described by the Elovich and pseudo second order kinetic models for 1 and 2, respectively. Furthermore, the possible mechanism of CR absorption was investigated by UV-Vis and solid state fluorescence spectra for the title polymers. In addition, the antibacterial assessment of these compounds have also been studied.

  8. Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix

    NASA Astrophysics Data System (ADS)

    Gleitsmann, T.; Bernhardt, T. M.; Wöste, L.

    2006-01-01

    Strong visible luminescence is observed from silver clusters generated by femtosecond-laser-induced reduction of silver oxide nanoparticles embedded in a polymeric gelatin matrix. Light emission from the femtosecond-laser-activated matrix areas considerably exceeds the luminescence intensity of similarly activated bare silver oxide nanoparticle films. Optical spectroscopy of the activated polymer films supports the assignment of the emissive properties to the formation of small silver clusters under focused femtosecond-laser irradiation. The size of the photogenerated clusters is found to sensitively depend on the laser exposure time, eventually leading to the formation of areas of metallic silver in the biopolymer matrix. In this case, luminescence can still be observed in the periphery of the metallic silver structures, emphasizing the importance of the organic matrix for the stabilization of the luminescent nanocluster structures at the metal matrix interface.

  9. Upconversion luminescence nanosensor for TNT selective and label-free quantification in the mixture of nitroaromatic explosives.

    PubMed

    Ma, Yingxin; Wang, Leyu

    2014-03-01

    This paper reports a rapid, sensitive, and selective nanosensor for the detection of 2,4,6-trinitrotoluene (TNT) in the mixture aqueous solution of nitroaromatics independent of immunoassay or molecularly imprinted technology and complicated instruments. Despite many strategies including immunoassay and molecularly imprinted technologies been successfully developed for the detection of TNT, it is not easy to differentiate TNT from 2,4,6-trinitrophenol (TNP) due to their very similar chemical structures and properties. In this work, the amine functionalized NaYF4:Yb(3+)/Er(3+) upconversion luminescence nanoparticles (UCNPs) whose excitation (980 nm) and emission (543 nm) wavelength were far from the absorbance bands of other usual interference nitroaromatics including 2,4-dinitrotoluene (DNT), nitrobenzene (NB), and especially TNP, were utilized as the luminescent nanosensors for TNT luminescence detection. To make these UCNPs highly water stable and render the charge transfer from UCNPs to TNT easier, amino groups were introduced onto the surface of the UCNPs by coating a polymer layer of ethylene glycol dimethacrylate (EGDMA) hybridized with 3-aminopropyltriethoxysilane (APTS). After binding with TNT through amino groups on the UCNPs, the naked eye visible green upconversion luminescence of the UCNPs was dramatically quenched and thus a sensitive UC luminescence nanosensor was developed for TNT detection. However, other nitroaromatics including TNP, DNT, and NB have no influence on the green UC luminescence and thus no influence on the TNT detection. The luminescence intensity is negatively proportional to the concentration of TNT in the range of 0.01-9.0 µg/mL with the 3σ limit of detection (LOD) of 9.7 ng/mL. The present studies provide a novel and facile strategy to fabricate the upconversion luminescence sensors with highly selective recognition ability in aqueous media and are desirable for label free analysis of TNT in mixed solution independent of

  10. Coffee Grounds to Multifunctional Quantum Dots: Extreme Nanoenhancers of Polymer Biocomposites.

    PubMed

    Xu, Huan; Xie, Lan; Li, Jinlai; Hakkarainen, Minna

    2017-08-23

    Central to the design and execution of nanocomposite strategies is the invention of polymer-affinitive and multifunctional nanoreinforcements amenable to economically viable processing. Here, a microwave-assisted approach enabled gram-scale fabrication of polymer-affinitive luminescent quantum dots (QDs) from spent coffee grounds. The ultrasmall dimensions (approaching 20 nm), coupled with richness of diverse oxygen functional groups, conferred the zero-dimensional QDs with proper exfoliation and uniform dispersion in poly(l-lactic acid) (PLLA) matrix. The unique optical properties of QDs were inherited by PLLA nanocomposites, giving intensive luminescence and high visible transparency, as well as nearly 100% UV-blocking ratio in the full-UV region at only 0.5 wt % QDs. The strong anchoring of PLLA chains at the nanoscale surfaces of QDs facilitated PLLA crystallization, which was accompanied by substantial improvements in thermomechanical and tensile properties. With 1 wt % QDs, for example, the storage modulus at 100 °C and tensile strength increased over 2500 and 69% compared to those of pure PLLA (4 and 57.3 MPa), respectively. The QD-enabled energy-dissipating and flexibility-imparting mechanisms upon tensile deformation, including the generation of numerous shear bands, crazing, and nanofibrillation, gave an unusual combination of elasticity and extensibility for PLLA nanocomposites. This paves the way to biowaste-derived nanodots with high affinity to polymer for elegant implementation of distinct light management and extreme nanoreinforcements in an ecofriendly manner.

  11. Luminescence nanothermometry

    NASA Astrophysics Data System (ADS)

    Jaque, Daniel; Vetrone, Fiorenzo

    2012-07-01

    The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed.The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed. This work was supported by the Universidad Autónoma de Madrid and Comunidad Autónoma de Madrid (Project S2009/MAT-1756), by the Spanish Ministerio de Educacion y Ciencia (MAT2010-16161) and by Caja Madrid Foundation.

  12. Luminescent microbanding in speleothems: High-resolution chronology and paleoclimate

    NASA Astrophysics Data System (ADS)

    Shopov, Y. Y.; Ford, D. C.; Schwarcz, H. P.

    1994-05-01

    When illuminated by ultraviolet light, many calcite speleothems (stalagmites, stalactites, flowstones) display luminescence caused by the presence of organic (humic) substances occluded in the calcite. The amplitude of luminescence varies in a banded pattern parallel to growth layering. Through 14C and thermal ionization mass spectrometry uranium-series dating, we show that cyclical oscillations in the luminescence have periodicities ranging from a few days to ≥105 yr. A well-defined annual cycle is present in many vadose-zone speleothems and can be used to define the chronology of short-term events. This cycle is probably a response to hydrological events in the recharge to the cave. Longer term oscillations are inferred to be controlled by climate, through its effect on organic activity in the overlying soil.

  13. Flexible, highly efficient all-polymer solar cells

    PubMed Central

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.

    2015-01-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices. PMID:26449658

  14. A simple strategy for synthesizing highly luminescent carbon nanodots and application as effective down-shifting layers.

    PubMed

    Han, Xugen; Zhong, Sihua; Pan, Wei; Shen, Wenzhong

    2015-02-13

    We propose a novel strategy to prepare highly luminescent carbon nanodots (C-dots) by employing a hydrothermal method with citric acid as the carbon source and ethylenediamine as the nitrogen source, together with adding moderate ammonia water (AW) to achieve both appropriate inner structure and excellent N passivation. The effect of pH value and AW amount on the luminescence properties has been thoroughly investigated. The photoluminescence quantum yield of the resultant C-dots reaches as high as 84.8%, which is of 10.56% higher than that of the C-dots synthesized in the absence of AW in the reaction precursors. We have further combined the highest luminescent C-dots with polyvinyl alcohol to form luminescent down-shifting layers on silicon nanowire solar cells. An effective enhancement of short-circuit current density has been realized and the contribution of the down-shifting has been extracted quantitatively from the deterioration of surface reflectance and the gain of the optical absorption redistribution by means of a theoretical model on external quantum efficiency analysis.

  15. Method Of Signal Amplification In Multi-Chromophore Luminescence Sensors

    DOEpatents

    Levitsky, Igor A.; Krivoshlykov, Sergei G.

    2004-02-03

    A fluorescence-based method for highly sensitive and selective detection of analyte molecules is proposed. The method employs the energy transfer between two or more fluorescent chromophores in a carefully selected polymer matrix. In one preferred embodiment, signal amplification has been achieved in the fluorescent sensing of dimethyl methylphosphonate (DMMP) using two dyes, 3-aminofluoranthene (AM) and Nile Red (NR), in a hydrogen bond acidic polymer matrix. The selected polymer matrix quenches the fluorescence of both dyes and shifts dye emission and absorption spectra relative to more inert matrices. Upon DMMP sorption, the AM fluorescence shifts to the red at the same time the NR absorption shifts to the blue, resulting in better band overlap and increased energy transfer between chromophores. In another preferred embodiment, the sensitive material is incorporated into an optical fiber system enabling efficient excitation of the dye and collecting the fluorescent signal form the sensitive material on the remote end of the system. The proposed method can be applied to multichromophore luminescence sensor systems incorporating N-chromophores leading to N-fold signal amplification and improved selectivity. The method can be used in all applications where highly sensitive detection of basic gases, such as dimethyl methylphosphonate (DMMP), Sarin, Soman and other chemical warfare agents having basic properties, is required, including environmental monitoring, chemical industry and medicine.

  16. Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides

    PubMed Central

    Park, Bong Je; Hong, A-Ra; Park, Suntak; Kyung, Ki-Uk; Lee, Kwangyeol; Seong Jang, Ho

    2017-01-01

    Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb3+ → Tm3+ → Gd3+ → Eu3+. The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443–900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser. PMID:28368021

  17. Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides

    NASA Astrophysics Data System (ADS)

    Park, Bong Je; Hong, A.-Ra; Park, Suntak; Kyung, Ki-Uk; Lee, Kwangyeol; Seong Jang, Ho

    2017-04-01

    Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb3+ → Tm3+ → Gd3+ → Eu3+. The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443-900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser.

  18. Synthesis, crystal structures and luminescent properties of two 4 d-4 f Ln-Ag heterometallic coordination polymers based on anion template

    NASA Astrophysics Data System (ADS)

    Fan, Le-Qing; Chen, Yuan; Wu, Ji-Huai; Huang, Yun-Fang

    2011-04-01

    Two new 4 d-4 f Ln-Ag heterometallic coordination polymers, {[ Ln3Ag 5(IN) 10(H 2O) 7]·4(ClO 4)·4(H 2O)} n ( Ln=Eu ( 1) and Sm ( 2), HIN=isonicotinic acid), have been synthesized under hydrothermal conditions by reactions of Ln2O 3, AgNO 3, HIN and HClO 4, and characterized by elemental analysis, IR, thermal analysis and single-crystal X-ray diffraction. It is proved that HClO 4 not only adjusts the pH value of the reaction mixture, but also acts as anion template. The structure determination reveals that 1 and 2 are isostructural and feature a novel two-dimensional (2D) layered hetrometallic structure constructed from one-dimensional Ln-carboxylate chains and pillared Ag(IN) 2 units. The 2D layers are further interlinked through Ag⋯Ag and Ag⋯O(ClO 4-) multiple weak interactions, which form a rare Ag-ClO 4 ribbon in lanthanide-transition metal coordination polymers, to give rise to a three-dimensional supramolecular architecture. Moreover, the luminescent properties of these two compounds have also been investigated at room temperature.

  19. Surface grafting of zwitterionic polymers onto dye doped AIE-active luminescent silica nanoparticles through surface-initiated ATRP for biological imaging applications

    NASA Astrophysics Data System (ADS)

    Mao, Liucheng; Liu, Xinhua; Liu, Meiying; Huang, Long; Xu, Dazhuang; Jiang, Ruming; Huang, Qiang; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-10-01

    Aggregation-induced emission (AIE) dyes have recently been intensively explored for biological imaging applications owing to their outstanding optical feature as compared with conventional organic dyes. The AIE-active luminescent silica nanoparticles (LSNPs) are expected to combine the advantages both of silica nanoparticles and AIE-active dyes. Although the AIE-active LSNPs have been prepared previously, surface modification of these AIE-active LSNPs with functional polymers has not been reported thus far. In this work, we reported a rather facile and general strategy for preparation of polymers functionalized AIE-active LSNPs through the surface-initiated atom transfer radical polymerization (ATRP). The AIE-active LSNPs were fabricated via direct encapsulation of AIE-active dye into silica nanoparticles through a non-covalent modified Stöber method. The ATRP initiator was subsequently immobilized onto these AIE-active LSNPs through amidation reaction between 3-aminopropyl-triethoxy-silane and 2-bromoisobutyryl bromide. Finally, the zwitterionic 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) was selected as model monomer and grafted onto MSNs through ATRP. The characterization results suggested that LSNPs can be successfully modified with poly(MPC) through surface-initiated ATRP. The biological evaluation results demonstrated that the final SNPs-AIE-pMPC composites possess low cytotoxicity, desirable optical properties and great potential for biological imaging. Taken together, we demonstrated that AIE-active LSNPs can be fabricated and surface modified with functional polymers to endow novel functions and better performance for biomedical applications. More importantly, this strategy developed in this work could also be extended for fabrication of many other LSNPs polymer composites owing to the good monomer adoptability of ATRP.

  20. High-Precision Pinpointing of Luminescent Targets in Encoder-Assisted Scanning Microscopy Allowing High-Speed Quantitative Analysis.

    PubMed

    Zheng, Xianlin; Lu, Yiqing; Zhao, Jiangbo; Zhang, Yuhai; Ren, Wei; Liu, Deming; Lu, Jie; Piper, James A; Leif, Robert C; Liu, Xiaogang; Jin, Dayong

    2016-01-19

    Compared with routine microscopy imaging of a few analytes at a time, rapid scanning through the whole sample area of a microscope slide to locate every single target object offers many advantages in terms of simplicity, speed, throughput, and potential for robust quantitative analysis. Existing techniques that accommodate solid-phase samples incorporating individual micrometer-sized targets generally rely on digital microscopy and image analysis, with intrinsically low throughput and reliability. Here, we report an advanced on-the-fly stage scanning method to achieve high-precision target location across the whole slide. By integrating X- and Y-axis linear encoders to a motorized stage as the virtual "grids" that provide real-time positional references, we demonstrate an orthogonal scanning automated microscopy (OSAM) technique which can search a coverslip area of 50 × 24 mm(2) in just 5.3 min and locate individual 15 μm lanthanide luminescent microspheres with standard deviations of 1.38 and 1.75 μm in X and Y directions. Alongside implementation of an autofocus unit that compensates the tilt of a slide in the Z-axis in real time, we increase the luminescence detection efficiency by 35% with an improved coefficient of variation. We demonstrate the capability of advanced OSAM for robust quantification of luminescence intensities and lifetimes for a variety of micrometer-scale luminescent targets, specifically single down-shifting and upconversion microspheres, crystalline microplates, and color-barcoded microrods, as well as quantitative suspension array assays of biotinylated-DNA functionalized upconversion nanoparticles.

  1. Video luminescent barometry - The induction period

    NASA Technical Reports Server (NTRS)

    Uibel, Rory H.; Khalil, Gamal; Gouterman, Martin; Gallery, Jean; Callis, James B.

    1993-01-01

    Video monitoring of oxygen quenching of the photoluminescence of platinum octaethylporphyrin (PtOEP) in silicone polymer resin may be used to measure pressure distribution over an airfoil. A continuous increase of the luminescence intensity of PtOEP on exposure to the exciting light is known as the induction effect. The effect of several factors on PtOEP photoluminescence and the induction effect was investigated. The experimental apparatus is described and results are presented. It was observed that the relative induction amplitude and induction time increase at higher oxygen pressure and with thicker films. These observations may be explained if the singlet oxygen produced by oxygen quenching is consumed by the polymer and is therefore unavailable for further quenching. Researchers using this method for measuring pressure distribution on airfoil surfaces should be aware of the induction effect and its implications.

  2. Salt-Doped Polymer Light-Emitting Devices

    NASA Astrophysics Data System (ADS)

    Gautier, Bathilde

    Polymer Light-Emitting Electrochemical Cells (PLECs) are solid state devices based on the in situ electrochemical doping of the luminescent polymer and the formation of a p-n junction where light is emitted upon the application of a bias current or voltage. PLECs answer the drawbacks of polymer light-emitting diodes as they do not require an ultra-thin active layer nor are they reliant on low work function cathode materials that are air unstable. However, because of the dynamic nature of the doping, they suffer from slow response times and poor stability over time. Frozen-junction PLECs offer a solution to these drawbacks, yet they are impractical due to their sub-ambient operation temperature requirement. Our work presented henceforth aims to achieve room temperature frozen-junction PLECS. In order to do that we removed the ion solvating/transporting polymer from the active layer, resulting in a luminescent polymer combined solely with a salt sandwiched between an ITO electrode and an aluminum electrode. The resulting device was not expected to operate like a PLEC due to the absence of an ion-solvating and ion-transporting medium. However, we discovered that the polymer/salt devices could be activated by applying a large voltage bias, resulting in much higher current and luminance. More important, the activated state is quasi static. Devices based on the well-known orange-emitting polymer MEH-PPV displayed a luminance storage half-life of 150 hours when activated by forward bias (ITO biased positively with respect to the aluminum) and 200 hours when activated by reverse bias. More remarkable yet, devices based on a green co-polymer displayed no notable decay in current density or luminance even after being stored for 1200 hours at room temperature! PL imaging under UV excitation demonstrates the presence of doping. These devices are described herein along with an explanation of their operating mechanisms.

  3. High-resolution Thermal Micro-imaging Using Europium Chelate Luminescent Coatings

    DOE PAGES

    Benseman, Timothy M.; Hao, Yang; Vlasko-Vlasov, Vitalii K.; ...

    2017-04-16

    Europium thenoyltrifluoroacentonate (EuTFC) has an optical luminescence line at 612 nm, whose activation efficiency decreases strongly with temperature. If a sample coated with a thin film of this material is micro-imaged, the 612 nm luminescent response intensity may be converted into a direct map of sample surface temperature.

  4. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xun; Liu, Lang; College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022

    2013-10-15

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this casemore » results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.« less

  5. Evaluation of one-step luminescent cyanoacrylate fuming.

    PubMed

    Khuu, Alicia; Chadwick, Scott; Spindler, Xanthe; Lam, Rolanda; Moret, Sébastien; Roux, Claude

    2016-06-01

    One-step luminescent cyanoacrylates have recently been introduced as an alternative to the conventional cyanoacrylate fuming methods. These new techniques do not require the application of a luminescent post-treatment in order to enhance cyanoacrylate-developed fingermarks. In this study, three one-step polymer cyanoacrylates: CN Yellow Crystals (Aneval Inc.), PolyCyano UV (Foster+Freeman Ltd.) and PECA Multiband (BVDA), and one monomer cyanoacrylate: Lumikit™ (Crime Scene Technology), were evaluated against a conventional two-step cyanoacrylate fuming method (Cyanobloom (Foster+Freeman Ltd.) with rhodamine 6G stain). The manufacturers' recommended conditions or conditions compatible with the MVC™ 1000/D (Foster+Freeman Ltd.) were assessed with fingermarks aged for up to 8 weeks on non-porous and semi-porous substrates. Under white light, Cyanobloom generally gave better development than the one-step treatments across the substrates. Similarly when viewed under the respective luminescent conditions, Cyanobloom with rhodamine 6G stain resulted in improved contrast against the one-step treatments except on polystyrene, where PolyCyano UV and PECA Multiband gave better visualisation. Rhodamine 6G post-treatment of one-step samples did not significantly enhance the contrast of any of the one-step treatments against Cyanobloom/rhodamine 6G-treated samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Material for a luminescent solar concentrator

    DOEpatents

    Andrews, L.J.

    1984-01-01

    A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

  7. An alkaline one-pot reaction to synthesize luminescent Eu-BTC MOF nanorods, highly pure and water-insoluble, under room conditions

    NASA Astrophysics Data System (ADS)

    Medina-Velazquez, D. Y.; Alejandre-Zuniga, B. Y.; Loera-Serna, S.; Ortiz, E. M.; Morales-Ramirez, A. de J.; Garfias-Garcia, E.; Garcia-Murillo, A.; Falcony, C.

    2016-12-01

    The increasing demand for optoelectronic devices requires the development of luminescent materials with high luminescence efficiency and low energy demands, and the metalorganic frameworks (MOFs) with lanthanides ions offer great potential in this area. The metalorganic materials provide properties of flexibility, low density, low-cost methods of synthesis, and insolubility in water, which gives them an advantage over traditional phosphors. In this study, a benzenetricarboxylate ligand (BTC) with a Eu3+ MOF was synthesized, and its structural and luminescent properties were measured. The metalorganic compound was generated in a one-pot reaction from europium nitrate and trimesic acid precursors. Through characterization by X-ray diffraction powder, infrared spectroscopy, SEM structural characterization, and luminescent spectroscopy, the formation of Europium benzenetricarboxylate (Eu-BTC) MOF nanorods was tested and the calculated value was in the range of 30-60 nm. A red luminescent emission with high intensity was observed for all the procedures.

  8. Detection of surface impurity phases in high T.sub.C superconductors using thermally stimulated luminescence

    DOEpatents

    Cooke, D. Wayne; Jahan, Muhammad S.

    1989-01-01

    Detection of surface impurity phases in high-temperature superconducting materials. Thermally stimulated luminescence has been found to occur in insulating impurity phases which commonly exist in high-temperature superconducting materials. The present invention is sensitive to impurity phases occurring at a level of less than 1% with a probe depth of about 1 .mu.m which is the region of interest for many superconductivity applications. Spectroscopic and spatial resolution of the emitted light from a sample permits identification and location of the impurity species. Absence of luminescence, and thus of insulating phases, can be correlated with low values of rf surface resistance.

  9. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li

    2013-09-15

    Three new metal-organic coordination polymers [Co(4-bbc){sub 2}(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H{sub 2}O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H{sub 2}pdc=3,5-pyridinedicarboxylic acid, 1,4-H{sub 2}ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co{sup II} ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3{sup 2}·4·5·6{sup 2}·7{sup 4}) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphicalmore » abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated.« less

  10. High pressure luminescence spectra of CaMoO4:Ln3+ (Ln = Pr, Tb)

    NASA Astrophysics Data System (ADS)

    Mahlik, S.; Behrendt, M.; Grinberg, M.; Cavalli, E.; Bettinelli, M.

    2013-03-01

    Photoluminescence spectra and luminescence kinetics of pure CaMoO4 and CaMoO4 doped with Ln3+ (Ln = Pr or Tb) are presented. The spectra were obtained at high hydrostatic pressure up to 240 kbar applied in a diamond anvil cell. At ambient pressure undoped and doped samples exhibit a broad band emission extending between 380 and 700 nm with a maximum at 520 nm attributed to the {{MoO}}_{4}^{2-} luminescence. CaMoO4 doped with Pr3+ or Tb3+ additionally yields narrow emission lines related to f-f transitions. The undoped CaMoO4 crystal was characterized by a strong MoO{}_{4}^{2-} emission up to 240 kbar. In the cases of CaMoO4:Pr3+ and CaMoO4:Tb3+, high hydrostatic pressure caused quenching of Pr3+ and Tb3+ emission, and this effect was accompanied by a strong shortening of the luminescence lifetime. In doped samples, CaMoO4:Pr3+ and CaMoO4:Tb3+, quenching of the emission band attributed to {{MoO}}_{4}^{2-} was also observed, and at pressure above 130 kbar this luminescence was totally quenched. The effects mentioned above were related to the influence of the praseodymium (terbium) trapped exciton PTE (ITE—impurity trapped exciton) on the efficiency of the Pr3+ (Tb3+) and {{MoO}}_{4}^{2-} emissions.

  11. Polymer Brushes under High Load

    PubMed Central

    Balko, Suzanne M.; Kreer, Torsten; Costanzo, Philip J.; Patten, Tim E.; Johner, Albert; Kuhl, Tonya L.; Marques, Carlos M.

    2013-01-01

    Polymer coatings are frequently used to provide repulsive forces between surfaces in solution. After 25 years of design and study, a quantitative model to explain and predict repulsion under strong compression is still lacking. Here, we combine experiments, simulations, and theory to study polymer coatings under high loads and demonstrate a validated model for the repulsive forces, proposing that this universal behavior can be predicted from the polymer solution properties. PMID:23516470

  12. Synthesis and application of nanohybrids based on upconverting nanoparticles and polymers.

    PubMed

    Cheng, Ziyong; Lin, Jun

    2015-05-01

    Lanthanide-doped upconversion nanoparticles (UCNPs) have been an emerging and exciting research field in recent years due to their unique luminescent properties of converting near-infrared light to shorter wavelength radiation. UCNPs offer excellent prospects in luminescent labeling, displays, bioimaging, bioassays, drug delivery, sensors, and anticounterfeiting applications. Along with the abundant studies and rapid progress in this area, UCNPs are promising to be a new class of luminescent probe owing to their special advantages over the conventional organic dyes and quantum dots. Among them, polymers play an important role to improve properties or endow new function of UCNPs such as for matrix materials, water solubility, linking active targeting molecules, biocompatibility, and stimuli-responsive behavior. This article briefly reviews the compositions, optical mechanisms, architectures of upconversion nanocrystals and highlights the works on various functional UCNPs/polymer nanohybrids as well as many new interesting fruits in applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A family of entangled coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and auxiliary N-donor ligands: Luminescent sensing

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Bai, Chao; Hu, Huai-Ming; Yuan, Fei; Xue, Gang-Lin

    2017-05-01

    Eight Zn(II)-based coordination polymers, namely, [Zn2L2(2,2'-bipy)]n·nH2O (1), [Zn2L2(phen)]n·nH2O (2), [ZnL(phen)(H2O)]n (3), [Zn3L3(4,4'-bipy)]n (4), [Zn2L2(4,4'-bipy)2]n [Zn2L2(H2O)2]n·2nH2O (5), [Zn4L4(bpp)2]n (6), [ZnL(bbi)0.5]n (7), [ZnL(bpz)]n (8) (H2L=4,4'-{[1,2-phenylenebis-(methylene)]bis(oxy)}dibenzoic acid, 2,2'-bipy =2,2'-bipyridine, phen =1,10-phenanthroline, 4,4'-bpy=4,4'-bipyridine, bpp =1,3-bis(4-pyridyl)propane, bbi=1,4-bis(imidazol-1-yl)butane, bpz=3,3‧,5,5‧-tetramethyl-4,4‧-bipyrazole), have been hydrothermally synthesized and structurally characterized. 1-8 display various coordination motifs with different entangled forms and conformations due to the effect of the assistant N-donor ligands. The photoluminescent properties of compounds 1-8 in solid state were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for Cu2+ cations and CrO42- anions, as well as detection ability for the different organic solvents and nitro explosives. These results indicated that it could be utilized as a multi-responsive luminescent sensor. Furthermore, compound 3 also shows good chemical resistance to both acidity and alkalinity solutions with pH ranging from 2 to 13. Thus, multi-photofunctionality and fluorescent response to pH have been combined in the 3, which is the first example in the Zn-based hybrid materials.

  14. Employing linear tetranuclear [Zn4(COO)4(OH)2] clusters as building subunits to construct a new Zn(II) coordination polymer with tunable luminescent properties

    NASA Astrophysics Data System (ADS)

    Li, Wu-Wu; Zhang, Zun-Ting

    2016-02-01

    A new Zn(II) coordination polymer, [Zn2(btc) (biimpy) (OH)]n (1 H3btc = 1,3,5-benzenetricarboxylic acid, biimpy = 2,6-bis(1-imdazoly)pyridine) has been successfully synthesized and characterized by elemental analysis, powder single crystal X-ray diffraction analyses. Compound 1 features a 3D framework employing linear tetranuclear [Zn4(COO)4(OH)2] cluster as building subunits. Topological analysis reveals it represents a (3,10)-connected structural topology by viewing btc3-, linear tetranuclear clusters and biimpy as 3-connected nodes, 10-connected nodes, linear linkers, respectively. Moreover, the thermal stability and luminescent property of compound 1 have been well investigated.

  15. Use of a highly sensitive two-dimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves

    PubMed Central

    Flor-Henry, Michel; McCabe, Tulene C; de Bruxelles, Guy L; Roberts, Michael R

    2004-01-01

    Background All living organisms emit spontaneous low-level bioluminescence, which can be increased in response to stress. Methods for imaging this ultra-weak luminescence have previously been limited by the sensitivity of the detection systems used. Results We developed a novel configuration of a cooled charge-coupled device (CCD) for 2-dimensional imaging of light emission from biological material. In this study, we imaged photon emission from plant leaves. The equipment allowed short integration times for image acquisition, providing high resolution spatial and temporal information on bioluminescence. We were able to carry out time course imaging of both delayed chlorophyll fluorescence from whole leaves, and of low level wound-induced luminescence that we showed to be localised to sites of tissue damage. We found that wound-induced luminescence was chlorophyll-dependent and was enhanced at higher temperatures. Conclusions The data gathered on plant bioluminescence illustrate that the equipment described here represents an improvement in 2-dimensional luminescence imaging technology. Using this system, we identify chlorophyll as the origin of wound-induced luminescence from leaves. PMID:15550176

  16. Design and synthesis of two luminescent Zn(II)-based coordination polymers with different structures regulated by different solvent system

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Ping; Wen, Gui-Lin; Liao, Yi; Wang, Jun; Lu, Lu; Wu, Yu; Xie, Bin

    2016-08-01

    Two new coordination polymers (CPs) [Zn(HL)(H2O)]n (1) and [Zn3(L)2(H2O)2]n·(H2O)n (2), based on a multifunctional ligand combined carboxylate groups and a nitrogen donor group 5-(6-carboxypyridin-2-yl)isophthalic acid (H3L), have been synthesized under different solvent media and fully characterized by powder X-ray diffraction (PXRD), infrared (IR) spectra, elemental analyses (EA) and thermogravimetric analyses (TGA). Single-crystal X-ray diffraction analysis reveals that 1 shows 1D dimeric chain structure, while 2 gives a 3D dense packing framework. Topology analysis illustrates that 2 can be simplified as a 3-nodal net (4, 5, 6-connected net) with the point symbol of {44·62}{46·64}2{48·66·8}. In addition, solid state luminescent properties of two complexes have also been studied in detail, which may act as the potential optical materials.

  17. Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis

    NASA Astrophysics Data System (ADS)

    Bhunia, Susanta Kumar; Nandi, Sukhendu; Shikler, Rafi; Jelinek, Raz

    2016-02-01

    Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies.Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies. Electronic supplementary information (ESI

  18. Self-organized, highly luminescent CdSe nanorod-DNA complexes.

    PubMed

    Artemyev, Mikhail; Kisiel, Dmitry; Abmiotko, Sergey; Antipina, Maria N; Khomutov, Gennady B; Kislov, Vladimir V; Rakhnyanskaya, Anna A

    2004-09-01

    DNA molecules are useful building blocks and nanotemplates for controllable fabrication of various bioinorganic nanostructures due to their unique physical-chemical properties and recognition capabilities and the synthetic availability of desired nucleotide sequences and length. We have synthesized novel DNA complexes with positively charged, highly luminescent CdSe nanorods that can be self-organized into filamentary, netlike, or spheroidal nanostructures. DNA-CdSe-nanorod filaments possess strongly linearly polarized photoluminescence due to the unidirectional orientation of nanorods along the filaments. Copyright 2004 American Chemical Society

  19. RESEARCH ON THE ELECTRONIC AND OPTICAL PROPERTIES OF POLYMER AND OTHER ORGANIC MOLECULAR THIN FILMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ALEXEI G. VITUKHNOVSKY; IGOR I. SOBELMAN - RUSSIAN ACADEMY OF SCIENCES

    1995-09-06

    Optical properties of highly ordered films of poly(p-phenylene) (PPP) on different substrates, thin films of mixtures of conjugated polymers, of fullerene and its composition with polymers, molecular J-aggregates of cyanine dyes in frozen matrices have been studied within the framework of the Agreement. Procedures of preparation of high-quality vacuum deposited PPP films on different substrates (ITO, Si, GaAs and etc.) were developed. Using time-correlated single photon counting technique and fluorescence spectroscopy the high quality of PPP films has been confirmed. Dependence of structure and optical properties on the conditions of preparation were investigated. The fluorescence lifetime and spectra of highlymore » oriented vacuum deposited PPP films were studied as a function of the degree of polymerization. It was shown for the first time that the maximum fluorescence quantum yield is achieved for the chain length approximately equal to 35 monomer units. The selective excitation of luminescence of thin films of PPP was performed in the temperature range from 5 to 300 K. The total intensity of luminescence monotonically decreases with decreasing temperature. Conditions of preparation of highly cristallyne fullerene C{sub 60} films by the method of vacuum deposition were found. Composites of C{sub 60} with conjugated polymers PPV and polyacetylene (PA) were prepared. The results on fluorescence quenching, IR and resonant Raman spectroscopy are consistent with earlier reported ultrafast photoinduced electron transfer from PPV to C{sub 60} and show that the electron transfer is absent in the case of the PA-C{sub 60} composition. Strong quenching of PPV fluorescence was observed in the PPV-PA blends. The electron transfer from PPV to PA can be considered as one of the possible mechanisms of this quenching. The dynamics of photoexcitations in different types of J-aggregates of the carbocyanine dye was studied at different temperatures in frozen matrices. The

  20. Elevated-temperature luminescence measurements to improve spatial resolution

    NASA Astrophysics Data System (ADS)

    Pluska, Mariusz; Czerwinski, Andrzej

    2018-01-01

    Various branches of applied physics use luminescence based methods to investigate light-emitting specimens with high spatial resolution. A key problem is that luminescence signals lack all the advantages of high locality (i.e. of high spatial resolution) when structures with strong built-in electric field are measured. Such fields exist intentionally in most photonic structures, and occur unintentionally in many other materials. In this case, as a result of beam-induced current generation and its outflow, information that indicates irregularities, nonuniformities and inhomogeneities, such as defects, is lost. We show that to avoid nonlocality and enable truly local luminescence measurements, an elevated measurement temperature as high as 350 K (or even higher) is, perhaps surprisingly, advantageous. This is in contrast to a widely used approach, where cryogenic temperatures, or at least room temperature, are recommended. The elevated temperature of a specimen, together with the current outflow being limited by focused ion beam (FIB) milling, is shown to improve the spatial resolution of luminescence measurements greatly. All conclusions drawn using the example of cathodoluminescence are useful for other luminescence techniques.

  1. High performance, durable polymers including poly(phenylene)

    DOEpatents

    Fujimoto, Cy; Pratt, Harry; Anderson, Travis Mark

    2017-02-28

    The present invention relates to functionalized polymers including a poly(phenylene) structure. In some embodiments, the polymers and copolymers of the invention include a highly localized concentration of acidic moieties, which facilitate proton transport and conduction through networks formed from these polymers. In addition, the polymers can include functional moieties, such as electron-withdrawing moieties, to protect the polymeric backbone, thereby extending its durability. Such enhanced proton transport and durability can be beneficial for any high performance platform that employs proton exchange polymeric membranes, such as in fuel cells or flow batteries.

  2. Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting.

    PubMed

    Kong, Lingqing; Zhang, Lin; Meng, Zhaohui; Xu, Chuan; Lin, Naibo; Liu, Xiang-Yang

    2018-08-03

    Although quantum dots (QDs) have remarkable potential application in flexible light emitting diodes (LED), the loss of solvent-protected QDs leads to low quantum yield (QY) and poor stability, severely restricting the development. Flexible QD LEDs (Q-LEDs) with three primary colors were fabricated by mixing CdS/ZnS, CdSe@ZnS/ZnS, and CdSe/CdS QDs with polydimethylsiloxane (PDMS) by in situ hydrosilylation based surface manipulation strategy, which endows the device with highly ultrastable and luminescent performance. The surface manipulation strategy mainly includes the control of solvent dosage, purification times of QDs, concentration of QDs in PDMS, and oxidation on the preparation process of the QDs and PDMS composites. The highest QY of CdSe@ZnS/ZnS-PDMS composite is 82.03%, higher than the QY (80%) of the QD solution. After UV bleaching, organic solvents (acetone, ethanol and water), and heating treatment, the QYs of the QDs and PDMS maintain a high value, manifesting their good stability. Q-LED hybrid light-emitting devices were further fabricated by a molding technique demonstrating satisfied current and thermal stability. Flexible Q-LEDs can be expended to other shapes, such as fibers and blocks, indicating the huge potential of QD-polymer composites for light sources and displays etc.

  3. Chlorination of low-band-gap polymers: Toward high-performance polymer solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Daize; Wang, Huan; Chen, Hui

    Here, halogenation is an effective way to tune the energy levels of organic semiconducting materials. To date, fluorination of organic semiconducting materials to fabricate polymer solar cells (PSCs) has been used far more than chlorination; however, fluorine exchange reactions suffer from low yields and the resulting fluorinated polymer always comes with higher price, which will greatly hinder their commercial applications. Herein, we designed and synthesized a series of chlorinated donor-acceptor (D-A) type polymers, in which benzo[1,2-b:4,5- b]dithiophene and chlorinated benzothiadiazole units are connected by thiophene π-bridges with an asymmetric alkyl chain. These chlorinated polymers showed deep highest occupied molecular orbitalmore » energy levels, which promoted the efficiency of their corresponding PSCs by increasing the device open circuit voltage. The asymmetric alkyl chain on the thiophene moieties gave the final polymer sufficient solubility for solution processing and strong π-π stacking in films allowed for high mobility. Although the introduction of a large chlorine atom increased the torsion angle of the polymer backbone, the chlorinated polymers maintained high crystallinity and a favorable backbone orientation in the blended films. These factors contributed to respectable device performances from thick-film devices, which showed PCEs as high as 9.11% for a 250 nm-thick active layer. These results demonstrate that chlorination is a promising method to fine tune the energy levels of conjugated polymers, and chlorinated benzothiadiazole may be a versatile building block in materials for efficient solar energy conversion.« less

  4. Chlorination of low-band-gap polymers: Toward high-performance polymer solar cells

    DOE PAGES

    Mo, Daize; Wang, Huan; Chen, Hui; ...

    2017-03-08

    Here, halogenation is an effective way to tune the energy levels of organic semiconducting materials. To date, fluorination of organic semiconducting materials to fabricate polymer solar cells (PSCs) has been used far more than chlorination; however, fluorine exchange reactions suffer from low yields and the resulting fluorinated polymer always comes with higher price, which will greatly hinder their commercial applications. Herein, we designed and synthesized a series of chlorinated donor-acceptor (D-A) type polymers, in which benzo[1,2-b:4,5- b]dithiophene and chlorinated benzothiadiazole units are connected by thiophene π-bridges with an asymmetric alkyl chain. These chlorinated polymers showed deep highest occupied molecular orbitalmore » energy levels, which promoted the efficiency of their corresponding PSCs by increasing the device open circuit voltage. The asymmetric alkyl chain on the thiophene moieties gave the final polymer sufficient solubility for solution processing and strong π-π stacking in films allowed for high mobility. Although the introduction of a large chlorine atom increased the torsion angle of the polymer backbone, the chlorinated polymers maintained high crystallinity and a favorable backbone orientation in the blended films. These factors contributed to respectable device performances from thick-film devices, which showed PCEs as high as 9.11% for a 250 nm-thick active layer. These results demonstrate that chlorination is a promising method to fine tune the energy levels of conjugated polymers, and chlorinated benzothiadiazole may be a versatile building block in materials for efficient solar energy conversion.« less

  5. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth.

    PubMed

    Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark

    2014-06-01

    The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development of a novel europium complex-based luminescent probe for time-gated luminescence imaging of hypochlorous acid in living samples

    NASA Astrophysics Data System (ADS)

    Liu, Xiangli; Guo, Lianying; Song, Bo; Tang, Zhixin; Yuan, Jingli

    2017-03-01

    Luminescent lanthanide complexes are key reagents used in the time-gated luminescence bioassay technique, but functional lanthanide complexes that can act as luminescent probes for specifically responding to analytes are very limited. In this work, we designed and synthesized a novel Eu3+ complex-based luminescence probe for hypochlorous acid (HOCl), NPPTTA-Eu3+, by using terpyridine polyacid-Eu3+, dinitrophenyl, and hydrazine as luminophore, quencher and HOCl-recognizer moieties, respectively. In the absence of HOCl, the probe is non-luminescent due to the strong luminescence quenching of the dinitrophenyl group in the complex. However, upon reaction with HOCl, the dinitrophenyl moiety is rapidly cleaved from the probe, which affords a strongly luminescent Eu3+ complex CPTTA-Eu3+, accompanied by a ˜900-fold luminescence enhancement with a long luminescence lifetime of 1.41 ms. This unique luminescence response of NPPTTA-Eu3+ to HOCl allowed NPPTTA-Eu3+ to be conveniently used as a probe for highly selective and sensitive detection of HOCl under the time-gated luminescence mode. In addition, by loading NPPTTA-Eu3+ into RAW 264.7 macrophage cells and Daphnia magna, the generation of endogenous HOCl in RAW 264.7 cells and the uptake of exogenous HOCl by Daphnia magna were successfully imaged on a true-color time-gated luminescence microscope. The results demonstrated the practical applicability of NPPTTA-Eu3+ as an efficient probe for time-gated luminescence imaging of HOCl in living cells and organisms.

  7. High-performance polymer photovoltaic cells and photodetectors

    NASA Astrophysics Data System (ADS)

    Yu, Gang; Srdanov, Gordana; Wang, Hailiang; Cao, Yong; Heeger, Alan J.

    2001-02-01

    Polymer photovoltaic cells and photodetectors have passed their infancy and become mature technologies. The energy conversion efficiency of polymer photovoltaic cells have been improved to over 4.1% (500 nm, 10 mW/cm2). Such high efficiency polymer photovoltaic cells are promising for many applications including e-papers, e-books and smart- windows. The development of polymer photodetectors is even faster. The performance parameters have been improved to the level meeting all specifications for practical applications. The polymer photodetectors are of high photosensitivity (approximately 0.2 - 0.3 A/Watt in visible and UV), low dark current (0.1 - 1 nA/cm2), large dynamic range (> 8 orders of magnitude), linear intensity dependence, low noise level and fast response time (to nanosecond time domain). These devices show long shelf and operation lives. The advantages of low manufacturing cost, large detection area, and easy hybridization and integration with other electronic or optical components make the polymer photodetectors promising for a variety of applications including chemical/biomedical analysis, full-color digital image sensing and high energy radiation detection.

  8. Water-Soluble Polymers with Strong Photoluminescence through an Eco-Friendly and Low-Cost Route.

    PubMed

    Guo, Zhaoyan; Ru, Yue; Song, Wenbo; Liu, Zhenjie; Zhang, Xiaohong; Qiao, Jinliang

    2017-07-01

    Photoluminescence (PL) of nonconjugated polymers brings a favorable opportunity for low-cost and nontoxic luminescent materials, while most of them still exhibit relatively weak emission. Strong PL from poly[(maleic anhydride)-alt-(vinyl acetate)] (PMV) from low-cost monomer has been found in organic solvents, yet the necessity of noxious solvents would hinder its practical applications. Herein, through a novel, eco-friendly, and one-step route, PMV-derived PL polymers can be fabricated with the highest quantum yield of 87% among water-soluble nonconjugated PL polymers ever reported. These PMV-derived polymers emit strong blue emission in both solutions and solids, and can be transformed into red-emission agents easily. These PL polymers exhibit application potentials in light-conversion agricultural films. It is assumed that this work not only puts forward a convenient preparation routine for nonconjugated polymers with high PL, but also provides an industrial application possibility for them. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cooperative loading of multisite receptors with lanthanide containers: an approach for organized luminescent metallopolymers.

    PubMed

    Babel, Lucille; Guénée, Laure; Besnard, Céline; Eliseeva, Svetlana V; Petoud, Stéphane; Piguet, Claude

    2018-01-14

    Metal-containing (bio)organic polymers are materials of continuously increasing importance for applications in energy storage and conversion, drug delivery, shape-memory items, supported catalysts, organic conductors and smart photonic devices. The embodiment of luminescent components provides a revolution in lighting and signaling with the ever-increasing development of polymeric light-emitting devices. Despite the unique properties expected from the introduction of optically and magnetically active lanthanides into organic polymers, the deficient control of the metal loading currently limits their design to empirical and poorly reproducible materials. We show here that the synthetic efforts required for producing soluble multi-site host systems L k are largely overcome by the virtue of reversible thermodynamics for mastering the metal loading with the help of only two parameters: (1) the affinity of the luminescent lanthanide container for a single binding site and (2) the cooperative effect which modulates the successive fixation of metallic units to adjacent sites. When unsymmetrical perfluorobenzene-trifluoroacetylacetonate co-ligands (pbta - ) are selected for balancing the charge of the trivalent lanthanide cations, Ln 3+ , in six-coordinate [Ln(pbta) 3 ] containers, the explored anti-cooperative complexation processes induce nearest-neighbor intermetallic interactions twice as large as thermal energy at room temperature ( RT = 2.5 kJ mol -1 ). These values have no precedent when using standard symmetrical containers and they pave the way for programming metal alternation in luminescent lanthanidopolymers.

  10. Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Efimenko, Kirill; Genzer, Jan

    2001-03-01

    We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.

  11. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  12. One-pot green synthesis of luminescent gold nanoparticles using imidazole derivative of chitosan.

    PubMed

    Nazirov, Alexander; Pestov, Alexander; Privar, Yuliya; Ustinov, Alexander; Modin, Evgeny; Bratskaya, Svetlana

    2016-10-20

    Water soluble luminescent gold nanoparticles with average size 2.3nm were for the first time synthesized by completely green method of Au(III) reduction using chitosan derivative-biocompatible nontoxic N-(4-imidazolyl)methylchitosan (IMC) as both reducing and stabilizing agent. Reduction of Au(III) to gold nanoparticles in IMC solution is a slow process, in which coordination power of biopolymer controls both reducing species concentration and gold crystal growth rate. Gold nanoparticles formed in IMC solution do not manifest surface plasmon resonance, but exhibit luminescence at 375nm under UV light excitation at 230nm. Due to biological activity of imidazolyl-containing polymers and their ability to bind proteins and drugs, the obtained ultra-small gold nanoparticles can find an application for biomolecules detection, bio-imaging, drug delivery, and catalysis. Very high catalytic activity (as compared to gold nanoparticles obtained by other green methods) was found for Au/IMC nanoparticles in the model reaction of p-nitrophenol reduction providing complete conversion of p-nitrophenol to p-aminophenol within 180-190s under mild conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications

    PubMed Central

    Xie, Rong-Jun; Hirosaki, Naoto; Li, Yuanqiang; Takeda, Takashi

    2010-01-01

    Nitridosilicates are structurally built up on three-dimensional SiN4 tetrahedral networks, forming a very interesting class of materials with high thermomechanical properties, hardness, and wide band gap. Traditionally, nitridosilicates are often used as structural materials such as abrasive particles, cutting tools, turbine blade, etc. Recently, the luminescence of rare earth doped nitridosilicates has been extensively studied, and a novel family of luminescent materials has been developed. This paper reviews the synthesis, luminescence and applications of nitridosilicate phosphors, with emphasis on rare earth nitrides in the system of M-Si-Al-O-N (M = Li, Ca, Sr, Ba, La) and their applications in white LEDs. These phosphors exhibit interesting luminescent properties, such as red-shifted excitation and emission, small Stokes shift, small thermal quenching, and high conversion efficiency, enabling them to use as down-conversion luminescent materials in white LEDs with tunable color temperature and high color rendering index.

  14. Tough, High-Performance, Thermoplastic Addition Polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Proctor, K. Mason; Gleason, John; Morgan, Cassandra; Partos, Richard

    1991-01-01

    Series of addition-type thermoplastics (ATT's) exhibit useful properties. Because of their addition curing and linear structure, ATT polymers have toughness, like thermoplastics, and easily processed, like thermosets. Work undertaken to develop chemical reaction forming stable aromatic rings in backbone of ATT polymer, combining high-temperature performance and thermo-oxidative stability with toughness and easy processibility, and minimizing or eliminating necessity for tradeoffs among properties often observed in conventional polymer syntheses.

  15. Multilayer white lighting polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gong, Xiong; Wang, Shu; Heeger, Alan J.

    2006-08-01

    Organic and polymer light-emitting diodes (OLEDs/PLEDs) that emit white light are of interest and potential importance for use in active matrix displays (with color filters) and because they might eventually be used for solid-state lighting. In such applications, large-area devices and low-cost of manufacturing will be major issues. We demonstrated that high performance multilayer white emitting PLEDs can be fabricated by using a blend of luminescent semiconducting polymers and organometallic complexes as the emission layer, and water-soluble (or ethanol-soluble) polymers/small molecules (for example, PVK-SO 3Li) as the hole injection/transport layer (HIL/HTL) and water-soluble (or ethanol-soluble) polymers/small molecules (for example, t-Bu-PBD-SO 3Na) as the electron injection/transport layer (EIL/HTL). Each layer is spin-cast sequentially from solutions. Illumination quality light is obtained with stable Commission Internationale d'Eclairage coordinates, stable color temperatures, and stable high color rendering indices, all close to those of "pure" white. The multilayer white-emitting PLEDs exhibit luminous efficiency of 21 cd/A, power efficiency of 6 lm/W at a current density of 23 mA/cm2 with luminance of 5.5 x 10 4 cd/m2 at 16 V. By using water-soluble (ethanol-soluble) polymers/small molecules as HIL/HTL and polymers/small molecules as EIL/ETL, the interfacial mixing problem is solved (the emissive polymer layer is soluble in organic solvents, but not in water/ ethanol). As a result, this device architecture and process technology can potentially be used for printing large-area multiplayer light sources and for other applications in "plastic" electronics. More important, the promise of producing large areas of high quality white light with low-cost manufacturing technology makes the white multilayer white-emitting PLEDs attractive for the development of solid state light sources.

  16. High temperature polymers - A review of novel thermally stable hexafluoroisopropylidene-containing polymers

    NASA Technical Reports Server (NTRS)

    Kane, K. M.; Cassidy, P. E.; Tullos, G. L.; Reynolds, D. W.

    1990-01-01

    The synthesis and properties to date of several novel HFIP-containing polymers and copolymers are presented. Thermal analyses of polyether ketones (PEK), aromatic polyesters, and polymers from a novel 18F-diacid were performed on a thermal analyzer. All three polymer types exhibited enhanced solubility, thermal stability, and low dielectric constants that are predicted for polymers containing the HFIP moiety. The moderate thermal stability observed in the polymers derived from the 18F-diacid is attributed to the oxidatively weak methylene linkage between the HFIP groups and the phenyl rings. PEKs and polyarylates show potential as high emissivity coatings under conditions where atomic oxygen is present.

  17. Synthesis, crystal structure, and luminescent properties of two coordination polymers based on 1,4-phenylenediacetic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Meili; Ren, Yixia; Ma, Zhenzhen; Qiao, Lei

    2017-06-01

    Two coordination polymers, [Zn(pda)(bib)]n (1) and [Cd(pda)0.5(bib)Cl]n (2)]. (H2pda = 1,4-phenylenediacetic acid, bib = 1,2-bis(imidazol-1-ylmethyl)benzene), have been synthesized by using Zn(II)/Cd(II) salts with two flexible ligands pda and bib under hydrothermal conditions. Their structures have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD) analysis. Due to the coordination geometry around the metal ions and the diverse coordination modes of the flexible ligands, the obtained complex show diverse structures. In the structure of 1, a pair of bib ligands connect two Zn(II) atoms give rise a 22-membered ring, which is further extended by pda ligands in bidentate coordination mode leading a ring-containing 2D layer. In 2, bib ligands join [Cd2Cl2]2+ dimmers generate 1D polymeric ribbon, the pda ligands further extend such ribbon forming a 2D layer network containing rectangular windows, which discovers the effect of the central metal ions on the formation of metal-organic frameworks. In additional, luminescent properties of two complexes have also been studied, they could be potential fluorescence materials.

  18. Highly luminescent and photostable quantum dot-silica monolith and its application to light-emitting diodes.

    PubMed

    Jun, Shinae; Lee, Junho; Jang, Eunjoo

    2013-02-26

    A highly luminescent and photostable quantum dot-silica monolith (QD-SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol-gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol-gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD-SM maintained its initial luminescence after high-power UV radiation (∼1 W) for 200 h and through the 150 °C LED encapsulant curing process. Green and red light-emitting QD-SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD-SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported.

  19. Analytical modeling of relative luminescence efficiency of Al2O3:C optically stimulated luminescence detectors exposed to high-energy heavy charged particles.

    PubMed

    Sawakuchi, Gabriel O; Yukihara, Eduardo G

    2012-01-21

    The objective of this work is to test analytical models to calculate the luminescence efficiency of Al(2)O(3):C optically stimulated luminescence detectors (OSLDs) exposed to heavy charged particles with energies relevant to space dosimetry and particle therapy. We used the track structure model to obtain an analytical expression for the relative luminescence efficiency based on the average radial dose distribution produced by the heavy charged particle. We compared the relative luminescence efficiency calculated using seven different radial dose distribution models, including a modified model introduced in this work, with experimental data. The results obtained using the modified radial dose distribution function agreed within 20% with experimental data from Al(2)O(3):C OSLDs relative luminescence efficiency for particles with atomic number ranging from 1 to 54 and linear energy transfer in water from 0.2 up to 1368 keV µm(-1). In spite of the significant improvement over other radial dose distribution models, understanding of the underlying physical processes associated with these radial dose distribution models remain elusive and may represent a limitation of the track structure model.

  20. Improved high-throughput quantification of luminescent microplate assays using a common Western-blot imaging system.

    PubMed

    Hawkins, Liam J; Storey, Kenneth B

    2017-01-01

    Common Western-blot imaging systems have previously been adapted to measure signals from luminescent microplate assays. This can be a cost saving measure as Western-blot imaging systems are common laboratory equipment and could substitute a dedicated luminometer if one is not otherwise available. One previously unrecognized limitation is that the signals captured by the cameras in these systems are not equal for all wells. Signals are dependent on the angle of incidence to the camera, and thus the location of the well on the microplate. Here we show that: •The position of a well on a microplate significantly affects the signal captured by a common Western-blot imaging system from a luminescent assay.•The effect of well position can easily be corrected for.•This method can be applied to commercially available luminescent assays, allowing for high-throughput quantification of a wide range of biological processes and biochemical reactions.

  1. Surface electroluminescence phenomena correlated with trapping parameters of insulating polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Guan-Jun; Yang, Kai; Dong, Ming; Zhao, Wen-Bin; Yan, Zhang

    2007-12-01

    Electroluminescence (EL) phenomena are closely linked to the space charge and degradation in insulating polymers, and dominated by the luminescence and trap centers. EL emission has been promising in defining the onset of electrical aging and in the investigation of dissipation mechanisms. Generally, polymeric degradation reveals the increment of the density of luminescence and trap centers, so a fundamental study is proposed to correlate the EL emission of insulating polymers and their trapping parameters. A sensitive photon counting system is constructed to detect the weak EL. The time- and phase-resolved EL characteristics from different polymers (LDPE, PP and PTFE) are investigated with a planar electrode configuration under stepped ac voltage in vacuum. In succession, each sample is charged with exposing to multi-needle corona discharge, and then its surface potential decay is continuously recorded at a constant temperature. Based on the isothermal relaxation current theory, the energy level and density of both electron and hole trap distribution in the surface layer of each polymer is obtained. It is preliminarily concluded that EL phenomena are strongly affected by the trap properties, and for different polymers, its EL intensity is in direct contrast to its surface trap density, and this can be qualitatively explained by the trapping and detrapping sequence of charge carriers in trap centers with different energy level.

  2. Luminescent zinc and cadmium complexes incorporating 1,3,5-benzenetricarboxylate and a protonated kinked organodiimine: From a hydrogen-bonded layer motif to thermally robust two-dimensional coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braverman, Maxwell A.; Supkowski, Ronald M.; LaDuca, Robert L.

    2007-06-15

    Hydrothermal treatment of zinc chloride, 1,3,5-benzenetricarboxylic acid (H{sub 3}BTC), and 4,4'-dipyridylamine (dpa) afforded two different complexes depending on reaction conditions, which were characterized by single-crystal X-ray diffraction, infrared spectroscopy, and elemental analysis. Under acidic conditions, a discrete neutral molecular species with formulation [Zn(HBTC){sub 2}(Hdpa){sub 2}] (1) was isolated, which aggregates into two-dimensional hydrogen-bonded layers. Under more basic conditions, the two-dimensional layered coordination polymer [Zn(BTC)(Hdpa)] (2) is obtained, which manifests covalent linkage of [Zn(BTC)(Hdpa)] serpentine chain motifs into 3-connected undulating 4.8{sup 2} topology 2-D layers. Both 1 and 2 possess tetrahedral coordination at Zn. Use of cadmium nitrate in the synthesismore » resulted in [Cd(BTC)(H{sub 2}O)(Hdpa)] (3), which displays a similar layer topology as 2 but with significant adjustments imparted by octahedral coordination at Cd. In all cases, supramolecular hydrogen bonding promoted by Hdpa ligands provide an important assistive structure-directing role. All materials display blue luminescence upon excitation with ultraviolet light, ascribed to intraligand transitions. Crystallographic data: 1: monoclinic, C2/c, a=25.389(6) A, b=9.811(2) A, c=17.309(4) A, and {beta}=128.957(3){sup o}, 2: monoclinic, P2{sub 1}/c, a=13.212(17)c, b=17.15(2) A, c=7.506(10) A, and {beta}=93.71(2){sup o}, and 3: monoclinic, C2/c, a=14.241(6) A, b=15.218(6) A, c=17.976(7) A, and {beta}=109.330(6){sup o}. - Graphical abstract: Hydrothermal synthesis has afforded a family of luminescent complexes based on divalent d {sup 10} cations with 1,3,5-benzenetricarboxylate (BTC) and 4,4'-dipyridylamine (dpa) ligands. [Zn(HBTC){sub 2}(Hdpa){sub 2}] (1) is a discrete neutral molecular species. [Zn(BTC)(Hdpa)] (2, pictured) and [Cd(BTC)(H{sub 2}O)(Hdpa)] (3) are 2-D coordination polymers with different morphologies depending on coordination

  3. Enhanced luminescence of Cu-In-S nanocrystals by surface modification.

    PubMed

    Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin; Shin, Pyung-Woo

    2012-04-01

    We have synthesized highly luminescent Cu-In-S nanocrystals by heating the mixture of metal carboxylates and alkylthiol under inert atmosphere. We modified the surface of CIS nanocrystals with zinc carboxylate and subsequent injection of alkylthiol. As a result of the surface modification, highly luminescent CIS@ZnS core/shell nanocrystals were synthesized. The luminescence quantum yield (QY) of best CIS@ZnS nanocrystals was above 50%, which is more than 10 times higher than the initial QY of CIS nanocrystals before surface modification (QY = 3%). Detailed study on the luminescence mechanism implies that etching of the surface of nanocrystals by dissociated carboxylate group (CH3COO-) and formation of epitaxial shell by Zn with sulfur from alkylthiol efficiently removed the surface defects which are major non-radiative recombination sites in semiconductor nanocrystals. In this study, we developed a novel surface modification route for monodispersed highly luminescent Cu-In-S nanocrystals with less toxic and highly stable precursors.

  4. Covalently-bonded grafting of [Ln3(Benzimidazole)4]-arrayed (Ln = Tb, Nd, Yb or Er) complex monomers into PNBE (poly(norbornene)) with highly luminous color-purity green-light or efficient NIR luminescence

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Fu, Guorui; Feng, Heini; Guan, Jiaqing; Li, Fengping; Lü, Xingqiang; Wong, Wai-Kwok; Jones, Richard A.

    2017-07-01

    Within series of Ln3-grafted polymers Poly({[Ln3(L)4(NO3)6]·(NO3)·(H3O)2}-co-NBE) (Ln = La, 1; Ln = Eu, 2; Ln = Tb, 3; Ln = Nd, 4; Ln = Yb, 5; Ln = Er, 6 or Ln = Gd, 7) obtained from ring-opening metathesis polymerization (ROMP) of norbornene (NBE) with each of allyl-functionalized complex monomers {[Ln3(L)4(NO3)6]·(NO3)·(H3O)2} (HL = 4-allyl-2-(1H-benzo[d]imidazol-2-yl)-6-methoxyphenol), PNBE-assisted effective energy transfer renders Poly(3-co-NBE) Tb3+-centered highly luminous color-purity green-light with an attractive quantum yield of 87% and efficient near-infrared (NIR) luminescence (ΦNdL = 0.61%; ΦYbL = 1.47% and ΦErL = 0.03%) for Nd3+-, Yb3+- or Er3+-grafted polymers.

  5. Lanthanide-based coordination polymers assembled by a flexible multidentate linker: design, structure, photophysical properties, and dynamic solid-state behavior.

    PubMed

    Marchal, Claire; Filinchuk, Yaroslav; Chen, Xiao-Yan; Imbert, Daniel; Mazzanti, Marinella

    2009-01-01

    Four picolinate building blocks were implemented into the multidentate linker N,N',N'-tetrakis[(6-carboxypyridin-2-yl)methyl]butylenediamine (H(4)tpabn) with a linear flexible spacer to promote the assembly of lanthanide-based 1D coordination polymers. The role of the linker in directing the geometry of the final assembly is evidenced by the different results obtained in the presence of Htpabn(3-) and tpabn(4-) ions. The tpabn(4-) ion leads to the desired 1D polymer {[Nd(tpabn)]H(3)O x 6 H(2)O}(infinity) (12). The Htpabn(3-) ion leads to the assembly of Tb(III) and Er(III) ions into 1D zigzag chains of the general formula {[M(Htpabn)] x xH(2)O}(infinity) (M = Tb, x = 14 (1); M = Tb, x = 8 (11); M = Er, x = 14 (2); M = Er, x = 5.5 (4)), a 2D network is formed by the Eu(III) ion (i.e., {[Eu(Htpabn)] x 10 H(2)O}(infinity) (7)), and both supramolecular isomers (1D and 2D) are obtained by the Tb(III) ion. The high flexibility of the polymeric chains results in a dynamic behavior with a solvent-induced reversible structural transition. The Tb(III)- and Eu(III)-containing polymers display high-luminescence quantum yields (38 and 18%, respectively). A sizeable near-IR luminescence emission is observed for the Er(III)- and Nd(III)-containing polymers when lattice water molecules are removed.

  6. Resonance shifting: A simple, all-optical method for circumventing the reabsorption problem in luminescent concentrators

    NASA Astrophysics Data System (ADS)

    Giebink, Noel; Wiederrecht, Gary; Wasielewski, Michael

    2011-03-01

    Luminescent concentrators (LSCs) were developed over three decades ago as a simple route to obtain high concentration ratio for photovoltaic cells without tracking the sun. In principle, high concentration ratios 100 are possible for commonly used chromophores. In practice, however, there is typically an overlap between the chromophore absorption and emission spectra that, although small, ultimately leads to unacceptable reabsorption losses, limiting the concentration ratio to ~ 10 and hence the utility of LSCs to date. We introduce a simple, all-optical means of avoiding reabsorption loss by ``resonance shifting'' from a bilayer cavity that consists of an absorber/emitter waveguide lying upon a low refractive index layer supported by a transparent substrate. Emission is evanescently coupled into the substrate at sharply defined angles and hence, by varying the cavity thickness over the device area, the original absorption resonance can be avoided at each bounce, allowing for extremely low propagation loss to the substrate edges and hence an increase in the optical concentration ratio. We validate this concept for absorber/emitter layers composed of both a typical luminescent polymer and inorganic semiconductor nanocrystals, demonstrating near-lossless propagation in each case.

  7. Pure zero-dimensional Cs4PbBr6 single crystal rhombohedral microdisks with high luminescence and stability.

    PubMed

    Zhang, Haihua; Liao, Qing; Wu, Yishi; Chen, Jianwei; Gao, Qinggang; Fu, Hongbing

    2017-11-08

    Zero-dimensional (0D) perovskite Cs 4 PbBr 6 has been speculated to be an efficient solid-state emitter, exhibiting strong luminescense on achieving quantum confinement. Although several groups have reported strong green luminescence from Cs 4 PbBr 6 powders and nanocrystals, doubts that the origin of luminescence comes from Cs 4 PbBr 6 itself or CsPbBr 3 impurities have been a point of controversy in recent investigations. Herein, we developed a facile one-step solution self-assembly method to synthesize pure zero-dimensional rhombohedral Cs 4 PbBr 6 micro-disks (MDs) with a high PLQY of 52% ± 5% and photoluminescence full-width at half maximum (FWHM) of 16.8 nm. The obtained rhombohedral MDs were high quality single-crystalline as demonstrated by XRD and SAED patterns. We demonstrated that Cs 4 PbBr 6 MDs and CsPbBr 3 MDs were phase-separated from each other and the strong green emission comes from Cs 4 PbBr 6 . Power and temperature dependence spectra evidenced that the observed strong green luminescence of pure Cs 4 PbBr 6 MDs originated from direct exciton recombination in the isolated octahedra with a large binding energy of 303.9 meV. Significantly, isolated PbBr 6 4- octahedra separated by a Cs + ion insert in the crystal lattice is beneficial to maintaining the structural stability, depicting superior thermal and anion exchange stability. Our study provides an efficient approach to obtain high quality single-crystalline Cs 4 PbBr 6 MDs with highly efficient luminescence and stability for further optoelectronic applications.

  8. Nd3+, Yb3+ and Ho3+ Codoped Oxyfluoride Glass Ceramics with High Efficient Green Upconversion Luminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Jie; Kawamoto, Yoji; Dai, Shi-Xun; Zhang, Li-Yan; Hu, Li-Li

    2004-06-01

    New oxyfluoride glasses and glass ceramic codoped with Nd3+, Yb3+ and Ho3+ were prepared. The x-ray diffraction analysis revealed that the heat treatments of the oxyfluoride glasses could cause the precipitation of (Nd3+, Yb3+, Ho3+)-doped fluorite-type crystals. Very strong green up-conversion luminescence due to the Ho3+: (5F4, 5S2)rightarrow5I8 transition under 800-nm excitation was observed in these transparent glass ceramics. The intensity of the green up-conversion luminescence in a 1-mol% YbF3-containing glass ceramic was found to be about 120 times stronger than that in the precursor oxyfluoride glass. The reason for the highly efficient Ho3+ up-conversion luminescence in the oxyfluoride glass ceramics is discussed.

  9. Controlled fabrication of luminescent and magnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren

    2018-03-01

    Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.

  10. High-Performance, Semi-Interpenetrating Polymer Network

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Lowther, Sharon E.; Smith, Janice Y.; Cannon, Michelle S.; Whitehead, Fred M.; Ely, Robert M.

    1992-01-01

    High-performance polymer made by new synthesis in which one or more easy-to-process, but brittle, thermosetting polyimides combined with one or more tough, but difficult-to-process, linear thermoplastics to yield semi-interpenetrating polymer network (semi-IPN) having combination of easy processability and high tolerance to damage. Two commercially available resins combined to form tough, semi-IPN called "LaRC-RP49." Displays improvements in toughness and resistance to microcracking. LaRC-RP49 has potential as high-temperature matrix resin, adhesive, and molding resin. Useful in aerospace, automotive, and electronic industries.

  11. Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.

    2017-12-01

    Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.

  12. Thermal Protective Coating for High Temperature Polymer Composites

    NASA Technical Reports Server (NTRS)

    Barron, Andrew R.

    1999-01-01

    The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.

  13. Molecular engineered conjugated polymer with high thermal conductivity

    PubMed Central

    Song, Bai; Lee, Elizabeth M. Y.; Gleason, Karen K.

    2018-01-01

    Traditional polymers are both electrically and thermally insulating. The development of electrically conductive polymers has led to novel applications such as flexible displays, solar cells, and wearable biosensors. As in the case of electrically conductive polymers, the development of polymers with high thermal conductivity would open up a range of applications in next-generation electronic, optoelectronic, and energy devices. Current research has so far been limited to engineering polymers either by strong intramolecular interactions, which enable efficient phonon transport along the polymer chains, or by strong intermolecular interactions, which enable efficient phonon transport between the polymer chains. However, it has not been possible until now to engineer both interactions simultaneously. We report the first realization of high thermal conductivity in the thin film of a conjugated polymer, poly(3-hexylthiophene), via bottom-up oxidative chemical vapor deposition (oCVD), taking advantage of both strong C=C covalent bonding along the extended polymer chain and strong π-π stacking noncovalent interactions between chains. We confirm the presence of both types of interactions by systematic structural characterization, achieving a near–room temperature thermal conductivity of 2.2 W/m·K, which is 10 times higher than that of conventional polymers. With the solvent-free oCVD technique, it is now possible to grow polymer films conformally on a variety of substrates as lightweight, flexible heat conductors that are also electrically insulating and resistant to corrosion. PMID:29670943

  14. Quantum dot-polymer conjugates for stable luminescent displays.

    PubMed

    Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai

    2018-05-23

    The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.

  15. Synthesis and photoluminescence properties of novel Schiff base type polymer-rare earth complexes containing furfural-based bidentate Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Gao, Baojiao; Zhang, Dandan; Li, Yanbin

    2018-03-01

    Luminescent polymer-rare earth complexes are an important class of photoluminescence and electroluminescence materials. Via molecular design, two furfural-based bidentate Schiff base ligands, furfural-aniline (FA) type ligand and furfural-cyclohexylamine (FC) type ligand, were bonded on the side chains of polysulfone (PSF), respectively, forming two functionalized macromolecules, PSF-FA and PSF-FC. And then through respective coordination reactions of the two functionalized macromolecules with Eu(Ⅲ) ion and Tb(Ⅲ) ion, novel luminescent binary and ternary (with 1,10-phenanthroline as the second ligand) polymer-rare earth complexes were synthesized. For these complexes, on basis of the characterization of their chemical structures, they photoluminescence properties were main researched, and the relationship between their luminescent properties and structures was explored. The experimental results show that the complexes coming from PSF-FA and Eu(Ⅲ) ion including binary and ternary complexes emit strong red luminescence, indicating that the bonded bidentate Schiff base ligand FA can sensitize the fluorescence emission of Eu(III) ion. While the complexes coming from PSF-FC and Tb(Ⅲ) ion produce green luminescence, displaying that the bonded bidentate Schiff base ligand FC can sensitize the fluorescence emission of Tb(Ⅲ) ion. The fluorescence emission intensities of the ternary complexes were stronger than that of binary complexes, reflecting the important effect of the second ligand. The fluorescence emission of the solid film of complexes is much stronger than that of the solutions of complexes. Besides, by comparison, it is found that the furfural (as a heteroaromatic compound)-based Schiff base type polymer-rare earth complexes have stronger fluorescence emission and higher energy transfer efficiency than salicylaldehyde (as a common aromatic compound)-based Schiff base type polymer-rare earth complexes.

  16. Degradation of polyfluorene-type polymers: interface and bulk-related defects

    NASA Astrophysics Data System (ADS)

    Gamerith, Stefan; Gadermaier, Christoph; Nothofer, Heinz G.; Scherf, Ullrich; List, Emil J.

    2004-09-01

    The origin of a broad low-energy photo-luminescence (PL) and electro-luminescence (EL) band emerging upon oxidative degradation of hihgly emissive polyfluorenes (PFs) has recently been identified as the emission from on-chain keto defects acting as exciton and/or charge traps. In this work we compare several polyfluorenes with respect to their stability upon thermal degradation, and their stability upon fabrication and operation of PF-based polymer light emitting devices (PLEDs). We show that in addition to the keto emission a second type of defect emission, which is related to the deposition of the metal electrode, can also affect the color purity of PF-PLEDs. Investigated materials are a poly(9,9 dialkylfluorene) with hexahydrofarnesyl sidechains (PF111/12) a poly(9,9 dialkylfluorene) with ethyl-hexyl sidechains (PF 2/6) and two different slightly branched spiro-PFs with and without triphenylamine endcappers, respetively. We find significant differences in the spectral stability of the polymers which may on the one hand be explained by a difference of the chemical stability of the polymers but to some extent must be explained withiin the picture of excited energy migration. Regarding a comparison of the polymers, the end-capped spiro-type PF shows an overall improved performance compared to the other investigated polymers provided that the evaporation process of the metal cathode of an PLED is well controlled to avoid the formation of emissive defects at the interface.

  17. Luminescence of water or ice as a new detection method for magnetic monopoles

    NASA Astrophysics Data System (ADS)

    Pollmann, Anna Obertacke

    2017-12-01

    Cosmic ray detectors use air as a radiator for luminescence. In water and ice, Cherenkov light is the dominant light producing mechanism when the particle's velocity exceeds the Cherenkov threshold, approximately three quarters of the speed of light in vacuum. Luminescence is produced by highly ionizing particles passing through matter due to the electronic excitation of the surrounding molecules. The observables of luminescence, such as the wavelength spectrum and decay times, are highly dependent on the properties of the medium, in particular, temperature and purity. The results for the light yield of luminescence of previous measurements vary by two orders of magnitude. It will be shown that even for the lowest measured light yield, luminescence is an important signature of highly ionizing particles below the Cherenkov threshold. These could be magnetic monopoles or other massive and highly ionizing exotic particles. With the highest observed efficiencies, luminescence may even contribute significantly to the light output of standard model particles such as the PeV IceCube neutrinos. We present analysis techniques to use luminescence in neutrino telescopes and discuss experimental setups to measure the light yield of luminescence for the particular conditions in neutrino detectors.

  18. Polymer-based lanthanide luminescent sensor for detection of the hydrolysis product of the nerve agent Soman in water.

    PubMed

    Jenkins, A L; Uy, O M; Murray, G M

    1999-01-15

    The techniques of molecular imprinting and sensitized lanthanide luminescence have been combined to create the basis for a sensor that can selectively measure the hydrolysis product of the nerve agent Soman in water. The sensor functions by selectively and reversibly binding the phosphonate hydrolysis product of this agent to a functionality-imprinted copolymer possessing a coordinatively bound luminescent lanthanide ion, Eu3+. Instrumental support for this device is designed to monitor the appearance of a narrow luminescence band in the 610-nm region of the Eu3+ spectrum that results when the analyte is coordinated to the copolymer. The ligand field shifted luminescence was excited using 1 mW of the 465.8-nm line of an argon ion laser and monitored via an optical fiber using a miniature spectrometer. For this configuration, the limit of detection for the hydrolysis product is 7 parts per trillion (ppt) in solution with a linear range from 10 ppt to 10 ppm. Chemical and spectroscopic selectivities have been combined to reduce the likelihood of false positive analyses. Chemically analogous organophosphorus pesticides tested against the sensor have been shown to not interfere with determination.

  19. High thermal conductivity in electrostatically engineered amorphous polymers

    PubMed Central

    Shanker, Apoorv; Li, Chen; Kim, Gun-Ho; Gidley, David; Pipe, Kevin P.; Kim, Jinsang

    2017-01-01

    High thermal conductivity is critical for many applications of polymers (for example, packaging of light-emitting diodes), in which heat must be dissipated efficiently to maintain the functionality and reliability of a system. Whereas uniaxially extended chain morphology has been shown to significantly enhance thermal conductivity in individual polymer chains and fibers, bulk polymers with coiled and entangled chains have low thermal conductivities (0.1 to 0.4 W m−1 K−1). We demonstrate that systematic ionization of a weak anionic polyelectrolyte, polyacrylic acid (PAA), resulting in extended and stiffened polymer chains with superior packing, can significantly enhance its thermal conductivity. Cross-plane thermal conductivity in spin-cast amorphous films steadily grows with PAA degree of ionization, reaching up to ~1.2 W m−1 K−1, which is on par with that of glass and about six times higher than that of most amorphous polymers, suggesting a new unexplored molecular engineering strategy to achieve high thermal conductivities in amorphous bulk polymers. PMID:28782022

  20. High-Voltage Polymers for High-Power Supercapacitors. Version 1

    DTIC Science & Technology

    2006-05-30

    affect the supercapacitor’s performance. Subsequently, our efforts focused on fabricating polymers with high oxidation potentials to increase the power...including spin activation with out significant modifications. Electroactive polymers such as polythiophene, polyacetylene, or polyaniline can be...potentials in excess of 2 V for facile polymerization. In the present case, the triaryl ammine functionality of 2 and 3 is oxidized at the low

  1. Nanoparticle-assisted high photoconductive gain in polymer/fullerene matrix

    PubMed Central

    Chen, Hsiang-Yu; Lo, Michael K. F.; Yang, Guanwen; Monbouquette, Harold G.; Yang, Yang

    2014-01-01

    Polymer/inorganic nanocrystal composites1–10 offer an attractive means to combine the merits of organic and inorganic materials into novel electronic and photonic systems. However, many applications of these composites are limited by the solubility11 and distribution of nanocrystals (NCs) in polymer matrices. Here, a high photoconductive gain has been achieved by blending cadmium telluride (CdTe) nanoparticles (NPs) into a polymer/fullerene matrix followed by a solvent annealing12 process. The NP surface capping ligand, N-phenyl-N’-methyldithiocarbamate, renders the NPs highly soluble in the polymer blend thereby enabling high nanocrystal loadings. An external quantum efficiency (EQE) as high as ~8000% (at 350nm) is reached at −4.5V. Hole-dominant devices coupled with AFM images are studied to uncover the probable mechanism. We observe a higher concentration of CdTe NPs is located near the cathode/polymer interface. These NPs with trapped electrons assist hole injection into the polymer under reverse bias, which contributes to greater than 100% EQE. PMID:18772915

  2. Spectral luminescence analysis of amniotic fluid

    NASA Astrophysics Data System (ADS)

    Slobozhanina, Ekaterina I.; Kozlova, Nataly M.; Kasko, Leonid P.; Mamontova, Marina V.; Chernitsky, Eugene A.

    1997-12-01

    It is shown that the amniotic fluid has intensive ultra-violet luminescence caused by proteins. Along with it amniotic fluid radiated in the field of 380 - 650 nm with maxima at 430 - 450 nm and 520 - 560 nm. The first peak of luminescence ((lambda) exc equals 350 nm; (lambda) em equals 430 - 440 nm) is caused (most probably) by the presence in amniotic fluid of some hormones, NADH2 and NADPH2. A more long-wave component ((lambda) exc equals 460 nm; (lambda) em equals 520 - 560 nm) is most likely connected with the presence in amniotic fluid pigments (bilirubin connected with protein and other). It is shown that intensity and maximum of ultra-violet luminescence spectra of amniotic fluid in normality and at pathology are identical. However both emission spectra and excitation spectra of long-wave ((lambda) greater than 450 nm) luminescence of amniotic fluid from pregnant women with such prenatal abnormal developments of a fetus as anencephaly and spina bifida are too long-wave region in comparison with the norm. Results of research testify that spectral luminescent analysis of amniotic fluid can be used for screening of malformations of the neural tube. It is very difficult for a practical obstetrician to reveal pregnant women with a high risk of congenital malformations of the fetus. Apart from ultrasonic examination, cytogenetic examination of amniotic fluid and defumination of concentrations of alpha-fetoprotein and acetylcholin-esterases in the amniotic fluid and blood plasma are the most widely used diagnostic approaches. However, biochemical and cytogenetic diagnostic methods are time-consuming. In the present work spectral luminescence properties of the amniotic fluid are investigated to determine spectral parameters that can be used to reveal pregnant women with a high risk of congenital malformations of their offsprings.

  3. Optical and diffractive properties of polymer: nanoparticles periodic structures obtained by holographic method

    NASA Astrophysics Data System (ADS)

    Smirnova, T. N.; Sakhno, O. V.; Goldberg, L.; Stumpe, J.

    2007-06-01

    The ordering of nanoparticles in polymer matrix using holographic photopolymerization is investigated. The general approach to the selection of the photopolymerizable compounds is proposed. The nonlinear and luminescent properties of obtained gratings are studied.

  4. Luminescence imaging of water during alpha particle irradiation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki

    2016-05-01

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  5. High-Temperature Capacitor Polymer Films

    NASA Astrophysics Data System (ADS)

    Tan, Daniel; Zhang, Lili; Chen, Qin; Irwin, Patricia

    2014-12-01

    Film capacitor technology has been under development for over half a century to meet various applications such as direct-current link capacitors for transportation, converters/inverters for power electronics, controls for deep well drilling of oil and gas, direct energy weapons for military use, and high-frequency coupling circuitry. The biaxially oriented polypropylene film capacitor remains the state-of-the-art technology; however, it is not able to meet increasing demand for high-temperature (>125°C) applications. A number of dielectric materials capable of operating at high temperatures (>140°C) have attracted investigation, and their modifications are being pursued to achieve higher volumetric efficiency as well. This paper highlights the status of polymer dielectric film development and its feasibility for capacitor applications. High-temperature polymers such as polyetherimide (PEI), polyimide, and polyetheretherketone were the focus of our studies. PEI film was found to be the preferred choice for high-temperature film capacitor development due to its thermal stability, dielectric properties, and scalability.

  6. High-aspect ratio magnetic nanocomposite polymer cilium

    NASA Astrophysics Data System (ADS)

    Rahbar, M.; Tseng, H. Y.; Gray, B. L.

    2014-03-01

    This paper presents a new fabrication technique to achieve ultra high-aspect ratio artificial cilia micro-patterned from flexible highly magnetic rare earth nanoparticle-doped polymers. We have developed a simple, inexpensive and scalable fabrication method to create cilia structures that can be actuated by miniature electromagnets, that are suitable to be used for lab-on-a chip (LOC) and micro-total-analysis-system (μ-TAS) applications such as mixers and flow-control elements. The magnetic cilia are fabricated and magnetically polarized directly in microfluidic channels or reaction chambers, allowing for easy integration with complex microfluidic systems. These cilia structures can be combined on a single chip with other microfluidic components employing the same permanently magnetic nano-composite polymer (MNCP), such as valves or pumps. Rare earth permanent magnetic powder, (Nd0.7Ce0.3)10.5Fe83.9B5.6, is used to dope polydimethylsiloxane (PDMS), resulting in a highly flexible M-NCP of much higher magnetization and remanence [1] than ferromagnetic polymers typically employed in magnetic microfluidics. Sacrificial poly(ethylene-glycol) (PEG) is used to mold the highly magnetic polymer into ultra high-aspect ratio artificial cilia. Cilia structures with aspect ratio exceeding 8:0.13 can be easily fabricated using this technique and are actuated using miniature electromagnets to achieve a high range of motion/vibration.

  7. Behavior of polymer cladding materials under extremely high temperatures

    NASA Astrophysics Data System (ADS)

    Clark, Timothy E.; Chang, Selee; Kwak, SeungJo; Oh, Jung Hyun

    2012-01-01

    Polymer claddings with low refractive indices for silica core fibers were developed. Applications include fiber lasers and transmission of high power lasers in surgery. For many applications, operating fibers under high temperatures is desirable. In a previous publication, the results of testing polymer cladded silica core fiber at 150°C for 6400 hours were given, along with 5000 hours of testing polymer films. The results at 150°C were encouraging, with little additional loss measured. Here we test polymers under more severe conditions, at 270°C, for periods up to 10 hours. The polymers' cured indices range from 1.374 to 1.397 (at 852 nm). Changes in Young's modulus, refractive index, yellowing, weight, hardness, strength, and elongation were observed. While these polymers cannot function at 270°C for extended periods, it is possible to expose them for shorter durations without significant damage. Some polymer properties actually improved after 4 hours of heating. Fibers clad with such polymers have been successfully jacketed with extruded materials, and have endured high temperatures for a few minutes. It is possible that a sensor, fiber laser or other fiber device could function in these temperatures for short periods without the coating properties changing beyond values required for operation.

  8. Luminescent beam stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, Diane; Morton, Simon A.

    This disclosure provides systems, methods, and apparatus related to beam stops. In one aspect, a device comprises a luminescent material, a beam stop plate, and an optical fiber. The luminescent material is a parallelepiped having a first side and a second side that are squares and having a third side that is a rectangle or a square. The first side and the second side are perpendicular to the third side. The beam stop plate is attached to the first side of the luminescent material. The optical fiber has a first end and a second end, with the first end ofmore » the optical fiber attached to the third side of the luminescent material.« less

  9. Ultra-high polarity ceramics induced extrinsic high permittivity of polymers contributing to high permittivity of 2-2 series composites

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Peng, Cheng; He, Renqi

    2018-01-01

    Induced polarization at interface has been confirmed to have significant impact on the dielectric properties of 2-2 series composites bearing Si-based semi-conductor sheet and polymer layer. By compositing, the significantly elevated high permittivity in Si-based semi-conductor sheet should be responsible for the obtained high permittivity in composites. In that case, interface interaction could include two aspects namely a strong electrostatic force from high polarity polymeric layer and a newborn high polarity induced in Si-based ceramic sheet. In this work, this class of interface induced polarization was successfully extended into another 2-2 series composite system made up of ultra-high polarity ceramic sheet and high polarity polymer layer. By compositing, the greatly improved high permittivity in high polarity polymer layer was confirmed to strongly contribute to the high permittivity achieved in composites. In this case, interface interaction should consist of a rather large electrostatic force from ultra-high polarity ceramic sheet with ionic crystal structure and an enhanced high polarity induced in polymer layer based on a large polarizability of high polarity covalent dipoles in polymer. The dielectric and conductive properties of four designed 2-2 series composites and their components have been detailedly investigated. Increasing of polymer inborn polarity would lead to a significant elevating of polymer overall polarity in composite. Decline of inherent polarities in two components would result in a mild improving of polymer total polarity in composite. Introducing of non-polarity polymeric layer would give rise to a hardly unaltered polymer overall polarity in composite. The best 2-2 composite could possess a permittivity of ˜463 at 100 Hz 25.7 times of the original permittivity of polymer in it. This work might offer a facile route for achieving the promising composite dielectrics by constructing the 2-2 series samples from two high polarity

  10. Image analysis applied to luminescence microscopy

    NASA Astrophysics Data System (ADS)

    Maire, Eric; Lelievre-Berna, Eddy; Fafeur, Veronique; Vandenbunder, Bernard

    1998-04-01

    We have developed a novel approach to study luminescent light emission during migration of living cells by low-light imaging techniques. The equipment consists in an anti-vibration table with a hole for a direct output under the frame of an inverted microscope. The image is directly captured by an ultra low- light level photon-counting camera equipped with an image intensifier coupled by an optical fiber to a CCD sensor. This installation is dedicated to measure in a dynamic manner the effect of SF/HGF (Scatter Factor/Hepatocyte Growth Factor) both on activation of gene promoter elements and on cell motility. Epithelial cells were stably transfected with promoter elements containing Ets transcription factor-binding sites driving a luciferase reporter gene. Luminescent light emitted by individual cells was measured by image analysis. Images of luminescent spots were acquired with a high aperture objective and time exposure of 10 - 30 min in photon-counting mode. The sensitivity of the camera was adjusted to a high value which required the use of a segmentation algorithm dedicated to eliminate the background noise. Hence, image segmentation and treatments by mathematical morphology were particularly indicated in these experimental conditions. In order to estimate the orientation of cells during their migration, we used a dedicated skeleton algorithm applied to the oblong spots of variable intensities emitted by the cells. Kinetic changes of luminescent sources, distance and speed of migration were recorded and then correlated with cellular morphological changes for each spot. Our results highlight the usefulness of the mathematical morphology to quantify kinetic changes in luminescence microscopy.

  11. Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors.

    PubMed

    Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Dieu, Bjorn; Roeffaers, Maarten B J; Hofkens, Johan

    2016-11-15

    Small silver clusters confined inside zeolite matrices have recently emerged as a novel type of highly luminescent materials. Their emission has high external quantum efficiencies (EQE) and spans the whole visible spectrum. It has been recently reported that the UV excited luminescence of partially Li-exchanged sodium Linde type A zeolites [LTA(Na)] containing luminescent silver clusters can be controlled by adjusting the water content of the zeolite. These samples showed a dynamic change in their emission color from blue to green and yellow upon an increase of the hydration level of the zeolite, showing the great potential that these materials can have as luminescence-based humidity sensors at the macro and micro scale. Here, we describe the detailed procedure to fabricate a humidity sensor prototype using silver-exchanged zeolite composites. The sensor is produced by suspending the luminescent Ag-zeolites in an aqueous solution of polyethylenimine (PEI) to subsequently deposit a film of the material onto a quartz plate. The coated plate is subjected to several hydration/dehydration cycles to show the functionality of the sensing film.

  12. Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors

    PubMed Central

    Dieu, Bjorn; Roeffaers, Maarten B.J.; Hofkens, Johan

    2016-01-01

    Small silver clusters confined inside zeolite matrices have recently emerged as a novel type of highly luminescent materials. Their emission has high external quantum efficiencies (EQE) and spans the whole visible spectrum. It has been recently reported that the UV excited luminescence of partially Li-exchanged sodium Linde type A zeolites [LTA(Na)] containing luminescent silver clusters can be controlled by adjusting the water content of the zeolite. These samples showed a dynamic change in their emission color from blue to green and yellow upon an increase of the hydration level of the zeolite, showing the great potential that these materials can have as luminescence-based humidity sensors at the macro and micro scale. Here, we describe the detailed procedure to fabricate a humidity sensor prototype using silver-exchanged zeolite composites. The sensor is produced by suspending the luminescent Ag-zeolites in an aqueous solution of polyethylenimine (PEI) to subsequently deposit a film of the material onto a quartz plate. The coated plate is subjected to several hydration/dehydration cycles to show the functionality of the sensing film. PMID:27911397

  13. Evolution of sequence-defined highly functionalized nucleic acid polymers

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Lichtor, Phillip A.; Berliner, Adrian P.; Chen, Jonathan C.; Liu, David R.

    2018-03-01

    The evolution of sequence-defined synthetic polymers made of building blocks beyond those compatible with polymerase enzymes or the ribosome has the potential to generate new classes of receptors, catalysts and materials. Here we describe a ligase-mediated DNA-templated polymerization and in vitro selection system to evolve highly functionalized nucleic acid polymers (HFNAPs) made from 32 building blocks that contain eight chemically diverse side chains on a DNA backbone. Through iterated cycles of polymer translation, selection and reverse translation, we discovered HFNAPs that bind proprotein convertase subtilisin/kexin type 9 (PCSK9) and interleukin-6, two protein targets implicated in human diseases. Mutation and reselection of an active PCSK9-binding polymer yielded evolved polymers with high affinity (KD = 3 nM). This evolved polymer potently inhibited the binding between PCSK9 and the low-density lipoprotein receptor. Structure-activity relationship studies revealed that specific side chains at defined positions in the polymers are required for binding to their respective targets. Our findings expand the chemical space of evolvable polymers to include densely functionalized nucleic acids with diverse, researcher-defined chemical repertoires.

  14. A highly sensitive luminescent probe based on Ru(II)-bipyridine complex for Cu2+, l-Histidine detection and cellular imaging.

    PubMed

    Zhang, Shi-Ting; Li, Panpan; Liao, Caiyun; Luo, Tingting; Kou, Xingming; Xiao, Dan

    2018-05-02

    A ruthenium(II) bipyridyl complex conjugated with functionalized Schiff base (RuA) has been synthesized and functioned as a luminescent probe. The luminescence of RuA was greatly quenched by Cu 2+ due to its molecular coordination with paramagnetic Cu 2+ . Subsequently, the addition of l-Histidine can turn on the luminescence of the RuA-Cu(II) ensemble, which can be attributed to the replacement of RuA in RuA-Cu(II) ensemble by l-Histidine. On the basis of the quenching and recovery of the luminescence of RuA, we proposed a rapid and highly sensitive on-off-on luminescent assay for sensing Cu 2+ and l-Histidine in aqueous solution. Under the optimal conditions, Cu 2+ and l-Histidine can be detected in the concentration range of 5 nM-9.0 μM and 50 nM-30 μM, respectively, and the corresponding detection limits were calculated to be 0.35 and 0.44 nM (S/N=3), separately. The proposed luminescent probe has been successfully utilized for the analysis of Cu 2+ and l-Histidine in real samples (drinking water and biological fluids). Furthermore, the probe revealed good photostability, low cytotoxicity and excellent permeability, making it a suitable candidate for cell imaging and labeling in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Novel and easy access to highly luminescent Eu and Tb doped ultra-small CaF2, SrF2 and BaF2 nanoparticles - structure and luminescence.

    PubMed

    Ritter, Benjamin; Haida, Philipp; Fink, Friedrich; Krahl, Thoralf; Gawlitza, Kornelia; Rurack, Knut; Scholz, Gudrun; Kemnitz, Erhard

    2017-02-28

    A universal fast and easy access at room temperature to transparent sols of nanoscopic Eu 3+ and Tb 3+ doped CaF 2 , SrF 2 and BaF 2 particles via the fluorolytic sol-gel synthesis route is presented. Monodisperse quasi-spherical nanoparticles with sizes of 3-20 nm are obtained with up to 40% rare earth doping showing red or green luminescence. In the beginning luminescence quenching effects are only observed for the highest content, which demonstrates the unique and outstanding properties of these materials. From CaF 2 :Eu10 via SrF 2 :Eu10 to BaF 2 :Eu10 a steady increase of the luminescence intensity and lifetime occurs by a factor of ≈2; the photoluminescence quantum yield increases by 29 to 35% due to the lower phonon energy of the matrix. The fast formation process of the particles within fractions of seconds is clearly visualized by exploiting appropriate luminescence processes during the synthesis. Multiply doped particles are also available by this method. Fine tuning of the luminescence properties is achieved by variation of the Ca-to-Sr ratio. Co-doping with Ce 3+ and Tb 3+ results in a huge increase (>50 times) of the green luminescence intensity due to energy transfer Ce 3+ → Tb 3+ . In this case, the luminescence intensity is higher for CaF 2 than for SrF 2 , due to a lower spatial distance of the rare earth ions.

  16. Structure and formation of highly luminescent protein-stabilized gold clusters† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc05086k

    PubMed Central

    Chevrier, D. M.; Thanthirige, V. D.; Luo, Z.; Driscoll, S.; Cho, P.; MacDonald, M. A.; Yao, Q.; Guda, R.; Xie, J.; Johnson, E. R.; Chatt, A.; Zheng, N.

    2018-01-01

    Highly luminescent gold clusters simultaneously synthesized and stabilized by protein molecules represent a remarkable category of nanoscale materials with promising applications in bionanotechnology as sensors. Nevertheless, the atomic structure and luminescence mechanism of these gold clusters are still unknown after several years of developments. Herein, we report findings on the structure, luminescence and biomolecular self-assembly of gold clusters stabilized by the large globular protein, bovine serum albumin. We highlight the surprising identification of interlocked gold-thiolate rings as the main gold structural unit. Importantly, such gold clusters are in a rigidified state within the protein scaffold, offering an explanation for their highly luminescent character. Combined free-standing cluster synthesis (without protecting protein scaffold) with rigidifying and un-rigidifying experiments, were designed to further verify the luminescence mechanism and gold atomic structure within the protein. Finally, the biomolecular self-assembly process of the protein-stabilized gold clusters was elucidated by time-dependent X-ray absorption spectroscopy measurements and density functional theory calculations. PMID:29732064

  17. Rare earth niobate coordination polymers

    NASA Astrophysics Data System (ADS)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; Rohwer, Lauren E. S.; Reinheimer, Eric W.; Dolgos, Michelle; Graham, Matt W.; Nyman, May

    2018-03-01

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. Here we described the synthesis of a heterometallic rare-earth coordination compound ((CH3)2SO)3(RE)NbO(C2O4)3((CH3)2SO) = dimethylsulfoxide, DMSO, (C2O2= oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb˭O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for the smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. We attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.

  18. Mechanochromic Luminescence of Aggregation-Induced Emission Luminogens.

    PubMed

    Dong, Yong Qiang; Lam, Jacky W Y; Tang, Ben Zhong

    2015-09-03

    Mechanochromic (MC) luminogens have found promising applications in mechanosensors, security papers, and optical storage for their change in emission behaviors in response to mechanical stimuli. Examples on MC luminescent materials are rare before the discovery of MC luminescence in aggregation-induced emission (AIE) luminogens. The twisted conformations of AIE luminogens (AIEgens) with appropriate crystallization capability afford loosely packing patterns, which facilitates their phase transformation in the solid state. The amorphous films of AIEgens exhibit enhanced emission intensity upon pressurization due to the increased molecular interactions, whereas crystals of AIEgens exhibit MC luminescence due to their amorphization by mechanical stimuli. AIEgens enrich the type of MC luminogens but those showing high emission contrast and multicolor emission switching and those working in a turn-on emission mode are seldom reported. Disclosure of the design strategy of high performance MC luminogens and exploration of their high-tech applications may be the future research directions for MC luminogens.

  19. Two double and triple interpenetrated Cd(II) and Zn(II) coordination polymers based on mixed O- and N-donor ligands: Syntheses, crystal structures and luminescent properties

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Li, Xiaohui; Zhang, Yan

    2016-01-01

    Two interpenetrated 3D coordination polymers, namely [Cd2(tdc)2(bpp) (DMA)]n (1) and [Zn2(tdc)2(bib)2]n·2n(DMA) (2) (H2tdc = 2,5-thiophenedicarboxylic acid, bpp = 1,3-di(4-pyridyl)propane, bib = 1, 4-bis(imidazolyl)butane, DMA = N,N-dimethylacetamide), have been solvothermally synthesized by the self-assembly of flexible N-donor and dicarboxylate ligands. Single crystal X-ray diffraction analyses revealed that compound 1 features a 2-fold interpenetrated 3D framework based on dinuclear [Cd2(COO)3] subunits and can be simplified into a 6-connected pcu topology, and compound 2 features a 3-fold interpenetrated 3D framework with 4-connected dia topology. Moreover, the thermal stabilities and luminescent properties of these two compounds were also investigated.

  20. Thermally Stable White Emitting Eu3+ Complex@Nanozeolite@Luminescent Glass Composite with High CRI for Organic-Resin-Free Warm White LEDs.

    PubMed

    Zhang, Jinhui; Gong, Shuming; Yu, Jinbo; Li, Peng; Zhang, Xuejie; He, Yuwei; Zhou, Jianbang; Shi, Rui; Li, Huanrong; Peng, Aiyun; Wang, Jing

    2017-03-01

    Nowadays, it is still a great challenge for lanthanide complexes to be applied in solid state lighting, especially for high-power LEDs because they will suffer severe thermal-induced luminescence quenching and transmittance loss when LEDs are operated at high current. In this paper, we have not only obtained high efficient and thermally chemical stable red emitting hybrid material by introducing europium complex into nanozeolite (NZ) functionalized with the imidazolium-based stopper but also abated its thermal-induced transmittance loss and luminescence quenching behavior via coating it onto a heat-resistant luminescent glass (LG) with high thermal conductivity (1.07 W/mK). The results show that the intensity at 400 K for Eu(PPO) n -C 4 Si@NZ@LG remains 21.48% of the initial intensity at 300 K, which is virtually 153 and 13 times the intensity of Eu(PPO) 3 ·2H 2 O and Eu(PPO) n -C 4 Si@NZ, respectively. Moreover, an organic-resin-free warm white LEDs device with a low CCT of 3994K, a high Ra of 90.2 and R9 of 57.9 was successfully fabricated simply by combining NUV-Chip-On-Board with a warm white emitting glass-film composite (i.e., yellowish-green emitting luminescent glass coated with red emitting hybrid film). Our method and results provide a feasible and promising way for lanthanide complexes to be used for general illumination in the future.

  1. Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications.

    PubMed

    Correa, D S; Medeiros, E S; Oliveira, J E; Paterno, L G; Mattoso, Luiz C

    2014-09-01

    Conjugated polymers are organic materials endowed with a π-electron conjugation along the polymer backbone that present appealing electrical and optical properties for technological applications. By using conjugated polymeric materials in the nanoscale, such properties can be further enhanced. In addition, the use of nanostructured materials makes possible miniaturize devices at the micro/nano scale. The applications of conjugated nanostructured polymers include sensors, actuators, flexible displays, discrete electronic devices, and smart fabric, to name a few. In particular, the use of conjugated polymers in chemical and biological sensors is made feasible owning to their sensitivity to the physicochemical conditions of its surrounding environment, such as chemical composition, pH, dielectric constant, humidity or even temperature. Subtle changes in these conditions bring about variations on the electrical (resistivity and capacitance), optical (absorptivity, luminescence, etc.), and mechanical properties of the conjugated polymer, which can be precisely measured by different experimental methods and ultimately associated with a specific analyte and its concentration. The present review article highlights the main features of conjugated polymers that make them suitable for chemical sensors. An especial emphasis is given to nanostructured sensors systems, which present high sensitivity and selectivity, and find application in beverage and food quality control, pharmaceutical industries, medical diagnosis, environmental monitoring, and homeland security, and other applications as discussed throughout this review.

  2. MgO:Li,Ce,Sm as a high-sensitivity material for Optically Stimulated Luminescence dosimetry

    NASA Astrophysics Data System (ADS)

    Oliveira, Luiz C.; Yukihara, Eduardo G.; Baffa, Oswaldo

    2016-04-01

    The goal of this work was to investigate the relevant dosimetric and luminescent properties of MgO:Li3%,Ce0.03%,Sm0.03%, a newly-developed, high sensitivity Optically Stimulated Luminescence (OSL) material of low effective atomic number (Zeff = 10.8) and potential interest for medical and personal dosimetry. We characterized the thermoluminescence (TL), OSL, radioluminescence (RL), and OSL emission spectrum of this new material and carried out a preliminary investigation on the OSL signal stability. MgO:Li,Ce,Sm has a main TL peak at ~180 °C (at a heating rate of 5 °C/s) associated with Ce3+ and Sm3+ emission. The results indicate that the infrared (870 nm) stimulated OSL from MgO:Li,Ce,Sm has suitable properties for dosimetry, including high sensitivity to ionizing radiation (20 times that of Al2O3:C, under the measurement conditions) and wide dynamic range (7 μGy-30 Gy). The OSL associated with Ce3+ emission is correlated with a dominant, practically isolated peak at 180 °C. Fading of ~15% was observed in the first hour, probably due to shallow traps, followed by subsequent fading of 6-7% over the next 35 days. These properties, together with the characteristically fast luminescence from Ce3+, make this material also a strong candidate for 2D OSL dose mapping.

  3. MgO:Li,Ce,Sm as a high-sensitivity material for Optically Stimulated Luminescence dosimetry

    PubMed Central

    Oliveira, Luiz C.; Yukihara, Eduardo G.; Baffa, Oswaldo

    2016-01-01

    The goal of this work was to investigate the relevant dosimetric and luminescent properties of MgO:Li3%,Ce0.03%,Sm0.03%, a newly-developed, high sensitivity Optically Stimulated Luminescence (OSL) material of low effective atomic number (Zeff = 10.8) and potential interest for medical and personal dosimetry. We characterized the thermoluminescence (TL), OSL, radioluminescence (RL), and OSL emission spectrum of this new material and carried out a preliminary investigation on the OSL signal stability. MgO:Li,Ce,Sm has a main TL peak at ~180 °C (at a heating rate of 5 °C/s) associated with Ce3+ and Sm3+ emission. The results indicate that the infrared (870 nm) stimulated OSL from MgO:Li,Ce,Sm has suitable properties for dosimetry, including high sensitivity to ionizing radiation (20 times that of Al2O3:C, under the measurement conditions) and wide dynamic range (7 μGy–30 Gy). The OSL associated with Ce3+ emission is correlated with a dominant, practically isolated peak at 180 °C. Fading of ~15% was observed in the first hour, probably due to shallow traps, followed by subsequent fading of 6–7% over the next 35 days. These properties, together with the characteristically fast luminescence from Ce3+, make this material also a strong candidate for 2D OSL dose mapping. PMID:27076349

  4. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes.

    PubMed

    Lin, Liangxu; Zhang, Shaowei

    2012-10-21

    We have developed an effective method to exfoliate and disintegrate multi-walled carbon nanotubes and graphite flakes. With this technique, high yield production of luminescent graphene quantum dots with high quantum yield and low oxidization can be achieved.

  5. Medium Bandgap Conjugated Polymer for High Performance Polymer Solar Cells Exceeding 9% Power Conversion Efficiency.

    PubMed

    Jung, Jae Woong; Liu, Feng; Russell, Thomas P; Jo, Won Ho

    2015-12-02

    Two medium-bandgap polymers composed of benzo[1,2-b:4,5-b']dithiohpene and 2,1,3-benzothiadiazole with 6-octyl-thieno[3,2-b]thiophene as a π-bridge unit are synthesized and their photovoltaic properties are analyzed. The two polymers have deep highest occupied molecular orbital energy levels, high crystallinity, optimal bulk-heterojunction morphology, and efficient charge transport, resulting in a power conversion efficiency of as high as 9.44% for a single-junction polymer solar-cell device. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Studies of Luminescence Performance on Carbazole Donor and Quinoline Acceptor Based Conjugated Polymer.

    PubMed

    Upadhyay, Anjali; S, Karpagam

    2016-03-01

    We report on the synthesis of conjugated polymer (CV-QP) containing carbazole (donor) and quinoline (acceptor) using Wittig methodology. The structural, optical and thermal properties of the polymer were investigated by FT-IR, NMR, GPC, UV, PL, cyclic voltammetry, atomic force microscopy (AFM) and thermogravimetric analysis (TGA). The polymer exhibits thermal stability upto 200 °C and shows good solubility in common organic solvents. The polymer has optical absorption band in a thin film at 360 nm and emission band formed at 473 nm. The optical energy band gap was found to be 2.69 eV as calculated from the onset absorption edge. Fluorescence quenching of the polymer CV-QP was found by using DMA (electron donor) and DMTP (electron acceptor). AFM image indicated that triangular shaped particles were observed and the particle size was found as 1.1 μm. The electrochemical studies of CV-QP reveal that, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the CV-QP are 6.35 and 3.70 eV, which indicated that the polymers are expected to provide charge transporting properties for the development of polymer light-emitting diodes (PLEDs).

  7. Surface polyPEGylation of Eu3+ doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Zeng, Guangjian; Liu, Meiying; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Huang, Hongye; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-03-01

    The Eu3+ doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu3+ doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface initiated ATRP. As compared with the traditional ATRP, the metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts such as copper ions. More importantly, the strategy described in this work should also be utilized for fabrications of many other luminescent polymer nanocomposites due to its good monomer adoptability.

  8. Three-Photon Luminescence of Gold Nanorods and Its Applications for High Contrast Tissue and Deep In Vivo Brain Imaging

    PubMed Central

    Wang, Shaowei; Xi, Wang; Cai, Fuhong; Zhao, Xinyuan; Xu, Zhengping; Qian, Jun; He, Sailing

    2015-01-01

    Gold nanoparticles can be used as contrast agents for bio-imaging applications. Here we studied multi-photon luminescence (MPL) of gold nanorods (GNRs), under the excitation of femtosecond (fs) lasers. GNRs functionalized with polyethylene glycol (PEG) molecules have high chemical and optical stability, and can be used as multi-photon luminescent nanoprobes for deep in vivo imaging of live animals. We have found that the depth of in vivo imaging is dependent upon the transmission and focal capability of the excitation light interacting with the GNRs. Our study focused on the comparison of MPL from GNRs with two different aspect ratios, as well as their ex vivo and in vivo imaging effects under 760 nm and 1000 nm excitation, respectively. Both of these wavelengths were located at an optically transparent window of biological tissue (700-1000 nm). PEGylated GNRs, which were intravenously injected into mice via the tail vein and accumulated in major organs and tumor tissue, showed high image contrast due to distinct three-photon luminescence (3PL) signals upon irradiation of a 1000 nm fs laser. Concerning in vivo mouse brain imaging, the 3PL imaging depth of GNRs under 1000 nm fs excitation could reach 600 μm, which was approximately 170 μm deeper than the two-photon luminescence (2PL) imaging depth of GNRs with a fs excitation of 760 nm. PMID:25553113

  9. Highly crosslinked silicon polymers for gas chromatography columns

    NASA Technical Reports Server (NTRS)

    Shen, Thomas C. (Inventor)

    1994-01-01

    A new highly crosslinked silicone polymer particle for gas chromatography application and a process for synthesizing such copolymer are described. The new copolymer comprises vinyltriethoxysilane and octadecyltrichlorosilane. The copolymer has a high degree of crosslinking and a cool balance of polar to nonpolar sites in the porous silicon polymer assuring fast separation of compounds of variable polarity.

  10. Dating Middle Pleistocene loess using IRSL luminescence

    NASA Astrophysics Data System (ADS)

    Michel, L.

    2008-12-01

    Loess is a unique palaeoclimate proxy that has a relatively global distribution. A major issue in loess studies is their age, as most terrestrial sediments are outside the realm of isotopic dating methods. Luminescence dating of loess has been attempted with limited success as Optically Stimulated Luminescence (OSL) from the two common dosimeters used in luminescence, quartz and feldspar minerals, both yielded age underestimates. Quartz is limited by dose saturation and feldspar suffers from anomalous fading. Over the last decade, we have developed methods to deal with anomalous fading and hence correct Infrared Stimulated Luminescence (IRSL) ages from feldspar dominated samples. A method known as Dose Rate Correction (DRC) has been successfully applied to loess from the Western European Belt, for ages as old as the Middle Pleistocene. Ages using the same method have been obtained for loess in Alaska and the technique is now being extended to loess from Illinois and China. IRSL can also be used as a reliable telecorrelation tool as luminescence properties of loess are broadly similar, whatever the geological provenance. DRC corrected IRSL extends the applicability of luminescence to dating loess up to at least 500 ka. The limiting factor in the specific case of loess is dose saturation due to relatively high dose rate compared to the average terrestrial sediment radioactivity.

  11. Electronic and Ionic Transport in Processable Conducting Polymers

    DTIC Science & Technology

    1991-05-28

    doping with nitrosonium fluoborate. 6. Polypyrrole containing luminescent ions has been shown to be useful as in-situ probes of ion transport during...blends, ion transport, fibers, theoretical calculations ABSTRACT (Continue on reverse if necessary and identify by block number) A summary of the research...polymer/dopant ion interactions, symmereically and asymmetrically substituted poly(di-2-heterocycle-2,5-disubstitutedphenylenes), poly(5

  12. Progress in chemical luminescence-based biosensors: A critical review.

    PubMed

    Roda, Aldo; Mirasoli, Mara; Michelini, Elisa; Di Fusco, Massimo; Zangheri, Martina; Cevenini, Luca; Roda, Barbara; Simoni, Patrizia

    2016-02-15

    Biosensors are a very active research field. They have the potential to lead to low-cost, rapid, sensitive, reproducible, and miniaturized bioanalytical devices, which exploit the high binding avidity and selectivity of biospecific binding molecules together with highly sensitive detection principles. Of the optical biosensors, those based on chemical luminescence detection (including chemiluminescence, bioluminescence, electrogenerated chemiluminescence, and thermochemiluminescence) are particularly attractive, due to their high-to-signal ratio and the simplicity of the required measurement equipment. Several biosensors based on chemical luminescence have been described for quantitative, and in some cases multiplex, analysis of organic molecules (such as hormones, drugs, pollutants), proteins, and nucleic acids. These exploit a variety of miniaturized analytical formats, such as microfluidics, microarrays, paper-based analytical devices, and whole-cell biosensors. Nevertheless, despite the high analytical performances described in the literature, the field of chemical luminescence biosensors has yet to demonstrate commercial success. This review presents the main recent advances in the field and discusses the approaches, challenges, and open issues, with the aim of stimulating a broader interest in developing chemical luminescence biosensors and improving their commercial exploitation. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A series of Zn/Cd coordination polymers constructed from 1,4-naphthalenedicarboxylate and N-donor ligands: Syntheses, structures and luminescence sensing of Cr3+ in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Hu, Dong-Cheng; Fan, Yan; Si, Chang-Dai; Wu, Ya-Jun; Dong, Xiu-Yan; Yang, Yun-Xia; Yao, Xiao-Qiang; Liu, Jia-Cheng

    2016-09-01

    A novel series of Zn/Cd coordination polymers based on H3L, namely, [Zn2(HL)2(bipy)2(H2O)6]n (1), [Zn(HL)(phen)]n (2), [Cd3L2(bbi)3]n (3), [Zn3L2(bbi)3]n (4) [(H3L =4-[(1-carboxynaphthalen-2-yl)oxy]phthalic acid, bipy =4,4‧-bipyridine, phen =1,10-phenanthroline, bbi =1,1‧-(1,4-butanediyl)bis(imidazole] have been successfully synthesized by solvothermal reaction. Compound 1 possesses two diverse 1D chains constructed by different bipy coligands, which were further connected to form a 3D supramolecular architecture by hydrogen bonding interactions. Compound 2 possesses a complicated 1D chain based on secondary building unit (SBU) with binuclear Zn cluster. Compounds 3 and 4 exhibit similar 2D→3D framework, which can be rationalized as (3,4,4)-connected 3D net with a Schläfli symbol of (63.8.102)2(63)2(64.8.10). In particular, compound 3 exhibited a high sensitivity for Cr3+ in aqueous solutions, which suggest that compound 3 is a promising luminescent probe for selectively sensing Cr3+.

  14. Highly elastic polymer solutions under shear: Polymer migration, viscoelastic instabilities, and anomalous rheology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M.J.; Muller, S.J.

    1996-12-31

    The use of highly elastic polymer solutions has been remarkably successful in elucidating the behavior of polymeric materials under flowing conditions. Here, we present the results of an extensive experimental study into the shear behavior of an athermal, dilute, binary polymer solution that is believed to be free of many of these effects. Under extended shearing, we observe the migration of polymer species: after shearing for several hundred hours, concentrations that are more than double the initial uniform value can be achieved. Although the solutions are well-described by dumbbell models in shear flows on short-time scales, theoretical predictions substantially underestimatemore » the rate of migration. Flow visualization and rheometric experiments suggest that the origin of this discrepancy could be the anomalous long-time rheology of these solutions. While these fluids display the well-known elastic instability in cone and plate flow above a critical Deborah number, extended shearing reveals that the toroidal secondary flow is eventually replaced by a purely azimuthal shearing flow. In addition, when sheared below the critical condition for the instability, the solutions exhibit a slow but reversible decay in normal stresses. The shear-induced migration of polymer species has been predicted by numerous theoretical studies. However, observations on the highly elastic polymer solutions that are most likely to show polymer migration, are complicated by a number of different physical processes that occur as a result of shearing. These phenomena, which include shear-induced phase separation, elastically-induced hydrodynamic instabilities, mixed solvent effects, shear-induced aggregation, and anomalous transient shear and normal stress behavior are often observed at times earlier than and at shear rates less than those where migration is predicted to occur; hence, the experimental detection of polymer migration has been thwarted by these other physical processes.« less

  15. Electrical degradation of triarylamine-based light-emitting polymer diodes monitored by micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Seon; Ho, Peter K. H.; Murphy, Craig E.; Seeley, Alex J. A. B.; Grizzi, Ilaria; Burroughes, Jeremy H.; Friend, Richard H.

    2004-03-01

    Although much progress has been made in improving polymer light-emitting diode performance, there has been little work to address device intrinsic degradation mechanisms due to the challenge of tracking minute chemical reactions in the 100-nm-thick buried active layers during operation. Here we have elucidated a hole-mediated electrical degradation of triarylamine-based blue polymer diodes using in situ Raman microspectroscopy. A slow irreversible hole-doping of polymer adjacent to the hole-injecting conducting-polymer leads to formation of oxidised triarylamine species counterbalanced by anions from the conducting-polymer. These charged species act as luminescence quenchers and hinder further hole injection across the interface leading to significant decreases in current density at low voltages.

  16. Luminescent solar concentrators and all-inorganic nanoparticle solar cells for solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Sholin, Veronica

    efficiency of LSCs based on small molecule laser dyes and on quantum dots. Factors affecting the optical efficiency of the system such as the luminescing properties of the fluorophors were examined. The experimental results were compared to Monte-Carlo simulations. Our results suggest that commercially available quantum dots cannot serve as viable LSC dyes because of large absorption/emission band overlap and relatively low quantum yield. Materials such as Red F demonstrate that semi-conducting polymers with high quantum yield and small absorption/emission band overlap are good candidates for LSCs. Recently, a solar cell system based purely on CdSe and Cite nanoparticles as the absorbing materials was proposed ans it was suggested that its operational mechanism was that of polymer donor/acceptor systems. Here we present solar cells consisting of a sintered active bilayer of CdSe and PbSe nanoparticles in the structure ITO/CdSe/interlayer/PbSe/Al, where an interlayer of LiF or Al2O3 was found necessary to prevent low shunt resistance from suppressing the photovoltaic behavior. We fabricated unoptimized solar cells with a short-circuit current of 6 mA/cm2, an open-circuit voltage of 0.18 V, and a fill factor of 41%. External quantum efficiency spectra revealed that photons from the infrared portion of the spectrum were not collected, suggesting that the low bandgap PbSe film did not contribute to the photocurrent of the structure despite exhibiting photoconductivity. Other measurements, however, showed that the PbSe film was indeed necessary to produce a photovoltage and transport electrons. Through sintering, the nanoparticle films acquired bandgaps similar to those of the corresponding bulk materials and became more conductive. Because the PbSe films were found to be considerably more conductive than the CdSe ones, we suggest that the PbSe layer is effectively behaving like a low conductivity electrical contact. Therefore, in contrast to the photovoltaics presented in the

  17. Photoluminescence of Co: ZnNiO and Zr: ZnNiO nanocomposites capped with biodegradable polymer poly (2-ethyl-2-oxazoline)

    NASA Astrophysics Data System (ADS)

    John, Sam; George, James Baben; Joseph, Abraham

    2018-05-01

    The optical properties of the semiconducting nanomaterials has a wide variety of applications in the biological and industrial fields, which include the synthesis of UV laser, light emitting diodes, solar cells, gas sensors, piezoelectric transducers etc. Among the various types of optical properties, luminescence especially photoluminescence (PL) of metal oxides are more prominently studied. This is because PL spectrum is an effective way to investigate the electronic structure, optical and photochemical properties of semiconductor materials which deciphers information such as surface oxygen vacancies, defects, efficiency of charge carrier trapping, immigration, transfer etc. To overcome the drawbacks in luminescence studies of metal oxide nanomaterials, polymer technology has also been incorporated. The scientists found that the doping of some elements into the polymer capped ZnO nanocomposites enhanced the luminescence properties of the compound. In the current study, we are investigating the photoluminescence properties of ZnO nanocomposites capped with a biodegradable polymer poly (2-ethyl 2-oxazoline) and doped with the elements Cobalt and Zirconium. We obtained many strong fluorescence peaks in the visible and UV regions in the PL spectrum and UV absorption spectroscopy.

  18. Syntheses, structures and properties of four Cd(II) coordination polymers induced by the pH regulator

    NASA Astrophysics Data System (ADS)

    Xu, Yun; Ding, Fang; Liu, Dong; Yang, Pei-Pei; Zhu, Li-Li

    2018-03-01

    Four new coordination polymers [Cd2(CHDC)2(APYZ)(H2O)2](H2O) (1), [Cd(HCHDC)2(APYZ) (H2O)] (2), [Cd2(CHDC)2(PYZ)(H2O)2](H2O) (3), and [Cd(HCHDC)2(PYZ)(H2O)] (4) (H2CHDC = 1,4-cyclohexanedicarboxylic acid, APYZ = 2-aminopyrazine, PYZ = pyrazine) have been synthesized under the hydrothermal conditions by changing the pH regulator and the N-containing ligands. The pH regulator impacted on the degree of deprotonation of the 1,4-cyclohexanedicarboxylic acid ligand and resulted in the formation of the two pairs of different networks. Polymers 1 and 3 crystallize in monoclinic, space group P21/c, exhibit two dimensional 63 net, which further formed three-dimensional supramolecular structure by the Csbnd H⋯O hydrogen bond interactions. While polymers 2 and 4 possess one dimensional chain structures and further link into two dimensional layered supramolecular structures by intermolecular hydrogen bonding interactions. From all three conformers of H2CHDC, e,a-cis is consistently present in the Cd coordination polymers. Furthermore, photoluminescence properties of four polymers are also investigated, the luminescent intensity of polymer 1 (or 2) with amino group in pyrazine is dramatically stronger than that of the similar structure of polymer 3 (or 4) without amino group in pyrazine, the results shown that the presence of the amino group from 2-aminopyrazine play a key role in increasing the luminescence properties.

  19. Simultaneous Luminescence Pressure and Temperature Mapping

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor)

    1998-01-01

    A simultaneous luminescence pressure and temperature mapping system is developed including improved dye application techniques for surface temperature and pressure measurements from 5 torr to 1000 torr with possible upgrade to from 0.5 torr to several atmospheres with improved camera resolution. Adsorbed perylene dye on slip-cast silica is pressure (oxygen) sensitive and reusable to relatively high temperatures (-150 C). Adsorbed luminescence has an approximately linear color shift with temperature, which can be used for independent temperature mapping and brightness pressure calibration with temperature.

  20. Silica-modified luminescent LaPO4 :Eu@LaPO4 @SiO2 core/shell nanorods: Synthesis, structural and luminescent properties.

    PubMed

    Ansari, Anees A

    2018-02-01

    Monoclinic-type tetragonal LaPO 4 :Eu (core) and LaPO 4 :Eu@LaPO 4 (core/shell) nanorods (NRs) were successfully prepared using a urea-based co-precipitation process under ambient conditions. An amorphous silica layer was coated around the luminescent core/shell NRs via the sol-gel process to improve their solubility and colloidal stability in aqueous and non-aqueous media. The prepared nano-products were systematically characterized by X-ray diffraction pattern, transmission electron microscopy, energy dispersive X-ray analysis, and FTIR, UV/Vis, and photoluminescence spectroscopy to examine their phase purity, crystal phase, surface chemistry, solubility and luminescence characteristics. The length and diameter of the nano-products were in the range 80-120 nm and 10-15 nm, respectively. High solubility of the silica-modified core/shell/Si NRs was found for the aqueous medium. The luminescent core NRs exhibited characteristic excitation and emission transitions in the visible region that were greatly affected by surface growth of insulating LaPO 4 and silica layers due to the multiphonon relaxation rate. Our luminescence spectral results clearly show a distinct difference in intensities for core, core/shell, and core/shell/Si NRs. Highly luminescent NRs with good solubility could be useful candidates for a variety of photonic-based biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene.

    PubMed

    Chen, Hsiang-Yu; Lo, Michael K F; Yang, Guanwen; Monbouquette, Harold G; Yang, Yang

    2008-09-01

    Polymer-inorganic nanocrystal composites offer an attractive means to combine the merits of organic and inorganic materials into novel electronic and photonic systems. However, many applications of these composites are limited by the solubility and distribution of the nanocrystals in the polymer matrices. Here we show that blending CdTe nanoparticles into a polymer-fullerene matrix followed by solvent annealing can achieve high photoconductive gain under low applied voltages. The surface capping ligand renders the nanoparticles highly soluble in the polymer blend, thereby enabling high CdTe loadings. An external quantum efficiency as high as approximately 8,000% at 350 nm was achieved at -4.5 V. Hole-dominant devices coupled with atomic force microscopy images show a higher concentration of nanoparticles near the cathode-polymer interface. The nanoparticles and trapped electrons assist hole injection into the polymer under reverse bias, contributing to efficiency values in excess of 100%.

  2. Positron-Induced Luminescence.

    PubMed

    Stenson, E V; Hergenhahn, U; Stoneking, M R; Pedersen, T Sunn

    2018-04-06

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  3. Positron-Induced Luminescence

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  4. Luminescent molecular rods - transition-metal alkynyl complexes.

    PubMed

    Yam, Vivian Wing-Wah; Wong, Keith Man-Chung

    2005-01-01

    A number of transition-metal complexes have been reported to exhibit rich luminescence, usually originating from phosphorescence. Such luminescence properties of the triplet excited state with a large Stoke's shift, long lifetime, high luminescence quantum yield as well as lower excitation energy, are envisaged to serve as an ideal candidate in the area of potential applications for chemosensors, dye-sensitized solar cells, flat panel displays, optics, new materials and biological sciences. Organic alkynes (poly-ynes), with extended or conjugatedπ-systems and rigid structure with linear geometry, have become a significant research area due to their novel electronic and physical properties and their potential applications in nanotechnology. Owing to the presence of unsaturated sp-hybridized carbon atoms, the alkynyl unit can serve as a versatile building block in the construction of alkynyl transition-metal complexes, not only throughσ-bonding but also viaπ-bonding interactions. By incorporation of linear alkynyl groups into luminescent transition-metal complexes, the alkynyl moiety with goodσ-donor,π-donor andπ-acceptor abilities is envisaged to tune or perturb the emission behaviors, including emission energy (color), intensity and lifetime by its role as an auxiliary ligand as well as to govern the emission origin from its direct involvement. This review summarizes recent efforts on the synthesis of luminescent rod-like alkynyl complexes with different classes of transition metals and details the effects of the introduction of alkynyl groups on the luminescence properties of the complexes.

  5. Controllable Synthesis of Highly Luminescent Boron Nitride Quantum Dots.

    PubMed

    Li, Hongling; Tay, Roland Yingjie; Tsang, Siu Hon; Zhen, Xu; Teo, Edwin Hang Tong

    2015-12-22

    Boron nitride quantum dots (BNQDs), as a new member of heavy metal-free quantum dots, have aroused great interest in fundamental research and practical application due to their unique physical/chemical properties. However, it is still a challenge to controllably synthesize high-quality BNQDs with high quantum yield (QY), uniform size and strong fluorescent. In this work, BNQDs have been successfully fabricated by the liquid exfoliation and the subsequent solvothermal process with respect to its facileness and easy large scale up. Importantly, BNQDs with high-quality can be controllably obtained by adjusting the synthetic parameters involved in the solvothermal process including filling factor, synthesis temperature, and duration time. Encouragingly, the as-prepared BNQDs possess strong blue luminescence with QY as high as 19.5%, which can be attributed to the synergetic effect of size, surface chemistry and edge defects. In addition, this strategy presented here provides a new reference for the controllable synthesis of other heavy metal-free QDs. Furthermore, the as-prepared BNQDs are non-toxic to cells and exhibit nanosecond-scaled lifetimes, suggesting they have great potential biological and optoelectronic applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Highly luminescent, biocompatible ytterbium(iii) complexes as near-infrared fluorophores for living cell imaging.

    PubMed

    Ning, Yingying; Tang, Juan; Liu, Yi-Wei; Jing, Jing; Sun, Yuansheng; Zhang, Jun-Long

    2018-04-21

    Herein, we report the design and synthesis of biocompatible Yb 3+ complexes for near-infrared (NIR) living cell imaging. Upon excitation at either the visible (Soret band) or red region (Q band), these β-fluorinated Yb 3+ complexes display high NIR luminescence (quantum yields up to 23% and 13% in dimethyl sulfoxide and water, respectively) and have higher stabilities and prolonged decay lifetimes (up to 249 μs) compared to the β-non-fluorinated counterparts. This renders the β-fluorinated Yb 3+ complexes as a new class of biological optical probes in both steady-state imaging and time-resolved fluorescence lifetime imaging (FLIM). NIR confocal fluorescence images showed strong and specific intracellular Yb 3+ luminescence signals when the biocompatible Yb 3+ complexes were uptaken into the living cells. Importantly, FLIM measurements showed an intracellular lifetime distribution between 100 and 200 μs, allowing an effective discrimination from cell autofluorescence, and afforded high signal-to-noise ratios as firstly demonstrated in the NIR region. These results demonstrated the prospects of NIR lanthanide complexes as biological probes for NIR steady-state fluorescence and time-resolved fluorescence lifetime imaging.

  7. Luminescence from cavitation bubbles deformed in uniform pressure gradients

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2017-09-01

    Presented here are observations that demonstrate how the deformation of millimetric cavitation bubbles by a uniform pressure gradient quenches single-collapse luminescence. Our innovative measurement system captures a broad luminescence spectrum (wavelength range, 300-900 nm) from the individual collapses of laser-induced bubbles in water. By varying the bubble size, driving pressure, and perceived gravity level aboard parabolic flights, we probed the limit from aspherical to highly spherical bubble collapses. Luminescence was detected for bubbles of maximum radii within the previously uncovered range, R0=1.5 -6 mm, for laser-induced bubbles. The relative luminescence energy was found to rapidly decrease as a function of the bubble asymmetry quantified by the anisotropy parameter ζ , which is the dimensionless equivalent of the Kelvin impulse. As established previously, ζ also dictates the characteristic parameters of bubble-driven microjets. The threshold of ζ beyond which no luminescence is observed in our experiment closely coincides with the threshold where the microjets visibly pierce the bubble and drive a vapor jet during the rebound. The individual fitted blackbody temperatures range between Tlum=7000 and Tlum=11 500 K but do not show any clear trend as a function of ζ . Time-resolved measurements using a high-speed photodetector disclose multiple luminescence events at each bubble collapse. The averaged full width at half-maximum of the pulse is found to scale with R0 and to range between 10 and 20 ns.

  8. Flexible high-temperature dielectric materials from polymer nanocomposites.

    PubMed

    Li, Qi; Chen, Lei; Gadinski, Matthew R; Zhang, Shihai; Zhang, Guangzu; Li, Haoyu; Iagodkine, Elissei; Haque, Aman; Chen, Long-Qing; Jackson, Tom; Wang, Qing

    2015-07-30

    Dielectric materials, which store energy electrostatically, are ubiquitous in advanced electronics and electric power systems. Compared to their ceramic counterparts, polymer dielectrics have higher breakdown strengths and greater reliability, are scalable, lightweight and can be shaped into intricate configurations, and are therefore an ideal choice for many power electronics, power conditioning, and pulsed power applications. However, polymer dielectrics are limited to relatively low working temperatures, and thus fail to meet the rising demand for electricity under the extreme conditions present in applications such as hybrid and electric vehicles, aerospace power electronics, and underground oil and gas exploration. Here we describe crosslinked polymer nanocomposites that contain boron nitride nanosheets, the dielectric properties of which are stable over a broad temperature and frequency range. The nanocomposites have outstanding high-voltage capacitive energy storage capabilities at record temperatures (a Weibull breakdown strength of 403 megavolts per metre and a discharged energy density of 1.8 joules per cubic centimetre at 250 degrees Celsius). Their electrical conduction is several orders of magnitude lower than that of existing polymers and their high operating temperatures are attributed to greatly improved thermal conductivity, owing to the presence of the boron nitride nanosheets, which improve heat dissipation compared to pristine polymers (which are inherently susceptible to thermal runaway). Moreover, the polymer nanocomposites are lightweight, photopatternable and mechanically flexible, and have been demonstrated to preserve excellent dielectric and capacitive performance after intensive bending cycles. These findings enable broader applications of organic materials in high-temperature electronics and energy storage devices.

  9. Flexible high-temperature dielectric materials from polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Li, Qi; Chen, Lei; Gadinski, Matthew R.; Zhang, Shihai; Zhang, Guangzu; Li, Haoyu; Haque, Aman; Chen, Long-Qing; Jackson, Tom; Wang, Qing

    2015-07-01

    Dielectric materials, which store energy electrostatically, are ubiquitous in advanced electronics and electric power systems. Compared to their ceramic counterparts, polymer dielectrics have higher breakdown strengths and greater reliability, are scalable, lightweight and can be shaped into intricate configurations, and are therefore an ideal choice for many power electronics, power conditioning, and pulsed power applications. However, polymer dielectrics are limited to relatively low working temperatures, and thus fail to meet the rising demand for electricity under the extreme conditions present in applications such as hybrid and electric vehicles, aerospace power electronics, and underground oil and gas exploration. Here we describe crosslinked polymer nanocomposites that contain boron nitride nanosheets, the dielectric properties of which are stable over a broad temperature and frequency range. The nanocomposites have outstanding high-voltage capacitive energy storage capabilities at record temperatures (a Weibull breakdown strength of 403 megavolts per metre and a discharged energy density of 1.8 joules per cubic centimetre at 250 degrees Celsius). Their electrical conduction is several orders of magnitude lower than that of existing polymers and their high operating temperatures are attributed to greatly improved thermal conductivity, owing to the presence of the boron nitride nanosheets, which improve heat dissipation compared to pristine polymers (which are inherently susceptible to thermal runaway). Moreover, the polymer nanocomposites are lightweight, photopatternable and mechanically flexible, and have been demonstrated to preserve excellent dielectric and capacitive performance after intensive bending cycles. These findings enable broader applications of organic materials in high-temperature electronics and energy storage devices.

  10. Note: Near infrared spectral and transient measurements of PbS quantum dots luminescence.

    PubMed

    Parfenov, P S; Litvin, A P; Ushakova, E V; Fedorov, A V; Baranov, A V; Berwick, K

    2013-11-01

    We describe an experimental setup for the characterization of luminescence from nanostructures. The setup is intended for steady-state and time-resolved luminescence measurements in the near-infrared region. The setup allows us to study spectral luminescence properties in the spectral range of 0.8-2.0 μm with high spectral resolution and kinetic luminescence properties between 0.8 and 1.7 μm with a time resolution of 3 ns. The capabilities of the system are illustrated by taking luminescence measurements from PbS quantum dots. We established the size dependencies of the optical properties of the PbS quantum dots over a wide spectral range. Finally, the energy transfer process was studied with a high temporal and spectral resolution.

  11. Tetranuclear cluster-based Pb(II)-MOF: Synthesis, crystal structure and luminescence sensing for CS2

    NASA Astrophysics Data System (ADS)

    Dong, Yanli

    2018-05-01

    A new Pb(II) coordination polymer, namely [Pb2(bptc)(DMA)]n (1, H4bptc = biphenyl-3,3‧,5,5‧-tetracarboxylic acid, DMA = N, N‧- dimethylacetamide), has been synthesized by the combination of H4bptc with Pb(NO3)2 under solvothermal conditions. Single crystal X-ray diffraction analysis revealed that compound 1 features a 3D framework based on tetranuclear [Pb4(COO)6] subunits, and topological analysis revealed that compound represents a binodal (4, 8)-connected scu-type topological network with the point symbol of {416,612}{44,62}2. Luminescence studies indicated that 1 and 1' (1‧ represents the desolvated samples) showed intense yellow emissions. Significantly, 1‧ exhibited sensitive luminescence sensing for CS2 solvent molecules at a low concentration.

  12. Self-Assembled Tb3+ Complex Probe for Quantitative Analysis of ATP during Its Enzymatic Hydrolysis via Time-Resolved Luminescence in Vitro and in Vivo.

    PubMed

    Jung, Sung Ho; Kim, Ka Young; Lee, Ji Ha; Moon, Cheol Joo; Han, Noh Soo; Park, Su-Jin; Kang, Dongmin; Song, Jae Kyu; Lee, Shim Sung; Choi, Myong Yong; Jaworski, Justyn; Jung, Jong Hwa

    2017-01-11

    To more accurately assess the pathways of biological systems, a probe is needed that may respond selectively to adenosine triphosphate (ATP) for both in vitro and in vivo detection modes. We have developed a luminescence probe that can provide real-time information on the extent of ATP, ADP, and AMP by virtue of the luminescence and luminescence lifetime observed from a supramolecular polymer based on a C 3 symmetrical terpyridine complex with Tb 3+ (S1-Tb). The probe shows remarkable selective luminescence enhancement in the presence of ATP compared to other phosphate-displaying nucleotides including adenosine diphosphate (ADP), adenosine monophosphate (AMP), guanosine triphosphate (GTP), thymidine triphosphate (TTP), H 2 PO 4 - (Pi), and pyrophosphate (PPi). In addition, the time-resolved luminescence lifetime and luminescence spectrum of S1-Tb could facilitate the quantitative measurement of the exact amount of ATP and similarly ADP and AMP within living cells. The time-resolved luminescence lifetime of S1-Tb could also be used to quantitatively monitor the amount of ATP, ADP, and AMP in vitro following the enzymatic hydrolysis of ATP. The long luminescence lifetime, which was observed into the millisecond range, makes this S1-Tb-based probe particularly attractive for monitoring biological ATP levels in vivo, because any short lifetime background fluorescence arising from the complex molecular environment may be easily eliminated.

  13. Bioconjugation of luminescent Eu-BDC-NH2 MOFs for highly efficient sensing of BSA

    NASA Astrophysics Data System (ADS)

    Kukkar, Preeti; Sammi, Heena; Rawat, Mohit; Singh, Pritpal; Basu, Soumen; Kukkar, Deepak

    2018-05-01

    Luminescent metal organic frameworks (MOFs) have emerged as an exciting prospect for molecular sensing applications owing to their tunable porosity and optical properties. In this study, we have reported the synthesis of luminescent Europium-amino terephthalic acid (Eu-BDC-NH2) MOFs through solvothermal approach subsequently followed by their bioconjugation with anti-Bovine serum albumin (BSA) antibody using standard carbodiimide linkage chemistry. Subsequently nanocomposite of the bioconjugate and Zeolotic Imidazole Frameworks -8(ZIF-8) nanoparticles was prepared by adding varying volumes of ZIF-8 NPs to check the variation in photoluminescence (PL) intensity. Finally, optimized nanocomposites with increased PL intensity were treated with different concentrations of BSA to show a turn on effect on the PL intensity. The prepared nanocomposites were able to screen 0.1 ppm concentration of the BSA thus showing their high efficiency as a molecular sensor. This fluorescent platform would be further utilized for sensitive detection of pesticides in solution.

  14. Highly Luminescent, Water-Soluble Lanthanide Fluorobenzoates: Syntheses, Structures and Photophysics, Part I: Lanthanide Pentafluorobenzoates.

    PubMed

    Kalyakina, Alena S; Utochnikova, Valentina V; Bushmarinov, Ivan S; Ananyev, Ivan V; Eremenko, Igor L; Volz, Daniel; Rönicke, Franziska; Schepers, Ute; Van Deun, Rik; Trigub, Alexander L; Zubavichus, Yan V; Kuzmina, Natalia P; Bräse, Stefan

    2015-12-01

    Highly luminescent, photostable, and soluble lanthanide pentafluorobenzoates have been synthesized and thoroughly characterized, with a focus on Eu(III) and Tb(III) complexes as visible emitters and Nd(III) , Er(III) , and Yb(III) complexes as infrared emitters. Investigation of the crystal structures of the complexes in powder form and as single crystals by using X-ray diffraction revealed five different structural types, including monomeric, dimeric, and polymeric. The local structure in different solutions was studied by using X-ray absorption spectroscopy. The photoluminescence quantum yields (PLQYs) of terbium and europium complexes were 39 and 15 %, respectively; the latter value was increased almost twice by using the heterometallic complex [Tb0.5 Eu0.5 (pfb)3 (H2 O)] (Hpfb=pentafluorobenzoic acid). Due to the effectively utilized sensitization strategy (pfb)(-) →Tb→Eu, a pure europium luminescence with a PLQY of 29 % was achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Exploring the origin of high optical absorption in conjugated polymers.

    PubMed

    Vezie, Michelle S; Few, Sheridan; Meager, Iain; Pieridou, Galatia; Dörling, Bernhard; Ashraf, Raja Shahid; Goñi, Alejandro R; Bronstein, Hugo; McCulloch, Iain; Hayes, Sophia C; Campoy-Quiles, Mariano; Nelson, Jenny

    2016-07-01

    The specific optical absorption of an organic semiconductor is critical to the performance of organic optoelectronic devices. For example, higher light-harvesting efficiency can lead to higher photocurrent in solar cells that are limited by sub-optimal electrical transport. Here, we compare over 40 conjugated polymers, and find that many different chemical structures share an apparent maximum in their extinction coefficients. However, a diketopyrrolopyrrole-thienothiophene copolymer shows remarkably high optical absorption at relatively low photon energies. By investigating its backbone structure and conformation with measurements and quantum chemical calculations, we find that the high optical absorption can be explained by the high persistence length of the polymer. Accordingly, we demonstrate high absorption in other polymers with high theoretical persistence length. Visible light harvesting may be enhanced in other conjugated polymers through judicious design of the structure.

  16. Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode.

    PubMed

    Wolfbeis, Otto S

    2015-08-01

    Luminescence-based sensing schemes for oxygen have experienced a fast growth and are in the process of replacing the Clark electrode in many fields. Unlike electrodes, sensing is not limited to point measurements via fiber optic microsensors, but includes additional features such as planar sensing, imaging, and intracellular assays using nanosized sensor particles. In this essay, I review and discuss the essentials of (i) common solid-state sensor approaches based on the use of luminescent indicator dyes and host polymers; (ii) fiber optic and planar sensing schemes; (iii) nanoparticle-based intracellular sensing; and (iv) common spectroscopies. Optical sensors are also capable of multiple simultaneous sensing (such as O2 and temperature). Sensors for O2 are produced nowadays in large quantities in industry. Fields of application include sensing of O2 in plant and animal physiology, in clinical chemistry, in marine sciences, in the chemical industry and in process biotechnology. © 2015 The Author. Bioessays published by WILEY Periodicals, Inc.

  17. Differentiation of black writing ink on paper using luminescence lifetime by time-resolved luminescence spectroscopy.

    PubMed

    Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Akao, Yoshinori; Higashikawa, Yoshiyasu

    2017-10-01

    The time-resolved luminescence spectra and the lifetimes of eighteen black writing inks were measured to differentiate pen ink on altered documents. The spectra and lifetimes depended on the samples. About half of the samples only exhibited short-lived luminescence components on the nanosecond time scale. On the other hand, the other samples exhibited short- and long-lived components on the microsecond time scale. The samples could be classified into fifteen groups based on the luminescence spectra and dynamics. Therefore, luminescence lifetime can be used for the differentiation of writing inks, and luminescence lifetime imaging can be applied for the examination of altered documents. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A luminescent Lanthanide-free MOF nanohybrid for highly sensitive ratiometric temperature sensing in physiological range.

    PubMed

    Zhou, You; Zhang, Denan; Zeng, Jin; Gan, Ning; Cuan, Jing

    2018-05-01

    Luminescent MOF materials with tunable emissions and energy/charge transfer processes have been extensively explored as ratiometric temperature sensors. However, most of the ratiometric MOF thermometers reported thus far are based on the MOFs containing photoactive lanthanides, which are potentially facing cost issue and serious supply shortage. Here, we present a ratiometric luminescent thermometer based on a dual-emitting lanthanide-free MOF hybrid, which is developed by encapsulation of a fluorescent dye into a robust nanocrystalline zirconium-based MOF through a one-pot synthesis approach. The structure and morphology of the hybrid product was characterized by Powder X-ray diffraction (PXRD), N 2 adsorption-desorption measurement and Scanning electron microscopy (SEM). The pore confinement effect well isolates the guest dye molecules and therefore suppresses the nonradiative energy transfer process between dye molecules. The incorporated dye emission is mainly sensitized by the organic linkers within MOF through fluorescence resonance energy transfer. The ratiometric luminescence of the MOF hybrid shows a significant response to temperature due to the thermal-related back energy transfer process from dye molecules and organic linkers, thus can be exploited for self-calibrated temperature sensing. The maximum thermometric sensitivity is 1.19% °C -1 in the physiological temperature range, which is among the highest for the ratiomtric MOF thermometers that operating in 25-45°C. The temperature resolution is better than 0.1°C over the entire operative range (20-60°C). By integrating the advantages of excellent stability, nanoscale nature, and high sensitivity and precision in the physiological temperature range, this dye@MOF hybrid might have potential application in biomedical diagnosis. What' more, this work has expanded the possibility of non-lanthanide luminescent MOF materials for the development of ratiometric temperature sensors. Copyright © 2018

  19. Rare earth niobate coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. In this paper we described the synthesis of a heterometallic rare-earth coordination compound ((CH 3) 2SO) 3(RE)NbO(C 2O 4) 3 ((CH 3) 2SO) = dimethylsulfoxide, DMSO, (C 2O 2 = oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb =O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for themore » smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. Finally, we attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.« less

  20. Rare earth niobate coordination polymers

    DOE PAGES

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; ...

    2018-01-03

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. In this paper we described the synthesis of a heterometallic rare-earth coordination compound ((CH 3) 2SO) 3(RE)NbO(C 2O 4) 3 ((CH 3) 2SO) = dimethylsulfoxide, DMSO, (C 2O 2 = oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb =O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for themore » smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. Finally, we attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.« less

  1. High resolution luminescence chronology for Xiashu Loess deposits of Southeastern China

    NASA Astrophysics Data System (ADS)

    Yi, Shuangwen; Li, Xusheng; Han, Zhiyong; Lu, Huayu; Liu, Jinfeng; Wu, Jiang

    2018-04-01

    Loess deposits in Xiashu are representative of such deposits in Southeastern China that are mainly distributed in the middle and lower reaches of the Yangtze River valley. These loess-paleosol sequences provide a key archive of past climate change in humid, subtropical regions. However, the ages of the sequences are not well constrained. In this study, the standard quartz single-aliquot regenerative (SAR) dose optically stimulated luminescence (OSL) and K-feldspar post-infrared infrared stimulated luminescence (post-IR IRSL; pIRIR290) methods are used to date two loess sequences in Nanjing region. Our results show that quartz SAR OSL and K-feldspar pIRIR290 ages are more or less indistinguishable from one another up to ∼50 ka. Beyond this age, the K-feldspar pIRIR ages increased systematically with deposition depth, agreeing well with the expected ages as far as ∼200 ka. On the basis of a fully independently-dated timescale, we are therefore able to propose, for the first time, a new age model for the Xiashu Loess deposits accumulated since the penultimate interglacial period. Using our newly obtained luminescence dating ages, we observe a marked difference between the loess accumulation rates in the two sequences, potentially forced by regional depositional processes and loess preservation.

  2. Resonance-shifting luminescent solar concentrators

    DOEpatents

    Giebink, Noel Christopher; Wiederrecht, Gary P; Wasielewski, Michael R

    2014-09-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  3. Resonance-shifting luminescent solar concentrators

    DOEpatents

    Giebink, Noel Christopher; Wiederrecht, Gary P.; Wasielewski, Michael R.

    2018-01-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  4. Significantly Increasing the Ductility of High Performance Polymer Semiconductors through Polymer Blending.

    PubMed

    Scott, Joshua I; Xue, Xiao; Wang, Ming; Kline, R Joseph; Hoffman, Benjamin C; Dougherty, Daniel; Zhou, Chuanzhen; Bazan, Guillermo; O'Connor, Brendan T

    2016-06-08

    Polymer semiconductors based on donor-acceptor monomers have recently resulted in significant gains in field effect mobility in organic thin film transistors (OTFTs). These polymers incorporate fused aromatic rings and have been designed to have stiff planar backbones, resulting in strong intermolecular interactions, which subsequently result in stiff and brittle films. The complex synthesis typically required for these materials may also result in increased production costs. Thus, the development of methods to improve mechanical plasticity while lowering material consumption during fabrication will significantly improve opportunities for adoption in flexible and stretchable electronics. To achieve these goals, we consider blending a brittle donor-acceptor polymer, poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] (PCDTPT), with ductile poly(3-hexylthiophene). We found that the ductility of the blend films is significantly improved compared to that of neat PCDTPT films, and when the blend film is employed in an OTFT, the performance is largely maintained. The ability to maintain charge transport character is due to vertical segregation within the blend, while the improved ductility is due to intermixing of the polymers throughout the film thickness. Importantly, the application of large strains to the ductile films is shown to orient both polymers, which further increases charge carrier mobility. These results highlight a processing approach to achieve high performance polymer OTFTs that are electrically and mechanically optimized.

  5. Analytical applications of enhanced drug luminescence.

    PubMed

    Baeyens, W R; Ling, B L

    1989-01-01

    Luminescence emission from drugs is strongly dependent on their physicochemical environment. Several biomedically and environmentally important compounds and pharmaceuticals exhibit sufficient intrinsic luminescence properties to allow their determination by high-performance liquid chromatography (HPLC) with fluorimetric, chemiluminescence or room temperature phosphorimetric detection. In the case of weakly fluorescing compounds it is possible to use the dependence of the emitted radiation on the molecular environment at the moment of measurement. The composition of the eluent, i.e. solvents, added salts and buffers, pH and ionic strength, oxygen content and temperature, are of the highest importance for the luminescence detection of drugs in solution (e.g. in liquid chromatography) or adsorbed onto solid surfaces (e.g. in thin-layer chromatography). Post-column or post-plate acid-base manipulation and the use of specific reagents may remarkably enhance the observed luminescence of several molecules. The term "enhancement" of luminescence comprises various sample treatments leading to an increase of the emitted radiation. These treatments include the addition of non-fluorescent compounds to, or the creation of organized media (surfactants, cyclodextrins, heavy atoms) in, the sample to be measured. They may also involve changes in molecular environment, pH, the application of excessive drying conditions, the removal of oxygen, the protection of adsorbed compounds against non-radiative decay mechanisms by means of specific spraying or dipping conditions, amongst others. The use of organized media in luminescence spectroscopy is growing. Many of the recent studies have involved micelles for enhancing the fluorescence, room temperature phosphorescence and chemiluminescence of several chemicals. Cyclodextrins are increasingly used for various analytical applications. Liquid paraffin, triethanolamine, dodecane, Triton X-100 and Fomblin Y-Vac are commonly used

  6. High-resolution records of soil humification and paleoclimate change from variations in speleothem luminescence excitation and emission wavelengths

    NASA Astrophysics Data System (ADS)

    Baker, Andy; Genty, Dominique; Smart, Peter L.

    1998-10-01

    Recent advances in the precision and accuracy of the optical techniques required to measure luminescence permit the nondestructive analysis of solid geologic samples such as speleothems (secondary carbonate deposits in caves). In this paper we show that measurement of speleothem luminescence demonstrates a strong relationship between the excitation and emission wavelengths and both the extent of soil humification and mean annual rainfall. Raw peat with blanket bog vegetation has the highest humification and highest luminescence excitation and emission matrix wavelengths, because of the higher proportion of high-molecular-weight organic acids in these soils. Brown ranker and rendzina soils with dry grassland and woodland cover have the lowest wavelengths. Detailed analysis of one site where an annually laminated stalagmite has been deposited over the past 70 yr during a period with instrumental climate records and no vegetation change suggests that more subtle variations in luminescence emission wavelength correlate best with mean annual rainfall, although there is a lag of ˜10 yr. These results are used to interpret soil humification and climate change from a 130 ka speleothem at an upland site in Yorkshire, England. These data provide a new continuous terrestrial record of climate and environmental change for northwestern Europe and suggest the presence of significant variations in wetness and vegetation within interglacial and interstadial periods.

  7. Polymer Day: Outreach Experiments for High School Students

    ERIC Educational Resources Information Center

    Ting, Jeffrey M.; Ricarte, Ralm G.; Schneiderman, Deborah K.; Saba, Stacey A.; Jiang, Yaming; Hillmyer, Marc A.; Bates, Frank S.; Reineke, Theresa M.; Macosko, Christopher W.; Lodge, Timothy P.

    2017-01-01

    We present a collection of hands-on experiments that collectively teach precollege students fundamental concepts of polymer synthesis and characterization. These interactive experiments are performed annually as part of an all-day outreach event for high school students that can inform the development of ongoing polymer education efforts in a…

  8. Generation of cavitation luminescence by laser-induced exothermic chemical reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung Park, Han; Diebold, Gerald J.

    2013-08-14

    Absorption of high power laser radiation by aqueous carbon suspensions is known to result in the formation of highly compressed bubbles of hydrogen and carbon monoxide through the endothermic carbon-steam reaction. The bubbles expand rapidly, overreaching their equilibrium diameter, and then collapse tens to hundreds of microseconds after formation to give a flash of radiation. Here we report on the effects of laser-initiated exothermic chemical reaction on cavitation luminescence. Experiments with hydrogen peroxide added to colloidal carbon suspensions show that both the time of the light flash following the laser pulse and the intensity of luminescence increase with hydrogen peroxidemore » concentration, indicating that large, highly energetic gas bubbles are produced. Additional experiments with colloidal carbon suspensions show the effects of high pressure on the luminescent intensity and its time of appearance following firing of the laser.« less

  9. Water evaporation on highly viscoelastic polymer surfaces.

    PubMed

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  10. Ratiometric Time-Gated Luminescence Probe for Nitric Oxide Based on an Apoferritin-Assembled Lanthanide Complex-Rhodamine Luminescence Resonance Energy Transfer System.

    PubMed

    Tian, Lu; Dai, Zhichao; Liu, Xiangli; Song, Bo; Ye, Zhiqiang; Yuan, Jingli

    2015-11-03

    Using apoferritin (AFt) as a carrier, a novel ratiometric luminescence probe based on luminescence resonance energy transfer (LRET) between a Tb(3+) complex (PTTA-Tb(3+)) and a rhodamine derivative (Rh-NO), PTTA-Tb(3+)@AFt-Rh-NO, has been designed and prepared for the specific recognition and time-gated luminescence detection of nitric oxide (NO) in living samples. In this LRET probe, PTTA-Tb(3+) encapsulated in the core of AFt is the energy donor, and Rh-NO, a NO-responsive rhodamine derivative, bound on the surface of AFt is the energy acceptor. The probe only emits strong Tb(3+) luminescence because the emission of rhodamine is switched off in the absence of NO. Upon reaction with NO, accompanied by the turn-on of rhodamine emission, the LRET from Tb(3+) complex to rhodamine occurs, which results in the remarkable increase and decrease of the long-lived emissions of rhodamine and PTTA-Tb(3+), respectively. After the reaction, the intensity ratio of rhodamine emission to Tb(3+) emission, I565/I539, is ∼24.5-fold increased, and the dose-dependent enhancement of I565/I539 shows a good linearity in a wide concentration range of NO. This unique luminescence response allowed PTTA-Tb(3+)@AFt-Rh-NO to be conveniently used as a ratiometric probe for the time-gated luminescence detection of NO with I565/I539 as a signal. Taking advantages of high specificity and sensitivity of the probe as well as its good water-solubility, biocompatibility, and cell membrane permeability, PTTA-Tb(3+)@AFt-Rh-NO was successfully used for the luminescent imaging of NO in living cells and Daphnia magna. The results demonstrated the efficacy of the probe and highlighted it's advantages for the ratiometric time-gated luminescence bioimaging application.

  11. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells

    PubMed Central

    Liu, Yuhang; Zhao, Jingbo; Li, Zhengke; Mu, Cheng; Hu, Huawei; Jiang, Kui; Lin, Haoran; Ade, Harald; Yan, He

    2014-01-01

    Although the field of polymer solar cell has seen much progress in device performance in the past few years, several limitations are holding back its further development. For instance, current high-efficiency (>9.0%) cells are restricted to material combinations that are based on limited donor polymers and only one specific fullerene acceptor. Here we report the achievement of high-performance (efficiencies up to 10.8%, fill factors up to 77%) thick-film polymer solar cells for multiple polymer:fullerene combinations via the formation of a near-ideal polymer:fullerene morphology that contains highly crystalline yet reasonably small polymer domains. This morphology is controlled by the temperature-dependent aggregation behaviour of the donor polymers and is insensitive to the choice of fullerenes. The uncovered aggregation and design rules yield three high-efficiency (>10%) donor polymers and will allow further synthetic advances and matching of both the polymer and fullerene materials, potentially leading to significantly improved performance and increased design flexibility. PMID:25382026

  12. Jeffamine® based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application

    NASA Astrophysics Data System (ADS)

    Aldalur, Itziar; Zhang, Heng; Piszcz, Michał; Oteo, Uxue; Rodriguez-Martinez, Lide M.; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel

    2017-04-01

    We report a simple synthesis route towards a new type of comb polymer material based on polyether amines oligomer side chains (i.e., Jeffamine® compounds) and a poly(ethylene-alt-maleic anhydride) backbone. Reaction proceeds by imide ring formation through the NH2 group allowing for attachment of side chains. By taking advantage of the high configurational freedoms and flexibility of propylene oxide/ethylene oxide units (PO/EO) in Jeffamine® compounds, novel polymer matrices were obtained with good elastomeric properties. Fully amorphous solid polymer electrolytes (SPEs) based on lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and Jeffamine®-based polymer matrices show low glass transition temperatures around -40 °C, high ionic conductivities and good electrochemical stabilities. The ionic conductivities of Jeffamine-based SPEs (5.3 × 10-4 S cm-1 at 70 °C and 4.5 × 10-5 S cm-1 at room temperature) are higher than those of the conventional SPEs comprising of LiTFSI and linear poly(ethylene oxide) (PEO), due to the amorphous nature and the high concentration of mobile end-groups of the Jeffamine-based polymer matrices rather than the semi-crystalline PEO The feasibility of Jeffamine-based compounds in lithium metal batteries is further demonstrated by the implementation of Jeffamine®-based polymer as a binder for cathode materials, and the stable cycling of Li|SPE|LiFePO4 and Li|SPE|S cells using Jeffamine-based SPEs.

  13. Ladder polymers for use as high temperature stable resins or coatings

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann (Inventor)

    1990-01-01

    An object of the invention is to synthesize a new class of ladder and partial ladder polymers. In accordance with the invention, the new class of ladder and partial ladder polymers are synthesized by polymerizing a bis-dienophile with a bis-diene. Another object of the invention is to provide a fabricated, electrically conducting, void free composite comprising the new class of the ladder and partial ladder polymers described above. The novelty of the invention relates to a new class of ladder and partial ladder polymers and a process for synthesizing these polymers. These polymers are soluble in common organic solvents and are characterized with a unique dehydration property at temperatures of 300 to 400 C to provide thermo-oxidatively stable pentiptycene units along the polymeric backbone. These polymers are further characterized with high softening points and good thermo-oxidative stability properties. Thus these polymers have potential as processable, matrix resins for high temperature composite applications.

  14. High Performance Polymers and Composites (HiPPAC) Center

    NASA Technical Reports Server (NTRS)

    Mintz, Eric A.; Veazie, David

    2005-01-01

    NASA University Research Centers funding has allowed Clark Atlanta University (CAU) to establish a High Performance Polymers and Composites (HiPPAC) Research Center. Clark Atlanta University, through the HiPPAC Center has consolidated and expanded its polymer and composite research capabilities through the development of research efforts in: (1) Synthesis and characterization of polymeric NLO, photorefractive, and piezoelectric materials; (2) Characterization and engineering applications of induced strain smart materials; (3) Processable polyimides and additives to enhance polyimide processing for composite applications; (4) Fabrication and mechanical characterization of polymer based composites.

  15. High-Temperature Shape Memory Polymers

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  16. Surface-imprinted nanofilaments for europium-amplified luminescent detection of fluoroquinolone antibiotics.

    PubMed

    Zdunek, Jolanta; Benito-Peña, Elena; Linares, Ana; Falcimaigne-Cordin, Aude; Orellana, Guillermo; Haupt, Karsten; Moreno-Bondi, María C

    2013-07-29

    The development and characterization of novel, molecularly imprinted polymer nanofilament-based optical sensors for the analysis of enrofloxacin, an antibiotic widely used for human and veterinary applications, is reported. The polymers were prepared by nanomolding in porous alumina by using enrofloxacin as the template. The antibiotic was covalently immobilized on to the pore walls of the alumina by using different spacers, and the prepolymerization mixture was cast in the pores and the polymer synthesized anchored onto a glass support through UV polymerization. Various parameters affecting polymer selectivity were evaluated to achieve optimal recognition, namely, the spacer arm length and the binding solvent. The results of morphological characterization, binding kinetics, and selectivity of the optimized polymer material for ENR and its derivatives are reported. For sensing purposes, the nanofilaments were incubated in solutions of the target molecule in acetonitrile/HEPES buffer (100 mM, pH 7.5, 50:50, v/v) for 20 min followed by incubation in a 10 mM solution of europium(III) ions to generate a europium(III)-enrofloxacin complex on the polymer surface. The detection event was based on the luminescence of the rare-earth ion (λexc=340 nm; λem=612 nm) that results from energy transfer from the antibiotic excited state to the metal-ion emitting excited state. The limit of detection of the enrofloxacin antibiotic was found to be 0.58 μM. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High Performance Tandem Perovskite/Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Bag, Monojit; Page, Zachariah; Renna, Lawrence; Kim, Paul; Choi, Jaewon; Emrick, Todd; Venkataraman, D.; Russell, Thomas

    Combining perovskites with other inorganic materials, such as copper indium gallium diselenide (CIGS) or silicon, is enabling significant improvement in solar cell device performance. Here, we demonstrate a highly efficient hybrid tandem solar cell fabricated through a facile solution deposition approach to give a perovskite front sub-cell and a polymer:fullerene blend back sub-cell. This methodology eliminates the adverse effects of thermal annealing during perovskite fabrication on polymer solar cells. The record tandem solar cell efficiency of 15.96% is 40% greater than the corresponding perovskite-based single junction device and 65% greater than the polymer-based single junction device, while mitigating deleterious hysteresis effects often associated with perovskite solar cells. The hybrid tandem devices demonstrate the synergistic effects arising from the combination of perovskite and polymer-based materials for solar cells. This work was supported by the Department of Energy-supported Energy Frontier Research Center at the University of Massachusetts (DE-SC0001087). The authors acknowledge the W.M. Keck Electron Microscopy.

  18. Preparation of highly luminescent and biocompatible carbon dots using a new extraction method

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Liu, Ying-Bo; Sun, Shu-Qing

    2013-10-01

    C dots (CDs) are among the most promising emerging fluorescent labels for biological imaging and sensing. A facile new synthesis method was developed using common organic solvents for fabricating CDs from candle soot. The common organic solvents were used as extractants and the obtained CDs have a narrow size distribution with average diameters of about 3.4 nm for ethylene glycol, 3.5 nm for ethanol, and 3.4 nm for n-butanol. This approach is simpler, easier, and more effective than other methods currently used for CD fabrication. The obtained CDs had a high quantum yield (38 %), tunable emission and are water-soluble. The mechanism for the luminescence of the CDs was investigated and the results indicate that the ability of the solvent to disperse the CDs plays a very important role in the photoluminescence of these CDs. The type of organic solvent and the surface groups on the CDs also influenced the optical properties of the CDs. Different emissive traps are shown to play the major role in the luminescence of the carbon materials. An in vitro hemolysis assay was performed and showed that the CDs are biocompatible.

  19. Assessing Past Surface Processes Rates Using Feldspar Luminescence

    NASA Astrophysics Data System (ADS)

    Lamothe, M.

    2010-12-01

    Luminescence dating methods (OSL) developed over the last decade offer absolute depositional ages for sediments, crystallization ages for volcanic material or firing ages for burnt archaeological materials. When these natural surface events are from well-documented geological sequences of events, the ages can decipher timing as well as intensity of processes rates. The advent of luminescence dating has yielded a unique window on the pace of the erosion-transport-depositional cycle as the event assessed using luminescence is last exposure to sunlight and burial. A unique advantage of luminescence is its universal applicability since the routinely used dosimeters, minerals of quartz and feldspar, are almost ubiquitous on the land surface. Dating applications to sediments are still clouded by low accuracy and near saturation of the natural luminescence level, commonly observed for sediments older than the Last Interglacial. The latter imposes severe constraints in the use of quartz as a reliable dosimeter for any environment beyond the Late Pleistocene. However, in the case of feldspar, if dates are corrected for anomalous fading, ages of ancient surface processes could potentially be obtained up to ca 500 ka. Nevertheless, large uncertainties inherent to older ages may therein limit usefulness to precisely assessing processes rates. Case-studies will be used to highlight the potential and limitation of luminescence to properly assess surface processes rates for a) Holocene and older aeolian sedimentary systems, b) rates of tectonic movement by dating relative sea level changes from moderately stable to highly dynamic coastal areas, and c) albeit at its early stages, processes in volcanism, by means of tephra-extracted feldspar luminescence dating.

  20. Monitoring Delamination of Plasma-Sprayed Thermal Barrier Coatings by Reflectance-Enhanced Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Bencic, Timothy J.

    2006-01-01

    Highly scattering plasma-sprayed thermal barrier coatings (TBCs) present a challenge for optical diagnostic methods to monitor TBC delamination because scattering attenuates light transmitted through the TBC and usually degrades contrast between attached and delaminated regions of the TBC. This paper presents a new approach where reflectance-enhanced luminescence from a luminescent sublayer incorporated along the bottom of the TBC is used to identify regions of TBC delamination. Because of the higher survival rate of luminescence reflecting off the back surface of a delaminated TBC, the strong scattering exhibited by plasma-sprayed TBCs actually accentuates contrast between attached and delaminated regions by making it more likely that multiple reflections of luminescence off the back surface occur before exiting the top surface of the TBC. A freestanding coating containing sections designed to model an attached or delaminated TBC was prepared by depositing a luminescent Eu-doped or Er-doped yttria-stabilized zirconia (YSZ) luminescent layer below a plasma-sprayed undoped YSZ layer and utilizing a NiCr backing layer to represent an attached substrate. For specimens with a Eu-doped YSZ luminescent sublayer, luminescence intensity maps showed excellent contrast between unbacked and NiCr-backed sections even at a plasma-sprayed overlayer thickness of 300 m. Discernable contrast between unbacked and NiCr-backed sections was not observed for specimens with a Er-doped YSZ luminescent sublayer because luminescence from Er impurities in the undoped YSZ layer overwhelmed luminescence originating form the Er-doped YSZ sublayer.

  1. Simultaneous Luminescence Pressure and Temperature Mapping System

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor)

    1995-01-01

    A simultaneous luminescence pressure and temperature mapping system is developed including improved dye application techniques for surface temperature and pressure measurements from 5 torr to 1000 torr with possible upgrade to from 0.5 torr to several atmospheres with improved camera resolution. Adsorbed perylene dye on slip-cast silica is pressure (oxygen) sensitive and reusable to relatively high temperatures (approximately 150 C). Adsorbed luminescence has an approximately linear color shift with temperature, which can be used for independent temperature mapping and brightness pressure calibration with temperature.

  2. The effect of gravity-induced pressure gradient on bubble luminescence

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Dorsaz, Nicolas; Tinguely, Marc; Farhat, Mohamed

    2014-11-01

    The violent collapse of a bubble can heat up its gaseous contents to temperatures exceeding those on the sun's surface, resulting in a short luminescence flash. Occurring at the very moment of the collapse, luminescence must be highly sensitive to the bubble geometry at the preceding final stage. This represents an important feature as any pressure anisotropy in the surrounding liquid will result in a deformation of an initially spherical bubble, inducing a micro-jet that pierces the bubble and makes it experience a toroidal collapse. We therefore present these as complementary phenomena by investigating the link between jets and luminescence of laser-generated single bubbles. Through ultra-high-speed imaging, the micro-jet formation and evolution of a single bubble are observed with unprecedented detail, whilst the bubble light emission is analyzed by means of a spectrometer. The bubble energy and the micro-jet size are controlled by adjusting the laser-pulse and by varying the gravity level aboard ESA parabolic flights, respectively. We here provide systematic evidence on how bubble-jets suppress luminescence in a considerable manner, even in normal gravity where the jet is barely observable. We conclude that gravity must be accounted for in accurate models of luminescence.

  3. Two three-dimensional coordination polymers of lead(II) with iminodiacetate and naphthalene-dicarboxylate anions: Synthesis, characterization and luminescence behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazari, Debdoot; Jana, Swapan Kumar; Fleck, Michel

    2014-11-15

    Two lead(II) compounds [Pb{sub 3}(idiac){sub 3}(phen){sub 2}(H{sub 2}O)]·2(H{sub 2}O) (1) and [Pb(ndc)]{sub n} (2), where H{sub 2}idiac=iminodiacetic acid, phen=1,10-phenanthroline and H{sub 2}ndc=naphthalene-2,6-dicarboxylic acid, have been synthesized and structurally characterized. Single crystal X-ray diffraction analysis showed that compound 1 is a discrete trinuclear complex (of two-fold symmetry) which evolves to a supramolecular 3D network via π–π interactions, while in compound 2 the naphthalene dicarboxylate anion act as a linker to form a three dimensional architecture, where the anion adopts a bis-(bidentate bridging) coordination mode connecting four Pb(II) centers. The photoluminescence property of the two complexes has been studied. - graphical abstract:more » Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by x-ray analysis. The luminescence and thermal properties have been studied. - Highlights: • 1 is a trinuclear complex of Pb(II) growing to 3D network via weak interactions. • In 1, layers of (4,4) rhomboidal topology are identified. • In 2, the ndc anion adopts interesting bis-(bidentate bridging) coordination. • In 2, network is reinforced by C–H…π-ring interactions between the ndc rings.« less

  4. Self-propagating high-temperature synthesis and luminescent properties of ytterbium doped rare earth (Y, Sc, Lu) oxides nanopowders

    NASA Astrophysics Data System (ADS)

    Permin, D. A.; Novikova, A. V.; Balabanov, S. S.; Gavrishchuk, E. M.; Kurashkin, S. V.; Savikin, A. P.

    2018-04-01

    This paper describes a comparative study of structural and luminescent properties of 5%Yb-doped yttrium, scandium, and lutetium oxides (Yb:RE2O3) powders and ceramics fabricated by self-propagating high-temperature synthesis. According to X-ray diffractometry and electron microscopy the chosen method ensures preparation of low-agglomerated cubic Ctype crystal structured powders at one step. No crucial differences in luminescence spectra were found the Yb:RE2O3 powders and ceramics. It was shown that the emission lifetimes of the Yb:RE2O3 powders are lowered by crystal structure defects, while its values for ceramics samples are compared to that of monocrystals and more influenced by rare earth impurities.

  5. Novel functional Renilla luciferase mutant provides long-term serum stability and high luminescence activity.

    PubMed

    Song, Woo Chul; Sung, Hye-Jin; Park, Kyung Soo; Choi, Jeong-Woo; Cho, Je-Yeol; Um, Soong Ho

    2013-10-01

    Fluorescent and luminescent chemical probes are essential in recent medical diagnostics. However, the use of these probes in vivo has raised concerns due to their low sensitivity, background signal interference, and non-biocompatibility. Therefore, biological chromophores have received much attention as new alternatives. In particular, luciferase, a class of oxidative enzyme with bioluminescence, has emerged as a promising fluorophore due to its improved biocompatibility. However, the enzyme usually possesses weaker luminescence and stability relative to its chemically-based competitors. Here, we report a novel functional mutant luciferase with both enhanced luminescence and long-term serum stability. For the preparation of the modified Renilla luciferase, a new bacterial subcloning design was established. The luciferase coding DNA sequence was redesigned so that mutant luciferase could be easily expressed in an Escherichia coli system. The mutant Renilla luciferase, which we called "m-Rluc," demonstrated characteristic enzymatic functions and showed a 5.6-fold increase in luminescence activity. In addition, the enzyme's physiological stability remained >80% for more than 5days, in contrast to conventional luciferase, termed "hrluc," which disappeared within a few hours. We suggest that this novel biological luciferase probe may be a great tool for both in vitro and in vivo medical diagnostics. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. High-Performance All-Polymer Solar Cells Achieved by Fused Perylenediimide-Based Conjugated Polymer Acceptors.

    PubMed

    Yin, Yuli; Yang, Jing; Guo, Fengyun; Zhou, Erjun; Zhao, Liancheng; Zhang, Yong

    2018-05-09

    We report three n-type polymeric electron acceptors (PFPDI-TT, PFPDI-T, and PFPDI-Se) based on the fused perylene diimide (FPDI) and thieno[3,2- b]thiophene, thiophene, or selenophene units for all-polymer solar cells (all-PSCs). These FPDI-based polymer acceptors exhibit strong absorption between 350 and 650 nm with wide optical bandgap of 1.86-1.91 eV, showing good absorption compensation with the narrow bandgap polymer donor. The lowest unoccupied molecular orbital (LUMO) energy levels were located at around -4.11 eV, which are comparable with those of the fullerene derivatives and other small molecular electron acceptors. The conventional all-PSCs based on the three polymer acceptors and PTB7-Th as polymer donor gave remarkable power conversion efficiencies (PCEs) of >6%, and the PFPDI-Se-based all-PSC achieved the highest PCE of 6.58% with a short-circuit current density ( J sc ) of 13.96 mA/cm 2 , an open-circuit voltage ( V oc ) of 0.76 V, and a fill factor (FF) of 62.0%. More interestingly, our results indicate that the photovoltaic performances of the FPDI-based polymer acceptors are mainly determined by the FPDI unit with a small effect from the comonomers, which is quite different from the others reported rylenediimide-based polymer acceptors. This intriguing phenomenon is speculated as the huge geometry configuration of the FPDI unit, which minimizes the effect of the comonomer. These results highlight a promising future for the application of the FPDI-based polymer acceptors in the highly efficient all-PSCs.

  7. Polymer Architecture Effects in Confined Geometry: Molecular Dynamics Simulation Study

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Sidath; Perahia, Dvora; Grest, Gary

    Luminescent rigid polymers confined into nanoparticles, or polydots, are emerging as a promising tool for nano medicine. The constrained architecture of a rigid backbone trapped in nano-dimensions results in photophysics that differs from that of spontaneously assembled rigid polymers. Incorporating ionizable functionalities in the polymers, often required for therapeutics, impacts the polymer conformation in solution. Here we report fully atomistic molecular dynamics simulations on the structure of dialkyl p-phenylene ethynylene confined into polydots. We find that the structure and thermal stability of polydots are sensitive to both the molecular weight n and the carboxylation fraction f. At room temperature , polydots remain confined regardless of n and f . However, as temperature is increased, polydots with lower n or f rearrange whereas polydots with higher n or fremain confined, though no direct clustering of the ionic groups was observed. NSF CHE 1308298 is acknowledged.

  8. Multicolor Luminescence from Conjugates of Genetically Encoded Elastin-like Polymers and Terpyridine-Lanthanides

    DOE PAGES

    Ghosh, Koushik; Balog, Eva Rose M.; Kahn, Jennifer L.; ...

    2015-08-20

    Functional hybrid materials with optically active metal-ligand moieties embedded within a polymer matrix have a great potential in (bio)materials science, including applications in light-emitting diode devices. Here, we report a simple strategy to incorporate terpyridine derivatives into the side chains of elastin-like polymers (ELPs). The further binding of trivalent lanthanide ions with the terpyridine ligands generated an array of photoluminescence ranging from the visible to the near-infrared regions. Lastly, as thin films, these ELP-based optical materials also exhibited distinct morphologies that depend upon the temperature of the aqueous solutions from which the hybrid polymers were spin coated or drop cast.

  9. Nanoscale Fluorescent Metal-Organic Framework@Microporous Organic Polymer Composites for Enhanced Intracellular Uptake and Bioimaging.

    PubMed

    Wang, Lei; Wang, Weiqi; Zheng, Xiaohua; Li, Zhensheng; Xie, Zhigang

    2017-01-26

    Polymer-modified metal-organic frameworks combine the advantages of both soft polymers and crystalline metal-organic frameworks (MOFs). It is a big challenge to develop simple methods for surface modification of MOFs. In this work, MOF@microporous organic polymer (MOP) hybrid nanoparticles (UNP) have been synthesized by epitaxial growth of luminescent boron-dipyrromethene (BODIPYs)-imine MOPs on the surface of UiO-MOF seeds, which exhibit low cytotoxicity, smaller size distribution, well-retained pore integrity, and available functional sites. After folic acid grafting, the enhanced intracellular uptake and bioimaging was validated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fabrication of Polymer Microspheres for Optical Resonator and Laser Applications.

    PubMed

    Yamamoto, Yohei; Okada, Daichi; Kushida, Soh; Ngara, Zakarias Seba; Oki, Osamu

    2017-06-02

    This paper describes three methods of preparing fluorescent microspheres comprising π-conjugated or non-conjugated polymers: vapor diffusion, interface precipitation, and mini-emulsion. In all methods, well-defined, micrometer-sized spheres are obtained from a self-assembling process in solution. The vapor diffusion method can result in spheres with the highest sphericity and surface smoothness, yet the types of the polymers able to form these spheres are limited. On the other hand, in the mini-emulsion method, microspheres can be made from various types of polymers, even from highly crystalline polymers with coplanar, π-conjugated backbones. The photoluminescent (PL) properties from single isolated microspheres are unusual: the PL is confined inside the spheres, propagates at the circumference of the spheres via the total internal reflection at the polymer/air interface, and self-interferes to show sharp and periodic resonant PL lines. These resonating modes are so-called "whispering gallery modes" (WGMs). This work demonstrates how to measure WGM PL from single isolated spheres using the micro-photoluminescence (µ-PL) technique. In this technique, a focused laser beam irradiates a single microsphere, and the luminescence is detected by a spectrometer. A micromanipulation technique is then used to connect the microspheres one by one and to demonstrate the intersphere PL propagation and color conversion from coupled microspheres upon excitation at the perimeter of one sphere and detection of PL from the other microsphere. These techniques, µ-PL and micromanipulation, are useful for experiments on micro-optic application using polymer materials.

  11. Luminescence dynamics of bound exciton of hydrogen doped ZnO nanowires

    DOE PAGES

    Yoo, Jinkyoung; Yi, Gyu -Chul; Chon, Bonghwan; ...

    2016-04-11

    In this study, all-optical camera, converting X-rays into visible photons, is a promising strategy for high-performance X-ray imaging detector requiring high detection efficiency and ultrafast detector response time. Zinc oxide is a suitable material for all-optical camera due to its fast radiative recombination lifetime in sub-nanosecond regime and its radiation hardness. ZnO nanostructures have been considered as proper building blocks for ultrafast detectors with spatial resolution in sub-micrometer scale. To achieve remarkable enhancement of luminescence efficiency n-type doping in ZnO has been employed. However, luminescence dynamics of doped ZnO nanostructures have not been thoroughly investigated whereas undoped ZnO nanostructures havemore » been employed to study their luminescence dynamics. Here we report a study of luminescence dynamics of hydrogen doped ZnO nanowires obtained by hydrogen plasma treatment. Hydrogen doping in ZnO nanowires gives rise to significant increase in the near-band-edge emission of ZnO and decrease in averaged photoluminescence lifetime from 300 to 140 ps at 10 K. The effects of hydrogen doping on the luminescent characteristics of ZnO nanowires were changed by hydrogen doping process variables.« less

  12. Achieving high performance polymer tandem solar cells via novel materials design

    NASA Astrophysics Data System (ADS)

    Dou, Letian

    Organic photovoltaic (OPV) devices show great promise in low-cost, flexible, lightweight, and large-area energy-generation applications. Nonetheless, most of the materials designed today always suffer from the inherent disadvantage of not having a broad absorption range, and relatively low mobility, which limit the utilization of the full solar spectrum. Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of suitable low-bandgap polymers (near-IR absorbing polymers). In this dissertation, in order to achieve high performance, we focus on design and synthesis of novel low bandgap polymers specifically for tandem solar cells. In Chapter 3, I demonstrate highly efficient single junction and tandem polymer solar cells featuring a spectrally matched low-bandgap conjugated polymer (PBDTT-DPP: bandgap, ˜1.44 eV). The polymer has a backbone based on alternating benzodithiophene and diketopyrrolopyrrole units. A single-layer device based on the polymer provides a power conversion efficiency of ˜6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which was the highest certified efficiency for a polymer solar cell. To further improve this material system, in Chapter 4, I show that the reduction of the bandgap and the enhancement of the charge transport properties of the low bandgap polymer PBDTT-DPP can be accomplished simultaneously by substituting the sulfur atoms on the DPP unit with selenium atoms. The newly designed polymer PBDTT-SeDPP (Eg = 1.38 eV) shows excellent photovoltaic performance in single junction devices with PCEs over 7% and photo-response up to 900 nm. Tandem polymer solar cells based on PBDTT-SeDPP are also demonstrated with a 9.5% PCE, which are more than 10

  13. High-Performance Polymers Having Low Melt Viscosities

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    2005-01-01

    High-performance polymers that have improved processing characteristics, and a method of making them, have been invented. One of the improved characteristics is low (relative to corresponding prior polymers) melt viscosities at given temperatures. This characteristic makes it possible to utilize such processes as resin-transfer molding and resin-film infusion and to perform autoclave processing at lower temperatures and/or pressures. Another improved characteristic is larger processing windows that is, longer times at low viscosities. Other improved characteristics include increased solubility of uncured polymer precursors that contain reactive groups, greater densities of cross-links in cured polymers, improved mechanical properties of the cured polymers, and greater resistance of the cured polymers to chemical attack. The invention is particularly applicable to poly(arylene ether)s [PAEs] and polyimides [PIs] that are useful as adhesives, matrices of composite materials, moldings, films, and coatings. PAEs and PIs synthesized according to the invention comprise mixtures of branched, linear, and star-shaped molecules. The monomers of these polymers can be capped with either reactive end groups to obtain thermosets or nonreactive end groups to obtain thermoplastics. The synthesis of a polymeric mixture according to the invention involves the use of a small amount of a trifunctional monomer. In the case of a PAE, the trifunctional monomer is a trihydroxy- containing compound for example, 1,3,5-trihydroxybenzene (THB). In the case of a PI, the trifunctional monomer is a triamine for example, triamino pyrimidine or melamine. In addition to the aforementioned trifunctional monomer, one uses the difunctional monomers of the conventional formulation of the polymer in question (see figure). In cases of nonreactive end caps, the polymeric mixtures of the invention have melt viscosities and melting temperatures lower than those of the corresponding linear polymers of equal

  14. Monitoring Delamination of Thermal Barrier Coatings by Near-Infrared and Upconversion Luminescence Imaging

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Martin, R. E.; Singh, Jogender; Wolfe, Doug E.

    2008-01-01

    Previous work has demonstrated that TBC delamination can be monitored by incorporating a thin luminescent sublayer that produces greatly increased luminescence intensity from delaminated regions of the TBC. Initial efforts utilized visible-wavelength luminescence from either europium or erbium doped sublayers. This approach exhibited good sensitivity to delamination of electron-beam physical-vapor-deposited (EB-PVD) TBCs, but limited sensitivity to delamination of the more highly scattering plasma-sprayed TBCs due to stronger optical scattering and to interference by luminescence from rare-earth impurities. These difficulties have now been overcome by new strategies employing near-infrared (NIR) and upconversion luminescence imaging. NIR luminescence at 1550 nm was produced in an erbium plus ytterbium co-doped yttria-stabilized zirconia (YSZ) luminescent sublayer using 980-nm excitation. Compared to visible-wavelength luminescence, these NIR emission and excitation wavelengths are much more weakly scattered by the TBC and therefore show much improved depth-probing capabilities. In addition, two-photon upconversion luminescence excitation at 980 nm wavelength produces luminescence emission at 562 nm with near-zero fluorescence background and exceptional contrast for delamination indication. The ability to detect TBC delamination produced by Rockwell indentation and by furnace cycling is demonstrated for both EB-PVD and plasma-sprayed TBCs. The relative strengths of the NIR and upconversion luminescence methods for monitoring TBC delamination are discussed.

  15. Dating Last Interglacial Coastal Systems Using New Feldspar Luminescence Technologies

    NASA Astrophysics Data System (ADS)

    Lamothe, M.

    2017-12-01

    The recent explosion in new luminescence dating technologies offers new opportunities to explore Quaternary marine coastal facies and landforms. However, tectonic and climatic processes controlling the development of Pleistocene coastal lithosomes are commonly obscured by their poorly constrained geological age. Luminescence dating of feldspar probes one order of magnitude deeper into geological time than radiocarbon and more than 5 times the current age range of quartz optically-stimulated luminescence, routinely used in luminescence dating. However, feldspar luminescence stimulated by infrared photons (eg IRSL) is hampered by anomalous fading. Successful correction methods developed by us over the last 15 years did produce sound chronologies but the fading-corrected ages carried large uncertainties. New approaches initiated by other laboratories, mainly in Europe, have isolated high temperature post-IRSL luminescence as this signal seems to be only slightly affected by fading. However, the gain in stability seems to be lessened due to bleachibility issues, generating age overestimations. We developed a novel protocol known as post-isothermal IRSL dating (Pit-IR) that focuses on a dual system of luminescence signals, probing low (50C) and medium (225C) temperature IRSL signals following isothermal treatments of various intensities. These protocols have been tested on Last interglacial coastal sediments in strikingly different GIA contexts along the Atlantic coastal areas of SE USA as well as from Morocco, Brazil and LIG sites in the Mediterranean basin. A systematic analysis of these results would suggest that a) falling-stages sequences are more commonly preserved as the OSL/IRSL ages are preferentially dating from the end of the MIS5e high stand and b) MIS5a marine sediments may be detectable away from areas generally thought to be affected by peripheral bulge collapse.

  16. Towards highly stable polymer electronics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nikolka, Mark; Nasrallah, Iyad; Broch, Katharina; Sadhanala, Aditya; Hurhangee, Michael; McCulloch, Iain; Sirringhaus, Henning

    2016-11-01

    Due to their ease of processing, organic semiconductors are promising candidates for applications in high performance flexible displays and fast organic electronic circuitry. Recently, a lot of advances have been made on organic semiconductors exhibiting surprisingly high performance and carrier mobilities exceeding those of amorphous silicon. However, there remain significant concerns about their operational and environmental stability, particularly in the context of applications that require a very high level of threshold voltage stability, such as active-matrix addressing of organic light-emitting diode (OLED) displays. Here, we report a novel technique for dramatically improving the operational stress stability, performance and uniformity of high mobility polymer field-effect transistors by the addition of specific small molecule additives to the polymer semiconductor film. We demonstrate for the first time polymer FETs that exhibit stable threshold voltages with threshold voltage shifts of less than 1V when subjected to a constant current operational stress for 1 day under conditions that are representative for applications in OLED active matrix displays. The approach constitutes in our view a technological breakthrough; it also makes the device characteristics independent of the atmosphere in which it is operated, causes a significant reduction in contact resistance and significantly improves device uniformity. We will discuss in detail the microscopic mechanism by which the molecular additives lead to this significant improvement in device performance and stability.

  17. Seismic Moment and Recurrence using Luminescence Dating Techniques: Characterizing brittle fault zone materials suitable for luminescence dating

    NASA Astrophysics Data System (ADS)

    Tsakalos, E.; Lin, A.; Bassiakos, Y.; Kazantzaki, M.; Filippaki, E.

    2017-12-01

    During a seismic-geodynamic process, frictional heating and pressure are generated on sediments fragments resulting in deformation and alteration of minerals contained in them. The luminescence signal enclosed in minerals crystal lattice can be affected and even zeroed during such an event. This has been breakthrough in geochronological studies as it could be utilized as a chronometer for the previous seismic activity of a tectonically active area. Although the employment of luminescence dating has in some cases been successfully described, a comprehensive study outlining and defining protocols for routine luminescence dating applied to neotectonic studies has not been forthcoming. This study is the experimental investigation, recording and parameterization of the effects of tectonic phenomena on minerals luminescence signal and the development of detailed protocols for the standardization of the luminescence methodology for directly dating deformed geological formations, so that the long-term temporal behaviour of seismically active faults could be reasonably understood and modeled. This will be achieved by: a) identifying and proposing brittle fault zone materials suitable for luminescence dating using petrological, mineralogical and chemical analyses and b) investigating the "zeroing" potential of the luminescence signal of minerals contained in fault zone materials by employing experimental simulations of tectonic processes in the laboratory, combined with luminescence measurements on samples collected from real fault zones. For this to be achieved, a number of samples collected from four faults of four different geographical regions will be used. This preliminary-first step of the study presents the microstructural, and mineralogical analyses for the characterization of brittle fault zone materials that contain suitable minerals for luminescence dating (e.g., quartz and feldspar). The results showed that the collected samples are seismically deformed fault

  18. "Double-Cable" Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells.

    PubMed

    Feng, Guitao; Li, Junyu; Colberts, Fallon J M; Li, Mengmeng; Zhang, Jianqi; Yang, Fan; Jin, Yingzhi; Zhang, Fengling; Janssen, René A J; Li, Cheng; Li, Weiwei

    2017-12-27

    A series of "double-cable" conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly(benzodithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a "face-on" orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential π-π stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the high-up to 80%-internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.

  19. Microwave assisted synthesis of luminescent carbonaceous nanoparticles from silk fibroin for bioimaging.

    PubMed

    Gao, Hongzhi; Teng, Choon Peng; Huang, Donghong; Xu, Wanqing; Zheng, Chaohui; Chen, Yisong; Liu, Minghuan; Yang, Da-Peng; Lin, Ming; Li, Zibiao; Ye, Enyi

    2017-11-01

    Bombyx mori silk as a natural protein based biopolymer with high nitrogen content, is abundant and sustainable because of its mass product all over the world per year. In this study, we developed a facile and fast microwave-assisted synthesis of luminescent carbonaceous nanoparticles using Bombyx mori silk fibroin and silk solution as the precursors. As a result, the obtained carbonaceous nanoparticles exhibit a photoluminescence quantum yield of ~20%, high stability, low cytotoxicity, high biocompatibility. Most importantly, we successfully demonstrated bioimaging using these luminescent carbonaceous nanoparticles with excitation dependent luminescence. In addition, the microwave-assisted hydrothermal method can be extended to convert other biomass into functional nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Highly selective luminescent nanostructures for mitochondrial imaging and targeting

    NASA Astrophysics Data System (ADS)

    Fanizza, E.; Iacobazzi, R. M.; Laquintana, V.; Valente, G.; Caliandro, G.; Striccoli, M.; Agostiano, A.; Cutrignelli, A.; Lopedota, A.; Curri, M. L.; Franco, M.; Depalo, N.; Denora, N.

    2016-02-01

    Here a luminescent hybrid nanostructure based on functionalized quantum dots (QDs) is used as a fluorescent imaging agent able to target selectively mitochondria thanks to the molecular recognition of the translocator protein (TSPO). The selective targeting of such an 18 kDa protein mainly located in the outer mitochondrial membrane and overexpressed in several pathological states including neurodegenerative diseases and cancers may provide valuable information for the early diagnosis and therapy of human disorders. In particular, the rational design of amino functionalized luminescent silica coated QD nanoparticles (QD@SiO2 NPs) provides a versatile nanoplatform to anchor a potent and selective TSPO ligand, characterized by a 2-phenyl-imidazo[1,2-a]pyridine acetamide structure along with a derivatizable carboxylic end group, useful to conjugate the TSPO ligand and achieve TSPO-QD@SiO2 NPs by means of a covalent amide bond. The colloidal stability and optical properties of the proposed nanomaterials are comprehensively investigated and their potential as mitochondrial imaging agents is fully assessed. Sub-cellular fractionation, together with confocal laser scanning fluorescence microscopy and co-localization analysis of targeted TSPO-QD@SiO2 NPs in C6 glioma cells overexpressing the TSPO, proves the great potential of these multifunctional nanosystems as in vitro selective mitochondrial imaging agents.Here a luminescent hybrid nanostructure based on functionalized quantum dots (QDs) is used as a fluorescent imaging agent able to target selectively mitochondria thanks to the molecular recognition of the translocator protein (TSPO). The selective targeting of such an 18 kDa protein mainly located in the outer mitochondrial membrane and overexpressed in several pathological states including neurodegenerative diseases and cancers may provide valuable information for the early diagnosis and therapy of human disorders. In particular, the rational design of amino

  1. Brilliant Sm, Eu, Tb and Dy chiral lanthanide complexes withstrong circularly polarized luminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petoud, Stephane; Muller, Gilles; Moore, Evan G.

    The synthesis, characterization and luminescent behavior of trivalent Sm, Eu, Dy and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, g{sub lum}, recorded for the Eu(III) complexmore » is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments.« less

  2. Polymer Nanocomposite Materials with High Dielectric Permittivity and Low Dielectric Loss Properties

    NASA Astrophysics Data System (ADS)

    Toor, Anju

    Materials with high dielectric permittivity have drawn increasing interests in recent years for their important applications in capacitors, actuators, and high energy density pulsed power. Particularly, polymer-based dielectrics are excellent candidates, owing to their properties such as high breakdown strength, low dielectric loss, flexibility and easy processing. To enhance the dielectric permittivity of polymer materials, typically, high dielectric constant filler materials are added to the polymer. Previously, ferroelectric and conductive fillers have been mainly used. However, such systems suffered from various limitations. For example, composites based on ferroelectric materials like barium titanate, exhibited high dielectric loss, and poor saturation voltages. Conductive fillers are used in the form of powder aggregates, and they may show 10-100 times enhancement in dielectric constant, however these nanoparticle aggregates cause the dielectric loss to be significant. Also, agglomerates limit the volume fraction of fillers in polymer and hence, the ability to achieve superior dielectric constants. Thus, the aggregation of nanoparticles is a significant challenge to their use to improve the dielectric permittivity. We propose the use of ligand-coated metal nanoparticle fillers to enhance the dielectric properties of the host polymer while minimizing dielectric loss by preventing nanoparticle agglomeration. The focus is on obtaining uniform dispersion of nanoparticles with no agglomeration by utilizing appropriate ligands/surface functionalizations on the gold nanoparticle surface. Use of ligand coated metal nanoparticles will enhance the dielectric constant while minimizing dielectric loss, even with the particles closely packed in the polymer matrix. Novel combinations of materials, which use 5 nm diameter metal nanoparticles embedded inside high breakdown strength polymer materials are evaluated. High breakdown strength polymer materials are chosen to allow

  3. A nonconjugated radical polymer glass with high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Joo, Yongho; Agarkar, Varad; Sung, Seung Hyun; Savoie, Brett M.; Boudouris, Bryan W.

    2018-03-01

    Solid-state conducting polymers usually have highly conjugated macromolecular backbones and require intentional doping in order to achieve high electrical conductivities. Conversely, single-component, charge-neutral macromolecules could be synthetically simpler and have improved processibility and ambient stability. We show that poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a nonconjugated radical polymer with a subambient glass transition temperature, underwent rapid solid-state charge transfer reactions and had an electrical conductivity of up to 28 siemens per meter over channel lengths up to 0.6 micrometers. The charge transport through the radical polymer film was enabled with thermal annealing at 80°C, which allowed for the formation of a percolating network of open-shell sites in electronic communication with one another. The electrical conductivity was not enhanced by intentional doping, and thin films of this material showed high optical transparency.

  4. Toward High Performance Photovoltaic Cells based on Conjugated Polymers

    DTIC Science & Technology

    2016-12-26

    AFRL-AFOSR-JP-TR-2016-0103 Toward High Performance Photovoltaic Cells based on Conjugated Polymers Kung-Hwa Wei National Chiao Tung University Final...Conjugated Polymers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-15-1-4113 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Kung-Hwa Wei 5d.  PROJECT...gap polymer with good packing order as the active layer for a single-junction photovoltaic device. The light absorptions for the small molecule and the

  5. Polymer-Based Protein Engineering: Synthesis and Characterization of Armored, High Graft Density Polymer-Protein Conjugates.

    PubMed

    Carmali, Sheiliza; Murata, Hironobu; Cummings, Chad; Matyjaszewski, Krzysztof; Russell, Alan J

    2017-01-01

    Atom transfer radical polymerization (ATRP) from the surface of a protein can generate remarkably dense polymer shells that serve as armor and rationally tune protein function. Using straightforward chemistry, it is possible to covalently couple or display multiple small molecule initiators onto a protein surface. The chemistry is fine-tuned to be sequence specific (if one desires a single targeted site) at controlled density. Once the initiator is anchored on the protein surface, ATRP is used to grow polymers on protein surface, in situ. The technique is so powerful that a single-protein polymer conjugate molecule can contain more than 90% polymer coating by weight. If desired, stimuli-responsive polymers can be "grown" from the initiated sites to prepare enzyme conjugates that respond to external triggers such as temperature or pH, while still maintaining enzyme activity and stability. Herein, we focus mainly on the synthesis of chymotrypsin-polymer conjugates. Control of the number of covalently coupled initiator sites by changing the stoichiometric ratio between enzyme and the initiator during the synthesis of protein-initiator complexes allowed fine-tuning of the grafting density. For example, very high grafting density chymotrypsin conjugates were prepared from protein-initiator complexes to grow the temperature-responsive polymers, poly(N-isopropylacrylamide), and poly[N,N'-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate]. Controlled growth of polymers from protein surfaces enables one to predictably manipulate enzyme kinetics and stability without the need for molecular biology-dependent mutagenesis. © 2017 Elsevier Inc. All rights reserved.

  6. In Situ Nanoreactors: Controllable Photoluminescent Carbon-Rich Polymer Nanodots Derived from Fatty Acid under Photoirradiation.

    PubMed

    Dai, Qin; Zhao, He; Fan, Zhuangjun; Zhao, Wentao; Wang, Guangwei; Zhang, Jimei; Hou, Rong; Du, Penghui; Cao, Hongbin

    2018-05-17

    Amphiphilic nanoreactors have been recently used to fabricate photoluminescent carbon-rich polymer nanodots (PCPNs). However, the applications of PCPNs have been limited by their requirements for high temperature and toxic organic solvents or catalysts and the difficult control of their luminescent properties. Herein, a novel and facile strategy is reported for the synthesis of controllable PCPNs. This strategy involves the use of in situ vesicular nanoreactors under mild photoirradiation with fatty acid as the precursor. The conjugation degree of the uniformly sized PCPNs can be increased by extending photoreaction time, thus enabling the tuning of the optical properties of PCPNs. The PCPNs, which feature controllable and outstanding luminescent properties, low cytotoxicity, and biocompatibility, are successfully applied in bioimaging and as fluorescent ink. The present strategy is an attractive and facile platform for the preparation of carbon-rich nanomaterials with controllable photoluminescence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Self-assembly of coordination polymers of Pr(III), Nd(III), Tb(III), Dy(III) and Ho(III) with 5-hydroxyisophthalic acid and adipic acid: Syntheses, structures, porosity, luminescence and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kariem, Mukaddus; Yawer, Mohd; Kumar, Manesh; Nawaz Sheikh, Haq; Sood, Puneet; Kolekar, Sanjay S.

    2017-11-01

    Five novel coordination polymers (CPs) with the formula [Ln (hip) (adip)0.5(H2O)2]n. nH2O [Ln = Pr (1), Nd (2), Tb (3), Dy (4) and Ho (5)] were synthesized by self-organization of lanthanide salts with rigid [5-hydroxyisophthalic acid (H2hip)] and flexible [adipic acid (H2adip)] linkers under solvothermal condition. X-ray diffraction revealed data that all five CPs 1-5 are isostructural and crystallizes in monoclinic C2/c space group. Coordination polymers 1-5 exhibit 1D linear ladder shaped extension with the linkage of lanthanide carboxylate chains having the backbone of H2hip and H2adip ligands. The 1D linear ladder chains get transformed into three dimensional (3D) supramolecular network via non-covalent interactions (π-π and H - bonding). The porosity study showed that 20.34 mL of N2 gets adsorbed per 1.0 g of sample at 1 atm pressure. The CP 3 (Tb) and 4 (Dy) emit strong ligand sensitized characteristic f-f luminescence emission. The CPs 3 and 4 exhibit weak ferromagnetic interactions at lower temperatures.

  8. High Temperature Polymers for use in Fuel Cells

    NASA Technical Reports Server (NTRS)

    Peplowski, Katherine M.

    2004-01-01

    NASA Glenn Research Center (GRC) is currently working on polymers for fuel cell and lithium battery applications. The desire for more efficient, higher power density, and a lower environmental impact power sources has led to interest in proton exchanges membrane fuels cells (PEMFC) and lithium batteries. A PEMFC has many advantages as a power source. The fuel cell uses oxygen and hydrogen as reactants. The resulting products are electricity, heat, and water. The PEMFC consists of electrodes with a catalyst, and an electrolyte. The electrolyte is an ion-conducting polymer that transports protons from the anode to the cathode. Typically, a PEMFC is operated at a temperature of about 80 C. There is intense interest in developing a fuel cell membrane that can operate at higher temperatures in the range of 80 C- 120 C. Operating the he1 cell at higher temperatures increases the kinetics of the fuel cell reaction as well as decreasing the susceptibility of the catalyst to be poisoned by impurities. Currently, Nafion made by Dupont is the most widely used polymer membrane in PEMFC. Nafion does not function well above 80 C due to a significant decrease in the conductivity of the membrane from a loss of hydration. In addition to the loss of conductivity at high temperatures, the long term stability and relatively high cost of Nafion have stimulated many researches to find a substitute for Nafion. Lithium ion batteries are popular for use in portable electronic devices, such as laptop computers and mobile phones. The high power density of lithium batteries makes them ideal for the high power demand of today s advanced electronics. NASA is developing a solid polymer electrolyte that can be used for lithium batteries. Solid polymer electrolytes have many advantages over the current gel or liquid based systems that are used currently. Among these advantages are the potential for increased power density and design flexibility. Automobiles, computers, and cell phones require

  9. Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments.

    PubMed

    Wang, Ning; Chen, Zheng; Wei, Wei; Jiang, Zhenhua

    2013-11-13

    Thanks to their many favorable advantages, polymer solar cells exhibit great potential for next-generation clean energy sources. Herein, we have successfully designed and synthesized a series of new fluorinated benzothiadiazole-based conjugated copolymers PBDT(TEH)-DT(H)BTff (P1), PBDT(TEH)-DT(EH)BTff (P2), and PBDT(HDO)-DT(H)BTff (P3). The power conversion efficiencies of 4.46, 6.20, and 8.30% were achieved for P1-, P2-, and P3-based devices within ~100 nm thickness active layers under AM 1.5G illumination without any processing additives or post-treatments, respectively. The PCE of 8.30% for P3 is the highest value for the reported traditional single-junction polymer solar cells via a simple fabrication architecture without any additives or post-treatments. In addition, it is noteworthy that P3 also allows making high efficient polymer solar cells with high PCEs of 7.27 and 6.56% under the same condition for ~200 and ~300 nm thickness active layers, respectively. Excellent photoelectric properties and good solubility make polymer P3 become an alternative material for high-performance polymer solar cells.

  10. Polymeric Luminescent Compositions Doped with Beta-Diketonates Boron Difluoride as Material for Luminescent Solar Concentrator

    NASA Astrophysics Data System (ADS)

    Khrebtov, A. A.; Fedorenko, E. V.; Reutov, V. A.

    2017-11-01

    In this paper we investigated polymeric luminescent compositions based on polystyrene doped with beta diketonates boron difluoride. Transparent films with effective absorption in the ultraviolet and blue regions of the spectrum were obtained. Polymeric luminescent compositions based on the mixture of dyes allow expanding the absorption region and increase the radiation shift. A luminescent solar concentrator consisting of a glass plate coated with such film can be used for photovoltaic window application.

  11. Tetraphenylethylene-Interweaving Conjugated Macrocycle Polymer Materials as Two-Photon Fluorescence Sensors for Metal Ions and Organic Molecules.

    PubMed

    Li, Xi; Li, Zheng; Yang, Ying-Wei

    2018-05-01

    A luminescent conjugated macrocycle polymer (CMP) with strong two-photon fluorescence property, namely, P[5]-TPE-CMP, is constructed from ditriflate-functionalized pillar[5]arene and a 1,1,2,2-tetrakis(4-ethynylphenyl)ethylene (TPE) linker through a Sonogashira-Hagihara cross-coupling reaction. Significantly, in sharp contrast with the corresponding conjugated microporous polymer without synthetic macrocycles, P[5]-TPE-CMP shows an outstanding stability against photobleaching and exhibits highly selective cation sensing capability toward Fe 3+ at different excitation wavelengths (both UV and red-near-infrared regions). Meanwhile, its fluorescence could also be sufficiently quenched by 4-amino azobenzene, a frequently used organic dye that is certified to be carcinogenic, as compared with a group of common organic compounds. This work paves a new way for enhancing the properties of porous organic polymers through the introduction of supramolecular macrocycles like macrocyclic arenes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Brilliant Sm, Eu, Tb, and Dy Chiral Lanthanide Complexes with Strong Circularly Polarized Luminescence

    PubMed Central

    Petoud, Stéphane; Muller, Gilles; Moore, Evan G.; Xu, Jide; Sokolnicki, Jurek; Riehl, James P.; Le, Uyen N.; Cohen, Seth M.; Raymond, Kenneth N.

    2009-01-01

    The synthesis, characterization, and luminescent behavior of trivalent Sm, Eu, Dy, and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, glum, recorded for the Eu(III) complex is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments. PMID:17199285

  13. Cyanide-Assembled d10 Coordination Polymers and Cycles: Excited State Metallophilic Modulation of Solid-State Luminescence.

    PubMed

    Belyaev, Andrey; Eskelinen, Toni; Dau, Thuy Minh; Ershova, Yana Yu; Tunik, Sergey P; Melnikov, Alexei S; Hirva, Pipsa; Koshevoy, Igor O

    2018-01-26

    The series of cyanide-bridged coordination polymers [(P 2 )CuCN] n (1), [(P 2 )Cu{M(CN) 2 }] n (M=Cu 3, Ag 4, Au 5) and molecular tetrametallic clusters [{(P 4 )MM'(CN)} 2 ] 2+ (MM'=Cu 2 6, Ag 2 7, AgCu 8, AuCu 9, AuAg 10) were obtained using the bidentate P 2 and tetradentate P 4 phosphane ligands (P 2 =1,2-bis(diphenylphosphino)benzene; P 4 =tris(2-diphenylphosphinophenyl)phosphane). All title complexes were crystallographically characterized to reveal a zig-zag chain arrangement for 1 and 3-5, whereas 6-10 possess metallocyclic frameworks with different degree of metal-metal bonding. The d 10 -d 10 interactions were evaluated by the quantum theory of atoms in molecules (QTAIM) computational approach. The photophysical properties of 1-10 were investigated in the solid state and supported by theoretical analysis. The emission of compounds 1 and 3-5, dominated by metal-to-ligand charge transfer (MLCT) transitions located within {CuP 2 } motifs, is compatible with thermally activated delayed fluorescence (TADF) behaviour and a small energy gap between the T 1 and S 1 excited states. The luminescence characteristics of 6-10 are strongly dependent on the composition of the metal core; the emission band maxima vary in the range 484-650 nm with quantum efficiency reaching 0.56 (6). The origin of the emission for 6-8 and 10 at room temperature is assigned to delayed fluorescence. AuCu cluster 9, however, exhibits only phosphorescence that corresponds to theoretically predicted large value ΔE(S 1 -T 1 ). DFT simulation highlights a crucial impact of metallophilic bonding on the nature and energy of the observed emission, the effect being greatly enhanced in the excited state. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A luminescence assay for natural product inhibitors of the Mycobacterium tuberculosis proteasome.

    PubMed

    Gunderwala, Amber; Porter, John

    2016-01-01

    Mycobacterium tuberculosis (Mtb) causes a large global burden of disease, with a high mortality rate in healthy and immuno-compromised patients. A number of molecular targets have been identified for treatment of this disease, including the Mtb proteasome. The Mtb proteasome enhances Mtb survival during nitrosative and oxidative stress in the latent, non-replicative phase. Therefore, Mtb proteasome inhibition could help to combat Mtb infections that do not respond to current therapies. To develop and validate a novel biochemical assay to assess Mtb proteasome activity in the presence of organic and aqueous plant test extracts. Fluorescence (photoluminescence) and luminescence (chemiluminescence) assays were investigated as potential methods to determine the robustness and repeatability for use in screening natural product extracts for Mtb proteasome inhibitors. The fluorescence assay, used widely for Mtb proteasome activity assays, was subject to interference due to the natural fluorescence of compounds in many of the extracts; there is little interference with the luminescence approach. As proof of principle, we used the luminescence assay to screen a small set of plant test extracts. Luminescence is the more suitable assay for assay of plant natural product extracts. The sensitivities of the luminescence and fluorescence assays are comparable. A Z'-factor of 0.58 for the luminescence assay makes it suitable for medium-to-high throughput screening efforts. Copyright © 2016 John Wiley & Sons, Ltd.

  15. X-ray micro-modulated luminescence tomography (XMLT)

    PubMed Central

    Cong, Wenxiang; Liu, Fenglin; Wang, Chao; Wang, Ge

    2014-01-01

    Imaging depth of optical microscopy has been fundamentally limited to millimeter or sub-millimeter due to strong scattering of light in a biological sample. X-ray microscopy can resolve spatial details of few microns deep inside a sample but contrast resolution is inadequate to depict heterogeneous features at cellular or sub-cellular levels. To enhance and enrich biological contrast at large imaging depth, various nanoparticles are introduced and become essential to basic research and molecular medicine. Nanoparticles can be functionalized as imaging probes, similar to fluorescent and bioluminescent proteins. LiGa5O8:Cr3+ nanoparticles were recently synthesized to facilitate luminescence energy storage with x-ray pre-excitation and subsequently stimulated luminescence emission by visible/near-infrared (NIR) light. In this paper, we propose an x-ray micro-modulated luminescence tomography (XMLT, or MLT to be more general) approach to quantify a nanophosphor distribution in a thick biological sample with high resolution. Our numerical simulation studies demonstrate the feasibility of the proposed approach. PMID:24663898

  16. Assembly of 4-, 6- and 8-connected Cd(II) pseudo-polymorphic coordination polymers: Synthesis, solvent-dependent structural variation and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhao-Hao; Xue, Li-Ping, E-mail: lpxue@163.com; Miao, Shao-Bin

    2016-08-15

    The reaction of Cd(NO{sub 3}){sub 2}·4H{sub 2}O, 2,5-thiophenedicarboxylic acid (H{sub 2}tdc) and 1,2-bis(imidazol-1′-yl)methane (bimm) by modulating solvent systems yielded three highly connected pseudo-polymorphic coordination polymers based on different dinuclear [Cd{sub 2}(CO{sub 2}){sub 2}] subunits bridged by carboxylate groups. Single crystal structural analyses reveal structural variation from 4-connected 2D sql layer, 6-connected 2-fold interpenetrated 3D pcu to 8-connected 3D bcu-type network in compounds 1–3. The structural dissimilarity in the structures dependent on the coordination environments of Cd(II) ions and linking modes of mixed ligand influenced by different solvent systems during the synthesis process. Moreover, thermogravimetric and photoluminescence behaviors of 1–3 weremore » also investigated for the first time, and all the complexes emit blue luminescence in the solid state. - Graphical abstract: Key Topic. Different solvent systems modulated three Cd(II) pseudo-polymorphic coordination polymers based on thiophene-2,5-dicarboxylate and 1,2-bis(imidazol-1′-yl)methane mixed ligands. Display Omitted - Highlights: • Three solvent-dependent Cd(II) pseudo-polymorphic coordination polymers have been synthesized. • Structural variation from 4-connected 2D layer, 6-connected 2-fold interpenetrated 3D net to 8-connected 3D net. • All complexes emit blue luminescence.« less

  17. Luminescence from defects in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Morkoç, H.

    2006-04-01

    We briefly review the luminescence properties of defects in GaN and focus on the most interesting defects. In particular, the blue luminescence band peaking at about 3 eV is assigned to different defects and even different types of transitions in undoped, Zn-, C-, and Mg-doped GaN. Another omnipresent luminescence band, the yellow luminescence band may have different origin in nearly dislocation-free freestanding GaN templates, undoped thin layers, and carbon-doped GaN. The Y4 and Y7 lines are caused by recombination at unidentified point defects captured by threading edge dislocations.

  18. Constructing honeycomb micropatterns on nonplanar substrates with high glass transition temperature polymers.

    PubMed

    Ding, Jianyun; Gong, Jianliang; Bai, Hua; Li, Lei; Zhong, Yawen; Ma, Zhi; Svrcek, Vladimir

    2012-08-15

    In Qiao's previous report, only star polymers with T(g) (glass transition temperature) below 48°C were found forming homogeneous honeycomb coatings on the nonplanar substrates. The polymers with high T(g) are believed not able to duplicate nonplanar substrate due to their brittleness. This article presents a comprehensive study on the construction of macroporous polymeric films on various nonplanar substrates with static breath figure (BF) technique, using linear polymers with high T(g). Two kinds of linear polymers with high T(g), polystyrene-b-poly(acrylic acid) and polystyrene without polar end groups, are employed to prepare 3-dimensional macroporous films on different nonplanar substrates. Scanning electronic microscopy views on the side wall in addition to views in-plane prove that polymer films with BF array perfectly replicated the surface features of these substrates. The formation processes of macropores on these substrates are analyzed in detail, and it demonstrates that neither molecular topography nor T(g) of polymers is the critical factor contouring nonplanar substrate. A new hypothesis involving polymer plasticization and conformation during the solvent evaporation is formulated. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  19. Two types of fundamental luminescence of ionization-passive electrons and holes in optical dielectrics—Intraband-electron and interband-hole luminescence (theoretical calculation and comparison with experiment)

    NASA Astrophysics Data System (ADS)

    Vaisburd, D. I.; Kharitonova, S. V.

    1997-11-01

    A short high-power pulse of ionizing radiation creates a high concentration of nonequilibrium electrons and holes in a dielectric. They quickly lose their energy, generating a multiplicity of secondary quasiparticles: electron—hole pairs, excitons, plasmons, phonons of all types, and others. When the kinetic energy of an electron becomes less that some value EΔ≈(1.3-2)Eg it loses the ability to perform collisional ionization and electron excitations of the dielectric medium. Such an electron is said to be ionization-passive. It relaxes to the bottom of the lower conduction band by emitting phonons. Similarly a hole becomes ionization-passive when it “floats up” above some level EH and loses the ability for Auger ionization of the dielectric medium. It continues to float upward to the ceiling of the upper valance band only by emitting phonons. The concentrations of ionization-passive electrons and holes are larger by several orders of magnitude than those of the active electrons and holes and consequently make of a far larger contribution to many kinetic processes such as luminescence. Intraband and interband quantum transitions make the greatest contribution to the fundamental (independent of impurities and intrinsic defects) electromagnetic radiation of ionization-passive electrons and holes. Consequently the brightest types of purely fundamental luminescence of strongly nonequilibrium electrons and holes are intraband and interband luminescence. These forms of luminescence, discovered relatively recently, carry valuable information on the high-energy states of the electrons in the conduction band and of the holes in the valence band of a dielectric. Experimental investigations of these types of luminescence were made, mainly on alkali halide crystals which were excited by nanoseconal pulses of high-current-density electrons and by two-photon absorption of the ultraviolet harmonics of pulsed laser radiation beams of nanosecond and picosecond duration. The

  20. Molecularly imprinted polymer sensors for detection in the gas, liquid, and vapor phase.

    PubMed

    Jenkins, Amanda L; Ellzy, Michael W; Buettner, Leonard C

    2012-06-01

    Fast, reliable, and inexpensive analytical techniques for detection of airborne chemical warfare agents are desperately needed. Recent advances in the field of molecularly imprinted polymers have created synthetic nanomaterials that can sensitively and selectively detect these materials in aqueous environments, but thus far, they have not been demonstrated to work for detection of vapors. The imprinted polymers function by mimicking the function of biological receptors. They can provide high sensitivity and selectivity but, unlike their biological counterparts, maintain excellent thermal and mechanical stability. The traditional imprinted polymer approach is further enhanced in this work by the addition of a luminescent europium that has been introduced into the polymers to provide enhanced chemical affinity as well as a method for signal transduction to indicate the binding event. The europium in these polymers is so sensitive to the bound target; it can distinguish between species differing by a single methyl group. The imprinted polymer technology is fiber optic-based making it inexpensive and easily integratable with commercially available miniature fiber optic spectrometer technologies to provide a shoebox size device. In this work, we will describe efforts to apply these sensors for detection of airborne materials and vapors. Successful application of this technology will provide accurate low level vapor detection of chemical agents or pesticides with little to no false positives. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  1. Highly stretchable polymer semiconductor films through the nanoconfinement effect

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Wang, Sihong; Wang, Ging-Ji Nathan; Zhu, Chenxin; Luo, Shaochuan; Jin, Lihua; Gu, Xiaodan; Chen, Shucheng; Feig, Vivian R.; To, John W. F.; Rondeau-Gagné, Simon; Park, Joonsuk; Schroeder, Bob C.; Lu, Chien; Oh, Jin Young; Wang, Yanming; Kim, Yun-Hi; Yan, He; Sinclair, Robert; Zhou, Dongshan; Xue, Gi; Murmann, Boris; Linder, Christian; Cai, Wei; Tok, Jeffery B.-H.; Chung, Jong Won; Bao, Zhenan

    2017-01-01

    Soft and conformable wearable electronics require stretchable semiconductors, but existing ones typically sacrifice charge transport mobility to achieve stretchability. We explore a concept based on the nanoconfinement of polymers to substantially improve the stretchability of polymer semiconductors, without affecting charge transport mobility. The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain. As a result, our fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon. The fully stretchable transistors exhibit high biaxial stretchability with minimal change in on current even when poked with a sharp object. We demonstrate a skinlike finger-wearable driver for a light-emitting diode.

  2. Luminescence Properties of RDX and HMX

    DTIC Science & Technology

    1975-08-01

    AD-AO15 538 LUMINESCENCE PROPERTIES OF RDX AND HMX Paul L. Marinkas Picatinny Arsenal Dover, New Jersey August 1975 DISTRIBUTED BY: National...Technical Information Service U. S. DEPARTMENT OF COMMERCE • i 289106. TECHNICAL REPORT 4840 LUMINESCENCE PROPERTIES, OF RDX AND HMX PAULL. MARINKAS -’-I...yields Charge transfer HMX Phosphorescence Reflectance spectra Circular dichroism Lifetimes Photodecomposition RDX Doping Luminescence Polynitramines

  3. High-performance polymer waveguide devices via low-cost direct photolithography process

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Shustack, Paul J.; Garner, Sean M.

    2002-09-01

    All-optical networks provide unique opportunities for polymer waveguide devices because of their excellent mechanical, thermo-optic, and electro-optic properties. Polymer materials and components have been viewed as a viable solution for metropolitan and local area networks where high volume and low cost components are needed. In this paper, we present our recent progress on the design and development of photoresist-like highly fluorinated maleimide copolymers including waveguide fabrication and optical testing. We have developed and synthesized a series of thermally stable, (Tg>150 oC, Td>300 oC) highly fluorinated (>50%) maleimide copolymers by radical co-polymerization of halogenated maleimides with various halogenated co-monomers. A theoretical correlation between optical loss and different co-polymer structures has been quantitatively established from C-H overtone analysis. We studied this correlation through design and manipulation of the copolymer structure by changing the primary properties such as molecular weight, copolymer composition, copolymer sequence distribution, and variations of the side chain including photochemically functional side units. Detailed analysis has been obtained using various characterization methods such as (H, C13, F19) NMR, UV-NIR, FTIR, GPC and so forth. The co-polymers exhibit excellent solubility in ketone solvents and high quality thin films can be prepared by spin coating. The polymer films were found to have a refractive index range of 1.42-1.67 and optical loss in the range of 0.2 to 0.4 dB/cm at 1550nm depending on the composition as extrapolated from UV-NIR spectra. When glycidyl methacrylate is incorporated into the polymer backbone, the material behaves like a negative photoresist with the addition of cationic photoinitiator. The final crosslinked waveguides show excellent optical and thermal properties. The photolithographic processing of the highly fluorinated copolymer material was examined in detail using in

  4. Conducting polymer nanowire arrays for high performance supercapacitors.

    PubMed

    Wang, Kai; Wu, Haiping; Meng, Yuena; Wei, Zhixiang

    2014-01-15

    This Review provides a brief summary of the most recent research developments in the fabrication and application of one-dimensional ordered conducting polymers nanostructure (especially nanowire arrays) and their composites as electrodes for supercapacitors. By controlling the nucleation and growth process of polymerization, aligned conducting polymer nanowire arrays and their composites with nano-carbon materials can be prepared by employing in situ chemical polymerization or electrochemical polymerization without a template. This kind of nanostructure (such as polypyrrole and polyaniline nanowire arrays) possesses high capacitance, superior rate capability ascribed to large electrochemical surface, and an optimal ion diffusion path in the ordered nanowire structure, which is proved to be an ideal electrode material for high performance supercapacitors. Furthermore, flexible, micro-scale, threadlike, and multifunctional supercapacitors are introduced based on conducting polyaniline nanowire arrays and their composites. These prototypes of supercapacitors utilize the high flexibility, good processability, and large capacitance of conducting polymers, which efficiently extend the usage of supercapacitors in various situations, and even for a complicated integration system of different electronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Vacuum-integrated electrospray deposition for highly reliable polymer thin film.

    PubMed

    Park, Soohyung; Lee, Younjoo; Yi, Yeonjin

    2012-10-01

    Vacuum electrospray deposition (ESD) equipment was designed to prepare polymer thin films. The polymer solution can be injected directly into vacuum system through multi-stage pumping line, so that the solvent residues and ambient contaminants are highly reduced. To test the performance of ESD system, we fabricated organic photovoltaic cells (OPVCs) by injecting polymer solution directly onto the substrate inside a high vacuum chamber. The OPVC fabricated has the structure of Al∕P3HT:PCBM∕PEDOT:PSS∕ITO and was optimized by varying the speed of solution injection and concentration of the solution. The power conversion efficiency (PCE) of the optimized OPVC is 3.14% under AM 1.5G irradiation without any buffer layer at the cathode side. To test the advantages of the vacuum ESD, we exposed the device to atmosphere between the deposition steps of the active layer and cathode. This showed that the PCE of the vacuum processed device is 24% higher than that of the air exposed device and confirms the advantages of the vacuum prepared polymer film for high performance devices.

  6. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    NASA Astrophysics Data System (ADS)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  7. High temperature lithium cells with solid polymer electrolytes

    DOEpatents

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2017-03-07

    Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.

  8. Facile synthesis of 2D Zn(II) coordination polymer and its crystal structure, selective removal of methylene blue and molecular simulations

    NASA Astrophysics Data System (ADS)

    Sezer, Güneş Günay; Yeşilel, Okan Zafer; Şahin, Onur; Arslanoğlu, Hasan; Erucar, İlknur

    2017-09-01

    A new coordination polymer {[Zn(μ3-ppda)(H2O)(μ-bpa)Zn(μ-ppda)(μ-bpa)]·4H2O}n (1) (ppda = 1,4-phenylenediacetate, bpa = 1,2-bis(4-pyridyl)ethane) has been synthesized by microwave-assisted reaction and characterized by elemental analysis, IR spectroscopy, single-crystal and powder X-ray diffractions. The asymmetric unit of 1 consists of two Zn(II) ions, two bpa ligands, two ppda ligands, one coordinated and four non-coordinated water molecules. In 1, ppda2- anions are linked the adjacent Zn(II) centers to generate 1D double-stranded chains. These chains are connected into 2D sheets by the bridging bpa ligands. Atomically detailed modeling was performed to compute single and binary component adsorption isotherms of H2, CO2, CH4 and N2 in complex 1. Results showed that 1 exhibits a high adsorption selectivity towards CO2 due to its high affinity for CO2. Results of this study will be helpful to guide the microwave-assisted reaction of coordination polymers to design promising adsorbents for gas storage and gas separation applications. The luminescent property of 1 and the selective removal of dyes in 1 have been also discussed. Results showed that 1 can be a potential candidate for luminescence applications and can selectively adsorb methylene blue (MB) dye molecules.

  9. Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method

    NASA Astrophysics Data System (ADS)

    Gunaseelan, M.; Yamini, S.; Kumar, G. A.; Senthilselvan, J.

    2018-01-01

    A new reverse microemulsion system is proposed for the first time to synthesize NaYF4:Yb,Er nanocrystals, which demonstrated high upconversion emission in 550 and 662 nm at 980 nm diode laser excitation. The reverse microemulsion (μEs) system is comprised of CTAB and oleic acid as surfactant and 1-butanol co-surfactant and isooctane oil phase. The surfactant to water ratio is able to tune the microemulsion droplet size from 14 to 220 nm, which eventually controls the crystallinity and particulate morphology of NaYF4:Yb,Er. Also, the microemulsion precursor and calcination temperature plays certain role in transforming the cubic NaYF4:Yb,Er to highly luminescent hexagonal crystal structured upconversion material. Single phase hexagonal NaYF4:YbEr nanorod prepared by water-in-oil reverse microemulsion (μEs) gives intense red upconversion emission. Both nanosphere and nanorod shaped NaYF4:Yb,Er was obtained, but nanorod morphology resulted an enhanced upconversion luminescence. The structural, morphological, thermal and optical luminescence properties of the NaYF4:Yb,Er nanoparticles are discussed in detail by employing powder X-ray diffraction, dynamic light scattering, high resolution electron microscopy, TGA-DTA, UV-DRS, FTIR and photoluminescence spectroscopy. Intense upconversion emission achieved in the microemulsion synthesized NaYF4:Yb3+,Er3+ nanocrystal can make it as useful optical phosphor for solar cell applications.

  10. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies

    DOE PAGES

    Bekenstein, Yehonadav; Koscher, Brent A.; Eaton, Samuel W.; ...

    2015-12-15

    Anisotropic colloidal quasi-two-dimensional nanoplates (NPLs) hold great promise as functional materials due to their combination of low dimensional optoelectronic properties and versatility through colloidal synthesis. Recently, lead-halide perovskites have emerged as important optoelectronic materials with excellent efficiencies in photovoltaic and light-emitting applications. Here we report the synthesis of quantum confined all inorganic cesium lead halide nanoplates in the perovskite crystal structure that are also highly luminescent (PLQY 84%). The controllable self-assembly of nanoplates either into stacked columnar phases or crystallographic-oriented thin-sheet structures is demonstrated. Furthermore, the broad accessible emission range, high native quantum yields, and ease of self-assembly make perovskitemore » NPLs an ideal platform for fundamental optoelectronic studies and the investigation of future devices.« less

  11. Virulence of luminescent and non-luminescent isogenic vibrios towards gnotobiotic Artemia franciscana larvae and specific pathogen-free Litopenaeus vannamei shrimp.

    PubMed

    Phuoc, L H; Defoirdt, T; Sorgeloos, P; Bossier, P

    2009-04-01

    This study was conducted to test the virulence of luminescent (L) and non-luminescent (NL) isogenic strains of Vibrio campbellii LMG21363, Vibrio harveyi BB120 (wild type) and quorum-sensing mutant strains derived from the wild type such as Vibrio harveyi BB152, BB170, MM30 and BB886. The NL strains could be obtained by culturing rifampicin-resistant luminescent strains in the dark under static condition. The virulence of the L and NL strains was tested in gnotobiotic Artemia franciscana larvae challenged with 10(4) CFU ml(-1) of bacteria. All luminescent isogenic tested strains showed higher virulence compared to the NL strains. The virulence of L and NL V. campbellii and V. harveyi BB120 was also tested in specific pathogen-free juvenile shrimp upon intramuscular injection with 10(6) CFU of bacteria. In contrast with Artemia, there was no significant difference in mortality between the groups challenged with L and NL strains (P > 0.05). The non-luminescent strains were not able to revert back to the luminescent state and quorum sensing did not influence this phenotypic shift. Luminescent Vibrio strains can switch to a non-luminescent state by culturing them in static conditions. The NL strains become less virulent as verified in Artemia. The luminescent state of Vibrio cells in a culture needs to be verified in order to assure maintenance of virulence.

  12. Tailor-Made Electrospun Multilayer Composite Polymer Electrolytes for High-Performance Lithium Polymer Batteries.

    PubMed

    Lim, Du-Hyun; Haridas, Anupriya K; Figerez, Stelbin Peter; Raghavan, Prasanth; Matic, Aleksandar; Ahn, Jou-Hyeon

    2018-09-01

    A novel tailor-made multilayer composite polymer electrolyte, consisting of two outer layers of electrospun polyacrylonitrile (PAN) and one inner layer of poly(vinyl acetate) (PVAc)/poly(methyl methacrylate) (PMMA)/poly(ethylene oxide) (PEO) fibrous membrane, was prepared using continuous electrospinning. These membranes, which are made up of fibers with diameters in the nanometer range, were stacked in layers to produce interconnected pores that result in a high porosity. Gel polymer electrolytes (GPEs) were prepared by entrapping a liquid electrolyte (1 M LiPF6 in ethylene carbonate/dimethyl carbonate) in the membranes. The composite membranes exhibited a high electrolyte uptake of 450-510%, coupled with an improved room temperature ionic conductivity of up to 4.72 mS cm-1 and a high electrochemical stability of 4.6 V versus Li/Li+. Electrochemical investigations of a composite membrane of PAN-PVAc-PAN, with a LiFePO4 cathode synthesized in-house, showed a high initial discharge capacity of 145 mAh g-1, which corresponds to 85% utilization of the active material, and displayed stable cycle performance.

  13. Flexible Polymer/Metal/Polymer and Polymer/Metal/Inorganic Trilayer Transparent Conducting Thin Film Heaters with Highly Hydrophobic Surface.

    PubMed

    Kang, Tae-Woon; Kim, Sung Hyun; Kim, Cheol Hwan; Lee, Sang-Mok; Kim, Han-Ki; Park, Jae Seong; Lee, Jae Heung; Yang, Yong Suk; Lee, Sang-Jin

    2017-09-27

    Polymer/metal/polymer and polymer/metal/inorganic trilayer-structured transparent electrodes with fluorocarbon plasma polymer thin film heaters have been proposed. The polymer/metal/polymer and polymer/metal/inorganic transparent conducting thin films fabricated on a large-area flexible polymer substrate using a continuous roll-to-roll sputtering process show excellent electrical properties and visible-light transmittance. They also exhibit water-repelling surfaces to prevent wetting and to remove contamination. In addition, the adoption of a fluorocarbon/metal/fluorocarbon film permits an outer bending radius as small as 3 mm. These films have a sheet resistance of less than 5 Ω sq -1 , sufficient to drive light-emitting diode circuits. The thin film heater with the fluorocarbon/Ag/SiN x structure exhibits excellent heating characteristics, with a temperature reaching 180 °C under the driving voltage of 13 V. Therefore, the proposed polymer/metal/polymer and polymer/metal/inorganic transparent conducting electrodes using polymer thin films can be applied in flexible and rollable displays as well as automobile window heaters and other devices.

  14. TH-AB-209-04: 3D Light Sheet Luminescence Imaging with Cherenkov Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruza, P; Lin, H; Jarvis, L

    Purpose: To recover a three-dimensional density distribution of luminescent molecular probes located several centimeters deep within a highly scattering tissue. Methods: We developed a novel sheet beam Cherenkov-excited luminescence scanned imaging (CELSI) methodology. The sample was irradiated by a horizontally oriented, vertically scanned 6 MV X-ray sheet beam (200mm × 5mm, 0.2mm vertical step) from a radiotherapy linear accelerator. The resulting Cherenkov light emission – and thus luminescent probe excitation – occurred exclusively along the irradiation plane due to a short diffusion path of secondary particles and Cherenkov photons. Cherenkov-excited luminescence was detected orthogonally to the sheet beam by gated,more » intensified charge coupled device camera. Analogously to light sheet microscopy, a series of luminescence images was taken for varied axial positions (depths) of the Cherenkov light sheet in sample. Knowledge of the excitation plane position allowed a 3D image stack deconvolution and depth-variant attenuation correction. The 3D image post-processing yielded a true spatial density distribution of luminescent molecules in highly scattering tissue. Results: We recovered a three-dimensional shape and position of 400 µL lesion-mimicking phantom tubes containing 25 µM solution of PtG4 molecular probe from 3 centimeter deep tissue-like media. The high sensitivity of CELSI also allowed resolving 100 micron capillaries of test solution. Functional information of partial oxygen pressure at the site of PtG4 molecular probe was recovered from luminescence lifetime CELSI. Finally, in-vivo sheet beam CELSI localized milimeter-sized PtG4-labelled tumor phantoms in multiple biological objects (hairless mice) from single scan. Conclusion: Presented sheet beam CELSI technique greatly extended the useful depth range of luminescence molecular imaging. More importantly, the light sheet microscopy approach was successfully adapted to CELSI, providing

  15. High-throughput Identification of Bacteria Repellent Polymers for Medical Devices

    PubMed Central

    Wu, Mei; Hardman, Ailsa; Lilienkampf, Annamaria; Pernagallo, Salvatore; Blakely, Garry; Swann, David G.; Bradley, Mark; Gallagher, Maurice P.

    2016-01-01

    Medical devices are often associated with hospital-acquired infections, which place enormous strain on patients and the healthcare system as well as contributing to antimicrobial resistance. One possible avenue for the reduction of device-associated infections is the identification of bacteria-repellent polymer coatings for these devices, which would prevent bacterial binding at the initial attachment step. A method for the identification of such repellent polymers, based on the parallel screening of hundreds of polymers using a microarray, is described here. This high-throughput method resulted in the identification of a range of promising polymers that resisted binding of various clinically relevant bacterial species individually and also as multi-species communities. One polymer, PA13 (poly(methylmethacrylate-co-dimethylacrylamide)), demonstrated significant reduction in attachment of a number of hospital isolates when coated onto two commercially available central venous catheters. The method described could be applied to identify polymers for a wide range of applications in which modification of bacterial attachment is important. PMID:27842360

  16. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  17. Dye-Incorporated Polynaphthalenediimide Acceptor for Additive-Free High-Performance All-Polymer Solar Cells.

    PubMed

    Chen, Dong; Yao, Jia; Chen, Lie; Yin, Jingping; Lv, Ruizhi; Huang, Bin; Liu, Siqi; Zhang, Zhi-Guo; Yang, Chunhe; Chen, Yiwang; Li, Yongfang

    2018-04-16

    All-polymer solar cells (all-PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)-based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state-of-the-art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI-based polymer acceptor. Herein, a rhodanine-based dye molecule was introduced into the NDI-based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up-shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive-free all-PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all-PSCs to date. These results indicate that incorporating a dye into the n-type polymer gives insight into the precise design of high-performance polymer acceptors for all-PSCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Reflection measurements for luminescent powders

    NASA Astrophysics Data System (ADS)

    Kroon, R. E.

    2018-04-01

    Luminescent materials are useful in applications varying from lighting and display technologies to document security features and medical research, amongst many others. Measurement of the excitation range is an important consideration, and absorption bands are often determined from a decrease in the measured diffuse reflectance of the material using a ultraviolet-visible (UV-vis) spectrophotometer with an integrating sphere. Such a system may provide questionable results when used to measure the reflectance of a luminescence material, which is demonstrated for a Tb doped silica phosphor, because the system cannot differentiate between the reflected light and luminescence. It is shown that more reliable results are achieved for this phosphor by measuring the reflectance using a synchronous zero-offset scan in a fluorescence spectrometer equipped with an integrating sphere. This method is therefore recommended instead of traditional reflectance measurements using a UV-vis spectrophotometer for luminescent powders.

  19. Highly Efficient Organic Photovoltaic Cells from Polymer-Aligned Carbon Nanotube Dispersed Heterojunctions

    DTIC Science & Technology

    2009-09-01

    semiconducting VA-SWNTs, and muiltcomponent micropatterns of VA- CNTs . We also designed and synthesized several classes of novel low bandgap...photovoltaic active polymers, and polymer-/TiO2–coated VA- CNTs , critical to developing high efficient polymer photovoltaic cells and dye-sensitized solar...an efficient solar absorption and charge separation/collection. Besides, novel N-doped CNT fuel cells, polymer/quantum dot light-emitting diodes, and

  20. Quantum yield and rate constant of the singlet 1Δ g oxygen luminescence in an aqueous medium in the presence of nanoscale inhomogeneities

    NASA Astrophysics Data System (ADS)

    Jarnikova, E. S.; Parkhats, M. V.; Stasheuski, A. S.; Lepeshkevich, S. V.; Dzhagarov, B. M.

    2017-04-01

    The quantum yields and lifetimes of photosensitized luminescence of the 1Δ g state of singlet oxygen in an aquatic media with a controlled concentration of dielectric anisotropy centers (polyethylene glycol) have been measured using the methods of laser fluorometry. It is established that the quantum yield and the rate constant ( k r ) of the a 1Δ g → X 3Σ g - luminescence of 1O2 increase as the polymer concentration increases. The effect is analyzed within a general approach involving a relationship between kr and dielectric properties of the medium and is explained by the increased density of photon states and the local field factor in the space around O2( a 1Δ g ).

  1. Combinatorial and high-throughput approaches in polymer science

    NASA Astrophysics Data System (ADS)

    Zhang, Huiqi; Hoogenboom, Richard; Meier, Michael A. R.; Schubert, Ulrich S.

    2005-01-01

    Combinatorial and high-throughput approaches have become topics of great interest in the last decade due to their potential ability to significantly increase research productivity. Recent years have witnessed a rapid extension of these approaches in many areas of the discovery of new materials including pharmaceuticals, inorganic materials, catalysts and polymers. This paper mainly highlights our progress in polymer research by using an automated parallel synthesizer, microwave synthesizer and ink-jet printer. The equipment and methodologies in our experiments, the high-throughput experimentation of different polymerizations (such as atom transfer radical polymerization, cationic ring-opening polymerization and emulsion polymerization) and the automated matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) sample preparation are described.

  2. High temperature chemically resistant polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  3. Luminescent macrocyclic lanthanide complexes

    DOEpatents

    Raymond, Kenneth N; Corneillie, Todd M; Xu, Jide

    2014-05-20

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  4. Initiated chemical vapor deposition polymers for high peak-power laser targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxamusa, Salmaan H.; Lepro, Xavier; Lee, Tom

    2016-12-05

    Here, we report two examples of initiated chemical vapor deposition (iCVD) polymers being developed for use in laser targets for high peak-power laser systems. First, we show that iCVD poly(divinylbenzene) is more photo-oxidatively stable than the plasma polymers currently used in laser targets. Thick layers (10–12 μm) of this highly crosslinked polymer can be deposited with near-zero intrinsic film stress. Second, we show that iCVD epoxy polymers can be crosslinked after deposition to form thin adhesive layers for assembling precision laser targets. The bondlines can be made as thin as ~ 1 μm, approximately a factor of 2 thinner thanmore » achievable using viscous resin-based adhesives. These bonds can withstand downstream coining and stamping processes.« less

  5. Luminescence imaging of water during proton-beam irradiation for range estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantomsmore » of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.« less

  6. Studies of LSO:Tb radio-luminescence properties using white beam hard X-ray synchrotron irradiation

    NASA Astrophysics Data System (ADS)

    Cecilia, A.; Rack, A.; Pelliccia, D.; Douissard, P.-A.; Martin, T.; Couchaud, M.; Dupré, K.; Baumbach, T.

    A radio-luminescence set-up was installed at the synchrotron light source ANKA to characterise scintillators under the high X-ray photon flux density of white beam synchrotron radiation. The system allows for investigating the radio-luminescence spectrum of the material under study as well as analysing in situ changes of its scintillation behaviour (e.g. under heat load and/or intensive ionising radiation). In this work we applied the radio-luminescence set-up for investigating the radiation damage effects on the luminescence properties of a new kind of thin single crystal scintillator for high resolution X-ray imaging based on a layer of modified Lu2SiO5 grown by liquid phase epitaxy on a dedicated substrate within the framework of an EC project (SCINTAX).

  7. Structured luminescence conversion layer

    DOEpatents

    Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

    2012-12-11

    An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

  8. Identification of yellow luminescence centers in Be-doped GaN through pressure-dependent studies

    NASA Astrophysics Data System (ADS)

    Teisseyre, Henryk; Lyons, John L.; Kaminska, Agata; Jankowski, Dawid; Jarosz, Dawid; Boćkowski, Michał; Suchocki, Andrzej; Van de Walle, Chris G.

    2017-06-01

    Effective acceptor doping of wide-band-gap semiconductors is still an outstanding problem. Beryllium has been suggested as a shallow acceptor in GaN, but despite sporadic announcements, Be-induced p-type doping has never been practically realized. Be-doped GaN possesses two luminescence bands; one at 3.38 eV and a second near 2.2 eV at an energy close to that of the parasitic yellow luminescence often found in undoped GaN crystals. We have performed high hydrostatic pressure studies of bulk, Be-doped gallium nitride crystals using the diamond anvil cell technique. We observed a splitting of the yellow luminescence line under hydrostatic pressure into two components, one which is strongly dependent on applied pressure and another whose pressure dependence is more modest. Together with hybrid functional calculations, we attribute the strongly-varying component to the beryllium-oxygen complex. The second component of the yellow luminescence possesses very similar pressure behavior to the yellow luminescence observed in undoped samples grown by the same method, behavior which we find consistent with the CN acceptor. At higher pressure, we observe the vanishing of yellow luminescence and a rapid increase in luminescence intensity of the UV line. We explain this as the pressure-induced transformation of the Be-O complex from a highly localized state with large lattice relaxation to a delocalized state with limited lattice relaxation.

  9. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion

    PubMed Central

    Totani, Masayasu; Terada, Kayo; Terashima, Takaya; Kim, Ill Yong; Ohtsuki, Chikara; Xi, Chuanwu; Tanihara, Masao

    2014-01-01

    We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78–88% relative to noncoated PET surface) and Escherichia coli (94–97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria. PMID:25485105

  10. Pattering of nanostructures with high aspect ratio in polymer materials

    NASA Astrophysics Data System (ADS)

    Lyuksyutov, Sergei; Paramonov, Pavel; Sancaktar, Erol; Vaia, Richard; Juhl, Shane

    2004-04-01

    The generation of features larger than the initial atomic force microscope (AFM) tip-surface distance (presumably less that 1nm for unbiased tip) had previously been reported for silicon and metal oxidation. Such nanostructure (1-50 nm high) formation exceeding AFM tip-sample separation has been observed by us during AFM-assisted nanolithography in polymers [1,2]. The technique produces nanostructures up to 100 nm high in thin (10-30 nm) polymer films through the one-step process. The specific spatial details of the tip-surface contact profile, as well as cantilever motion, with applied bias during writing is not well understood and we are not aware of any comprehensive explanation provided in literature for this effect. In this work we analyze tip-polymer interaction using real-time tip deflection. An abrupt lift-up of biased AFM tip has been recorded experimentally and found to be proportional to the height of polymer nanostructures. This fact was used to pattern robust nanostructures of 20-100 nm high using amplitude modulated AFM-assisted electrostatic nanolithography [2] as the arrays of dots in polystyrene and polybenzoxasole polymer films. References [1] S.F. Lyuksyutov, R.A. Vaia, P.B. Paramonov, S. Juhl, L. Waterhouse, R.M. Ralich, G. Sigalov, and E. Sancaktar, Nature Materials 2(7) 468-472 (2003) [2] S.F. Lyuksyutov, R.A. Vaia, P.B. Paramonov, and S. Juhl, Appl. Phys. Lett. 83 (21), 4405-4407 (2003)

  11. NK sensitivity of neuroblastoma cells determined by a highly sensitive coupled luminescent method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogbomo, Henry; Hahn, Anke; Geiler, Janina

    2006-01-06

    The measurement of natural killer (NK) cells toxicity against tumor or virus-infected cells especially in cases with small blood samples requires highly sensitive methods. Here, a coupled luminescent method (CLM) based on glyceraldehyde-3-phosphate dehydrogenase release from injured target cells was used to evaluate the cytotoxicity of interleukin-2 activated NK cells against neuroblastoma cell lines. In contrast to most other methods, CLM does not require the pretreatment of target cells with labeling substances which could be toxic or radioactive. The effective killing of tumor cells was achieved by low effector/target ratios ranging from 0.5:1 to 4:1. CLM provides highly sensitive, safe,more » and fast procedure for measurement of NK cell activity with small blood samples such as those obtained from pediatric patients.« less

  12. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness.

    PubMed

    Chen, Hui; Ma, Xiang; Wu, Shuaifan; Tian, He

    2014-12-15

    Development of self-healing and photostimulated luminescent supramolecular polymeric materials is important for artificial soft materials. A supramolecular polymeric hydrogel is reported based on the host-guest recognition between a β-cyclodextrin (β-CD) host polymer (poly-β-CD) and an α-bromonaphthalene (α-BrNp) polymer (poly-BrNp) without any additional gelator, which can self-heal within only about one minute under ambient atmosphere without any additive. This supramolecular polymer system can be excited to engender room-temperature phosphorescence (RTP) signals based on the fact that the inclusion of β-CD macrocycle with α-BrNp moiety is able to induce RTP emission (CD-RTP). The RTP signal can be adjusted reversibly by competitive complexation of β-CD with azobenzene moiety under specific irradiation by introducing another azobenzene guest polymer (poly-Azo). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles.

    PubMed

    Cui, Xiangshui; Cheng, Yao; Lin, Hang; Huang, Feng; Wu, Qingping; Wang, Yuansheng

    2017-09-21

    Thermal quenching above 300 K is widely expected in photoluminescence. Luminescence quenching is usually ascribed to the non-radiative relaxation of excited electrons to the ground state of the activators, during which a high temperature always plays a role in pushing the excited electrons towards the quenching channels, leading to thermal quenching. For the lanthanide-doped nanoparticles, however, there is a special luminescence quenching channel that does not exist in their bulk counterparts, i.e., energy migration-induced surface quenching. Herein, a size-dependent abnormal thermal enhancement of luminescence in the temperature range of 300 K to 423 K in the ytterbium-doped fluoride nanoparticles is presented for the first time. Importantly, in this work, we originally demonstrate that the energy migration-induced surface quenching can be suppressed by increasing temperature, which results in the abnormal thermal enhancement of luminescence. According to the temperature-dependent X-ray diffraction and lifetime analyses, an underlying mechanism based on the effect of thermal lattice expansion on ytterbium-mediated energy migration is proposed. This new finding adds new insights to the size effect on the luminescent characteristics of nanoparticles, which could be utilized to construct some unique nanostructures, especially for many important temperature-related purposes, such as thermal sensing technology.

  14. New monomers for high performance polymers

    NASA Technical Reports Server (NTRS)

    Gratz, Roy F.

    1993-01-01

    This laboratory has been concerned with the development of new polymeric materials with high thermo-oxidative stability for use in the aerospace and electronics industries. Currently, there is special emphasis on developing matrix resins and composites for the high speed civil transport (HSCT) program. This application requires polymers that have service lifetimes of 60,000 hr at 350 F (177 C) and that are readily processible into void-free composites, preferably by melt-flow or powder techniques that avoid the use of high boiling solvents. Recent work has focused on copolymers which have thermally stable imide groups separated by flexible arylene ether linkages, some with trifluoromethyl groups attached to the aromatic rings. The presence of trifluoromethyl groups in monomers and polymers often improves their solubility and processibility. The goal of this research was to synthesize several new monomers containing pendant trifluoromethyl groups and to incorporate these monomers into new imide/arylene ether copolymers. Initially, work was begun on the synthesis of three target compounds. The first two, 3,5-dihydroxybenzo trifluoride and 3-amino 5-hydroxybenzo trifluoride, are intermediates in the synthesis of more complex monomers. The third, 3,5-bis (3-amino-phenoxy) benzotrifluoride, is an interesting diamine that could be incorporated into a polyimide directly.

  15. Quickly updatable hologram images with high performance photorefractive polymer composites

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Naoto; Kinashi, Kenji; Nonomura, Asato; Sakai, Wataru

    2012-02-01

    We present here quickly updatable hologram images using high performance photorefractive (PR) polymer composite based on poly(N-vinyl carbazole) (PVCz). PVCz is one of the pioneer materials for photoconductive polymer. PVCz/7- DCST/CzEPA/TNF (44/35/20/1 by wt) gives high diffraction efficiency of 68 % at E = 45 V/μm with fast response speed. Response speed of optical diffraction is the key parameter for real-time 3D holographic display. Key parameter for obtaining quickly updatable hologram images is to control the glass transition temperature lower enough to enhance chromophore orientation. Object image of the reflected coin surface recorded with reference beam at 532 nm (green beam) in the PR polymer composite is simultaneously reconstructed using a red probe beam at 642 nm. Instead of using coin object, object image produced by a computer was displayed on a spatial light modulator (SLM) is used as an object for hologram. Reflected object beam from a SLM interfered with reference beam on PR polymer composite to record a hologram and simultaneously reconstructed by a red probe beam. Movie produced in a computer was recorded as a realtime hologram in the PR polymer composite and simultaneously clearly reconstructed with a video rate.

  16. 21 CFR 73.2995 - Luminescent zinc sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Luminescent zinc sulfide. 73.2995 Section 73.2995 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2995 Luminescent zinc sulfide. (a) Identity. The color additive luminescent zinc sulfide...

  17. 21 CFR 73.2995 - Luminescent zinc sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Luminescent zinc sulfide. 73.2995 Section 73.2995 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2995 Luminescent zinc sulfide. (a) Identity. The color additive luminescent zinc sulfide...

  18. Semi-interpenetrating polymer network for tougher and more microcracking resistant high temperature polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    This invention is a semi-interpenetrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. An improved high temperature matrix resin is provided which is capable of performing at 316 C in air for several hundreds of hours. This resin has significantly improved toughness and microcracking resistance, excellent processability and mechanical performance, and cost effectiveness.

  19. Tough, Microcracking-Resistant, High-Temperature Polymer

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Razon, Pert; Smith, Ricky; Working, Dennis; Chang, Alice; Gerber, Margaret

    1990-01-01

    Simultaneous synthesis from thermosetting and thermoplastic components yields polyimide with outstanding properties. Involves process in which one polymer cross-linked in immediate presence of other, undergoing simultaneous linear chain extension. New material, LaRC-RP40 synthesized from high-temperature thermosetting imide prepolymer and from thermoplastic monomer. Three significantly improved properties: toughness, resistance to microcracking, and glass-transition temperature. Shows promise as high-temperature matrix resin for variety of components of aircraft engines and for use in other aerospace structures.

  20. Highly luminescent, high-indium-content InGaN film with uniform composition and full misfit-strain relaxation

    NASA Astrophysics Data System (ADS)

    Fischer, A. M.; Wei, Y. O.; Ponce, F. A.; Moseley, M.; Gunning, B.; Doolittle, W. A.

    2013-09-01

    We have studied the properties of thick InxGa1-xN films, with indium content ranging from x ˜ 0.22 to 0.67, grown by metal-modulated epitaxy. While the low indium-content films exhibit high density of stacking faults and dislocations, a significant improvement in the crystalline quality and optical properties has been observed starting at x ˜ 0.6. Surprisingly, the InxGa1-xN film with x ˜ 0.67 exhibits high luminescence intensity, low defect density, and uniform full lattice-mismatch strain relaxation. The efficient strain relaxation is shown to be due to a critical thickness close to the monolayer range. These films were grown at low temperatures (˜400 °C) to facilitate indium incorporation and with precursor modulation to enhance surface morphology and metal adlayer diffusion. These findings should contribute to the development of growth techniques for nitride semiconductors under high lattice misfit conditions.

  1. A Highly Aromatic and Sulfonated Ionomer for High Elastic Modulus Ionic Polymer Membrane Micro-Actuators

    DTIC Science & Technology

    2012-05-01

    fluorophenyl)sulfone (DPA-PS:BP) is investigated for ionic polymer actuators. The uniqueness of DPA-PS:BP is that it can have a high ionic liquid (IL... ionic liquid Q M Zhang, Gokhan Hatipoglu, Yang Liu, Ran Zhao, Mitra Yoonessi, Dean M Tigelaar, Srinivas Tadigadapa Virginia Polytechnic Institute...DPA-PS:BP) is investigated for ionic polymer actuators. The uniqueness of DPA-PS:BP is that it can have a high ionic liquid (IL) uptake and

  2. Luminescence imaging of water during carbon-ion irradiation for range estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Komori, Masataka; Koyama, Shuji

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions withmore » those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.« less

  3. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation

    NASA Astrophysics Data System (ADS)

    Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania; Stavrakas, Camille; Philippe, Bertrand; Richter, Johannes M.; Alsari, Mejd; Booker, Edward P.; Hutter, Eline M.; Pearson, Andrew J.; Lilliu, Samuele; Savenije, Tom J.; Rensmo, Håkan; Divitini, Giorgio; Ducati, Caterina; Friend, Richard H.; Stranks, Samuel D.

    2018-03-01

    Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can

  4. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation.

    PubMed

    Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania; Stavrakas, Camille; Philippe, Bertrand; Richter, Johannes M; Alsari, Mejd; Booker, Edward P; Hutter, Eline M; Pearson, Andrew J; Lilliu, Samuele; Savenije, Tom J; Rensmo, Håkan; Divitini, Giorgio; Ducati, Caterina; Friend, Richard H; Stranks, Samuel D

    2018-03-21

    Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield-a quantity that must be maximized to obtain high efficiency-remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach

  5. Ultra-high molecular weight silphenylene-siloxane polymers

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.; Hundley, N. H.; Ludwick, L. M.

    1984-01-01

    Silphenylene-siloxane copolymers with molecular weights above one million were prepared using a two stage polymerization technique. The technique was successfully scaled up to produce 50 grams of this high polymer in a single run. The reactive monomer approach was also investigated using the following aminosilanes: bis(dimethylamino)dimethylsilane, N,N-bis(pyrrolidinyl)dimethylsilane and N,N-bis(gamma-butyrolactam)dimethylsilane). Thermal analyses were performed in both air and nitrogen. The experimental polymers decomposed at 540 to 562 C, as opposed to 408 to 426 C for commercial silicones. Differential scanning calorimetry showed a glass transition (Tg) at -50 to -55 C for the silphenylene-siloxane copolymer while the commercial silicones had Tg's at -96 to -112 C.

  6. Femtosecond Pump-Push-Probe and Pump-Dump-Probe Spectroscopy of Conjugated Polymers: New Insight and Opportunities.

    PubMed

    Kee, Tak W

    2014-09-18

    Conjugated polymers are an important class of soft materials that exhibit a wide range of applications. The excited states of conjugated polymers, often referred to as excitons, can either deactivate to yield the ground state or dissociate in the presence of an electron acceptor to form charge carriers. These interesting properties give rise to their luminescence and the photovoltaic effect. Femtosecond spectroscopy is a crucial tool for studying conjugated polymers. Recently, more elaborate experimental configurations utilizing three optical pulses, namely, pump-push-probe and pump-dump-probe, have been employed to investigate the properties of excitons and charge-transfer states of conjugated polymers. These studies have revealed new insight into femtosecond torsional relaxation and detrapping of bound charge pairs of conjugated polymers. This Perspective highlights (1) the recent achievements by several research groups in using pump-push-probe and pump-dump-probe spectroscopy to study conjugated polymers and (2) future opportunities and potential challenges of these techniques.

  7. Beryl-II, a high-pressure phase of beryl: Raman and luminescence spectroscopy to 16.4 GPa

    NASA Astrophysics Data System (ADS)

    O'Bannon, Earl; Williams, Quentin

    2016-10-01

    The Raman and Cr3+ and V2+ luminescence spectra of beryl and emerald have been characterized up to 15.0 and 16.4 GPa, respectively. The Raman spectra show that an E 1g symmetry mode at 138 cm-1 shifts negatively by -4.57 (±0.55) cm-1/GPa, and an extrapolation of the pressure dependence of this mode indicates that a soft-mode transition should occur near 12 GPa. Such a transition is in accord with prior theoretical results. Dramatic changes in Raman mode intensities and positions occur between 11.2 and 15.0 GPa. These changes are indicative of a phase transition that primarily involves tilting and mild distortion of the Si6O18 rings. New Raman modes are not observed in the high-pressure phase, which indicates that the local bonding environment is not altered dramatically across the transition (e.g., changes in coordination do not occur). Both sharp line and broadband luminescence are observed for both Cr3+ and V2+ in emerald under compression to 16.4 GPa. The R-lines of both Cr3+ and V2+ shift to lower energy (longer wavelength) under compression. Both R-lines of Cr3+ split at ~13.7 GPa, and the V2+ R1 slope changes at this pressure and shifts more rapidly up to ~16.4 GPa. The Cr3+ R-line splitting and FWHM show more complex behavior, but also shift in behavior at ~13.7 GPa. These changes in the pressure dependency of the Cr3+ and V2+ R-lines and the changes in R-line splitting and FWHM at ~13.7 GPa further demonstrate that a phase transition occurs at this pressure, in good agreement with our Raman results. The high-pressure phase of beryl appears to have two Al sites that become more regular under compression. Hysteresis is not observed in our Raman or luminescence spectra on decompression, suggesting that this transition is second order in nature: The occurrence of a second-order transition near this pressure is also in accord with prior theoretical results. We speculate that the high-pressure phase (beryl-II) might be a mildly modulated structure, and/or that

  8. Towards Luminescence Dating Of Mosaic Glass

    NASA Astrophysics Data System (ADS)

    Galli, A.; Martini, M.; Sibila, E.; Villa, I.

    The possibility of dating archaeological glass by means of luminescent techniques has been investigated in recent years, despite the difficulties of this application, mainly linked to the amorphous structure of the material. We focused in particular on mosaic glass, after the encouraging results obtained on byzantine and medieval samples. Further studies were devoted to the comprehension of the luminescent mechanisms in silica glasses, and to the investigation of the relationships between luminescence, colouring or opacifier ions and crystalline phase of the vitreous matrix. The results of a study on the dosimetric characteristics of thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) of a few medieval blue-green mosaic glasses from the San Lorenzo church (Milan) are presented, and the experimental protocols established to identify their suitability for dating are discussed.

  9. Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization

    PubMed Central

    Hu, Bolin; Zeng, Nan; Liu, Zhiyi; Ji, Yanhong; Xie, Weidong; Peng, Qing; Zhou, Yong; He, Yonghong; Ma, Hui

    2011-01-01

    Photodynamic therapy is a promising cancer treatment that involves activation of photosensitizer by visible light to create singlet oxygen. This highly reactive oxygen species is believed to induce cell death and tissue destruction in PDT. Our approach used a near-infrared area CCD with high quantum efficiency to detect singlet oxygen by its 1270-nm luminescence. Two-dimensional singlet oxygen images with its near-infrared luminescence during photosensitization could be obtained with a CCD integration time of 1 s, without scanning. Thus this system can produce singlet oxygen luminescence images faster and achieve more accurate measurements in comparison to raster-scanning methods. The experimental data show a linear relationship between the singlet oxygen luminescence intensity and sample concentration. This method provides a detection sensitivity of 0.0181 μg/ml (benzoporphyrin derivative monoacid ring A dissolved in ethanol) and a spatial resolution better than 50 μm. A pilot study was conducted on a total of six female Kunming mice. The results from this study demonstrate the system's potential for in vivo measurements. Further experiments were carried out on two tumor-bearing nude mice. Singlet oxygen luminescence images were acquired from the tumor-bearing nude mouse with intravenous injection of BPD-MA, and the experimental results showed real-time singlet oxygen signal depletion as a function of the light exposure. PMID:21280909

  10. Towards increasing the spatial resolution of luminescence chronologies - Portable luminescence reader measurements and standardized growth curves applied to the beach-ridge plain of Phra Thong Island, Thailand

    NASA Astrophysics Data System (ADS)

    Brill, Dominik; Jankaew, Kruawun; Brückner, Helmut

    2016-04-01

    Since optically stimulated luminescence (OSL) dating is time consuming and cost intensive, age information available for individual study sites is usually restricted to significantly less than 100 ages. In particular the interpretation of complex depositional systems with temporally and spatially diverse sedimentation histories may suffer from the effects of a poor spatial resolution or an ineffective distribution of chronological data. In these cases, time and cost efficient approaches that provide reasonable dating accuracy are required to substitute or complement full luminescence dating. For the sandy beach-ridge plain of Phra Thong Island, Thailand, which is chronologically constrained by a set of approximately 50 luminescence ages, we evaluated the potential (i) of luminescence profiling using a portable luminescence reader, and (ii) of standardized growth curves (SGCs) to improve the resolution and sampling strategy of OSL dating in coastal settings. Although SGCs are related to some shortcomings in dating accuracy, and luminescence profiling with even the favorable conditions provided by the homogeneous sandy stratigraphy of the beach-ridge plain does not equal full luminescence dating, both approaches are capable of reproducing some of the main chronostratigraphic features of the island. This includes the differentiation between Holocene and last interglacial ridges, as well as the identification of the general east-west progradation and some (but not all) of several 1500-2000 year hiatuses within the Holocene sediment succession. However, while both approaches can successfully identify relative chronological trends, robust absolute age estimates can only be achieved by considering the highly variable dosimetry, which is the main contributing factor to bulk luminescence signals apart from deposition age on Phra Thong Island. At Phra Thong, portable reader signals as a proxy for palaeodoses combined with sample-specific dose rates proved as the best

  11. Carbazole/triarylamine based polymers as a hole injection/transport layer in organic light emitting devices.

    PubMed

    Wang, Hui; Ryu, Jeong-Tak; Kwon, Younghwan

    2012-05-01

    This study examined the influence of the charge injection barriers on the performance of organic light emitting diodes (OLEDs) using polymers with a stepwise tuned ionization potential (I(p) approximately -5.01 - -5.29 eV) between the indium tin oxide (ITO) (phi approximately -4.8 eV) anode and tris(8-hydroxyquinolinato) aluminium (Alq3) (I(p) approximately -5.7 eV) layer. The energy levels of the polymers were tuned by structural modification. Double layer devices were fabricated with a configuration of ITO/polymer/Alq3/LiF/Al, where the polymers, Alq3, and LiF/Al were used as the hole injection/transport layer, emissive electron transport layer, and electron injection/cathode, respectively. Using the current density-voltage (J-V), luminescence-voltage (L-V) and efficiencies in these double layer devices, the device performance was evaluated in terms of the energy level alignments at the interfaces, such as the hole injection barriers (phi(h)(iTO/polymer) and phi(h)(polymer/Alq3)) from ITO through the polymers into the Alq3 layer, and the electron injection barrier (phi(e)(polymer/Alq3) or electron/exciton blocking barrier) at the polymer/Alq3 interface.

  12. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene.

    PubMed

    Ye, Long; Zhang, Shaoqing; Huo, Lijun; Zhang, Maojie; Hou, Jianhui

    2014-05-20

    As researchers continue to develop new organic materials for solar cells, benzo[1,2-b:4,5-b']dithiophene (BDT)-based polymers have come to the fore. To improve the photovoltaic properties of BDT-based polymers, researchers have developed and applied various strategies leading to the successful molecular design of highly efficient photovoltaic polymers. Novel polymer materials composed of two-dimensional conjugated BDT (2D-conjugated BDT) have boosted the power conversion efficiency of polymer solar cells (PSCs) to levels that exceed 9%. In this Account, we summarize recent progress related to the design and synthesis of 2D-conjugated BDT-based polymers and discuss their applications in highly efficient photovoltaic devices. We introduce the basic considerations for the construction of 2D-conjugated BDT-based polymers and systematic molecular design guidelines. For example, simply modifying an alkoxyl-substituted BDT to form an alkylthienyl-substituted BDT can improve the polymer hole mobilities substantially with little effect on their molecular energy level. Secondly, the addition of a variety of chemical moieties to the polymer can produce a 2D-conjugated BDT unit with more functions. For example, the introduction of a conjugated side chain with electron deficient groups (such as para-alkyl-phenyl, meta-alkoxyl-phenyl, and 2-alkyl-3-fluoro-thienyl) allowed us to modulate the molecular energy levels of 2D-conjugated BDT-based polymers. Through the rational design of BDT analogues such as dithienobenzodithiophene (DTBDT) or the insertion of larger π bridges, we can tune the backbone conformations of these polymers and modulate their photovoltaic properties. We also discuss the influence of 2D-conjugated BDT on polymer morphology and the blends of these polymers with phenyl-C61 (or C71)-butyric acid methyl ester (PCBM). Finally, we summarize the various applications of the 2D-conjugated BDT-based polymers in highly efficient PSC devices. Overall, this Account

  13. Luminescent amine sensor based on europium(III) chelate.

    PubMed

    Petrochenkova, Nataliya V; Mirochnik, Anatolii G; Emelina, Tatyana B; Sergeev, Alexander A; Leonov, Andrei A; Voznesenskii, Sergey S

    2018-07-05

    The effect of methylamine vapor on luminescence of Eu(III) tris-benzoylacetonate (I) immobilized in thin-layer chromatography plates has been investigated. It has been revealed that interaction of I with analyte vapor results in increase of the intensity of Eu(III) luminescence. The mechanism of the effect of methylamine vapors on intensification of the Eu(III) luminescence has been suggested using the data of IR spectroscopy and quantum chemistry calculations. The mechanism of luminescence sensitization consists in bonding of an analyte molecule with a water molecule into the coordination sphere of Eu(III). As a result, the bond of a water molecule with the luminescence centre weakens, rigid structural fragment including europium ion, water and methylamine molecules forms. The presence of such fragment must naturally promote decrease of influence of OH-vibrations on luminescence of the complex I. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Synthesis and characterization of luminescent aluminium selenide nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balitskii, O.A., E-mail: balitskii@electronics.wups.lviv.ua; Demchenko, P.Yu.; Mijowska, E.

    Highlights: ► Synthesis procedure of size and sharp controlled Al{sub 2}Se{sub 3} nanocrystals is introduced. ► Obtained nanoparticles are highly crystalline of hexagonal wurtzite type. ► Colloidal Al{sub 2}Se{sub 3} nanocrystals are highly luminescent in the near UV spectral region. ► They can be implemented in light emitters/collectors, concurring with II–VI nanodots. -- Abstract: We propose the synthesis and characterization of colloidal aluminium selenide nanocrystals using trioctylphosphine as a solvent. The nanoparticles have several absorption bands in the spectral region 330–410 nm and are bright UV-blue luminescent, which is well demanded in light collecting and emitting devices, e.g. for tuningmore » their spectral characteristics to higher energy solar photons.« less

  15. Optically stimulated luminescence dating of sediments

    NASA Astrophysics Data System (ADS)

    Troja, S. O.; Amore, C.; Barbagallo, G.; Burrafato, G.; Forzese, R.; Geremia, F.; Gueli, A. M.; Marzo, F.; Pirnaci, D.; Russo, M.; Turrisi, E.

    2000-04-01

    Optically stimulated luminescence (OSL) dating methodology was applied on the coarse grain fraction (100÷500 μm thick) of quartz crystals (green light stimulated luminescence, GLSL) and feldspar crystals (infrared stimulated luminescence, IRSL) taken from sections at different depths of cores bored in various coastal lagoons (Longarini, Cuba, Bruno) in the south-east coast of Sicily. The results obtained give a sequence of congruent relative ages and maximum absolute ages compatible with the sedimentary structure, thus confirming the excellent potential of the methodology.

  16. Synthetic Aspects and Electro-Optical Properties of Fluorinated Arylenevinylenes for Luminescence and Photovoltaics

    PubMed Central

    Martinelli, Carmela; Farinola, Gianluca M.; Pinto, Vita; Cardone, Antonio

    2013-01-01

    In this review, the main synthetic aspects and properties of fluorinated arylenevinylene compounds, both oligomers and polymers, are summarized and analyzed. Starting from vinyl organotin derivatives and aryl halides, the Stille cross-coupling reaction has been successfully applied as a versatile synthetic protocol to prepare a wide series of π-conjugated compounds, selectively fluorinated on the aromatic and/or vinylene units. The impact of fluoro-functionalization on properties, the solid state organization and intermolecular interactions of the synthesized compounds are discussed, also in comparison with the non-fluorinated counterparts. Luminescent and photovoltaic applications are also discussed, highlighting the role of fluorine on the performance of devices. PMID:28809206

  17. Synthesis, crystal structures, and luminescent properties of Cd(II) coordination polymers assembled from semi-rigid multi-dentate N-containing ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Gang; Shao, Kui-Zhan; Chen, Lei

    2012-12-15

    Three new polymers, [Cd(L){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Cd{sub 3}(L){sub 2}({mu}{sub 3}-OH){sub 2}({mu}{sub 2}-Cl){sub 2}(H{sub 2}O){sub 2}]{sub n} (2), {l_brace}[Cd{sub 2}(L){sub 2}(nic){sub 2}(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace}{sub n} (3) (HL=5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole, Hnic=nicotinic acid) have been prepared and structurally characterized. Compounds 1 and 2 display 2D monomolecular layers built by the inter-linking single helical chains and L{sup -} ligands connecting chain-like [Cd({mu}{sub 3}-OH)({mu}{sub 2}-Cl)]{sub n} secondary building units, respectively. Compound 3 is constructed from the mixed ligands and possesses a (3,4)-connected framework with (4{center_dot}8{sup 2})(4{center_dot}8{sup 2}{center_dot}10{sup 3}) topology. Moreover, the fluorescent properties of HL ligand and compounds 1-3 are also been investigated.more » - Graphical abstract: Three new coordination polymers based on the semi-rigid multidentate N-donor ligand have been successfully synthesized by hydrothermal reaction. Complexes 1 and 2 exhibit the 2D layers formed by inter-linking single helices and L{sup -} anions bridging 1D chain-like SBUs, respectively. Complex 3 is buit by L{sup -} and assistant nic{sup -} ligands connecting metal centers and possesses a (3,4)-connected framework with (4 Multiplication-Sign 8{sup 2})(4 Multiplication-Sign 8{sup 2} Multiplication-Sign 10{sup 3}) topology. Moreover, these complexes display fluorescent properties indicating that they may have potential applications as optical materials. Highlights: Black-Right-Pointing-Pointer Three Cd-compounds were prepared from semi-rigid HL ligand with different N-containing groups. Black-Right-Pointing-Pointer They exhibit diverse structures from 2D monomolecular layer to 3D covalent framework. Black-Right-Pointing-Pointer The HL ligands displayed various coordination modes under different reaction conditions. Black-Right-Pointing-Pointer These compounds

  18. Silica nanoparticles with a substrate switchable luminescence

    NASA Astrophysics Data System (ADS)

    Bochkova, O. D.; Mustafina, A. R.; Fedorenko, S. V.; Konovalov, A. I.

    2011-04-01

    Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.

  19. Thermoluminescence as a Research Tool to Investigate Luminescence Mechanisms

    PubMed Central

    2017-01-01

    Thermally stimulated luminescence (TSL) is known as a technique used in radiation dosimetry and dating. However, since the luminescence is very sensitive to the defects in a solid, it can also be used in material research. In this review, it is shown how TSL can be used as a research tool to investigate luminescent characteristics and underlying luminescent mechanisms. First, some basic characteristics and a theoretical background of the phenomenon are given. Next, methods and difficulties in extracting trapping parameters are addressed. Then, the instrumentation needed to measure the luminescence, both as a function of temperature and wavelength, is described. Finally, a series of very diverse examples is given to illustrate how TSL has been used in the determination of energy levels of defects, in the research of persistent luminescence phosphors, and in phenomena like band gap engineering, tunnelling, photosynthesis, and thermal quenching. It is concluded that in the field of luminescence spectroscopy, thermally stimulated luminescence has proven to be an experimental technique with unique properties to study defects in solids. PMID:29186873

  20. Thin polymer etalon arrays for high-resolution photoacoustic imaging

    PubMed Central

    Hou, Yang; Huang, Sheng-Wen; Ashkenazi, Shai; Witte, Russell; O’Donnell, Matthew

    2009-01-01

    Thin polymer etalons are demonstrated as high-frequency ultrasound sensors for three-dimensional (3-D) high-resolution photoacoustic imaging. The etalon, a Fabry-Perot optical resonator, consists of a thin polymer slab sandwiched between two gold layers. It is probed with a scanning continuous-wave (CW) laser for ultrasound array detection. Detection bandwidth of a 20-μm-diam array element exceeds 50 MHz, and the ultrasound sensitivity is comparable to polyvinylidene fluoride (PVDF) equivalents of similar size. In a typical photoacoustic imaging setup, a pulsed laser beam illuminates the imaging target, where optical energy is absorbed and acoustic waves are generated through the thermoelastic effect. An ultrasound detection array is formed by scanning the probing laser beam on the etalon surface in either a 1-D or a 2-D configuration, which produces 2-D or 3-D images, respectively. Axial and lateral resolutions have been demonstrated to be better than 20 μm. Detailed characterizations of the optical and acoustical properties of the etalon, as well as photoacoustic imaging results, suggest that thin polymer etalon arrays can be used as ultrasound detectors for 3-D high-resolution photoacoustic imaging applications. PMID:19123679

  1. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes

    NASA Astrophysics Data System (ADS)

    Mayer, Florian; Tiruvadi Krishnan, Sriram; Schühle, Daniel T.; Eliseeva, Svetlana V.; Petoud, Stéphane; Tóth, Éva; Djanashvili, Kristina

    2018-01-01

    Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic GdIII-ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of TbIII-DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analogue substituted with a phthalimide chromophore (TbIII-DOTA-calix[4]arene-3OPr-OPhth). We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analogue demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behaviour. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.

  2. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes.

    PubMed

    Mayer, Florian; Tiruvadi Krishnan, Sriram; Schühle, Daniel T; Eliseeva, Svetlana V; Petoud, Stéphane; Tóth, Éva; Djanashvili, Kristina

    2018-01-01

    Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic Gd III -ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of Tb III -DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analog substituted with a phthalimide chromophore (Tb III -DOTA-calix[4]arene-3OPr-OPhth). We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analog demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behavior. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.

  3. Quenching methods for background reduction in luminescence-based probe-target binding assays

    DOEpatents

    Cai, Hong [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Keller, Richard A [Los Alamos, NM; Nolan, Rhiannon L [Santa Fe, NM

    2007-04-10

    Background luminescence is reduced from a solution containing unbound luminescent probes, each having a first molecule that attaches to a target molecule and having an attached luminescent moiety, and luminescent probe/target adducts. Quenching capture reagent molecules are formed that are capable of forming an adduct with the unbound luminescent probes and having an attached quencher material effective to quench luminescence of the luminescent moiety. The quencher material of the capture reagent molecules is added to a solution of the luminescent probe/target adducts and binds in a proximity to the luminescent moiety of the unbound luminescent probes to quench luminescence from the luminescent moiety when the luminescent moiety is exposed to exciting illumination. The quencher capture reagent does not bind to probe molecules that are bound to target molecules and the probe/target adduct emission is not quenched.

  4. Luminescence spectroscopy and microscopy applied to study gem materials: a case study of C centre containing diamonds

    NASA Astrophysics Data System (ADS)

    Hainschwang, Thomas; Karampelas, Stefanos; Fritsch, Emmanuel; Notari, Franck

    2013-06-01

    The methods of luminescence spectroscopy and microscopy are widely used for the analysis of gem materials. This paper gives an overview of the most important applications of the analysis of laser and UV excited luminescence by spectroscopy and visually by microscopy with emphasis on diamond, and specifically natural type Ib diamond, little studied so far. Luminescence based techniques are paramount to the gemmological analysis of diamond, in order to determine whether it is natural, treated or synthetic. The great sensitivity of luminescence helps detect some emitting centres that are undetectable by any other analytical method. Hence, especially for diamond, luminescence is an enabling technology, as illustrated by its pioneering use of imagery for the separation of natural and synthetic diamond, and of spectroscopy for the detection of High Pressure-High Temperature treatment. For all other gemstones the applications are at the moment less numerous, but nevertheless they remain highly important. They provide quickly information on the identification of a gem material, and its treatment. Besides the study of broad band emissions caused by various colour centres, the typical PL-causing trace elements (amongst others) are chromium, manganese, uranium and rare earth elements. In pearls the study of broad band luminescence can be useful, and particularly the study of pink to red porphyrin luminescence in pearls from certain species such as Pinctada and Pteria and others can help identify the pearl-producing mollusc, or if a pearl has been dyed or not. Type Ib diamonds are representative of the importance and complexity of the analysis of luminescence by microscopy and spectroscopy. They show a wide range of sometimes very complex emissions that result in luminescence colours from green to yellow to orange or red. These emissions show generally very inhomogeneous distribution. They are caused by a range of defects, however only a few of them are well characterized.

  5. Synthesis of bulk-size transparent gadolinium oxide–polymer nanocomposites for gamma ray spectroscopy

    PubMed Central

    Cai, Wen; Chen, Qi; Cherepy, Nerine; Dooraghi, Alex; Kishpaugh, David; Chatziioannou, Arion; Payne, Stephen; Xiang, Weidong

    2015-01-01

    Heavy element loaded polymer composites have long been proposed to detect high energy X- and γ-rays upon scintillation. The previously reported bulk composite scintillators have achieved limited success because of the diminished light output resulting from fluorescence quenching and opacity. We demonstrate the synthesis of a transparent nanocomposite comprising gadolinium oxide nanocrystals uniformly dispersed in bulk-size samples at a high loading content. The strategy to avoid luminescence quenching and opacity in the nanocomposite was successfully deployed, which led to the radioluminescence light yield of up to 27 000/MeV, about twice as much as standard commercial plastic scintillators. Nanocomposites monoliths (14 mm diameter by 3 mm thickness) with 31 wt% loading of nanocrystals generated a photoelectric peak for Cs-137 gamma (662 keV) with 11.4% energy resolution. PMID:26478816

  6. Luminescence-Based Diagnostics of Thermal Barrier Coating Health and Performance

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2013-01-01

    Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments in both air- and land-based turbine engines. For advanced turbine engines designed for higher temperature operation, a diagnostic capability for the health and performance of TBCs will be essential to indicate when a mitigating action needs to be taken before premature TBC failure threatens engine performance or safety. In particular, it is shown that rare-earth-doped luminescent sublayers can be integrated into the TBC structure to produce luminescence emission that can be monitored to assess TBC erosion and delamination progression, and to map surface and subsurface temperatures as a measure of TBC performance. The design and implementation of these TBCs with integrated luminescent sublayers are presented.

  7. High performance all polymer solar cells fabricated via non-halogenated solvents (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Bao, Zhenan

    2015-10-01

    The performance of organic solar cells consisting of a donor/acceptor bulk heterojunction (BHJ) has rapidly improved over the past few years.1. Major efforts have been focused on developing a variety of donor materials to gain access to different regions of the solar spectrum as well as to improve carrier transport properties.2 On the other hand, the most utilized acceptors are still restricted to the fullerene family, which includes PC61BM, PC71BM and ICBA.2b, 3 All-polymer solar cells, consisting of polymers for both the donor and acceptor, gained significantly increased interests recently, because of their ease of solution processing, potentially low cost, versatility in molecular design, and their potential for good chemical and morphological stability due to entanglement of polymers. Unlike small molecular fullerene acceptors, polymer acceptors can benefit from the high mobility of intra-chain charge transport and exciton generation by both donor and acceptor. Despite extensive efforts on all-polymer solar cells in the past decade, the fundamental understanding of all-polymer solar cells is still in its inceptive stage regarding both the materials chemistry and structure physics.4 Thus, rational design rules must be utilized to enable fundamental materials understanding of the all polymer solar cells. We report high performance all-polymer solar cells employing polymeric donors based on isoindigo and acceptor based on perylenedicarboximide. The phase separation domain length scale correlates well with the JSC and is found to be highly sensitive to the aromatic co-monomer structures used in the crystalline donor polymers. With the PS polymer side chain engineering, the phase separation domain length scale decreased by more than 45%. The PCE and JSC of the devices increased accordingly by more than 20%. A JSC as high as 10.0 mA cm-2 is obtained with the donor-acceptor pair despite of a low LUMO-LUMO energy offset of less than 0.1 eV. All the factors such as

  8. Orbital surveys of solar stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Hemphill, W. R.; Theisen, A. F.; Tyson, R. M.; Granata, J. S.

    The Fraunhofer line discriminator (FLD) is an electro-optical device for imaging natural and manmade materials which have been stimulated to luminesce by the sun. An airborne FLD has been used to detect geochemically stressed vegetation, drought-stressed agricultural crops, industrial and residential pollution effluents, marine oil seeps, phosphate rock, uranium-bearing sandstone, and bioluminescent ocean plankton. Three-dimensional perspective plots of excitation and emission spectra, measured with a laboratory spectrometer, graphically depict similarities and differences in luminescence properties between sample materials. The laboratory data also include luminescence intensities at six Fraunhofer lines in the visible and near-infrared regions of the electromagnetic spectrum. Both the airborne and laboratory data suggest the feasibility of delineating and monitoring at least some of these luminescing materials from orbital altitude, such as a test flight aboard the Space Shuttle using an improved third-generation FLD.

  9. Direct growth of high crystallinity graphene from water-soluble polymer powders

    NASA Astrophysics Data System (ADS)

    Chen, Qiao; Zhong, Yujia; Huang, Meirong; Zhao, Guoke; Zhen, Zhen; Zhu, Hongwei

    2018-07-01

    The use of solid-state carbon sources is effective to produce graphene by safe and low-cost chemical vapor deposition (CVD) process. Water-soluble polymers are generally environmentally friendly and have great potential on large-scale green production of graphene. Here, we systematically study the growth of graphene from water-soluble polymers on copper foils. Two different conversion ways are adopted to investigate the growth mechanism of graphene from water-soluble polymers. We find that the metal-binding functional group hydroxyl strongly influences the vaporization of water-soluble polymers on Cu foils, which hinders the formation of graphene films by rapid thermal treatment. In direct CVD process using water-soluble polymer powders as precursors, oxygenated functional groups in polymers can enhance the crystallinity of as-grown graphene in contrast to solid hydrocarbons without containing oxygen (e.g. polyethylene). Large and continuous graphene films of high quality are synthesized from polyvinyl alcohol and polyethylene glycol. Nitrogen doping in graphene can be easily realized by using nitrogen-containing water-soluble polymers (e.g. polyvinyl pyrrolidone).

  10. Structure of rigid polymers confined to nanoparticles: Molecular dynamics simulations insight

    DOE PAGES

    Maskey, Sabina; Lane, J. Matthew D.; Perahia, Dvora; ...

    2016-02-04

    Nanoparticles (NPs) grafted with organic layers form hybrids able to retain their unique properties through integration into the mesoscopic scale. The organic layer structure and response often determine the functionality of the hybrids on the mesoscopic length scale. Using molecular dynamics (MD) simulations, we probe the conformation of luminescent rigid polymers, dialkyl poly(p-phenylene ethynylene)s (PPE), end-grafted onto a silica nanoparticle in different solvents as the molecular weights and polymer coverages are varied. We find that, in contrast to NP-grafted flexible polymers, the chains are fully extended independent of the solvent. In toluene and decane, which are good solvents, the graftedmore » PPEs chains assume a similar conformation to that observed in dilute solutions. In water, which is a poor solvent for the PPEs, the polymer chains form one large cluster but remain extended. The radial distribution of the chains around the core of the nanoparticle is homogeneous in good solvents, whereas in poor solvents clusters are formed independent of molecular weights and coverages. As a result, the clustering is distinctively different from the response of grafted flexible and semiflexible polymers.« less

  11. The role of Nb in intensity increase of Er ion upconversion luminescence in zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smits, K., E-mail: smits@cfi.lu.lv; Sarakovskis, A.; Grigorjeva, L.

    2014-06-07

    It is found that Nb co-doping increases the luminescence and upconversion luminescence intensity in rare earth doped zirconia. Er and Yb-doped nanocrystalline samples with or without Nb co-doping were prepared by sol-gel method and thermally annealed to check for the impact of phase transition on luminescence properties. Phase composition and grain sizes were examined by X-ray diffraction; the morphology was checked by scanning- and high-resolution transmission electron microscopes. Both steady-state and time-resolved luminescence were studied. Comparison of samples with different oxygen vacancy concentrations and different Nb concentrations confirmed the known assumption that oxygen vacancies are the main agents for tetragonalmore » or cubic phase stabilization. The oxygen vacancies quench the upconversion luminescence; however, they also prevent agglomeration of rare-earth ions and/or displacement of rare-earth ions to grain surfaces. It is found that co-doping with Nb ions significantly (>20 times) increases upconversion luminescence intensity. Hence, ZrO{sub 2}:Er:Yb:Nb nanocrystals may show promise for upconversion applications.« less

  12. A luminescent ytterbium(III)-organic framework for highly selective sensing of 2,4,6-trinitrophenol

    NASA Astrophysics Data System (ADS)

    Xin, Xuelian; Zhang, Minghui; Ji, Shijie; Dong, Hanxiao; Zhang, Liangliang

    2018-06-01

    An ytterbium(III)-organic framework, [Yb4(abtc)3(HCOO) (H2O)]·(C2H8N) (H2O) (UPC-22, H4abtc = 3,3‧,5,5‧-azobenzene-tetracarboxylic acid) was synthesized under solvothermal conditions and characterized. UPC-22 exhibited strong H4abtc-based luminescence and can be used for sensing nitroaromatic compounds (NACs) in an ethanol suspension with outstanding selectivity and sensitivity. The most striking property of UPC-22 is its ability to selectively detect 2,4,6-trinitrophenol (TNP), thereby rendering it a promising TNP-selective luminescence probe.

  13. Temperature, stress, and annealing effects on the luminescence from electron-irradiated silicon

    NASA Technical Reports Server (NTRS)

    Jones, C. E.; Johnson, E. S.; Compton, W. D.; Noonan, J. R.; Streetman, B. G.

    1973-01-01

    Low-temperature photoluminescence spectra are presented for Si crystals which have been irradiated with high-energy electrons. Studies of isochronal annealing, stress effects, and the temperature dependences of the luminescence are used to discuss the nature of the luminescent transitions and the properties of defects. Two dominant bands present after room-temperature anneal of irradiated material are discussed, and correlations of the properties of these bands are made with known Si defects. A band between 0.8 and 1.0 eV has properties which are related to those of the divacancy, and a band between 0.6 and 0.8 eV has properties related to those of the Si-G15(K) center. Additional peaks appear in the luminescence after high-temperature anneal; the influence of impurities and the effects of annealing of these lines are discussed.

  14. Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands

    PubMed Central

    Seitz, Michael; Do, King; Ingram, Andrew J.; Moore, Evan G.; Muller, Gilles; Raymond, Kenneth N.

    2009-01-01

    Abstract: Circulaly polarized luminescence from terbium(III) complexed and excited by chiral antenna ligands gives strong emission The modular synthesis of three new octadentate, enantiopure ligands are reported - one with the bidentate chelating unit 2-hydroxyisophthalamide (IAM) and two with 1-hydroxy-2-pyridinone (1,2-HOPO) units. A new design principle is introduced for the chiral, non-racemic hexamines which constitute the central backbones for the presented class of ligands. The terbium(III) complex of the IAM ligand, as well as the europium(III) complexes of the 1,2-HOPO ligands are synthesized and characterized by various techniques (NMR, UV, CD, luminescence spectroscopy). All species exhibit excellent stability and moderate to high luminescence efficiency (quantum yields ΦEu = 0.05–0.08 and ΦTb = 0.30–0.57) in aqueous solution at physiological pH. Special focus is put onto the properties of the complexes in regard to circularly polarized luminescence (CPL). The maximum luminescence dissymmetry factors (glum) in aqueous solution are high with |glum|max = 0.08 – 0.40. Together with the very favorable general properties (good stability, high quantum yields, long lifetimes), the presented lanthanide complexes can be considered as good candidates for analytical probes based on CPL in biologically relevant environments. PMID:19639983

  15. High Density Polymer-Based Integrated Electgrode Array

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter A.; Davidson, James Courtney; Hamilton, Julie K.

    2006-04-25

    A high density polymer-based integrated electrode apparatus that comprises a central electrode body and a multiplicity of arms extending from the electrode body. The central electrode body and the multiplicity of arms are comprised of a silicone material with metal features in said silicone material that comprise electronic circuits.

  16. Afterglow luminescence in sol-gel/Pechini grown oxide materials: persistence or phosphorescence process? (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sontakke, Atul; Ferrier, Alban; Viana, Bruno

    2017-03-01

    Persistent luminescence and phosphorescence, both yields afterglow luminescence, but are completely different mechanisms. Persistent luminescence involves a slow thermal release of trapped electrons stored in defect states, whereas the phosphorescence is caused due to triplet to singlet transition [1,2]. Many persistent luminescence phosphors are based on oxide inorganic hosts, and exhibit long afterglow luminescence after ceasing the excitation. We observed intense and long afterglow luminescence in sol-gel/pechini grown inorganic oxides, and as a first interpretation thought to be due to persistence mechanism. However, some of these materials do not exhibit defect trap centers, and a detailed investigation suggested it is due to phosphorescence, but not the persistence. Phosphorescence is not common in inorganic solids, and that too at room temperature, and therefore usually misinterpreted as persistence luminescence [3]. Here we present a detailed methodology to distinguish phosphorescence from persistence luminescence in inorganic solids, and the process to harvest highly efficient long phosphorescence afterglow at room temperature. 1. Jian Xu, Setsuhisa Tanabe, Atul D. Sontakke, Jumpei Ueda, Appl. Phys. Lett. 107, 081903 (2015) 2. Sebastian Reineke, Marc A. Baldo, Scientific Reports, 4, 3797 (2014) 3. Pengchong Xue, Panpan Wang, Peng Chen, Boqi Yao, Peng Gong, Jiabao Sun, Zhenqi Zhang, Ran Lu, Chem. Sci. (2016) DOI: 10.1039/C5SC03739E

  17. Recent development in deciphering the structure of luminescent silver nanodots

    NASA Astrophysics Data System (ADS)

    Choi, Sungmoon; Yu, Junhua

    2017-05-01

    Matrix-stabilized silver clusters and stable luminescent few-atom silver clusters, referred to as silver nanodots, show notable difference in their photophysical properties. We present recent research on deciphering the nature of silver clusters and nanodots and understanding the factors that lead to variations in luminescent mechanisms. Due to their relatively simple structure, the matrix-stabilized clusters have been well studied. However, the single-stranded DNA (ssDNA)-stabilized silver nanodots that show the most diverse emission wavelengths and the best photophysical properties remain mysterious species. It is clear that their photophysical properties highly depend on their protection scaffolds. Analyses from combinations of high-performance liquid chromatography, inductively coupled plasma-atomic emission spectroscopy, electrophoresis, and mass spectrometry indicate that about 10 to 20 silver atoms form emissive complexes with ssDNA. However, it is possible that not all of the silver atoms in the complex form effective emission centers. Investigation of the nanodot structure will help us understand why luminescent silver nanodots are stable in aqueous solution and how to further improve their chemical and photophysical properties.

  18. Chromophore-Based Luminescent Metal–Organic Frameworks as Lighting Phosphors

    DOE PAGES

    Lustig, William P.; Wang, Fangming; Teat, Simon J.; ...

    2016-05-31

    Here, energy-efficient solid-state-lighting (SSL) technologies are rapidly developing, but the lack of stable, high-performance rare-earth free phosphors may impede the growth of the SSL market. One possible alternative is organic phosphor materials, but these can suffer from lower quantum yields and thermal instability compared to rare-earth phosphors. However, if luminescent organic chromophores can be built into a rigid metal-organic framework, their quantum yields and thermal stability can be greatly improved. This Forum Article discusses the design of a group of such chromophore-based luminescent metal-organic frameworks with exceptionally high performance and rational control of the important parameters that influence their emissionmore » properties, including electronic structures of chromophore, coligands, metal ions, and guest molecule s.« less

  19. Rheological properties of polymer melts with high elasticity

    NASA Astrophysics Data System (ADS)

    Feranc, Jozef; Matvejová, Martina; Alexy, Pavol; Pret'o, Jozef; Hronkovič, Ján

    2017-05-01

    In the recent years efforts to complex description of the rheological characteristic increase even in the case of polymeric blends with high part of elastic deformation. However, unlike the most thermoplastic these blends have a certain specific features. Besides the already mentioned the higher part of elastic deformation it is especially higher viscosity, which are shown mainly for the measurement in the range of high shear rates. For this reason, the presented work is focused on the description of measurement methodology for blends with high part of elastic deformation using capillary rheometer. The measurements were carried out on a commercial polymer blend with trade name A517 based on rubbery polymer. Capillary rheometer Gottfert RG 75 was used, with diameter of chamber 15 mm. Measurements were performed using capillaries with different ratio of length/diameter at temperature 100°C. Because of existence elastic part of deformation, it is not possible to achieve a steady state pressure using measurements at constant volumetric flow at high shear rates. Therefore we decided to measure the flow characteristic using isobaric mode.

  20. Charged polymers in high dimensions

    NASA Technical Reports Server (NTRS)

    Kantor, Yacov

    1990-01-01

    A Monte Carlo study of charged polymers with either homogeneously distributed frozen charges or with mobile charges has been performed in four and five space dimensions. The results are consistent with the renormalization-group predictions and contradict the predictions of Flory-type theory. Introduction of charge mobility does not modify the behavior of the polymers.

  1. Spatial distribution of defect luminescence in GaN nanowires.

    PubMed

    Li, Qiming; Wang, George T

    2010-05-12

    The spatial distribution of defect-related and band-edge luminescence from GaN nanowires grown by metal-organic chemical vapor deposition was studied by spatially resolved cathodoluminescence imaging and spectroscopy. A surface layer exhibiting strong yellow luminescence (YL) near 566 nm in the nanowires was revealed, compared to weak YL in the bulk. In contrast, other defect-related luminescence near 428 nm (blue luminescence) and 734 nm (red luminescence), in addition to band-edge luminescence (BEL) at 366 nm, were observed in the bulk of the nanowires but were largely absent at the surface. As the nanowire width approaches a critical dimension, the surface YL layer completely quenches the BEL. The surface YL is attributed to the diffusion and piling up of mobile point defects, likely isolated gallium vacancies, at the surface during growth.

  2. On the development of multifunctional luminescent supramolecular hydrogel of gold and egg white

    NASA Astrophysics Data System (ADS)

    Patra, Sudeshna; Ravulapalli, Sathyavathi; Hahm, Myung Gwan; Tadi, Kiran Kumar; Narayanan, Tharangattu N.

    2016-10-01

    Highly stable, luminescent, and printable/paintable supramolecular egg white hydrogel-based surface enhanced Raman scattering (SERS) matrix is created by an in situ synthesis of gold clusters inside a luminescent egg white hydrogel (Au-Gel). The synthesis of stable luminescent egg-white-based hydrogel, where the hydrogel can act as a three dimensional (3D) matrix, using a simple cross-linking chemistry, has promising application in the biomedical field including in 3D cell culturing. Furthermore, this functional hydrogel is demonstrated for micromolar-level detection of Rhodamine 6G using the SERS technique, where Au-Gel is painted over a flexible cellulose pad.

  3. Apparatus for reducing solvent luminescence background emissions

    DOEpatents

    Affleck, Rhett L.; Ambrose, W. Patrick; Demas, James N.; Goodwin, Peter M.; Johnson, Mitchell E.; Keller, Richard A.; Petty, Jeffrey T.; Schecker, Jay A.; Wu, Ming

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  4. Delivery and reveal of localization of upconversion luminescent microparticles and quantum dots in the skin in vivo by fractional laser microablation, multimodal imaging, and optical clearing

    NASA Astrophysics Data System (ADS)

    Volkova, Elena K.; Yanina, Irina Yu; Genina, Elina A.; Bashkatov, Alexey N.; Konyukhova, Julia G.; Popov, Alexey P.; Speranskaya, Elena S.; Bucharskaya, Alla B.; Navolokin, Nikita A.; Goryacheva, Irina Yu.; Kochubey, Vyacheslav I.; Sukhorukov, Gleb B.; Meglinski, Igor V.; Tuchin, Valery V.

    2018-02-01

    Delivery and spatial localization of upconversion luminescent microparticles [Y2O3:Yb, Er] (mean size ˜1.6 μm) and quantum dots (QDs) (CuInS2/ZnS nanoparticles coated with polyethylene glycol-based amphiphilic polymer, mean size ˜20 nm) inside rat skin was studied in vivo using a multimodal optical imaging approach. The particles were embedded into the skin dermis to the depth from 300 to 500 μm through microchannels performed by fractional laser microablation. Low-frequency ultrasound was applied to enhance penetration of the particles into the skin. Visualization of the particles was revealed using a combination of luminescent spectroscopy, optical coherence tomography, confocal microscopy, and histochemical analysis. Optical clearing was used to enhance the image contrast of the luminescent signal from the particles. It was demonstrated that the penetration depth of particles depends on their size, resulting in a different detection time interval (days) of the luminescent signal from microparticles and QDs inside the rat skin in vivo. We show that luminescent signal from the upconversion microparticles and QDs was detected after the particle delivery into the rat skin in vivo during eighth and fourth days, respectively. We hypothesize that the upconversion microparticles have created a long-time depot localized in the laser-created channels, as the QDs spread over the surrounding tissues.

  5. High-resolution inkjet printing of all-polymer transistor circuits.

    PubMed

    Sirringhaus, H; Kawase, T; Friend, R H; Shimoda, T; Inbasekaran, M; Wu, W; Woo, E P

    2000-12-15

    Direct printing of functional electronic materials may provide a new route to low-cost fabrication of integrated circuits. However, to be useful it must allow continuous manufacturing of all circuit components by successive solution deposition and printing steps in the same environment. We demonstrate direct inkjet printing of complete transistor circuits, including via-hole interconnections based on solution-processed polymer conductors, insulators, and self-organizing semiconductors. We show that the use of substrate surface energy patterning to direct the flow of water-based conducting polymer inkjet droplets enables high-resolution definition of practical channel lengths of 5 micrometers. High mobilities of 0.02 square centimeters per volt second and on-off current switching ratios of 10(5) were achieved.

  6. Microscopic Distributions of Defect Luminescence From Subgrain Boundaries in Multicrystalline Silicon Wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hieu T.; Jensen, Mallory A.; Li, Li

    We investigate the microscopic distributions of sub-band-gap luminescence emission (the so-called D-lines D1/D2/D3/D4) and the band-to-band luminescence intensity, near recombination-active sub-grain boundaries in multicrystalline silicon wafers for solar cells. We find that the sub-band-gap luminescence from decorating defects/impurities (D1/D2) and from intrinsic dislocations (D3/D4) have distinctly different spatial distributions, and are asymmetric across the sub-grain boundaries. The presence of D1/D2 is correlated with a strong reduction in the band-to-band luminescence, indicating a higher recombination activity. In contrast, D3/D4 emissions are not strongly correlated with the band-to-band intensity. Based on spatially-resolved, synchrotron-based micro-X-ray fluorescence measurements of metal impurities, we confirm thatmore » high densities of metal impurities are present at locations with strong D1/D2 emission but low D3/D4 emission. Finally, we show that the observed asymmetry of the sub-band-gap luminescence across the sub-grain boundaries is due to their inclination below the wafer surface. Based on the luminescence asymmetries, the sub-grain boundaries are shown to share a common inclination locally, rather than be orientated randomly.« less

  7. Recyclable Cu(II)-Coordination Crosslinked Poly(benzimidazolyl pyridine)s as High-Performance Polymers.

    PubMed

    Wang, Cheng; Yang, Li; Chang, Guanjun

    2018-03-01

    Crosslinked high-performance polymers have many industrial applications, but are difficult to recycle or rework. A novel class of recyclable crosslinking Cu(II)-metallo-supramolecular coordination polymers are successfully prepared, which possess outstanding thermal stability and mechanical property. More importantly, the Cu 2+ coordination interactions can be further removed via external pyrophosphate to recover the linear polymers, which endow the crosslinking polymers with recyclability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enzyme-polymer composites with high biocatalytic activity and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungbae; Kosto, Timothy J.; Manimala, Joseph C.

    2004-08-22

    We have applied vacuum-spraying and electrospinning to incorporate an enzyme into a polymer matrix, creating a novel and highly active biocatalytic composite. As a unique technical approach, enzymes were co-dissolved in toluene with polymers, and the solvent was then rapidly removed by injecting the mixture into a vacuum chamber or by electrospinning. Subsequent crosslinking of the enzyme with glutaraldehyde resulted in stable entrapped enzyme within the polymeric matrices. For example, an amorphous composite of alpha-chymotrypsin and polyethylene showed no significant loss of enzymatic activity in aqueous buffer for one month. Nanofibers of alpha-chymotrypsin and polystyrene also showed no decrease inmore » activity for more than two weeks. The normalized activity of amorphous composite in organic solvents was 3-13 times higher than that of native alpha-chymotrypsin. The activity of nanofibers was 5-7 times higher than that of amorphous composite in aqueous buffer solution. The composites of alpha-chymotrypsin and polymers demonstrate the feasibility of obtaining a wide variety of active and stable biocatalytic materials with many combinations of enzymes and polymers.« less

  9. A novel contrast agent with rare earth-doped up-conversion luminescence and Gd-DTPA magnetic resonance properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Qing; Wei Daixu; Cheng Jiejun

    2012-08-15

    The magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF{sub 4}:Yb, Er were successfully synthesized by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF{sub 4}:Yb, Er nanoparticles through EDC/NHS coupling chemistry. The as-prepared products were characterized by powder X-ray diffraction, transmission electron microscopy, dynamic light scattering, energy dispersive X-ray analysis, and fourier transform infrared spectrometry. The room-temperature upconversion luminescent spectra and T{sub 1}-weighted maps of the obtained nanoparticles were carried out by 980 nm NIR light excitation and a 3T MR imaging scanner, respectively. The results indicated that the as-synthesized multifunctional nanoparticles with small size, highly solubility in water, and bothmore » high MR relaxivities and upconversion luminescence may have potential usage for MR imaging in future. - Graphical abstract: We have synthesized magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF4:Yb, Er by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF4:Yb, Er nanoparticles through EDC/NHS coupling chemistry. Highlights: Black-Right-Pointing-Pointer A novel magnetic-luminescent multifunctional nanoparticles are synthesized. Black-Right-Pointing-Pointer The nanoparticles are highly efficient for luminescence and T{sub 1}-weighted MR imaging. Black-Right-Pointing-Pointer The nanoparticles are small in size and highly solubility in water. Black-Right-Pointing-Pointer The nanoparticles hold great potential usage for future biomedical engineering.« less

  10. Luminescence spectra of a cholesteric photonic crystal

    NASA Astrophysics Data System (ADS)

    Dolganov, P. V.

    2017-05-01

    The transmission and luminescence spectra of a cholesteric photonic crystal doped with an organic dye are measured. The density of photon states is calculated using the material parameters obtained from the comparison of the experimental and theoretical spectra. The shape of the luminescence spectra is modified with respect to the density of photon states owing to the difference in the structure of the normal modes of the photonic crystal near the short-wavelength and long-wavelength edges of the photonic quasi-band gap upon the "pushing" of the photon states from the gap and to the nonvanishing orientation ordering of the luminescent molecules. The luminescence spectrum calculated taking into account the chiral structure of the photonic crystal agrees with the experimental spectrum.

  11. Apparatus for reducing solvent luminescence background emissions

    DOEpatents

    Affleck, R.L.; Ambrose, W.P.; Demas, J.N.; Goodwin, P.M.; Johnson, M.E.; Keller, R.A.; Petty, J.T.; Schecker, J.A.; Wu, M.

    1998-11-10

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region. 6 figs.

  12. Optically Stimulated Luminescent Dosimetry for High Dose Rate Brachytherapy

    PubMed Central

    Tien, Christopher Jason; Ebeling, Robert; Hiatt, Jessica R.; Curran, Bruce; Sternick, Edward

    2012-01-01

    Purpose: The objective was to determine whether optically stimulated luminescent dosimeters (OSLDs) were appropriate for in vivo measurements in high dose rate brachytherapy. In order to make this distinction, three dosimetric characteristics were tested: dose linearity, dose rate dependence, and angular dependence. The Landauer nanoDot™ OSLDs were chosen due to their popularity and their availability commercially. Methods: To test the dose linearity, each OSLD was placed at a constant location and the dwell time was varied. Next, in order to test the dose rate dependence, each OSLD was placed at different OLSD-to-source distances and the dwell time was held constant. A curved geometry was created using a circular Accuboost® applicator in order to test angular dependence. Results: The OSLD response remained linear for high doses and was independent of dose rate. For doses up to 600 cGy, the linear coefficient of determination was 0.9988 with a response of 725 counts per cGy. The angular dependence was significant only in “edge-on” scenarios. Conclusion: OSLDs are conveniently read out using commercially available readers. OSLDs can be re-read and serve as a permanent record for clinical records or be annealed using conventional fluorescent light. Lastly, OSLDs are produced commercially for $5 each. Due to these convenient features, in conjunction with the dosimetric performance, OSLDs should be considered a clinically feasible and attractive tool for in vivo HDR brachytherapy measurements. PMID:22888476

  13. A high-throughput screening approach for the optoelectronic properties of conjugated polymers.

    PubMed

    Wilbraham, Liam; Berardo, Enrico; Turcani, Lukas; Jelfs, Kim E; Zwijnenburg, Martijn A

    2018-06-25

    We propose a general high-throughput virtual screening approach for the optical and electronic properties of conjugated polymers. This approach makes use of the recently developed xTB family of low-computational-cost density functional tight-binding methods from Grimme and co-workers, calibrated here to (TD-)DFT data computed for a representative diverse set of (co-)polymers. Parameters drawn from the resulting calibration using a linear model can then be applied to the xTB derived results for new polymers, thus generating near DFT-quality data with orders of magnitude reduction in computational cost. As a result, after an initial computational investment for calibration, this approach can be used to quickly and accurately screen on the order of thousands of polymers for target applications. We also demonstrate that the (opto)electronic properties of the conjugated polymers show only a very minor variation when considering different conformers and that the results of high-throughput screening are therefore expected to be relatively insensitive with respect to the conformer search methodology applied.

  14. Role of structural defects in the ultraviolet luminescence of multiwall boron nitride nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierret, Aurélie; Nong, Hanond; Fossard, Frédéric

    2015-12-21

    BN nanotubes (BNNTs) are structurally similar to their carbon counterparts, though much less investigated. New synthesis methods have been recently reported, enabling the production of industrial quantities and stimulating the search of new applications for the BNNTs. In this paper, we investigate the luminescence of multiwall BNNTs. By performing cathodoluminescence experiments on single tubes at 10 K, we show that the tube luminescence is highly heterogeneous (i) from tube to tube and (ii) spatially along a single tube. By combining cathodoluminescence measurements with a nanometer excitation and transmission electron microscopy on the same tube, we correlate luminescence and structural features. Wemore » conclude that the near-band-edge luminescence of BNNTs (≈5.4 eV) is related to the presence of extended structural defects, such as dislocations or ruptures in the wall stacking.« less

  15. Anthracene-containing wide-band-gap conjugated polymers for high-open-circuit-voltage polymer solar cells.

    PubMed

    Gong, Xue; Li, Cuihong; Lu, Zhen; Li, Guangwu; Mei, Qiang; Fang, Tao; Bo, Zhishan

    2013-07-25

    The synthesis, characterization, and photophysical and photovoltaic properties of two anthracene-containing wide-band-gap donor and acceptor (D-A) alternating conjugated polymers (P1 and P2) are described. These two polymers absorb in the range of 300-600 nm with a band gap of about 2.12 eV. Polymer solar cells with P1:PC71 BM as the active layer demonstrate a power conversion efficiency (PCE) of 2.23% with a high Voc of 0.96 V, a Jsc of 4.4 mA cm(-2) , and a comparable fill factor (FF) of 0.53 under simulated solar illumination of AM 1.5 G (100 mW cm(-2) ). In addition, P2:PC71 BM blend-based solar cells exhibit a PCE of 1.42% with a comparable Voc of 0.89 V, a Jsc of 3.0 mA cm(-2) , and an FF of 0.53. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei

    Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm 2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less

  17. Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films

    PubMed Central

    Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; Qu, Ge; Zhang, Fengjiao; Zhao, Xikang; Mei, Jianguo; Zuo, Jian-Min; Shukla, Diwakar; Diao, Ying

    2017-01-01

    Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results in highly aligned, highly crystalline donor–acceptor polymer thin films over large area (>1 cm2) and promoted charge transport along both the polymer backbone and the π–π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment. PMID:28703136

  18. Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films

    DOE PAGES

    Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; ...

    2017-07-13

    Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm 2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less

  19. Luminescence and electrification in a flow of dielectric liquids through narrow channels

    NASA Astrophysics Data System (ADS)

    Margulis, M. A.; Pil'Gunov, V. N.

    2009-08-01

    Blue-violet luminescence was observed in a mineral oil, which appeared under hydrodynamic cavitation conditions in a channel orifice 1 mm in diameter in a transparent throttling device at inlet pressures higher than 2 MPa. The appearance of electric pulses when a dielectric liquid flew through a thin channel orifice was observed much earlier than luminescence arose. A device for continuously scanning electric potential along a flow without disturbing it was developed. According to the oscillograms obtained, the electric signal was high-frequency, could not be synchronized, and its separate peaks reached 1000 mV. Light emission flux decreased as the temperature of the liquid increased to 30-35°C and inlet pressure grew. The appearance of luminescence and its intensity depended on the sharpness of the entrance edge of the throttle. Studies of hydrodynamic luminescence revealed hysteresis of light emission. A mechanism of localized light emission based on an important role played by electrokinetic phenomena was suggested.

  20. Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice.

    PubMed

    Pfitzner, Michael; Schlothauer, Jan C; Bastien, Estelle; Hackbarth, Steffen; Bezdetnaya, Lina; Lassalle, Henri-Pierre; Röder, Beate

    2016-06-01

    Singlet oxygen observation is considered a valuable tool to assess and optimize PDT treatment. In complex systems, such as tumors in vivo, only the direct, time-resolved singlet oxygen luminescence detection can give reliable information about generation and interaction of singlet oxygen. Up to now, evaluation of kinetics was not possible due to insufficient signal-to-noise ratio. Here we present high signal-to-noise ratio singlet oxygen luminescence kinetics obtained in mouse tumor model under PDT relevant conditions. A highly optimized system based on a custom made laser diode excitation source and a high aperture multi-furcated fiber, utilizing a photomultiplier tube with a multi photon counting device was used. Luminescence kinetics with unsurpassed signal-to-noise ratio were gained from tumor bearing nude mice in vivo upon topic application, subcutaneous injection as well as intravenous injection of different photosensitizers (chlorin e6 and dendrimer formulations of chlorin e6). Singlet oxygen kinetics in appropriate model systems are discussed to facilitate the interpretation of complex kinetics obtained from in vivo tumor tissue. This is the first study addressing the complexity of singlet oxygen luminescence kinetics in tumor tissue. At present, further investigations are needed to fully explain the processes involved. Nevertheless, the high signal-to-noise ratio proves the applicability of direct time-resolved singlet oxygen luminescence detection as a prospective tool for monitoring photodynamic therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. [The action of high-molecular linear polymers on the circulatory system].

    PubMed

    Grigorian, S S; Sokolova, I A; Shakhnazarov, A A

    1995-01-01

    An analysis of the hemodynamic consequences of the injections of long linear polymers with high molecular weight is introduced. These injections lead to an increase of the cardiac output, to a decrease of the blood pressure, and hence cause a reduction of the resistance to blood flow. It follows that such kind of polymers is able to normalize hemodynamics under some pathophysiological conditions, e.g., during experimental atherosclerosis, ischemic state, hemorrhagic shock. An addition of drag-reducing polymers into the blood system is associated with a modification of the blood flow microstructure itself.

  2. Developing Flexible, High Performance Polymers with Self-Healing Capabilities

    NASA Technical Reports Server (NTRS)

    Jolley, Scott T.; Williams, Martha K.; Gibson, Tracy L.; Caraccio, Anne J.

    2011-01-01

    Flexible, high performance polymers such as polyimides are often employed in aerospace applications. They typically find uses in areas where improved physical characteristics such as fire resistance, long term thermal stability, and solvent resistance are required. It is anticipated that such polymers could find uses in future long duration exploration missions as well. Their use would be even more advantageous if self-healing capability or mechanisms could be incorporated into these polymers. Such innovative approaches are currently being studied at the NASA Kennedy Space Center for use in high performance wiring systems or inflatable and habitation structures. Self-healing or self-sealing capability would significantly reduce maintenance requirements, and increase the safety and reliability performance of the systems into which these polymers would be incorporated. Many unique challenges need to be overcome in order to incorporate a self-healing mechanism into flexible, high performance polymers. Significant research into the incorporation of a self-healing mechanism into structural composites has been carried out over the past decade by a number of groups, notable among them being the University of I1linois [I]. Various mechanisms for the introduction of self-healing have been investigated. Examples of these are: 1) Microcapsule-based healant delivery. 2) Vascular network delivery. 3) Damage induced triggering of latent substrate properties. Successful self-healing has been demonstrated in structural epoxy systems with almost complete reestablishment of composite strength being achieved through the use of microcapsulation technology. However, the incorporation of a self-healing mechanism into a system in which the material is flexible, or a thin film, is much more challenging. In the case of using microencapsulation, healant core content must be small enough to reside in films less than 0.1 millimeters thick, and must overcome significant capillary and surface

  3. Processable high temperature resistant polymer matrix materials

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1975-01-01

    A review is presented of studies conducted with addition-cured polyimides, giving particular attention to an improved method involving in situ polymerization of monomer reactants (PMR) on the surface of the reinforcing fibers. The studies show that the PMR approach provides a powerful method for fabricating high performance polymer matrix composites. Significant advantages of the PMR approach are related to the superior high temperature properties of the obtained material, lower cost, greater safety, and processing versatility.

  4. Photo-degradation of high efficiency fullerene-free polymer solar cells.

    PubMed

    Upama, Mushfika Baishakhi; Wright, Matthew; Mahmud, Md Arafat; Elumalai, Naveen Kumar; Mahboubi Soufiani, Arman; Wang, Dian; Xu, Cheng; Uddin, Ashraf

    2017-12-07

    Polymer solar cells are a promising technology for the commercialization of low cost, large scale organic solar cells. With the evolution of high efficiency (>13%) non-fullerene polymer solar cells, the stability of the cells has become a crucial parameter to be considered. Among the several degradation mechanisms of polymer solar cells, burn-in photo-degradation is relatively less studied. Herein, we present the first systematic study of photo-degradation of novel PBDB-T:ITIC fullerene-free polymer solar cells. The thermally treated and as-prepared PBDB-T:ITIC solar cells were exposed to continuous 1 sun illumination for 5 hours. The aged devices exhibited rapid losses in the short-circuit current density and fill factor. The severe short-circuit current and fill factor burn in losses were attributed to trap mediated charge recombination, as evidenced by an increase in Urbach energy for aged devices.

  5. A bifunctional luminescent Tb(III)-metal-organic framework by a tetracarboxylate ligand for highly selective detection of Fe3+ cation and Cr2O72- anion

    NASA Astrophysics Data System (ADS)

    Yu, Li; Wang, Chao; Hu, Chang-Jiang; Dong, Wen-Wen; Wu, Ya-Pan; Li, Dong-Sheng; Zhao, Jun

    2018-06-01

    Reaction of Tb3+ ions with p-terphenyl-3,3″,5,5″-tetracarboxylic acid (H4ptptc) in a mixed solvent system has afforded a new metal-organic framework formulated as [Tb2(ptptc)1.5(H2O)2]n (1). Compound 1 displays a 3D (5,6,8)-connected framework with fascinating one-dimensional triangle open channels. The luminescence explorations demonstrated that 1 exhibits highly selective and sensitive response to Fe3+ in DMF solution and biological system through luminescence quenching effects. In addition, 1 also shows high detection for the Cr2O72-, making it a promising dual functional materials for detecting Fe3+ cation and Cr2O72- anion with high sensitivity and selectivity.

  6. Ratiometric near infrared luminescent thermometer based on lanthanide metal-organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Dan; Zhang, Jun; Zhao, Dian

    2016-09-15

    A near infrared luminescent MOFs thermometer (Nd{sub 0.676}Yb{sub 0.324}BTC) was prepared via a simple solvothermal method using Ln{sup 3+} (Ln=Nd, Yb) ions and 1, 3, 5-benznenetricarboxylic acid (H{sub 3}BTC), and characterized by PXRD, TGA, ICP, and photoluminescence (PL) spectrum. These results indicate that the Nd{sub 0.676}Yb{sub 0.324}BTC displays high relative sensitivity and excellent repeatability in the physiological temperature range (288–323 K), and the maximum relative sensitivity is determined to be 1.187% K{sup −1} at 323 K. These NIR luminescent MOFs may have potential applications in physiological temperature sensing. - Graphical abstract: A near infrared luminescent MOFs thermometer (Nd{sub 0.054}Yb{sub 0.946}BTCmore » ) displays high relative sensitivity and excellent repeatability in the physiological temperature range (288–323 K). Display Omitted - Highlights: • A ratiometric near infrared luminescent MOFs thermometer (Nd{sub 0.676}Yb{sub 0.324}BTC) was prepared via a simple solvothermal method. • The maximum relative sensitivity of Nd{sub 0.676}Yb{sub 0.324}BTC is determined to be 1.187% K{sup −1} at 323 K. • Nd{sub 0.676}Yb{sub 0.324}BTC showed excellent repeatability in the physiological temperature range (288–323 K).« less

  7. Singlet and triplet energy transfer in a benzil-doped, light emitting, solid-state conjugated polymer

    NASA Astrophysics Data System (ADS)

    Rothe, C.; Pålsson, L. O.; Monkman, A. P.

    2002-12-01

    The luminescence emitted from pure and benzil-doped thin films of the conjugated polymer polyfluorene [PF2/6] are compared. The prompt fluorescence from the first singlet-excited state of the polymer is quenched by 90% in the presence of 10% per weight benzil. In addition to the prompt fluorescence, time-resolved spectroscopy at low temperature also allows the detection of phosphorescence and delayed fluorescence from the host polymer. Again the delayed fluorescence is strongly quenched but the phosphorescence is enhanced in doped samples. An explanation of the results is given in terms of singlet energy transfer from the host to benzil and triplet energy transfer from the dopant back to PF2/6. We have applied this to enable better understanding of the photophysics in PF2/6 doped with a platinum porphyrin complex.

  8. Synthesis of New Organic Semiconducting Polymer Materials Having High Radiowave Absorption Rate

    DTIC Science & Technology

    2008-11-01

    ISTC Project No. #1571P Synthesis of New Organic Semiconducting Polymer Materials Having High Radiowave Absorption Rate Final Project Technical...Technology Center ( ISTC ), Moscow. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information...polymer materials having high radiowave absorption rate 5a. CONTRACT NUMBER ISTC Registration No: A-1571p 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  9. Turning on the Light: Lessons from Luminescence

    ERIC Educational Resources Information Center

    O'Hara, Patricia B.; Engelson, Carol; St. Peter, Wayne

    2005-01-01

    Some of the processes by which light is emitted without a simultaneous change in temperature are discussed and is classified as luminescence or cold light. Luminescent processes include triboluminescence, fluorescence, phosphorescence, chemiluminescence, and bioluminescence.

  10. Interpenetrating polymer network approach to tougher and more microcracking resistant high temperature polymers. I - LaRC-RP40

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Morgan, Cassandra D.

    1988-01-01

    Interpenetrating polymer networks in the form of the LaRC-RP40 resin, prepared by the in situ polymerization of a thermosetting imide prepolymer and thermoplastic monomer reactants, are presently used to obtain toughness and microcracking resistance in a high-temperature polymer. Attention is presently given to the processing, physical, and mechanical properties, as well as the thermooxidative stability, of both the neat resin and the resin as a graphite fiber-reinforced matrix. Microcracking after thermal cycling was also tested. LaRC-RP40 exhibits significant resin fracture toughness improvements over the PMR-15 high-temperature matrix resin.

  11. Interpenetrating polymer network approach to tougher and more microcracking resistant high temperature polymers. I. LaRC-RP40

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pater, R.H.; Morgan, C.D.

    1988-10-01

    Interpenetrating polymer networks in the form of the LaRC-RP40 resin, prepared by the in situ polymerization of a thermosetting imide prepolymer and thermoplastic monomer reactants, are presently used to obtain toughness and microcracking resistance in a high-temperature polymer. Attention is presently given to the processing, physical, and mechanical properties, as well as the thermooxidative stability, of both the neat resin and the resin as a graphite fiber-reinforced matrix. Microcracking after thermal cycling was also tested. LaRC-RP40 exhibits significant resin fracture toughness improvements over the PMR-15 high-temperature matrix resin. 16 references.

  12. Luminescence properties of europium?terbium double activated calcium tungstate phosphor*1

    NASA Astrophysics Data System (ADS)

    Nazarov, M. V.; Jeon, D. Y.; Kang, J. H.; Popovici, E.-J.; Muresan, L.-E.; Zamoryanskaya, M. V.; Tsukerblat, B. S.

    2004-08-01

    Double incorporation of Eu 3+ and Tb 3+ ions into a CaWO 4 crystalline lattice modifies the luminescence spectrum due to the formation of new emission centers. Depending on the activators concentration and nature, as well as on the interaction between the activators themselves, the luminescence color can be varied within the entire range of the visible spectrum. Variable luminescence was obtained when CaWO 4:Eu,Tb phosphors with 0-5 mol% activator ions were exposed to relatively low excitation energies as UV (365 and 254 nm). Under high energy excitation such as VUV (147 nm) radiation or electron beam, white light has been observed. This material with controlled properties seems to be promising for the applications in fluorescent lamps, colored lightning for advertisement industries, and other optoelectronic devices.

  13. The deformation stimulated luminescence in KCl, KBr and KI crystals

    NASA Astrophysics Data System (ADS)

    Shunkeyev, K.; Sergeyev, D.; Drozdowski, W.; Brylev, K.; Myasnikova, L.; Barmina, A.; Zhanturina, N.; Sagimbaeva, Sh; Aimaganbetova, Z.

    2017-05-01

    Currently, strengthening of the intensity of luminescence in alkali halide crystals (AHC) at lattice symmetry lowering is discussed as a promising direction for the development of scintillation detectors [1-3]. In this regard, for the study of anion excitons and radiation defects in the AHC anion sublattice at deformation, the crystals with the same sizes of cations and different sizes of anions were chosen. In the X-ray spectra of KCl at 10 K, the luminescence at 3.88 eV; 3.05 eV and 2.3 eV is clearly visible. The luminescence at 3.05 eV corresponds to the tunneling recharge [F*, H]. Luminescence at 3.88 eV is quenched in the region of thermal destruction of F‧-centers and characterizes tunneling recharge of F‧, VK-centers. In KCl at 90 K, the luminescence of self-trapped excitons (STE) is completely absent. In KBr at deformation not only STE luminescence, but also deformation stimulated luminescence at 3.58 eV were recorded, the last one corresponds to tunneling recharge of F‧, VK-centers. In KI crystal at 10 K and 90 K at deformation, only STE luminescence is enhanced. There are no deformation luminescence bands in KI compares with KBr and KCl crystals.

  14. High Energy Density in Azobenzene-based Materials for Photo-Thermal Batteries via Controlled Polymer Architecture and Polymer-Solvent Interactions.

    PubMed

    Jeong, Seung Pyo; Renna, Lawrence A; Boyle, Connor J; Kwak, Hyunwook S; Harder, Edward; Damm, Wolfgang; Venkataraman, Dhandapani

    2017-12-19

    Energy densities of ~510 J/g (max: 698 J/g) have been achieved in azobenzene-based syndiotactic-rich poly(methacrylate) polymers. The processing solvent and polymer-solvent interactions are important to achieve morphologically optimal structures for high-energy density materials. This work shows that morphological changes of solid-state syndiotactic polymers, driven by different solvent processings play an important role in controlling the activation energy of Z-E isomerization as well as the shape of the DSC exotherm. Thus, this study shows the crucial role of processing solvents and thin film structure in achieving higher energy densities.

  15. Nanocomposites Based on Luminescent Colloidal Nanocrystals and Polymeric Ionic Liquids towards Optoelectronic Applications

    PubMed Central

    Panniello, Annamaria; Ingrosso, Chiara; Coupillaud, Paul; Tamborra, Michela; Binetti, Enrico; Curri, Maria Lucia; Agostiano, Angela; Taton, Daniel; Striccoli, Marinella

    2014-01-01

    Polymeric ionic liquids (PILs) are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential for batteries and solar cells. We report the synthesis and properties of a hybrid nanocomposite made of colloidal luminescent CdSe nanocrystals incorporated in a novel ex situ synthesized imidazolium-based PIL, namely, either a poly(N-vinyl-3-butylimidazolium hexafluorophosphate) or a homologous PIL functionalized with a thiol end-group exhibiting a chemical affinity with the nanocrystal surface. A capping exchange procedure has been implemented for replacing the pristine organic capping molecules of the colloidal CdSe nanocrystals with inorganic chalcogenide ions, aiming to disperse the nano-objects in the PILs, by using a common polar solvent. The as-prepared nanocomposites have been studied by TEM investigation, UV-Vis, steady-state and time resolved photoluminescence spectroscopy for elucidating the effects of the PIL functionalization on the morphological and optical properties of the nanocomposites. PMID:28788477

  16. Ytterbium-porphyrins as a new class of the luminescent labels

    NASA Astrophysics Data System (ADS)

    Tsvirko, M.; Korovin, Yu; Rusakova, N.

    2007-08-01

    New complexes of ytterbium with asymmetric porphyrins containing substituents in β-positions and hydrophobic meso-(monophenyl-p-oxypropyl)triphenylporphyrin (OPP) were obtained and characterized by elemental analysis, IR, UV-Vis absorption and luminescence spectroscopy. Electronic absorption, luminescence and luminescence excitation spectra of these complexes were studied at 295 K in DMF solutions and in the water-lecithin medium. The 4f-luminescence of ytterbium-porphyrins in the near infrared (IR) spectral region (λmax = 980 nm) is observed under excitation in Soret band (400-430 nm). The effect of substituent in porphyrin macroring on the 4f-luminescent properties was also investigated. The conjugates of these compounds with protein molecules - bovine serum albumin (BSA) were investigated as well. These compounds are interesting at the initial stage of diagnostics of tumor tissues as IR-luminescent probes due to their spectral-luminescent characteristics and some biochemical properties.

  17. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz, E-mail: hnsheikh@rediffmail.com

    2015-11-15

    Three new coordination polymers [Mn(hip)(phen) (H{sub 2}O)]{sub n} (1), [Co(hip)(phen) (H{sub 2}O)]{sub n} (2), and [Cd(hip) (phen) (H{sub 2}O)]{sub n} (3) (H{sub 2}hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H{sub 2}O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π–π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π–π stacking provide thermal stability to polymers. Compounds 1 and 2more » are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift. - Graphical abstract: 1D helical chains of coordination polymers were synthesized by solvo-hydrothermal reaction of 5-hydroxyisopthalic acid and 1,10-phenanthroline with MnCl{sub 2}·4H{sub 2}O / CoCl{sub 2}·6H{sub 2}O / Cd(NO{sub 3}){sub 2}·6H{sub 2}O. - Highlights: • Solvent induced synthesis of three coordination polymers with 1D zig-zag structure. • Crystal structures of coordination polymers are reported and discussed. • 1,10-Phenanthroline influences magnetic and luminescent properties of polymers. • Coordination polymer of Cd is luminescent exhibiting large Stokes shift.« less

  18. Luminescent hybrid materials based on (8-hydroxyquinoline)-substituted metal-organic complexes and lead-borate glasses

    NASA Astrophysics Data System (ADS)

    Petrova, Olga B.; Anurova, Maria O.; Akkuzina, Alina A.; Saifutyarov, Rasim R.; Ermolaeva, Ekaterina V.; Avetisov, Roman I.; Khomyakov, Andrew V.; Taydakov, Ilya V.; Avetissov, Igor Ch.

    2017-07-01

    Novel luminescent organic-inorganic hybrid materials based on 8-hydroxyquinoline metal complexes (Liq, Kq, Naq, Rbq, Mgq2, Srq2, Znq2, Scq3, Alq3, Gaq3, and Inq3) have been synthesized by a high temperature exchange reaction with 80PbF2-20B2O3 inorganic low-melting glass. The mechanical and optical properties, transmission spectra, emission an excitation photoluminescence, and luminescence kinetic of hybrid materials were studied. All hybrid materials showed a wide luminescence band in the range 400-700 nm.

  19. A Luminescent Zinc(II) Metal-Organic Framework (MOF) with Conjugated π-Electron Ligand for High Iodine Capture and Nitro-Explosive Detection.

    PubMed

    Yao, Ru-Xin; Cui, Xin; Jia, Xiao-Xia; Zhang, Fu-Qiang; Zhang, Xian-Ming

    2016-09-19

    A porous luminescent zinc(II) metal-organic framework (MOF) with a NbO net [Zn2(tptc)(apy)2-x(H2O)x]·H2O (1) (where x ≈ 1, apy = aminopyridine, H4tptc = terphenyl-3,3″,5,5″-tetracarboxylic acid), constructed using paddlewheel [Zn2(COO)4] clusters and π-electron-rich terphenyl-tetracarboxylic acid, has been solvothermally synthesized and characterized. Interestingly, the material displays efficient, reversible adsorption of radioactive I2 in vapor and in solution (up to 216 wt %). The strong affinity for I2 is mainly due to it having large porosity, a conjugated π-electron aromatic system, halogen bonds, and electron-donating aminos. Furthermore, luminescent study indicated that 1 exhibits high sensitivity to electron-deficient nitrobenzene explosives via fluorescence quenching.

  20. High-dielectric-constant polymers as high-energy-density (HED) field effect actuator and capacitor materials

    NASA Astrophysics Data System (ADS)

    Huang, Cheng; Zhang, Qiming

    2004-07-01

    The development of high dielectric constant polymers as active materials in high-performance devices is one of the challenges in polymeric electronics and opto-electronics such as flexible thin-film capacitors, memory devices and microactuators for deformable micromirror technology. A group of poly(vinylidene fluoridetrifluoroethylene) P(VDF-TrFE) based high-dielectric-constant fluoroterpolymers have been developed, which have high room-temperature dielectric constant (K>60) and very high strain level and high energy density. The longitudinal and transverse strain of these materials can reach about -7% and 4.5%, respectively, and the elastic energy density is around 1.1 J/cm^3 under a high electric field of 150 MV/m. The influence on the electromechanical properties of copolymerizing poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) with a third monomer, chlorofluoroethylene (CFE), was investigated. It was found that increasing the CFE content from 0 to 8.5% slowly converts the ferroelectric structure of the copolymer to a relaxor ferroelectric system. This allows for a greatly decreased polarization and dielectric hysteresis and a much higher strain. Above 8.5%, increased CFE content substantially degrades the bulk crystallinity and the Young's modulus. These terpolymers have the potential to achieve above 10 J/cm^3 whole capacity energy density, which makes them good candidates for applications in pulse power capacitors. An all-polymer percolative composite by the combination of conductive polyaniline particles (K>10^5) within a fluoroterpolymer matrix, is introduced which exhibits very high dielectric constant (>7,000). The experimental results show that the dielectric behavior of this new class of percolative composites follows the prediction of the percolation theory and the analysis of the conductive percolation phenomena. The very high dielectric constant of the all-polymer composites which are also very flexible and possess elastic modulus not very

  1. Matrix-assisted laser desorption/ionization mass spectrometric analysis of aliphatic biodegradable photoluminescent polymers using new ionic liquid matrices.

    PubMed

    Serrano, Carlos A; Zhang, Yi; Yang, Jian; Schug, Kevin A

    2011-05-15

    In this study, two novel ionic liquid matrices (ILMs), N,N-diisopropylethylammonium 3-oxocoumarate and N,N-diisopropylethylammonium dihydroxymonooxoacetophenoate, were tested for the structural elucidation of recently developed aliphatic biodegradable polymers by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The polymers, formed by a condensation reaction of three components, citric acid, octane diol, and an amino acid, are fluorescent, but the exact mechanism behind their luminescent properties has not been fully elucidated. In the original studies, which introduced the polymer class (J. Yang et al., Proc. Natl. Acad. Sci. USA 2009, 106, 10086-10091), a hyper-conjugated cyclic structure was proposed as the source for the photoluminescent behavior. With the use of the two new ILMs, we present evidence that supports the presence of the proposed cyclization product. In addition, the new ILMs, when compared with a previously established ILM, N,N-diisopropylethylammonium α-cyano-3-hydroxycinnimate, provided similar signal intensities and maintained similar spectral profiles. This research also established that the new ILMs provided good spot-to-spot reproducibility and high ionization efficiency compared with corresponding crystalline matrix preparations. Many polymer features revealed through the use of the ILMs could not be observed with crystalline matrices. Ultimately, the new ILMs highlighted the composition of the synthetic polymers, as well as the loss of water that was expected for the formation of the proposed cyclic structure on the polymer backbone. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Application of Quantum Dot nanocrystal in Luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    Bakhoda, Shokoufeh; Khalaji Assadi, Morteza; Ahmadi Kandjani, Sohrab; Kayiem, Hussain H. Al; Hussain Bhat, Aamir

    2018-03-01

    The basic design of luminescent solar concentrator is a transparent plate doped with an appropriate luminescent material (organic dyes, quantum dots), which is able to absorb sunlight (direct and diffuse), and then guides photons produced by photoluminescence to its narrow edges where they are converted by photovoltaic cells. Unfortunately, LSCs have suffered from numerous efficiency losses. Therefore, new luminescent species and novel approaches are needed for its practical application. This paper deals with investigation of nonhazardous, environmental friendly luminescent species include CuInS2/ZnS core/shell QDs. The CuInS2/ZnS QDs possess advantages of Stocks shift as large as more than 130 nm and high photoluminescence quantum yield of 80%. The paper presents the effect of large stock shift CuInS2/ZnS QDs on reducing the reabsorption losses in LSC by using experimental investigation. The LSC sheets were fabricated by dispersing CuInS2/ZnS QDs particles in a polymethylmethacrylate waveguide. A series of LSCs (dimension 4.0 cm × 3.0 cm × 0.3cm) with different CuInS2/ZnS QDs particles concentration (0.015 and 0.03 wt.%) were fabricated and their optical properties (absorptions/emissions) were characterized. The results show that the CuInS2/ZnS QDs-LSC provides a promising way for the reduction of reabsorption losses in LSCs.

  3. Lignin-based monomers: Utilization in high-performance polymers and the effects of their structures on polymer properties

    NASA Astrophysics Data System (ADS)

    Stanzione, Joseph F., III

    With the uncertainty of petroleum reserves and future crude oil prices, lignocellulosic biomass is becoming an increasingly valuable resource for the sustainable development of fuels, chemicals, and materials, including vinyl ester resins (VERs). Petroleum-based VERs are used to produce polymer composites for a wide variety of commercial applications. Although possessing relatively high moduli, strengths, and glass transition temperatures, commercial VERs typically contain high concentrations of a reactive diluent, such as styrene. However, these reactive diluents are often considered hazardous air pollutants (HAPs), volatile organic compounds (VOCs), and anticipated carcinogens. Moreover, bisphenol-A, which has gained considerable attention due to potential associated health-related issues, is utilized as a precursor in the synthesis of VERs. A green chemistry and engineering approach in the development of new VERs and renewable reactive diluents that are based on lignin is presented in this dissertation. Lignin, which is currently an abundant, renewable waste product of the paper and pulping industry, is primarily burned as a low value fuel. However, lignin has the potential to be a low cost feedstock in future lignocellulosic biorefineries that could yield highly valuable aromatic chemicals (lignin model compounds, LMCs) when strategically depolymerized. The incorporation of aromaticity in a resin's chemical structure is known to improve overall polymer composite performance and the high aromatic content found in lignin is ideal for novel resin development. Highlighted in this dissertation are three projects: (1) the synthesis and characterization of a lignin-based bio-oil resin/reactive diluent, (2) the use of functionalized LMCs as styrene replacements in VERs, and (3) the synthesis and characterization of a vanillin-based resin. Through the use of traditional and new polymer theory coupled with spectroscopic, thermal, and mechanical techniques, structure

  4. Photophysical properties and photoisomerization processes of Methyl Red embedded in rigid polymer

    NASA Astrophysics Data System (ADS)

    Lee, Geon Joon; Kim, Dongho; Lee, Minyung

    1995-01-01

    The photophysical properties of Methyl Red molecules embedded in a poly(methyl methacrylate) (PMMA) matrix were investigated with photoinduced absorption, absorption kinetics, steady-state, and time-resolved luminescence spectroscopy. The excited singlet (S1) state lifetimes for trans and cis isomers of Methyl Red in PMMA at room temperature have been measured as 35 and 420 ps, respectively. The excited triplet (T1) state energy level and its lifetime at 77 K were also obtained. A slow trans-cis isomerization process having a time constant of a few hundred seconds was observed for the illuminated Methyl Red in rigid polymer. Based on measured photophysical properties and dynamic processes, an energy-level diagram for Methyl Red molecules in rigid polymer is introduced to explain these observations.

  5. High cation transport polymer electrolyte

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL; Klingler, Robert J [Westmont, IL

    2007-06-05

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  6. Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.

  7. Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect

    PubMed Central

    Gao, Dangli; Tian, Dongping; Zhang, Xiangyu; Gao, Wei

    2016-01-01

    Luminescence-based waveguide is widely investigated as a promising alternative to conquer the difficulties of efficiently coupling light into a waveguide. But applications have been still limited due to employing blue or ultraviolet light as excitation source with the lower penetration depth leading to a weak guided light. Here, we show a quasi-one-dimensional propagation of luminescence and then resulting in a strong luminescence output from the top end of a single NaYF4:Yb3+/Er3+ microtube under near infrared light excitation. The mechanism of upconversion propagation, based on the optical waveguide effect accompanied with energy migration, is proposed. The efficiency of luminescence output is highly dependent on the concentration of dopant ions, excitation power, morphology, and crystallinity of tube as an indirect evidence of the existence of the optical actived waveguide effect. These findings provide the possibility for the construction of upconversion fiber laser. PMID:26926491

  8. Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence

    NASA Astrophysics Data System (ADS)

    Nicolaides, Lena; Mandelis, Andreas

    2000-01-01

    A high-spatial-resolution dynamic experimental imaging setup, which can provide simultaneous measurements of laser- induced frequency-domain infrared photothermal radiometric and luminescence signals from defects in teeth, has been developed for the first time. The major findings of this work are: (1) radiometric images are complementary to (anticorrelated with) luminescence images, as a result of the nature of the two physical signal generation processes; (2) the radiometric amplitude exhibits much superior dynamic (signal resolution) range to luminescence in distinguishing between intact and cracked sub-surface structures in the enamel; (3) the radiometric signal (amplitude and phase) produces dental images with much better defect localization, delineation, and resolution; (4) radiometric images (amplitude and phase) at a fixed modulation frequency are depth profilometric, whereas luminescence images are not; and (5) luminescence frequency responses from enamel and hydroxyapatite exhibit two relaxation lifetimes, the longer of which (approximately ms) is common to all and is not sensitive to the defect state and overall quality of the enamel. Simultaneous radiometric and luminescence frequency scans for the purpose of depth profiling were performed and a quantitative theoretical two-lifetime rate model of dental luminescence was advanced.

  9. Monitoring Temperatures of Tires Using Luminescent Materials

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J

    2006-01-01

    A method of noncontact, optical monitoring of the surface temperature of a tire has been devised to enable the use of local temperature rise as an indication of potential or impending failures. The method involves the use of temperature-sensitive paint (or filler): Temperature-sensitive luminescent dye molecules or other luminescent particles are incorporated into a thin, flexible material coating the tire surface of interest. (Alternatively, in principle, the luminescent material could be incorporated directly into the tire rubber, though this approach has not yet been tested.) The coated surface is illuminated with shorter-wavelength light to excite longer-wavelength luminescence, which is observed by use of a charge-coupled-device camera or a photodetector (see Figure 1). If temporally constant illumination is used, then the temperature can be deduced from the known temperature dependence of the intensity response of the luminescence. If pulsed illumination is used, then the temperature can be deduced from the known temperature dependence of the time or frequency response of the luminescence. If sinusoidally varying illumination is used, then the temperature can be deduced from the known temperature dependence of the phase response of the luminescence. Unlike a prior method of monitoring the temperature at a fixed spot on a tire by use of a thermocouple, this method is not restricted to one spot and can, therefore, yield information on the spatial distribution of temperature: in particular, it enables the discovery of newly forming hot spots where damage may be starting. Also unlike in the thermocouple method, the measurements in this method are not vulnerable to breakage of wires in repeated flexing of the tire. Moreover, unlike in another method in which infrared radiation is monitored as an indication of surface temperature, the luminescence measurements in this method are not significantly affected by changes in infrared emissivity. This method has been

  10. Structure and luminescent property of complexes of aryl carboxylic acid-functionalized polystyrene with Eu(III) and Tb(III) ions.

    PubMed

    Gao, Baojiao; Shi, Nan; Qiao, Zongwen

    2015-11-05

    Via polymer reactions, naphthoic acid (NA) and benzoic acid (BA) were bonded onto the side chains of polystyrene (PS), respectively, and two aryl carboxylic acid-functionalized polystyrenes, PSNA and PSBA, were obtained. Using PSNA and PSBA as macromolecule ligands and Eu(3+) and Tb(3+) ions as central ions, various luminescent binary polymer-rare earth complexes were prepared. At the same time, with 1,10-phenanthroline (Phen) and 4,4'-bipyridine (Bipy) as small-molecule co-ligands, various ternary polymer-rare earth complexes were also prepared. On the basis of characterizing PSNA, PSBA and complexes, the relationship between structure and luminescent property for these prepared complexes were mainly investigated. The study results show that the macromolecule ligands PSNA and PSBA, or the bonded NA and BA ligands, can strongly sensitize the fluorescence emissions of Eu(3+) ion or Tb(3+) ion, but the sensitization effect is strongly dependent on the structure of the ligands and the property of the central ions, namely it is strongly dependent on the matching degree of energy levels. The fluorescence emission of the binary complex PS-(NA)3-Eu(III) is stronger than that PS-(BA)3-Eu(III), indicating ligand NA has stronger sensitization action for Eu(3+) ion than ligand BA; the binary complex PS-(BA)3-Tb(III) emit strong characteristic fluorescence of Tb(3+) ion, displaying that ligand BA can strongly sensitize Tb(3+) ion, whereas the binary complex PS-(NA)3-Tb(III) nearly does not emit the characteristic fluorescence of Tb(3+) ion, showing that ligand NA does not sensitize Tb(3+) ion. The fluorescence intensity of the ternary complexes is much stronger than that of the binary complexes in the same series. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Zero-reabsorption doped-nanocrystal luminescent solar concentrators.

    PubMed

    Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L

    2014-04-22

    Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

  12. Highly efficient green up-conversion luminescence of Nd3+-Yb3+-Ho3+ codoped fluorite-type nanocrystals in transparent glass ceramics

    NASA Astrophysics Data System (ADS)

    Qiu, Jianbei; Kawamoto, Yoji; Zhang, Junjie

    2002-11-01

    Oxyfluoride glasses were developed with composition 30SiO2[middle dot]15AlO1.5[middle dot]28PbF2[middle dot]22CdF2[middle dot](4.8-x)GdF3[middle dot]0.1NdF3[middle dot]0.1HoF3[middle dot]xYbF3 (x=0, 0.1, 0.2, 0.5, 1, 2, 3, 4, and 4.8) in mole percent. Powder x-ray diffraction analysis revealed that the heat treatments of the oxyfluoride glasses at 450 degC for 0.5 h cause the precipitation of Nd3+-Yb3+-Ho3+ codoped fluorite-type nanocrystals of about 16.3 nm in diameter in the glass matrix. These transparent glass ceramics exhibited very strong green up-conversion luminescence due to the Ho3+: (5F4, 5S2)[right arrow]5I8 transition under 800 nm excitation. The intensity of the green up-conversion luminescence in a 1 mol % YbF3-containing glass ceramic was found to be about 120 times stronger than that in the precursor oxyfluoride glass. The reason for the highly efficient Ho3+ up-conversion luminescence in the oxyfluoride glass ceramics is discussed. An up-conversion mechanism is also proposed.

  13. A Silica-Aerogel-Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus.

    PubMed

    Lin, Dingchang; Yuen, Pak Yan; Liu, Yayuan; Liu, Wei; Liu, Nian; Dauskardt, Reinhold H; Cui, Yi

    2018-06-25

    High-energy all-solid-state lithium (Li) batteries have great potential as next-generation energy-storage devices. Among all choices of electrolytes, polymer-based systems have attracted widespread attention due to their low density, low cost, and excellent processability. However, they are generally mechanically too weak to effectively suppress Li dendrites and have lower ionic conductivity for reasonable kinetics at ambient temperature. Herein, an ultrastrong reinforced composite polymer electrolyte (CPE) is successfully designed and fabricated by introducing a stiff mesoporous SiO 2 aerogel as the backbone for a polymer-based electrolyte. The interconnected SiO 2 aerogel not only performs as a strong backbone strengthening the whole composite, but also offers large and continuous surfaces for strong anion adsorption, which produces a highly conductive pathway across the composite. As a consequence, a high modulus of ≈0.43 GPa and high ionic conductivity of ≈0.6 mS cm -1 at 30 °C are simultaneously achieved. Furthermore, LiFePO 4 -Li full cells with good cyclability and rate capability at ambient temperature are obtained. Full cells with cathode capacity up to 2.1 mAh cm -2 are also demonstrated. The aerogel-reinforced CPE represents a new design principle for solid-state electrolytes and offers opportunities for future all-solid-state Li batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    DOEpatents

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  15. High strength films from oriented, hydrogen-bonded "graphamid" 2D polymer molecular ensembles.

    PubMed

    Sandoz-Rosado, Emil; Beaudet, Todd D; Andzelm, Jan W; Wetzel, Eric D

    2018-02-27

    The linear polymer poly(p-phenylene terephthalamide), better known by its tradename Kevlar, is an icon of modern materials science due to its remarkable strength, stiffness, and environmental resistance. Here, we propose a new two-dimensional (2D) polymer, "graphamid", that closely resembles Kevlar in chemical structure, but is mechanically advantaged by virtue of its 2D structure. Using atomistic calculations, we show that graphamid comprises covalently-bonded sheets bridged by a high population of strong intermolecular hydrogen bonds. Molecular and micromechanical calculations predict that these strong intermolecular interactions allow stiff, high strength (6-8 GPa), and tough films from ensembles of finite graphamid molecules. In contrast, traditional 2D materials like graphene have weak intermolecular interactions, leading to ensembles of low strength (0.1-0.5 GPa) and brittle fracture behavior. These results suggest that hydrogen-bonded 2D polymers like graphamid would be transformative in enabling scalable, lightweight, high performance polymer films of unprecedented mechanical performance.

  16. A Preliminary Study on the Toxic Combustion Products Testing of Polymers Used in High-Pressure Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hshieh, Fu-Yu; Beeson, Harold D.

    2004-01-01

    One likely cause of polymer ignition in a high-pressure oxygen system is adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative _ pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper reports the preliminary results of toxic combustion product testing of selected polymers in a pneumatic-impact test system. Five polymers commonly used in high-pressure oxygen systems, Nylon 6/6, polychlorotrifluoroethylene (CTFE), polytetrafluoroethylene (PTFE), fluoroelastomer (Viton(TradeMark) A), and nitrile rubber (Buna N), were tested in a pneumatic-impact test system at 2500- or 3500-psia oxygen pressure. The polymers were ignited and burned, then combustion products were collected in a stainless-steel sample bottle and analyzed by GC/MS/IRD, GC/FID, and GC/Methanizer/FID. The results of adiabatic-compression tests show that combustion of hydrocarbon polymers, nitrogen-containing polymers, and halogenated polymers in high-pressure oxygen systems are relatively complete. Toxicity of the combustion product gas is presumably much lower than the combustion product gas generated from ambient-pressure oxygen (or air) environments. The NASA-Lewis equilibrium code was used to determine the composition of combustion product gas generated from a simulated, adiabatic-compression test of nine polymers. The results are presented and discussed.

  17. Compositional investigation of ∼2 μm luminescence of Ho{sup 3+}-doped lead silicate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xueqiang; Huang, Feifei; Gao, Song

    2015-11-15

    Graphical abstract: Ho{sup 3+}-doped lead silicate glass with lowest maximum phonon energy possesses highest ∼2 μm luminescence intensity. - Highlights: • With increment of lead oxide, maximum phonon energy in lead silicate glass decreased. • ∼2 μm luminescent intensity of Ho{sup 3+} increased with increment of lead oxide. • Lowest lead oxide content glass possesses highest quantum efficiency due to low maximum phonon energy. - Abstract: Lead silicate glass samples with varying lead oxide content were prepared in this study, and their luminescent properties were examined and analyzed. It was found that with increasing lead oxide content, the maximum phononmore » energies of the glass samples decreased, while their spontaneous transition probabilities first increased and then decreased. The influence of the spontaneous transition rate, A{sub 10}, and the multi-phonon relaxation rate, W{sub 10}, on the sample luminescent properties was analyzed using rate equations. As a result, it was found that with increasing lead oxide content, W{sub 10}/A{sub 10} decreased, while the quantum efficiency increased. Thus, the luminescent intensity at ∼2 μm increased in the glass samples with increased lead oxide content. The high luminescent intensity and long lifetime indicate that silicate glasses containing high levels of lead oxide could potentially be used in ∼2 μm lasers.« less

  18. Dithiopheneindenofluorene (TIF) Semiconducting Polymers with Very High Mobility in Field-Effect Transistors.

    PubMed

    Chen, Hu; Hurhangee, Michael; Nikolka, Mark; Zhang, Weimin; Kirkus, Mindaugas; Neophytou, Marios; Cryer, Samuel J; Harkin, David; Hayoz, Pascal; Abdi-Jalebi, Mojtaba; McNeill, Christopher R; Sirringhaus, Henning; McCulloch, Iain

    2017-09-01

    The charge-carrier mobility of organic semiconducting polymers is known to be enhanced when the energetic disorder of the polymer is minimized. Fused, planar aromatic ring structures contribute to reducing the polymer conformational disorder, as demonstrated by polymers containing the indacenodithiophene (IDT) repeat unit, which have both a low Urbach energy and a high mobility in thin-film-transistor (TFT) devices. Expanding on this design motif, copolymers containing the dithiopheneindenofluorene repeat unit are synthesized, which extends the fused aromatic structure with two additional phenyl rings, further rigidifying the polymer backbone. A range of copolymers are prepared and their electrical properties and thin-film morphology evaluated, with the co-benzothiadiazole polymer having a twofold increase in hole mobility when compared to the IDT analog, reaching values of almost 3 cm 2 V -1 s -1 in bottom-gate top-contact organic field-effect transistors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Polymer Electrolyte Through Enzyme Catalysis for High Performance Lithium-Ion Batteries

    DTIC Science & Technology

    1998-10-16

    by block number) FIELD GROUP SUB-GROUP Polymer Electrolyte, Solid State, Enzyme Catalysis, Lithium - Ion Battery , Sol Gel, High Conductivity 19...excellent candidates for lithium - ion battery development. Furthermore, the processes used to achieve the final product yield very good mechanical properties...Objectives This research was initiated to investigate synthesis of improved polymer electrolytes for lithium - ion battery applications. The overall

  20. A Novel Approach to Synthesise a Dual-Mode Luminescent Composite Pigment for Uncloneable High-Security Codes to Combat Counterfeiting.

    PubMed

    Kanika; Kumar, Pawan; Singh, Satbir; Gupta, Bipin Kumar

    2017-12-01

    A strategy is demonstrated to protect valuable items, such as currency, pharmaceuticals, important documents, etc. against counterfeiting, by marking them with luminescent security codes. These luminescent security codes were printed by employing luminescent ink formulated from a cost effective dual-mode luminescent composite pigment of Gd 1.7 Yb 0.2 Er 0.1 O 3 and Zn 0.98 Mn 0.02 S phosphors using commercially available PVC Gold medium. In the composite, Gd 1.7 Yb 0.2 Er 0.1 O 3 and Zn 0.98 Mn 0.02 S account for upconversion and downconversion processes, respectively. The synthesis procedure of the composite involves the admixing of Gd 1.7 Yb 0.2 Er 0.1 O 3 nanorods and Zn 0.98 Mn 0.02 S phosphor, synthesised by hydrothermal and facile solid-state reaction methods, respectively. The structural, morphological, microstructural, and photoluminescent features of Gd 1.7 Yb 0.2 Er 0.1 O 3 nanorods, Zn 0.98 Mn 0.02 S phosphor and composite were characterised by using XRD, SEM, TEM, and photoluminescence (PL) techniques, respectively. The distribution of PL intensity of the printed pattern was examined by using confocal PL mapping microscopy. The obtained results reveal that security codes printed using ink formulated from this bi-luminescent composite pigment provide dual-stage security against counterfeiting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Visual detection of trace nitroaromatic explosive residue using photoluminescent metallole-containing polymers.

    PubMed

    Toal, Sarah J; Sanchez, Jason C; Dugan, Regina E; Trogler, William C

    2007-01-01

    The detection of trace explosives is important for forensic, military, and homeland security applications. Detection of widely used nitroaromatic explosives (trinitrotoluene [TNT], 2,4-dinitrotoluene [DNT], picric acid [PA]) was carried out using photoluminescent metallole-containing polymers. The method of detection is through the quenching of fluorescence of thin films of the polymer, prepared by spray coating organic solutions of the polymer, by the explosive analyte. Visual quenching of luminescence (lambda(em) approximately 400-510 nm) in the presence of the explosive is seen immediately upon illumination with near-UV light (lambda(ex)=360 nm). Detection limits were observed to be as low as 5 ng for TNT, 20 ng for DNT, and 5 ng for PA. In addition, experiments with normal production line explosives and their components show that this technology is also able to detect composition B, Pyrodex, and nitromethane. This method offers a convenient and sensitive method of detection of trace nitroaromatic explosive residue.

  2. Target-Triggered Switching on and off the Luminescence of Lanthanide Coordination Polymer Nanoparticles for Selective and Sensitive Sensing of Copper Ions in Rat Brain.

    PubMed

    Huang, Pengcheng; Wu, Fangying; Mao, Lanqun

    2015-07-07

    Copper ions (Cu(2+)) in the central nervous system play a crucial role in the physiological and pathological events, so simple, selective, and sensitive detection of cerebral Cu(2+) is of great importance. In this work, we report a facile yet effective fluorescent method for sensing of Cu(2+) in rat brain using one kind of lanthanide coordination polymer nanoparticle, adenosine monophosphate (AMP) and terbium ion (Tb(3+)), i.e., AMP-Tb, as the sensing platform. Initially, a cofactor ligand, 5-sulfosalicylic acid (SSA), as the sensitizer, was introduced into the nonluminescent AMP-Tb suspension, resulting in switching on the luminescence of AMP-Tb by the removal of coordinating water molecules and concomitant energy transfer from SSA to Tb(3+). The subsequent addition of Cu(2+) into the resulting SSA/AMP-Tb can strongly quench the fluorescence because the specific coordination interaction between SSA and Cu(2+) rendered energy transfer from SSA to Tb(3+) inefficient. The decrease ratio of the fluorescence intensities of SSA/AMP-Tb at 550 nm show a linear relationship for Cu(2+) within the concentration range from 1.5 to 24 μM with a detection limit of 300 nM. The method demonstrated here is highly selective and is free from the interference of metal ions, amino acids, and the biological species commonly existing in the brain such as dopamine, lactate, and glucose. Eventually, by combining the microdialysis technique, the present method has been successfully applied in the detection of cerebral Cu(2+) in rat brain with the basal dialysate level of 1.91 ± 0.40 μM (n = 3). This method is very promising to be used for investigating the physiological and pathological events that cerebral Cu(2+) participates in.

  3. A Robust Luminescent Tb(III)-MOF with Lewis Basic Pyridyl Sites for the Highly Sensitive Detection of Metal Ions and Small Molecules.

    PubMed

    Zhao, Jun; Wang, Ye-Nan; Dong, Wen-Wen; Wu, Ya-Pan; Li, Dong-Sheng; Zhang, Qi-Chun

    2016-04-04

    A new luminescent terbium-metal-organic framework [Tb3(L)2(HCOO)(H2O)5]·DMF·4H2O (1) (H4L = 4,4'-(pyridine-3,5-diyl)diisophthalic acid) has been successfully assembled by Tb(3+) ions and an undeveloped pyridyl-tetracarboxylate. Compound 1 exhibits a 3D porous (3,8)-connected (4.5(2))2(4(2).5(12).6(6).7(5).8(3)) topological framework with fascinating 1D open hydrophilic channels decorated by uncoordinated Lewis basic pyridyl nitrogen atoms. In particular, the Tb-MOF (1) can detect Cu(2+) ions with high selectivity and sensitivity, and its luminescence is nearly entirely quenched in N,N-dimethylformamide (DMF) solution and biological system. In addition, 1 still has high detection for the trace content of nitromethane with 70 ppm, which suggests that 1 is a promising example of dual functional materials with sensing copper ions and nitromethane.

  4. Tough, high performance, addition-type thermoplastic polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    A tough, high performance polyimide is provided by reacting a triple bond conjugated with an aromatic ring in a bisethynyl compound with the active double bond in a compound containing a double bond activated toward the formation of a Diels-Adler type adduct, especially a bismaleimide, a biscitraconimide, or a benzoquinone, or mixtures thereof. Addition curing of this product produces a high linear polymeric structure and heat treating the highly linear polymeric structure produces a thermally stable aromatic addition-type thermoplastic polyimide, which finds utility in the preparation of molding compounds, adhesive compositions, and polymer matrix composites.

  5. Bipolar and Unipolar Silylene-Diphenylene σ-π Conjugated Polymer Route for Highly Efficient Electrophosphorescence

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Tang; Sharma, Sunil; Hung, Miao-Ken; Lee, Yu-Hsuan; Chen, Show-An

    2016-12-01

    σ-π conjugated polymer strategy is proposed for designing electroluminescent host polymers with silylene-diphenylene as the backbone repeat unit giving a high triplet energy (ET = 2.67 eV). By incorporation of high ET (3.0 eV) electron (oxadiazole, OXD) and hole (triphenyl amine, TPA) transport moieties, or TPA alone (in this case, the main chain acts as electron transport channel) as side arms on the silylene, the high ET bipolar and unipolar polymers are formed, allowing a use of iridium green phosphor (Ir(ppy)2(acac), Ir-G) (ET = 2.40 eV) as the dopant. The matching of energy levels of the dopant with the hosts, leading to charge trapping into it; and singlets and triplets of the exciplex and excimer can be harvested via energy transfer to the dopant. Using these host-guest systems as the emitting layer, chlorinated indium-tin-oxide (Cl-ITO) as the anode, and benzimidazole derivative (TPBI) as the electron transport layer, this two-layer device gives the high luminance efficiency 80.1 cd/A and external quantum efficiency 21.2%, which is the best among the report values for polymer light emitting diode (PLED) in the literatures. This example manifests that σ-π conjugated polymer strategy is a promising route for designing polymer host for efficient electrophosphorescence.

  6. Bipolar and Unipolar Silylene-Diphenylene σ-π Conjugated Polymer Route for Highly Efficient Electrophosphorescence

    PubMed Central

    Chang, Yao-Tang; Sharma, Sunil; Hung, Miao-Ken; Lee, Yu-Hsuan; Chen, Show-An

    2016-01-01

    σ-π conjugated polymer strategy is proposed for designing electroluminescent host polymers with silylene-diphenylene as the backbone repeat unit giving a high triplet energy (ET = 2.67 eV). By incorporation of high ET (3.0 eV) electron (oxadiazole, OXD) and hole (triphenyl amine, TPA) transport moieties, or TPA alone (in this case, the main chain acts as electron transport channel) as side arms on the silylene, the high ET bipolar and unipolar polymers are formed, allowing a use of iridium green phosphor (Ir(ppy)2(acac), Ir-G) (ET = 2.40 eV) as the dopant. The matching of energy levels of the dopant with the hosts, leading to charge trapping into it; and singlets and triplets of the exciplex and excimer can be harvested via energy transfer to the dopant. Using these host-guest systems as the emitting layer, chlorinated indium-tin-oxide (Cl-ITO) as the anode, and benzimidazole derivative (TPBI) as the electron transport layer, this two-layer device gives the high luminance efficiency 80.1 cd/A and external quantum efficiency 21.2%, which is the best among the report values for polymer light emitting diode (PLED) in the literatures. This example manifests that σ-π conjugated polymer strategy is a promising route for designing polymer host for efficient electrophosphorescence. PMID:27910921

  7. Luminescent Quantum Dots as Ultrasensitive Biological Labels

    NASA Astrophysics Data System (ADS)

    Nie, Shuming

    2000-03-01

    Highly luminescent semiconductor quantum dots have been covalently coupled to biological molecules for use in ultrasensitive biological detection. This new class of luminescent labels is considerably brighter and more resistant againt photobleaching in comparison with organic dyes. Quantum dots labeled with the protein transferrin undergo receptor-mediated endocytosis (RME) in cultured HeLa cells, and those dots that were conjugated to immunomolecules recognize specific antibodies or antigens. In addition, we show that DNA functionalized quantum dots can be used to target specific genes by hybridization. We expect that quantum dot bioconjugates will have a broad range of biological applications, such as ligand-receptor interactions, real-time monitoring of molecular trafficking inside living cells, multicolor fluorescence in-situ hybridization (FISH), high-sensitivity detection in miniaturized devices (e.g., DNA chips), and fluorescent tagging of combinatorial chemical libraries. A potential clinical application is the use of quantum dots for ultrasensitive viral RNA detection, in which as low as 100 copies of hepatitis C and HIV viruses per ml blood should be detected.

  8. Luminescent gold nanoparticles for bioimaging

    NASA Astrophysics Data System (ADS)

    Zhou, Chen

    Inorganic nanoparticles (NPs) with tunable and diverse material properties hold great potential as contrast agents for better disease management. Over the past decades, luminescent gold nanoparticles (AuNPs) with intrinsic emissions ranging from the visible to the near infrared have been synthesized and emerge as a new class of fluorophores for bioimaging. This dissertation aims to fundamentally understand the structure-property relationships in luminescent AuNPs and apply them as contrast agents to address some critical challenges in bioimaging at both the in vitro and in vivo level. In Chapter 2, we described the synthesized ~20 nm polycrystalline AuNPs (pAuNPs), which successfully integrated and enhanced plasmonic and fluorescence properties into a single AuNP through the grain size effect. The combination of these properties in one NP enabled AuNPs to serve as a multimodal contrast agent for in vitro optical microscopic imaging, making it possible to develop correlative microscopic imaging techniques. In Chapters 3-5, we proposed a feasible approach to optimize the in vivo kinetics and clearance profile of nanoprobes for multimodality in vivo bioimaging applications by using straightforward surface chemistry with luminescent AuNPs as a model. Luminescent glutathione-coated AuNPs of ~2 nm were synthesized. Investigation of the biodistribution showed that these glutathione-coated AuNPs (GS-AuNPs) exhibit stealthiness to the reticuloendothelial system (RES) organs and efficient renal clearance, with only 3.7+/-1.9% and 0.3+/-0.1% accumulating in the liver and spleen, and over 65% of the injection dose cleared out via the urine within the first 72 hours. In addition, ~2.5 nm NIR-emitting radioactive glutathione-coated [198Au]AuNPs (GS-[198Au]AuNPs) were synthesized for further evaluation of the pharmacokinetic profile of GS-AuNPs and potential multimodal imaging. The results showed that the GS-[198Au]AuNPs behave like small-molecule contrast agents in

  9. Delivery and reveal of localization of upconversion luminescent microparticles and quantum dots in the skin in vivo by fractional laser microablation, multimodal imaging, and optical clearing.

    PubMed

    Volkova, Elena K; Yanina, Irina Yu; Genina, Elina A; Bashkatov, Alexey N; Konyukhova, Julia G; Popov, Alexey P; Speranskaya, Elena S; Bucharskaya, Alla B; Navolokin, Nikita A; Goryacheva, Irina Yu; Kochubey, Vyacheslav I; Sukhorukov, Gleb B; Meglinski, Igor V; Tuchin, Valery V

    2018-02-01

    Delivery and spatial localization of upconversion luminescent microparticles [Y2O3:Yb, Er] (mean size ∼1.6  μm) and quantum dots (QDs) (CuInS2/ZnS nanoparticles coated with polyethylene glycol-based amphiphilic polymer, mean size ∼20  nm) inside rat skin was studied in vivo using a multimodal optical imaging approach. The particles were embedded into the skin dermis to the depth from 300 to 500  μm through microchannels performed by fractional laser microablation. Low-frequency ultrasound was applied to enhance penetration of the particles into the skin. Visualization of the particles was revealed using a combination of luminescent spectroscopy, optical coherence tomography, confocal microscopy, and histochemical analysis. Optical clearing was used to enhance the image contrast of the luminescent signal from the particles. It was demonstrated that the penetration depth of particles depends on their size, resulting in a different detection time interval (days) of the luminescent signal from microparticles and QDs inside the rat skin in vivo. We show that luminescent signal from the upconversion microparticles and QDs was detected after the particle delivery into the rat skin in vivo during eighth and fourth days, respectively. We hypothesize that the upconversion microparticles have created a long-time depot localized in the laser-created channels, as the QDs spread over the surrounding tissues. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.

  11. High Molecular Weight Polymers in the New Chemicals Program

    EPA Pesticide Factsheets

    There are three categories or types of High Molecular Weight (HMW, 10,000 daltons) polymers typically reviewed by the New Chemicals Program: Soluble, insoluble, and water absorbing. Each of the three types are treated differently.

  12. Donor-π-Acceptor Polymer with Alternating Triarylborane and Triphenylamine Moieties.

    PubMed

    Li, Haiyan; Jäkle, Frieder

    2010-05-12

    A luminescent main chain donor-π-acceptor-type polymer (4) was prepared via organometallic polycondensation reaction followed by post modification. With both electron-rich amine and electron-deficient borane moieties embedded in the main chain, 4 exhibits an interesting ambipolar character: it can be reduced and oxidized electrochemically at moderate potentials and shows a strong solvatochromic effect in the emission spectra. Complexation studies show that 4 selectively binds to fluoride and cyanide; quantitative titration with cyanide reveals a two-step binding process. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Lanthanide luminescence enhancements in porous silicon resonant microcavities.

    PubMed

    Jenie, S N Aisyiyah; Pace, Stephanie; Sciacca, Beniamino; Brooks, Robert D; Plush, Sally E; Voelcker, Nicolas H

    2014-08-13

    In this paper, the covalent immobilization and luminescence enhancement of a europium (Eu(III)) complex in a porous silicon (pSi) layer with a microcavity (pSiMC) structure are demonstrated. The alkyne-pendant arm of the Eu(III) complex was covalently immobilized on the azide-modified surface via ligand-assisted "click" chemistry. The design parameters of the microcavity were optimized to obtain an efficient luminescence-enhancing device. Luminescence enhancements by a factor of 9.5 and 3.0 were observed for Eu(III) complex bound inside the pSiMC as compared to a single layer and Bragg reflector of identical thickness, respectively, confirming the increased interaction between the immobilized molecules and the electric field in the spacer of the microcavity. When comparing pSiMCs with different resonance wavelength position, luminescence was enhanced when the resonance wavelength overlapped with the maximum emission wavelength of the Eu(III) complex at 614 nm, allowing for effective coupling between the confined light and the emitting molecules. The pSiMC also improved the spectral color purity of the Eu(III) complex luminescence. The ability of a pSiMC to act as an efficient Eu(III) luminescence enhancer, combined with the resulting sharp linelike emission, can be exploited for the development of ultrasensitive optical biosensors.

  14. A Facile and General Approach to Recoverable High-Strain Multishape Shape Memory Polymers.

    PubMed

    Li, Xingjian; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin

    2018-03-01

    Fabricating a single polymer network with no need to design complex structures to achieve an ideal combination of tunable high-strain multiple-shape memory effects and highly recoverable shape memory property is a great challenge for the real applications of advanced shape memory devices. Here, a facile and general approach to recoverable high-strain multishape shape memory polymers is presented via a random copolymerization of acrylate monomers and a chain-extended multiblock copolymer crosslinker. As-prepared shape memory networks show a large width at the half-peak height of the glass transition, far wider than current classical multishape shape memory polymers. A combination of tunable high-strain multishape memory effect and as high as 1000% recoverable strain in a single chemical-crosslinking network can be obtained. To the best of our knowledge, this is the first thermosetting material with a combination of highly recoverable strain and tunable high-strain multiple-shape memory effects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Two luminescent Zn(II) metal-organic frameworks for exceptionally selective detection of picric acid explosives.

    PubMed

    Shi, Zhi-Qiang; Guo, Zi-Jian; Zheng, He-Gen

    2015-05-14

    Two luminescent Zn(II) metal-organic frameworks were prepared from a π-conjugated thiophene-containing carboxylic acid ligand. These two MOFs show strong luminescene and their luminescence could be quenched by a series of nitroaromatic explosives. Importantly, they exhibit very highly sensitive and selective detection of picric acid compared to other nitroaromatic explosives.

  16. Peptides Displayed as High Density Brush Polymers Resist Proteolysis and Retain Bioactivity

    PubMed Central

    2015-01-01

    We describe a strategy for rendering peptides resistant to proteolysis by formulating them as high-density brush polymers. The utility of this approach is demonstrated by polymerizing well-established cell-penetrating peptides (CPPs) and showing that the resulting polymers are not only resistant to proteolysis but also maintain their ability to enter cells. The scope of this design concept is explored by studying the proteolytic resistance of brush polymers composed of peptides that are substrates for either thrombin or a metalloprotease. Finally, we demonstrate that the proteolytic susceptibility of peptide brush polymers can be tuned by adjusting the density of the polymer brush and offer in silico models to rationalize this finding. We contend that this strategy offers a plausible method of preparing peptides for in vivo use, where rapid digestion by proteases has traditionally restricted their utility. PMID:25314576

  17. Increasing lanthanide luminescence by use of the RETEL effect.

    PubMed

    Leif, Robert C; Vallarino, Lidia M; Becker, Margie C; Yang, Sean

    2006-08-01

    Luminescent lanthanide complexes produce emissions with the narrowest-known width at half maximum; however, their significant use in cytometry required an increase in luminescence intensity. The companion review, Leif et al., Cytometry 2006;69A:767-778, described a new technique for the enhancement of lanthanide luminescence, the Resonance Energy Transfer Enhanced Luminescence (RETEL) effect, which increases luminescence and is compatible with standard slide microscopy. The luminescence of the europium ion macrocyclic complex, EuMac, was increased by employing the RETEL effect. After adding the nonluminescent gadolinium ion complex of the thenoyltrifluoroacetonate (TTFA) ligand or the sodium salt of TTFA in ethanol solution, the EuMac-labeled sample was allowed to dry. Both a conventional arc lamp and a time-gated UV LED served as light sources for microscopic imaging. The emission intensity was measured with a CCD camera. Multiple time-gated images were summed with special software to permit analysis and effective presentation of the final image. With the RETEL effect, the luminescence of the EuMac-streptavidin conjugate increased at least six-fold upon drying. Nuclei of apoptotic cells were stained with DAPI and tailed with 5BrdUrd to which a EuMac-anti-5BrdU conjugate was subsequently attached. Time-gated images showed the long-lived EuMac luminescence but did not show the short-lived DAPI fluorescence. Imaging of DNA-synthesizing cells with an arc lamp showed that both S phase and apoptotic cells were labeled, and that their labeling patterns were different. The images of the luminescent EuMac and fluorescent DAPI were combined to produce a color image on a white background. This combination of simple chemistry, instrumentation, and presentation should make possible the inexpensive use of the lanthanide macrocycles, Quantum Dyes, as molecular diagnostics for cytological and histopathological microscopic imaging. (c) 2006 International Society for Analytical

  18. Highly selective and sensitive chemiluminescence biosensor for adenosine detection based on carbon quantum dots catalyzing luminescence released from aptamers functionalized graphene@magnetic β-cyclodextrin polymers.

    PubMed

    Sun, Yuanling; Ding, Chaofan; Lin, Yanna; Sun, Weiyan; Liu, Hao; Zhu, Xiaodong; Dai, Yuxue; Luo, Chuannan

    2018-08-15

    In this work, a highly selective and sensitive chemiluminescence (CL) biosensor was prepared for adenosine (AD) detection based on carbon quantum dots (CQDs) catalyzing the CL system of luminol-H 2 O 2 under alkaline environment and CQDs was released from the surface of AD aptamers functionalized graphene @ magnetic β-cyclodextrin polymers (GO@Fe 3 O 4 @β-CD@A-Apt). Firstly, GO@Fe 3 O 4 @β-CD and CQDs were prepared and characterized by transmission electron microscopy (TEM), scanning electron microscope (SEM), UV-Vis absorption spectra (UV), fluorescence spectra (FL), fourier transform infrared (FTIR) and X-ray powder diffraction (XRD). For GO@Fe 3 O 4 @β-CD, Fe 3 O 4 was easy to separate, GO had good biocompatibility and large specific surface area, and β-CD further increased the specific surface area of the adenosine polymers (A-Apt) to provided larger binding sites to A-Apt. Then, A-Apt was modified on the surface of GO@Fe 3 O 4 @β-CD while CQDs was modified by ssDNA (a single stranded DNA partially complementary to A-Apt). The immobilization property (GO@Fe 3 O 4 @β-CD to A-Apt) and the adsorption property (GO@Fe 3 O 4 @β-CD@A-Apt to CQDs-ssDNA) were sequentially researched. The base-supported chain-like polymers - GO@Fe 3 O 4 @β-CD@A-Apt/CQDs-ssDNA was successfully obtained. When AD existed, CQDs-ssDNA was released from the surface of GO@Fe 3 O 4 @β-CD@A-Apt and catalyzed CL. After that, under optimized CL conditions, AD could be measured with the linear concentration range of 5.0 × 10 -13 -5.0 × 10 -9 mol/L and the detection limit of 2.1 × 10 -13 mol/L (3δ) while the relative standard deviation (RSD) was 1.4%. Finally, the GO@Fe 3 O 4 @β-CD@A-Apt/CQDs-ssDNA-CL biosensor was used for the determination of AD in urine samples and recoveries ranged from 98.6% to 101.0%. Those satisfactory results illustrated the proposed CL biosensor could achieve highly selective, sensitive and reliable detection of AD and revealed potential

  19. College-Mentored Polymer/Materials Science Modules for Middle and High School Students

    ERIC Educational Resources Information Center

    Lorenzini, Robert G.; Lewis, Maurica S.; Montclare, Jin Kim

    2011-01-01

    Polymers are materials with vast environmental and economic ramifications, yet are generally not discussed in secondary education science curricula. We describe a program in which college mentors develop and implement hands-on, polymer-related experiments to supplement a standard, state regents-prescribed high school chemistry course, as well as a…

  20. Highly Luminescent 2D-Type Slab Crystals Based on a Molecular Charge-Transfer Complex as Promising Organic Light-Emitting Transistor Materials.

    PubMed

    Park, Sang Kyu; Kim, Jin Hong; Ohto, Tatsuhiko; Yamada, Ryo; Jones, Andrew O F; Whang, Dong Ryeol; Cho, Illhun; Oh, Sangyoon; Hong, Seung Hwa; Kwon, Ji Eon; Kim, Jong H; Olivier, Yoann; Fischer, Roland; Resel, Roland; Gierschner, Johannes; Tada, Hirokazu; Park, Soo Young

    2017-09-01

    A new 2:1 donor (D):acceptor (A) mixed-stacked charge-transfer (CT) cocrystal comprising isometrically structured dicyanodistyrylbenzene-based D and A molecules is designed and synthesized. Uniform 2D-type morphology is manifested by the exquisite interplay of intermolecular interactions. In addition to its appealing structural features, unique optoelectronic properties are unveiled. Exceptionally high photoluminescence quantum yield (Φ F ≈ 60%) is realized by non-negligible oscillator strength of the S 1 transition, and rigidified 2D-type structure. Moreover, this luminescent 2D-type CT crystal exhibits balanced ambipolar transport (µ h and µ e of ≈10 -4 cm 2 V -1 s -1 ). As a consequence of such unique optoelectronic characteristics, the first CT electroluminescence is demonstrated in a single active-layered organic light-emitting transistor (OLET) device. The external quantum efficiency of this OLET is as high as 1.5% to suggest a promising potential of luminescent mixed-stacked CT cocrystals in OLET applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    NASA Astrophysics Data System (ADS)

    Andersen, Claus E.

    2011-05-01

    Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic scintillator, attached to 10-20 m long optical fiber cables of plastic. During irradiation, each dosimeter probe spontaneously emits radioluminescence (RL) in proportion to the dose rate. The luminescence intensity can be detected with photomultiplier tubes, CCD cameras or other highly sensitive photodetectors. Some crystalline phosphors, such as carbon-doped aluminium oxide (Al2O3:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal therefore reflects the passively integrated dose. In contrast to thermoluminescence dosimetry, fiber-coupled OSL dosimetry may be performed in vivo while the dosimeter is still in the patient. Within the last few years, several improvements and new applications of these techniques have been published, and the objective of this review is to provide an introduction to this field and to outline some of these new results. Emphasis will be given to applications in medical dosimetry such as in vivo real-time dose verification in brachytherapy and methods aimed for improved quality assurance of linear accelerators.

  2. Luminescent and thermochromic properties of tellurium(IV) halide complexes with cesium

    NASA Astrophysics Data System (ADS)

    Sedakova, T. V.; Mirochnik, A. G.

    2016-02-01

    The spectral-luminescent and thermochromic properties of complex compounds of the composition Cs2TeHal6 (Hal = Cl, Br, I) are studied. The interrelation between the geometric structure and spectral-luminescent properties is studied using the example on complex compounds of tellurium(IV) halides with cesium. The Stokes shift and the luminescence intensity of Te(IV) ions with island octahedral coordination are found to depend on the position of the A band in the luminescence excitation spectra, the diffuse reflection, and the energy of the luminescent 3 P 1 → 1 S 0 transition of the tellurium(IV) ion. The maximum luminescence intensity and the minimum Stokes shift at 77 and 300 K are observed for Cs2TeCl6. The geometrical and electronic factors responsible for luminescence intensification in Te(IV) complexes under study are analyzed.

  3. Graphene Oxide Derivatives as Hole- and Electron-Extraction Layers for High-Performance Polymer Solar Cells

    DTIC Science & Technology

    2013-11-20

    Graphene oxide derivatives as hole- and electron- extraction layers for high-performance polymer solar cells Jun Liu,*a Michael Durstockb and Liming...oxide (GO) and its derivatives have been used as a new class of efficient hole- and electron-extraction materials in polymer solar cells (PSCs...new class of efficient hole- and electron-extraction materials in polymer solar cells (PSCs). Highly efficient and stable PSCs have been fabricated

  4. Pyrolytic synthesis and luminescence of porous lanthanide Eu-MOF.

    PubMed

    Jin, Guangya; Liu, Zhijian; Sun, Hongfa; Tian, Zhiyong

    2016-02-01

    A lanthanide metal coordination polymer [Eu2(BDC)3(DMSO)(H2O)] was synthesized by the reaction of europium oxide with benzene-1,3-dicarboxylic acid (H2BDC) in a mixed solution of dimethyl sulfoxide (DMSO) and water under hydrothermal conditions. The crystal structure of Eu2(BDC)3(DMSO)(H2O) was characterized by X-ray diffraction (XRD). Thermo-gravimetric analysis of Eu2(BDC)3(DMSO)(H2O) indicated that coordinated DMSO and H2O molecules could be removed to create Eu2(BDC)3(DMSO)(H2O)-py with permanent microporosity, which was also verified by powder XRD (PXRD) and elemental analysis. Both Eu2(BDC)3(DMSO)(H2O) and Eu2(BDC)3(DMSO)(H2O)-py showed mainly Eu-based luminescence and had characteristic emissions in the range 550-700 nm. Copyright © 2015 John Wiley & Sons, Ltd.

  5. High-Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High-Temperature Dielectric Materials.

    PubMed

    Azizi, Amin; Gadinski, Matthew R; Li, Qi; AlSaud, Mohammed Abu; Wang, Jianjun; Wang, Yi; Wang, Bo; Liu, Feihua; Chen, Long-Qing; Alem, Nasim; Wang, Qing

    2017-09-01

    Polymer dielectrics are the preferred materials of choice for power electronics and pulsed power applications. However, their relatively low operating temperatures significantly limit their uses in harsh-environment energy storage devices, e.g., automobile and aerospace power systems. Herein, hexagonal boron nitride (h-BN) films are prepared from chemical vapor deposition (CVD) and readily transferred onto polyetherimide (PEI) films. Greatly improved performance in terms of discharged energy density and charge-discharge efficiency is achieved in the PEI sandwiched with CVD-grown h-BN films at elevated temperatures when compared to neat PEI films and other high-temperature polymer and nanocomposite dielectrics. Notably, the h-BN-coated PEI films are capable of operating with >90% charge-discharge efficiencies and delivering high energy densities, i.e., 1.2 J cm -3 , even at a temperature close to the glass transition temperature of polymer (i.e., 217 °C) where pristine PEI almost fails. Outstanding cyclability and dielectric stability over a straight 55 000 charge-discharge cycles are demonstrated in the h-BN-coated PEI at high temperatures. The work demonstrates a general and scalable pathway to enable the high-temperature capacitive energy applications of a wide range of engineering polymers and also offers an efficient method for the synthesis and transfer of 2D nanomaterials at the scale demanded for applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Optically stimulated luminescence in Cu+ doped lithium orthophosphate

    NASA Astrophysics Data System (ADS)

    Barve, R. A.; Patil, R. R.; Moharil, S. V.; Bhatt, B. C.; Kulkarni, M. S.

    2015-02-01

    Optically stimulated luminescence (OSL) in Cu+ doped Li3PO4 synthesized by co-precipitation technique using different phosphorus precursors was studied. Changes in the luminescent properties were observed with change in the phosphorus precursors. All the synthesized phosphors showed intense fading but the OSL sensitivity was comparable to that of the commercially available Al2O3:C (Landauer Inc.). In general, BSL (blue stimulated luminescence) decay was very fast but the GSL (green stimulated luminescence) decay was comparable to that of Al2O3:C phosphor. Phosphors with fast decay, good sensitivity and intense fading are suitable for real-time dosimetry. Therefore, Cu-doped Li3PO4 could be developed for real-time dosimetry using a fiber optic based OSL reader system.

  7. Contributions from gallium vacancies and carbon-related defects to the ``yellow luminescence'' in GaN

    NASA Astrophysics Data System (ADS)

    Armitage, R.; Hong, William; Yang, Qing; Feick, H.; Gebauer, J.; Weber, E. R.; Hautakangas, S.; Saarinen, K.

    2003-05-01

    Carbon-doped GaN layers grown by molecular-beam epitaxy are studied with photoluminescence and positron annihilation spectroscopy. Semi-insulating layers doped with >1018 cm-3 carbon show a strong luminescence band centered at ˜2.2 eV (yellow luminescence). The absolute intensity of the 2.2 eV band is compared with the gallium vacancy concentration determined by positron annihilation spectroscopy. The results indicate that a high concentration of gallium vacancies is not necessary for yellow luminescence and that there is in fact a causal relationship between carbon and the 2.2 eV band. Markedly different deep-level ionization energies are found for the high-temperature quenching of the 2.2 eV photoluminescence in carbon-doped and reference samples. We propose that while the model of Neugebauer and Van de Walle [Appl. Phys. Lett. 69, 503 (1996)] applies for GaN of low carbon concentration, a different yellow luminescence mechanism is involved when the interstitial carbon concentration is comparable to or exceeds the gallium vacancy concentration.

  8. Synchronous luminescence spectroscopic characterization of blood elements of normal and patients with cervical cancer

    NASA Astrophysics Data System (ADS)

    Muthuvelu, K.; Shanmugam, Sivabalan; Koteeswaran, Dornadula; Srinivasan, S.; Venkatesan, P.; Aruna, Prakasarao; Ganesan, Singaravelu

    2011-03-01

    In this study the diagnostic potential of synchronous luminescence spectroscopy (SLS) technique for the characterization of normal and different pathological condition of cervix viz., moderately differentiated squamous cell carcinoma (MDSCC), poorly differentiated squamous cell carcinoma (PDSCC) and well differentiated squamous cell carcinoma (WDSSC). Synchronous fluorescence spectra were measured for 70 abnormal cases and 30 normal subjects. Characteristic, highly resolved peaks and significant spectral differences between normal and MDSCC, PDSCC and WDSCC cervical blood formed elements were obtained. The synchronous luminescence spectra of formed elements of normal and abnormal cervical cancer patients were subjected to statistical analysis. Synchronous luminescence spectroscopy provides 90% sensitivity and 92.6% specificity.

  9. Polymers, Polymers, Everywhere! A Workshop for Pre-High School Teachers and Students.

    ERIC Educational Resources Information Center

    Sherman, Marie

    1987-01-01

    Described is a workshop for grades 5-8 school teachers and students related to synthetic polymers. Participants become familiar with polymer theory and practice experiments they can use in class. Sources of materials used in the workshop are listed. (RH)

  10. Crosslinked polymer nanoparticles containing single conjugated polymer chains

    NASA Astrophysics Data System (ADS)

    Ponzio, Rodrigo A.; Marcato, Yésica L.; Gómez, María L.; Waiman, Carolina V.; Chesta, Carlos A.; Palacios, Rodrigo E.

    2017-06-01

    Conjugated polymer nanoparticles are widely used in fluorescent labeling and sensing, as they have mean radii between 5 and 100 nm, narrow size dispersion, high brightness, and are photochemically stable, allowing single particle detection with high spatial and temporal resolution. Highly crosslinked polymers formed by linking individual chains through covalent bonds yield high-strength rigid materials capable of withstanding dissolution by organic solvents. Hence, the combination of crosslinked polymers and conjugated polymers in a nanoparticulated material presents the possibility of interesting applications that require the combined properties of constituent polymers and nanosized dimension. In the present work, F8BT@pEGDMA nanoparticles composed of poly(ethylene glycol dimethacrylate) (pEGDMA; a crosslinked polymer) and containing the commercial conjugated polymer poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) were synthesized and characterized. Microemulsion polymerization was applied to produce F8BT@pEDGMA particles with nanosized dimensions in a ∼25% yield. Photophysical and size distribution properties of F8BT@pEDGMA nanoparticles were evaluated by various methods, in particular single particle fluorescence microscopy techniques. The results demonstrate that the crosslinking/polymerization process imparts structural rigidity to the F8BT@pEDGMA particles by providing resistance against dissolution/disintegration in organic solvents. The synthesized fluorescent crosslinked nanoparticles contain (for the most part) single F8BT chains and can be detected at the single particle level, using fluorescence microscopy, which bodes well for their potential application as molecularly imprinted polymer fluorescent nanosensors with high spatial and temporal resolution.

  11. Fabrication of luminescent porous silicon with stain etches and evidence that luminescence originates in amorphous layers

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Ksendzov, A.; Lin, T. L.; Pike, W. T.; Vasquez, R. P.; Wu, Z.-C.

    1992-01-01

    Simple immersion of Si in stain etches of HF:HNO3:H2O or NaNO2 in aqueous HF was used to produce films exhibiting luminescence in the visible similar to that of anodically-etched porous Si. All of the luminescent samples consist of amorphous porous Si in at least the near surface region. No evidence was found for small crystalline regions within these amorphous layers.

  12. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka; Toshito, Toshiyuki

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of 200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  13. Novel concepts for low-cost and high-efficient thin film solar cells

    NASA Astrophysics Data System (ADS)

    Gómez, D.; Menéndez, A.; Sánchez, P.; Martínez, A.; Andrés, L. J.; Menéndez, M. F.; Campos, N.; García, A.; Sánchez, B.

    2011-09-01

    This work presents the activities carried out at ITMA Materials Technology related to the building integration of thin film (TF) photovoltaics (PV). Three different approaches have been developed in order to achieve high efficient solar cells at low manufacturing costs: (i) a new route for manufacturing monolithical silicon based thin film solar cells on building materials, (ii) the use of metallic nanoparticles for light trapping (plasmonic effects and light scattering) and (iii) the luminescent sol-gel coating on glass for solar concentration. In the first case, amorphous silicon modules (single junction) have been successfully manufactured at lab scale on steel and commercial ceramic substrates with efficiencies of 5.4% and 4.0%, respectively. Promising initial attempts have been also made in ethylene tetrafluoroethylene (ETFE), a polymer with high potential in textile architecture. In a similar way, the development of nanotechnology based coatings (metallic nanoparticles and luminescent materials) represent the most innovative part of the work and some preliminary results are showed.

  14. Influence of processing conditions on point defects and luminescence centers in ZnO

    NASA Astrophysics Data System (ADS)

    Zhong, J.; Kitai, A. H.; Mascher, P.

    1993-12-01

    Positron lifetime spectroscopy and cathodoluminescence were employed to study luminescence centers in ZnO. The samples were high-purity polycrystalline ceramics sintered at temperatures ranging from 800 to 1400 C for 2 to 40 h. Scanning electron microscopy shows that as annealing temperatures and/or times increase, the average grain size increases and can reach 30 micron for samples sintered at 1200 C. At the same time, the positron bulk lifetime approaches theoretically estimated single-crystal values, while the integrated luminescence intensity increase significantly. A further increase of the sintering temperature beyond 1200 C results in a decrease in the luminescence intensity, in good agreement with the only weak luminescence observed in single-crystalline material. The positron lifetime spectra clearly show the existence of the dominant vacancy-type defect, most likely a complex involving V(sub Zn), or the divacancy, V(sub Zn)V(sub O), independent of sample thermal history. The concentration of this center steadily decreases with increasing sintering temperatures. It is concluded that the yellow luminescence centers are related to charged zinc vacancies trapped in the grain boundary regions. We propose that the observed broadness of the spectra likely originates from the modification of the electronic configuration of the luminescence centers due to their complex environment. A direct connection between the positron and the luminescence results could not be established; instead, they appear to reflect two relatively independent aspects of the samples. It could be shown, however, that positron annihilation measurements can be used effectively to monitor the evolution of the microstructure of the samples, in good agreement with scanning electron micrographs.

  15. A high brightness probe of polymer nanoparticles for biological imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Sirong; Zhu, Jiarong; Li, Yaping; Feng, Liheng

    2018-03-01

    Conjugated polymer nanoparticles (CPNs) with high brightness in long wavelength region were prepared by the nano-precipitation method. Based on fluorescence resonance energy transfer (FRET) mechanism, the high brightness property of the CPNs was realized by four different emission polymers. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) displayed that the CPNs possessed a spherical structure and an average diameter of 75 nm. Analysis assays showed that the CPNs had excellent biocompatibility, good photostability and low cytotoxicity. The CPNs were bio-modified with a cell penetrating peptide (Tat, a targeted element) through covalent link. Based on the entire wave fluorescence emission, the functionalized CPNs1-4 can meet multichannel and high throughput assays in cell and organ imaging. The contribution of the work lies in not only providing a new way to obtain a high brightness imaging probe in long wavelength region, but also using targeted cell and organ imaging.

  16. Spectral Characterization of a Novel Luminescent Organogel

    ERIC Educational Resources Information Center

    Waguespack, Yan; White, Shawn R.

    2007-01-01

    The spectroscopic-based luminescence experiments were designed to expose the students to various concepts of single-triplet excited states, electron spin, vibrational relaxation, fluorescence-phosphorescence lifetimes and quenching. The students were able to learn about luminescence spectra of the gel and have the experience of synthesizing a…

  17. Luminescence properties of defects in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, Michael A.; Morkoç, Hadis

    2005-03-01

    Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The point defects include native isolated defects (vacancies, interstitial, and antisites), intentional or unintentional impurities, as well as complexes involving different combinations of the isolated defects. Further improvements in device performance and longevity hinge on an in-depth understanding of point defects and their reduction. In this review a comprehensive and critical analysis of point defects in GaN, particularly their manifestation in luminescence, is presented. In addition to a comprehensive analysis of native point defects, the signatures of intentionally and unintentionally introduced impurities are addressed. The review discusses in detail the characteristics and the origin of the major luminescence bands including the ultraviolet, blue, green, yellow, and red bands in undoped GaN. The effects of important group-II impurities, such as Zn and Mg on the photoluminescence of GaN, are treated in detail. Similarly, but to a lesser extent, the effects of

  18. Highly Enhanced Raman Scattering on Carbonized Polymer Films.

    PubMed

    Yoon, Jong-Chul; Hwang, Jongha; Thiyagarajan, Pradheep; Ruoff, Rodney S; Jang, Ji-Hyun

    2017-06-28

    We have discovered a carbonized polymer film to be a reliable and durable carbon-based substrate for carbon enhanced Raman scattering (CERS). Commercially available SU8 was spin coated and carbonized (c-SU8) to yield a film optimized to have a favorable Fermi level position for efficient charge transfer, which results in a significant Raman scattering enhancement under mild measurement conditions. A highly sensitive CERS (detection limit of 10 -8 M) that was uniform over a large area was achieved on a patterned c-SU8 film and the Raman signal intensity has remained constant for 2 years. This approach works not only for the CMOS-compatible c-SU8 film but for any carbonized film with the correct composition and Fermi level, as demonstrated with carbonized-PVA (poly(vinyl alcohol)) and carbonized-PVP (polyvinylpyrollidone) films. Our study certainly expands the rather narrow range of Raman-active material platforms to include robust carbon-based films readily obtained from polymer precursors. As it uses broadly applicable and cheap polymers, it could offer great advantages in the development of practical devices for chemical/bio analysis and sensors.

  19. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework

    NASA Astrophysics Data System (ADS)

    Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing; Yang, Yu; Wang, Zhiyu; Qian, Guodong

    2017-01-01

    A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications.

  20. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.

    PubMed

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-03-06

    Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  1. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    PubMed Central

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548

  2. Optically Stimulated Luminescence Analysis Method for High Dose Rate Using an Optical Fiber Type Dosimeter

    NASA Astrophysics Data System (ADS)

    Ueno, Katsunori; Tominaga, Kazuo; Tadokoro, Takahiro; Ishizawa, Koji; Takahashi, Yoshinori; Kuwabara, Hitoshi

    2016-08-01

    The investigation of air dose rates at locations in the Fukushima Dai-ichi Nuclear Power Station is necessary for safe removal of the molten nuclear fuel. The target performance for the investigation is to analyze a dose rate in the range of 10-3 Gy/h to 102 Gy/h with a measurement precision of ±4.0% full scale (F.S.) at a measurement interval of 60 s. In order to achieve this target, the authors proposed an optically stimulated luminescence (OSL) analysis method using prompt OSL for a wide dynamic range of dose rates; the OSL is generated using BaFBr:Eu with a fast decay time constant. The luminescence intensity by prompt OSL was formulated by the electron concentration of the trapping state during gamma ray and stimulation light irradiations. The prototype OSL monitor using BaFBr:Eu was manufactured for investigation of prompt OSL and evaluation of the measurement precision. The time dependence of the luminescence intensity by prompt OSL was analyzed by irradiating the OSL sensor in a 60Co irradiation facility. The measured dose rates were obtained in a prompt mode and an accumulating mode with a precision of ±3.3% F.S. for the dose rate range of 9.5 ×10-4 Gy/h to 1.2 ×102 Gy/h.

  3. Zn/Cd/Cu- frameworks constructed by 3,3‧-diphenyldicarboxylate and 1,4-bis(1,2,4-triazol-1-yl)butane: Syntheses, structure, luminescence and luminescence sensing for metal ion in aqueous medium

    NASA Astrophysics Data System (ADS)

    Zhang, Mei-Na; Fan, Ting-Ting; Wang, Qiu-Shuang; Han, Hong-Liang; Li, Xia

    2018-02-01

    Three metal-organic frameworks (MOFs), [M(dpdc)(btb)0.5]n (M = Zn 1, Cd 2; dpdc = 3,3‧-diphenyldicarboxylate and btb = 1,4-bis(1,2,4-triazol-1-yl)butane) and [Cu3(dpdc)3(btb)2]n (3) were prepared and structurally determined. 1 is a 2D structure with the topology of {33·47·54·6}, while 2 possesses a 3D framework with the {312·429·514} topology. Complex 3 displays a 3D framework with the topology of {315.435.55}2{36.48.512.6.7}. 1-2 exhibit intense blue luminescence and high stability in water, which make them highly promising candidates as sensors using in aqueous medium. Complex 1 is a potential bi-functional chemosensor for Fe3+ and Al3+ ions while 2 displays a selective sensing ability to Fe3+ ion. Quenching mechanism of Fe3+ on the luminescence of 1-2 is attributed to the charge transfer process LMCT. 1 and 2 have same compositions but have different structures, thermally stabilities and different luminescence sensing functions. The relationship between MOF structures and luminescence sensing toward metal ions are further discussed.

  4. Multifunctional Optical Sensors for Nanomanometry and Nanothermometry: High-Pressure and High-Temperature Upconversion Luminescence of Lanthanide-Doped Phosphates-LaPO4/YPO4:Yb3+-Tm3.

    PubMed

    Runowski, Marcin; Shyichuk, Andrii; Tymiński, Artur; Grzyb, Tomasz; Lavín, Víctor; Lis, Stefan

    2018-05-23

    Upconversion luminescence of nano-sized Yb 3+ and Tm 3+ codoped rare earth phosphates, that is, LaPO 4 and YPO 4 , has been investigated under high-pressure (HP, up to ∼25 GPa) and high-temperature (293-773 K) conditions. The pressure-dependent luminescence properties of the nanocrystals, that is, energy red shift of the band centroids, changes of the band ratios, shortening of upconversion lifetimes, and so forth, make the studied nanomaterials suitable for optical pressure sensing in nanomanometry. Furthermore, thanks to the large energy difference (∼1800 cm -1 ), the thermalized states of Tm 3+ ions are spectrally well-separated, providing high-temperature resolution, required in optical nanothermometry. The temperature of the system containing such active nanomaterials can be determined on the basis of the thermally induced changes of the Tm 3+ band ratio ( 3 F 2,3 → 3 H 6 / 3 H 4 → 3 H 6 ), observed in the emission spectra. The advantage of such upconverting optical sensors is the use of near-infrared light, which is highly penetrable for many materials. The investigated nanomanometers/nanothermometers have been successfully applied, as a proof-of-concept of a novel bimodal optical gauge, for the determination of the temperature of the heated system (473 K), which was simultaneously compressed under HP (1.5 and 5 GPa).

  5. Can glacial shearing of sediment reset the signal used for luminescence dating?

    NASA Astrophysics Data System (ADS)

    Bateman, Mark D.; Swift, Darrel A.; Piotrowski, Jan A.; Rhodes, Edward J.; Damsgaard, Anders

    2018-04-01

    Understanding the geomorphology left by waxing and waning of former glaciers and ice sheets during the late Quaternary has been the focus of much research. This has been hampered by the difficulty in dating such features. Luminescence has the potential to be applied to glacial sediments but requires signal resetting prior to burial in order to provide accurate ages. This paper explores the possibility that, rather than relying on light to reset the luminescence signal, glacial processes underneath ice might cause resetting. Experiments were conducted on a ring-shear machine set up to replicate subglacial conditions and simulate the shearing that can occur within subglacial sediments. Luminescence measurement at the single grain level indicates that a number (albeit small) of zero-dosed grains were produced and that these increased in abundance with distance travelled within the shearing zone. Observed changes in grain shape characteristics with increasing shear distance indicate the presence of localised high pressure grain-to-grain stresses caused by grain bridges. This appears to explain why some grains became zeroed whilst others retained their palaeodose. Based on the observed experimental trend, it is thought that localised grain stress is a viable luminescence resetting mechanism. As such relatively short shearing distances might be sufficient to reset a small proportion of the luminescence signal within subglacial sediments. Dating of previously avoided subglacial sediments may therefore be possible.

  6. Towards Efficient Spectral Converters through Materials Design for Luminescent Solar Devices.

    PubMed

    McKenna, Barry; Evans, Rachel C

    2017-07-01

    Single-junction photovoltaic devices exhibit a bottleneck in their efficiency due to incomplete or inefficient harvesting of photons in the low- or high-energy regions of the solar spectrum. Spectral converters can be used to convert solar photons into energies that are more effectively captured by the photovoltaic device through a photoluminescence process. Here, recent advances in the fields of luminescent solar concentration, luminescent downshifting, and upconversion are discussed. The focus is specifically on the role that materials science has to play in overcoming barriers in the optical performance in all spectral converters and on their successful integration with both established (e.g., c-Si, GaAs) and emerging (perovskite, organic, dye-sensitized) cell types. Current challenges and emerging research directions, which need to be addressed for the development of next-generation luminescent solar devices, are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Neodymium doped fluoroindogallate glasses as highly-sensitive luminescent non-contact thermometers

    NASA Astrophysics Data System (ADS)

    Nunes, Luiz A. O.; Souza, Adelmo S.; Carlos, Luís D.; Malta, Oscar L.

    2017-01-01

    Trivalent neodymium (Nd3+) can be used as high performance temperature luminescent ion sensor, namely in the near infrared spectral region. The disadvantage presented in the use of this ion is that transitions from thermally coupled levels show very different emission intensities. In order to solve this critical problem we propose to use Nd3+-doped fluoroindogallate glasses with low phonon cutoff energy (500 cm-1) as the active medium. By using a dopant concentration that minimizes losses due to cross relaxation processes and detecting the emissions of the thermally coupled levels with a R928 photomultiplier, without correction response for the wavelength dependence of the intensity, we have succeeded in getting the highest relative thermal sensitivities so far observed, 2.5%ṡK-1 and 7.4%ṡK-1, for the 4F5/2 → 4I9/2/4F3/2 → 4I9/2 and 4F7/2 → 4I9/2/4F3/2 → 4I9/2 intensity ratios, respectively at 288 K.

  8. Highly flexible and all-solid-state paperlike polymer supercapacitors.

    PubMed

    Meng, Chuizhou; Liu, Changhong; Chen, Luzhuo; Hu, Chunhua; Fan, Shoushan

    2010-10-13

    In recent years, much effort have been dedicated to achieve thin, lightweight and even flexible energy-storage devices for wearable electronics. Here we demonstrate a novel kind of ultrathin all-solid-state supercapacitor configuration with an extremely simple process using two slightly separated polyaniline-based electrodes well solidified in the H(2)SO(4)-polyvinyl alcohol gel electrolyte. The thickness of the entire device is much comparable to that of a piece of commercial standard A4 print paper. Under its highly flexible (twisting) state, the integrate device shows a high specific capacitance of 350 F/g for the electrode materials, well cycle stability after 1000 cycles and a leakage current of as small as 17.2 μA. Furthermore, due to its polymer-based component structure, it has a specific capacitance of as high as 31.4 F/g for the entire device, which is more than 6 times that of current high-level commercial supercapacitor products. These highly flexible and all-solid-state paperlike polymer supercapacitors may bring new design opportunities of device configuration for energy-storage devices in the future wearable electronic area.

  9. Luminescent lanthanide chelates and methods of use

    DOEpatents

    Selvin, Paul R.; Hearst, John

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  10. Solution Adsorption Formation of a π-Conjugated Polymer/Graphene Composite for High-Performance Field-Effect Transistors.

    PubMed

    Liu, Yun; Hao, Wei; Yao, Huiying; Li, Shuzhou; Wu, Yuchen; Zhu, Jia; Jiang, Lei

    2018-01-01

    Semiconducting polymers with π-conjugated electronic structures have potential application in the large-scale printable fabrication of high-performance electronic and optoelectronic devices. However, owing to their poor environmental stability and high-cost synthesis, polymer semiconductors possess limited device implementation. Here, an approach for constructing a π-conjugated polymer/graphene composite material to circumvent these limitations is provided, and then this material is patterned into 1D arrays. Driven by the π-π interaction, several-layer polymers can be adsorbed onto the graphene planes. The low consumption of the high-cost semiconductor polymers and the mass production of graphene contribute to the low-cost fabrication of the π-conjugated polymer/graphene composite materials. Based on the π-conjugated system, a reduced π-π stacking distance between graphene and the polymer can be achieved, yielding enhanced charge-transport properties. Owing to the incorporation of graphene, the composite material shows improved thermal stability. More generally, it is believed that the construction of the π-conjugated composite shows clear possibility of integrating organic molecules and 2D materials into microstructure arrays for property-by-design fabrication of functional devices with large area, low cost, and high efficiency. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  12. Stacked Device of Polymer Light-Emitting Diode Driven by Metal-Base Organic Transistor

    NASA Astrophysics Data System (ADS)

    Yoneda, Kazuhiro; Nakayama, Ken-ichi; Yokoyama, Masaaki

    2008-02-01

    We fabricated a new light-emitting device that combined a polymer light-emitting diode (PLED) and a vertical-type metal-base organic transistor (MBOT) through a floating electrode. By employing a layered floating electrode of Mg:Ag/Au, the MBOT on the PLED was operated successfully and a current amplification factor of approximately 20 was observed. The PLED luminescence exceeding 100 cd/m2 can be modulated using the MBOT with a low base voltage (2.8 V) and VCC (8 V). The emission contrast (on/off ratio) was improved with insertion of an insulating layer under the base, and the cut-off frequency was estimated to be 8 kHz. This device is expected to be a promising driving system of organic light-emitting diode (OLED), realizing low voltage and high numerical aperture.

  13. The origin of luminescence from di[4-(4-diphenylaminophenyl)phenyl]sulfone (DAPSF), a blue light emitter: an X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study.

    PubMed

    Zhang, Duo; Zhang, Hui; Zhang, Xiaohong; Sham, Tsun-Kong; Hu, Yongfeng; Sun, Xuhui

    2016-03-07

    The electronic structure and optical properties of di[4-(4-diphenylaminophenyl)phenyl]sulfone (denoted as DAPSF), a highly efficient fluorophor, have been investigated using X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) spectroscopy at excitation energies across the C, N, O K-edges and the sulfur K-edge. The results indicate that the blue luminescence is mainly related to the sulfur functional group.

  14. Synthesis, structure, and luminescence property of a series of Ag–Ln coordination polymers with the N-heterocyclic carboxylato ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Jing, E-mail: jinjing_crystal@126.com; Chen, Chong; Gao, Yan

    Six Ln–Ag coordination polymers {[LnAg_2(IN)_4(H_2O)_5]·NO_3·2H_2O}{sub n} (Ln=Ho (1) and Tb (2), HIN=isonicotinic acid), {[PrAg_2(IN)_4(H_2O)_2]·NO_3·H_2O}{sub n} (3), [LnAg(pdc){sub 2}]{sub n} (Ln=Eu(4) and Pr (5), H{sub 2}pdc=3,4-pyridine-dicarboxylic acid) and [NdAg(bidc){sub 2}(H{sub 2}O){sub 4}]{sub n} (6) (H{sub 2}bidc=benzimidazole-5,6-dicarboxylic acid) have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, elemental analysis, IR, UV–vis-NIR absorption spectra, fluorescence spectra and thermogravimetric analysis. Structural analyses reveal that the six polymers exhibit 0D (polymer (1)), 1D (polymer (2)), 2D (polymers (3) and (5)) and 3D (polymers (4) and (6)) infinite structures, respectively. Polymers (1)–(6) exhibit the Ln(III) characteristic emission in the near-infrared (NIR) region or inmore » the visible region. Especially, the NIR emission bands of polymers 1, 5 and 6 evidently present shift or splitting due to formation of the Ln–Ag coordination polymers. This can be attributed to the tune of inner levels in Ln–Ag system caused by the interact and influence between the 4d orbital of the Ag(I) ion and the 4f orbital of the Ln(III) ion, which can be confirmed by the UV–vis-NIR absorption spectra of the polymers. In addition, the distortion of coordination geometry as well as difference of the coordination number around the Ag(I) ion affect the structure framework. - Graphical abstract: Six Ag–Ln coordination polymers have been hydrothermally synthesized and characterized. The photoluminescence properties were studied. The distortion of coordination geometry of Ag(I) ion affect structure framework. Introduction of Ag(I) cause wonderful changes to the NIR emission of Ln(III) ions. - Highlights: • Six Ln–Ag polymers have been synthesized and characterized. • The distortion of coordination geometry of Ag(I) ion affect structure framework. • Introduction of Ag(I) cause wonderful changes to

  15. Preparation and application of hollow molecularly imprinted polymers with a super-high selectivity to the template protein.

    PubMed

    Chen, Yang; He, Xi-Wen; Mao, Jie; Li, Wen-You; Zhang, Yu-Kui

    2013-10-01

    Protein-imprinted polymers with hollow cores that have a super-high imprinting factor were prepared by etching the core of the surface-imprinted polymers that used silica particles as the support. Lysozyme as template was modified onto the surface of silica particles by a covalent method, and after polymerization and the removal of template molecules, channels through the polymer layer were formed, which allowed a single-protein molecule to come into the hollow core and attach to the binding sites inside the polymer layer. The adsorption experiments demonstrated that the hollow imprinted polymers had an extremely high binding capacity and selectivity, and thus a super-high imprinting factor was obtained. The as-prepared imprinted polymers were used to separate the template lysozyme from egg white successfully, indicating its high selectivity and potential application in the field of separation of protein from real samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish

    PubMed Central

    Chen, Wenyan; Cai, Qiang; Zhao, Yuan; Zheng, Guojuan; Liang, Yuting

    2014-01-01

    Biogas slurry has become a serious pollution problem and anaerobic digestion is widely applied to pig manure treatment for environmental protection and energy recovery. To evaluate environmental risk of the emission of biogas slurry, luminescent bacteria (Vibrio fischeri), larvae and embryos of zebrafish (Danio rerio) were used to detect the acute and development toxicity of digested and post-treated slurry. Then the ability of treatment process was evaluated. The results showed that digested slurry displayed strong toxicity to both zebrafish and luminescent bacteria, while the EC50 for luminescent bacteria and the LC50 for larvae were only 6.81% (v/v) and 1.95% (v/v) respectively, and embryonic development was inhibited at just 1% (v/v). Slurry still maintained a high level of toxicity although it had been treated by membrane bioreactor (MBR), while the LC50 of larvae was 75.23% (v/v) and there was a little effect on the development of embryos and V. fischeri; the results also revealed that the zebrafish larvae are more sensitive than embryos and luminescent bacteria to pig slurry. Finally, we also found the toxicity removal rate was higher than 90% after the treatment of MBR according to toxicity tests. In conclusion, further treatment should be used in pig slurry disposal or reused of final effluent. PMID:24995598

  17. Luminescence of mesoporous silicon powders treated by high-pressure water vapor annealing

    NASA Astrophysics Data System (ADS)

    Gelloz, Bernard; Loni, Armando; Canham, Leigh; Koshida, Nobuyoshi

    2012-07-01

    We have studied the photoluminescence of nanocrystalline silicon microparticle powders fabricated by fragmentation of PSi membranes. Several porosities were studied. Some powders have been subjected to further chemical etching in HF in order to reduce the size of the silicon skeleton and reach quantum sizes. High-pressure water vapor annealing was then used to enhance both the luminescence efficiency and stability. Two visible emission bands were observed. A red band characteristic of the emission of Si nanocrystals and a blue band related to localized centers in oxidized powders. The blue band included a long-lived component, with a lifetime exceeding 1 sec. Both emission bands depended strongly on the PSi initial porosity. The colors of the processed powders were tunable from brown to off-white, depending on the level of oxidation. The surface area and pore volume of some powders were also measured and discussed. The targeted applications are in cosmetics and medicine.

  18. Luminescence Properties of Surface Radiation-Induced Defects in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Novikov, A. N.; Runets, L. P.; Stupak, A. P.

    2013-11-01

    Luminescence and luminescence excitation spectra are recorded for surface radiation-induced defects in lithium fluoride at temperatures of 77 and 293 K. The presence of three bands with relatively small intensity differences is a distinctive feature of the excitation spectrum. These bands are found to belong to the same type of defects. The positions of the peaks and the widths of the absorption and luminescence bands for these defects are determined. The luminescence decay time is measured. All the measured characteristics of these surface defects differ from those of previously known defects induced by radiation in the bulk of the crystals. It is found that the luminescence of surface defects in an ensemble of nanocrystals with different orientations is not polarized. The number of anion vacancies in the surface defects is estimated using the polarization measurements. It is shown that radiative scattering distorts the intensity ratios of the luminescence excitation bands located in different spectral regions.

  19. 21 CFR 73.2995 - Luminescent zinc sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Luminescent zinc sulfide. 73.2995 Section 73.2995 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2995 Luminescent zinc sulfide. (a) Identity...

  20. 21 CFR 73.2995 - Luminescent zinc sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Luminescent zinc sulfide. 73.2995 Section 73.2995 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2995 Luminescent zinc sulfide. (a) Identity...

  1. 21 CFR 73.2995 - Luminescent zinc sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Luminescent zinc sulfide. 73.2995 Section 73.2995 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2995 Luminescent zinc sulfide. (a) Identity...

  2. Two-photon absorption spectra of luminescent conducting polymers measured over wide spectral range

    NASA Astrophysics Data System (ADS)

    Meyer, Ron K.; Liess, Martin; Benner, Robert E.; Gellermann, Werner; Vardeny, Z. Valy; Ozaki, Masanori; Yoshino, Katsumi; Ding, Yi W.; Barton, Thomas J.

    1997-12-01

    We report the two-photon absorption (TPA) spectra of poly(2,5-dibutoxy-p-phenylene acetylene) (PPA-DBO), poly(2,5-dioctyloxy-p-phenylene vinylene) (PPV-DOO), and poly(3-hexylthiophene) in the spectral range extending from 576 nm to 846 nm. Using the Z-scan technique on the polymers in solution, we measured a strong two-photon allowed transition in all three materials which we attribute to the mAg essential state. In the case of PPA-DBO and PPV-DOO, TPA peaks were coincident with dispersion in the nonlinear refractive indices as detected by reduced aperture Z scan. In all three polymers this peak occurs at approximately 1.3 the bandgap energy. The excitonic nature of the excited electronic states in PPA-DBO is indicated by the lack of a TPA band at or near the 1Bu exciton position. Saturation was observed in the nonlinear index of refraction near spectral peaks, as well as an apparent reverse Kramers- Kronig effect.

  3. Achieving high performance polymer optoelectronic devices for high efficiency, long lifetime and low fabrication cost

    NASA Astrophysics Data System (ADS)

    Huang, Jinsong

    This thesis described three types of organic optoelectronic devices: polymer light emitting diodes (PLED), polymer photovoltaic solar cell, and organic photo detector. The research in this work focuses improving their performance including device efficiency, operation lifetime simplifying fabrication process. With further understanding in PLED device physics, we come up new device operation model and improved device architecture design. This new method is closely related to understanding of the science and physics at organic/metal oxide and metal oxide/metal interface. In our new device design, both material and interface are considered in order to confine and balance all injected carriers, which has been demonstrated very be successful in increasing device efficiency. We created two world records in device efficiency: 18 lm/W for white emission fluorescence PLED, 22 lm/W for red emission phosphorescence PLED. Slow solvent drying process has been demonstrated to significantly increase device efficiency in poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C 61-butyric acid methyl ester (PCBM) mixture polymer solar cell. From the mobility study by time of flight, the increase of efficiency can be well correlated to the improved carrier transport property due to P3HT crystallization during slow solvent drying. And it is found that, similar to PLED, balanced carrier mobility is essential in high efficient polymer solar cell. There is also a revolution in our device fabrication method. A unique device fabrication method is presented by an electronic glue based lamination process combined with interface modification as a one-step polymer solar cell fabrication process. It can completely skip the thermal evaporation process, and benefit device lifetime by several merits: no air reactive. The device obtained is metal free, semi-transparent, flexible, self-encapsulated, and comparable efficiency with that by regular method. We found the photomultiplication (PM) phenomenon in C

  4. Highly birefringent polymer microstructured optical fibers embedded in composite materials

    NASA Astrophysics Data System (ADS)

    Lesiak, P.; SzelÄ g, M.; Kuczkowski, M.; Domański, A. W.; Woliński, T. R.

    2013-05-01

    Composite structures are made from two or more constituent materials with significantly different physical or chemical properties and they remain separate and distinct in a macroscopic level within the finished structure. This feature allows for introducing highly birefringent polymer microstructured optical fibers into the composite material. These new fibers can consist of only two polymer materials (PMMA and PC) with similar value of the Young modulus as the composite material so any stresses induced in the composite material can be easily measured by the proposed embedded fiber optic sensors.

  5. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes.

    PubMed

    Liu, Mingjing; Ye, Zhiqiang; Xin, Chenglong; Yuan, Jingli

    2013-01-25

    Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4'-hydroxy-2,2':6',2''-terpyridine-6,6''-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu(3+) and Tb(3+) complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA-Eu(3+) is strongly dependent on the pH values in weakly acidic to neutral media (pK(a) = 5.8, pH 4.8-7.5), while that of HTTA-Tb(3+) is pH-independent. This unique luminescence response allows the mixture of HTTA-Eu(3+) and HTTA-Tb(3+) (the HTTA-Eu(3+)/Tb(3+) mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb(3+) emission at 540 nm to its Eu(3+) emission at 610 nm, I(540 nm)/I(610 nm), as a signal. Moreover, the UV absorption spectrum changes of the HTTA-Eu(3+)/Tb(3+) mixture at different pHs (pH 4.0-7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A(290 nm)/A(325 nm), as a signal. This feature enables the HTTA-Eu(3+)/Tb(3+) mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA-Eu(3+) and HTTA-Tb(3+) into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Growth and spectral-luminescent study of SrMoO4 crystals doped with Tm3+ ions

    NASA Astrophysics Data System (ADS)

    Dunaeva, E. E.; Zverev, P. G.; Doroshenko, M. E.; Nekhoroshikh, A. V.; Ivleva, L. I.; Osiko, V. V.

    2016-03-01

    SrMoO4 crystals doped with Tm3+ ions have been produced from a melt using the Czochralski method; their spectral-luminescent characteristics have been studied, and laser radiation has been generated at the wavelength of 1.94 μm using laser-diode excitation. The high absorption section at the wavelength of 795 nm, the fairly high luminescence section, the long lifetime at the upper laser level 3F4 of 1.5 ms, and a wide luminescence band allow one to hope for developing efficient tunable Tm3+: SrMoO4 crystal lasers with diode pumping in the range of 1.7-2.0 μm, which are capable of implementing SRS self-transformation of radiation into the middle IR band.

  7. Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers.

    PubMed

    Fu, Yuqiao; Huang, Yan; Meng, Wenjun; Wang, Zifeng; Bando, Yoshio; Golberg, Dmitri; Tang, Chengchun; Zhi, Chunyi

    2015-03-20

    Polymer composites with enhanced mechanical, thermal or optical performance usually suffer from poor ductility induced by confined mobility of polymer chains. Herein, highly ductile UV-shielding polymer composites are successfully fabricated. Boron nitride (BN) materials, with a wide band gap of around ∼6.0 eV, are used as fillers to achieve the remarkably improved UV-shielding performance of a polymer matrix. In addition, it is found that spherical morphology BN as a filler can keep the excellent ductility of the composites. For a comparison, it is demonstrated that traditional fillers, including conventional BN powders can achieve the similar UV-shielding performance but dramatically decrease the composite ductility. The mechanism behind this phenomenon is believed to be lubricant effects of BN nanospheres for sliding of polymer chains, which is in consistent with the thermal analyses. This study provides a new design to fabricate UV-shielding composite films with well-preserved ductility.

  8. High performance optical materials cyclo olefin polymer ZEONEX

    NASA Astrophysics Data System (ADS)

    Obuchi, Kazuyuki; Komatsu, Masaaki; Minami, Koji

    2007-09-01

    ZEON CORPORATION developed innovative optical plastic Cyclo Olefin Polymer (COP), ZEONEX (R) with own technology in 1990 then started commercial production of ZEONEX (R) for optical applications with its very unique properties such as high light transmission, low birefringence, low water absorption, and high glass-transition temperature etc. ZEONEX (R) exhibits outstanding optical performance even under high humidity and temperature conditions. In order to meet increasing requirements of optical market, ZEON CORPORATION newly developed ZEONEX (R)F52R which has high glass-transition temperature 156 deg. C and shows the feature of very low focal length change after high-temperature and high-humidity test.

  9. A highly stretchable, transparent, and conductive polymer

    DOE PAGES

    Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; ...

    2017-03-10

    Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm undermore » 100% strain—among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire– or carbon nanotube–based stretchable conductor films. As a result, the combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.« less

  10. A highly stretchable, transparent, and conductive polymer

    PubMed Central

    Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; Yan, Hongping; Jin, Lihua; Chen, Shucheng; Molina-Lopez, Francisco; Lissel, Franziska; Liu, Jia; Rabiah, Noelle I.; Chen, Zheng; Chung, Jong Won; Linder, Christian; Toney, Michael F.; Murmann, Boris; Bao, Zhenan

    2017-01-01

    Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain—among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire– or carbon nanotube–based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects. PMID:28345040

  11. A highly stretchable, transparent, and conductive polymer.

    PubMed

    Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; Yan, Hongping; Jin, Lihua; Chen, Shucheng; Molina-Lopez, Francisco; Lissel, Franziska; Liu, Jia; Rabiah, Noelle I; Chen, Zheng; Chung, Jong Won; Linder, Christian; Toney, Michael F; Murmann, Boris; Bao, Zhenan

    2017-03-01

    Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain-among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire- or carbon nanotube-based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.

  12. High Pressure and Temperature Effects in Polymers

    NASA Astrophysics Data System (ADS)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  13. Quantification of the luminescence intensity of natural materials

    NASA Technical Reports Server (NTRS)

    Watson, R. D.; Hessin, T. D.; Hemphill, W. R.

    1973-01-01

    Review of some of the results of an evaluation of the use of an airborne Fraunhofer line discriminator (FLD) for the detection of sun-stimulated luminescence emitted by rhodamine WT dye and some other materials. Rhodamine dye is reported to have been detected by airborne FDL in sea water in concentrations of less than 2 ppb. Experiments with a fluorescence spectrometer in the laboratory indicate that luminescence of some samples of crude and refined petroleum exceeds the luminescence intensity of rhodamine dye in concentrations of 10 ppm.

  14. Surface pressure measurement by oxygen quenching of luminescence

    NASA Technical Reports Server (NTRS)

    Gouterman, Martin P. (Inventor); Kavandi, Janet L. (Inventor); Gallery, Jean (Inventor); Callis, James B. (Inventor)

    1993-01-01

    Methods and compositions for measuring the pressure of an oxygen-containing gas on an aerodynamic surface, by oxygen-quenching of luminescence of molecular sensors is disclosed. Objects are coated with luminescent films containing a first sensor and at least one of two additional sensors, each of the sensors having luminescences that have different dependencies on temperature and oxygen pressure. Methods and compositions are also provided for improving pressure measurements (qualitative or quantitive) on surfaces coated with a film having one or more types of sensor.

  15. Surface pressure measurement by oxygen quenching of luminescence

    NASA Technical Reports Server (NTRS)

    Gouterman, Martin P. (Inventor); Kavandi, Janet L. (Inventor); Gallery, Jean (Inventor); Callis, James B. (Inventor)

    1994-01-01

    Methods and compositions for measuring the pressure of an oxygen-containing gas on an aerodynamic surface, by oxygen-quenching of luminescence of molecular sensors is disclosed. Objects are coated with luminescent films containing a first sensor and at least one of two additional sensors, each of the sensors having luminescences that have different dependencies on temperature and oxygen pressure. Methods and compositions are also provided for improving pressure measurements (qualitative or quantitive) on surfaces coated with a film having one or more types of sensor.

  16. A Brief Study on Toxic Combustion Products of the Polymers Used in High-Pressure Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hshieh, Fu-Yu; Beeson, Harold D.

    2005-01-01

    One likely cause of polymer ignition in a high-pressure oxygen system is the adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper investigates the feasibility of using the NASA pneumatic-impact system to conduct adiabatic-compression combustion tests and determines the toxic combustion products produced from the burning of five selected polymers. Five polymers commonly used in high-pressure oxygen systems, Zytel(Registered TradeMark) 42 (Nylon 6/6), Buna N (nitrile rubber), Witon(Registered TradeMark) A (copolymer of vinylidene fluoride and hexafluoropropylene), Neoflon(Registered TradeMark) (polychlorotrifluoroethylene), and Teflon(Registered TradeMark) (polytetrafluoroethylene), were tested in the NASA pneumatic-impact test system at 17.2-MPa oxygen pressure. The polymers were ignited and burned; combustion products were collected in a stainless-steel sample bottle and analyzed using various methods. The results show that the NASA pneumatic-impact system is an appropriate test system to conduct adiabatic-compression combustion tests and to collect combustion products for further chemical analysis. The composition of the combustion product gas generated from burning the five selected polymers are presented and discussed.

  17. The nature of unusual luminescence in natural calcite, CaCO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaft, M.; Nagli, L.; Panczer, G.

    2008-11-01

    The unusual luminescence of particular varieties of natural pink calcite (CaCO{sub 3}) samples was studied by laser-induced time-resolved luminescence spectroscopy at different temperatures. The luminescence is characterized by intense blue emission under short-wave UV lamp excitation with an extremely long decay time, accompanied by pink-orange luminescence under long wave UV excitation. Our investigation included optical absorption, natural thermostimulated luminescence (NTL) and Laser-Induced Breakdown Spectroscopy (LIBS) studies. Two luminescence centers were detected: a narrow violet band, with {lambda}{sub max} = 412 nm, {Delta} = 45 nm, two decay components of {tau}{sub 1} = 5 ns and {tau}{sub 2} = 7.2 ms,more » accompanied by very long afterglow, and an orange emission band with {lambda}{sub max} = 595 nm, {Delta} = 90 nm and {tau} = 5 ns. Both luminescence centers are thermally unstable with the blue emission disappearing after heating at 500 C, and the orange emission disappearing after heating at different temperatures starting from 230 C, although sometimes it is stable up to 500 C in different samples. Both centers have spectral-kinetic properties very unusual for mineral luminescence, which in combination with extremely low impurity concentrations, prevent their identification with specific impurity related emission. The most likely explanation of these observations may be the presence of radiation-induced luminescence centers. The long violet afterglow is evidently connected with trapped charge carrier liberation, with their subsequent migration through the valence band and ultimate recombination with a radiation-induced center responsible for the unusual violet luminescence.« less

  18. Recent Advances in the Development of Processable High-Temperature POLYMERS1

    NASA Astrophysics Data System (ADS)

    Meador, Michael A.

    1998-08-01

    High-temperature polymers have found widespread use in aerospace and electronics applications. This review deals with recent developments in the chemistry of these materials that have led to improvements in processability and high-temperature stability.

  19. Coordination polymer-derived nano-sized zinc ferrite with excellent performance in nitro-explosive detection.

    PubMed

    Singha, Debal Kanti; Mahata, Partha

    2017-08-29

    Herein, a mixed metal coordination polymer, {(H 2 pip)[Zn 1/3 Fe 2/3 (pydc-2,5) 2 (H 2 O)]·2H 2 O} 1 {where H 2 pip = piperazinediium and pydc-2,5 = pyridine-2,5-dicarboxylate}, was successfully synthesized using a hydrothermal technique. To confirm the structure and phase purity of 1, single crystals of an isomorphous pure Fe compound, {(H 2 pip)[Fe(pydc-2,5) 2 (H 2 O)]·2H 2 O} 1a, were synthesized based on similar synthetic conditions. Single crystal X-ray data of 1a confirmed the one-dimensional anionic metal-organic coordination polymer hydrogen bonded with protonated piprazine (piperazinediium) and lattice water molecules. The phase purity of 1 and 1a were confirmed via powder X-ray diffraction. Compound 1 was systematically characterized using IR, TGA, SEM, and EDX elemental mapping analysis. Compound 1 was used as a single source precursor for the preparation of nano-sized ZnFe 2 O 4 via thermal decomposition. The as-obtained ZnFe 2 O 4 was fully characterized using PXRD, SEM, TEM, and EDX elemental mapping analysis. It was found that ZnFe 2 O 4 was formed in its pure form with particle size in the nano-dimension. The aqueous dispersion of nano-sized ZnFe 2 O 4 exhibits a strong emission at 402 nm upon excitation at 310 nm. This emissive property was employed for luminescence-based detection of nitroaromatic explosives in an aqueous medium through luminescence quenching for the first time. Importantly, selective detections have been observed for phenolic nitroaromatics based on differential luminescence quenching behaviour along with a detection limit of 57 ppb for 2,4,6-trinitrophenol (TNP) in water.

  20. A water stable europium coordination polymer as fluorescent sensor for detecting Fe3+, CrO42-, and Cr2O72- ions

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Zhang, Xiaolei; Gao, Peng; Hu, Ming

    2018-02-01

    A europium coordination polymer constructed by the 4‧-(4-carboxyphenyl)- 2,2‧:6‧,2″-terpyridine ligand (HL), namely, [EuL(CH3COO)Cl]n (1), has been prepared by the solvothermal method. Compound 1 was structurally characterized by the elemental analysis, FT-IR, powder X-ray diffractions (PXRD), thermogravimetric (TG) analysis, and single-crystal X-ray diffraction. Complex 1 displays a novel linear chain structure, which further extends to the 3D supramolecular structure via π···π and hydrogen bonds interactions. The luminescent properties of 1 were investigated in detail, which exhibit the fluorescent sensing for detecting Fe3+, CrO42-, and Cr2O72- ions in aqueous solution, respectively. In addition, 1 shows high sensitive and selective sensing for CrO42- and Cr2O72- anions with the great quenching efficiency. Furthermore, the luminescent sensing mechanisms of differentiating analytes are explored in detail. It is worth noting that there exists the weak interaction between Fe3+ ions and carboxylate oxygen atoms of CH3COO- groups through XPS characterization, resulting in the high quenching effect of 1.