Sample records for highly non-linear problem

  1. Multigrid approaches to non-linear diffusion problems on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.

  2. Enriched Imperialist Competitive Algorithm for system identification of magneto-rheological dampers

    NASA Astrophysics Data System (ADS)

    Talatahari, Siamak; Rahbari, Nima Mohajer

    2015-10-01

    In the current research, the imperialist competitive algorithm is dramatically enhanced and a new optimization method dubbed as Enriched Imperialist Competitive Algorithm (EICA) is effectively introduced to deal with high non-linear optimization problems. To conduct a close examination of its functionality and efficacy, the proposed metaheuristic optimization approach is actively employed to sort out the parameter identification of two different types of hysteretic Bouc-Wen models which are simulating the non-linear behavior of MR dampers. Two types of experimental data are used for the optimization problems to minutely examine the robustness of the proposed EICA. The obtained results self-evidently demonstrate the high adaptability of EICA to suitably get to the bottom of such non-linear and hysteretic problems.

  3. Pupils' over-reliance on linearity: a scholastic effect?

    PubMed

    Van Dooren, Wim; De Bock, Dirk; Janssens, Dirk; Verschaffel, Lieven

    2007-06-01

    From upper elementary education on, children develop a tendency to over-use linearity. Particularly, it is found that many pupils assume that if a figure enlarges k times, the area enlarges k times too. However, most research was conducted with traditional, school-like word problems. This study examines whether pupils also over-use linearity if non-linear problems are embedded in meaningful, authentic performance tasks instead of traditional, school-like word problems, and whether this experience influences later behaviour. Ninety-three sixth graders from two primary schools in Flanders, Belgium. Pupils received a pre-test with traditional word problems. Those who made a linear error on the non-linear area problem were subjected to individual interviews. They received one new non-linear problem, in the S-condition (again a traditional, scholastic word problem), D-condition (the same word problem with a drawing) or P-condition (a meaningful performance-based task). Shortly afterwards, pupils received a post-test, containing again a non-linear word problem. Most pupils from the S-condition displayed linear reasoning during the interview. Offering drawings (D-condition) had a positive effect, but presenting the problem as a performance task (P-condition) was more beneficial. Linear reasoning was nearly absent in the P-condition. Remarkably, at the post-test, most pupils from all three groups again applied linear strategies. Pupils' over-reliance on linearity seems partly elicited by the school-like word problem format of test items. Pupils perform much better if non-linear problems are offered as performance tasks. However, a single experience does not change performances on a comparable word problem test afterwards.

  4. A Non-linear Geodetic Data Inversion Using ABIC for Slip Distribution on a Fault With an Unknown dip Angle

    NASA Astrophysics Data System (ADS)

    Fukahata, Y.; Wright, T. J.

    2006-12-01

    We developed a method of geodetic data inversion for slip distribution on a fault with an unknown dip angle. When fault geometry is unknown, the problem of geodetic data inversion is non-linear. A common strategy for obtaining slip distribution is to first determine the fault geometry by minimizing the square misfit under the assumption of a uniform slip on a rectangular fault, and then apply the usual linear inversion technique to estimate a slip distribution on the determined fault. It is not guaranteed, however, that the fault determined under the assumption of a uniform slip gives the best fault geometry for a spatially variable slip distribution. In addition, in obtaining a uniform slip fault model, we have to simultaneously determine the values of the nine mutually dependent parameters, which is a highly non-linear, complicated process. Although the inverse problem is non-linear for cases with unknown fault geometries, the non-linearity of the problems is actually weak, when we can assume the fault surface to be flat. In particular, when a clear fault trace is observed on the EarthOs surface after an earthquake, we can precisely estimate the strike and the location of the fault. In this case only the dip angle has large ambiguity. In geodetic data inversion we usually need to introduce smoothness constraints in order to compromise reciprocal requirements for model resolution and estimation errors in a natural way. Strictly speaking, the inverse problem with smoothness constraints is also non-linear, even if the fault geometry is known. The non-linearity has been dissolved by introducing AkaikeOs Bayesian Information Criterion (ABIC), with which the optimal value of the relative weight of observed data to smoothness constraints is objectively determined. In this study, using ABIC in determining the optimal dip angle, we dissolved the non-linearity of the inverse problem. We applied the method to the InSAR data of the 1995 Dinar, Turkey earthquake and obtained a much shallower dip angle than before.

  5. Non-linear analysis of wave progagation using transform methods and plates and shells using integral equations

    NASA Astrophysics Data System (ADS)

    Pipkins, Daniel Scott

    Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially.

  6. A Large-Particle Monte Carlo Code for Simulating Non-Linear High-Energy Processes Near Compact Objects

    NASA Technical Reports Server (NTRS)

    Stern, Boris E.; Svensson, Roland; Begelman, Mitchell C.; Sikora, Marek

    1995-01-01

    High-energy radiation processes in compact cosmic objects are often expected to have a strongly non-linear behavior. Such behavior is shown, for example, by electron-positron pair cascades and the time evolution of relativistic proton distributions in dense radiation fields. Three independent techniques have been developed to simulate these non-linear problems: the kinetic equation approach; the phase-space density (PSD) Monte Carlo method; and the large-particle (LP) Monte Carlo method. In this paper, we present the latest version of the LP method and compare it with the other methods. The efficiency of the method in treating geometrically complex problems is illustrated by showing results of simulations of 1D, 2D and 3D systems. The method is shown to be powerful enough to treat non-spherical geometries, including such effects as bulk motion of the background plasma, reflection of radiation from cold matter, and anisotropic distributions of radiating particles. It can therefore be applied to simulate high-energy processes in such astrophysical systems as accretion discs with coronae, relativistic jets, pulsar magnetospheres and gamma-ray bursts.

  7. Comparisons of linear and nonlinear pyramid schemes for signal and image processing

    NASA Astrophysics Data System (ADS)

    Morales, Aldo W.; Ko, Sung-Jea

    1997-04-01

    Linear filters banks are being used extensively in image and video applications. New research results in wavelet applications for compression and de-noising are constantly appearing in the technical literature. On the other hand, non-linear filter banks are also being used regularly in image pyramid algorithms. There are some inherent advantages in using non-linear filters instead of linear filters when non-Gaussian processes are present in images. However, a consistent way of comparing performance criteria between these two schemes has not been fully developed yet. In this paper a recently discovered tool, sample selection probabilities, is used to compare the behavior of linear and non-linear filters. In the conversion from weights of order statistics (OS) filters to coefficients of the impulse response is obtained through these probabilities. However, the reverse problem: the conversion from coefficients of the impulse response to the weights of OS filters is not yet fully understood. One of the reasons for this difficulty is the highly non-linear nature of the partitions and generating function used. In the present paper the problem is posed as an optimization of integer linear programming subject to constraints directly obtained from the coefficients of the impulse response. Although the technique to be presented in not completely refined, it certainly appears to be promising. Some results will be shown.

  8. Fleet Assignment Using Collective Intelligence

    NASA Technical Reports Server (NTRS)

    Antoine, Nicolas E.; Bieniawski, Stefan R.; Kroo, Ilan M.; Wolpert, David H.

    2004-01-01

    Product distribution theory is a new collective intelligence-based framework for analyzing and controlling distributed systems. Its usefulness in distributed stochastic optimization is illustrated here through an airline fleet assignment problem. This problem involves the allocation of aircraft to a set of flights legs in order to meet passenger demand, while satisfying a variety of linear and non-linear constraints. Over the course of the day, the routing of each aircraft is determined in order to minimize the number of required flights for a given fleet. The associated flow continuity and aircraft count constraints have led researchers to focus on obtaining quasi-optimal solutions, especially at larger scales. In this paper, the authors propose the application of this new stochastic optimization algorithm to a non-linear objective cold start fleet assignment problem. Results show that the optimizer can successfully solve such highly-constrained problems (130 variables, 184 constraints).

  9. Performance and limitations of p-version finite element method for problems containing singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, K.K.; Surana, K.S.

    1996-10-01

    In this paper, the authors investigate the performance of p-version Least Squares Finite Element Formulation (LSFEF) for a hyperbolic system of equations describing a one-dimensional radial flow of an upper-convected Maxwell fluid. This problem has r{sup 2} singularity in stress and r{sup {minus}1} singularity in velocity at r = 0. By carefully controlling the inner radius r{sub j}, Deborah number DE and Reynolds number Re, this problem can be used to simulate the following four classes of problems: (a) smooth linear problems, (b) smooth non-linear problems, (c) singular linear problems and (d) singular non-linear problems. They demonstrate that in casesmore » (a) and (b) the p-version method, in particular p-version LSFEF is meritorious. However, for cases (c) and (d) p-version LSFEF, even with extreme mesh refinement and very high p-levels, either produces wrong solutions, or results in the failure of the iterative solution procedure. Even though in the numerical studies they have considered p-version LSFEF for the radial flow of the upper-convected Maxwell fluid, the findings and conclusions are equally valid for other smooth and singular problems as well, regardless of the formulation strategy chosen and element approximation functions employed.« less

  10. Non-linear analytic and coanalytic problems ( L_p-theory, Clifford analysis, examples)

    NASA Astrophysics Data System (ADS)

    Dubinskii, Yu A.; Osipenko, A. S.

    2000-02-01

    Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the "orthogonal" sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented.

  11. Multi-threaded parallel simulation of non-local non-linear problems in ultrashort laser pulse propagation in the presence of plasma

    NASA Astrophysics Data System (ADS)

    Baregheh, Mandana; Mezentsev, Vladimir; Schmitz, Holger

    2011-06-01

    We describe a parallel multi-threaded approach for high performance modelling of wide class of phenomena in ultrafast nonlinear optics. Specific implementation has been performed using the highly parallel capabilities of a programmable graphics processor.

  12. FAST TRACK PAPER: Non-iterative multiple-attenuation methods: linear inverse solutions to non-linear inverse problems - II. BMG approximation

    NASA Astrophysics Data System (ADS)

    Ikelle, Luc T.; Osen, Are; Amundsen, Lasse; Shen, Yunqing

    2004-12-01

    The classical linear solutions to the problem of multiple attenuation, like predictive deconvolution, τ-p filtering, or F-K filtering, are generally fast, stable, and robust compared to non-linear solutions, which are generally either iterative or in the form of a series with an infinite number of terms. These qualities have made the linear solutions more attractive to seismic data-processing practitioners. However, most linear solutions, including predictive deconvolution or F-K filtering, contain severe assumptions about the model of the subsurface and the class of free-surface multiples they can attenuate. These assumptions limit their usefulness. In a recent paper, we described an exception to this assertion for OBS data. We showed in that paper that a linear and non-iterative solution to the problem of attenuating free-surface multiples which is as accurate as iterative non-linear solutions can be constructed for OBS data. We here present a similar linear and non-iterative solution for attenuating free-surface multiples in towed-streamer data. For most practical purposes, this linear solution is as accurate as the non-linear ones.

  13. Assessing non-uniqueness: An algebraic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, Don W.

    Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.

  14. Iterative algorithms for a non-linear inverse problem in atmospheric lidar

    NASA Astrophysics Data System (ADS)

    Denevi, Giulia; Garbarino, Sara; Sorrentino, Alberto

    2017-08-01

    We consider the inverse problem of retrieving aerosol extinction coefficients from Raman lidar measurements. In this problem the unknown and the data are related through the exponential of a linear operator, the unknown is non-negative and the data follow the Poisson distribution. Standard methods work on the log-transformed data and solve the resulting linear inverse problem, but neglect to take into account the noise statistics. In this study we show that proper modelling of the noise distribution can improve substantially the quality of the reconstructed extinction profiles. To achieve this goal, we consider the non-linear inverse problem with non-negativity constraint, and propose two iterative algorithms derived using the Karush-Kuhn-Tucker conditions. We validate the algorithms with synthetic and experimental data. As expected, the proposed algorithms out-perform standard methods in terms of sensitivity to noise and reliability of the estimated profile.

  15. New Representation of Bearings in LS-DYNA

    NASA Technical Reports Server (NTRS)

    Carney, Kelly S.; Howard, Samuel A.; Miller, Brad A.; Benson, David J.

    2014-01-01

    Non-linear, dynamic, finite element analysis is used in various engineering disciplines to evaluate high-speed, dynamic impact and vibration events. Some of these applications require connecting rotating to stationary components. For example, bird impacts on rotating aircraft engine fan blades are a common analysis performed using this type of analysis tool. Traditionally, rotating machines utilize some type of bearing to allow rotation in one degree of freedom while offering constraints in the other degrees of freedom. Most times, bearings are modeled simply as linear springs with rotation. This is a simplification that is not necessarily accurate under the conditions of high-velocity, high-energy, dynamic events such as impact problems. For this reason, it is desirable to utilize a more realistic non-linear force-deflection characteristic of real bearings to model the interaction between rotating and non-rotating components during dynamic events. The present work describes a rolling element bearing model developed for use in non-linear, dynamic finite element analysis. This rolling element bearing model has been implemented in LS-DYNA as a new element, *ELEMENT_BEARING.

  16. Non-linear aeroelastic prediction for aircraft applications

    NASA Astrophysics Data System (ADS)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research in this domain. This is set within the context of a generic industrial process and the requirements of UK and US aeroelastic qualification. A range of test cases, from simple small DOF cases to full aircraft, have been used to evaluate and validate the non-linear methods developed and to make comparison with the linear methods in everyday use. These have focused mainly on aerodynamic non-linearity, although some results for structural non-linearity are also presented. The challenges associated with time domain (coupled computational fluid dynamics-computational structural model (CFD-CSM)) methods have been addressed through the development of grid movement, fluid-structure coupling, and control surface movement technologies. Conclusions regarding the accuracy and computational cost of these are presented. The computational cost of time-domain methods, despite substantial improvements in efficiency, remains high. However, significant advances have been made in reduced order methods, that allow non-linear behaviour to be modelled, but at a cost comparable with that of the regular linear methods. Of particular note is a method based on Hopf bifurcation that has reached an appropriate maturity for deployment on real aircraft configurations, though only limited results are presented herein. Results are also presented for dynamically linearised CFD approaches that hold out the possibility of non-linear results at a fraction of the cost of time coupled CFD-CSM methods. Local linearisation approaches (higher order harmonic balance and continuation method) are also presented; these have the advantage that no prior assumption of the nature of the aeroelastic instability is required, but currently these methods are limited to low DOF problems and it is thought that these will not reach a level of maturity appropriate to real aircraft problems for some years to come. Nevertheless, guidance on the most likely approaches has been derived and this forms the basis for ongoing research. It is important to recognise that the aeroelastic design and qualification requires a variety of methods applicable at different stages of the process. The methods reported herein are mapped to the process, so that their applicability and complementarity may be understood. Overall, the programme has provided a suite of methods that allow realistic consideration of non-linearity in the aeroelastic design and qualification of aircraft. Deployment of these methods is underway in the industrial environment, but full realisation of the benefit of these approaches will require appropriate engagement with the standards community so that safety standards may take proper account of the inclusion of non-linearity.

  17. Non-linear eigensolver-based alternative to traditional SCF methods

    NASA Astrophysics Data System (ADS)

    Gavin, B.; Polizzi, E.

    2013-05-01

    The self-consistent procedure in electronic structure calculations is revisited using a highly efficient and robust algorithm for solving the non-linear eigenvector problem, i.e., H({ψ})ψ = Eψ. This new scheme is derived from a generalization of the FEAST eigenvalue algorithm to account for the non-linearity of the Hamiltonian with the occupied eigenvectors. Using a series of numerical examples and the density functional theory-Kohn/Sham model, it will be shown that our approach can outperform the traditional SCF mixing-scheme techniques by providing a higher converge rate, convergence to the correct solution regardless of the choice of the initial guess, and a significant reduction of the eigenvalue solve time in simulations.

  18. Non-linear dual-phase-lag model for analyzing heat transfer phenomena in living tissues during thermal ablation.

    PubMed

    Kumar, P; Kumar, Dinesh; Rai, K N

    2016-08-01

    In this article, a non-linear dual-phase-lag (DPL) bio-heat transfer model based on temperature dependent metabolic heat generation rate is derived to analyze the heat transfer phenomena in living tissues during thermal ablation treatment. The numerical solution of the present non-linear problem has been done by finite element Runge-Kutta (4,5) method which combines the essence of Runge-Kutta (4,5) method together with finite difference scheme. Our study demonstrates that at the thermal ablation position temperature predicted by non-linear and linear DPL models show significant differences. A comparison has been made among non-linear DPL, thermal wave and Pennes model and it has been found that non-linear DPL and thermal wave bio-heat model show almost same nature whereas non-linear Pennes model shows significantly different temperature profile at the initial stage of thermal ablation treatment. The effect of Fourier number and Vernotte number (relaxation Fourier number) on temperature profile in presence and absence of externally applied heat source has been studied in detail and it has been observed that the presence of externally applied heat source term highly affects the efficiency of thermal treatment method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. An automatic multigrid method for the solution of sparse linear systems

    NASA Technical Reports Server (NTRS)

    Shapira, Yair; Israeli, Moshe; Sidi, Avram

    1993-01-01

    An automatic version of the multigrid method for the solution of linear systems arising from the discretization of elliptic PDE's is presented. This version is based on the structure of the algebraic system solely, and does not use the original partial differential operator. Numerical experiments show that for the Poisson equation the rate of convergence of our method is equal to that of classical multigrid methods. Moreover, the method is robust in the sense that its high rate of convergence is conserved for other classes of problems: non-symmetric, hyperbolic (even with closed characteristics) and problems on non-uniform grids. No double discretization or special treatment of sub-domains (e.g. boundaries) is needed. When supplemented with a vector extrapolation method, high rates of convergence are achieved also for anisotropic and discontinuous problems and also for indefinite Helmholtz equations. A new double discretization strategy is proposed for finite and spectral element schemes and is found better than known strategies.

  20. Study of coherent synchrotron radiation effects by means of a new simulation code based on the non-linear extension of the operator splitting method

    NASA Astrophysics Data System (ADS)

    Dattoli, G.; Migliorati, M.; Schiavi, A.

    2007-05-01

    The coherent synchrotron radiation (CSR) is one of the main problems limiting the performance of high-intensity electron accelerators. The complexity of the physical mechanisms underlying the onset of instabilities due to CSR demands for accurate descriptions, capable of including the large number of features of an actual accelerating device. A code devoted to the analysis of these types of problems should be fast and reliable, conditions that are usually hardly achieved at the same time. In the past, codes based on Lie algebraic techniques have been very efficient to treat transport problems in accelerators. The extension of these methods to the non-linear case is ideally suited to treat CSR instability problems. We report on the development of a numerical code, based on the solution of the Vlasov equation, with the inclusion of non-linear contribution due to wake field effects. The proposed solution method exploits an algebraic technique that uses the exponential operators. We show that the integration procedure is capable of reproducing the onset of instability and the effects associated with bunching mechanisms leading to the growth of the instability itself. In addition, considerations on the threshold of the instability are also developed.

  1. Frequency-domain full-waveform inversion with non-linear descent directions

    NASA Astrophysics Data System (ADS)

    Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.

    2018-05-01

    Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a benchmark FWI approach involving the standard gradient.

  2. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models

    PubMed Central

    2011-01-01

    Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task. PMID:21867520

  3. Mixed linear-non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun'ichi; Johnson, Kaj M.

    2010-06-01

    We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.

  4. Multidimensional radiative transfer with multilevel atoms. II. The non-linear multigrid method.

    NASA Astrophysics Data System (ADS)

    Fabiani Bendicho, P.; Trujillo Bueno, J.; Auer, L.

    1997-08-01

    A new iterative method for solving non-LTE multilevel radiative transfer (RT) problems in 1D, 2D or 3D geometries is presented. The scheme obtains the self-consistent solution of the kinetic and RT equations at the cost of only a few (<10) formal solutions of the RT equation. It combines, for the first time, non-linear multigrid iteration (Brandt, 1977, Math. Comp. 31, 333; Hackbush, 1985, Multi-Grid Methods and Applications, springer-Verlag, Berlin), an efficient multilevel RT scheme based on Gauss-Seidel iterations (cf. Trujillo Bueno & Fabiani Bendicho, 1995ApJ...455..646T), and accurate short-characteristics formal solution techniques. By combining a valid stopping criterion with a nested-grid strategy a converged solution with the desired true error is automatically guaranteed. Contrary to the current operator splitting methods the very high convergence speed of the new RT method does not deteriorate when the grid spatial resolution is increased. With this non-linear multigrid method non-LTE problems discretized on N grid points are solved in O(N) operations. The nested multigrid RT method presented here is, thus, particularly attractive in complicated multilevel transfer problems where small grid-sizes are required. The properties of the method are analyzed both analytically and with illustrative multilevel calculations for Ca II in 1D and 2D schematic model atmospheres.

  5. Large Spatial and Temporal Separations of Cause and Effect in Policy Making - Dealing with Non-linear Effects

    NASA Astrophysics Data System (ADS)

    McCaskill, John

    There can be large spatial and temporal separation of cause and effect in policy making. Determining the correct linkage between policy inputs and outcomes can be highly impractical in the complex environments faced by policy makers. In attempting to see and plan for the probable outcomes, standard linear models often overlook, ignore, or are unable to predict catastrophic events that only seem improbable due to the issue of multiple feedback loops. There are several issues with the makeup and behaviors of complex systems that explain the difficulty many mathematical models (factor analysis/structural equation modeling) have in dealing with non-linear effects in complex systems. This chapter highlights those problem issues and offers insights to the usefulness of ABM in dealing with non-linear effects in complex policy making environments.

  6. Implicit filtered P{sub N} for high-energy density thermal radiation transport using discontinuous Galerkin finite elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laboure, Vincent M., E-mail: vincent.laboure@tamu.edu; McClarren, Ryan G., E-mail: rgm@tamu.edu; Hauck, Cory D., E-mail: hauckc@ornl.gov

    2016-09-15

    In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FP{sub N}) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte Carlo (IMC) calculations.

  7. Finite Element Based Structural Damage Detection Using Artificial Boundary Conditions

    DTIC Science & Technology

    2007-09-01

    C. (2005). Elementary Linear Algebra . New York: John Wiley and Sons. Avitable, Peter (2001, January) Experimental Modal Analysis, A Simple Non...variables under consideration. 3 Frequency sensitivities are the basis for a linear approximation to compute the change in the natural frequencies of a...THEORY The general problem statement for a non- linear constrained optimization problem is: To minimize ( )f x Objective Function Subject to

  8. Linear time-varying models can reveal non-linear interactions of biomolecular regulatory networks using multiple time-series data.

    PubMed

    Kim, Jongrae; Bates, Declan G; Postlethwaite, Ian; Heslop-Harrison, Pat; Cho, Kwang-Hyun

    2008-05-15

    Inherent non-linearities in biomolecular interactions make the identification of network interactions difficult. One of the principal problems is that all methods based on the use of linear time-invariant models will have fundamental limitations in their capability to infer certain non-linear network interactions. Another difficulty is the multiplicity of possible solutions, since, for a given dataset, there may be many different possible networks which generate the same time-series expression profiles. A novel algorithm for the inference of biomolecular interaction networks from temporal expression data is presented. Linear time-varying models, which can represent a much wider class of time-series data than linear time-invariant models, are employed in the algorithm. From time-series expression profiles, the model parameters are identified by solving a non-linear optimization problem. In order to systematically reduce the set of possible solutions for the optimization problem, a filtering process is performed using a phase-portrait analysis with random numerical perturbations. The proposed approach has the advantages of not requiring the system to be in a stable steady state, of using time-series profiles which have been generated by a single experiment, and of allowing non-linear network interactions to be identified. The ability of the proposed algorithm to correctly infer network interactions is illustrated by its application to three examples: a non-linear model for cAMP oscillations in Dictyostelium discoideum, the cell-cycle data for Saccharomyces cerevisiae and a large-scale non-linear model of a group of synchronized Dictyostelium cells. The software used in this article is available from http://sbie.kaist.ac.kr/software

  9. Probabilistic dual heuristic programming-based adaptive critic

    NASA Astrophysics Data System (ADS)

    Herzallah, Randa

    2010-02-01

    Adaptive critic (AC) methods have common roots as generalisations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, non-linear and non-stationary environments. In this study, a novel probabilistic dual heuristic programming (DHP)-based AC controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) AC method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterised by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the probabilistic critic network is then calculated and shown to be equal to the analytically derived correct value. Full derivation of the Riccati solution for this non-standard stochastic linear quadratic control problem is also provided. Moreover, the performance of the proposed probabilistic controller is demonstrated on linear and non-linear control examples.

  10. An Improved Search Approach for Solving Non-Convex Mixed-Integer Non Linear Programming Problems

    NASA Astrophysics Data System (ADS)

    Sitopu, Joni Wilson; Mawengkang, Herman; Syafitri Lubis, Riri

    2018-01-01

    The nonlinear mathematical programming problem addressed in this paper has a structure characterized by a subset of variables restricted to assume discrete values, which are linear and separable from the continuous variables. The strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method, has been developed. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points. Successful implementation of these algorithms was achieved on various test problems.

  11. Simultaneous source and attenuation reconstruction in SPECT using ballistic and single scattering data

    NASA Astrophysics Data System (ADS)

    Courdurier, M.; Monard, F.; Osses, A.; Romero, F.

    2015-09-01

    In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton-Raphson algorithm.

  12. Single-machine common/slack due window assignment problems with linear decreasing processing times

    NASA Astrophysics Data System (ADS)

    Zhang, Xingong; Lin, Win-Chin; Wu, Wen-Hsiang; Wu, Chin-Chia

    2017-08-01

    This paper studies linear non-increasing processing times and the common/slack due window assignment problems on a single machine, where the actual processing time of a job is a linear non-increasing function of its starting time. The aim is to minimize the sum of the earliness cost, tardiness cost, due window location and due window size. Some optimality results are discussed for the common/slack due window assignment problems and two O(n log n) time algorithms are presented to solve the two problems. Finally, two examples are provided to illustrate the correctness of the corresponding algorithms.

  13. Non-linear associations between laryngo-pharyngeal symptoms of gastro-oesophageal reflux disease: clues from artificial intelligence analysis

    PubMed Central

    Grossi, E

    2006-01-01

    Summary The relationship between the different symptoms of gastro-oesophageal reflux disease remain markedly obscure due to the high underlying non-linearity and the lack of studies focusing on the problem. Aim of this study was to evaluate the hidden relationships between the triad of symptoms related to gastro-oesophageal reflux disease using advanced mathematical techniques, borrowed from the artificial intelligence field, in a cohort of patients with oesophagitis. A total of 388 patients (from 60 centres) with endoscopic evidence of oesophagitis were recruited. The severity of oesophagitis was scored by means of the Savary-Miller classification. PST algorithm was employed. This study shows that laryngo-pharyngeal symptoms related to gastro-oesophageal reflux disease are correlated even if in a non-linear way. PMID:17345935

  14. Non-linear associations between laryngo-pharyngeal symptoms of gastro-oesophageal reflux disease: clues from artificial intelligence analysis.

    PubMed

    Grossi, E

    2006-10-01

    The relationship between the different symptoms of gastro-oesophageal reflux disease remain markedly obscure due to the high underlying non-linearity and the lack of studies focusing on the problem. Aim of this study was to evaluate the hidden relationships between the triad of symptoms related to gastro-oesophageal reflux disease using advanced mathematical techniques, borrowed from the artificial intelligence field, in a cohort of patients with oesophagitis. A total of 388 patients (from 60 centres) with endoscopic evidence of oesophagitis were recruited. The severity of oesophagitis was scored by means of the Savary-Miller classification. PST algorithm was employed. This study shows that laryngo-pharyngeal symptoms related to gastro-oesophageal reflux disease are correlated even if in a non-linear way.

  15. Benchmark solution of the dynamic response of a spherical shell at finite strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Versino, Daniele; Brock, Jerry S.

    2016-09-28

    Our paper describes the development of high fidelity solutions for the study of homogeneous (elastic and inelastic) spherical shells subject to dynamic loading and undergoing finite deformations. The goal of the activity is to provide high accuracy results that can be used as benchmark solutions for the verification of computational physics codes. Furthermore, the equilibrium equations for the geometrically non-linear problem are solved through mode expansion of the displacement field and the boundary conditions are enforced in a strong form. Time integration is performed through high-order implicit Runge–Kutta schemes. Finally, we evaluate accuracy and convergence of the proposed method bymore » means of numerical examples with finite deformations and material non-linearities and inelasticity.« less

  16. Non-linear vibrations of sandwich viscoelastic shells

    NASA Astrophysics Data System (ADS)

    Benchouaf, Lahcen; Boutyour, El Hassan; Daya, El Mostafa; Potier-Ferry, Michel

    2018-04-01

    This paper deals with the non-linear vibration of sandwich viscoelastic shell structures. Coupling a harmonic balance method with the Galerkin's procedure, one obtains an amplitude equation depending on two complex coefficients. The latter are determined by solving a classical eigenvalue problem and two linear ones. This permits to get the non-linear frequency and the non-linear loss factor as functions of the displacement amplitude. To validate our approach, these relationships are illustrated in the case of a circular sandwich ring.

  17. Parallel High Order Accuracy Methods Applied to Non-Linear Hyperbolic Equations and to Problems in Materials Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan Hesthaven

    2012-02-06

    Final report for DOE Contract DE-FG02-98ER25346 entitled Parallel High Order Accuracy Methods Applied to Non-Linear Hyperbolic Equations and to Problems in Materials Sciences. Principal Investigator Jan S. Hesthaven Division of Applied Mathematics Brown University, Box F Providence, RI 02912 Jan.Hesthaven@Brown.edu February 6, 2012 Note: This grant was originally awarded to Professor David Gottlieb and the majority of the work envisioned reflects his original ideas. However, when Prof Gottlieb passed away in December 2008, Professor Hesthaven took over as PI to ensure proper mentoring of students and postdoctoral researchers already involved in the project. This unusual circumstance has naturally impacted themore » project and its timeline. However, as the report reflects, the planned work has been accomplished and some activities beyond the original scope have been pursued with success. Project overview and main results The effort in this project focuses on the development of high order accurate computational methods for the solution of hyperbolic equations with application to problems with strong shocks. While the methods are general, emphasis is on applications to gas dynamics with strong shocks.« less

  18. Deformed Palmprint Matching Based on Stable Regions.

    PubMed

    Wu, Xiangqian; Zhao, Qiushi

    2015-12-01

    Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.

  19. Non-linear eigensolver-based alternative to traditional SCF methods

    NASA Astrophysics Data System (ADS)

    Gavin, Brendan; Polizzi, Eric

    2013-03-01

    The self-consistent iterative procedure in Density Functional Theory calculations is revisited using a new, highly efficient and robust algorithm for solving the non-linear eigenvector problem (i.e. H(X)X = EX;) of the Kohn-Sham equations. This new scheme is derived from a generalization of the FEAST eigenvalue algorithm, and provides a fundamental and practical numerical solution for addressing the non-linearity of the Hamiltonian with the occupied eigenvectors. In contrast to SCF techniques, the traditional outer iterations are replaced by subspace iterations that are intrinsic to the FEAST algorithm, while the non-linearity is handled at the level of a projected reduced system which is orders of magnitude smaller than the original one. Using a series of numerical examples, it will be shown that our approach can outperform the traditional SCF mixing techniques such as Pulay-DIIS by providing a high converge rate and by converging to the correct solution regardless of the choice of the initial guess. We also discuss a practical implementation of the technique that can be achieved effectively using the FEAST solver package. This research is supported by NSF under Grant #ECCS-0846457 and Intel Corporation.

  20. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.

    PubMed

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  1. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  2. Near-optimal alternative generation using modified hit-and-run sampling for non-linear, non-convex problems

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.; Alafifi, A.

    2016-12-01

    Water resources systems analysis often focuses on finding optimal solutions. Yet an optimal solution is optimal only for the modelled issues and managers often seek near-optimal alternatives that address un-modelled objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as the region comprising the original problem constraints plus a new constraint that allowed performance within a specified tolerance of the optimal objective function value. MGA identified a few maximally-different alternatives from the near-optimal region. Subsequent work applied Markov Chain Monte Carlo (MCMC) sampling to generate a larger number of alternatives that span the near-optimal region of linear problems or select portions for non-linear problems. We extend the MCMC Hit-And-Run method to generate alternatives that span the full extent of the near-optimal region for non-linear, non-convex problems. First, start at a feasible hit point within the near-optimal region, then run a random distance in a random direction to a new hit point. Next, repeat until generating the desired number of alternatives. The key step at each iterate is to run a random distance along the line in the specified direction to a new hit point. If linear equity constraints exist, we construct an orthogonal basis and use a null space transformation to confine hits and runs to a lower-dimensional space. Linear inequity constraints define the convex bounds on the line that runs through the current hit point in the specified direction. We then use slice sampling to identify a new hit point along the line within bounds defined by the non-linear inequity constraints. This technique is computationally efficient compared to prior near-optimal alternative generation techniques such MGA, MCMC Metropolis-Hastings, evolutionary, or firefly algorithms because search at each iteration is confined to the hit line, the algorithm can move in one step to any point in the near-optimal region, and each iterate generates a new, feasible alternative. We use the method to generate alternatives that span the near-optimal regions of simple and more complicated water management problems and may be preferred to optimal solutions. We also discuss extensions to handle non-linear equity constraints.

  3. Solving Fuzzy Optimization Problem Using Hybrid Ls-Sa Method

    NASA Astrophysics Data System (ADS)

    Vasant, Pandian

    2011-06-01

    Fuzzy optimization problem has been one of the most and prominent topics inside the broad area of computational intelligent. It's especially relevant in the filed of fuzzy non-linear programming. It's application as well as practical realization can been seen in all the real world problems. In this paper a large scale non-linear fuzzy programming problem has been solved by hybrid optimization techniques of Line Search (LS), Simulated Annealing (SA) and Pattern Search (PS). As industrial production planning problem with cubic objective function, 8 decision variables and 29 constraints has been solved successfully using LS-SA-PS hybrid optimization techniques. The computational results for the objective function respect to vagueness factor and level of satisfaction has been provided in the form of 2D and 3D plots. The outcome is very promising and strongly suggests that the hybrid LS-SA-PS algorithm is very efficient and productive in solving the large scale non-linear fuzzy programming problem.

  4. Hybrid Genetic Agorithms and Line Search Method for Industrial Production Planning with Non-Linear Fitness Function

    NASA Astrophysics Data System (ADS)

    Vasant, Pandian; Barsoum, Nader

    2008-10-01

    Many engineering, science, information technology and management optimization problems can be considered as non linear programming real world problems where the all or some of the parameters and variables involved are uncertain in nature. These can only be quantified using intelligent computational techniques such as evolutionary computation and fuzzy logic. The main objective of this research paper is to solve non linear fuzzy optimization problem where the technological coefficient in the constraints involved are fuzzy numbers which was represented by logistic membership functions by using hybrid evolutionary optimization approach. To explore the applicability of the present study a numerical example is considered to determine the production planning for the decision variables and profit of the company.

  5. An Obstruction to the Integrability of a Class of Non-linear Wave Equations by 1-Stable Cartan Characteristics

    NASA Astrophysics Data System (ADS)

    Fackerell, E. D.; Hartley, D.; Tucker, R. W.

    We examine in detail the Cauchy problem for a class of non-linear hyperbolic equations in two independent variables. This class is motivated by the analysis of the dynamics of a line of non-linearly coupled particles by Fermi, Pasta, and Ulam and extends the recent investigation of this problem by Gardner and Kamran. We find conditions for the existence of a 1-stable Cartan characteristic of a Pfaffian exterior differential system whose integral curves provide a solution to the Cauchy problem. The same obstruction to involution is exposed in Darboux's method of integration and the two approaches are compared. A class of particular solutions to the obstruction is constructed.

  6. Steady induction effects in geomagnetism. Part 1B: Geomagnetic estimation of steady surficial core motions: A non-linear inverse problem

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1993-01-01

    The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation (SV) indicated by models of the observed geomagnetic field is examined in the source-free mantle/frozen-flux core (SFI/VFFC) approximation. This inverse problem is non-linear because solutions of the forward problem are deterministically chaotic. The SFM/FFC approximation is inexact, and neither the models nor the observations they represent are either complete or perfect. A method is developed for solving the non-linear inverse motional induction problem posed by the hypothesis of (piecewise, statistically) steady core surface flow and the supposition of a complete initial geomagnetic condition. The method features iterative solution of the weighted, linearized least-squares problem and admits optional biases favoring surficially geostrophic flow and/or spatially simple flow. Two types of weights are advanced radial field weights for fitting the evolution of the broad-scale portion of the radial field component near Earth's surface implied by the models, and generalized weights for fitting the evolution of the broad-scale portion of the scalar potential specified by the models.

  7. Multiple imputation of rainfall missing data in the Iberian Mediterranean context

    NASA Astrophysics Data System (ADS)

    Miró, Juan Javier; Caselles, Vicente; Estrela, María José

    2017-11-01

    Given the increasing need for complete rainfall data networks, in recent years have been proposed diverse methods for filling gaps in observed precipitation series, progressively more advanced that traditional approaches to overcome the problem. The present study has consisted in validate 10 methods (6 linear, 2 non-linear and 2 hybrid) that allow multiple imputation, i.e., fill at the same time missing data of multiple incomplete series in a dense network of neighboring stations. These were applied for daily and monthly rainfall in two sectors in the Júcar River Basin Authority (east Iberian Peninsula), which is characterized by a high spatial irregularity and difficulty of rainfall estimation. A classification of precipitation according to their genetic origin was applied as pre-processing, and a quantile-mapping adjusting as post-processing technique. The results showed in general a better performance for the non-linear and hybrid methods, highlighting that the non-linear PCA (NLPCA) method outperforms considerably the Self Organizing Maps (SOM) method within non-linear approaches. On linear methods, the Regularized Expectation Maximization method (RegEM) was the best, but far from NLPCA. Applying EOF filtering as post-processing of NLPCA (hybrid approach) yielded the best results.

  8. THE SUCCESSIVE LINEAR ESTIMATOR: A REVISIT. (R827114)

    EPA Science Inventory

    This paper examines the theoretical basis of the successive linear estimator (SLE) that has been developed for the inverse problem in subsurface hydrology. We show that the SLE algorithm is a non-linear iterative estimator to the inverse problem. The weights used in the SLE al...

  9. Three-dimensional Finite Element Formulation and Scalable Domain Decomposition for High Fidelity Rotor Dynamic Analysis

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Johnson, Wayne R.

    2009-01-01

    This paper has two objectives. The first objective is to formulate a 3-dimensional Finite Element Model for the dynamic analysis of helicopter rotor blades. The second objective is to implement and analyze a dual-primal iterative substructuring based Krylov solver, that is parallel and scalable, for the solution of the 3-D FEM analysis. The numerical and parallel scalability of the solver is studied using two prototype problems - one for ideal hover (symmetric) and one for a transient forward flight (non-symmetric) - both carried out on up to 48 processors. In both hover and forward flight conditions, a perfect linear speed-up is observed, for a given problem size, up to the point of substructure optimality. Substructure optimality and the linear parallel speed-up range are both shown to depend on the problem size as well as on the selection of the coarse problem. With a larger problem size, linear speed-up is restored up to the new substructure optimality. The solver also scales with problem size - even though this conclusion is premature given the small prototype grids considered in this study.

  10. A Quantitative and Combinatorial Approach to Non-Linear Meanings of Multiplication

    ERIC Educational Resources Information Center

    Tillema, Erik; Gatza, Andrew

    2016-01-01

    We provide a conceptual analysis of how combinatorics problems have the potential to support students to establish non-linear meanings of multiplication (NLMM). The problems we analyze we have used in a series of studies with 6th, 8th, and 10th grade students. We situate the analysis in prior work on students' quantitative and multiplicative…

  11. Machining Chatter Analysis for High Speed Milling Operations

    NASA Astrophysics Data System (ADS)

    Sekar, M.; Kantharaj, I.; Amit Siddhappa, Savale

    2017-10-01

    Chatter in high speed milling is characterized by time delay differential equations (DDE). Since closed form solution exists only for simple cases, the governing non-linear DDEs of chatter problems are solved by various numerical methods. Custom codes to solve DDEs are tedious to build, implement and not error free and robust. On the other hand, software packages provide solution to DDEs, however they are not straight forward to implement. In this paper an easy way to solve DDE of chatter in milling is proposed and implemented with MATLAB. Time domain solution permits the study and model of non-linear effects of chatter vibration with ease. Time domain results are presented for various stable and unstable conditions of cut and compared with stability lobe diagrams.

  12. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  13. On the Problems of Construction and Statistical Inference Associated with a Generalization of Canonical Variables.

    DTIC Science & Technology

    1982-02-01

    of them are pre- sented in this paper. As an application, important practical problems similar to the one posed by Gnanadesikan (1977), p. 77 can be... Gnanadesikan and Wilk (1969) to search for a non-linear combination, giving rise to non-linear first principal component. So, a p-dinensional vector can...distribution, Gnanadesikan and Gupta (1970) and earlier Eaton (1967) have considered the problem of ranking the r underlying populations according to the

  14. Weighted Non-linear Compact Schemes for the Direct Numerical Simulation of Compressible, Turbulent Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debojyoti; Baeder, James D.

    2014-01-21

    A new class of compact-reconstruction weighted essentially non-oscillatory (CRWENO) schemes were introduced (Ghosh and Baeder in SIAM J Sci Comput 34(3): A1678–A1706, 2012) with high spectral resolution and essentially non-oscillatory behavior across discontinuities. The CRWENO schemes use solution-dependent weights to combine lower-order compact interpolation schemes and yield a high-order compact scheme for smooth solutions and a non-oscillatory compact scheme near discontinuities. The new schemes result in lower absolute errors, and improved resolution of discontinuities and smaller length scales, compared to the weighted essentially non-oscillatory (WENO) scheme of the same order of convergence. Several improvements to the smoothness-dependent weights, proposed inmore » the literature in the context of the WENO schemes, address the drawbacks of the original formulation. This paper explores these improvements in the context of the CRWENO schemes and compares the different formulations of the non-linear weights for flow problems with small length scales as well as discontinuities. Simplified one- and two-dimensional inviscid flow problems are solved to demonstrate the numerical properties of the CRWENO schemes and its different formulations. Canonical turbulent flow problems—the decay of isotropic turbulence and the shock-turbulence interaction—are solved to assess the performance of the schemes for the direct numerical simulation of compressible, turbulent flows« less

  15. Computer Power. Part 2: Electrical Power Problems and Their Amelioration.

    ERIC Educational Resources Information Center

    Price, Bennett J.

    1989-01-01

    Describes electrical power problems that affect computer users, including spikes, sags, outages, noise, frequency variations, and static electricity. Ways in which these problems may be diagnosed and cured are discussed. Sidebars consider transformers; power distribution units; surge currents/linear and non-linear loads; and sizing the power…

  16. Linear Programming and Its Application to Pattern Recognition Problems

    NASA Technical Reports Server (NTRS)

    Omalley, M. J.

    1973-01-01

    Linear programming and linear programming like techniques as applied to pattern recognition problems are discussed. Three relatively recent research articles on such applications are summarized. The main results of each paper are described, indicating the theoretical tools needed to obtain them. A synopsis of the author's comments is presented with regard to the applicability or non-applicability of his methods to particular problems, including computational results wherever given.

  17. Minimal subspace rotation on the Stiefel manifold for stabilization and enhancement of projection-based reduced order models for the compressible Navier–Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balajewicz, Maciej; Tezaur, Irina; Dowell, Earl

    For a projection-based reduced order model (ROM) of a fluid flow to be stable and accurate, the dynamics of the truncated subspace must be taken into account. This paper proposes an approach for stabilizing and enhancing projection-based fluid ROMs in which truncated modes are accounted for a priori via a minimal rotation of the projection subspace. Attention is focused on the full non-linear compressible Navier–Stokes equations in specific volume form as a step toward a more general formulation for problems with generic non-linearities. Unlike traditional approaches, no empirical turbulence modeling terms are required, and consistency between the ROM and themore » Navier–Stokes equation from which the ROM is derived is maintained. Mathematically, the approach is formulated as a trace minimization problem on the Stiefel manifold. As a result, the reproductive as well as predictive capabilities of the method are evaluated on several compressible flow problems, including a problem involving laminar flow over an airfoil with a high angle of attack, and a channel-driven cavity flow problem.« less

  18. Minimal subspace rotation on the Stiefel manifold for stabilization and enhancement of projection-based reduced order models for the compressible Navier–Stokes equations

    DOE PAGES

    Balajewicz, Maciej; Tezaur, Irina; Dowell, Earl

    2016-05-25

    For a projection-based reduced order model (ROM) of a fluid flow to be stable and accurate, the dynamics of the truncated subspace must be taken into account. This paper proposes an approach for stabilizing and enhancing projection-based fluid ROMs in which truncated modes are accounted for a priori via a minimal rotation of the projection subspace. Attention is focused on the full non-linear compressible Navier–Stokes equations in specific volume form as a step toward a more general formulation for problems with generic non-linearities. Unlike traditional approaches, no empirical turbulence modeling terms are required, and consistency between the ROM and themore » Navier–Stokes equation from which the ROM is derived is maintained. Mathematically, the approach is formulated as a trace minimization problem on the Stiefel manifold. As a result, the reproductive as well as predictive capabilities of the method are evaluated on several compressible flow problems, including a problem involving laminar flow over an airfoil with a high angle of attack, and a channel-driven cavity flow problem.« less

  19. Discrete-time neural network for fast solving large linear L1 estimation problems and its application to image restoration.

    PubMed

    Xia, Youshen; Sun, Changyin; Zheng, Wei Xing

    2012-05-01

    There is growing interest in solving linear L1 estimation problems for sparsity of the solution and robustness against non-Gaussian noise. This paper proposes a discrete-time neural network which can calculate large linear L1 estimation problems fast. The proposed neural network has a fixed computational step length and is proved to be globally convergent to an optimal solution. Then, the proposed neural network is efficiently applied to image restoration. Numerical results show that the proposed neural network is not only efficient in solving degenerate problems resulting from the nonunique solutions of the linear L1 estimation problems but also needs much less computational time than the related algorithms in solving both linear L1 estimation and image restoration problems.

  20. Machine Learning Control For Highly Reconfigurable High-Order Systems

    DTIC Science & Technology

    2015-01-02

    develop and flight test a Reinforcement Learning based approach for autonomous tracking of ground targets using a fixed wing Unmanned...Reinforcement Learning - based algorithms are developed for learning agents’ time dependent dynamics while also learning to control them. Three algorithms...to a wide range of engineering- based problems . Implementation of these solutions, however, is often complicated by the hysteretic, non-linear,

  1. Solving deterministic non-linear programming problem using Hopfield artificial neural network and genetic programming techniques

    NASA Astrophysics Data System (ADS)

    Vasant, P.; Ganesan, T.; Elamvazuthi, I.

    2012-11-01

    A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.

  2. Resource allocation in shared spectrum access communications for operators with diverse service requirements

    NASA Astrophysics Data System (ADS)

    Kibria, Mirza Golam; Villardi, Gabriel Porto; Ishizu, Kentaro; Kojima, Fumihide; Yano, Hiroyuki

    2016-12-01

    In this paper, we study inter-operator spectrum sharing and intra-operator resource allocation in shared spectrum access communication systems and propose efficient dynamic solutions to address both inter-operator and intra-operator resource allocation optimization problems. For inter-operator spectrum sharing, we present two competent approaches, namely the subcarrier gain-based sharing and fragmentation-based sharing, which carry out fair and flexible allocation of the available shareable spectrum among the operators subject to certain well-defined sharing rules, traffic demands, and channel propagation characteristics. The subcarrier gain-based spectrum sharing scheme has been found to be more efficient in terms of achieved throughput. However, the fragmentation-based sharing is more attractive in terms of computational complexity. For intra-operator resource allocation, we consider resource allocation problem with users' dissimilar service requirements, where the operator supports users with delay constraint and non-delay constraint service requirements, simultaneously. This optimization problem is a mixed-integer non-linear programming problem and non-convex, which is computationally very expensive, and the complexity grows exponentially with the number of integer variables. We propose less-complex and efficient suboptimal solution based on formulating exact linearization, linear approximation, and convexification techniques for the non-linear and/or non-convex objective functions and constraints. Extensive simulation performance analysis has been carried out that validates the efficiency of the proposed solution.

  3. Asymptotic Linear Spectral Statistics for Spiked Hermitian Random Matrices

    NASA Astrophysics Data System (ADS)

    Passemier, Damien; McKay, Matthew R.; Chen, Yang

    2015-07-01

    Using the Coulomb Fluid method, this paper derives central limit theorems (CLTs) for linear spectral statistics of three "spiked" Hermitian random matrix ensembles. These include Johnstone's spiked model (i.e., central Wishart with spiked correlation), non-central Wishart with rank-one non-centrality, and a related class of non-central matrices. For a generic linear statistic, we derive simple and explicit CLT expressions as the matrix dimensions grow large. For all three ensembles under consideration, we find that the primary effect of the spike is to introduce an correction term to the asymptotic mean of the linear spectral statistic, which we characterize with simple formulas. The utility of our proposed framework is demonstrated through application to three different linear statistics problems: the classical likelihood ratio test for a population covariance, the capacity analysis of multi-antenna wireless communication systems with a line-of-sight transmission path, and a classical multiple sample significance testing problem.

  4. An analysis of hypercritical states in elastic and inelastic systems

    NASA Astrophysics Data System (ADS)

    Kowalczk, Maciej

    The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.

  5. Conjugate gradient based projection - A new explicit methodology for frictional contact

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Li, Maocheng; Sha, Desong

    1993-01-01

    With special attention towards the applicability to parallel computation or vectorization, a new and effective explicit approach for linear complementary formulations involving a conjugate gradient based projection methodology is proposed in this study for contact problems with Coulomb friction. The overall objectives are focussed towards providing an explicit methodology of computation for the complete contact problem with friction. In this regard, the primary idea for solving the linear complementary formulations stems from an established search direction which is projected to a feasible region determined by the non-negative constraint condition; this direction is then applied to the Fletcher-Reeves conjugate gradient method resulting in a powerful explicit methodology which possesses high accuracy, excellent convergence characteristics, fast computational speed and is relatively simple to implement for contact problems involving Coulomb friction.

  6. Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis

    ERIC Educational Resources Information Center

    Jeffrey, Alan

    1971-01-01

    The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)

  7. A problem in non-linear Diophantine approximation

    NASA Astrophysics Data System (ADS)

    Harrap, Stephen; Hussain, Mumtaz; Kristensen, Simon

    2018-05-01

    In this paper we obtain the Lebesgue and Hausdorff measure results for the set of vectors satisfying infinitely many fully non-linear Diophantine inequalities. The set is associated with a class of linear inhomogeneous partial differential equations whose solubility depends on a certain Diophantine condition. The failure of the Diophantine condition guarantees the existence of a smooth solution.

  8. Employment of CB models for non-linear dynamic analysis

    NASA Technical Reports Server (NTRS)

    Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.

    1990-01-01

    The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.

  9. Comparison of lossless compression techniques for prepress color images

    NASA Astrophysics Data System (ADS)

    Van Assche, Steven; Denecker, Koen N.; Philips, Wilfried R.; Lemahieu, Ignace L.

    1998-12-01

    In the pre-press industry color images have both a high spatial and a high color resolution. Such images require a considerable amount of storage space and impose long transmission times. Data compression is desired to reduce these storage and transmission problems. Because of the high quality requirements in the pre-press industry only lossless compression is acceptable. Most existing lossless compression schemes operate on gray-scale images. In this case the color components of color images must be compressed independently. However, higher compression ratios can be achieved by exploiting inter-color redundancies. In this paper we present a comparison of three state-of-the-art lossless compression techniques which exploit such color redundancies: IEP (Inter- color Error Prediction) and a KLT-based technique, which are both linear color decorrelation techniques, and Interframe CALIC, which uses a non-linear approach to color decorrelation. It is shown that these techniques are able to exploit color redundancies and that color decorrelation can be done effectively and efficiently. The linear color decorrelators provide a considerable coding gain (about 2 bpp) on some typical prepress images. The non-linear interframe CALIC predictor does not yield better results, but the full interframe CALIC technique does.

  10. TerraFERMA: Harnessing Advanced Computational Libraries in Earth Science

    NASA Astrophysics Data System (ADS)

    Wilson, C. R.; Spiegelman, M.; van Keken, P.

    2012-12-01

    Many important problems in Earth sciences can be described by non-linear coupled systems of partial differential equations. These "multi-physics" problems include thermo-chemical convection in Earth and planetary interiors, interactions of fluids and magmas with the Earth's mantle and crust and coupled flow of water and ice. These problems are of interest to a large community of researchers but are complicated to model and understand. Much of this complexity stems from the nature of multi-physics where small changes in the coupling between variables or constitutive relations can lead to radical changes in behavior, which in turn affect critical computational choices such as discretizations, solvers and preconditioners. To make progress in understanding such coupled systems requires a computational framework where multi-physics problems can be described at a high-level while maintaining the flexibility to easily modify the solution algorithm. Fortunately, recent advances in computational science provide a basis for implementing such a framework. Here we present the Transparent Finite Element Rapid Model Assembler (TerraFERMA), which leverages several advanced open-source libraries for core functionality. FEniCS (fenicsproject.org) provides a high level language for describing the weak forms of coupled systems of equations, and an automatic code generator that produces finite element assembly code. PETSc (www.mcs.anl.gov/petsc) provides a wide range of scalable linear and non-linear solvers that can be composed into effective multi-physics preconditioners. SPuD (amcg.ese.ic.ac.uk/Spud) is an application neutral options system that provides both human and machine-readable interfaces based on a single xml schema. Our software integrates these libraries and provides the user with a framework for exploring multi-physics problems. A single options file fully describes the problem, including all equations, coefficients and solver options. Custom compiled applications are generated from this file but share an infrastructure for services common to all models, e.g. diagnostics, checkpointing and global non-linear convergence monitoring. This maximizes code reusability, reliability and longevity ensuring that scientific results and the methods used to acquire them are transparent and reproducible. TerraFERMA has been tested against many published geodynamic benchmarks including 2D/3D thermal convection problems, the subduction zone benchmarks and benchmarks for magmatic solitary waves. It is currently being used in the investigation of reactive cracking phenomena with applications to carbon sequestration, but we will principally discuss its use in modeling the migration of fluids in subduction zones. Subduction zones require an understanding of the highly nonlinear interactions of fluids with solids and thus provide an excellent scientific driver for the development of multi-physics software.

  11. Two Point Exponential Approximation Method for structural optimization of problems with frequency constraints

    NASA Technical Reports Server (NTRS)

    Fadel, G. M.

    1991-01-01

    The point exponential approximation method was introduced by Fadel et al. (Fadel, 1990), and tested on structural optimization problems with stress and displacement constraints. The reports in earlier papers were promising, and the method, which consists of correcting Taylor series approximations using previous design history, is tested in this paper on optimization problems with frequency constraints. The aim of the research is to verify the robustness and speed of convergence of the two point exponential approximation method when highly non-linear constraints are used.

  12. Vortex Escape from Columnar Defect in a Current-Loaded Superconductor

    NASA Astrophysics Data System (ADS)

    Fedirko, V. A.; Kasatkin, A. L.; Polyakov, S. V.

    2018-06-01

    The problem of Abrikosov vortices depinning from extended linear (columnar) defect in 3D-anisotropic superconductor film under non-uniformly distributed Lorentz force is studied for the case of low temperatures, disregarding thermal activation processes. We treat it as a problem of mechanical behavior of an elastic vortex string settled in a potential well of a linear defect and exerted to Lorentz force action within the screening layer about the London penetration depth near the specimen surface. The stability problem for the vortex pinning state is investigated by means of numerical modeling, and conditions for the instability threshold are obtained as well as the critical current density j_c and its dependence on the film thickness and magnetic field orientation. The instability leading to vortex depinning from extended linear defect first emerges near the surface and then propagates inside the superconductor. This scenario of vortex depinning mechanism at low temperatures is strongly supported by some recent experiments on high-Tc superconductors and other novel superconducting materials, containing columnar defects of various nature.

  13. Optical soliton solutions of the cubic-quintic non-linear Schrödinger's equation including an anti-cubic term

    NASA Astrophysics Data System (ADS)

    Kaplan, Melike; Hosseini, Kamyar; Samadani, Farzan; Raza, Nauman

    2018-07-01

    A wide range of problems in different fields of the applied sciences especially non-linear optics is described by non-linear Schrödinger's equations (NLSEs). In the present paper, a specific type of NLSEs known as the cubic-quintic non-linear Schrödinger's equation including an anti-cubic term has been studied. The generalized Kudryashov method along with symbolic computation package has been exerted to carry out this objective. As a consequence, a series of optical soliton solutions have formally been retrieved. It is corroborated that the generalized form of Kudryashov method is a direct, effectual, and reliable technique to deal with various types of non-linear Schrödinger's equations.

  14. Non-Static error tracking control for near space airship loading platform

    NASA Astrophysics Data System (ADS)

    Ni, Ming; Tao, Fei; Yang, Jiandong

    2018-01-01

    A control scheme based on internal model with non-static error is presented against the uncertainty of the near space airship loading platform system. The uncertainty in the tracking table is represented as interval variations in stability and control derivatives. By formulating the tracking problem of the uncertainty system as a robust state feedback stabilization problem of an augmented system, sufficient condition for the existence of robust tracking controller is derived in the form of linear matrix inequality (LMI). Finally, simulation results show that the new method not only has better anti-jamming performance, but also improves the dynamic performance of the high-order systems.

  15. The use of modified scaling factors in the design of high-power, non-linear, transmitting rod-core antennas

    NASA Astrophysics Data System (ADS)

    Jordan, Jared Williams; Dvorak, Steven L.; Sternberg, Ben K.

    2010-10-01

    In this paper, we develop a technique for designing high-power, non-linear, transmitting rod-core antennas by using simple modified scale factors rather than running labor-intensive numerical models. By using modified scale factors, a designer can predict changes in magnetic moment, inductance, core series loss resistance, etc. We define modified scale factors as the case when all physical dimensions of the rod antenna are scaled by p, except for the cross-sectional area of the individual wires or strips that are used to construct the core. This allows one to make measurements on a scaled-down version of the rod antenna using the same core material that will be used in the final antenna design. The modified scale factors were derived from prolate spheroidal analytical expressions for a finite-length rod antenna and were verified with experimental results. The modified scaling factors can only be used if the magnetic flux densities within the two scaled cores are the same. With the magnetic flux density constant, the two scaled cores will operate with the same complex permeability, thus changing the non-linear problem to a quasi-linear problem. We also demonstrate that by holding the number of turns times the drive current constant, while changing the number of turns, the inductance and core series loss resistance change by the number of turns squared. Experimental measurements were made on rod cores made from varying diameters of black oxide, low carbon steel wires and different widths of Metglas foil. Furthermore, we demonstrate that the modified scale factors work even in the presence of eddy currents within the core material.

  16. Is 3D true non linear traveltime tomography reasonable ?

    NASA Astrophysics Data System (ADS)

    Herrero, A.; Virieux, J.

    2003-04-01

    The data sets requiring 3D analysis tools in the context of seismic exploration (both onshore and offshore experiments) or natural seismicity (micro seismicity surveys or post event measurements) are more and more numerous. Classical linearized tomographies and also earthquake localisation codes need an accurate 3D background velocity model. However, if the medium is complex and a priori information not available, a 1D analysis is not able to provide an adequate background velocity image. Moreover, the design of the acquisition layouts is often intrinsically 3D and renders difficult even 2D approaches, especially in natural seismicity cases. Thus, the solution relies on the use of a 3D true non linear approach, which allows to explore the model space and to identify an optimal velocity image. The problem becomes then practical and its feasibility depends on the available computing resources (memory and time). In this presentation, we show that facing a 3D traveltime tomography problem with an extensive non-linear approach combining fast travel time estimators based on level set methods and optimisation techniques such as multiscale strategy is feasible. Moreover, because management of inhomogeneous inversion parameters is more friendly in a non linear approach, we describe how to perform a jointly non-linear inversion for the seismic velocities and the sources locations.

  17. Explicit methods in extended phase space for inseparable Hamiltonian problems

    NASA Astrophysics Data System (ADS)

    Pihajoki, Pauli

    2015-03-01

    We present a method for explicit leapfrog integration of inseparable Hamiltonian systems by means of an extended phase space. A suitably defined new Hamiltonian on the extended phase space leads to equations of motion that can be numerically integrated by standard symplectic leapfrog (splitting) methods. When the leapfrog is combined with coordinate mixing transformations, the resulting algorithm shows good long term stability and error behaviour. We extend the method to non-Hamiltonian problems as well, and investigate optimal methods of projecting the extended phase space back to original dimension. Finally, we apply the methods to a Hamiltonian problem of geodesics in a curved space, and a non-Hamiltonian problem of a forced non-linear oscillator. We compare the performance of the methods to a general purpose differential equation solver LSODE, and the implicit midpoint method, a symplectic one-step method. We find the extended phase space methods to compare favorably to both for the Hamiltonian problem, and to the implicit midpoint method in the case of the non-linear oscillator.

  18. Fast reconstruction of optical properties for complex segmentations in near infrared imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Jingjing; Wolf, Martin; Sánchez Majos, Salvador

    2017-04-01

    The intrinsic ill-posed nature of the inverse problem in near infrared imaging makes the reconstruction of fine details of objects deeply embedded in turbid media challenging even for the large amounts of data provided by time-resolved cameras. In addition, most reconstruction algorithms for this type of measurements are only suitable for highly symmetric geometries and rely on a linear approximation to the diffusion equation since a numerical solution of the fully non-linear problem is computationally too expensive. In this paper, we will show that a problem of practical interest can be successfully addressed making efficient use of the totality of the information supplied by time-resolved cameras. We set aside the goal of achieving high spatial resolution for deep structures and focus on the reconstruction of complex arrangements of large regions. We show numerical results based on a combined approach of wavelength-normalized data and prior geometrical information, defining a fully parallelizable problem in arbitrary geometries for time-resolved measurements. Fast reconstructions are obtained using a diffusion approximation and Monte-Carlo simulations, parallelized in a multicore computer and a GPU respectively.

  19. Bypassing the Limits of Ll Regularization: Convex Sparse Signal Processing Using Non-Convex Regularization

    NASA Astrophysics Data System (ADS)

    Parekh, Ankit

    Sparsity has become the basis of some important signal processing methods over the last ten years. Many signal processing problems (e.g., denoising, deconvolution, non-linear component analysis) can be expressed as inverse problems. Sparsity is invoked through the formulation of an inverse problem with suitably designed regularization terms. The regularization terms alone encode sparsity into the problem formulation. Often, the ℓ1 norm is used to induce sparsity, so much so that ℓ1 regularization is considered to be `modern least-squares'. The use of ℓ1 norm, as a sparsity-inducing regularizer, leads to a convex optimization problem, which has several benefits: the absence of extraneous local minima, well developed theory of globally convergent algorithms, even for large-scale problems. Convex regularization via the ℓ1 norm, however, tends to under-estimate the non-zero values of sparse signals. In order to estimate the non-zero values more accurately, non-convex regularization is often favored over convex regularization. However, non-convex regularization generally leads to non-convex optimization, which suffers from numerous issues: convergence may be guaranteed to only a stationary point, problem specific parameters may be difficult to set, and the solution is sensitive to the initialization of the algorithm. The first part of this thesis is aimed toward combining the benefits of non-convex regularization and convex optimization to estimate sparse signals more effectively. To this end, we propose to use parameterized non-convex regularizers with designated non-convexity and provide a range for the non-convex parameter so as to ensure that the objective function is strictly convex. By ensuring convexity of the objective function (sum of data-fidelity and non-convex regularizer), we can make use of a wide variety of convex optimization algorithms to obtain the unique global minimum reliably. The second part of this thesis proposes a non-linear signal decomposition technique for an important biomedical signal processing problem: the detection of sleep spindles and K-complexes in human sleep electroencephalography (EEG). We propose a non-linear model for the EEG consisting of three components: (1) a transient (sparse piecewise constant) component, (2) a low-frequency component, and (3) an oscillatory component. The oscillatory component admits a sparse time-frequency representation. Using a convex objective function, we propose a fast non-linear optimization algorithm to estimate the three components in the proposed signal model. The low-frequency and oscillatory components are then used to estimate the K-complexes and sleep spindles respectively. The proposed detection method is shown to outperform several state-of-the-art automated sleep spindles detection methods.

  20. A novel post-processing scheme for two-dimensional electrical impedance tomography based on artificial neural networks

    PubMed Central

    2017-01-01

    Objective Electrical Impedance Tomography (EIT) is a powerful non-invasive technique for imaging applications. The goal is to estimate the electrical properties of living tissues by measuring the potential at the boundary of the domain. Being safe with respect to patient health, non-invasive, and having no known hazards, EIT is an attractive and promising technology. However, it suffers from a particular technical difficulty, which consists of solving a nonlinear inverse problem in real time. Several nonlinear approaches have been proposed as a replacement for the linear solver, but in practice very few are capable of stable, high-quality, and real-time EIT imaging because of their very low robustness to errors and inaccurate modeling, or because they require considerable computational effort. Methods In this paper, a post-processing technique based on an artificial neural network (ANN) is proposed to obtain a nonlinear solution to the inverse problem, starting from a linear solution. While common reconstruction methods based on ANNs estimate the solution directly from the measured data, the method proposed here enhances the solution obtained from a linear solver. Conclusion Applying a linear reconstruction algorithm before applying an ANN reduces the effects of noise and modeling errors. Hence, this approach significantly reduces the error associated with solving 2D inverse problems using machine-learning-based algorithms. Significance This work presents radical enhancements in the stability of nonlinear methods for biomedical EIT applications. PMID:29206856

  1. Linear complementarity formulation for 3D frictional sliding problems

    USGS Publications Warehouse

    Kaven, Joern; Hickman, Stephen H.; Davatzes, Nicholas C.; Mutlu, Ovunc

    2012-01-01

    Frictional sliding on quasi-statically deforming faults and fractures can be modeled efficiently using a linear complementarity formulation. We review the formulation in two dimensions and expand the formulation to three-dimensional problems including problems of orthotropic friction. This formulation accurately reproduces analytical solutions to static Coulomb friction sliding problems. The formulation accounts for opening displacements that can occur near regions of non-planarity even under large confining pressures. Such problems are difficult to solve owing to the coupling of relative displacements and tractions; thus, many geomechanical problems tend to neglect these effects. Simple test cases highlight the importance of including friction and allowing for opening when solving quasi-static fault mechanics models. These results also underscore the importance of considering the effects of non-planarity in modeling processes associated with crustal faulting.

  2. Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data

    PubMed Central

    Zhao, Xin; Cheung, Leo Wang-Kit

    2007-01-01

    Background Designing appropriate machine learning methods for identifying genes that have a significant discriminating power for disease outcomes has become more and more important for our understanding of diseases at genomic level. Although many machine learning methods have been developed and applied to the area of microarray gene expression data analysis, the majority of them are based on linear models, which however are not necessarily appropriate for the underlying connection between the target disease and its associated explanatory genes. Linear model based methods usually also bring in false positive significant features more easily. Furthermore, linear model based algorithms often involve calculating the inverse of a matrix that is possibly singular when the number of potentially important genes is relatively large. This leads to problems of numerical instability. To overcome these limitations, a few non-linear methods have recently been introduced to the area. Many of the existing non-linear methods have a couple of critical problems, the model selection problem and the model parameter tuning problem, that remain unsolved or even untouched. In general, a unified framework that allows model parameters of both linear and non-linear models to be easily tuned is always preferred in real-world applications. Kernel-induced learning methods form a class of approaches that show promising potentials to achieve this goal. Results A hierarchical statistical model named kernel-imbedded Gaussian process (KIGP) is developed under a unified Bayesian framework for binary disease classification problems using microarray gene expression data. In particular, based on a probit regression setting, an adaptive algorithm with a cascading structure is designed to find the appropriate kernel, to discover the potentially significant genes, and to make the optimal class prediction accordingly. A Gibbs sampler is built as the core of the algorithm to make Bayesian inferences. Simulation studies showed that, even without any knowledge of the underlying generative model, the KIGP performed very close to the theoretical Bayesian bound not only in the case with a linear Bayesian classifier but also in the case with a very non-linear Bayesian classifier. This sheds light on its broader usability to microarray data analysis problems, especially to those that linear methods work awkwardly. The KIGP was also applied to four published microarray datasets, and the results showed that the KIGP performed better than or at least as well as any of the referred state-of-the-art methods did in all of these cases. Conclusion Mathematically built on the kernel-induced feature space concept under a Bayesian framework, the KIGP method presented in this paper provides a unified machine learning approach to explore both the linear and the possibly non-linear underlying relationship between the target features of a given binary disease classification problem and the related explanatory gene expression data. More importantly, it incorporates the model parameter tuning into the framework. The model selection problem is addressed in the form of selecting a proper kernel type. The KIGP method also gives Bayesian probabilistic predictions for disease classification. These properties and features are beneficial to most real-world applications. The algorithm is naturally robust in numerical computation. The simulation studies and the published data studies demonstrated that the proposed KIGP performs satisfactorily and consistently. PMID:17328811

  3. A python framework for environmental model uncertainty analysis

    USGS Publications Warehouse

    White, Jeremy; Fienen, Michael N.; Doherty, John E.

    2016-01-01

    We have developed pyEMU, a python framework for Environmental Modeling Uncertainty analyses, open-source tool that is non-intrusive, easy-to-use, computationally efficient, and scalable to highly-parameterized inverse problems. The framework implements several types of linear (first-order, second-moment (FOSM)) and non-linear uncertainty analyses. The FOSM-based analyses can also be completed prior to parameter estimation to help inform important modeling decisions, such as parameterization and objective function formulation. Complete workflows for several types of FOSM-based and non-linear analyses are documented in example notebooks implemented using Jupyter that are available in the online pyEMU repository. Example workflows include basic parameter and forecast analyses, data worth analyses, and error-variance analyses, as well as usage of parameter ensemble generation and management capabilities. These workflows document the necessary steps and provides insights into the results, with the goal of educating users not only in how to apply pyEMU, but also in the underlying theory of applied uncertainty quantification.

  4. Boosting Bayesian parameter inference of stochastic differential equation models with methods from statistical physics

    NASA Astrophysics Data System (ADS)

    Albert, Carlo; Ulzega, Simone; Stoop, Ruedi

    2016-04-01

    Measured time-series of both precipitation and runoff are known to exhibit highly non-trivial statistical properties. For making reliable probabilistic predictions in hydrology, it is therefore desirable to have stochastic models with output distributions that share these properties. When parameters of such models have to be inferred from data, we also need to quantify the associated parametric uncertainty. For non-trivial stochastic models, however, this latter step is typically very demanding, both conceptually and numerically, and always never done in hydrology. Here, we demonstrate that methods developed in statistical physics make a large class of stochastic differential equation (SDE) models amenable to a full-fledged Bayesian parameter inference. For concreteness we demonstrate these methods by means of a simple yet non-trivial toy SDE model. We consider a natural catchment that can be described by a linear reservoir, at the scale of observation. All the neglected processes are assumed to happen at much shorter time-scales and are therefore modeled with a Gaussian white noise term, the standard deviation of which is assumed to scale linearly with the system state (water volume in the catchment). Even for constant input, the outputs of this simple non-linear SDE model show a wealth of desirable statistical properties, such as fat-tailed distributions and long-range correlations. Standard algorithms for Bayesian inference fail, for models of this kind, because their likelihood functions are extremely high-dimensional intractable integrals over all possible model realizations. The use of Kalman filters is illegitimate due to the non-linearity of the model. Particle filters could be used but become increasingly inefficient with growing number of data points. Hamiltonian Monte Carlo algorithms allow us to translate this inference problem to the problem of simulating the dynamics of a statistical mechanics system and give us access to most sophisticated methods that have been developed in the statistical physics community over the last few decades. We demonstrate that such methods, along with automated differentiation algorithms, allow us to perform a full-fledged Bayesian inference, for a large class of SDE models, in a highly efficient and largely automatized manner. Furthermore, our algorithm is highly parallelizable. For our toy model, discretized with a few hundred points, a full Bayesian inference can be performed in a matter of seconds on a standard PC.

  5. Parameter estimation of Monod model by the Least-Squares method for microalgae Botryococcus Braunii sp

    NASA Astrophysics Data System (ADS)

    See, J. J.; Jamaian, S. S.; Salleh, R. M.; Nor, M. E.; Aman, F.

    2018-04-01

    This research aims to estimate the parameters of Monod model of microalgae Botryococcus Braunii sp growth by the Least-Squares method. Monod equation is a non-linear equation which can be transformed into a linear equation form and it is solved by implementing the Least-Squares linear regression method. Meanwhile, Gauss-Newton method is an alternative method to solve the non-linear Least-Squares problem with the aim to obtain the parameters value of Monod model by minimizing the sum of square error ( SSE). As the result, the parameters of the Monod model for microalgae Botryococcus Braunii sp can be estimated by the Least-Squares method. However, the estimated parameters value obtained by the non-linear Least-Squares method are more accurate compared to the linear Least-Squares method since the SSE of the non-linear Least-Squares method is less than the linear Least-Squares method.

  6. Composite solvers for linear saddle point problems arising from the incompressible Stokes equations with highly heterogeneous viscosity structure

    NASA Astrophysics Data System (ADS)

    Sanan, P.; Schnepp, S. M.; May, D.; Schenk, O.

    2014-12-01

    Geophysical applications require efficient forward models for non-linear Stokes flow on high resolution spatio-temporal domains. The bottleneck in applying the forward model is solving the linearized, discretized Stokes problem which takes the form of a large, indefinite (saddle point) linear system. Due to the heterogeniety of the effective viscosity in the elliptic operator, devising effective preconditioners for saddle point problems has proven challenging and highly problem-dependent. Nevertheless, at least three approaches show promise for preconditioning these difficult systems in an algorithmically scalable way using multigrid and/or domain decomposition techniques. The first is to work with a hierarchy of coarser or smaller saddle point problems. The second is to use the Schur complement method to decouple and sequentially solve for the pressure and velocity. The third is to use the Schur decomposition to devise preconditioners for the full operator. These involve sub-solves resembling inexact versions of the sequential solve. The choice of approach and sub-methods depends crucially on the motivating physics, the discretization, and available computational resources. Here we examine the performance trade-offs for preconditioning strategies applied to idealized models of mantle convection and lithospheric dynamics, characterized by large viscosity gradients. Due to the arbitrary topological structure of the viscosity field in geodynamical simulations, we utilize low order, inf-sup stable mixed finite element spatial discretizations which are suitable when sharp viscosity variations occur in element interiors. Particular attention is paid to possibilities within the decoupled and approximate Schur complement factorization-based monolithic approaches to leverage recently-developed flexible, communication-avoiding, and communication-hiding Krylov subspace methods in combination with `heavy' smoothers, which require solutions of large per-node sub-problems, well-suited to solution on hybrid computational clusters. To manage the combinatorial explosion of solver options (which include hybridizations of all the approaches mentioned above), we leverage the modularity of the PETSc library.

  7. Finite-horizon differential games for missile-target interception system using adaptive dynamic programming with input constraints

    NASA Astrophysics Data System (ADS)

    Sun, Jingliang; Liu, Chunsheng

    2018-01-01

    In this paper, the problem of intercepting a manoeuvring target within a fixed final time is posed in a non-linear constrained zero-sum differential game framework. The Nash equilibrium solution is found by solving the finite-horizon constrained differential game problem via adaptive dynamic programming technique. Besides, a suitable non-quadratic functional is utilised to encode the control constraints into a differential game problem. The single critic network with constant weights and time-varying activation functions is constructed to approximate the solution of associated time-varying Hamilton-Jacobi-Isaacs equation online. To properly satisfy the terminal constraint, an additional error term is incorporated in a novel weight-updating law such that the terminal constraint error is also minimised over time. By utilising Lyapunov's direct method, the closed-loop differential game system and the estimation weight error of the critic network are proved to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is demonstrated by using a simple non-linear system and a non-linear missile-target interception system, assuming first-order dynamics for the interceptor and target.

  8. Computation of non-monotonic Lyapunov functions for continuous-time systems

    NASA Astrophysics Data System (ADS)

    Li, Huijuan; Liu, AnPing

    2017-09-01

    In this paper, we propose two methods to compute non-monotonic Lyapunov functions for continuous-time systems which are asymptotically stable. The first method is to solve a linear optimization problem on a compact and bounded set. The proposed linear programming based algorithm delivers a CPA1

  9. Some design guidelines for discrete-time adaptive controllers

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.; Athans, M.; Valavani, L.; Stein, G.

    1985-01-01

    There have been many algorithms proposed for adaptive control which will provide globally asymptotically stable controllers if some stringent conditions on the plant are met. The conditions on the plant cannot be met in practice as all plants will contain high frequency unmolded dynamics therefore, blind implementation of the published algorithms can lead to disastrous results. This paper uses a linearization analysis of a non-linear adaptive controller to demonstrate analytically design guidelines which aleviate some of the problems associated with adaptive control in the presence of unmodeled dynamics.

  10. The interplay between screening properties and colloid anisotropy: towards a reliable pair potential for disc-like charged particles.

    PubMed

    Agra, R; Trizac, E; Bocquet, L

    2004-12-01

    The electrostatic potential of a highly charged disc (clay platelet) in an electrolyte is investigated in detail. The corresponding non-linear Poisson-Boltzmann (PB) equation is solved numerically, and we show that the far-field behaviour (relevant for colloidal interactions in dilute suspensions) is exactly that obtained within linearized PB theory, with the surface boundary condition of a uniform potential. The latter linear problem is solved by a new semi-analytical procedure and both the potential amplitude (quantified by an effective charge) and potential anisotropy coincide closely within PB and linearized PB, provided the disc bare charge is high enough. This anisotropy remains at all scales; it is encoded in a function that may vary over several orders of magnitude depending on the azimuthal angle under which the disc is seen. The results allow to construct a pair potential for discs interaction, that is strongly orientation dependent.

  11. Relaxation and Preconditioning for High Order Discontinuous Galerkin Methods with Applications to Aeroacoustics and High Speed Flows

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    2004-01-01

    This project is about the investigation of the development of the discontinuous Galerkin finite element methods, for general geometry and triangulations, for solving convection dominated problems, with applications to aeroacoustics. Other related issues in high order WENO finite difference and finite volume methods have also been investigated. methods are two classes of high order, high resolution methods suitable for convection dominated simulations with possible discontinuous or sharp gradient solutions. In [18], we first review these two classes of methods, pointing out their similarities and differences in algorithm formulation, theoretical properties, implementation issues, applicability, and relative advantages. We then present some quantitative comparisons of the third order finite volume WENO methods and discontinuous Galerkin methods for a series of test problems to assess their relative merits in accuracy and CPU timing. In [3], we review the development of the Runge-Kutta discontinuous Galerkin (RKDG) methods for non-linear convection-dominated problems. These robust and accurate methods have made their way into the main stream of computational fluid dynamics and are quickly finding use in a wide variety of applications. They combine a special class of Runge-Kutta time discretizations, that allows the method to be non-linearly stable regardless of its accuracy, with a finite element space discretization by discontinuous approximations, that incorporates the ideas of numerical fluxes and slope limiters coined during the remarkable development of the high-resolution finite difference and finite volume schemes. The resulting RKDG methods are stable, high-order accurate, and highly parallelizable schemes that can easily handle complicated geometries and boundary conditions. We review the theoretical and algorithmic aspects of these methods and show several applications including nonlinear conservation laws, the compressible and incompressible Navier-Stokes equations, and Hamilton-Jacobi-like equations.

  12. Adaptive learning in complex reproducing kernel Hilbert spaces employing Wirtinger's subgradients.

    PubMed

    Bouboulis, Pantelis; Slavakis, Konstantinos; Theodoridis, Sergios

    2012-03-01

    This paper presents a wide framework for non-linear online supervised learning tasks in the context of complex valued signal processing. The (complex) input data are mapped into a complex reproducing kernel Hilbert space (RKHS), where the learning phase is taking place. Both pure complex kernels and real kernels (via the complexification trick) can be employed. Moreover, any convex, continuous and not necessarily differentiable function can be used to measure the loss between the output of the specific system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. In order to derive analytically the subgradients, the principles of the (recently developed) Wirtinger's calculus in complex RKHS are exploited. Furthermore, both linear and widely linear (in RKHS) estimation filters are considered. To cope with the problem of increasing memory requirements, which is present in almost all online schemes in RKHS, the sparsification scheme, based on projection onto closed balls, has been adopted. We demonstrate the effectiveness of the proposed framework in a non-linear channel identification task, a non-linear channel equalization problem and a quadrature phase shift keying equalization scheme, using both circular and non circular synthetic signal sources.

  13. Analysis of Slope Limiters on Irregular Grids

    NASA Technical Reports Server (NTRS)

    Berger, Marsha; Aftosmis, Michael J.

    2005-01-01

    This paper examines the behavior of flux and slope limiters on non-uniform grids in multiple dimensions. Many slope limiters in standard use do not preserve linear solutions on irregular grids impacting both accuracy and convergence. We rewrite some well-known limiters to highlight their underlying symmetry, and use this form to examine the proper - ties of both traditional and novel limiter formulations on non-uniform meshes. A consistent method of handling stretched meshes is developed which is both linearity preserving for arbitrary mesh stretchings and reduces to common limiters on uniform meshes. In multiple dimensions we analyze the monotonicity region of the gradient vector and show that the multidimensional limiting problem may be cast as the solution of a linear programming problem. For some special cases we present a new directional limiting formulation that preserves linear solutions in multiple dimensions on irregular grids. Computational results using model problems and complex three-dimensional examples are presented, demonstrating accuracy, monotonicity and robustness.

  14. Linear and nonlinear trending and prediction for AVHRR time series data

    NASA Technical Reports Server (NTRS)

    Smid, J.; Volf, P.; Slama, M.; Palus, M.

    1995-01-01

    The variability of AVHRR calibration coefficient in time was analyzed using algorithms of linear and non-linear time series analysis. Specifically we have used the spline trend modeling, autoregressive process analysis, incremental neural network learning algorithm and redundancy functional testing. The analysis performed on available AVHRR data sets revealed that (1) the calibration data have nonlinear dependencies, (2) the calibration data depend strongly on the target temperature, (3) both calibration coefficients and the temperature time series can be modeled, in the first approximation, as autonomous dynamical systems, (4) the high frequency residuals of the analyzed data sets can be best modeled as an autoregressive process of the 10th degree. We have dealt with a nonlinear identification problem and the problem of noise filtering (data smoothing). The system identification and filtering are significant problems for AVHRR data sets. The algorithms outlined in this study can be used for the future EOS missions. Prediction and smoothing algorithms for time series of calibration data provide a functional characterization of the data. Those algorithms can be particularly useful when calibration data are incomplete or sparse.

  15. The Use of Sparse Direct Solver in Vector Finite Element Modeling for Calculating Two Dimensional (2-D) Magnetotelluric Responses in Transverse Electric (TE) Mode

    NASA Astrophysics Data System (ADS)

    Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.

    2018-04-01

    The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.

  16. Robust Models for Optic Flow Coding in Natural Scenes Inspired by Insect Biology

    PubMed Central

    Brinkworth, Russell S. A.; O'Carroll, David C.

    2009-01-01

    The extraction of accurate self-motion information from the visual world is a difficult problem that has been solved very efficiently by biological organisms utilizing non-linear processing. Previous bio-inspired models for motion detection based on a correlation mechanism have been dogged by issues that arise from their sensitivity to undesired properties of the image, such as contrast, which vary widely between images. Here we present a model with multiple levels of non-linear dynamic adaptive components based directly on the known or suspected responses of neurons within the visual motion pathway of the fly brain. By testing the model under realistic high-dynamic range conditions we show that the addition of these elements makes the motion detection model robust across a large variety of images, velocities and accelerations. Furthermore the performance of the entire system is more than the incremental improvements offered by the individual components, indicating beneficial non-linear interactions between processing stages. The algorithms underlying the model can be implemented in either digital or analog hardware, including neuromorphic analog VLSI, but defy an analytical solution due to their dynamic non-linear operation. The successful application of this algorithm has applications in the development of miniature autonomous systems in defense and civilian roles, including robotics, miniature unmanned aerial vehicles and collision avoidance sensors. PMID:19893631

  17. Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems

    NASA Astrophysics Data System (ADS)

    Agapiou, Sergios; Burger, Martin; Dashti, Masoumeh; Helin, Tapio

    2018-04-01

    We consider the inverse problem of recovering an unknown functional parameter u in a separable Banach space, from a noisy observation vector y of its image through a known possibly non-linear map {{\\mathcal G}} . We adopt a Bayesian approach to the problem and consider Besov space priors (see Lassas et al (2009 Inverse Problems Imaging 3 87-122)), which are well-known for their edge-preserving and sparsity-promoting properties and have recently attracted wide attention especially in the medical imaging community. Our key result is to show that in this non-parametric setup the maximum a posteriori (MAP) estimates are characterized by the minimizers of a generalized Onsager-Machlup functional of the posterior. This is done independently for the so-called weak and strong MAP estimates, which as we show coincide in our context. In addition, we prove a form of weak consistency for the MAP estimators in the infinitely informative data limit. Our results are remarkable for two reasons: first, the prior distribution is non-Gaussian and does not meet the smoothness conditions required in previous research on non-parametric MAP estimates. Second, the result analytically justifies existing uses of the MAP estimate in finite but high dimensional discretizations of Bayesian inverse problems with the considered Besov priors.

  18. Simple quasi-analytical holonomic homogenization model for the non-linear analysis of in-plane loaded masonry panels: Part 1, meso-scale

    NASA Astrophysics Data System (ADS)

    Milani, G.; Bertolesi, E.

    2017-07-01

    A simple quasi analytical holonomic homogenization approach for the non-linear analysis of masonry walls in-plane loaded is presented. The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar. It is shown how the mechanical problem in the unit cell is characterized by very few displacement variables and how homogenized stress-strain behavior can be evaluated semi-analytically.

  19. Stiffness optimization of non-linear elastic structures

    DOE PAGES

    Wallin, Mathias; Ivarsson, Niklas; Tortorelli, Daniel

    2017-11-13

    Our paper revisits stiffness optimization of non-linear elastic structures. Due to the non-linearity, several possible stiffness measures can be identified and in this work conventional compliance, i.e. secant stiffness designs are compared to tangent stiffness designs. The optimization problem is solved by the method of moving asymptotes and the sensitivities are calculated using the adjoint method. And for the tangent cost function it is shown that although the objective involves the third derivative of the strain energy an efficient formulation for calculating the sensitivity can be obtained. Loss of convergence due to large deformations in void regions is addressed bymore » using a fictitious strain energy such that small strain linear elasticity is approached in the void regions. We formulate a well-posed topology optimization problem by using restriction which is achieved via a Helmholtz type filter. The numerical examples provided show that for low load levels, the designs obtained from the different stiffness measures coincide whereas for large deformations significant differences are observed.« less

  20. Stiffness optimization of non-linear elastic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallin, Mathias; Ivarsson, Niklas; Tortorelli, Daniel

    Our paper revisits stiffness optimization of non-linear elastic structures. Due to the non-linearity, several possible stiffness measures can be identified and in this work conventional compliance, i.e. secant stiffness designs are compared to tangent stiffness designs. The optimization problem is solved by the method of moving asymptotes and the sensitivities are calculated using the adjoint method. And for the tangent cost function it is shown that although the objective involves the third derivative of the strain energy an efficient formulation for calculating the sensitivity can be obtained. Loss of convergence due to large deformations in void regions is addressed bymore » using a fictitious strain energy such that small strain linear elasticity is approached in the void regions. We formulate a well-posed topology optimization problem by using restriction which is achieved via a Helmholtz type filter. The numerical examples provided show that for low load levels, the designs obtained from the different stiffness measures coincide whereas for large deformations significant differences are observed.« less

  1. Variationally consistent discretization schemes and numerical algorithms for contact problems

    NASA Astrophysics Data System (ADS)

    Wohlmuth, Barbara

    We consider variationally consistent discretization schemes for mechanical contact problems. Most of the results can also be applied to other variational inequalities, such as those for phase transition problems in porous media, for plasticity or for option pricing applications from finance. The starting point is to weakly incorporate the constraint into the setting and to reformulate the inequality in the displacement in terms of a saddle-point problem. Here, the Lagrange multiplier represents the surface forces, and the constraints are restricted to the boundary of the simulation domain. Having a uniform inf-sup bound, one can then establish optimal low-order a priori convergence rates for the discretization error in the primal and dual variables. In addition to the abstract framework of linear saddle-point theory, complementarity terms have to be taken into account. The resulting inequality system is solved by rewriting it equivalently by means of the non-linear complementarity function as a system of equations. Although it is not differentiable in the classical sense, semi-smooth Newton methods, yielding super-linear convergence rates, can be applied and easily implemented in terms of a primal-dual active set strategy. Quite often the solution of contact problems has a low regularity, and the efficiency of the approach can be improved by using adaptive refinement techniques. Different standard types, such as residual- and equilibrated-based a posteriori error estimators, can be designed based on the interpretation of the dual variable as Neumann boundary condition. For the fully dynamic setting it is of interest to apply energy-preserving time-integration schemes. However, the differential algebraic character of the system can result in high oscillations if standard methods are applied. A possible remedy is to modify the fully discretized system by a local redistribution of the mass. Numerical results in two and three dimensions illustrate the wide range of possible applications and show the performance of the space discretization scheme, non-linear solver, adaptive refinement process and time integration.

  2. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments.

    PubMed

    Fisicaro, G; Genovese, L; Andreussi, O; Marzari, N; Goedecker, S

    2016-01-07

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.

  3. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S.; Genovese, L.

    2016-01-07

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and themore » linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.« less

  4. Non-linear molecular pattern classification using molecular beacons with multiple targets.

    PubMed

    Lee, In-Hee; Lee, Seung Hwan; Park, Tai Hyun; Zhang, Byoung-Tak

    2013-12-01

    In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. An Extended Microcomputer-Based Network Optimization Package.

    DTIC Science & Technology

    1982-10-01

    Analysis, Laxenberq, Austria, 1981, pp. 781-808. 9. Anton , H., Elementary Linear Algebra , John Wiley & Sons, New York, 1977. 10. Koopmans, T. C...fCaRUlue do leVee. aide It 001100"M OW eedea9f’ OF Nooke~e Network, generalized network, microcomputer, optimization, network with gains, linear ...Oboe &111111041 network problem, in turn, can be viewed as a specialization of a linear programuing problem having at most two non-zero entries in each

  6. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE PAGES

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris; ...

    2017-09-21

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  7. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  8. Filtering Non-Linear Transfer Functions on Surfaces.

    PubMed

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few lines of shader code (provided in supplemental material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TVCG.2013.102), is high performance, and has a negligible memory footprint.

  9. DOUAR: A new three-dimensional creeping flow numerical model for the solution of geological problems

    NASA Astrophysics Data System (ADS)

    Braun, Jean; Thieulot, Cédric; Fullsack, Philippe; DeKool, Marthijn; Beaumont, Christopher; Huismans, Ritske

    2008-12-01

    We present a new finite element code for the solution of the Stokes and energy (or heat transport) equations that has been purposely designed to address crustal-scale to mantle-scale flow problems in three dimensions. Although it is based on an Eulerian description of deformation and flow, the code, which we named DOUAR ('Earth' in Breton language), has the ability to track interfaces and, in particular, the free surface, by using a dual representation based on a set of particles placed on the interface and the computation of a level set function on the nodes of the finite element grid, thus ensuring accuracy and efficiency. The code also makes use of a new method to compute the dynamic Delaunay triangulation connecting the particles based on non-Euclidian, curvilinear measure of distance, ensuring that the density of particles remains uniform and/or dynamically adapted to the curvature of the interface. The finite element discretization is based on a non-uniform, yet regular octree division of space within a unit cube that allows efficient adaptation of the finite element discretization, i.e. in regions of strong velocity gradient or high interface curvature. The finite elements are cubes (the leaves of the octree) in which a q1- p0 interpolation scheme is used. Nodal incompatibilities across faces separating elements of differing size are dealt with by introducing linear constraints among nodal degrees of freedom. Discontinuities in material properties across the interfaces are accommodated by the use of a novel method (which we called divFEM) to integrate the finite element equations in which the elemental volume is divided by a local octree to an appropriate depth (resolution). A variety of rheologies have been implemented including linear, non-linear and thermally activated creep and brittle (or plastic) frictional deformation. A simple smoothing operator has been defined to avoid checkerboard oscillations in pressure that tend to develop when using a highly irregular octree discretization and the tri-linear (or q1- p0) finite element. A three-dimensional cloud of particles is used to track material properties that depend on the integrated history of deformation (the integrated strain, for example); its density is variable and dynamically adapted to the computed flow. The large system of algebraic equations that results from the finite element discretization and linearization of the basic partial differential equations is solved using a multi-frontal massively parallel direct solver that can efficiently factorize poorly conditioned systems resulting from the highly non-linear rheology and the presence of the free surface. The code is almost entirely parallelized. We present example results including the onset of a Rayleigh-Taylor instability, the indentation of a rigid-plastic material and the formation of a fold beneath a free eroding surface, that demonstrate the accuracy, efficiency and appropriateness of the new code to solve complex geodynamical problems in three dimensions.

  10. Multidimensional FEM-FCT schemes for arbitrary time stepping

    NASA Astrophysics Data System (ADS)

    Kuzmin, D.; Möller, M.; Turek, S.

    2003-05-01

    The flux-corrected-transport paradigm is generalized to finite-element schemes based on arbitrary time stepping. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. Mathematical properties of positivity-preserving schemes are reviewed. A nonoscillatory low-order method is constructed by elimination of negative off-diagonal entries of the discrete transport operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak's multidimensional limiter is employed to switch between linear discretizations of high and low order. A rigorous proof of positivity is provided. The treatment of non-linearities and iterative solution of linear systems are addressed. The performance of the new algorithm is illustrated by numerical examples for the shock tube problem in one dimension and scalar transport equations in two dimensions.

  11. Non-local sub-characteristic zones of influence in unsteady interactive boundary-layers

    NASA Technical Reports Server (NTRS)

    Rothmayer, A. P.

    1992-01-01

    The properties of incompressible, unsteady, interactive, boundary layers are examined for a model hypersonic boundary layer and internal flow past humps or, equivalently, external flow past short-scaled humps. Using a linear high frequency analysis, it is shown that the domains of dependence within the viscous sublayer may be a strong function of position within the sublayer and may be strongly influenced by the pressure displacement interaction, or the prescribed displacement condition. Detailed calculations are presented for the hypersonic boundary layer. This effect is found to carry over directly to the fully viscous problem as well as the nonlinear problem. In the fully viscous problem, the non-local character of the domains of dependence manifests itself in the sub-characteristics. Potential implications of the domain of dependence structure on finite difference computations of unsteady boundary layers are briefly discussed.

  12. Axial calibration methods of piezoelectric load sharing dynamometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Chang, Qingbing; Ren, Zongjin; Shao, Jun; Wang, Xinlei; Tian, Yu

    2018-06-01

    The relationship between input and output of load sharing dynamometer is seriously non-linear in different loading points of a plane, so it's significant for accutately measuring force to precisely calibrate the non-linear relationship. In this paper, firstly, based on piezoelectric load sharing dynamometer, calibration experiments of different loading points are performed in a plane. And then load sharing testing system is respectively calibrated based on BP algorithm and ELM (Extreme Learning Machine) algorithm. Finally, the results show that the calibration result of ELM is better than BP for calibrating the non-linear relationship between input and output of loading sharing dynamometer in the different loading points of a plane, which verifies that ELM algorithm is feasible in solving force non-linear measurement problem.

  13. Using directed information for influence discovery in interconnected dynamical systems

    NASA Astrophysics Data System (ADS)

    Rao, Arvind; Hero, Alfred O.; States, David J.; Engel, James Douglas

    2008-08-01

    Structure discovery in non-linear dynamical systems is an important and challenging problem that arises in various applications such as computational neuroscience, econometrics, and biological network discovery. Each of these systems have multiple interacting variables and the key problem is the inference of the underlying structure of the systems (which variables are connected to which others) based on the output observations (such as multiple time trajectories of the variables). Since such applications demand the inference of directed relationships among variables in these non-linear systems, current methods that have a linear assumption on structure or yield undirected variable dependencies are insufficient. Hence, in this work, we present a methodology for structure discovery using an information-theoretic metric called directed time information (DTI). Using both synthetic dynamical systems as well as true biological datasets (kidney development and T-cell data), we demonstrate the utility of DTI in such problems.

  14. The Effects of Individual Differences on Learner's Navigation in a Courseware

    ERIC Educational Resources Information Center

    Somyürek, Sibel; Güyer, Tolga; Atasoy, Bilal

    2008-01-01

    One of the major features of a computer based instruction (CBI) is its non-linear structure allowing learners the opportunity of flexible navigation to accommodate their own needs. However, this non-linear structure may cause problems such as inefficient navigation, being lost or cognitive overhead for some learners. The aim of this study is to…

  15. Chaos and Robustness in a Single Family of Genetic Oscillatory Networks

    PubMed Central

    Fu, Daniel; Tan, Patrick; Kuznetsov, Alexey; Molkov, Yaroslav I.

    2014-01-01

    Genetic oscillatory networks can be mathematically modeled with delay differential equations (DDEs). Interpreting genetic networks with DDEs gives a more intuitive understanding from a biological standpoint. However, it presents a problem mathematically, for DDEs are by construction infinitely-dimensional and thus cannot be analyzed using methods common for systems of ordinary differential equations (ODEs). In our study, we address this problem by developing a method for reducing infinitely-dimensional DDEs to two- and three-dimensional systems of ODEs. We find that the three-dimensional reductions provide qualitative improvements over the two-dimensional reductions. We find that the reducibility of a DDE corresponds to its robustness. For non-robust DDEs that exhibit high-dimensional dynamics, we calculate analytic dimension lines to predict the dependence of the DDEs’ correlation dimension on parameters. From these lines, we deduce that the correlation dimension of non-robust DDEs grows linearly with the delay. On the other hand, for robust DDEs, we find that the period of oscillation grows linearly with delay. We find that DDEs with exclusively negative feedback are robust, whereas DDEs with feedback that changes its sign are not robust. We find that non-saturable degradation damps oscillations and narrows the range of parameter values for which oscillations exist. Finally, we deduce that natural genetic oscillators with highly-regular periods likely have solely negative feedback. PMID:24667178

  16. Analysis of periodically excited non-linear systems by a parametric continuation technique

    NASA Astrophysics Data System (ADS)

    Padmanabhan, C.; Singh, R.

    1995-07-01

    The dynamic behavior and frequency response of harmonically excited piecewise linear and/or non-linear systems has been the subject of several recent investigations. Most of the prior studies employed harmonic balance or Galerkin schemes, piecewise linear techniques, analog simulation and/or direct numerical integration (digital simulation). Such techniques are somewhat limited in their ability to predict all of the dynamic characteristics, including bifurcations leading to the occurrence of unstable, subharmonic, quasi-periodic and/or chaotic solutions. To overcome this problem, a parametric continuation scheme, based on the shooting method, is applied specifically to a periodically excited piecewise linear/non-linear system, in order to improve understanding as well as to obtain the complete dynamic response. Parameter regions exhibiting bifurcations to harmonic, subharmonic or quasi-periodic solutions are obtained quite efficiently and systematically. Unlike other techniques, the proposed scheme can follow period-doubling bifurcations, and with some modifications obtain stable quasi-periodic solutions and their bifurcations. This knowledge is essential in establishing conditions for the occurrence of chaotic oscillations in any non-linear system. The method is first validated through the Duffing oscillator example, the solutions to which are also obtained by conventional one-term harmonic balance and perturbation methods. The second example deals with a clearance non-linearity problem for both harmonic and periodic excitations. Predictions from the proposed scheme match well with available analog simulation data as well as with multi-term harmonic balance results. Potential savings in computational time over direct numerical integration is demonstrated for some of the example cases. Also, this work has filled in some of the solution regimes for an impact pair, which were missed previously in the literature. Finally, one main limitation associated with the proposed procedure is discussed.

  17. A study of the use of linear programming techniques to improve the performance in design optimization problems

    NASA Technical Reports Server (NTRS)

    Young, Katherine C.; Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    This project has two objectives. The first is to determine whether linear programming techniques can improve performance when handling design optimization problems with a large number of design variables and constraints relative to the feasible directions algorithm. The second purpose is to determine whether using the Kreisselmeier-Steinhauser (KS) function to replace the constraints with one constraint will reduce the cost of total optimization. Comparisons are made using solutions obtained with linear and non-linear methods. The results indicate that there is no cost saving using the linear method or in using the KS function to replace constraints.

  18. Bayesian Approach to the Joint Inversion of Gravity and Magnetic Data, with Application to the Ismenius Area of Mars

    NASA Technical Reports Server (NTRS)

    Jewell, Jeffrey B.; Raymond, C.; Smrekar, S.; Millbury, C.

    2004-01-01

    This viewgraph presentation reviews a Bayesian approach to the inversion of gravity and magnetic data with specific application to the Ismenius Area of Mars. Many inverse problems encountered in geophysics and planetary science are well known to be non-unique (i.e. inversion of gravity the density structure of a body). In hopes of reducing the non-uniqueness of solutions, there has been interest in the joint analysis of data. An example is the joint inversion of gravity and magnetic data, with the assumption that the same physical anomalies generate both the observed magnetic and gravitational anomalies. In this talk, we formulate the joint analysis of different types of data in a Bayesian framework and apply the formalism to the inference of the density and remanent magnetization structure for a local region in the Ismenius area of Mars. The Bayesian approach allows prior information or constraints in the solutions to be incorporated in the inversion, with the "best" solutions those whose forward predictions most closely match the data while remaining consistent with assumed constraints. The application of this framework to the inversion of gravity and magnetic data on Mars reveals two typical challenges - the forward predictions of the data have a linear dependence on some of the quantities of interest, and non-linear dependence on others (termed the "linear" and "non-linear" variables, respectively). For observations with Gaussian noise, a Bayesian approach to inversion for "linear" variables reduces to a linear filtering problem, with an explicitly computable "error" matrix. However, for models whose forward predictions have non-linear dependencies, inference is no longer given by such a simple linear problem, and moreover, the uncertainty in the solution is no longer completely specified by a computable "error matrix". It is therefore important to develop methods for sampling from the full Bayesian posterior to provide a complete and statistically consistent picture of model uncertainty, and what has been learned from observations. We will discuss advanced numerical techniques, including Monte Carlo Markov

  19. A new approach for solving seismic tomography problems and assessing the uncertainty through the use of graph theory and direct methods

    NASA Astrophysics Data System (ADS)

    Bogiatzis, P.; Ishii, M.; Davis, T. A.

    2016-12-01

    Seismic tomography inverse problems are among the largest high-dimensional parameter estimation tasks in Earth science. We show how combinatorics and graph theory can be used to analyze the structure of such problems, and to effectively decompose them into smaller ones that can be solved efficiently by means of the least squares method. In combination with recent high performance direct sparse algorithms, this reduction in dimensionality allows for an efficient computation of the model resolution and covariance matrices using limited resources. Furthermore, we show that a new sparse singular value decomposition method can be used to obtain the complete spectrum of the singular values. This procedure provides the means for more objective regularization and further dimensionality reduction of the problem. We apply this methodology to a moderate size, non-linear seismic tomography problem to image the structure of the crust and the upper mantle beneath Japan using local deep earthquakes recorded by the High Sensitivity Seismograph Network stations.

  20. Numerical Simulation of a Seaway with Breaking

    NASA Astrophysics Data System (ADS)

    Dommermuth, Douglas; O'Shea, Thomas; Brucker, Kyle; Wyatt, Donald

    2012-11-01

    The focus of this presentation is to describe the recent efforts to simulate a fully non-linear seaway with breaking by using a high-order spectral (HOS) solution of the free-surface boundary value problem to drive a three-dimensional Volume of Fluid (VOF) solution. Historically, the two main types of simulations to simulate free-surface flows are the boundary integral equations method (BIEM) and high-order spectral (HOS) methods. BIEM calculations fail at the point at which the surface impacts upon itself, if not sooner, and HOS methods can only simulate a single valued free-surface. Both also employ a single-phase approximation in which the effects of the air on the water are neglected. Due to these limitations they are unable to simulate breaking waves and air entrainment. The Volume of Fluid (VOF) method on the other hand is suitable for modeling breaking waves and air entrainment. However it is computationally intractable to generate a realistic non-linear sea-state. Here, we use the HOS solution to quickly drive, or nudge, the VOF solution into a non-linear state. The computational strategies, mathematical formulation, and numerical implementation will be discussed. The results of the VOF simulation of a seaway with breaking will also be presented, and compared to the single phase, single valued HOS results.

  1. Causal Inference and Explaining Away in a Spiking Network

    PubMed Central

    Moreno-Bote, Rubén; Drugowitsch, Jan

    2015-01-01

    While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification. PMID:26621426

  2. Causal Inference and Explaining Away in a Spiking Network.

    PubMed

    Moreno-Bote, Rubén; Drugowitsch, Jan

    2015-12-01

    While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification.

  3. A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel

    NASA Astrophysics Data System (ADS)

    Kumar, Devendra; Singh, Jagdev; Baleanu, Dumitru

    2018-02-01

    The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order.

  4. Non-linear quantum-classical scheme to simulate non-equilibrium strongly correlated fermionic many-body dynamics

    PubMed Central

    Kreula, J. M.; Clark, S. R.; Jaksch, D.

    2016-01-01

    We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673

  5. Duality in non-linear programming

    NASA Astrophysics Data System (ADS)

    Jeyalakshmi, K.

    2018-04-01

    In this paper we consider duality and converse duality for a programming problem involving convex objective and constraint functions with finite dimensional range. We do not assume any constraint qualification. The dual is presented by reducing the problem to a standard Lagrange multiplier problem.

  6. An analysis of a large dataset on immigrant integration in Spain. The Statistical Mechanics perspective on Social Action

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Contucci, Pierluigi; Sandell, Rickard; Vernia, Cecilia

    2014-02-01

    How does immigrant integration in a country change with immigration density? Guided by a statistical mechanics perspective we propose a novel approach to this problem. The analysis focuses on classical integration quantifiers such as the percentage of jobs (temporary and permanent) given to immigrants, mixed marriages, and newborns with parents of mixed origin. We find that the average values of different quantifiers may exhibit either linear or non-linear growth on immigrant density and we suggest that social action, a concept identified by Max Weber, causes the observed non-linearity. Using the statistical mechanics notion of interaction to quantitatively emulate social action, a unified mathematical model for integration is proposed and it is shown to explain both growth behaviors observed. The linear theory instead, ignoring the possibility of interaction effects would underestimate the quantifiers up to 30% when immigrant densities are low, and overestimate them as much when densities are high. The capacity to quantitatively isolate different types of integration mechanisms makes our framework a suitable tool in the quest for more efficient integration policies.

  7. Human Performance on Hard Non-Euclidean Graph Problems: Vertex Cover

    ERIC Educational Resources Information Center

    Carruthers, Sarah; Masson, Michael E. J.; Stege, Ulrike

    2012-01-01

    Recent studies on a computationally hard visual optimization problem, the Traveling Salesperson Problem (TSP), indicate that humans are capable of finding close to optimal solutions in near-linear time. The current study is a preliminary step in investigating human performance on another hard problem, the Minimum Vertex Cover Problem, in which…

  8. The rectilinear three-body problem as a basis for studying highly eccentric systems

    NASA Astrophysics Data System (ADS)

    Voyatzis, G.; Tsiganis, K.; Gaitanas, M.

    2018-01-01

    The rectilinear elliptic restricted three-body problem (TBP) is the limiting case of the elliptic restricted TBP when the motion of the primaries is described by a Keplerian ellipse with eccentricity e'=1, but the collision of the primaries is assumed to be a non-singular point. The rectilinear model has been proposed as a starting model for studying the dynamics of motion around highly eccentric binary systems. Broucke (AIAA J 7:1003-1009, 1969) explored the rectilinear problem and obtained isolated periodic orbits for mass parameter μ =0.5 (equal masses of the primaries). We found that all orbits obtained by Broucke are linearly unstable. We extend Broucke's computations by using a finer search for symmetric periodic orbits and computing their linear stability. We found a large number of periodic orbits, but only eight of them were found to be linearly stable and are associated with particular mean motion resonances. These stable orbits are used as generating orbits for continuation with respect to μ and e'<1. Also, continuation of periodic solutions with respect to the mass of the small body can be applied by using the general TBP. FLI maps of dynamical stability show that stable periodic orbits are surrounded in phase space with regions of regular orbits indicating that systems of very highly eccentric orbits can be found in stable resonant configurations. As an application we present a stability study for the planetary system HD7449.

  9. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    NASA Astrophysics Data System (ADS)

    Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman

    2017-07-01

    This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  10. Multi-objective experimental design for (13)C-based metabolic flux analysis.

    PubMed

    Bouvin, Jeroen; Cajot, Simon; D'Huys, Pieter-Jan; Ampofo-Asiama, Jerry; Anné, Jozef; Van Impe, Jan; Geeraerd, Annemie; Bernaerts, Kristel

    2015-10-01

    (13)C-based metabolic flux analysis is an excellent technique to resolve fluxes in the central carbon metabolism but costs can be significant when using specialized tracers. This work presents a framework for cost-effective design of (13)C-tracer experiments, illustrated on two different networks. Linear and non-linear optimal input mixtures are computed for networks for Streptomyces lividans and a carcinoma cell line. If only glucose tracers are considered as labeled substrate for a carcinoma cell line or S. lividans, the best parameter estimation accuracy is obtained by mixtures containing high amounts of 1,2-(13)C2 glucose combined with uniformly labeled glucose. Experimental designs are evaluated based on a linear (D-criterion) and non-linear approach (S-criterion). Both approaches generate almost the same input mixture, however, the linear approach is favored due to its low computational effort. The high amount of 1,2-(13)C2 glucose in the optimal designs coincides with a high experimental cost, which is further enhanced when labeling is introduced in glutamine and aspartate tracers. Multi-objective optimization gives the possibility to assess experimental quality and cost at the same time and can reveal excellent compromise experiments. For example, the combination of 100% 1,2-(13)C2 glucose with 100% position one labeled glutamine and the combination of 100% 1,2-(13)C2 glucose with 100% uniformly labeled glutamine perform equally well for the carcinoma cell line, but the first mixture offers a decrease in cost of $ 120 per ml-scale cell culture experiment. We demonstrated the validity of a multi-objective linear approach to perform optimal experimental designs for the non-linear problem of (13)C-metabolic flux analysis. Tools and a workflow are provided to perform multi-objective design. The effortless calculation of the D-criterion can be exploited to perform high-throughput screening of possible (13)C-tracers, while the illustrated benefit of multi-objective design should stimulate its application within the field of (13)C-based metabolic flux analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. On Interactions of Oscillation Modes for a Weakly Non-Linear Undamped Elastic Beam with AN External Force

    NASA Astrophysics Data System (ADS)

    BOERTJENS, G. J.; VAN HORSSEN, W. T.

    2000-08-01

    In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.

  12. Optimal control of coupled parabolic-hyperbolic non-autonomous PDEs: infinite-dimensional state-space approach

    NASA Astrophysics Data System (ADS)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2018-04-01

    This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.

  13. Numerical Study of Pressure Field in Laterally Closed Industrial Buildings with Curved Metallic Roofs due to the Wind Effect by FEM and European Rule Comparison

    NASA Astrophysics Data System (ADS)

    Nieto, P. J. García; del Coz Díaz, J. J.; Vilán, J. A. Vilán; Placer, C. Casqueiro

    2009-08-01

    In this paper, an evaluation of distribution of the air pressure is determined throughout the laterally closed industrial buildings with curved metallic roofs due to the wind effect by the finite element method (FEM). The non-linearity is due to Reynolds-averaged Navier-Stokes (RANS) equations that govern the turbulent flow. The Navier-Stokes equations are non-linear partial differential equations and this non-linearity makes most problems difficult to solve and is part of the cause of turbulence. The RANS equations are time-averaged equations of motion for fluid flow. They are primarily used while dealing with turbulent flows. Turbulence is a highly complex physical phenomenon that is pervasive in flow problems of scientific and engineering concern like this one. In order to solve the RANS equations a two-equation model is used: the standard k-ɛ model. The calculation has been carried out keeping in mind the following assumptions: turbulent flow, an exponential-like wind speed profile with a maximum velocity of 40 m/s at 10 m reference height, and different heights of the building ranging from 6 to 10 meters. Finally, the forces and moments are determined on the cover, as well as the distribution of pressures on the same one, comparing the numerical results obtained with the Spanish CTE DB SE-AE, Spanish NBE AE-88 and European standard rules, giving place to the conclusions that are exposed in the study.

  14. Relaxation approximations to second-order traffic flow models by high-resolution schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolos, I.K.; Delis, A.I.; Papageorgiou, M.

    2015-03-10

    A relaxation-type approximation of second-order non-equilibrium traffic models, written in conservation or balance law form, is considered. Using the relaxation approximation, the nonlinear equations are transformed to a semi-linear diagonilizable problem with linear characteristic variables and stiff source terms with the attractive feature that neither Riemann solvers nor characteristic decompositions are in need. In particular, it is only necessary to provide the flux and source term functions and an estimate of the characteristic speeds. To discretize the resulting relaxation system, high-resolution reconstructions in space are considered. Emphasis is given on a fifth-order WENO scheme and its performance. The computations reportedmore » demonstrate the simplicity and versatility of relaxation schemes as numerical solvers.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzmina, L.K.

    The research deals with different aspects of mathematical modelling and the analysis of complex dynamic non-linear systems as a consequence of applied problems in mechanics (in particular those for gyrosystems, for stabilization and orientation systems, control systems of movable objects, including the aviation and aerospace systems) Non-linearity, multi-connectedness and high dimensionness of dynamical problems, that occur at the initial full statement lead to the need of the problem narrowing, and of the decomposition of the full model, but with safe-keeping of main properties and of qualitative equivalence. The elaboration of regular methods for modelling problems in dynamics, the generalization ofmore » reduction principle are the main aims of the investigations. Here, uniform methodology, based on Lyapunov`s methods, founded by N.G.Ohetayev, is developed. The objects of the investigations are considered with exclusive positions, as systems of singularly perturbed class, treated as ones with singular parametrical perturbations. It is the natural extension of the statements of N.G.Chetayev and P.A.Kuzmin for parametrical stability. In paper the systematical procedures for construction of correct simplified models (comparison ones) are developed, the validity conditions of the transition are determined the appraisals are received, the regular algorithms of engineering level are obtained. Applicabilitelly to the stabilization and orientation systems with the gyroscopic controlling subsystems, these methods enable to build the hierarchical sequence of admissible simplified models; to determine the conditions of their correctness.« less

  16. Azimuthal anisotropy distributions in high-energy collisions

    NASA Astrophysics Data System (ADS)

    Yan, Li; Ollitrault, Jean-Yves; Poskanzer, Arthur M.

    2015-03-01

    Elliptic flow in ultrarelativistic heavy-ion collisions results from the hydrodynamic response to the spatial anisotropy of the initial density profile. A long-standing problem in the interpretation of flow data is that uncertainties in the initial anisotropy are mingled with uncertainties in the response. We argue that the non-Gaussianity of flow fluctuations in small systems with large fluctuations can be used to disentangle the initial state from the response. We apply this method to recent measurements of anisotropic flow in Pb+Pb and p+Pb collisions at the LHC, assuming linear response to the initial anisotropy. The response coefficient is found to decrease as the system becomes smaller and is consistent with a low value of the ratio of viscosity over entropy of η / s ≃ 0.19. Deviations from linear response are studied. While they significantly change the value of the response coefficient they do not change the rate of decrease with centrality. Thus, we argue that the estimate of η / s is robust against non-linear effects.

  17. Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2015-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.

  18. Non-fragile consensus algorithms for a network of diffusion PDEs with boundary local interaction

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Li, Junmin

    2017-07-01

    In this study, non-fragile consensus algorithm is proposed to solve the average consensus problem of a network of diffusion PDEs, modelled by boundary controlled heat equations. The problem deals with the case where the Neumann-type boundary controllers are corrupted by additive persistent disturbances. To achieve consensus between agents, a linear local interaction rule addressing this requirement is given. The proposed local interaction rules are analysed by applying a Lyapunov-based approach. The multiplicative and additive non-fragile feedback control algorithms are designed and sufficient conditions for the consensus of the multi-agent systems are presented in terms of linear matrix inequalities, respectively. Simulation results are presented to support the effectiveness of the proposed algorithms.

  19. Combinatorial approaches to gene recognition.

    PubMed

    Roytberg, M A; Astakhova, T V; Gelfand, M S

    1997-01-01

    Recognition of genes via exon assembly approaches leads naturally to the use of dynamic programming. We consider the general graph-theoretical formulation of the exon assembly problem and analyze in detail some specific variants: multicriterial optimization in the case of non-linear gene-scoring functions; context-dependent schemes for scoring exons and related procedures for exon filtering; and highly specific recognition of arbitrary gene segments, oligonucleotide probes and polymerase chain reaction (PCR) primers.

  20. Solving portfolio selection problems with minimum transaction lots based on conditional-value-at-risk

    NASA Astrophysics Data System (ADS)

    Setiawan, E. P.; Rosadi, D.

    2017-01-01

    Portfolio selection problems conventionally means ‘minimizing the risk, given the certain level of returns’ from some financial assets. This problem is frequently solved with quadratic or linear programming methods, depending on the risk measure that used in the objective function. However, the solutions obtained by these method are in real numbers, which may give some problem in real application because each asset usually has its minimum transaction lots. In the classical approach considering minimum transaction lots were developed based on linear Mean Absolute Deviation (MAD), variance (like Markowitz’s model), and semi-variance as risk measure. In this paper we investigated the portfolio selection methods with minimum transaction lots with conditional value at risk (CVaR) as risk measure. The mean-CVaR methodology only involves the part of the tail of the distribution that contributed to high losses. This approach looks better when we work with non-symmetric return probability distribution. Solution of this method can be found with Genetic Algorithm (GA) methods. We provide real examples using stocks from Indonesia stocks market.

  1. Dynamic output feedback control of a flexible air-breathing hypersonic vehicle via T-S fuzzy approach

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoxiang; Wu, Ligang; Hu, Changhua; Wang, Zhaoqiang; Gao, Huijun

    2014-08-01

    By utilising Takagi-Sugeno (T-S) fuzzy set approach, this paper addresses the robust H∞ dynamic output feedback control for the non-linear longitudinal model of flexible air-breathing hypersonic vehicles (FAHVs). The flight control of FAHVs is highly challenging due to the unique dynamic characteristics, and the intricate couplings between the engine and fight dynamics and external disturbance. Because of the dynamics' enormous complexity, currently, only the longitudinal dynamics models of FAHVs have been used for controller design. In this work, T-S fuzzy modelling technique is utilised to approach the non-linear dynamics of FAHVs, then a fuzzy model is developed for the output tracking problem of FAHVs. The fuzzy model contains parameter uncertainties and disturbance, which can approach the non-linear dynamics of FAHVs more exactly. The flexible models of FAHVs are difficult to measure because of the complex dynamics and the strong couplings, thus a full-order dynamic output feedback controller is designed for the fuzzy model. A robust H∞ controller is designed for the obtained closed-loop system. By utilising the Lyapunov functional approach, sufficient solvability conditions for such controllers are established in terms of linear matrix inequalities. Finally, the effectiveness of the proposed T-S fuzzy dynamic output feedback control method is demonstrated by numerical simulations.

  2. LETTER TO THE EDITOR: Bicomplexes and conservation laws in non-Abelian Toda models

    NASA Astrophysics Data System (ADS)

    Gueuvoghlanian, E. P.

    2001-08-01

    A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.

  3. Determination of unknown coefficient in a non-linear elliptic problem related to the elastoplastic torsion of a bar

    NASA Astrophysics Data System (ADS)

    Hasanov, Alemdar; Erdem, Arzu

    2008-08-01

    The inverse problem of determining the unknown coefficient of the non-linear differential equation of torsional creep is studied. The unknown coefficient g = g({xi}2) depends on the gradient{xi} : = |{nabla}u| of the solution u(x), x [isin] {Omega} [sub] Rn, of the direct problem. It is proved that this gradient is bounded in C-norm. This permits one to choose the natural class of admissible coefficients for the considered inverse problem. The continuity in the norm of the Sobolev space H1({Omega}) of the solution u(x;g) of the direct problem with respect to the unknown coefficient g = g({xi}2) is obtained in the following sense: ||u(x;g) - u(x;gm)||1 [->] 0 when gm({eta}) [->] g({eta}) point-wise as m [->] {infty}. Based on these results, the existence of a quasi-solution of the inverse problem in the considered class of admissible coefficients is obtained. Numerical examples related to determination of the unknown coefficient are presented.

  4. A stable high-order perturbation of surfaces method for numerical simulation of diffraction problems in triply layered media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Youngjoon, E-mail: hongy@uic.edu; Nicholls, David P., E-mail: davidn@uic.edu

    The accurate numerical simulation of linear waves interacting with periodic layered media is a crucial capability in engineering applications. In this contribution we study the stable and high-order accurate numerical simulation of the interaction of linear, time-harmonic waves with a periodic, triply layered medium with irregular interfaces. In contrast with volumetric approaches, High-Order Perturbation of Surfaces (HOPS) algorithms are inexpensive interfacial methods which rapidly and recursively estimate scattering returns by perturbation of the interface shape. In comparison with Boundary Integral/Element Methods, the stable HOPS algorithm we describe here does not require specialized quadrature rules, periodization strategies, or the solution ofmore » dense non-symmetric positive definite linear systems. In addition, the algorithm is provably stable as opposed to other classical HOPS approaches. With numerical experiments we show the remarkable efficiency, fidelity, and accuracy one can achieve with an implementation of this algorithm.« less

  5. Determination of Nonlinear Stiffness Coefficients for Finite Element Models with Application to the Random Vibration Problem

    NASA Technical Reports Server (NTRS)

    Muravyov, Alexander A.

    1999-01-01

    In this paper, a method for obtaining nonlinear stiffness coefficients in modal coordinates for geometrically nonlinear finite-element models is developed. The method requires application of a finite-element program with a geometrically non- linear static capability. The MSC/NASTRAN code is employed for this purpose. The equations of motion of a MDOF system are formulated in modal coordinates. A set of linear eigenvectors is used to approximate the solution of the nonlinear problem. The random vibration problem of the MDOF nonlinear system is then considered. The solutions obtained by application of two different versions of a stochastic linearization technique are compared with linear and exact (analytical) solutions in terms of root-mean-square (RMS) displacements and strains for a beam structure.

  6. Buckling and limit states of composite profiles with top-hat channel section subjected to axial compression

    NASA Astrophysics Data System (ADS)

    RóŻyło, Patryk; Debski, Hubert; Kral, Jan

    2018-01-01

    The subject of the research was a short thin-walled top-hat cross-section composite profile. The tested structure was subjected to axial compression. As part of the critical state research, critical load and the corresponding buckling mode was determined. Later in the study laminate damage areas were determined throughout numerical analysis. It was assumed that the profile is simply supported on the cross sections ends. Experimental tests were carried out on a universal testing machine Zwick Z100 and the results were compared with the results of numerical calculations. The eigenvalue problem and a non-linear problem of stability of thin-walled structures were carried out by the use of commercial software ABAQUS®. In the presented cases, it was assumed that the material is linear-elastic and non-linearity of the model results from the large displacements. Solution to the geometrically nonlinear problem was conducted by the use of the incremental-iterative Newton-Raphson method.

  7. Characteristics of melting heat transfer during flow of Carreau fluid induced by a stretching cylinder.

    PubMed

    Hashim; Khan, Masood; Saleh Alshomrani, Ali

    2017-01-01

    This article provides a comprehensive analysis of the energy transportation by virtue of the melting process of high-temperature phase change materials. We have developed a two-dimensional model for the boundary layer flow of non-Newtonian Carreau fluid. It is assumed that flow is caused by stretching of a cylinder in the axial direction by means of a linear velocity. Adequate local similarity transformations are employed to determine a set of non-linear ordinary differential equations which govern the flow problem. Numerical solutions to the resultant non-dimensional boundary value problem are computed via the fifth-order Runge-Kutta Fehlberg integration scheme. The solutions are captured for both zero and non-zero curvature parameters, i.e., for flow over a flat plate or flow over a cylinder. The flow and heat transfer attributes are witnessed to be prompted in an intricate manner by the melting parameter, the curvature parameter, the Weissenberg number, the power law index and the Prandtl number. We determined that one of the possible ways to boost the fluid velocity is to increase the melting parameter. Additionally, both the velocity of the fluid and the momentum boundary layer thickness are higher in the case of flow over a stretching cylinder. As expected, the magnitude of the skin friction and the rate of heat transfer decrease by raising the values of the melting parameter and the Weissenberg number.

  8. A Mixed Integer Linear Programming Approach to Electrical Stimulation Optimization Problems.

    PubMed

    Abouelseoud, Gehan; Abouelseoud, Yasmine; Shoukry, Amin; Ismail, Nour; Mekky, Jaidaa

    2018-02-01

    Electrical stimulation optimization is a challenging problem. Even when a single region is targeted for excitation, the problem remains a constrained multi-objective optimization problem. The constrained nature of the problem results from safety concerns while its multi-objectives originate from the requirement that non-targeted regions should remain unaffected. In this paper, we propose a mixed integer linear programming formulation that can successfully address the challenges facing this problem. Moreover, the proposed framework can conclusively check the feasibility of the stimulation goals. This helps researchers to avoid wasting time trying to achieve goals that are impossible under a chosen stimulation setup. The superiority of the proposed framework over alternative methods is demonstrated through simulation examples.

  9. Students’ difficulties in solving linear equation problems

    NASA Astrophysics Data System (ADS)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  10. Neural networks: What non-linearity to choose

    NASA Technical Reports Server (NTRS)

    Kreinovich, Vladik YA.; Quintana, Chris

    1991-01-01

    Neural networks are now one of the most successful learning formalisms. Neurons transform inputs (x(sub 1),...,x(sub n)) into an output f(w(sub 1)x(sub 1) + ... + w(sub n)x(sub n)), where f is a non-linear function and w, are adjustable weights. What f to choose? Usually the logistic function is chosen, but sometimes the use of different functions improves the practical efficiency of the network. The problem of choosing f as a mathematical optimization problem is formulated and solved under different optimality criteria. As a result, a list of functions f that are optimal under these criteria are determined. This list includes both the functions that were empirically proved to be the best for some problems, and some new functions that may be worth trying.

  11. Learning Petri net models of non-linear gene interactions.

    PubMed

    Mayo, Michael

    2005-10-01

    Understanding how an individual's genetic make-up influences their risk of disease is a problem of paramount importance. Although machine-learning techniques are able to uncover the relationships between genotype and disease, the problem of automatically building the best biochemical model or "explanation" of the relationship has received less attention. In this paper, I describe a method based on random hill climbing that automatically builds Petri net models of non-linear (or multi-factorial) disease-causing gene-gene interactions. Petri nets are a suitable formalism for this problem, because they are used to model concurrent, dynamic processes analogous to biochemical reaction networks. I show that this method is routinely able to identify perfect Petri net models for three disease-causing gene-gene interactions recently reported in the literature.

  12. On the Feasibility of a Generalized Linear Program

    DTIC Science & Technology

    1989-03-01

    generealized linear program by applying the same algorithm to a "phase-one" problem without requiring that the initial basic feasible solution to the latter be non-degenerate. secUrMTY C.AMlIS CAYI S OP ?- PAeES( UII -W & ,

  13. Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments

    NASA Astrophysics Data System (ADS)

    Baronian, Vahan; Bourgeois, Laurent; Chapuis, Bastien; Recoquillay, Arnaud

    2018-07-01

    This paper presents an application of the linear sampling method to ultrasonic non destructive testing of an elastic waveguide. In particular, the NDT context implies that both the solicitations and the measurements are located on the surface of the waveguide and are given in the time domain. Our strategy consists in using a modal formulation of the linear sampling method at multiple frequencies, such modal formulation being justified theoretically in Bourgeois et al (2011 Inverse Problems 27 055001) for rigid obstacles and in Bourgeois and Lunéville (2013 Inverse Problems 29 025017) for cracks. Our strategy requires the inversion of some emission and reception matrices which deserve some special attention due to potential ill-conditioning. The feasibility of our method is proved with the help of artificial data as well as real data.

  14. Semilinear programming: applications and implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, S.

    Semilinear programming is a method of solving optimization problems with linear constraints where the non-negativity restrictions on the variables are dropped and the objective function coefficients can take on different values depending on whether the variable is positive or negative. The simplex method for linear programming is modified in this thesis to solve general semilinear and piecewise linear programs efficiently without having to transform them into equivalent standard linear programs. Several models in widely different areas of optimization such as production smoothing, facility locations, goal programming and L/sub 1/ estimation are presented first to demonstrate the compact formulation that arisesmore » when such problems are formulated as semilinear programs. A code SLP is constructed using the semilinear programming techniques. Problems in aggregate planning and L/sub 1/ estimation are solved using SLP and equivalent linear programs using a linear programming simplex code. Comparisons of CPU times and number iterations indicate SLP to be far superior. The semilinear programming techniques are extended to piecewise linear programming in the implementation of the code PLP. Piecewise linear models in aggregate planning are solved using PLP and equivalent standard linear programs using a simple upper bounded linear programming code SUBLP.« less

  15. Dynamical theory of stability for elastic rods with nonlinear curvature and twist

    NASA Technical Reports Server (NTRS)

    Wauer, J.

    1977-01-01

    Considering non-linear terms in the curvature as well as in the twist, the governing boundary value problem for lateral bending of elastic, transverse loaded rods is formulated by means of Hamilton's principle. Using the method of small vibrations, the associated linearized equations of stability are derived, which complete the currently accepted relations. The example of the simplest lateral bending problem illustrates the improved effect of the proposed equations.

  16. Seismic waveform inversion using neural networks

    NASA Astrophysics Data System (ADS)

    De Wit, R. W.; Trampert, J.

    2012-12-01

    Full waveform tomography aims to extract all available information on Earth structure and seismic sources from seismograms. The strongly non-linear nature of this inverse problem is often addressed through simplifying assumptions for the physical theory or data selection, thus potentially neglecting valuable information. Furthermore, the assessment of the quality of the inferred model is often lacking. This calls for the development of methods that fully appreciate the non-linear nature of the inverse problem, whilst providing a quantification of the uncertainties in the final model. We propose to invert seismic waveforms in a fully non-linear way by using artificial neural networks. Neural networks can be viewed as powerful and flexible non-linear filters. They are very common in speech, handwriting and pattern recognition. Mixture Density Networks (MDN) allow us to obtain marginal posterior probability density functions (pdfs) of all model parameters, conditioned on the data. An MDN can approximate an arbitrary conditional pdf as a linear combination of Gaussian kernels. Seismograms serve as input, Earth structure parameters are the so-called targets and network training aims to learn the relationship between input and targets. The network is trained on a large synthetic data set, which we construct by drawing many random Earth models from a prior model pdf and solving the forward problem for each of these models, thus generating synthetic seismograms. As a first step, we aim to construct a 1D Earth model. Training sets are constructed using the Mineos package, which computes synthetic seismograms in a spherically symmetric non-rotating Earth by summing normal modes. We train a network on the body waveforms present in these seismograms. Once the network has been trained, it can be presented with new unseen input data, in our case the body waves in real seismograms. We thus obtain the posterior pdf which represents our final state of knowledge given the information in the training set and the real data.

  17. FBILI method for multi-level line transfer

    NASA Astrophysics Data System (ADS)

    Kuzmanovska, O.; Atanacković, O.; Faurobert, M.

    2017-07-01

    Efficient non-LTE multilevel radiative transfer calculations are needed for a proper interpretation of astrophysical spectra. In particular, realistic simulations of time-dependent processes or multi-dimensional phenomena require that the iterative method used to solve such non-linear and non-local problem is as fast as possible. There are several multilevel codes based on efficient iterative schemes that provide a very high convergence rate, especially when combined with mathematical acceleration techniques. The Forth-and-Back Implicit Lambda Iteration (FBILI) developed by Atanacković-Vukmanović et al. [1] is a Gauss-Seidel-type iterative scheme that is characterized by a very high convergence rate without the need of complementing it with additional acceleration techniques. In this paper we make the implementation of the FBILI method to the multilevel atom line transfer in 1D more explicit. We also consider some of its variants and investigate their convergence properties by solving the benchmark problem of CaII line formation in the solar atmosphere. Finally, we compare our solutions with results obtained with the well known code MULTI.

  18. Singular optimal control and the identically non-regular problem in the calculus of variations

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Kelley, H. J.; Cliff, E. M.

    1985-01-01

    A small but interesting class of optimal control problems featuring a scalar control appearing linearly is equivalent to the class of identically nonregular problems in the Calculus of Variations. It is shown that a condition due to Mancill (1950) is equivalent to the generalized Legendre-Clebsch condition for this narrow class of problems.

  19. Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids II: Extension to Two Dimensional Scalar Equation

    NASA Technical Reports Server (NTRS)

    Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The framework for constructing a high-order, conservative Spectral (Finite) Volume (SV) method is presented for two-dimensional scalar hyperbolic conservation laws on unstructured triangular grids. Each triangular grid cell forms a spectral volume (SV), and the SV is further subdivided into polygonal control volumes (CVs) to supported high-order data reconstructions. Cell-averaged solutions from these CVs are used to reconstruct a high order polynomial approximation in the SV. Each CV is then updated independently with a Godunov-type finite volume method and a high-order Runge-Kutta time integration scheme. A universal reconstruction is obtained by partitioning all SVs in a geometrically similar manner. The convergence of the SV method is shown to depend on how a SV is partitioned. A criterion based on the Lebesgue constant has been developed and used successfully to determine the quality of various partitions. Symmetric, stable, and convergent linear, quadratic, and cubic SVs have been obtained, and many different types of partitions have been evaluated. The SV method is tested for both linear and non-linear model problems with and without discontinuities.

  20. Heat Transfer Search Algorithm for Non-convex Economic Dispatch Problems

    NASA Astrophysics Data System (ADS)

    Hazra, Abhik; Das, Saborni; Basu, Mousumi

    2018-06-01

    This paper presents Heat Transfer Search (HTS) algorithm for the non-linear economic dispatch problem. HTS algorithm is based on the law of thermodynamics and heat transfer. The proficiency of the suggested technique has been disclosed on three dissimilar complicated economic dispatch problems with valve point effect; prohibited operating zone; and multiple fuels with valve point effect. Test results acquired from the suggested technique for the economic dispatch problem have been fitted to that acquired from other stated evolutionary techniques. It has been observed that the suggested HTS carry out superior solutions.

  1. Heat Transfer Search Algorithm for Non-convex Economic Dispatch Problems

    NASA Astrophysics Data System (ADS)

    Hazra, Abhik; Das, Saborni; Basu, Mousumi

    2018-03-01

    This paper presents Heat Transfer Search (HTS) algorithm for the non-linear economic dispatch problem. HTS algorithm is based on the law of thermodynamics and heat transfer. The proficiency of the suggested technique has been disclosed on three dissimilar complicated economic dispatch problems with valve point effect; prohibited operating zone; and multiple fuels with valve point effect. Test results acquired from the suggested technique for the economic dispatch problem have been fitted to that acquired from other stated evolutionary techniques. It has been observed that the suggested HTS carry out superior solutions.

  2. Batch-mode Reinforcement Learning for improved hydro-environmental systems management

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Galelli, S.; Restelli, M.; Soncini-Sessa, R.

    2010-12-01

    Despite the great progresses made in the last decades, the optimal management of hydro-environmental systems still remains a very active and challenging research area. The combination of multiple, often conflicting interests, high non-linearities of the physical processes and the management objectives, strong uncertainties in the inputs, and high dimensional state makes the problem challenging and intriguing. Stochastic Dynamic Programming (SDP) is one of the most suitable methods for designing (Pareto) optimal management policies preserving the original problem complexity. However, it suffers from a dual curse, which, de facto, prevents its practical application to even reasonably complex water systems. (i) Computational requirement grows exponentially with state and control dimension (Bellman's curse of dimensionality), so that SDP can not be used with water systems where the state vector includes more than few (2-3) units. (ii) An explicit model of each system's component is required (curse of modelling) to anticipate the effects of the system transitions, i.e. any information included into the SDP framework can only be either a state variable described by a dynamic model or a stochastic disturbance, independent in time, with the associated pdf. Any exogenous information that could effectively improve the system operation cannot be explicitly considered in taking the management decision, unless a dynamic model is identified for each additional information, thus adding to the problem complexity through the curse of dimensionality (additional state variables). To mitigate this dual curse, the combined use of batch-mode Reinforcement Learning (bRL) and Dynamic Model Reduction (DMR) techniques is explored in this study. bRL overcomes the curse of modelling by replacing explicit modelling with an external simulator and/or historical observations. The curse of dimensionality is averted using a functional approximation of the SDP value function based on proper non-linear regressors. DMR reduces the complexity and the associated computational requirements of non-linear distributed process based models, making them suitable for being included into optimization schemes. Results from real world applications of the approach are also presented, including reservoir operation with both quality and quantity targets.

  3. High Order Finite Difference Methods, Multidimensional Linear Problems and Curvilinear Coordinates

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1999-01-01

    Boundary and interface conditions are derived for high order finite difference methods applied to multidimensional linear problems in curvilinear coordinates. The boundary and interface conditions lead to conservative schemes and strict and strong stability provided that certain metric conditions are met.

  4. Keeping it Together: Advanced algorithms and software for magma dynamics (and other coupled multi-physics problems)

    NASA Astrophysics Data System (ADS)

    Spiegelman, M.; Wilson, C. R.

    2011-12-01

    A quantitative theory of magma production and transport is essential for understanding the dynamics of magmatic plate boundaries, intra-plate volcanism and the geochemical evolution of the planet. It also provides one of the most challenging computational problems in solid Earth science, as it requires consistent coupling of fluid and solid mechanics together with the thermodynamics of melting and reactive flows. Considerable work on these problems over the past two decades shows that small changes in assumptions of coupling (e.g. the relationship between melt fraction and solid rheology), can have profound changes on the behavior of these systems which in turn affects critical computational choices such as discretizations, solvers and preconditioners. To make progress in exploring and understanding this physically rich system requires a computational framework that allows more flexible, high-level description of multi-physics problems as well as increased flexibility in composing efficient algorithms for solution of the full non-linear coupled system. Fortunately, recent advances in available computational libraries and algorithms provide a platform for implementing such a framework. We present results from a new model building system that leverages functionality from both the FEniCS project (www.fenicsproject.org) and PETSc libraries (www.mcs.anl.gov/petsc) along with a model independent options system and gui, Spud (amcg.ese.ic.ac.uk/Spud). Key features from FEniCS include fully unstructured FEM with a wide range of elements; a high-level language (ufl) and code generation compiler (FFC) for describing the weak forms of residuals and automatic differentiation for calculation of exact and approximate jacobians. The overall strategy is to monitor/calculate residuals and jacobians for the entire non-linear system of equations within a global non-linear solve based on PETSc's SNES routines. PETSc already provides a wide range of solvers and preconditioners, from parallel sparse direct to algebraic multigrid, that can be chosen at runtime. In particular, we make extensive use of PETSc's FieldSplit block preconditioners that allow us to use optimal solvers for subproblems (such as Stokes, or advection/diffusion of temperature) as preconditioners for the full problem. Thus these routines let us reuse effective solving recipes/splittings from previous experience while monitoring the convergence of the global problem. These techniques often yield quadratic (Newton like) convergence for the work of standard Picard schemes. We will illustrate this new framework with examples from the Magma Dynamic Demonstration suite (MADDs) of well understood magma dynamics benchmark problems including stokes flow in ridge geometries, magmatic solitary waves and shear-driven melt bands. While development of this system has been driven by magma dynamics, this framework is much more general and can be used for a wide range of PDE based multi-physics models.

  5. Compatible diagonal-norm staggered and upwind SBP operators

    NASA Astrophysics Data System (ADS)

    Mattsson, Ken; O'Reilly, Ossian

    2018-01-01

    The main motivation with the present study is to achieve a provably stable high-order accurate finite difference discretisation of linear first-order hyperbolic problems on a staggered grid. The use of a staggered grid makes it non-trivial to discretise advective terms. To overcome this difficulty we discretise the advective terms using upwind Summation-By-Parts (SBP) operators, while the remaining terms are discretised using staggered SBP operators. The upwind and staggered SBP operators (for each order of accuracy) are compatible, here meaning that they are based on the same diagonal norms, allowing for energy estimates to be formulated. The boundary conditions are imposed using a penalty (SAT) technique, to guarantee linear stability. The resulting SBP-SAT approximations lead to fully explicit ODE systems. The accuracy and stability properties are demonstrated for linear hyperbolic problems in 1D, and for the 2D linearised Euler equations with constant background flow. The newly derived upwind and staggered SBP operators lead to significantly more accurate numerical approximations, compared with the exclusive usage of (previously derived) central-difference first derivative SBP operators.

  6. Analysis of friction and instability by the centre manifold theory for a non-linear sprag-slip model

    NASA Astrophysics Data System (ADS)

    Sinou, J.-J.; Thouverez, F.; Jezequel, L.

    2003-08-01

    This paper presents the research devoted to the study of instability phenomena in non-linear model with a constant brake friction coefficient. Indeed, the impact of unstable oscillations can be catastrophic. It can cause vehicle control problems and component degradation. Accordingly, complex stability analysis is required. This paper outlines stability analysis and centre manifold approach for studying instability problems. To put it more precisely, one considers brake vibrations and more specifically heavy trucks judder where the dynamic characteristics of the whole front axle assembly is concerned, even if the source of judder is located in the brake system. The modelling introduces the sprag-slip mechanism based on dynamic coupling due to buttressing. The non-linearity is expressed as a polynomial with quadratic and cubic terms. This model does not require the use of brake negative coefficient, in order to predict the instability phenomena. Finally, the centre manifold approach is used to obtain equations for the limit cycle amplitudes. The centre manifold theory allows the reduction of the number of equations of the original system in order to obtain a simplified system, without loosing the dynamics of the original system as well as the contributions of non-linear terms. The goal is the study of the stability analysis and the validation of the centre manifold approach for a complex non-linear model by comparing results obtained by solving the full system and by using the centre manifold approach. The brake friction coefficient is used as an unfolding parameter of the fundamental Hopf bifurcation point.

  7. Sparse signals recovered by non-convex penalty in quasi-linear systems.

    PubMed

    Cui, Angang; Li, Haiyang; Wen, Meng; Peng, Jigen

    2018-01-01

    The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is no longer suitable. Compared with the compressed sensing under the linear circumstance, this nonlinear compressed sensing is much more difficult, in fact also NP-hard, combinatorial problem, because of the discrete and discontinuous nature of the [Formula: see text]-norm and the nonlinearity. In order to get a convenience for sparse signal recovery, we set the nonlinear models have a smooth quasi-linear nature in this paper, and study a non-convex fraction function [Formula: see text] in this quasi-linear compressed sensing. We propose an iterative fraction thresholding algorithm to solve the regularization problem [Formula: see text] for all [Formula: see text]. With the change of parameter [Formula: see text], our algorithm could get a promising result, which is one of the advantages for our algorithm compared with some state-of-art algorithms. Numerical experiments show that our method performs much better than some state-of-the-art methods.

  8. High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation

    NASA Astrophysics Data System (ADS)

    Anderson, R.; Dobrev, V.; Kolev, Tz.; Kuzmin, D.; Quezada de Luna, M.; Rieben, R.; Tomov, V.

    2017-04-01

    In this work we present a FCT-like Maximum-Principle Preserving (MPP) method to solve the transport equation. We use high-order polynomial spaces; in particular, we consider up to 5th order spaces in two and three dimensions and 23rd order spaces in one dimension. The method combines the concepts of positive basis functions for discontinuous Galerkin finite element spatial discretization, locally defined solution bounds, element-based flux correction, and non-linear local mass redistribution. We consider a simple 1D problem with non-smooth initial data to explain and understand the behavior of different parts of the method. Convergence tests in space indicate that high-order accuracy is achieved. Numerical results from several benchmarks in two and three dimensions are also reported.

  9. Topics in structural dynamics: Nonlinear unsteady transonic flows and Monte Carlo methods in acoustics

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.

    1974-01-01

    The results are reported of two unrelated studies. The first was an investigation of the formulation of the equations for non-uniform unsteady flows, by perturbation of an irrotational flow to obtain the linear Green's equation. The resulting integral equation was found to contain a kernel which could be expressed as the solution of the adjoint flow equation, a linear equation for small perturbations, but with non-constant coefficients determined by the steady flow conditions. It is believed that the non-uniform flow effects may prove important in transonic flutter, and that in such cases, the use of doublet type solutions of the wave equation would then prove to be erroneous. The second task covered an initial investigation into the use of the Monte Carlo method for solution of acoustical field problems. Computed results are given for a rectangular room problem, and for a problem involving a circular duct with a source located at the closed end.

  10. Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.

    PubMed

    Kumar, Dinesh; Kumar, P; Rai, K N

    2017-11-01

    This paper deals with numerical modeling and simulation of heat transfer in skin tissues using non-linear dual-phase-lag (DPL) bioheat transfer model under periodic heat flux boundary condition. The blood perfusion is assumed temperature-dependent which results in non-linear DPL bioheat transfer model in order to predict more accurate results. A numerical method of line which is based on finite difference and Runge-Kutta (4,5) schemes, is used to solve the present non-linear problem. Under specific case, the exact solution has been obtained and compared with the present numerical scheme, and we found that those are in good agreement. A comparison based on model selection criterion (AIC) has been made among non-linear DPL models when the variation of blood perfusion rate with temperature is of constant, linear and exponential type with the experimental data and it has been found that non-linear DPL model with exponential variation of blood perfusion rate is closest to the experimental data. In addition, it is found that due to absence of phase-lag phenomena in Pennes bioheat transfer model, it achieves steady state more quickly and always predict higher temperature than thermal and DPL non-linear models. The effect of coefficient of blood perfusion rate, dimensionless heating frequency and Kirchoff number on dimensionless temperature distribution has also been analyzed. The whole analysis is presented in dimensionless form. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Axisymmetric Powell-Eyring fluid flow over a stretching sheet with a convective boundary condition and suction effects

    NASA Astrophysics Data System (ADS)

    Nasir, Nor Ain Azeany Mohd; Ishak, Anuar; Pop, Ioan

    2018-04-01

    In this paper, the heat and mass transfer of an axisymmetric Powell-Eyring fluid flow over a stretching sheet with a convective boundary condition and suction effects are investigated. An appropriate similarity transformation is used to reduce the highly non-linear partial differential equation into second and third order non-linear ordinary differential equations. Numerical solutions of the reduced governing equations are computed numerically by utilizing the MATLAB's built-in boundary value problem solver, bvp4c. The physical significance of various parameters such as Biot number, fluid parameters and Prandtl number on the velocity and temperature evolution profiles are illustrated graphically. The effects of these governing parameters on the skin friction coefficient and the local Nusselt number are also displayed graphically. It is noticed that the Powell-Eyring fluid parameter gives significant influence on the rates of heat and mass transfer of the fluid.

  12. Incremental harmonic balance method for predicting amplitudes of a multi-d.o.f. non-linear wheel shimmy system with combined Coulomb and quadratic damping

    NASA Astrophysics Data System (ADS)

    Zhou, J. X.; Zhang, L.

    2005-01-01

    Incremental harmonic balance (IHB) formulations are derived for general multiple degrees of freedom (d.o.f.) non-linear autonomous systems. These formulations are developed for a concerned four-d.o.f. aircraft wheel shimmy system with combined Coulomb and velocity-squared damping. A multi-harmonic analysis is performed and amplitudes of limit cycles are predicted. Within a large range of parametric variations with respect to aircraft taxi velocity, the IHB method can, at a much cheaper cost, give results with high accuracy as compared with numerical results given by a parametric continuation method. In particular, the IHB method avoids the stiff problems emanating from numerical treatment of aircraft wheel shimmy system equations. The development is applicable to other vibration control systems that include commonly used dry friction devices or velocity-squared hydraulic dampers.

  13. Substrate mass transfer: analytical approach for immobilized enzyme reactions

    NASA Astrophysics Data System (ADS)

    Senthamarai, R.; Saibavani, T. N.

    2018-04-01

    In this paper, the boundary value problem in immobilized enzyme reactions is formulated and approximate expression for substrate concentration without external mass transfer resistance is presented. He’s variational iteration method is used to give approximate and analytical solutions of non-linear differential equation containing a non linear term related to enzymatic reaction. The relevant analytical solution for the dimensionless substrate concentration profile is discussed in terms of dimensionless reaction parameters α and β.

  14. On mathematical modelling of aeroelastic problems with finite element method

    NASA Astrophysics Data System (ADS)

    Sváček, Petr

    2018-06-01

    This paper is interested in solution of two-dimensional aeroelastic problems. Two mathematical models are compared for a benchmark problem. First, the classical approach of linearized aerodynamical forces is described to determine the aeroelastic instability and the aeroelastic response in terms of frequency and damping coefficient. This approach is compared to the coupled fluid-structure model solved with the aid of finite element method used for approximation of the incompressible Navier-Stokes equations. The finite element approximations are coupled to the non-linear motion equations of a flexibly supported airfoil. Both methods are first compared for the case of small displacement, where the linearized approach can be well adopted. The influence of nonlinearities for the case of post-critical regime is discussed.

  15. PHYSICS REQUIRES A SIMPLE LOW MACH NUMBER FLOW TO BE COMPRESSIBLE

    EPA Science Inventory

    Radial, laminar, plane, low velocity flow represents the simplest, non-linear fluid dynamics problem. Ostensibly this apparently trivial flow could be solved using the incompressible Navier-Stokes equations, universally believed to be adequate for such problems. Most researchers ...

  16. Direct Linearization and Adjoint Approaches to Evaluation of Atmospheric Weighting Functions and Surface Partial Derivatives: General Principles, Synergy and Areas of Application

    NASA Technical Reports Server (NTRS)

    Ustino, Eugene A.

    2006-01-01

    This slide presentation reviews the observable radiances as functions of atmospheric parameters and of surface parameters; the mathematics of atmospheric weighting functions (WFs) and surface partial derivatives (PDs) are presented; and the equation of the forward radiative transfer (RT) problem is presented. For non-scattering atmospheres this can be done analytically, and all WFs and PDs can be computed analytically using the direct linearization approach. For scattering atmospheres, in general case, the solution of the forward RT problem can be obtained only numerically, but we need only two numerical solutions: one of the forward RT problem and one of the adjoint RT problem to compute all WFs and PDs we can think of. In this presentation we discuss applications of both the linearization and adjoint approaches

  17. Size effects in non-linear heat conduction with flux-limited behaviors

    NASA Astrophysics Data System (ADS)

    Li, Shu-Nan; Cao, Bing-Yang

    2017-11-01

    Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited behaviors.

  18. Investigating High-School Students' Reasoning Strategies when They Solve Linear Equations

    ERIC Educational Resources Information Center

    Huntley, Mary Ann; Marcus, Robin; Kahan, Jeremy; Miller, Jane Lincoln

    2007-01-01

    A cross-curricular structured-probe task-based clinical interview study with 44 pairs of third-year high-school mathematics students, most of whom were high achieving, was conducted to investigate their approaches to a variety of algebra problems. This paper presents results from one problem that involved solving a set of three linear equations of…

  19. Modelling Problem-Solving Situations into Number Theory Tasks: The Route towards Generalisation

    ERIC Educational Resources Information Center

    Papadopoulos, Ioannis; Iatridou, Maria

    2010-01-01

    This paper examines the way two 10th graders cope with a non-standard generalisation problem that involves elementary concepts of number theory (more specifically linear Diophantine equations) in the geometrical context of a rectangle's area. Emphasis is given on how the students' past experience of problem solving (expressed through interplay…

  20. SAGUARO: a finite-element computer program for partially saturated porous flow problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, R.R.; Gartling, D.K.; Larson, D.E.

    1983-06-01

    SAGUARO is a finite element computer program designed to calculate two-dimensional flow of mass and energy through porous media. The media may be saturated or partially saturated. SAGUARO solves the parabolic time-dependent mass transport equation which accounts for the presence of partially saturated zones through the use of highly non-linear material characteristic curves. The energy equation accounts for the possibility of partially saturated regions by adjusting the thermal capacitances and thermal conductivities according to the volume fraction of water present in the local pores. Program capabilities, user instructions and a sample problem are presented in this manual.

  1. Dyslexia and reasoning: the importance of visual processes.

    PubMed

    Bacon, Alison M; Handley, Simon J

    2010-08-01

    Recent research has suggested that individuals with dyslexia rely on explicit visuospatial representations for syllogistic reasoning while most non-dyslexics opt for an abstract verbal strategy. This paper investigates the role of visual processes in relational reasoning amongst dyslexic reasoners. Expt 1 presents written and verbal protocol evidence to suggest that reasoners with dyslexia generate detailed representations of relational properties and use these to make a visual comparison of objects. Non-dyslexics use a linear array of objects to make a simple transitive inference. Expt 2 examined evidence for the visual-impedance effect which suggests that visual information detracts from reasoning leading to longer latencies and reduced accuracy. While non-dyslexics showed the impedance effects predicted, dyslexics showed only reduced accuracy on problems designed specifically to elicit imagery. Expt 3 presented problems with less semantically and visually rich content. The non-dyslexic group again showed impedance effects, but dyslexics did not. Furthermore, in both studies, visual memory predicted reasoning accuracy for dyslexic participants, but not for non-dyslexics, particularly on problems with highly visual content. The findings are discussed in terms of the importance of visual and semantic processes in reasoning for individuals with dyslexia, and we argue that these processes play a compensatory role, offsetting phonological and verbal memory deficits.

  2. CORDIC-based digital signal processing (DSP) element for adaptive signal processing

    NASA Astrophysics Data System (ADS)

    Bolstad, Gregory D.; Neeld, Kenneth B.

    1995-04-01

    The High Performance Adaptive Weight Computation (HAWC) processing element is a CORDIC based application specific DSP element that, when connected in a linear array, can perform extremely high throughput (100s of GFLOPS) matrix arithmetic operations on linear systems of equations in real time. In particular, it very efficiently performs the numerically intense computation of optimal least squares solutions for large, over-determined linear systems. Most techniques for computing solutions to these types of problems have used either a hard-wired, non-programmable systolic array approach, or more commonly, programmable DSP or microprocessor approaches. The custom logic methods can be efficient, but are generally inflexible. Approaches using multiple programmable generic DSP devices are very flexible, but suffer from poor efficiency and high computation latencies, primarily due to the large number of DSP devices that must be utilized to achieve the necessary arithmetic throughput. The HAWC processor is implemented as a highly optimized systolic array, yet retains some of the flexibility of a programmable data-flow system, allowing efficient implementation of algorithm variations. This provides flexible matrix processing capabilities that are one to three orders of magnitude less expensive and more dense than the current state of the art, and more importantly, allows a realizable solution to matrix processing problems that were previously considered impractical to physically implement. HAWC has direct applications in RADAR, SONAR, communications, and image processing, as well as in many other types of systems.

  3. H∞ control for uncertain linear system over networks with Bernoulli data dropout and actuator saturation.

    PubMed

    Yu, Jimin; Yang, Chenchen; Tang, Xiaoming; Wang, Ping

    2018-03-01

    This paper investigates the H ∞ control problems for uncertain linear system over networks with random communication data dropout and actuator saturation. The random data dropout process is modeled by a Bernoulli distributed white sequence with a known conditional probability distribution and the actuator saturation is confined in a convex hull by introducing a group of auxiliary matrices. By constructing a quadratic Lyapunov function, effective conditions for the state feedback-based H ∞ controller and the observer-based H ∞ controller are proposed in the form of non-convex matrix inequalities to take the random data dropout and actuator saturation into consideration simultaneously, and the problem of non-convex feasibility is solved by applying cone complementarity linearization (CCL) procedure. Finally, two simulation examples are given to demonstrate the effectiveness of the proposed new design techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Experimental and Numerical Study of the Buckling of Composite Profiles with Open Cross Section under Axial Compression

    NASA Astrophysics Data System (ADS)

    Rozylo, Patryk; Teter, Andrzej; Debski, Hubert; Wysmulski, Pawel; Falkowicz, Katarzyna

    2017-10-01

    The object of the research are short, thin-walled columns with an open top-hat cross section made of multilayer laminate. The walls of the investigated profiles are made of plate elements. The entire columns are subjected to uniform compression. A detailed analysis allowed us to determine critical forces and post-critical equilibrium paths. It is assumed that the columns are articulately supported on the edges forming their ends. The numerical investigation is performed by the finite element method. The study involves solving the problem of eigenvalue and the non-linear problem of stability of the structure. The numerical analysis is performed by the commercial simulation software ABAQUS®. The numerical results are then validated experimentally. In the discussed cases, it is assumed that the material operates within a linearly-elastic range, and the non-linearity of the FEM model is due to large displacements.

  5. A computationally efficient scheme for the non-linear diffusion equation

    NASA Astrophysics Data System (ADS)

    Termonia, P.; Van de Vyver, H.

    2009-04-01

    This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered version of the linearized Crank-Nicholson scheme, showing that, although this scheme is slightly less accurate in treating the highly resolved waves, (i) the new scheme better treats highly non-linear systems, (ii) better handles the short waves, (iii) for a given test bed turns out to be three to four times more computationally cheap, and (iv) is easier in implementation.

  6. Multitrace/singletrace formulations and Domain Decomposition Methods for the solution of Helmholtz transmission problems for bounded composite scatterers

    NASA Astrophysics Data System (ADS)

    Jerez-Hanckes, Carlos; Pérez-Arancibia, Carlos; Turc, Catalin

    2017-12-01

    We present Nyström discretizations of multitrace/singletrace formulations and non-overlapping Domain Decomposition Methods (DDM) for the solution of Helmholtz transmission problems for bounded composite scatterers with piecewise constant material properties. We investigate the performance of DDM with both classical Robin and optimized transmission boundary conditions. The optimized transmission boundary conditions incorporate square root Fourier multiplier approximations of Dirichlet to Neumann operators. While the multitrace/singletrace formulations as well as the DDM that use classical Robin transmission conditions are not particularly well suited for Krylov subspace iterative solutions of high-contrast high-frequency Helmholtz transmission problems, we provide ample numerical evidence that DDM with optimized transmission conditions constitute efficient computational alternatives for these type of applications. In the case of large numbers of subdomains with different material properties, we show that the associated DDM linear system can be efficiently solved via hierarchical Schur complements elimination.

  7. Approximate non-linear multiparameter inversion for multicomponent single and double P-wave scattering in isotropic elastic media

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Mao, Weijian

    2018-03-01

    An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-waves scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform (GRT). After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic non-linear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P-wave and S-wave information.

  8. Robust synthetic biology design: stochastic game theory approach.

    PubMed

    Chen, Bor-Sen; Chang, Chia-Hung; Lee, Hsiao-Ching

    2009-07-15

    Synthetic biology is to engineer artificial biological systems to investigate natural biological phenomena and for a variety of applications. However, the development of synthetic gene networks is still difficult and most newly created gene networks are non-functioning due to uncertain initial conditions and disturbances of extra-cellular environments on the host cell. At present, how to design a robust synthetic gene network to work properly under these uncertain factors is the most important topic of synthetic biology. A robust regulation design is proposed for a stochastic synthetic gene network to achieve the prescribed steady states under these uncertain factors from the minimax regulation perspective. This minimax regulation design problem can be transformed to an equivalent stochastic game problem. Since it is not easy to solve the robust regulation design problem of synthetic gene networks by non-linear stochastic game method directly, the Takagi-Sugeno (T-S) fuzzy model is proposed to approximate the non-linear synthetic gene network via the linear matrix inequality (LMI) technique through the Robust Control Toolbox in Matlab. Finally, an in silico example is given to illustrate the design procedure and to confirm the efficiency and efficacy of the proposed robust gene design method. http://www.ee.nthu.edu.tw/bschen/SyntheticBioDesign_supplement.pdf.

  9. Optimizing Requirements Decisions with KEYS

    NASA Technical Reports Server (NTRS)

    Jalali, Omid; Menzies, Tim; Feather, Martin

    2008-01-01

    Recent work with NASA's Jet Propulsion Laboratory has allowed for external access to five of JPL's real-world requirements models, anonymized to conceal proprietary information, but retaining their computational nature. Experimentation with these models, reported herein, demonstrates a dramatic speedup in the computations performed on them. These models have a well defined goal: select mitigations that retire risks which, in turn, increases the number of attainable requirements. Such a non-linear optimization is a well-studied problem. However identification of not only (a) the optimal solution(s) but also (b) the key factors leading to them is less well studied. Our technique, called KEYS, shows a rapid way of simultaneously identifying the solutions and their key factors. KEYS improves on prior work by several orders of magnitude. Prior experiments with simulated annealing or treatment learning took tens of minutes to hours to terminate. KEYS runs much faster than that; e.g for one model, KEYS ran 13,000 times faster than treatment learning (40 minutes versus 0.18 seconds). Processing these JPL models is a non-linear optimization problem: the fewest mitigations must be selected while achieving the most requirements. Non-linear optimization is a well studied problem. With this paper, we challenge other members of the PROMISE community to improve on our results with other techniques.

  10. Profiling a Mind Map User: A Descriptive Appraisal

    ERIC Educational Resources Information Center

    Tucker, Joanne M.; Armstrong, Gary R.; Massad, Victor J.

    2010-01-01

    Whether manually or through the use of software, a non-linear information organization framework known as mind mapping offers an alternative method for capturing thoughts, ideas and information to linear thinking modes such as outlining. Mind mapping is brainstorming, organizing, and problem solving. This paper examines mind mapping techniques,…

  11. Teaching Linear Algebra: Proceeding More Efficiently by Staying Comfortably within Z

    ERIC Educational Resources Information Center

    Beaver, Scott

    2015-01-01

    For efficiency in a linear algebra course the instructor may wish to avoid the undue arithmetical distractions of rational arithmetic. In this paper we explore how to write fraction-free problems of various types including elimination, matrix inverses, orthogonality, and the (non-normalizing) Gram-Schmidt process.

  12. Non-Singular Dislocation Elastic Fields and Linear Elastic Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Korsunsky, Alexander M.

    2010-03-01

    One of the hallmarks of the traditional linear elastic fracture mechanics (LEFM) is the presence of an (integrable) inverse square root singularity of strains and stresses in the vicinity of the crack tip. It is the presence of this singularity that necessitates the introduction of the concepts of stress intensity factor (and its critical value, the fracture toughness) and the energy release rate (and material toughness). This gives rise to the Griffith theory of strength that includes, apart from applied stresses, the considerations of defect size and geometry. A highly successful framework for the solution of crack problems, particularly in the two-dimensional case, due to Muskhelishvili (1953), Bilby and Eshelby (1968) and others, relies on the mathematical concept of dislocation. Special analytical and numerical methods of dealing with the characteristic 1/r (Cauchy) singularity occupy a prominent place within this theory. Recently, in a different context of dislocation dynamics simulations, Cai et al. (2006) proposed a novel means of removing the singularity associated with the dislocation core, by introducing a blunting radius parameter a into the expressions for elastic fields. Here, using the example of two-dimensional elasticity, we demonstrate how the adoption of the similar mathematically expedient tool leads naturally to a non-singular formulation of fracture mechanics problems. This opens an efficient means of treating a variety of crack problems.

  13. SLC: The End Game

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raimondi, Pantaleo

    The design of the Stanford Linear Collider (SLC) called for a beam intensity far beyond what was practically achievable. This was due to intrinsic limitations in many subsystems and to a lack of understanding of the new physics of linear colliders. Real progress in improving the SLC performance came from precision, non-invasive diagnostics to measure and monitor the beams and from new techniques to control the emittance dilution and optimize the beams. A major contribution to the success of the last 1997-98 SLC run came from several innovative ideas for improving the performance of the Final Focus (FF). This papermore » describes some of the problems encountered and techniques used to overcome them. Building on the SLC experience, we will also present a new approach to the FF design for future high energy linear colliders.« less

  14. A Solution to Separation and Multicollinearity in Multiple Logistic Regression

    PubMed Central

    Shen, Jianzhao; Gao, Sujuan

    2010-01-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27–38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study. PMID:20376286

  15. A Solution to Separation and Multicollinearity in Multiple Logistic Regression.

    PubMed

    Shen, Jianzhao; Gao, Sujuan

    2008-10-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.

  16. A scalable variational inequality approach for flow through porous media models with pressure-dependent viscosity

    NASA Astrophysics Data System (ADS)

    Mapakshi, N. K.; Chang, J.; Nakshatrala, K. B.

    2018-04-01

    Mathematical models for flow through porous media typically enjoy the so-called maximum principles, which place bounds on the pressure field. It is highly desirable to preserve these bounds on the pressure field in predictive numerical simulations, that is, one needs to satisfy discrete maximum principles (DMP). Unfortunately, many of the existing formulations for flow through porous media models do not satisfy DMP. This paper presents a robust, scalable numerical formulation based on variational inequalities (VI), to model non-linear flows through heterogeneous, anisotropic porous media without violating DMP. VI is an optimization technique that places bounds on the numerical solutions of partial differential equations. To crystallize the ideas, a modification to Darcy equations by taking into account pressure-dependent viscosity will be discretized using the lowest-order Raviart-Thomas (RT0) and Variational Multi-scale (VMS) finite element formulations. It will be shown that these formulations violate DMP, and, in fact, these violations increase with an increase in anisotropy. It will be shown that the proposed VI-based formulation provides a viable route to enforce DMP. Moreover, it will be shown that the proposed formulation is scalable, and can work with any numerical discretization and weak form. A series of numerical benchmark problems are solved to demonstrate the effects of heterogeneity, anisotropy and non-linearity on DMP violations under the two chosen formulations (RT0 and VMS), and that of non-linearity on solver convergence for the proposed VI-based formulation. Parallel scalability on modern computational platforms will be illustrated through strong-scaling studies, which will prove the efficiency of the proposed formulation in a parallel setting. Algorithmic scalability as the problem size is scaled up will be demonstrated through novel static-scaling studies. The performed static-scaling studies can serve as a guide for users to be able to select an appropriate discretization for a given problem size.

  17. Laser Linewidth Requirements for Optical Bpsk and Qpsk Heterodyne Lightwave Systems.

    NASA Astrophysics Data System (ADS)

    Boukli-Hacene, Mokhtar

    In this dissertation, optical Binary Phase-Shift Keying (BPSK) and Quadrature Phase-Shift Keying (QPSK) heterodyne communication receivers are investigated. The main objective of this research work is to analyze the performance of these receivers in the presence of laser phase noise and shot noise. The heterodyne optical BPSK is based on the square law carrier recovery (SLCR) scheme for phase detection. The BPSK heterodyne receiver is analyzed assuming a second order linear phase-locked loop (PLL) subsystem and a small phase error. The noise properties are analyzed and the problem of minimizing the effect of noise is addressed. The performance of the receiver is evaluated in terms of the bit error rate (BER), which leads to the analysis of the BER versus the laser linewidth and the number of photons/bit to achieve good performance. Since we cannot track the pure carrier component in the presence of noise, a non-linear model is used to solve the problem of recovery of the carrier. The non -linear system is analyzed in the presence of a low signal -to-noise ratio (SNR). The non-Gaussian noise model represented by its probability density function (PDF) is used to analyze the performance of the receiver, especially the phase error. In addition the effect of the PLL is analyzed by studying the cycle slippage (cs). Finally, the research effort is expanded from BPSK to QPSK systems. The heterodyne optical QPSK based on the fourth power multiplier scheme (FPMS) in conjunction with linear and non-linear PLL model is investigated. Optimum loop and higher power penalty in the presence of phase noise and shot noise are analyzed. It is shown that the QPSK system yields a high speed and high sensitivity coherent means for transmission of information accompanied by a small degradation in the laser linewidth. Comparative analysis of BPSK and QPSK systems leads us to conclude that in terms of laser linewidth, bit rate, phase error and power penalty, the QPSK system is more sensitive than the BPSK system and suffers less from higher power penalty. The BPSK and QPSK heterodyne receivers used in the uncoded scheme demand a realistic laser linewidth. Since the laser linewidth is the critical measure of the performance of a receiver, a convolutional code applied to QPSK of the system is used to improve the sensitivity of the system. The effect of coding is particularly important as means of relaxing the laser linewidth requirement. The validity and usefulness of the analysis presented in the dissertation is supported by computer simulations.

  18. Estimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data

    PubMed Central

    Song, Yong-Ze; Yang, Hong-Lei; Peng, Jun-Huan; Song, Yi-Rong; Sun, Qian; Li, Yuan

    2015-01-01

    Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe environmental problem and is of negative impact on human health. Xi'an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi’an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the MODIS aerosol optical thickness (AOT) product. Linear regression is a commonly used method to find statistical relationships among PM2.5 concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indicative of emission sources. The relationships of these variables, however, are usually complicated and non-linear. Therefore, a generalized additive model (GAM) is used to estimate the statistical relationships between potential variables and PM2.5 concentrations. This model contains linear functions of SO2 and CO, univariate smoothing non-linear functions of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 = 0.691, which improves the result of a stepwise linear regression (R2 = 0.582) by 18.73%. The two most significant variables, CO concentration and AOT, represent 20.65% and 19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2, NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi'an City, the traffic and other industrial emissions are the primary source of PM2.5. Temperature, location, and wind variables also non-linearly related with PM2.5. PMID:26540446

  19. How does non-linear dynamics affect the baryon acoustic oscillation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, Naonori S.; Spergel, David N., E-mail: nao.s.sugiyama@gmail.com, E-mail: dns@astro.princeton.edu

    2014-02-01

    We study the non-linear behavior of the baryon acoustic oscillation in the power spectrum and the correlation function by decomposing the dark matter perturbations into the short- and long-wavelength modes. The evolution of the dark matter fluctuations can be described as a global coordinate transformation caused by the long-wavelength displacement vector acting on short-wavelength matter perturbation undergoing non-linear growth. Using this feature, we investigate the well known cancellation of the high-k solutions in the standard perturbation theory. While the standard perturbation theory naturally satisfies the cancellation of the high-k solutions, some of the recently proposed improved perturbation theories do notmore » guarantee the cancellation. We show that this cancellation clarifies the success of the standard perturbation theory at the 2-loop order in describing the amplitude of the non-linear power spectrum even at high-k regions. We propose an extension of the standard 2-loop level perturbation theory model of the non-linear power spectrum that more accurately models the non-linear evolution of the baryon acoustic oscillation than the standard perturbation theory. The model consists of simple and intuitive parts: the non-linear evolution of the smoothed power spectrum without the baryon acoustic oscillations and the non-linear evolution of the baryon acoustic oscillations due to the large-scale velocity of dark matter and due to the gravitational attraction between dark matter particles. Our extended model predicts the smoothing parameter of the baryon acoustic oscillation peak at z = 0.35 as ∼ 7.7Mpc/h and describes the small non-linear shift in the peak position due to the galaxy random motions.« less

  20. An equivalent frequency approach for determining non-linear effects on pre-tensioned-cable cross-braced structures

    NASA Astrophysics Data System (ADS)

    Giaccu, Gian Felice

    2018-05-01

    Pre-tensioned cable braces are widely used as bracing systems in various structural typologies. This technology is fundamentally utilized for stiffening purposes in the case of steel and timber structures. The pre-stressing force imparted to the braces provides to the system a remarkable increment of stiffness. On the other hand, the pre-tensioning force in the braces must be properly calibrated in order to satisfactorily meet both serviceability and ultimate limit states. Dynamic properties of these systems are however affected by non-linear behavior due to potential slackening of the pre-tensioned brace. In the recent years the author has been working on a similar problem regarding the non-linear response of cables in cable-stayed bridges and braced structures. In the present paper a displacement-based approach is used to examine the non-linear behavior of a building system. The methodology operates through linearization and allows obtaining an equivalent linearized frequency to approximately characterize, mode by mode, the dynamic behavior of the system. The equivalent frequency depends on both the mechanical characteristics of the system, the pre-tensioning level assigned to the braces and a characteristic vibration amplitude. The proposed approach can be used as a simplified technique, capable of linearizing the response of structural systems, characterized by non-linearity induced by the slackening of pre-tensioned braces.

  1. A Duality Theory for Non-convex Problems in the Calculus of Variations

    NASA Astrophysics Data System (ADS)

    Bouchitté, Guy; Fragalà, Ilaria

    2018-07-01

    We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet and Neumann boundary conditions. The dual problem reads nicely as a linear programming problem, and our main result states that there is no duality gap. Further, we provide necessary and sufficient optimality conditions, and we show that our duality principle can be reformulated as a min-max result which is quite useful for numerical implementations. As an example, we illustrate the application of our method to a celebrated free boundary problem. The results were announced in Bouchitté and Fragalà (C R Math Acad Sci Paris 353(4):375-379, 2015).

  2. A Duality Theory for Non-convex Problems in the Calculus of Variations

    NASA Astrophysics Data System (ADS)

    Bouchitté, Guy; Fragalà, Ilaria

    2018-02-01

    We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet and Neumann boundary conditions. The dual problem reads nicely as a linear programming problem, and our main result states that there is no duality gap. Further, we provide necessary and sufficient optimality conditions, and we show that our duality principle can be reformulated as a min-max result which is quite useful for numerical implementations. As an example, we illustrate the application of our method to a celebrated free boundary problem. The results were announced in Bouchitté and Fragalà (C R Math Acad Sci Paris 353(4):375-379, 2015).

  3. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.

    PubMed

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.

  4. Remarks on Hierarchic Control for a Linearized Micropolar Fluids System in Moving Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesus, Isaías Pereira de, E-mail: isaias@ufpi.edu.br

    We study a Stackelberg strategy subject to the evolutionary linearized micropolar fluids equations in domains with moving boundaries, considering a Nash multi-objective equilibrium (non necessarily cooperative) for the “follower players” (as is called in the economy field) and an optimal problem for the leader player with approximate controllability objective. We will obtain the following main results: the existence and uniqueness of Nash equilibrium and its characterization, the approximate controllability of the linearized micropolar system with respect to the leader control and the existence and uniqueness of the Stackelberg–Nash problem, where the optimality system for the leader is given.

  5. Modification of 2-D Time-Domain Shallow Water Wave Equation using Asymptotic Expansion Method

    NASA Astrophysics Data System (ADS)

    Khairuman, Teuku; Nasruddin, MN; Tulus; Ramli, Marwan

    2018-01-01

    Generally, research on the tsunami wave propagation model can be conducted by using a linear model of shallow water theory, where a non-linear side on high order is ignored. In line with research on the investigation of the tsunami waves, the Boussinesq equation model underwent a change aimed to obtain an improved quality of the dispersion relation and non-linearity by increasing the order to be higher. To solve non-linear sides at high order is used a asymptotic expansion method. This method can be used to solve non linear partial differential equations. In the present work, we found that this method needs much computational time and memory with the increase of the number of elements.

  6. Robustness of controllability and observability of linear time-varying systems with application to the emergency control of power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sastry, S. S.; Desoer, C. A.

    1980-01-01

    Fixed point methods from nonlinear anaysis are used to establish conditions under which the uniform complete controllability of linear time-varying systems is preserved under non-linear perturbations in the state dynamics and the zero-input uniform complete observability of linear time-varying systems is preserved under non-linear perturbation in the state dynamics and output read out map. Algorithms for computing the specific input to steer the perturbed systems from a given initial state to a given final state are also presented. As an application, a very specific emergency control of an interconnected power system is formulated as a steering problem and it ismore » shown that this emergency control is indeed possible in finite time.« less

  7. Parameter and Structure Inference for Nonlinear Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark

    2006-01-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.

  8. Status of the Monte Carlo library least-squares (MCLLS) approach for non-linear radiation analyzer problems

    NASA Astrophysics Data System (ADS)

    Gardner, Robin P.; Xu, Libai

    2009-10-01

    The Center for Engineering Applications of Radioisotopes (CEAR) has been working for over a decade on the Monte Carlo library least-squares (MCLLS) approach for treating non-linear radiation analyzer problems including: (1) prompt gamma-ray neutron activation analysis (PGNAA) for bulk analysis, (2) energy-dispersive X-ray fluorescence (EDXRF) analyzers, and (3) carbon/oxygen tool analysis in oil well logging. This approach essentially consists of using Monte Carlo simulation to generate the libraries of all the elements to be analyzed plus any other required background libraries. These libraries are then used in the linear library least-squares (LLS) approach with unknown sample spectra to analyze for all elements in the sample. Iterations of this are used until the LLS values agree with the composition used to generate the libraries. The current status of the methods (and topics) necessary to implement the MCLLS approach is reported. This includes: (1) the Monte Carlo codes such as CEARXRF, CEARCPG, and CEARCO for forward generation of the necessary elemental library spectra for the LLS calculation for X-ray fluorescence, neutron capture prompt gamma-ray analyzers, and carbon/oxygen tools; (2) the correction of spectral pulse pile-up (PPU) distortion by Monte Carlo simulation with the code CEARIPPU; (3) generation of detector response functions (DRF) for detectors with linear and non-linear responses for Monte Carlo simulation of pulse-height spectra; and (4) the use of the differential operator (DO) technique to make the necessary iterations for non-linear responses practical. In addition to commonly analyzed single spectra, coincidence spectra or even two-dimensional (2-D) coincidence spectra can also be used in the MCLLS approach and may provide more accurate results.

  9. Consensus embedding: theory, algorithms and application to segmentation and classification of biomedical data

    PubMed Central

    2012-01-01

    Background Dimensionality reduction (DR) enables the construction of a lower dimensional space (embedding) from a higher dimensional feature space while preserving object-class discriminability. However several popular DR approaches suffer from sensitivity to choice of parameters and/or presence of noise in the data. In this paper, we present a novel DR technique known as consensus embedding that aims to overcome these problems by generating and combining multiple low-dimensional embeddings, hence exploiting the variance among them in a manner similar to ensemble classifier schemes such as Bagging. We demonstrate theoretical properties of consensus embedding which show that it will result in a single stable embedding solution that preserves information more accurately as compared to any individual embedding (generated via DR schemes such as Principal Component Analysis, Graph Embedding, or Locally Linear Embedding). Intelligent sub-sampling (via mean-shift) and code parallelization are utilized to provide for an efficient implementation of the scheme. Results Applications of consensus embedding are shown in the context of classification and clustering as applied to: (1) image partitioning of white matter and gray matter on 10 different synthetic brain MRI images corrupted with 18 different combinations of noise and bias field inhomogeneity, (2) classification of 4 high-dimensional gene-expression datasets, (3) cancer detection (at a pixel-level) on 16 image slices obtained from 2 different high-resolution prostate MRI datasets. In over 200 different experiments concerning classification and segmentation of biomedical data, consensus embedding was found to consistently outperform both linear and non-linear DR methods within all applications considered. Conclusions We have presented a novel framework termed consensus embedding which leverages ensemble classification theory within dimensionality reduction, allowing for application to a wide range of high-dimensional biomedical data classification and segmentation problems. Our generalizable framework allows for improved representation and classification in the context of both imaging and non-imaging data. The algorithm offers a promising solution to problems that currently plague DR methods, and may allow for extension to other areas of biomedical data analysis. PMID:22316103

  10. An M-estimator for reduced-rank system identification.

    PubMed

    Chen, Shaojie; Liu, Kai; Yang, Yuguang; Xu, Yuting; Lee, Seonjoo; Lindquist, Martin; Caffo, Brian S; Vogelstein, Joshua T

    2017-01-15

    High-dimensional time-series data from a wide variety of domains, such as neuroscience, are being generated every day. Fitting statistical models to such data, to enable parameter estimation and time-series prediction, is an important computational primitive. Existing methods, however, are unable to cope with the high-dimensional nature of these data, due to both computational and statistical reasons. We mitigate both kinds of issues by proposing an M-estimator for Reduced-rank System IDentification ( MR. SID). A combination of low-rank approximations, ℓ 1 and ℓ 2 penalties, and some numerical linear algebra tricks, yields an estimator that is computationally efficient and numerically stable. Simulations and real data examples demonstrate the usefulness of this approach in a variety of problems. In particular, we demonstrate that MR. SID can accurately estimate spatial filters, connectivity graphs, and time-courses from native resolution functional magnetic resonance imaging data. MR. SID therefore enables big time-series data to be analyzed using standard methods, readying the field for further generalizations including non-linear and non-Gaussian state-space models.

  11. An M-estimator for reduced-rank system identification

    PubMed Central

    Chen, Shaojie; Liu, Kai; Yang, Yuguang; Xu, Yuting; Lee, Seonjoo; Lindquist, Martin; Caffo, Brian S.; Vogelstein, Joshua T.

    2018-01-01

    High-dimensional time-series data from a wide variety of domains, such as neuroscience, are being generated every day. Fitting statistical models to such data, to enable parameter estimation and time-series prediction, is an important computational primitive. Existing methods, however, are unable to cope with the high-dimensional nature of these data, due to both computational and statistical reasons. We mitigate both kinds of issues by proposing an M-estimator for Reduced-rank System IDentification ( MR. SID). A combination of low-rank approximations, ℓ1 and ℓ2 penalties, and some numerical linear algebra tricks, yields an estimator that is computationally efficient and numerically stable. Simulations and real data examples demonstrate the usefulness of this approach in a variety of problems. In particular, we demonstrate that MR. SID can accurately estimate spatial filters, connectivity graphs, and time-courses from native resolution functional magnetic resonance imaging data. MR. SID therefore enables big time-series data to be analyzed using standard methods, readying the field for further generalizations including non-linear and non-Gaussian state-space models. PMID:29391659

  12. On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type

    NASA Astrophysics Data System (ADS)

    Kashiwabara, Takahito

    Strong solutions of the non-stationary Navier-Stokes equations under non-linearized slip or leak boundary conditions are investigated. We show that the problems are formulated by a variational inequality of parabolic type, to which uniqueness is established. Using Galerkin's method and deriving a priori estimates, we prove global and local existence for 2D and 3D slip problems respectively. For leak problems, under no-leak assumption at t=0 we prove local existence in 2D and 3D cases. Compatibility conditions for initial states play a significant role in the estimates.

  13. Riemann–Hilbert problem approach for two-dimensional flow inverse scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agaltsov, A. D., E-mail: agalets@gmail.com; Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr; IEPT RAS, 117997 Moscow

    2014-10-15

    We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.

  14. Trading strategies for distribution company with stochastic distributed energy resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chunyu; Wang, Qi; Wang, Jianhui

    2016-09-01

    This paper proposes a methodology to address the trading strategies of a proactive distribution company (PDISCO) engaged in the transmission-level (TL) markets. A one-leader multi-follower bilevel model is presented to formulate the gaming framework between the PDISCO and markets. The lower-level (LL) problems include the TL day-ahead market and scenario-based real-time markets, respectively with the objectives of maximizing social welfare and minimizing operation cost. The upper-level (UL) problem is to maximize the PDISCO’s profit across these markets. The PDISCO’s strategic offers/bids interactively influence the outcomes of each market. Since the LL problems are linear and convex, while the UL problemmore » is non-linear and non-convex, an equivalent primal–dual approach is used to reformulate this bilevel model to a solvable mathematical program with equilibrium constraints (MPEC). The effectiveness of the proposed model is verified by case studies.« less

  15. On controlling nonlinear dissipation in high order filter methods for ideal and non-ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjogreen, B.

    2004-01-01

    The newly developed adaptive numerical dissipation control in spatially high order filter schemes for the compressible Euler and Navier-Stokes equations has been recently extended to the ideal and non-ideal magnetohydrodynamics (MHD) equations. These filter schemes are applicable to complex unsteady MHD high-speed shock/shear/turbulence problems. They also provide a natural and efficient way for the minimization of Div(B) numerical error. The adaptive numerical dissipation mechanism consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. The numerical dissipation considered consists of high order linear dissipation for the suppression of high frequency oscillation and the nonlinear dissipative portion of high-resolution shock-capturing methods for discontinuity capturing. The applicable nonlinear dissipative portion of high-resolution shock-capturing methods is very general. The objective of this paper is to investigate the performance of three commonly used types of nonlinear numerical dissipation for both the ideal and non-ideal MHD.

  16. Three dimensional rotating flow of Powell-Eyring nanofluid with non-Fourier's heat flux and non-Fick's mass flux theory

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wubshet

    2018-03-01

    This article numerically examines three dimensional boundary layer flow of a rotating Powell-Eyring nanofluid. In modeling heat transfer processes, non-Fourier heat flux theory and for mass transfer non-Fick's mass flux theory are employed. This theory is recently re-initiated and it becomes the active research area to resolves some drawback associated with the famous Fourier heat flux and mass flux theory. The mathematical model of the flow problem is a system of non-linear partial differential equations which are obtained using the boundary layer analysis. The non-linear partial differential equations have been transformed into non-linear high order ordinary differential equations using similarity transformation. Employing bvp4c algorithm from matlab software routine, the numerical solution of the transformed ordinary differential equations is obtained. The governing equations are constrained by parameters such as rotation parameter λ , the non-Newtonian parameter N, dimensionless thermal relaxation and concentration relaxation parameters δt and δc . The impacts of these parameters have been discussed thoroughly and illustrated using graphs and tables. The findings show that thermal relaxation time δt reduces the thermal and concentration boundary layer thickness. Further, the results reveal that the rotational parameter λ has the effect of decreasing the velocity boundary layer thickness in both x and y directions. Further examination pinpoints that the skin friction coefficient along x-axis is an increasing and skin friction coefficient along y-axis is a decreasing function of rotation parameter λ . Furthermore, the non-Newtonian fluid parameter N has the characteristic of reducing the amount of local Nusselt numbers -f″ (0) and -g″ (0) both in x and y -directions.

  17. Fuzzy – PI controller to control the velocity parameter of Induction Motor

    NASA Astrophysics Data System (ADS)

    Malathy, R.; Balaji, V.

    2018-04-01

    The major application of Induction motor includes the usage of the same in industries because of its high robustness, reliability, low cost, highefficiency and good self-starting capability. Even though it has the above mentioned advantages, it also have some limitations: (1) the standard motor is not a true constant-speed machine, itsfull-load slip varies less than 1 % (in high-horsepower motors).And (2) it is not inherently capable of providing variable-speedoperation. In order to solve the above mentioned problem smart motor controls and variable speed controllers are used. Motor applications involve non linearity features, which can be controlled by Fuzzy logic controller as it is capable of handling those features with high efficiency and it act similar to human operator. This paper presents individuality of the plant modelling. The fuzzy logic controller (FLC)trusts on a set of linguistic if-then rules, a rule-based Mamdani for closed loop Induction Motor model. Themotor model is designed and membership functions are chosenaccording to the parameters of the motor model. Simulation results contains non linearity in induction motor model. A conventional PI controller iscompared practically to fuzzy logic controller using Simulink.

  18. On the classification of the spectrally stable standing waves of the Hartree problem

    NASA Astrophysics Data System (ADS)

    Georgiev, Vladimir; Stefanov, Atanas

    2018-05-01

    We consider the fractional Hartree model, with general power non-linearity and arbitrary spatial dimension. We construct variationally the "normalized" solutions for the corresponding Choquard-Pekar model-in particular a number of key properties, like smoothness and bell-shapedness are established. As a consequence of the construction, we show that these solitons are spectrally stable as solutions to the time-dependent Hartree model. In addition, we analyze the spectral stability of the Moroz-Van Schaftingen solitons of the classical Hartree problem, in any dimensions and power non-linearity. A full classification is obtained, the main conclusion of which is that only and exactly the "normalized" solutions (which exist only in a portion of the range) are spectrally stable.

  19. Does chaos theory have major implications for philosophy of medicine?

    PubMed

    Holm, S

    2002-12-01

    In the literature it is sometimes claimed that chaos theory, non-linear dynamics, and the theory of fractals have major implications for philosophy of medicine, especially for our analysis of the concept of disease and the concept of causation. This paper gives a brief introduction to the concepts underlying chaos theory and non-linear dynamics. It is then shown that chaos theory has only very minimal implications for the analysis of the concept of disease and the concept of causation, mainly because the mathematics of chaotic processes entail that these processes are fully deterministic. The practical unpredictability of chaotic processes, caused by their extreme sensitivity to initial conditions, may raise practical problems in diagnosis, prognosis, and treatment, but it raises no major theoretical problems. The relation between chaos theory and the problem of free will is discussed, and it is shown that chaos theory may remove the problem of predictability of decisions, but does not solve the problem of free will. Chaos theory may thus be very important for our understanding of physiological processes, and specific disease entities, without having any major implications for philosophy of medicine.

  20. A morphological perceptron with gradient-based learning for Brazilian stock market forecasting.

    PubMed

    Araújo, Ricardo de A

    2012-04-01

    Several linear and non-linear techniques have been proposed to solve the stock market forecasting problem. However, a limitation arises from all these techniques and is known as the random walk dilemma (RWD). In this scenario, forecasts generated by arbitrary models have a characteristic one step ahead delay with respect to the time series values, so that, there is a time phase distortion in stock market phenomena reconstruction. In this paper, we propose a suitable model inspired by concepts in mathematical morphology (MM) and lattice theory (LT). This model is generically called the increasing morphological perceptron (IMP). Also, we present a gradient steepest descent method to design the proposed IMP based on ideas from the back-propagation (BP) algorithm and using a systematic approach to overcome the problem of non-differentiability of morphological operations. Into the learning process we have included a procedure to overcome the RWD, which is an automatic correction step that is geared toward eliminating time phase distortions that occur in stock market phenomena. Furthermore, an experimental analysis is conducted with the IMP using four complex non-linear problems of time series forecasting from the Brazilian stock market. Additionally, two natural phenomena time series are used to assess forecasting performance of the proposed IMP with other non financial time series. At the end, the obtained results are discussed and compared to results found using models recently proposed in the literature. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Scilab software as an alternative low-cost computing in solving the linear equations problem

    NASA Astrophysics Data System (ADS)

    Agus, Fahrul; Haviluddin

    2017-02-01

    Numerical computation packages are widely used both in teaching and research. These packages consist of license (proprietary) and open source software (non-proprietary). One of the reasons to use the package is a complexity of mathematics function (i.e., linear problems). Also, number of variables in a linear or non-linear function has been increased. The aim of this paper was to reflect on key aspects related to the method, didactics and creative praxis in the teaching of linear equations in higher education. If implemented, it could be contribute to a better learning in mathematics area (i.e., solving simultaneous linear equations) that essential for future engineers. The focus of this study was to introduce an additional numerical computation package of Scilab as an alternative low-cost computing programming. In this paper, Scilab software was proposed some activities that related to the mathematical models. In this experiment, four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, and Lower-Upper Decomposition (LU) have been implemented. The results of this study showed that a routine or procedure in numerical methods have been created and explored by using Scilab procedures. Then, the routine of numerical method that could be as a teaching material course has exploited.

  2. Fast, Nonlinear, Fully Probabilistic Inversion of Large Geophysical Problems

    NASA Astrophysics Data System (ADS)

    Curtis, A.; Shahraeeni, M.; Trampert, J.; Meier, U.; Cho, G.

    2010-12-01

    Almost all Geophysical inverse problems are in reality nonlinear. Fully nonlinear inversion including non-approximated physics, and solving for probability distribution functions (pdf’s) that describe the solution uncertainty, generally requires sampling-based Monte-Carlo style methods that are computationally intractable in most large problems. In order to solve such problems, physical relationships are usually linearized leading to efficiently-solved, (possibly iterated) linear inverse problems. However, it is well known that linearization can lead to erroneous solutions, and in particular to overly optimistic uncertainty estimates. What is needed across many Geophysical disciplines is a method to invert large inverse problems (or potentially tens of thousands of small inverse problems) fully probabilistically and without linearization. This talk shows how very large nonlinear inverse problems can be solved fully probabilistically and incorporating any available prior information using mixture density networks (driven by neural network banks), provided the problem can be decomposed into many small inverse problems. In this talk I will explain the methodology, compare multi-dimensional pdf inversion results to full Monte Carlo solutions, and illustrate the method with two applications: first, inverting surface wave group and phase velocities for a fully-probabilistic global tomography model of the Earth’s crust and mantle, and second inverting industrial 3D seismic data for petrophysical properties throughout and around a subsurface hydrocarbon reservoir. The latter problem is typically decomposed into 104 to 105 individual inverse problems, each solved fully probabilistically and without linearization. The results in both cases are sufficiently close to the Monte Carlo solution to exhibit realistic uncertainty, multimodality and bias. This provides far greater confidence in the results, and in decisions made on their basis.

  3. DESIGN NOTE: From nanometre to millimetre: a feasibility study of the combination of scanning probe microscopy and combined optical and x-ray interferometry

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Koenders, Ludger

    2003-09-01

    This feasibility study investigates the potential combination of an x-ray interferometer and optical interferometer as a one-dimensional long range high resolution scanning stage for an atomic force microscope (AFM) in order to overcome the problems of non-linearity associated with conventional AFMs and interferometers. Preliminary results of measurements of the uniformity of the period of a grating used as a transfer standards show variations in period at the nanometre level.

  4. Solution Methods for 3D Tomographic Inversion Using A Highly Non-Linear Ray Tracer

    NASA Astrophysics Data System (ADS)

    Hipp, J. R.; Ballard, S.; Young, C. J.; Chang, M.

    2008-12-01

    To develop 3D velocity models to improve nuclear explosion monitoring capability, we have developed a 3D tomographic modeling system that traces rays using an implementation of the Um and Thurber ray pseudo- bending approach, with full enforcement of Snell's Law in 3D at the major discontinuities. Due to the highly non-linear nature of the ray tracer, however, we are forced to substantially damp the inversion in order to converge on a reasonable model. Unfortunately the amount of damping is not known a priori and can significantly extend the number of calls of the computationally expensive ray-tracer and the least squares matrix solver. If the damping term is too small the solution step-size produces either an un-realistic model velocity change or places the solution in or near a local minimum from which extrication is nearly impossible. If the damping term is too large, convergence can be very slow or premature convergence can occur. Standard approaches involve running inversions with a suite of damping parameters to find the best model. A better solution methodology is to take advantage of existing non-linear solution techniques such as Levenberg-Marquardt (LM) or quasi-newton iterative solvers. In particular, the LM algorithm was specifically designed to find the minimum of a multi-variate function that is expressed as the sum of squares of non-linear real-valued functions. It has become a standard technique for solving non-linear least squared problems, and is widely adopted in a broad spectrum of disciplines, including the geosciences. At each iteration, the LM approach dynamically varies the level of damping to optimize convergence. When the current estimate of the solution is far from the ultimate solution LM behaves as a steepest decent method, but transitions to Gauss- Newton behavior, with near quadratic convergence, as the estimate approaches the final solution. We show typical linear solution techniques and how they can lead to local minima if the damping is set too low. We also describe the LM technique and show how it automatically determines the appropriate damping factor as it iteratively converges on the best solution. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000.

  5. A comparison of high-frequency cross-correlation measures

    NASA Astrophysics Data System (ADS)

    Precup, Ovidiu V.; Iori, Giulia

    2004-12-01

    On a high-frequency scale the time series are not homogeneous, therefore standard correlation measures cannot be directly applied to the raw data. There are two ways to deal with this problem. The time series can be homogenised through an interpolation method (An Introduction to High-Frequency Finance, Academic Press, NY, 2001) (linear or previous tick) and then the Pearson correlation statistic computed. Recently, methods that can handle raw non-synchronous time series have been developed (Int. J. Theor. Appl. Finance 6(1) (2003) 87; J. Empirical Finance 4 (1997) 259). This paper compares two traditional methods that use interpolation with an alternative method applied directly to the actual time series.

  6. Model and Algorithm for Substantiating Solutions for Organization of High-Rise Construction Project

    NASA Astrophysics Data System (ADS)

    Anisimov, Vladimir; Anisimov, Evgeniy; Chernysh, Anatoliy

    2018-03-01

    In the paper the models and the algorithm for the optimal plan formation for the organization of the material and logistical processes of the high-rise construction project and their financial support are developed. The model is based on the representation of the optimization procedure in the form of a non-linear problem of discrete programming, which consists in minimizing the execution time of a set of interrelated works by a limited number of partially interchangeable performers while limiting the total cost of performing the work. The proposed model and algorithm are the basis for creating specific organization management methodologies for the high-rise construction project.

  7. ''Math in a Can'': Teaching Mathematics and Engineering Design

    ERIC Educational Resources Information Center

    Narode, Ronald B.

    2011-01-01

    Using an apparently simple problem, ''Design a cylindrical can that will hold a liter of milk,'' this paper demonstrates how engineering design may facilitate the teaching of the following ideas to secondary students: linear and non-linear relationships; basic geometry of circles, rectangles, and cylinders; unit measures of area and volume;…

  8. Discriminative Learning of Receptive Fields from Responses to Non-Gaussian Stimulus Ensembles

    PubMed Central

    Meyer, Arne F.; Diepenbrock, Jan-Philipp; Happel, Max F. K.; Ohl, Frank W.; Anemüller, Jörn

    2014-01-01

    Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is induced by experimental design. PMID:24699631

  9. Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.

    PubMed

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Happel, Max F K; Ohl, Frank W; Anemüller, Jörn

    2014-01-01

    Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is induced by experimental design.

  10. Finite element modelling of non-linear magnetic circuits using Cosmic NASTRAN

    NASA Technical Reports Server (NTRS)

    Sheerer, T. J.

    1986-01-01

    The general purpose Finite Element Program COSMIC NASTRAN currently has the ability to model magnetic circuits with constant permeablilities. An approach was developed which, through small modifications to the program, allows modelling of non-linear magnetic devices including soft magnetic materials, permanent magnets and coils. Use of the NASTRAN code resulted in output which can be used for subsequent mechanical analysis using a variation of the same computer model. Test problems were found to produce theoretically verifiable results.

  11. Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task.

    PubMed

    Kinjo, Ken; Uchibe, Eiji; Doya, Kenji

    2013-01-01

    Linearly solvable Markov Decision Process (LMDP) is a class of optimal control problem in which the Bellman's equation can be converted into a linear equation by an exponential transformation of the state value function (Todorov, 2009b). In an LMDP, the optimal value function and the corresponding control policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunction problem in a continuous state using the knowledge of the system dynamics and the action, state, and terminal cost functions. In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in which the dynamics of the body and the environment have to be learned from experience. We first perform a simulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynamics model on the derived the action policy. The result shows that a crude linear approximation of the non-linear dynamics can still allow solution of the task, despite with a higher total cost. We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robot platform. The state is given by the position and the size of a battery in its camera view and two neck joint angles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servo controller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state cost functions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics model performed equivalently with the optimal linear quadratic regulator (LQR). In the non-quadratic task, the LMDP controller with a linear dynamics model showed the best performance. The results demonstrate the usefulness of the LMDP framework in real robot control even when simple linear models are used for dynamics learning.

  12. Ghost Dark Energy with Non-Linear Interaction Term

    NASA Astrophysics Data System (ADS)

    Ebrahimi, E.

    2016-06-01

    Here we investigate ghost dark energy (GDE) in the presence of a non-linear interaction term between dark matter and dark energy. To this end we take into account a general form for the interaction term. Then we discuss about different features of three choices of the non-linear interacting GDE. In all cases we obtain equation of state parameter, w D = p/ ρ, the deceleration parameter and evolution equation of the dark energy density parameter (Ω D ). We find that in one case, w D cross the phantom line ( w D < -1). However in two other classes w D can not cross the phantom divide. The coincidence problem can be solved in these models completely and there exist good agreement between the models and observational values of w D , q. We study squared sound speed {vs2}, and find that for one case of non-linear interaction term {vs2} can achieves positive values at late time of evolution.

  13. Comparing and improving proper orthogonal decomposition (POD) to reduce the complexity of groundwater models

    NASA Astrophysics Data System (ADS)

    Gosses, Moritz; Nowak, Wolfgang; Wöhling, Thomas

    2017-04-01

    Physically-based modeling is a wide-spread tool in understanding and management of natural systems. With the high complexity of many such models and the huge amount of model runs necessary for parameter estimation and uncertainty analysis, overall run times can be prohibitively long even on modern computer systems. An encouraging strategy to tackle this problem are model reduction methods. In this contribution, we compare different proper orthogonal decomposition (POD, Siade et al. (2010)) methods and their potential applications to groundwater models. The POD method performs a singular value decomposition on system states as simulated by the complex (e.g., PDE-based) groundwater model taken at several time-steps, so-called snapshots. The singular vectors with the highest information content resulting from this decomposition are then used as a basis for projection of the system of model equations onto a subspace of much lower dimensionality than the original complex model, thereby greatly reducing complexity and accelerating run times. In its original form, this method is only applicable to linear problems. Many real-world groundwater models are non-linear, tough. These non-linearities are introduced either through model structure (unconfined aquifers) or boundary conditions (certain Cauchy boundaries, like rivers with variable connection to the groundwater table). To date, applications of POD focused on groundwater models simulating pumping tests in confined aquifers with constant head boundaries. In contrast, POD model reduction either greatly looses accuracy or does not significantly reduce model run time if the above-mentioned non-linearities are introduced. We have also found that variable Dirichlet boundaries are problematic for POD model reduction. An extension to the POD method, called POD-DEIM, has been developed for non-linear groundwater models by Stanko et al. (2016). This method uses spatial interpolation points to build the equation system in the reduced model space, thereby allowing the recalculation of system matrices at every time-step necessary for non-linear models while retaining the speed of the reduced model. This makes POD-DEIM applicable for groundwater models simulating unconfined aquifers. However, in our analysis, the method struggled to reproduce variable river boundaries accurately and gave no advantage for variable Dirichlet boundaries compared to the original POD method. We have developed another extension for POD that targets to address these remaining problems by performing a second POD operation on the model matrix on the left-hand side of the equation. The method aims to at least reproduce the accuracy of the other methods where they are applicable while outperforming them for setups with changing river boundaries or variable Dirichlet boundaries. We compared the new extension with original POD and POD-DEIM for different combinations of model structures and boundary conditions. The new method shows the potential of POD extensions for applications to non-linear groundwater systems and complex boundary conditions that go beyond the current, relatively limited range of applications. References: Siade, A. J., Putti, M., and Yeh, W. W.-G. (2010). Snapshot selection for groundwater model reduction using proper orthogonal decomposition. Water Resour. Res., 46(8):W08539. Stanko, Z. P., Boyce, S. E., and Yeh, W. W.-G. (2016). Nonlinear model reduction of unconfined groundwater flow using pod and deim. Advances in Water Resources, 97:130 - 143.

  14. Putting Man in the Machine: Exploiting Expertise to Enhance Multiobjective Design of Water Supply Monitoring Network

    NASA Astrophysics Data System (ADS)

    Bode, F.; Nowak, W.; Reed, P. M.; Reuschen, S.

    2016-12-01

    Drinking-water well catchments need effective early-warning monitoring networks. Groundwater water supply wells in complex urban environments are in close proximity to a myriad of potential industrial pollutant sources that could irreversibly damage their source aquifers. These urban environments pose fiscal and physical challenges to designing monitoring networks. Ideal early-warning monitoring networks would satisfy three objectives: to detect (1) all potential contaminations within the catchment (2) as early as possible before they reach the pumping wells, (3) while minimizing costs. Obviously, the ideal case is nonexistent, so we search for tradeoffs using multiobjective optimization. The challenge of this optimization problem is the high number of potential monitoring-well positions (the search space) and the non-linearity of the underlying groundwater flow-and-transport problem. This study evaluates (1) different ways to effectively restrict the search space in an efficient way, with and without expert knowledge, (2) different methods to represent the search space during the optimization and (3) the influence of incremental increases in uncertainty in the system. Conductivity, regional flow direction and potential source locations are explored as key uncertainties. We show the need and the benefit of our methods by comparing optimized monitoring networks for different uncertainty levels with networks that seek to effectively exploit expert knowledge. The study's main contributions are the different approaches restricting and representing the search space. The restriction algorithms are based on a point-wise comparison of decision elements of the search space. The representation of the search space can be either binary or continuous. For both cases, the search space must be adjusted properly. Our results show the benefits and drawbacks of binary versus continuous search space representations and the high potential of automated search space restriction algorithms for high-dimensional, highly non-linear optimization problems.

  15. High-performance image reconstruction in fluorescence tomography on desktop computers and graphics hardware.

    PubMed

    Freiberger, Manuel; Egger, Herbert; Liebmann, Manfred; Scharfetter, Hermann

    2011-11-01

    Image reconstruction in fluorescence optical tomography is a three-dimensional nonlinear ill-posed problem governed by a system of partial differential equations. In this paper we demonstrate that a combination of state of the art numerical algorithms and a careful hardware optimized implementation allows to solve this large-scale inverse problem in a few seconds on standard desktop PCs with modern graphics hardware. In particular, we present methods to solve not only the forward but also the non-linear inverse problem by massively parallel programming on graphics processors. A comparison of optimized CPU and GPU implementations shows that the reconstruction can be accelerated by factors of about 15 through the use of the graphics hardware without compromising the accuracy in the reconstructed images.

  16. Non-modal analysis of the diocotron instability for cylindrical geometry with conducting boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailenko, V. V.; Seok Kim, Jin; Jo, Younghyun

    2014-05-15

    The temporal evolution of the linear diocotron instability of a cylindrical annular plasma column surrounded by a conducting boundary has been investigated by using the methodology of the cylindrical shearing modes. The linear solution of the initial and boundary-value problems is obtained which is valid for any time at which linear effects dominate. The solution reveals that the initial perturbations of the electron density pass through the stage of the non-modal evolution when the perturbation experiences spatio-temporal distortion pertinent to the considered geometry of the electron column. The result is confirmed by a two-dimensional cylindrical particle-in-cell simulation.

  17. Mixed Linear/Square-Root Encoded Single-Slope Ramp Provides Low-Noise ADC with High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Chris J.; Hancock, Bruce R.; Newton, Kenneth W.; Cunningham, Thomas J.

    2013-01-01

    Single-slope analog-to-digital converters (ADCs) are particularly useful for onchip digitization in focal plane arrays (FPAs) because of their inherent monotonicity, relative simplicity, and efficiency for column-parallel applications, but they are comparatively slow. Squareroot encoding can allow the number of code values to be reduced without loss of signal-to-noise ratio (SNR) by keeping the quantization noise just below the signal shot noise. This encoding can be implemented directly by using a quadratic ramp. The reduction in the number of code values can substantially increase the quantization speed. However, in an FPA, the fixed pattern noise (FPN) limits the use of small quantization steps at low signal levels. If the zero-point is adjusted so that the lowest column is onscale, the other columns, including those at the center of the distribution, will be pushed up the ramp where the quantization noise is higher. Additionally, the finite frequency response of the ramp buffer amplifier and the comparator distort the shape of the ramp, so that the effective ramp value at the time the comparator trips differs from the intended value, resulting in errors. Allowing increased settling time decreases the quantization speed, while increasing the bandwidth increases the noise. The FPN problem is solved by breaking the ramp into two portions, with some fraction of the available code values allocated to a linear ramp and the remainder to a quadratic ramp. To avoid large transients, both the value and the slope of the linear and quadratic portions should be equal where they join. The span of the linear portion must cover the minimum offset, but not necessarily the maximum, since the fraction of the pixels above the upper limit will still be correctly quantized, albeit with increased quantization noise. The required linear span, maximum signal and ratio of quantization noise to shot noise at high signal, along with the continuity requirement, determines the number of code values that must be allocated to each portion. The distortion problem is solved by using a lookup table to convert captured code values back to signal levels. The values in this table will be similar to the intended ramp value, but with a correction for the finite bandwidth effects. Continuous-time comparators are used, and their bandwidth is set below the step rate, which smoothes the ramp and reduces the noise. No settling time is needed, as would be the case for clocked comparators, but the low bandwidth enhances the distortion of the non-linear portion. This is corrected by use of a return lookup table, which differs from the one used to generate the ramp. The return lookup table is obtained by calibrating against a stepped precision DC reference. This results in a residual non-linearity well below the quantization noise. This method can also compensate for differential non-linearity (DNL) in the DAC used to generate the ramp. The use of a ramp with a combination of linear and quadratic portions for a single-slope ADC is novel. The number of steps is minimized by keeping the step size just below the photon shot noise. This in turn maximizes the speed of the conversion. High resolution is maintained by keeping small quantization steps at low signals, and noise is minimized by allowing the lowest analog bandwidth, all without increasing the quantization noise. A calibrated return lookup table allows the system to maintain excellent linearity.

  18. Non-conforming finite-element formulation for cardiac electrophysiology: an effective approach to reduce the computation time of heart simulations without compromising accuracy

    NASA Astrophysics Data System (ADS)

    Hurtado, Daniel E.; Rojas, Guillermo

    2018-04-01

    Computer simulations constitute a powerful tool for studying the electrical activity of the human heart, but computational effort remains prohibitively high. In order to recover accurate conduction velocities and wavefront shapes, the mesh size in linear element (Q1) formulations cannot exceed 0.1 mm. Here we propose a novel non-conforming finite-element formulation for the non-linear cardiac electrophysiology problem that results in accurate wavefront shapes and lower mesh-dependance in the conduction velocity, while retaining the same number of global degrees of freedom as Q1 formulations. As a result, coarser discretizations of cardiac domains can be employed in simulations without significant loss of accuracy, thus reducing the overall computational effort. We demonstrate the applicability of our formulation in biventricular simulations using a coarse mesh size of ˜ 1 mm, and show that the activation wave pattern closely follows that obtained in fine-mesh simulations at a fraction of the computation time, thus improving the accuracy-efficiency trade-off of cardiac simulations.

  19. Robust gaze-steering of an active vision system against errors in the estimated parameters

    NASA Astrophysics Data System (ADS)

    Han, Youngmo

    2015-01-01

    Gaze-steering is often used to broaden the viewing range of an active vision system. Gaze-steering procedures are usually based on estimated parameters such as image position, image velocity, depth and camera calibration parameters. However, there may be uncertainties in these estimated parameters because of measurement noise and estimation errors. In this case, robust gaze-steering cannot be guaranteed. To compensate for such problems, this paper proposes a gaze-steering method based on a linear matrix inequality (LMI). In this method, we first propose a proportional derivative (PD) control scheme on the unit sphere that does not use depth parameters. This proposed PD control scheme can avoid uncertainties in the estimated depth and camera calibration parameters, as well as inconveniences in their estimation process, including the use of auxiliary feature points and highly non-linear computation. Furthermore, the control gain of the proposed PD control scheme on the unit sphere is designed using LMI such that the designed control is robust in the presence of uncertainties in the other estimated parameters, such as image position and velocity. Simulation results demonstrate that the proposed method provides a better compensation for uncertainties in the estimated parameters than the contemporary linear method and steers the gaze of the camera more steadily over time than the contemporary non-linear method.

  20. Propagation of uncertainty by Monte Carlo simulations in case of basic geodetic computations

    NASA Astrophysics Data System (ADS)

    Wyszkowska, Patrycja

    2017-12-01

    The determination of the accuracy of functions of measured or adjusted values may be a problem in geodetic computations. The general law of covariance propagation or in case of the uncorrelated observations the propagation of variance (or the Gaussian formula) are commonly used for that purpose. That approach is theoretically justified for the linear functions. In case of the non-linear functions, the first-order Taylor series expansion is usually used but that solution is affected by the expansion error. The aim of the study is to determine the applicability of the general variance propagation law in case of the non-linear functions used in basic geodetic computations. The paper presents errors which are a result of negligence of the higher-order expressions and it determines the range of such simplification. The basis of that analysis is the comparison of the results obtained by the law of propagation of variance and the probabilistic approach, namely Monte Carlo simulations. Both methods are used to determine the accuracy of the following geodetic computations: the Cartesian coordinates of unknown point in the three-point resection problem, azimuths and distances of the Cartesian coordinates, height differences in the trigonometric and the geometric levelling. These simulations and the analysis of the results confirm the possibility of applying the general law of variance propagation in basic geodetic computations even if the functions are non-linear. The only condition is the accuracy of observations, which cannot be too low. Generally, this is not a problem with using present geodetic instruments.

  1. Modeling and simulation of different and representative engineering problems using Network Simulation Method

    PubMed Central

    2018-01-01

    Mathematical models simulating different and representative engineering problem, atomic dry friction, the moving front problems and elastic and solid mechanics are presented in the form of a set of non-linear, coupled or not coupled differential equations. For different parameters values that influence the solution, the problem is numerically solved by the network method, which provides all the variables of the problems. Although the model is extremely sensitive to the above parameters, no assumptions are considered as regards the linearization of the variables. The design of the models, which are run on standard electrical circuit simulation software, is explained in detail. The network model results are compared with common numerical methods or experimental data, published in the scientific literature, to show the reliability of the model. PMID:29518121

  2. Modeling and simulation of different and representative engineering problems using Network Simulation Method.

    PubMed

    Sánchez-Pérez, J F; Marín, F; Morales, J L; Cánovas, M; Alhama, F

    2018-01-01

    Mathematical models simulating different and representative engineering problem, atomic dry friction, the moving front problems and elastic and solid mechanics are presented in the form of a set of non-linear, coupled or not coupled differential equations. For different parameters values that influence the solution, the problem is numerically solved by the network method, which provides all the variables of the problems. Although the model is extremely sensitive to the above parameters, no assumptions are considered as regards the linearization of the variables. The design of the models, which are run on standard electrical circuit simulation software, is explained in detail. The network model results are compared with common numerical methods or experimental data, published in the scientific literature, to show the reliability of the model.

  3. Solving Large Problems with a Small Working Memory

    ERIC Educational Resources Information Center

    Pizlo, Zygmunt; Stefanov, Emil

    2013-01-01

    We describe an important elaboration of our multiscale/multiresolution model for solving the Traveling Salesman Problem (TSP). Our previous model emulated the non-uniform distribution of receptors on the human retina and the shifts of visual attention. This model produced near-optimal solutions of TSP in linear time by performing hierarchical…

  4. Reprint of Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    NASA Astrophysics Data System (ADS)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-04-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  5. Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    NASA Astrophysics Data System (ADS)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-03-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  6. Fractional Gaussian model in global optimization

    NASA Astrophysics Data System (ADS)

    Dimri, V. P.; Srivastava, R. P.

    2009-12-01

    Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.

  7. Numerical solution of a non-linear conservation law applicable to the interior dynamics of partially molten planets

    NASA Astrophysics Data System (ADS)

    Bower, Dan J.; Sanan, Patrick; Wolf, Aaron S.

    2018-01-01

    The energy balance of a partially molten rocky planet can be expressed as a non-linear diffusion equation using mixing length theory to quantify heat transport by both convection and mixing of the melt and solid phases. Crucially, in this formulation the effective or eddy diffusivity depends on the entropy gradient, ∂S / ∂r , as well as entropy itself. First we present a simplified model with semi-analytical solutions that highlights the large dynamic range of ∂S / ∂r -around 12 orders of magnitude-for physically-relevant parameters. It also elucidates the thermal structure of a magma ocean during the earliest stage of crystal formation. This motivates the development of a simple yet stable numerical scheme able to capture the large dynamic range of ∂S / ∂r and hence provide a flexible and robust method for time-integrating the energy equation. Using insight gained from the simplified model, we consider a full model, which includes energy fluxes associated with convection, mixing, gravitational separation, and conduction that all depend on the thermophysical properties of the melt and solid phases. This model is discretised and evolved by applying the finite volume method (FVM), allowing for extended precision calculations and using ∂S / ∂r as the solution variable. The FVM is well-suited to this problem since it is naturally energy conserving, flexible, and intuitive to incorporate arbitrary non-linear fluxes that rely on lookup data. Special attention is given to the numerically challenging scenario in which crystals first form in the centre of a magma ocean. The computational framework we devise is immediately applicable to modelling high melt fraction phenomena in Earth and planetary science research. Furthermore, it provides a template for solving similar non-linear diffusion equations that arise in other science and engineering disciplines, particularly for non-linear functional forms of the diffusion coefficient.

  8. Quantile regression for the statistical analysis of immunological data with many non-detects.

    PubMed

    Eilers, Paul H C; Röder, Esther; Savelkoul, Huub F J; van Wijk, Roy Gerth

    2012-07-07

    Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects. Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects. Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects.

  9. Accurate electrostatic and van der Waals pull-in prediction for fully clamped nano/micro-beams using linear universal graphs of pull-in instability

    NASA Astrophysics Data System (ADS)

    Tahani, Masoud; Askari, Amir R.

    2014-09-01

    In spite of the fact that pull-in instability of electrically actuated nano/micro-beams has been investigated by many researchers to date, no explicit formula has been presented yet which can predict pull-in voltage based on a geometrically non-linear and distributed parameter model. The objective of present paper is to introduce a simple and accurate formula to predict this value for a fully clamped electrostatically actuated nano/micro-beam. To this end, a non-linear Euler-Bernoulli beam model is employed, which accounts for the axial residual stress, geometric non-linearity of mid-plane stretching, distributed electrostatic force and the van der Waals (vdW) attraction. The non-linear boundary value governing equation of equilibrium is non-dimensionalized and solved iteratively through single-term Galerkin based reduced order model (ROM). The solutions are validated thorough direct comparison with experimental and other existing results reported in previous studies. Pull-in instability under electrical and vdW loads are also investigated using universal graphs. Based on the results of these graphs, non-dimensional pull-in and vdW parameters, which are defined in the text, vary linearly versus the other dimensionless parameters of the problem. Using this fact, some linear equations are presented to predict pull-in voltage, the maximum allowable length, the so-called detachment length, and the minimum allowable gap for a nano/micro-system. These linear equations are also reduced to a couple of universal pull-in formulas for systems with small initial gap. The accuracy of the universal pull-in formulas are also validated by comparing its results with available experimental and some previous geometric linear and closed-form findings published in the literature.

  10. Axisymmetric problem of fretting wear for a foundation with a nonuniform coating and rough punch

    NASA Astrophysics Data System (ADS)

    Manzhirov, A. V.; Kazakov, K. E.

    2018-05-01

    The axisymmetric contact problem with fretting wear for an elastic foundation with a longitudinally nonuniform (surface nonuniform) coating and a rigid punch with a rough foundation has been solved for the first time. The case of linear wear is considered. The nonuniformity of the coating and punch roughness are described by a different rapidly changing functions. This strong nonuniformity arises when coatings are deposited using modern additive manufacturing technologies. The problem is reduced the solution of an integral equation with two different integral operators: a compact self-adjoint positively defined operator with respect to the coordinate and the non-self-adjoint integral Volterra operator with respect to time. The solution is obtained in series using the projection method of the authors. The efficiency of the proposed approach for constructing a high-accuracy approximate solution to the problem (with only a few expansion terms retained) is demonstrated.

  11. Performance improvement for optimization of the non-linear geometric fitting problem in manufacturing metrology

    NASA Astrophysics Data System (ADS)

    Moroni, Giovanni; Syam, Wahyudin P.; Petrò, Stefano

    2014-08-01

    Product quality is a main concern today in manufacturing; it drives competition between companies. To ensure high quality, a dimensional inspection to verify the geometric properties of a product must be carried out. High-speed non-contact scanners help with this task, by both speeding up acquisition speed and increasing accuracy through a more complete description of the surface. The algorithms for the management of the measurement data play a critical role in ensuring both the measurement accuracy and speed of the device. One of the most fundamental parts of the algorithm is the procedure for fitting the substitute geometry to a cloud of points. This article addresses this challenge. Three relevant geometries are selected as case studies: a non-linear least-squares fitting of a circle, sphere and cylinder. These geometries are chosen in consideration of their common use in practice; for example the sphere is often adopted as a reference artifact for performance verification of a coordinate measuring machine (CMM) and a cylinder is the most relevant geometry for a pin-hole relation as an assembly feature to construct a complete functioning product. In this article, an improvement of the initial point guess for the Levenberg-Marquardt (LM) algorithm by employing a chaos optimization (CO) method is proposed. This causes a performance improvement in the optimization of a non-linear function fitting the three geometries. The results show that, with this combination, a higher quality of fitting results a smaller norm of the residuals can be obtained while preserving the computational cost. Fitting an ‘incomplete-point-cloud’, which is a situation where the point cloud does not cover a complete feature e.g. from half of the total part surface, is also investigated. Finally, a case study of fitting a hemisphere is presented.

  12. Macrocell path loss prediction using artificial intelligence techniques

    NASA Astrophysics Data System (ADS)

    Usman, Abraham U.; Okereke, Okpo U.; Omizegba, Elijah E.

    2014-04-01

    The prediction of propagation loss is a practical non-linear function approximation problem which linear regression or auto-regression models are limited in their ability to handle. However, some computational Intelligence techniques such as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) have been shown to have great ability to handle non-linear function approximation and prediction problems. In this study, the multiple layer perceptron neural network (MLP-NN), radial basis function neural network (RBF-NN) and an ANFIS network were trained using actual signal strength measurement taken at certain suburban areas of Bauchi metropolis, Nigeria. The trained networks were then used to predict propagation losses at the stated areas under differing conditions. The predictions were compared with the prediction accuracy of the popular Hata model. It was observed that ANFIS model gave a better fit in all cases having higher R2 values in each case and on average is more robust than MLP and RBF models as it generalises better to a different data.

  13. Non-linear instability analysis of the two-dimensional Navier-Stokes equation: The Taylor-Green vortex problem

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Sharma, Nidhi; Sengupta, Aditi

    2018-05-01

    An enstrophy-based non-linear instability analysis of the Navier-Stokes equation for two-dimensional (2D) flows is presented here, using the Taylor-Green vortex (TGV) problem as an example. This problem admits a time-dependent analytical solution as the base flow, whose instability is traced here. The numerical study of the evolution of the Taylor-Green vortices shows that the flow becomes turbulent, but an explanation for this transition has not been advanced so far. The deviation of the numerical solution from the analytical solution is studied here using a high accuracy compact scheme on a non-uniform grid (NUC6), with the fourth-order Runge-Kutta method. The stream function-vorticity (ψ, ω) formulation of the governing equations is solved here in a periodic square domain with four vortices at t = 0. Simulations performed at different Reynolds numbers reveal that numerical errors in computations induce a breakdown of symmetry and simultaneous fragmentation of vortices. It is shown that the actual physical instability is triggered by the growth of disturbances and is explained by the evolution of disturbance mechanical energy and enstrophy. The disturbance evolution equations have been traced by looking at (a) disturbance mechanical energy of the Navier-Stokes equation, as described in the work of Sengupta et al., "Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003), and (b) the creation of rotationality via the enstrophy transport equation in the work of Sengupta et al., "Diffusion in inhomogeneous flows: Unique equilibrium state in an internal flow," Comput. Fluids 88, 440-451 (2013).

  14. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  15. Application of Linear and Non-Linear Harmonic Methods for Unsteady Transonic Flow

    NASA Astrophysics Data System (ADS)

    Gundevia, Rayomand

    This thesis explores linear and non-linear computational methods for solving unsteady flow. The eventual goal is to apply these methods to two-dimensional and three-dimensional flutter predictions. In this study the quasi-one-dimensional nozzle is used as a framework for understanding these methods and their limitations. Subsonic and transonic cases are explored as the back-pressure is forced to oscillate with known amplitude and frequency. A steady harmonic approach is used to solve this unsteady problem for which perturbations are said to be small in comparison to the mean flow. The use of a linearized Euler equations (LEE) scheme is good at capturing the flow characteristics but is limited by accuracy to relatively small amplitude perturbations. The introduction of time-averaged second-order terms in the Non-Linear Harmonic (NLH) method means that a better approximation of the mean-valued solution, upon which the linearization is based, can be made. The nonlinear time-accurate Euler solutions are used for comparison and to establish the regimes of unsteadiness for which these schemes fails. The usefulness of the LEE and NLH methods lie in the gains in computational efficiency over the full equations.

  16. Characterization of high density SiPM non-linearity and energy resolution for prompt gamma imaging applications

    NASA Astrophysics Data System (ADS)

    Regazzoni, V.; Acerbi, F.; Cozzi, G.; Ferri, A.; Fiorini, C.; Paternoster, G.; Piemonte, C.; Rucatti, D.; Zappalà, G.; Zorzi, N.; Gola, A.

    2017-07-01

    Fondazione Bruno Kessler (FBK) (Trento, Italy) has recently introduced High Density (HD) and Ultra High-Density (UHD) SiPMs, featuring very small micro-cell pitch. The high cell density is a very important factor to improve the linearity of the SiPM in high-dynamic-range applications, such as the scintillation light readout in high-energy gamma-ray spectroscopy and in prompt gamma imaging for proton therapy. The energy resolution at high energies is a trade-off between the excess noise factor caused by the non-linearity of the SiPM and the photon detection efficiency of the detector. To study these effects, we developed a new setup that simulates the LYSO light emission in response to gamma photons up to 30 MeV, using a pulsed light source. We measured the non-linearity and energy resolution vs. energy of the FBK RGB-HD e RGB-UHD SiPM technologies. We considered five different cell sizes, ranging from 10 μm up to 25 μm. With the UHD technology we were able to observe a remarkable reduction of the SiPM non-linearity, less than 5% at 5 MeV with 10 μm cells, which should be compared to a non-linearity of 50% with 25 μm-cell HD-SiPMs. With the same setup, we also measured the different components of the energy resolution (intrinsic, statistical, detector and electronic noise) vs. cell size, over-voltage and energy and we separated the different sources of excess noise factor.

  17. Simulations of Coherent Synchrotron Radiation Effects in Electron Machines

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Schiavi, A.; Dattoli, G.

    2007-09-01

    Coherent synchrotron radiation (CSR) generated by high intensity electron beams can be a source of undesirable effects limiting the performance of storage rings. The complexity of the physical mechanisms underlying the interplay between the electron beam and the CSR demands for reliable simulation codes. In the past, codes based on Lie algebraic techniques have been very efficient to treat transport problems in accelerators. The extension of these methods to the non linear case is ideally suited to treat wakefields - beam interaction. In this paper we report on the development of a numerical code, based on the solution of the Vlasov equation, which includes the non linear contribution due to wakefields. The proposed solution method exploits an algebraic technique that uses the exponential operators. We show that, in the case of CSR wakefields, the integration procedure is capable of reproducing the onset of an instability which leads to microbunching of the beam thus increasing the CSR at short wavelengths. In addition, considerations on the threshold of the instability for Gaussian bunches is also reported.

  18. Simulations of Coherent Synchrotron Radiation Effects in Electron Machines

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Schiavi, A.; Dattoli, G.

    Coherent synchrotron radiation (CSR) generated by high intensity electron beams can be a source of undesirable effects limiting the performance of storage rings. The complexity of the physical mechanisms underlying the interplay between the electron beam and the CSR demands for reliable simulation codes. In the past, codes based on Lie algebraic techniques have been very efficient to treat transport problems in accelerators. The extension of these methods to the non linear case is ideally suited to treat wakefields - beam interaction. In this paper we report on the development of a numerical code, based on the solution of the Vlasov equation, which includes the non linear contribution due to wakefields. The proposed solution method exploits an algebraic technique that uses the exponential operators. We show that, in the case of CSR wakefields, the integration procedure is capable of reproducing the onset of an instability which leads to microbunching of the beam thus increasing the CSR at short wavelengths. In addition, considerations on the threshold of the instability for Gaussian bunches is also reported.

  19. Robust linear discriminant models to solve financial crisis in banking sectors

    NASA Astrophysics Data System (ADS)

    Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Idris, Faoziah; Ali, Hazlina; Omar, Zurni

    2014-12-01

    Linear discriminant analysis (LDA) is a widely-used technique in patterns classification via an equation which will minimize the probability of misclassifying cases into their respective categories. However, the performance of classical estimators in LDA highly depends on the assumptions of normality and homoscedasticity. Several robust estimators in LDA such as Minimum Covariance Determinant (MCD), S-estimators and Minimum Volume Ellipsoid (MVE) are addressed by many authors to alleviate the problem of non-robustness of the classical estimates. In this paper, we investigate on the financial crisis of the Malaysian banking institutions using robust LDA and classical LDA methods. Our objective is to distinguish the "distress" and "non-distress" banks in Malaysia by using the LDA models. Hit ratio is used to validate the accuracy predictive of LDA models. The performance of LDA is evaluated by estimating the misclassification rate via apparent error rate. The results and comparisons show that the robust estimators provide a better performance than the classical estimators for LDA.

  20. Performance evaluation of matrix gradient coils.

    PubMed

    Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2016-02-01

    In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.

  1. Integral method for transient He II heat transfer in a semi-infinite domain

    NASA Astrophysics Data System (ADS)

    Baudouy, B.

    2002-05-01

    Integral methods are suited to solve a non-linear system of differential equations where the non-linearity can be found either in the differential equations or in the boundary conditions. Though they are approximate methods, they have proven to give simple solutions with acceptable accuracy for transient heat transfer in He II. Taking in account the temperature dependence of thermal properties, direct solutions are found without the need of adjusting a parameter. Previously, we have presented a solution for the clamped heat flux and in the present study this method is used to accommodate the clamped-temperature problem. In the case of constant thermal properties, this method yields results that are within a few percent of the exact solution for the heat flux at the axis origin. We applied this solution to analyze recovery from burnout and find an agreement within 10% at low heat flux, whereas at high heat flux the model deviates from the experimental data suggesting the need for a more refined thermal model.

  2. Numerical simulation of transient, incongruent vaporization induced by high power laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C.H.

    1981-01-01

    A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems ismore » studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.« less

  3. Scale-invariant fluctuations from Galilean genesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Brandenberger, Robert, E-mail: wangyi@physics.mcgill.ca, E-mail: rhb@physics.mcgill.ca

    2012-10-01

    We study the spectrum of cosmological fluctuations in scenarios such as Galilean Genesis \\cite(Nicolis) in which a spectator scalar field acquires a scale-invariant spectrum of perturbations during an early phase which asymptotes in the far past to Minkowski space-time. In the case of minimal coupling to gravity and standard scalar field Lagrangian, the induced curvature fluctuations depend quadratically on the spectator field and are hence non-scale-invariant and highly non-Gaussian. We show that if higher dimensional operators (the same operators that lead to the η-problem for inflation) are considered, a linear coupling between background and spectator field fluctuations is induced whichmore » leads to scale-invariant and Gaussian curvature fluctuations.« less

  4. An Evaluation of Feature Learning Methods for High Resolution Image Classification

    NASA Astrophysics Data System (ADS)

    Tokarczyk, P.; Montoya, J.; Schindler, K.

    2012-07-01

    Automatic image classification is one of the fundamental problems of remote sensing research. The classification problem is even more challenging in high-resolution images of urban areas, where the objects are small and heterogeneous. Two questions arise, namely which features to extract from the raw sensor data to capture the local radiometry and image structure at each pixel or segment, and which classification method to apply to the feature vectors. While classifiers are nowadays well understood, selecting the right features remains a largely empirical process. Here we concentrate on the features. Several methods are evaluated which allow one to learn suitable features from unlabelled image data by analysing the image statistics. In a comparative study, we evaluate unsupervised feature learning with different linear and non-linear learning methods, including principal component analysis (PCA) and deep belief networks (DBN). We also compare these automatically learned features with popular choices of ad-hoc features including raw intensity values, standard combinations like the NDVI, a few PCA channels, and texture filters. The comparison is done in a unified framework using the same images, the target classes, reference data and a Random Forest classifier.

  5. Milne problem for non-absorbing medium with extremely anisotropic scattering kernel in the case of specular and diffuse reflecting boundaries

    NASA Astrophysics Data System (ADS)

    Güleçyüz, M. Ç.; Şenyiğit, M.; Ersoy, A.

    2018-01-01

    The Milne problem is studied in one speed neutron transport theory using the linearly anisotropic scattering kernel which combines forward and backward scatterings (extremely anisotropic scattering) for a non-absorbing medium with specular and diffuse reflection boundary conditions. In order to calculate the extrapolated endpoint for the Milne problem, Legendre polynomial approximation (PN method) is applied and numerical results are tabulated for selected cases as a function of different degrees of anisotropic scattering. Finally, some results are discussed and compared with the existing results in literature.

  6. Generalizations of Tikhonov's regularized method of least squares to non-Euclidean vector norms

    NASA Astrophysics Data System (ADS)

    Volkov, V. V.; Erokhin, V. I.; Kakaev, V. V.; Onufrei, A. Yu.

    2017-09-01

    Tikhonov's regularized method of least squares and its generalizations to non-Euclidean norms, including polyhedral, are considered. The regularized method of least squares is reduced to mathematical programming problems obtained by "instrumental" generalizations of the Tikhonov lemma on the minimal (in a certain norm) solution of a system of linear algebraic equations with respect to an unknown matrix. Further studies are needed for problems concerning the development of methods and algorithms for solving reduced mathematical programming problems in which the objective functions and admissible domains are constructed using polyhedral vector norms.

  7. Class and Homework Problems: The Break-Even Radius of Insulation Computed Using Excel Solver and WolframAlpha

    ERIC Educational Resources Information Center

    Foley, Greg

    2014-01-01

    A problem that illustrates two ways of computing the break-even radius of insulation is outlined. The problem is suitable for students who are taking an introductory module in heat transfer or transport phenomena and who have some previous knowledge of the numerical solution of non- linear algebraic equations. The potential for computer algebra,…

  8. High profile students’ growth of mathematical understanding in solving linier programing problems

    NASA Astrophysics Data System (ADS)

    Utomo; Kusmayadi, TA; Pramudya, I.

    2018-04-01

    Linear program has an important role in human’s life. This linear program is learned in senior high school and college levels. This material is applied in economy, transportation, military and others. Therefore, mastering linear program is useful for provision of life. This research describes a growth of mathematical understanding in solving linear programming problems based on the growth of understanding by the Piere-Kieren model. Thus, this research used qualitative approach. The subjects were students of grade XI in Salatiga city. The subjects of this study were two students who had high profiles. The researcher generally chose the subjects based on the growth of understanding from a test result in the classroom; the mark from the prerequisite material was ≥ 75. Both of the subjects were interviewed by the researcher to know the students’ growth of mathematical understanding in solving linear programming problems. The finding of this research showed that the subjects often folding back to the primitive knowing level to go forward to the next level. It happened because the subjects’ primitive understanding was not comprehensive.

  9. Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders.

    PubMed

    Viejo, Guillaume; Cortier, Thomas; Peyrache, Adrien

    2018-03-01

    Understanding how neurons cooperate to integrate sensory inputs and guide behavior is a fundamental problem in neuroscience. A large body of methods have been developed to study neuronal firing at the single cell and population levels, generally seeking interpretability as well as predictivity. However, these methods are usually confronted with the lack of ground-truth necessary to validate the approach. Here, using neuronal data from the head-direction (HD) system, we present evidence demonstrating how gradient boosted trees, a non-linear and supervised Machine Learning tool, can learn the relationship between behavioral parameters and neuronal responses with high accuracy by optimizing the information rate. Interestingly, and unlike other classes of Machine Learning methods, the intrinsic structure of the trees can be interpreted in relation to behavior (e.g. to recover the tuning curves) or to study how neurons cooperate with their peers in the network. We show how the method, unlike linear analysis, reveals that the coordination in thalamo-cortical circuits is qualitatively the same during wakefulness and sleep, indicating a brain-state independent feed-forward circuit. Machine Learning tools thus open new avenues for benchmarking model-based characterization of spike trains.

  10. Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders

    PubMed Central

    Cortier, Thomas; Peyrache, Adrien

    2018-01-01

    Understanding how neurons cooperate to integrate sensory inputs and guide behavior is a fundamental problem in neuroscience. A large body of methods have been developed to study neuronal firing at the single cell and population levels, generally seeking interpretability as well as predictivity. However, these methods are usually confronted with the lack of ground-truth necessary to validate the approach. Here, using neuronal data from the head-direction (HD) system, we present evidence demonstrating how gradient boosted trees, a non-linear and supervised Machine Learning tool, can learn the relationship between behavioral parameters and neuronal responses with high accuracy by optimizing the information rate. Interestingly, and unlike other classes of Machine Learning methods, the intrinsic structure of the trees can be interpreted in relation to behavior (e.g. to recover the tuning curves) or to study how neurons cooperate with their peers in the network. We show how the method, unlike linear analysis, reveals that the coordination in thalamo-cortical circuits is qualitatively the same during wakefulness and sleep, indicating a brain-state independent feed-forward circuit. Machine Learning tools thus open new avenues for benchmarking model-based characterization of spike trains. PMID:29565979

  11. Hierarchical and non-hierarchical {lambda} elements for one dimensional problems with unknown strength of singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, K.K.; Surana, K.S.

    1996-10-01

    This paper presents a new and general procedure for designing hierarchical and non-hierarchical special elements called {lambda} elements for one dimensional singular problems where the strength of the singularity is unknown. The {lambda} element formulations presented here permit correct numerical simulation of linear as well as non-linear singular problems without a priori knowledge of the strength of the singularity. A procedure is also presented for determining the exact strength of the singularity using the converged solution. It is shown that in special instances, the general formulation of {lambda} elements can also be made hierarchical. The {lambda} elements presented here aremore » of type C{sup 0} and provide C{sup 0} inter-element continuity with p-version elements. One dimensional steady state radial flow of an upper convected Maxwell fluid is considered as a sample problem. Since in this case {lambda}{sub i} are known, this problem provides a good example for investigating the performance of the formulation proposed here. Least squares approach (or Least Squares Finite Element Formulation: LSFEF) is used to construct the integral form (error functional I) from the differential equations. Numerical studies are presented for radially inward flow of an upper convected Maxwell fluid with inner radius r{sub i} = .1 and .01 etc. and Deborah number De = 2.« less

  12. Techniques for Single System Integration of Elastic Simulation Features

    NASA Astrophysics Data System (ADS)

    Mitchell, Nathan M.

    Techniques for simulating the behavior of elastic objects have matured considerably over the last several decades, tackling diverse problems from non-linear models for incompressibility to accurate self-collisions. Alongside these contributions, advances in parallel hardware design and algorithms have made simulation more efficient and affordable than ever before. However, prior research often has had to commit to design choices that compromise certain simulation features to better optimize others, resulting in a fragmented landscape of solutions. For complex, real-world tasks, such as virtual surgery, a holistic approach is desirable, where complex behavior, performance, and ease of modeling are supported equally. This dissertation caters to this goal in the form of several interconnected threads of investigation, each of which contributes a piece of an unified solution. First, it will be demonstrated how various non-linear materials can be combined with lattice deformers to yield simulations with behavioral richness and a high potential for parallelism. This potential will be exploited to show how a hybrid solver approach based on large macroblocks can accelerate the convergence of these deformers. Further extensions of the lattice concept with non-manifold topology will allow for efficient processing of self-collisions and topology change. Finally, these concepts will be explored in the context of a case study on virtual plastic surgery, demonstrating a real-world problem space where these ideas can be combined to build an expressive authoring tool, allowing surgeons to record procedures digitally for future reference or education.

  13. The attitude inversion method of geostationary satellites based on unscented particle filter

    NASA Astrophysics Data System (ADS)

    Du, Xiaoping; Wang, Yang; Hu, Heng; Gou, Ruixin; Liu, Hao

    2018-04-01

    The attitude information of geostationary satellites is difficult to be obtained since they are presented in non-resolved images on the ground observation equipment in space object surveillance. In this paper, an attitude inversion method for geostationary satellite based on Unscented Particle Filter (UPF) and ground photometric data is presented. The inversion algorithm based on UPF is proposed aiming at the strong non-linear feature in the photometric data inversion for satellite attitude, which combines the advantage of Unscented Kalman Filter (UKF) and Particle Filter (PF). This update method improves the particle selection based on the idea of UKF to redesign the importance density function. Moreover, it uses the RMS-UKF to partially correct the prediction covariance matrix, which improves the applicability of the attitude inversion method in view of UKF and the particle degradation and dilution of the attitude inversion method based on PF. This paper describes the main principles and steps of algorithm in detail, correctness, accuracy, stability and applicability of the method are verified by simulation experiment and scaling experiment in the end. The results show that the proposed method can effectively solve the problem of particle degradation and depletion in the attitude inversion method on account of PF, and the problem that UKF is not suitable for the strong non-linear attitude inversion. However, the inversion accuracy is obviously superior to UKF and PF, in addition, in the case of the inversion with large attitude error that can inverse the attitude with small particles and high precision.

  14. Social surrogacy and adjustment: exploring the correlates of having a "social helper" for shy and non-shy young adolescents.

    PubMed

    Markovic, Andrea; Bowker, Julie C

    2015-01-01

    A social surrogate is an individual who offers help and comfort in social situations or makes social events more exciting. In this study of 157 young adolescents (55% female; Mage = 13.84 years, SD = 0.75 years), the authors examined whether the linear and curvilinear associations between self-reported social surrogate use and adjustment outcomes (social problems, loneliness, anxiety symptoms, depressive symptoms) varied as a function of shyness and gender, after accounting for the effects of positive friendship quality. Regression analyses revealed that low and high levels of social surrogate use were related to greater social problems for all adolescents. In addition, shyness emerged as a moderator for several curvilinear effects. Specifically, results indicated that (a) high levels of social surrogate use were associated with greater anxiety for adolescents high in shyness; and (b) low levels of social surrogate use were associated with greater depressive symptoms for adolescents low in shyness. Findings highlight the developmental importance of specific types of relationship experiences during early adolescence and point to different implications of social surrogate use for shy and non-shy young adolescents.

  15. A Thermodynamic Theory Of Solid Viscoelasticity. Part 1: Linear Viscoelasticity.

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Leonov, Arkady I.

    2002-01-01

    The present series of three consecutive papers develops a general theory for linear and finite solid viscoelasticity. Because the most important object for nonlinear studies are rubber-like materials, the general approach is specified in a form convenient for solving problems important for many industries that involve rubber-like materials. General linear and nonlinear theories for non-isothermal deformations of viscoelastic solids are developed based on the quasi-linear approach of non-equilibrium thermodynamics. In this, the first paper of the series, we analyze non-isothermal linear viscoelasticity, which is applicable in a range of small strains not only to all synthetic polymers and bio-polymers but also to some non-polymeric materials. Although the linear case seems to be well developed, there still are some reasons to implement a thermodynamic derivation of constitutive equations for solid-like, non-isothermal, linear viscoelasticity. The most important is the thermodynamic modeling of thermo-rheological complexity , i.e. different temperature dependences of relaxation parameters in various parts of relaxation spectrum. A special structure of interaction matrices is established for different physical mechanisms contributed to the normal relaxation modes. This structure seems to be in accord with observations, and creates a simple mathematical framework for both continuum and molecular theories of the thermo-rheological complex relaxation phenomena. Finally, a unified approach is briefly discussed that, in principle, allows combining both the long time (discrete) and short time (continuous) descriptions of relaxation behaviors for polymers in the rubbery and glassy regions.

  16. Parametric resonance in the early Universe—a fitting analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueroa, Daniel G.; Torrentí, Francisco, E-mail: daniel.figueroa@cern.ch, E-mail: f.torrenti@csic.es

    Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in 3+1 dimensions, we parametrize the dynamics' outcome scanningmore » over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasize the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequent non-linear dynamics. We provide simple fits to the relevant time scales and particle energy fractions at each stage. Our fits can be applied to post-inflationary preheating scenarios, where the oscillatory field is the inflaton, or to spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.« less

  17. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION

    PubMed Central

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    2016-01-01

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method—named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)—for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results. PMID:26778864

  18. Edge guided image reconstruction in linear scan CT by weighted alternating direction TV minimization.

    PubMed

    Cai, Ailong; Wang, Linyuan; Zhang, Hanming; Yan, Bin; Li, Lei; Xi, Xiaoqi; Li, Jianxin

    2014-01-01

    Linear scan computed tomography (CT) is a promising imaging configuration with high scanning efficiency while the data set is under-sampled and angularly limited for which high quality image reconstruction is challenging. In this work, an edge guided total variation minimization reconstruction (EGTVM) algorithm is developed in dealing with this problem. The proposed method is modeled on the combination of total variation (TV) regularization and iterative edge detection strategy. In the proposed method, the edge weights of intermediate reconstructions are incorporated into the TV objective function. The optimization is efficiently solved by applying alternating direction method of multipliers. A prudential and conservative edge detection strategy proposed in this paper can obtain the true edges while restricting the errors within an acceptable degree. Based on the comparison on both simulation studies and real CT data set reconstructions, EGTVM provides comparable or even better quality compared to the non-edge guided reconstruction and adaptive steepest descent-projection onto convex sets method. With the utilization of weighted alternating direction TV minimization and edge detection, EGTVM achieves fast and robust convergence and reconstructs high quality image when applied in linear scan CT with under-sampled data set.

  19. A review on non-linear aeroelasticity of high aspect-ratio wings

    NASA Astrophysics Data System (ADS)

    Afonso, Frederico; Vale, José; Oliveira, Éder; Lau, Fernando; Suleman, Afzal

    2017-02-01

    Current economic constraints and environmental regulations call for design of more efficient aircraft configurations. An observed trend in aircraft design to reduce the lift induced drag and improve fuel consumption and emissions is to increase the wing aspect-ratio. However, a slender wing is more flexible and subject to higher deflections under the same operating conditions. This effect may lead to changes in dynamic behaviour and in aeroelastic response, potentially resulting in instabilities. Therefore, it is important to take into account geometric non-linearities in the design of high aspect-ratio wings, as well as having accurate computational codes that couple the aerodynamic and structural models in the presence of non-linearities. Here, a review on the state-of-the-art on non-linear aeroelasticity of high aspect-ratio wings is presented. The methodologies employed to analyse high aspect-ratio wings are presented and their applications discussed. Important observations from the state-of-the-art studies are drawn and the current challenges in the field are identified.

  20. An Automatic Orthonormalization Method for Solving Stiff Boundary-Value Problems

    NASA Astrophysics Data System (ADS)

    Davey, A.

    1983-08-01

    A new initial-value method is described, based on a remark by Drury, for solving stiff linear differential two-point cigenvalue and boundary-value problems. The method is extremely reliable, it is especially suitable for high-order differential systems, and it is capable of accommodating realms of stiffness which other methods cannot reach. The key idea behind the method is to decompose the stiff differential operator into two non-stiff operators, one of which is nonlinear. The nonlinear one is specially chosen so that it advances an orthonormal frame, indeed the method is essentially a kind of automatic orthonormalization; the second is auxiliary but it is needed to determine the required function. The usefulness of the method is demonstrated by calculating some eigenfunctions for an Orr-Sommerfeld problem when the Reynolds number is as large as 10°.

  1. Linear solver performance in elastoplastic problem solution on GPU cluster

    NASA Astrophysics Data System (ADS)

    Khalevitsky, Yu. V.; Konovalov, A. V.; Burmasheva, N. V.; Partin, A. S.

    2017-12-01

    Applying the finite element method to severe plastic deformation problems involves solving linear equation systems. While the solution procedure is relatively hard to parallelize and computationally intensive by itself, a long series of large scale systems need to be solved for each problem. When dealing with fine computational meshes, such as in the simulations of three-dimensional metal matrix composite microvolume deformation, tens and hundreds of hours may be needed to complete the whole solution procedure, even using modern supercomputers. In general, one of the preconditioned Krylov subspace methods is used in a linear solver for such problems. The method convergence highly depends on the operator spectrum of a problem stiffness matrix. In order to choose the appropriate method, a series of computational experiments is used. Different methods may be preferable for different computational systems for the same problem. In this paper we present experimental data obtained by solving linear equation systems from an elastoplastic problem on a GPU cluster. The data can be used to substantiate the choice of the appropriate method for a linear solver to use in severe plastic deformation simulations.

  2. Expendable launch vehicle studies

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Reiss, Robert

    1995-01-01

    Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to Maxwell and Kelvin models. The third class of problems consists of linear eigenvalue problems in which the elements of the mass and stiffness matrices are stochastic. dynamic structural response for which the parameters are given by probabilistic distribution functions, rather than deterministic values, can be cast in this form. Solutions for several problems in each class will be presented.

  3. Assessment of Efficiency and Performance in Tsunami Numerical Modeling with GPU

    NASA Astrophysics Data System (ADS)

    Yalciner, Bora; Zaytsev, Andrey

    2017-04-01

    Non-linear shallow water equations (NSWE) are used to solve the propagation and coastal amplification of long waves and tsunamis. Leap Frog scheme of finite difference technique is one of the satisfactory numerical methods which is widely used in these problems. Tsunami numerical models are necessary for not only academic but also operational purposes which need faster and accurate solutions. Recent developments in information technology provide considerably faster numerical solutions in this respect and are becoming one of the crucial requirements. Tsunami numerical code NAMI DANCE uses finite difference numerical method to solve linear and non-linear forms of shallow water equations for long wave problems, specifically for tsunamis. In this study, the new code is structured for Graphical Processing Unit (GPU) using CUDA API. The new code is applied to different (analytical, experimental and field) benchmark problems of tsunamis for tests. One of those applications is 2011 Great East Japan tsunami which was instrumentally recorded on various types of gauges including tide and wave gauges and offshore GPS buoys cabled Ocean Bottom Pressure (OBP) gauges and DART buoys. The accuracy of the results are compared with the measurements and fairly well agreements are obtained. The efficiency and performance of the code is also compared with the version using multi-core Central Processing Unit (CPU). Dependence of simulation speed with GPU on linear or non-linear solutions is also investigated. One of the results is that the simulation speed is increased up to 75 times comparing to the process time in the computer using single 4/8 thread multi-core CPU. The results are presented with comparisons and discussions. Furthermore how multi-dimensional finite difference problems fits towards GPU architecture is also discussed. The research leading to this study has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement No: 603839 (Project ASTARTE-Assessment, Strategy and Risk Reduction for Tsunamis in Europe). PARI, Japan and NOAA, USA are acknowledged for the data of the measurements. Prof. Ahmet C. Yalciner is also acknowledged for his long term and sustained support to the authors.

  4. Conference on Non-linear Phenomena in Mathematical Physics: Dedicated to Cathleen Synge Morawetz on her 85th Birthday. The Fields Institute, Toronto, Canada September 18-20, 2008. Sponsors: Association for Women in Mathematics, Inc. and The Fields Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Jennifer

    2012-10-15

    This scientific meeting focused on the legacy of Cathleen S. Morawetz and the impact that her scientific work on transonic flow and the non-linear wave equation has had in recent progress on different aspects of analysis for non-linear wave, kinetic and quantum transport problems associated to mathematical physics. These are areas where the elements of continuum, statistical and stochastic mechanics, and their interplay, have counterparts in the theory of existence, uniqueness and stability of the associated systems of equations and geometric constraints. It was a central event for the applied and computational analysis community focusing on Partial Differential Equations. Themore » goal of the proposal was to honor Cathleen Morawetz, a highly successful woman in mathematics, while encouraging beginning researchers. The conference was successful in show casing the work of successful women, enhancing the visibility of women in the profession and providing role models for those just beginning their careers. The two-day conference included seven 45-minute lectures and one day of six 45-minute lectures, and a poster session for junior participants. The conference program included 19 distinguished speakers, 10 poster presentations, about 70 junior and senior participants and, of course, the participation of Cathleen Synge Morawetz. The conference celebrated Morawetz's paramount contributions to the theory of non-linear equations in gas dynamics and their impact in the current trends of nonlinear phenomena in mathematical physics, but also served as an awareness session of current women's contribution to mathematics.« less

  5. Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique.

    PubMed

    Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan

    2009-01-01

    The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region.

  6. A simple method for identifying parameter correlations in partially observed linear dynamic models.

    PubMed

    Li, Pu; Vu, Quoc Dong

    2015-12-14

    Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a software packet.

  7. Sustained modelling ability of artificial neural networks in the analysis of two pharmaceuticals (dextropropoxyphene and dipyrone) present in unequal concentrations.

    PubMed

    Cámara, María S; Ferroni, Félix M; De Zan, Mercedes; Goicoechea, Héctor C

    2003-07-01

    An improvement is presented on the simultaneous determination of two active ingredients present in unequal concentrations in injections. The analysis was carried out with spectrophotometric data and non-linear multivariate calibration methods, in particular artificial neural networks (ANNs). The presence of non-linearities caused by the major analyte concentrations which deviate from Beer's law was confirmed by plotting actual vs. predicted concentrations, and observing curvatures in the residuals for the estimated concentrations with linear methods. Mixtures of dextropropoxyphene and dipyrone have been analysed by using linear and non-linear partial least-squares (PLS and NPLSs) and ANNs. Notwithstanding the high degree of spectral overlap and the occurrence of non-linearities, rapid and simultaneous analysis has been achieved, with reasonably good accuracy and precision. A commercial sample was analysed by using the present methodology, and the obtained results show reasonably good agreement with those obtained by using high-performance liquid chromatography (HPLC) and a UV-spectrophotometric comparative methods.

  8. Group invariant solution for a pre-existing fluid-driven fracture in impermeable rock

    NASA Astrophysics Data System (ADS)

    Fitt, A. D.; Mason, D. P.; Moss, E. A.

    2007-11-01

    The propagation of a two-dimensional fluid-driven fracture in impermeable rock is considered. The fluid flow in the fracture is laminar. By applying lubrication theory a partial differential equation relating the half-width of the fracture to the fluid pressure is derived. To close the model the PKN formulation is adopted in which the fluid pressure is proportional to the half-width of the fracture. By considering a linear combination of the Lie point symmetries of the resulting non-linear diffusion equation the boundary value problem is expressed in a form appropriate for a similarity solution. The boundary value problem is reformulated as two initial value problems which are readily solved numerically. The similarity solution describes a preexisting fracture since both the total volume and length of the fracture are initially finite and non-zero. Applications in which the rate of fluid injection into the fracture and the pressure at the fracture entry are independent of time are considered.

  9. MUSTA fluxes for systems of conservation laws

    NASA Astrophysics Data System (ADS)

    Toro, E. F.; Titarev, V. A.

    2006-08-01

    This paper is about numerical fluxes for hyperbolic systems and we first present a numerical flux, called GFORCE, that is a weighted average of the Lax-Friedrichs and Lax-Wendroff fluxes. For the linear advection equation with constant coefficient, the new flux reduces identically to that of the Godunov first-order upwind method. Then we incorporate GFORCE in the framework of the MUSTA approach [E.F. Toro, Multi-Stage Predictor-Corrector Fluxes for Hyperbolic Equations. Technical Report NI03037-NPA, Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK, 17th June, 2003], resulting in a version that we call GMUSTA. For non-linear systems this gives results that are comparable to those of the Godunov method in conjunction with the exact Riemann solver or complete approximate Riemann solvers, noting however that in our approach, the solution of the Riemann problem in the conventional sense is avoided. Both the GFORCE and GMUSTA fluxes are extended to multi-dimensional non-linear systems in a straightforward unsplit manner, resulting in linearly stable schemes that have the same stability regions as the straightforward multi-dimensional extension of Godunov's method. The methods are applicable to general meshes. The schemes of this paper share with the family of centred methods the common properties of being simple and applicable to a large class of hyperbolic systems, but the schemes of this paper are distinctly more accurate. Finally, we proceed to the practical implementation of our numerical fluxes in the framework of high-order finite volume WENO methods for multi-dimensional non-linear hyperbolic systems. Numerical results are presented for the Euler equations and for the equations of magnetohydrodynamics.

  10. An accelerated lambda iteration method for multilevel radiative transfer. I - Non-overlapping lines with background continuum

    NASA Technical Reports Server (NTRS)

    Rybicki, G. B.; Hummer, D. G.

    1991-01-01

    A method is presented for solving multilevel transfer problems when nonoverlapping lines and background continuum are present and active continuum transfer is absent. An approximate lambda operator is employed to derive linear, 'preconditioned', statistical-equilibrium equations. A method is described for finding the diagonal elements of the 'true' numerical lambda operator, and therefore for obtaining the coefficients of the equations. Iterations of the preconditioned equations, in conjunction with the transfer equation's formal solution, are used to solve linear equations. Some multilevel problems are considered, including an eleven-level neutral helium atom. Diagonal and tridiagonal approximate lambda operators are utilized in the problems to examine the convergence properties of the method, and it is found to be effective for the line transfer problems.

  11. Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity

    NASA Astrophysics Data System (ADS)

    Rand, J. L.; Wakefield, D. S.

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may

  12. ECG compression using non-recursive wavelet transform with quality control

    NASA Astrophysics Data System (ADS)

    Liu, Je-Hung; Hung, King-Chu; Wu, Tsung-Ching

    2016-09-01

    While wavelet-based electrocardiogram (ECG) data compression using scalar quantisation (SQ) yields excellent compression performance, a wavelet's SQ scheme, however, must select a set of multilevel quantisers for each quantisation process. As a result of the properties of multiple-to-one mapping, however, this scheme is not conducive for reconstruction error control. In order to address this problem, this paper presents a single-variable control SQ scheme able to guarantee the reconstruction quality of wavelet-based ECG data compression. Based on the reversible round-off non-recursive discrete periodised wavelet transform (RRO-NRDPWT), the SQ scheme is derived with a three-stage design process that first uses genetic algorithm (GA) for high compression ratio (CR), followed by a quadratic curve fitting for linear distortion control, and the third uses a fuzzy decision-making for minimising data dependency effect and selecting the optimal SQ. The two databases, Physikalisch-Technische Bundesanstalt (PTB) and Massachusetts Institute of Technology (MIT) arrhythmia, are used to evaluate quality control performance. Experimental results show that the design method guarantees a high compression performance SQ scheme with statistically linear distortion. This property can be independent of training data and can facilitate rapid error control.

  13. MEG and fMRI Fusion for Non-Linear Estimation of Neural and BOLD Signal Changes

    PubMed Central

    Plis, Sergey M.; Calhoun, Vince D.; Weisend, Michael P.; Eichele, Tom; Lane, Terran

    2010-01-01

    The combined analysis of magnetoencephalography (MEG)/electroencephalography and functional magnetic resonance imaging (fMRI) measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the blood oxygenation level dependent (BOLD) response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater signal-to-noise ratio, that confirms the expectation arising from the nature of the experiment. The highly non-linear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources. PMID:21120141

  14. Proceedings of the NATO-Advanced Study Institute on Computer Aided Analysis of Rigid and Flexible Mechanical Systems Held in Troia, Portugal on June 27-July 9, 1993. Volume 1. Main Lectures

    DTIC Science & Technology

    1993-07-09

    real-time simulation capabilities, highly non -linear control devices, work space path planing, active control of machine flexibilities and reliability...P.M., "The Information Capacity of the Human Motor System in Controlling the Amplitude of Movement," Journal of Experimental Psychology, Vol 47, No...driven many research groups in the challenging problem of flexible sy,;tems with an increasing interaction with finite element methodologies. Basic

  15. Modeling Primary Atomization of Liquid Fuels using a Multiphase DNS/LES Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arienti, Marco; Oefelein, Joe; Doisneau, Francois

    2016-08-01

    As part of a Laboratory Directed Research and Development project, we are developing a modeling-and-simulation capability to study fuel direct injection in automotive engines. Predicting mixing and combustion at realistic conditions remains a challenging objective of energy science. And it is a research priority in Sandia’s mission-critical area of energy security, being also relevant to many flows in defense and climate. High-performance computing applied to this non-linear multi-scale problem is key to engine calculations with increased scientific reliability.

  16. Blessing of dimensionality: mathematical foundations of the statistical physics of data.

    PubMed

    Gorban, A N; Tyukin, I Y

    2018-04-28

    The concentrations of measure phenomena were discovered as the mathematical background to statistical mechanics at the end of the nineteenth/beginning of the twentieth century and have been explored in mathematics ever since. At the beginning of the twenty-first century, it became clear that the proper utilization of these phenomena in machine learning might transform the curse of dimensionality into the blessing of dimensionality This paper summarizes recently discovered phenomena of measure concentration which drastically simplify some machine learning problems in high dimension, and allow us to correct legacy artificial intelligence systems. The classical concentration of measure theorems state that i.i.d. random points are concentrated in a thin layer near a surface (a sphere or equators of a sphere, an average or median-level set of energy or another Lipschitz function, etc.). The new stochastic separation theorems describe the thin structure of these thin layers: the random points are not only concentrated in a thin layer but are all linearly separable from the rest of the set, even for exponentially large random sets. The linear functionals for separation of points can be selected in the form of the linear Fisher's discriminant. All artificial intelligence systems make errors. Non-destructive correction requires separation of the situations (samples) with errors from the samples corresponding to correct behaviour by a simple and robust classifier. The stochastic separation theorems provide us with such classifiers and determine a non-iterative (one-shot) procedure for their construction.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  17. Blessing of dimensionality: mathematical foundations of the statistical physics of data

    NASA Astrophysics Data System (ADS)

    Gorban, A. N.; Tyukin, I. Y.

    2018-04-01

    The concentrations of measure phenomena were discovered as the mathematical background to statistical mechanics at the end of the nineteenth/beginning of the twentieth century and have been explored in mathematics ever since. At the beginning of the twenty-first century, it became clear that the proper utilization of these phenomena in machine learning might transform the curse of dimensionality into the blessing of dimensionality. This paper summarizes recently discovered phenomena of measure concentration which drastically simplify some machine learning problems in high dimension, and allow us to correct legacy artificial intelligence systems. The classical concentration of measure theorems state that i.i.d. random points are concentrated in a thin layer near a surface (a sphere or equators of a sphere, an average or median-level set of energy or another Lipschitz function, etc.). The new stochastic separation theorems describe the thin structure of these thin layers: the random points are not only concentrated in a thin layer but are all linearly separable from the rest of the set, even for exponentially large random sets. The linear functionals for separation of points can be selected in the form of the linear Fisher's discriminant. All artificial intelligence systems make errors. Non-destructive correction requires separation of the situations (samples) with errors from the samples corresponding to correct behaviour by a simple and robust classifier. The stochastic separation theorems provide us with such classifiers and determine a non-iterative (one-shot) procedure for their construction. This article is part of the theme issue `Hilbert's sixth problem'.

  18. A general procedure to generate models for urban environmental-noise pollution using feature selection and machine learning methods.

    PubMed

    Torija, Antonio J; Ruiz, Diego P

    2015-02-01

    The prediction of environmental noise in urban environments requires the solution of a complex and non-linear problem, since there are complex relationships among the multitude of variables involved in the characterization and modelling of environmental noise and environmental-noise magnitudes. Moreover, the inclusion of the great spatial heterogeneity characteristic of urban environments seems to be essential in order to achieve an accurate environmental-noise prediction in cities. This problem is addressed in this paper, where a procedure based on feature-selection techniques and machine-learning regression methods is proposed and applied to this environmental problem. Three machine-learning regression methods, which are considered very robust in solving non-linear problems, are used to estimate the energy-equivalent sound-pressure level descriptor (LAeq). These three methods are: (i) multilayer perceptron (MLP), (ii) sequential minimal optimisation (SMO), and (iii) Gaussian processes for regression (GPR). In addition, because of the high number of input variables involved in environmental-noise modelling and estimation in urban environments, which make LAeq prediction models quite complex and costly in terms of time and resources for application to real situations, three different techniques are used to approach feature selection or data reduction. The feature-selection techniques used are: (i) correlation-based feature-subset selection (CFS), (ii) wrapper for feature-subset selection (WFS), and the data reduction technique is principal-component analysis (PCA). The subsequent analysis leads to a proposal of different schemes, depending on the needs regarding data collection and accuracy. The use of WFS as the feature-selection technique with the implementation of SMO or GPR as regression algorithm provides the best LAeq estimation (R(2)=0.94 and mean absolute error (MAE)=1.14-1.16 dB(A)). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Probability density of spatially distributed soil moisture inferred from crosshole georadar traveltime measurements

    NASA Astrophysics Data System (ADS)

    Linde, N.; Vrugt, J. A.

    2009-04-01

    Geophysical models are increasingly used in hydrological simulations and inversions, where they are typically treated as an artificial data source with known uncorrelated "data errors". The model appraisal problem in classical deterministic linear and non-linear inversion approaches based on linearization is often addressed by calculating model resolution and model covariance matrices. These measures offer only a limited potential to assign a more appropriate "data covariance matrix" for future hydrological applications, simply because the regularization operators used to construct a stable inverse solution bear a strong imprint on such estimates and because the non-linearity of the geophysical inverse problem is not explored. We present a parallelized Markov Chain Monte Carlo (MCMC) scheme to efficiently derive the posterior spatially distributed radar slowness and water content between boreholes given first-arrival traveltimes. This method is called DiffeRential Evolution Adaptive Metropolis (DREAM_ZS) with snooker updater and sampling from past states. Our inverse scheme does not impose any smoothness on the final solution, and uses uniform prior ranges of the parameters. The posterior distribution of radar slowness is converted into spatially distributed soil moisture values using a petrophysical relationship. To benchmark the performance of DREAM_ZS, we first apply our inverse method to a synthetic two-dimensional infiltration experiment using 9421 traveltimes contaminated with Gaussian errors and 80 different model parameters, corresponding to a model discretization of 0.3 m × 0.3 m. After this, the method is applied to field data acquired in the vadose zone during snowmelt. This work demonstrates that fully non-linear stochastic inversion can be applied with few limiting assumptions to a range of common two-dimensional tomographic geophysical problems. The main advantage of DREAM_ZS is that it provides a full view of the posterior distribution of spatially distributed soil moisture, which is key to appropriately treat geophysical parameter uncertainty and infer hydrologic models.

  20. Adaptive Importance Sampling for Control and Inference

    NASA Astrophysics Data System (ADS)

    Kappen, H. J.; Ruiz, H. C.

    2016-03-01

    Path integral (PI) control problems are a restricted class of non-linear control problems that can be solved formally as a Feynman-Kac PI and can be estimated using Monte Carlo sampling. In this contribution we review PI control theory in the finite horizon case. We subsequently focus on the problem how to compute and represent control solutions. We review the most commonly used methods in robotics and control. Within the PI theory, the question of how to compute becomes the question of importance sampling. Efficient importance samplers are state feedback controllers and the use of these requires an efficient representation. Learning and representing effective state-feedback controllers for non-linear stochastic control problems is a very challenging, and largely unsolved, problem. We show how to learn and represent such controllers using ideas from the cross entropy method. We derive a gradient descent method that allows to learn feed-back controllers using an arbitrary parametrisation. We refer to this method as the path integral cross entropy method or PICE. We illustrate this method for some simple examples. The PI control methods can be used to estimate the posterior distribution in latent state models. In neuroscience these problems arise when estimating connectivity from neural recording data using EM. We demonstrate the PI control method as an accurate alternative to particle filtering.

  1. A diffusion model of protected population on bilocal habitat with generalized resource

    NASA Astrophysics Data System (ADS)

    Vasilyev, Maxim D.; Trofimtsev, Yuri I.; Vasilyeva, Natalya V.

    2017-11-01

    A model of population distribution in a two-dimensional area divided by an ecological barrier, i.e. the boundaries of natural reserve, is considered. Distribution of the population is defined by diffusion, directed migrations and areal resource. The exchange of specimens occurs between two parts of the habitat. The mathematical model is presented in the form of a boundary value problem for a system of non-linear parabolic equations with variable parameters of diffusion and growth function. The splitting space variables, sweep method and simple iteration methods were used for the numerical solution of a system. A set of programs was coded in Python. Numerical simulation results for the two-dimensional unsteady non-linear problem are analyzed in detail. The influence of migration flow coefficients and functions of natural birth/death ratio on the distributions of population densities is investigated. The results of the research would allow to describe the conditions of the stable and sustainable existence of populations in bilocal habitat containing the protected and non-protected zones.

  2. Aerodynamic preliminary analysis system. Part 1: Theory. [linearized potential theory

    NASA Technical Reports Server (NTRS)

    Bonner, E.; Clever, W.; Dunn, K.

    1978-01-01

    A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds. Three dimensional configurations with or without jet flaps having multiple non-planar surfaces of arbitrary planform and open or closed slender bodies of non-circular contour may be analyzed. Longitudinal and lateral-directional static and rotary derivative solutions may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.

  3. Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets

    NASA Astrophysics Data System (ADS)

    Gontis, V.; Kononovicius, A.

    2017-10-01

    We address the problem of long-range memory in the financial markets. There are two conceptually different ways to reproduce power-law decay of auto-correlation function: using fractional Brownian motion as well as non-linear stochastic differential equations. In this contribution we address this problem by analyzing empirical return and trading activity time series from the Forex. From the empirical time series we obtain probability density functions of burst and inter-burst duration. Our analysis reveals that the power-law exponents of the obtained probability density functions are close to 3 / 2, which is a characteristic feature of the one-dimensional stochastic processes. This is in a good agreement with earlier proposed model of absolute return based on the non-linear stochastic differential equations derived from the agent-based herding model.

  4. A non-linear optimization programming model for air quality planning including co-benefits for GHG emissions.

    PubMed

    Turrini, Enrico; Carnevale, Claudio; Finzi, Giovanna; Volta, Marialuisa

    2018-04-15

    This paper introduces the MAQ (Multi-dimensional Air Quality) model aimed at defining cost-effective air quality plans at different scales (urban to national) and assessing the co-benefits for GHG emissions. The model implements and solves a non-linear multi-objective, multi-pollutant decision problem where the decision variables are the application levels of emission abatement measures allowing the reduction of energy consumption, end-of pipe technologies and fuel switch options. The objectives of the decision problem are the minimization of tropospheric secondary pollution exposure and of internal costs. The model assesses CO 2 equivalent emissions in order to support decision makers in the selection of win-win policies. The methodology is tested on Lombardy region, a heavily polluted area in northern Italy. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Population heterogeneity of trait anger and differential associations of trait anger facets with borderline personality features, neuroticism, depression, Attention Deficit Hyperactivity Disorder (ADHD), and alcohol problems

    PubMed Central

    Lubke, Gitta H.; Ouwens, Klaasjan G.; de Moor, Marleen H.M.; Trull, Timothy J.; Boomsma, Dorret I.

    2015-01-01

    Anger is an emotion consisting of feelings of variable intensity ranging from mild irritation to intense fury. High levels of trait anger are associated with a range of psychiatric, interpersonal, and health problems. The objectives of this study were to explore heterogeneity of anger as measured by the Spielberger Trait Anger Scale (STAS), and to assess the association of the different anger facets with a selection of psychiatric disorders covering externalizing and internalizing problems, personality disorders, and substance use. Factor mixture models differentiated between a high and low scoring class (28% vs. 72%), and between three factors (anger-temperament, anger-reaction, and immediacy of an anger response). Whereas all psychiatric scales correlated significantly with the STAS total score, regressing the three STAS factors on psychiatric behaviors model showed a more detailed pattern. Only borderline affect instability and depression were significantly associated with all three factors in both classes whereas other problem behaviors were associated only with 1 or 2 of the factors. Alcohol problems were associated with immediacy only in the high scoring class, indicating a non-linear relation in the total sample. Taking into account these more specific associations is likely to be beneficial when investigating differential treatment strategies. PMID:26454404

  6. Single-photon non-linear optics with a quantum dot in a waveguide

    NASA Astrophysics Data System (ADS)

    Javadi, A.; Söllner, I.; Arcari, M.; Hansen, S. Lindskov; Midolo, L.; Mahmoodian, S.; Kiršanskė, G.; Pregnolato, T.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P.

    2015-10-01

    Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.

  7. Semi-Supervised Sparse Representation Based Classification for Face Recognition With Insufficient Labeled Samples

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Ma, Jiayi; Yuille, Alan L.

    2017-05-01

    This paper addresses the problem of face recognition when there is only few, or even only a single, labeled examples of the face that we wish to recognize. Moreover, these examples are typically corrupted by nuisance variables, both linear (i.e., additive nuisance variables such as bad lighting, wearing of glasses) and non-linear (i.e., non-additive pixel-wise nuisance variables such as expression changes). The small number of labeled examples means that it is hard to remove these nuisance variables between the training and testing faces to obtain good recognition performance. To address the problem we propose a method called Semi-Supervised Sparse Representation based Classification (S$^3$RC). This is based on recent work on sparsity where faces are represented in terms of two dictionaries: a gallery dictionary consisting of one or more examples of each person, and a variation dictionary representing linear nuisance variables (e.g., different lighting conditions, different glasses). The main idea is that (i) we use the variation dictionary to characterize the linear nuisance variables via the sparsity framework, then (ii) prototype face images are estimated as a gallery dictionary via a Gaussian Mixture Model (GMM), with mixed labeled and unlabeled samples in a semi-supervised manner, to deal with the non-linear nuisance variations between labeled and unlabeled samples. We have done experiments with insufficient labeled samples, even when there is only a single labeled sample per person. Our results on the AR, Multi-PIE, CAS-PEAL, and LFW databases demonstrate that the proposed method is able to deliver significantly improved performance over existing methods.

  8. Simultaneous elastic parameter inversion in 2-D/3-D TTI medium combined later arrival times

    NASA Astrophysics Data System (ADS)

    Bai, Chao-ying; Wang, Tao; Yang, Shang-bei; Li, Xing-wang; Huang, Guo-jiao

    2016-04-01

    Traditional traveltime inversion for anisotropic medium is, in general, based on a "weak" assumption in the anisotropic property, which simplifies both the forward part (ray tracing is performed once only) and the inversion part (a linear inversion solver is possible). But for some real applications, a general (both "weak" and "strong") anisotropic medium should be considered. In such cases, one has to develop a ray tracing algorithm to handle with the general (including "strong") anisotropic medium and also to design a non-linear inversion solver for later tomography. Meanwhile, it is constructive to investigate how much the tomographic resolution can be improved by introducing the later arrivals. For this motivation, we incorporated our newly developed ray tracing algorithm (multistage irregular shortest-path method) for general anisotropic media with a non-linear inversion solver (a damped minimum norm, constrained least squares problem with a conjugate gradient approach) to formulate a non-linear inversion solver for anisotropic medium. This anisotropic traveltime inversion procedure is able to combine the later (reflected) arrival times. Both 2-D/3-D synthetic inversion experiments and comparison tests show that (1) the proposed anisotropic traveltime inversion scheme is able to recover the high contrast anomalies and (2) it is possible to improve the tomographic resolution by introducing the later (reflected) arrivals, but not as expected in the isotropic medium, because the different velocity (qP, qSV and qSH) sensitivities (or derivatives) respective to the different elastic parameters are not the same but are also dependent on the inclination angle.

  9. Non-symmetric forms of non-linear vibrations of flexible cylindrical panels and plates under longitudinal load and additive white noise

    NASA Astrophysics Data System (ADS)

    Krysko, V. A.; Awrejcewicz, J.; Krylova, E. Yu; Papkova, I. V.; Krysko, A. V.

    2018-06-01

    Parametric non-linear vibrations of flexible cylindrical panels subjected to additive white noise are studied. The governing Marguerre equations are investigated using the finite difference method (FDM) of the second-order accuracy and the Runge-Kutta method. The considered mechanical structural member is treated as a system of many/infinite number of degrees of freedom (DoF). The dependence of chaotic vibrations on the number of DoFs is investigated. Reliability of results is guaranteed by comparing the results obtained using two qualitatively different methods to reduce the problem of PDEs (partial differential equations) to ODEs (ordinary differential equations), i.e. the Faedo-Galerkin method in higher approximations and the 4th and 6th order FDM. The Cauchy problem obtained by the FDM is eventually solved using the 4th-order Runge-Kutta methods. The numerical experiment yielded, for a certain set of parameters, the non-symmetric vibration modes/forms with and without white noise. In particular, it has been illustrated and discussed that action of white noise on chaotic vibrations implies quasi-periodicity, whereas the previously non-symmetric vibration modes are closer to symmetric ones.

  10. Lie-algebraic Approach to Dynamics of Closed Quantum Systems and Quantum-to-Classical Correspondence

    NASA Astrophysics Data System (ADS)

    Galitski, Victor

    2012-02-01

    I will briefly review our recent work on a Lie-algebraic approach to various non-equilibrium quantum-mechanical problems, which has been motivated by continuous experimental advances in the field of cold atoms. First, I will discuss non-equilibrium driven dynamics of a generic closed quantum system. It will be emphasized that mathematically a non-equilibrium Hamiltonian represents a trajectory in a Lie algebra, while the evolution operator is a trajectory in a Lie group generated by the underlying algebra via exponentiation. This turns out to be a constructive statement that establishes, in particular, the fact that classical and quantum unitary evolutions are two sides of the same coin determined uniquely by the same dynamic generators in the group. An equation for these generators - dubbed dual Schr"odinger-Bloch equation - will be derived and analyzed for a few of specific examples. This non-linear equation allows one to construct new exact non-linear solutions to quantum-dynamical systems. An experimentally-relevant example of a family of exact solutions to the many-body Landau-Zener problem will be presented. One practical application of the latter result includes dynamical means to optimize molecular production rate following a quench across the Feshbach resonance.

  11. Falling, flapping, flying, swimming,...: High-Re fluid-solid interactions with vortex shedding

    NASA Astrophysics Data System (ADS)

    Michelin, Sebastien Honore Roland

    The coupling between the motion of a solid body and the dynamics of the surrounding flow is essential to the understanding of a large number of engineering and physical problems, from the stability of a slender structure exposed to the wind to the locomotion of insects, birds and fishes. Because of the strong coupling on a moving boundary of the equations for the solid and fluid, the simulation of such problems is computationally challenging and expensive. This justifies the development of simplified models for the fluid-solid interactions to study their physical properties and behavior. This dissertation proposes a reduced-order model for the interaction of a sharp-edged solid body with a strongly unsteady high Reynolds number flow. In such a case, viscous forces in the fluid are often negligible compared to the fluid inertia or the pressure forces, and the thin boundary layers separate from the solid at the edges, leading to the shedding of large and persistent vortices in the solid's wake. A general two-dimensional framework is presented based on complex potential flow theory. The formation of the solid's vortical wake is accounted for by the shedding of point vortices with unsteady intensity from the solid's sharp edges, and the fluid-solid problem is reformulated exclusively as a solid-vortex interaction problem. In the case of a rigid solid body, the coupled problem is shown to reduce to a set of non-linear ordinary differential equations. This model is used to study the effect of vortex shedding on the stability of falling objects. The solid-vortex model is then generalized to study the fluttering instability and non-linear flapping dynamics of flexible plates or flags. The uttering instability and resulting flapping motion result from the competing effects of the fluid forcing and of the solid's flexural rigidity and inertia. Finally, the solid-vortex model is applied to the study of the fundamental effect of bending rigidity on the flapping performance of flapping appendages such as insect wings or fish fins.

  12. Comparison of four approaches to a rock facies classification problem

    USGS Publications Warehouse

    Dubois, M.K.; Bohling, Geoffrey C.; Chakrabarti, S.

    2007-01-01

    In this study, seven classifiers based on four different approaches were tested in a rock facies classification problem: classical parametric methods using Bayes' rule, and non-parametric methods using fuzzy logic, k-nearest neighbor, and feed forward-back propagating artificial neural network. Determining the most effective classifier for geologic facies prediction in wells without cores in the Panoma gas field, in Southwest Kansas, was the objective. Study data include 3600 samples with known rock facies class (from core) with each sample having either four or five measured properties (wire-line log curves), and two derived geologic properties (geologic constraining variables). The sample set was divided into two subsets, one for training and one for testing the ability of the trained classifier to correctly assign classes. Artificial neural networks clearly outperformed all other classifiers and are effective tools for this particular classification problem. Classical parametric models were inadequate due to the nature of the predictor variables (high dimensional and not linearly correlated), and feature space of the classes (overlapping). The other non-parametric methods tested, k-nearest neighbor and fuzzy logic, would need considerable improvement to match the neural network effectiveness, but further work, possibly combining certain aspects of the three non-parametric methods, may be justified. ?? 2006 Elsevier Ltd. All rights reserved.

  13. Manifold Learning by Preserving Distance Orders.

    PubMed

    Ataer-Cansizoglu, Esra; Akcakaya, Murat; Orhan, Umut; Erdogmus, Deniz

    2014-03-01

    Nonlinear dimensionality reduction is essential for the analysis and the interpretation of high dimensional data sets. In this manuscript, we propose a distance order preserving manifold learning algorithm that extends the basic mean-squared error cost function used mainly in multidimensional scaling (MDS)-based methods. We develop a constrained optimization problem by assuming explicit constraints on the order of distances in the low-dimensional space. In this optimization problem, as a generalization of MDS, instead of forcing a linear relationship between the distances in the high-dimensional original and low-dimensional projection space, we learn a non-decreasing relation approximated by radial basis functions. We compare the proposed method with existing manifold learning algorithms using synthetic datasets based on the commonly used residual variance and proposed percentage of violated distance orders metrics. We also perform experiments on a retinal image dataset used in Retinopathy of Prematurity (ROP) diagnosis.

  14. Dynamic analysis of space-related linear and non-linear structures

    NASA Technical Reports Server (NTRS)

    Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.

    1990-01-01

    In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.

  15. Dynamic analysis of space-related linear and non-linear structures

    NASA Technical Reports Server (NTRS)

    Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.

    1990-01-01

    In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.

  16. Integrated Sensing Processor, Phase 2

    DTIC Science & Technology

    2005-12-01

    performance analysis for several baseline classifiers including neural nets, linear classifiers, and kNN classifiers. Use of CCDR as a preprocessing step...below the level of the benchmark non-linear classifier for this problem ( kNN ). Furthermore, the CCDR preconditioned kNN achieved a 10% improvement over...the benchmark kNN without CCDR. Finally, we found an important connection between intrinsic dimension estimation via entropic graphs and the optimal

  17. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    NASA Astrophysics Data System (ADS)

    Corvan, D. J.; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16-18 MeV) and ultra-high brilliance (exceeding 1020 photons s-1mm-2mrad-2 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above.

  18. The application of the least squares finite element method to Abel's integral equation. [with application to glow discharge problem

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.; Norrie, D. H.; De Vries, G.

    1979-01-01

    Abel's integral equation is the governing equation for certain problems in physics and engineering, such as radiation from distributed sources. The finite element method for the solution of this non-linear equation is presented for problems with cylindrical symmetry and the extension to more general integral equations is indicated. The technique was applied to an axisymmetric glow discharge problem and the results show excellent agreement with previously obtained solutions

  19. Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitagawa, Akira; Takeoka, Masahiro; Sasaki, Masahide

    2006-04-15

    We consider the problem of evaluating the entanglement of non-Gaussian mixed states generated by photon subtraction from entangled squeezed states. The entanglement measures we use are the negativity and the logarithmic negativity. These measures possess the unusual property of being computable with linear algebra packages even for high-dimensional quantum systems. We numerically evaluate these measures for the non-Gaussian mixed states which are generated by photon subtraction with on/off photon detectors. The results are compared with the behavior of certain operational measures, namely the teleportation fidelity and the mutual information in the dense coding scheme. It is found that all ofmore » these results are mutually consistent, in the sense that whenever the enhancement is seen in terms of the operational measures, the negativity and the logarithmic negativity are also enhanced.« less

  20. Non-linear Post Processing Image Enhancement

    NASA Technical Reports Server (NTRS)

    Hunt, Shawn; Lopez, Alex; Torres, Angel

    1997-01-01

    A non-linear filter for image post processing based on the feedforward Neural Network topology is presented. This study was undertaken to investigate the usefulness of "smart" filters in image post processing. The filter has shown to be useful in recovering high frequencies, such as those lost during the JPEG compression-decompression process. The filtered images have a higher signal to noise ratio, and a higher perceived image quality. Simulation studies comparing the proposed filter with the optimum mean square non-linear filter, showing examples of the high frequency recovery, and the statistical properties of the filter are given,

  1. An efficient method for model refinement in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Zirak, A. R.; Khademi, M.

    2007-11-01

    Diffuse optical tomography (DOT) is a non-linear, ill-posed, boundary value and optimization problem which necessitates regularization. Also, Bayesian methods are suitable owing to measurements data are sparse and correlated. In such problems which are solved with iterative methods, for stabilization and better convergence, the solution space must be small. These constraints subject to extensive and overdetermined system of equations which model retrieving criteria specially total least squares (TLS) must to refine model error. Using TLS is limited to linear systems which is not achievable when applying traditional Bayesian methods. This paper presents an efficient method for model refinement using regularized total least squares (RTLS) for treating on linearized DOT problem, having maximum a posteriori (MAP) estimator and Tikhonov regulator. This is done with combination Bayesian and regularization tools as preconditioner matrices, applying them to equations and then using RTLS to the resulting linear equations. The preconditioning matrixes are guided by patient specific information as well as a priori knowledge gained from the training set. Simulation results illustrate that proposed method improves the image reconstruction performance and localize the abnormally well.

  2. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    NASA Technical Reports Server (NTRS)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Steven J.; Carlsten, Bruce E.

    We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers;more » (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.« less

  4. Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse Shear Effects

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Anderson, Melvin S.

    1998-01-01

    The analytical formulation of curved-plate non-linear equilibrium equations that include transverse-shear-deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Using several simplifying assumptions, linearized, stability equations are derived that describe the response of the plate just after bifurcation buckling occurs. These equations are then modified to allow the plate reference surface to be located a distance z(c), from the centroid surface which is convenient for modeling stiffened-plate assemblies. The implementation of the new theory into the VICONOPT buckling and vibration analysis and optimum design program code is described. Either classical plate theory (CPT) or first-order shear-deformation plate theory (SDPT) may be selected in VICONOPT. Comparisons of numerical results for several example problems with different loading states are made. Results from the new curved-plate analysis compare well with closed-form solution results and with results from known example problems in the literature. Finally, a design-optimization study of two different cylindrical shells subject to uniform axial compression is presented.

  5. Engineering non-linear resonator mode interactions in circuit QED by continuous driving: Manipulation of a photonic quantum memory

    NASA Astrophysics Data System (ADS)

    Reagor, Matthew; Pfaff, Wolfgang; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Albert, Victor V.; Frunzio, Luigi; Devoret, Michel H.; Jiang, Liang; Schoelkopf, Robert J.

    2015-03-01

    Recent advances in circuit QED have shown great potential for using microwave resonators as quantum memories. In particular, it is possible to encode the state of a quantum bit in non-classical photonic states inside a high-Q linear resonator. An outstanding challenge is to perform controlled operations on such a photonic state. We demonstrate experimentally how a continuous drive on a transmon qubit coupled to a high-Q storage resonator can be used to induce non-linear dynamics of the resonator. Tailoring the drive properties allows us to cancel or enhance non-linearities in the system such that we can manipulate the state stored in the cavity. This approach can be used to either counteract undesirable evolution due to the bare Hamiltonian of the system or, ultimately, to perform logical operations on the state encoded in the cavity field. Our method provides a promising pathway towards performing universal control for quantum states stored in high-coherence resonators in the circuit QED platform.

  6. Advanced Numerical Methods for Computing Statistical Quantities of Interest from Solutions of SPDES

    DTIC Science & Technology

    2012-01-19

    and related optimization problems; developing numerical methods for option pricing problems in the presence of random arbitrage return. 1. Novel...equations (BSDEs) are connected to nonlinear partial differen- tial equations and non-linear semigroups, to the theory of hedging and pricing of contingent...the presence of random arbitrage return [3] We consider option pricing problems when we relax the condition of no arbitrage in the Black- Scholes

  7. Quasi-Static Analysis of Round LaRC THUNDER Actuators

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.

    2007-01-01

    An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of round LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.

  8. Quasi-Static Analysis of LaRC THUNDER Actuators

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.

    2007-01-01

    An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.

  9. Graph-based normalization and whitening for non-linear data analysis.

    PubMed

    Aaron, Catherine

    2006-01-01

    In this paper we construct a graph-based normalization algorithm for non-linear data analysis. The principle of this algorithm is to get a spherical average neighborhood with unit radius. First we present a class of global dispersion measures used for "global normalization"; we then adapt these measures using a weighted graph to build a local normalization called "graph-based" normalization. Then we give details of the graph-based normalization algorithm and illustrate some results. In the second part we present a graph-based whitening algorithm built by analogy between the "global" and the "local" problem.

  10. 8-PSK Signaling over non-linear satellite channels

    NASA Technical Reports Server (NTRS)

    Horan, Sheila B.; Caballero, Ruben B. Eng.

    1996-01-01

    Space agencies are under pressure to utilize better bandwidth-efficient communication methods due to the actual allocated frequency bands becoming more congested. Also budget reductions is another problem that the space agencies must deal with. This budget constraint results in simpler spacecraft carrying less communication capabilities and also the reduction in staff to capture data in the earth stations. It is then imperative that the most bandwidth efficient communication methods be utilized. This thesis presents a study of 8-ary Phase Shift Keying (8PSK) modulation with respect to bandwidth, power efficiency, spurious emissions and interference susceptibility over a non-linear satellite channel.

  11. Mathematical and computational aspects of nonuniform frictional slip modeling

    NASA Astrophysics Data System (ADS)

    Gorbatikh, Larissa

    2004-07-01

    A mechanics-based model of non-uniform frictional sliding is studied from the mathematical/computational analysis point of view. This problem is of a key importance for a number of applications (particularly geomechanical ones), where materials interfaces undergo partial frictional sliding under compression and shear. We show that the problem is reduced to Dirichlet's problem for monotonic loading and to Riemman's problem for cyclic loading. The problem may look like a traditional crack interaction problem, however, it is confounded by the fact that locations of n sliding intervals are not known. They are to be determined from the condition for the stress intensity factors: KII=0 at the ends of the sliding zones. Computationally, it reduces to solving a system of 2n coupled non-linear algebraic equations involving singular integrals with unknown limits of integration.

  12. A non-invasive implementation of a mixed domain decomposition method for frictional contact problems

    NASA Astrophysics Data System (ADS)

    Oumaziz, Paul; Gosselet, Pierre; Boucard, Pierre-Alain; Guinard, Stéphane

    2017-11-01

    A non-invasive implementation of the Latin domain decomposition method for frictional contact problems is described. The formulation implies to deal with mixed (Robin) conditions on the faces of the subdomains, which is not a classical feature of commercial software. Therefore we propose a new implementation of the linear stage of the Latin method with a non-local search direction built as the stiffness of a layer of elements on the interfaces. This choice enables us to implement the method within the open source software Code_Aster, and to derive 2D and 3D examples with similar performance as the standard Latin method.

  13. Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor

    NASA Astrophysics Data System (ADS)

    Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.

    2018-01-01

    Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.

  14. Efficient Monte Carlo sampling of inverse problems using a neural network-based forward—applied to GPR crosshole traveltime inversion

    NASA Astrophysics Data System (ADS)

    Hansen, T. M.; Cordua, K. S.

    2017-12-01

    Probabilistically formulated inverse problems can be solved using Monte Carlo-based sampling methods. In principle, both advanced prior information, based on for example, complex geostatistical models and non-linear forward models can be considered using such methods. However, Monte Carlo methods may be associated with huge computational costs that, in practice, limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical forward response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival traveltime inversion of crosshole ground penetrating radar data. An accurate forward model, based on 2-D full-waveform modeling followed by automatic traveltime picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the accurate and computationally expensive forward model, and also considerably faster and more accurate (i.e. with better resolution), than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of non-linear and non-Gaussian inverse problems that have to be solved using Monte Carlo sampling techniques.

  15. Symmetry and Circularization in the Damped Kepler Problem

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Hamilton, Brian

    2007-05-01

    Generically, a Hamiltonian system to which damping (non-Hamiltonian) forces are added loses its symmetry. It is a non-trivial fact that the eccentricity vector of lightly damped Kepler orbits is a constant for linear damping only. We describe the group theoretic background necessary to understand this fact and to relate it to that analogue of the Landau criterion for superfluidity associated with the general problem of orbit circularization. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.C2.4

  16. The design and implementation of cost-effective algorithms for direct solution of banded linear systems on the vector processor system 32 supercomputer

    NASA Technical Reports Server (NTRS)

    Samba, A. S.

    1985-01-01

    The problem of solving banded linear systems by direct (non-iterative) techniques on the Vector Processor System (VPS) 32 supercomputer is considered. Two efficient direct methods for solving banded linear systems on the VPS 32 are described. The vector cyclic reduction (VCR) algorithm is discussed in detail. The performance of the VCR on a three parameter model problem is also illustrated. The VCR is an adaptation of the conventional point cyclic reduction algorithm. The second direct method is the Customized Reduction of Augmented Triangles' (CRAT). CRAT has the dominant characteristics of an efficient VPS 32 algorithm. CRAT is tailored to the pipeline architecture of the VPS 32 and as a consequence the algorithm is implicitly vectorizable.

  17. Space-based IR tracking bias removal using background star observations

    NASA Astrophysics Data System (ADS)

    Clemons, T. M., III; Chang, K. C.

    2009-05-01

    This paper provides the results of a proposed methodology for removing sensor bias from a space-based infrared (IR) tracking system through the use of stars detected in the background field of the tracking sensor. The tracking system consists of two satellites flying in a lead-follower formation tracking a ballistic target. Each satellite is equipped with a narrow-view IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant, non-varying or slowly varying bias error present in each sensor's line of sight measurements. As known stars are detected during the target tracking process, the instantaneous sensor pointing error can be calculated as the difference between star detection reading and the known position of the star. The system then utilizes a separate bias filter to estimate the bias value based on these detections and correct the target line of sight measurements to improve the target state vector. The target state vector is estimated through a Linearized Kalman Filter (LKF) for the highly non-linear problem of tracking a ballistic missile. Scenarios are created using Satellite Toolkit(C) for trajectories with associated sensor observations. Mean Square Error results are given for tracking during the period when the target is in view of the satellite IR sensors. The results of this research provide a potential solution to bias correction while simultaneously tracking a target.

  18. Model Capabilities | Regional Energy Deployment System Model | Energy

    Science.gov Websites

    representation of those effects throughout the scenario. Because those effects are highly non-linear and other models, limited foresight, price penalties for rapid growth, and other non-linear effects

  19. Large deformation image classification using generalized locality-constrained linear coding.

    PubMed

    Zhang, Pei; Wee, Chong-Yaw; Niethammer, Marc; Shen, Dinggang; Yap, Pew-Thian

    2013-01-01

    Magnetic resonance (MR) imaging has been demonstrated to be very useful for clinical diagnosis of Alzheimer's disease (AD). A common approach to using MR images for AD detection is to spatially normalize the images by non-rigid image registration, and then perform statistical analysis on the resulting deformation fields. Due to the high nonlinearity of the deformation field, recent studies suggest to use initial momentum instead as it lies in a linear space and fully encodes the deformation field. In this paper we explore the use of initial momentum for image classification by focusing on the problem of AD detection. Experiments on the public ADNI dataset show that the initial momentum, together with a simple sparse coding technique-locality-constrained linear coding (LLC)--can achieve a classification accuracy that is comparable to or even better than the state of the art. We also show that the performance of LLC can be greatly improved by introducing proper weights to the codebook.

  20. Well-posedness of the free boundary problem in compressible elastodynamics

    NASA Astrophysics Data System (ADS)

    Trakhinin, Yuri

    2018-02-01

    We study the free boundary problem for the flow of a compressible isentropic inviscid elastic fluid. At the free boundary moving with the velocity of the fluid particles the columns of the deformation gradient are tangent to the boundary and the pressure vanishes outside the flow domain. We prove the local-in-time existence of a unique smooth solution of the free boundary problem provided that among three columns of the deformation gradient there are two which are non-collinear vectors at each point of the initial free boundary. If this non-collinearity condition fails, the local-in-time existence is proved under the classical Rayleigh-Taylor sign condition satisfied at the first moment. By constructing an Hadamard-type ill-posedness example for the frozen coefficients linearized problem we show that the simultaneous failure of the non-collinearity condition and the Rayleigh-Taylor sign condition leads to Rayleigh-Taylor instability.

  1. The relation between anxiety and BMI - is it all in our curves?

    PubMed

    Haghighi, Mohammad; Jahangard, Leila; Ahmadpanah, Mohammad; Bajoghli, Hafez; Holsboer-Trachsler, Edith; Brand, Serge

    2016-01-30

    The relation between anxiety and excessive weight is unclear. The aims of the present study were three-fold: First, we examined the association between anxiety and Body Mass Index (BMI). Second, we examined this association separately for female and male participants. Next, we examined both linear and non-linear associations between anxiety and BMI. The BMI was assessed of 92 patients (mean age: M=27.52; 57% females) suffering from anxiety disorders. Patients completed the Beck Anxiety Inventory. Both linear and non-linear correlations were computed for the sample as a whole and separately by gender. No gender differences were observed in anxiety scores or BMI. No linear correlation between anxiety scores and BMI was observed. In contrast, a non-linear correlation showed an inverted U-shaped association, with lower anxiety scores both for lower and very high BMI indices, and higher anxiety scores for medium to high BMI indices. Separate computations revealed no differences between males and females. The pattern of results suggests that the association between BMI and anxiety is complex and more accurately captured with non-linear correlations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Estimating cosmic velocity fields from density fields and tidal tensors

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan

    2012-10-01

    In this work we investigate the non-linear and non-local relation between cosmological density and peculiar velocity fields. Our goal is to provide an algorithm for the reconstruction of the non-linear velocity field from the fully non-linear density. We find that including the gravitational tidal field tensor using second-order Lagrangian perturbation theory based upon an estimate of the linear component of the non-linear density field significantly improves the estimate of the cosmic flow in comparison to linear theory not only in the low density, but also and more dramatically in the high-density regions. In particular we test two estimates of the linear component: the lognormal model and the iterative Lagrangian linearization. The present approach relies on a rigorous higher order Lagrangian perturbation theory analysis which incorporates a non-local relation. It does not require additional fitting from simulations being in this sense parameter free, it is independent of statistical-geometrical optimization and it is straightforward and efficient to compute. The method is demonstrated to yield an unbiased estimator of the velocity field on scales ≳5 h-1 Mpc with closely Gaussian distributed errors. Moreover, the statistics of the divergence of the peculiar velocity field is extremely well recovered showing a good agreement with the true one from N-body simulations. The typical errors of about 10 km s-1 (1σ confidence intervals) are reduced by more than 80 per cent with respect to linear theory in the scale range between 5 and 10 h-1 Mpc in high-density regions (δ > 2). We also find that iterative Lagrangian linearization is significantly superior in the low-density regime with respect to the lognormal model.

  3. Medical image processing using neural networks based on multivalued and universal binary neurons

    NASA Astrophysics Data System (ADS)

    Aizenberg, Igor N.; Aizenberg, Naum N.; Gotko, Eugen S.; Sochka, Vladimir A.

    1998-06-01

    Cellular Neural Networks (CNN) has become a very good mean for solution of the different kind of image processing problems. CNN based on multi-valued neurons (CNN-MVN) and CNN based on universal binary neurons (CNN-UBN) are the specific kinds of the CNN. MVN and UBN are neurons with complex-valued weights, and complex internal arithmetic. Their main feature is possibility of implementation of the arbitrary mapping between inputs and output described by the MVN, and arbitrary (not only threshold) Boolean function (UBN). Great advantage of the CNN is possibility of implementation of the any linear and many non-linear filters in spatial domain. Together with noise removing using CNN it is possible to implement filters, which can amplify high and medium frequencies. These filters are a very good mean for solution of the enhancement problem, and problem of details extraction against complex background. So, CNN make it possible to organize all the processing process from filtering until extraction of the important details. Organization of this process for medical image processing is considered in the paper. A major attention will be concentrated on the processing of the x-ray and ultrasound images corresponding to different oncology (or closed to oncology) pathologies. Additionally we will consider new structure of the neural network for solution of the problem of differential diagnostics of breast cancer.

  4. Guidance of Nonlinear Nonminimum-Phase Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh

    1996-01-01

    The research work has advanced the inversion-based guidance theory for: systems with non-hyperbolic internal dynamics; systems with parameter jumps; and systems where a redesign of the output trajectory is desired. A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics was developed. This approach integrated stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics was used (a) to remove non-hyperbolicity which is an obstruction to applying stable inversion techniques and (b) to reduce large preactuation times needed to apply stable inversion for near non-hyperbolic cases. The method was applied to an example helicopter hover control problem with near non-hyperbolic internal dynamics for illustrating the trade-off between exact tracking and reduction of preactuation time. Future work will extend these results to guidance of nonlinear non-hyperbolic systems. The exact output tracking problem for systems with parameter jumps was considered. Necessary and sufficient conditions were derived for the elimination of switching-introduced output transient. While previous works had studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches), such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is also applicable to nonminimum-phase systems and leads to bounded but possibly non-causal solutions. In addition, for the case when the reference trajectories are generated by an exosystem, we developed an exact-tracking controller which could be written in a feedback form. As in standard regulator theory, we also obtained a linear map from the states of the exosystem to the desired system state, which was defined via a matrix differential equation.

  5. A numerical analysis for non-linear radiation in MHD flow around a cylindrical surface with chemically reactive species

    NASA Astrophysics Data System (ADS)

    Khan, Junaid Ahmad; Mustafa, M.

    2018-03-01

    Boundary layer flow around a stretchable rough cylinder is modeled by taking into account boundary slip and transverse magnetic field effects. The main concern is to resolve heat/mass transfer problem considering non-linear radiative heat transfer and temperature/concentration jump aspects. Using conventional similarity approach, the equations of motion and heat transfer are converted into a boundary value problem whose solution is computed by shooting method for broad range of slip coefficients. The proposed numerical scheme appears to improve as the strengths of magnetic field and slip coefficients are enhanced. Axial velocity and temperature are considerably influenced by a parameter M which is inversely proportional to the radius of cylinder. A significant change in temperature profile is depicted for growing wall to ambient temperature ratio. Relevant physical quantities such as wall shear stress, local Nusselt number and local Sherwood number are elucidated in detail.

  6. Integrated model for pricing, delivery time setting, and scheduling in make-to-order environments

    NASA Astrophysics Data System (ADS)

    Garmdare, Hamid Sattari; Lotfi, M. M.; Honarvar, Mahboobeh

    2018-03-01

    Usually, in make-to-order environments which work only in response to the customer's orders, manufacturers for maximizing the profits should offer the best price and delivery time for an order considering the existing capacity and the customer's sensitivity to both the factors. In this paper, an integrated approach for pricing, delivery time setting and scheduling of new arrival orders are proposed based on the existing capacity and accepted orders in system. In the problem, the acquired market demands dependent on the price and delivery time of both the manufacturer and its competitors. A mixed-integer non-linear programming model is presented for the problem. After converting to a pure non-linear model, it is validated through a case study. The efficiency of proposed model is confirmed by comparing it to both the literature and the current practice. Finally, sensitivity analysis for the key parameters is carried out.

  7. ITOUGH2(UNIX). Inverse Modeling for TOUGH2 Family of Multiphase Flow Simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, S.

    1999-03-01

    ITOUGH2 provides inverse modeling capabilities for the TOUGH2 family of numerical simulators for non-isothermal multiphase flows in fractured-porous media. The ITOUGH2 can be used for estimating parameters by automatic modeling calibration, for sensitivity analyses, and for uncertainity propagation analyses (linear and Monte Carlo simulations). Any input parameter to the TOUGH2 simulator can be estimated based on any type of observation for which a corresponding TOUGH2 output is calculated. ITOUGH2 solves a non-linear least-squares problem using direct or gradient-based minimization algorithms. A detailed residual and error analysis is performed, which includes the evaluation of model identification criteria. ITOUGH2 can also bemore » run in forward mode, solving subsurface flow problems related to nuclear waste isolation, oil, gas, and geothermal resevoir engineering, and vadose zone hydrology.« less

  8. Internal friction between fluid particles of MHD tangent hyperbolic fluid with heat generation: Using coefficients improved by Cash and Karp

    NASA Astrophysics Data System (ADS)

    Salahuddin, T.; Khan, Imad; Malik, M. Y.; Khan, Mair; Hussain, Arif; Awais, Muhammad

    2017-05-01

    The present work examines the internal resistance between fluid particles of tangent hyperbolic fluid flow due to a non-linear stretching sheet with heat generation. Using similarity transformations, the governing system of partial differential equations is transformed into a coupled non-linear ordinary differential system with variable coefficients. Unlike the current analytical works on the flow problems in the literature, the main concern here is to numerically work out and find the solution by using Runge-Kutta-Fehlberg coefficients improved by Cash and Karp (Naseer et al., Alexandria Eng. J. 53, 747 (2014)). To determine the relevant physical features of numerous mechanisms acting on the deliberated problem, it is sufficient to have the velocity profile and temperature field and also the drag force and heat transfer rate all as given in the current paper.

  9. Constraints to solve parallelogram grid problems in 2D non separable linear canonical transform

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Healy, John J.; Muniraj, Inbarasan; Cui, Xiao-Guang; Malallah, Ra'ed; Ryle, James P.; Sheridan, John T.

    2017-05-01

    The 2D non-separable linear canonical transform (2D-NS-LCT) can model a range of various paraxial optical systems. Digital algorithms to evaluate the 2D-NS-LCTs are important in modeling the light field propagations and also of interest in many digital signal processing applications. In [Zhao 14] we have reported that a given 2D input image with rectangular shape/boundary, in general, results in a parallelogram output sampling grid (generally in an affine coordinates rather than in a Cartesian coordinates) thus limiting the further calculations, e.g. inverse transform. One possible solution is to use the interpolation techniques; however, it reduces the speed and accuracy of the numerical approximations. To alleviate this problem, in this paper, some constraints are derived under which the output samples are located in the Cartesian coordinates. Therefore, no interpolation operation is required and thus the calculation error can be significantly eliminated.

  10. Engineering Overview of a Multidisciplinary HSCT Design Framework Using Medium-Fidelity Analysis Codes

    NASA Technical Reports Server (NTRS)

    Weston, R. P.; Green, L. L.; Salas, A. O.; Samareh, J. A.; Townsend, J. C.; Walsh, J. L.

    1999-01-01

    An objective of the HPCC Program at NASA Langley has been to promote the use of advanced computing techniques to more rapidly solve the problem of multidisciplinary optimization of a supersonic transport configuration. As a result, a software system has been designed and is being implemented to integrate a set of existing discipline analysis codes, some of them CPU-intensive, into a distributed computational framework for the design of a High Speed Civil Transport (HSCT) configuration. The proposed paper will describe the engineering aspects of integrating these analysis codes and additional interface codes into an automated design system. The objective of the design problem is to optimize the aircraft weight for given mission conditions, range, and payload requirements, subject to aerodynamic, structural, and performance constraints. The design variables include both thicknesses of structural elements and geometric parameters that define the external aircraft shape. An optimization model has been adopted that uses the multidisciplinary analysis results and the derivatives of the solution with respect to the design variables to formulate a linearized model that provides input to the CONMIN optimization code, which outputs new values for the design variables. The analysis process begins by deriving the updated geometries and grids from the baseline geometries and grids using the new values for the design variables. This free-form deformation approach provides internal FEM (finite element method) grids that are consistent with aerodynamic surface grids. The next step involves using the derived FEM and section properties in a weights process to calculate detailed weights and the center of gravity location for specified flight conditions. The weights process computes the as-built weight, weight distribution, and weight sensitivities for given aircraft configurations at various mass cases. Currently, two mass cases are considered: cruise and gross take-off weight (GTOW). Weights information is obtained from correlations of data from three sources: 1) as-built initial structural and non-structural weights from an existing database, 2) theoretical FEM structural weights and sensitivities from Genesis, and 3) empirical as-built weight increments, non-structural weights, and weight sensitivities from FLOPS. For the aeroelastic analysis, a variable-fidelity aerodynamic analysis has been adopted. This approach uses infrequent CPU-intensive non-linear CFD to calculate a non-linear correction relative to a linear aero calculation for the same aerodynamic surface at an angle of attack that results in the same configuration lift. For efficiency, this nonlinear correction is applied after each subsequent linear aero solution during the iterations between the aerodynamic and structural analyses. Convergence is achieved when the vehicle shape being used for the aerodynamic calculations is consistent with the structural deformations caused by the aerodynamic loads. To make the structural analyses more efficient, a linearized structural deformation model has been adopted, in which a single stiffness matrix can be used to solve for the deformations under all the load conditions. Using the converged aerodynamic loads, a final set of structural analyses are performed to determine the stress distributions and the buckling conditions for constraint calculation. Performance constraints are obtained by running FLOPS using drag polars that are computed using results from non-linear corrections to the linear aero code plus several codes to provide drag increments due to skin friction, wave drag, and other miscellaneous drag contributions. The status of the integration effort will be presented in the proposed paper, and results will be provided that illustrate the degree of accuracy in the linearizations that have been employed.

  11. Computing eigenfunctions and eigenvalues of boundary-value problems with the orthogonal spectral renormalization method

    NASA Astrophysics Data System (ADS)

    Cartarius, Holger; Musslimani, Ziad H.; Schwarz, Lukas; Wunner, Günter

    2018-03-01

    The spectral renormalization method was introduced in 2005 as an effective way to compute ground states of nonlinear Schrödinger and Gross-Pitaevskii type equations. In this paper, we introduce an orthogonal spectral renormalization (OSR) method to compute ground and excited states (and their respective eigenvalues) of linear and nonlinear eigenvalue problems. The implementation of the algorithm follows four simple steps: (i) reformulate the underlying eigenvalue problem as a fixed-point equation, (ii) introduce a renormalization factor that controls the convergence properties of the iteration, (iii) perform a Gram-Schmidt orthogonalization process in order to prevent the iteration from converging to an unwanted mode, and (iv) compute the solution sought using a fixed-point iteration. The advantages of the OSR scheme over other known methods (such as Newton's and self-consistency) are (i) it allows the flexibility to choose large varieties of initial guesses without diverging, (ii) it is easy to implement especially at higher dimensions, and (iii) it can easily handle problems with complex and random potentials. The OSR method is implemented on benchmark Hermitian linear and nonlinear eigenvalue problems as well as linear and nonlinear non-Hermitian PT -symmetric models.

  12. Non-linear effects in finite amplitude wave propagation through ducts and nozzles

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Brown, W. H.

    1986-01-01

    In this paper an extensive study of non-linear effects in finite amplitude wave propagation through ducts and nozzles is summarized. Some results from earlier studies are included to illustrate the non-linear effects on the transmission characteristics of duct and nozzle terminations. Investigaiations, both experimental and analytical, were carried out to determine the magnitudes of the effects for high intensity pulse propagation. The results derived from these investigations are presented in this paper. They include the effect of the sound intensity on the acoustic characteristics of duct and nozzle terminations, the extent of the non-linearities in the propagation of high intensity impulsive sound inside the duct and out into free field, the acoustic energy dissipation mechanism at a termination as shown by flow visualizations, and quantitative evaluations by experimental and analytical means of the influence of the intensity of a sound pulse on the dissipation of its acoustic power.

  13. Does the Hertz solution estimate pressures correctly in diamond indentor experiments?

    NASA Astrophysics Data System (ADS)

    Bruno, M. S.; Dunn, K. J.

    1986-05-01

    The Hertz solution has been widely used to estimate pressures in a spherical indentor against flat matrix type high pressure experiments. It is usually assumed that the pressure generated when compressing a sample between the indentor and substrate is the same as that generated when compressing an indentor against a flat surface with no sample present. A non-linear finite element analysis of this problem has shown that the situation is far more complex. The actual peak pressure in the sample is highly dependent on plastic deformation and the change in material properties due to hydrostatic pressure. An analysis with two material models is presented and compared with the Hertz solution.

  14. Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models.

    PubMed

    Burgués, Javier; Jiménez-Soto, Juan Manuel; Marco, Santiago

    2018-07-12

    The limit of detection (LOD) is a key figure of merit in chemical sensing. However, the estimation of this figure of merit is hindered by the non-linear calibration curve characteristic of semiconductor gas sensor technologies such as, metal oxide (MOX), gasFETs or thermoelectric sensors. Additionally, chemical sensors suffer from cross-sensitivities and temporal stability problems. The application of the International Union of Pure and Applied Chemistry (IUPAC) recommendations for univariate LOD estimation in non-linear semiconductor gas sensors is not straightforward due to the strong statistical requirements of the IUPAC methodology (linearity, homoscedasticity, normality). Here, we propose a methodological approach to LOD estimation through linearized calibration models. As an example, the methodology is applied to the detection of low concentrations of carbon monoxide using MOX gas sensors in a scenario where the main source of error is the presence of uncontrolled levels of humidity. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Noisy covariance matrices and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Pafka, S.; Kondor, I.

    2002-05-01

    According to recent findings [#!bouchaud!#,#!stanley!#], empirical covariance matrices deduced from financial return series contain such a high amount of noise that, apart from a few large eigenvalues and the corresponding eigenvectors, their structure can essentially be regarded as random. In [#!bouchaud!#], e.g., it is reported that about 94% of the spectrum of these matrices can be fitted by that of a random matrix drawn from an appropriately chosen ensemble. In view of the fundamental role of covariance matrices in the theory of portfolio optimization as well as in industry-wide risk management practices, we analyze the possible implications of this effect. Simulation experiments with matrices having a structure such as described in [#!bouchaud!#,#!stanley!#] lead us to the conclusion that in the context of the classical portfolio problem (minimizing the portfolio variance under linear constraints) noise has relatively little effect. To leading order the solutions are determined by the stable, large eigenvalues, and the displacement of the solution (measured in variance) due to noise is rather small: depending on the size of the portfolio and on the length of the time series, it is of the order of 5 to 15%. The picture is completely different, however, if we attempt to minimize the variance under non-linear constraints, like those that arise e.g. in the problem of margin accounts or in international capital adequacy regulation. In these problems the presence of noise leads to a serious instability and a high degree of degeneracy of the solutions.

  16. A simple approach to power and sample size calculations in logistic regression and Cox regression models.

    PubMed

    Vaeth, Michael; Skovlund, Eva

    2004-06-15

    For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.

  17. Miniaturized Stretchable and High-Rate Linear Supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjun; Zhang, Yang; Zhou, Xiaoshuang; Xu, Jiang; Liu, Zunfeng; Yuan, Ningyi; Ding, Jianning

    2017-07-01

    Linear stretchable supercapacitors have attracted much attention because they are well suited to applications in the rapidly expanding field of wearable electronics. However, poor conductivity of the electrode material, which limits the transfer of electrons in the axial direction of the linear supercapacitors, leads to a serious loss of capacity at high rates. To solve this problem, we use gold nanoparticles to decorate aligned multiwall carbon nanotube to fabricate stretchable linear electrodes. Furthermore, we have developed fine stretchable linear supercapacitors, which exhibited an extremely high elasticity up to 400% strain with a high capacitance of about 8.7 F g-1 at the discharge current of 1 A g-1.

  18. Miniaturized Stretchable and High-Rate Linear Supercapacitors.

    PubMed

    Zhu, Wenjun; Zhang, Yang; Zhou, Xiaoshuang; Xu, Jiang; Liu, Zunfeng; Yuan, Ningyi; Ding, Jianning

    2017-12-01

    Linear stretchable supercapacitors have attracted much attention because they are well suited to applications in the rapidly expanding field of wearable electronics. However, poor conductivity of the electrode material, which limits the transfer of electrons in the axial direction of the linear supercapacitors, leads to a serious loss of capacity at high rates. To solve this problem, we use gold nanoparticles to decorate aligned multiwall carbon nanotube to fabricate stretchable linear electrodes. Furthermore, we have developed fine stretchable linear supercapacitors, which exhibited an extremely high elasticity up to 400% strain with a high capacitance of about 8.7 F g -1 at the discharge current of 1 A g -1 .

  19. Interaction of a shock with a longitudinal vortex

    NASA Technical Reports Server (NTRS)

    Erlebacher, Gordon; Hussaini, M. Y.; Shu, Chi-Wang

    1996-01-01

    In this paper we study the shock/longitudinal vortex interaction problem in axisymmetric geometry. Linearized analysis for small vortex strength is performed, and compared with results from a high order axisymmetric shock-fitted Euler solution obtained for this purpose. It is confirmed that for weak vortices, predictions from linear theory agree well with results from nonlinear numerical simulations at the shock location. To handle very strong longitudinal vortices, which may ultimately break the shock, we use an axisymmetric high order essentially non-oscillatory (ENO) shock capturing scheme. Comparison of shock-captured and shock-fitted results are performed in their regions of common validity. We also study the vortex breakdown as a function of Mach number ranging from 1.3 to 10, thus extending the range of existing results. For vortex strengths above a critical value. a triple point forms on the shock and a secondary shock forms to provide the necessary deceleration so that the fluid velocity can adjust to downstream conditions at the shock.

  20. Numerical methods for coupled fracture problems

    NASA Astrophysics Data System (ADS)

    Viesca, Robert C.; Garagash, Dmitry I.

    2018-04-01

    We consider numerical solutions in which the linear elastic response to an opening- or sliding-mode fracture couples with one or more processes. Classic examples of such problems include traction-free cracks leading to stress singularities or cracks with cohesive-zone strength requirements leading to non-singular stress distributions. These classical problems have characteristic square-root asymptotic behavior for stress, relative displacement, or their derivatives. Prior work has shown that such asymptotics lead to a natural quadrature of the singular integrals at roots of Chebyhsev polynomials of the first, second, third, or fourth kind. We show that such quadratures lead to convenient techniques for interpolation, differentiation, and integration, with the potential for spectral accuracy. We further show that these techniques, with slight amendment, may continue to be used for non-classical problems which lack the classical asymptotic behavior. We consider solutions to example problems of both the classical and non-classical variety (e.g., fluid-driven opening-mode fracture and fault shear rupture driven by thermal weakening), with comparisons to analytical solutions or asymptotes, where available.

  1. A simple smoothness indicator for the WENO scheme with adaptive order

    NASA Astrophysics Data System (ADS)

    Huang, Cong; Chen, Li Li

    2018-01-01

    The fifth order WENO scheme with adaptive order is competent for solving hyperbolic conservation laws, its reconstruction is a convex combination of a fifth order linear reconstruction and three third order linear reconstructions. Note that, on uniform mesh, the computational cost of smoothness indicator for fifth order linear reconstruction is comparable with the sum of ones for three third order linear reconstructions, thus it is too heavy; on non-uniform mesh, the explicit form of smoothness indicator for fifth order linear reconstruction is difficult to be obtained, and its computational cost is much heavier than the one on uniform mesh. In order to overcome these problems, a simple smoothness indicator for fifth order linear reconstruction is proposed in this paper.

  2. Sensitivity analysis and approximation methods for general eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Murthy, D. V.; Haftka, R. T.

    1986-01-01

    Optimization of dynamic systems involving complex non-hermitian matrices is often computationally expensive. Major contributors to the computational expense are the sensitivity analysis and reanalysis of a modified design. The present work seeks to alleviate this computational burden by identifying efficient sensitivity analysis and approximate reanalysis methods. For the algebraic eigenvalue problem involving non-hermitian matrices, algorithms for sensitivity analysis and approximate reanalysis are classified, compared and evaluated for efficiency and accuracy. Proper eigenvector normalization is discussed. An improved method for calculating derivatives of eigenvectors is proposed based on a more rational normalization condition and taking advantage of matrix sparsity. Important numerical aspects of this method are also discussed. To alleviate the problem of reanalysis, various approximation methods for eigenvalues are proposed and evaluated. Linear and quadratic approximations are based directly on the Taylor series. Several approximation methods are developed based on the generalized Rayleigh quotient for the eigenvalue problem. Approximation methods based on trace theorem give high accuracy without needing any derivatives. Operation counts for the computation of the approximations are given. General recommendations are made for the selection of appropriate approximation technique as a function of the matrix size, number of design variables, number of eigenvalues of interest and the number of design points at which approximation is sought.

  3. The Programming Language Python In Earth System Simulations

    NASA Astrophysics Data System (ADS)

    Gross, L.; Imranullah, A.; Mora, P.; Saez, E.; Smillie, J.; Wang, C.

    2004-12-01

    Mathematical models in earth sciences base on the solution of systems of coupled, non-linear, time-dependent partial differential equations (PDEs). The spatial and time-scale vary from a planetary scale and million years for convection problems to 100km and 10 years for fault systems simulations. Various techniques are in use to deal with the time dependency (e.g. Crank-Nicholson), with the non-linearity (e.g. Newton-Raphson) and weakly coupled equations (e.g. non-linear Gauss-Seidel). Besides these high-level solution algorithms discretization methods (e.g. finite element method (FEM), boundary element method (BEM)) are used to deal with spatial derivatives. Typically, large-scale, three dimensional meshes are required to resolve geometrical complexity (e.g. in the case of fault systems) or features in the solution (e.g. in mantel convection simulations). The modelling environment escript allows the rapid implementation of new physics as required for the development of simulation codes in earth sciences. Its main object is to provide a programming language, where the user can define new models and rapidly develop high-level solution algorithms. The current implementation is linked with the finite element package finley as a PDE solver. However, the design is open and other discretization technologies such as finite differences and boundary element methods could be included. escript is implemented as an extension of the interactive programming environment python (see www.python.org). Key concepts introduced are Data objects, which are holding values on nodes or elements of the finite element mesh, and linearPDE objects, which are defining linear partial differential equations to be solved by the underlying discretization technology. In this paper we will show the basic concepts of escript and will show how escript is used to implement a simulation code for interacting fault systems. We will show some results of large-scale, parallel simulations on an SGI Altix system. Acknowledgements: Project work is supported by Australian Commonwealth Government through the Australian Computational Earth Systems Simulator Major National Research Facility, Queensland State Government Smart State Research Facility Fund, The University of Queensland and SGI.

  4. A probabilistic neural network based approach for predicting the output power of wind turbines

    NASA Astrophysics Data System (ADS)

    Tabatabaei, Sajad

    2017-03-01

    Finding the authentic predicting tools of eliminating the uncertainty of wind speed forecasts is highly required while wind power sources are strongly penetrating. Recently, traditional predicting models of generating point forecasts have no longer been trustee. Thus, the present paper aims at utilising the concept of prediction intervals (PIs) to assess the uncertainty of wind power generation in power systems. Besides, this paper uses a newly introduced non-parametric approach called lower upper bound estimation (LUBE) to build the PIs since the forecasting errors are unable to be modelled properly by applying distribution probability functions. In the present proposed LUBE method, a PI combination-based fuzzy framework is used to overcome the performance instability of neutral networks (NNs) used in LUBE. In comparison to other methods, this formulation more suitably has satisfied the PI coverage and PI normalised average width (PINAW). Since this non-linear problem has a high complexity, a new heuristic-based optimisation algorithm comprising a novel modification is introduced to solve the aforesaid problems. Based on data sets taken from a wind farm in Australia, the feasibility and satisfying performance of the suggested method have been investigated.

  5. Comparison of Quasi-Conservative Pressure-Based and Fully-Conservative Formulations for the Simulation of Transcritical Flows

    NASA Astrophysics Data System (ADS)

    Lacaze, Guilhem; Oefelein, Joseph

    2016-11-01

    High-pressure flows are known to be challenging to simulate due to thermodynamic non-linearities occurring in the vicinity of the pseudo-boiling line. This study investigates the origin of this issue by analyzing the behavior of thermodynamic processes at elevated pressure and low temperature. We show that under transcritical conditions, non-linearities significantly amplify numerical errors associated with construction of fluxes. These errors affect the local density and energy balances, which in turn creates pressure oscillations. For that reason, solvers based on a conservative system of equations that transport density and total energy are subject to unphysical pressure variations in gradient regions. These perturbations hinder numerical stability and degrade the accuracy of predictions. To circumvent this problem, the governing system can be reformulated to a pressure-based treatment of energy. We present comparisons between the pressure-based and fully conservative formulations using a progressive set of canonical cases, including a cryogenic turbulent mixing layer at rocket engine conditions. Department of Energy, Office of Science, Basic Energy Sciences Program.

  6. Design and Validation of a Ten-Port Waveguide Reflectometer Sensor: Application to Efficiency Measurement and Optimization of Microwave-Heating Ovens

    PubMed Central

    Pedreño-Molina, Juan L.; Monzó-Cabrera, Juan; Lozano-Guerrero, Antonio; Toledo-Moreo, Ana

    2008-01-01

    This work presents the design, manufacturing process, calibration and validation of a new microwave ten-port waveguide reflectometer based on the use of neural networks. This low-cost novel device solves some of the shortcomings of previous reflectometers such as non-linear behavior of power sensors, noise presence and the complexity of the calibration procedure, which is often based on complex mathematical equations. These problems, which imply the reduction of the reflection coefficient measurement accuracy, have been overcome by using a higher number of probes than usual six-port configurations and by means of the use of Radial Basis Function (RBF) neural networks in order to reduce the influence of noise and non-linear processes over the measurements. Additionally, this sensor can be reconfigured whenever some of the eight coaxial power detectors fail, still providing accurate values in real time. The ten-port performance has been compared against a high-cost measurement instrument such as a vector network analyzer and applied to the measurement and optimization of energy efficiency of microwave ovens, with good results. PMID:27873961

  7. Constraining DALECv2 using multiple data streams and ecological constraints: analysis and application

    DOE PAGES

    Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy

    2017-07-10

    We use a variational method to assimilate multiple data streams into the terrestrial ecosystem carbon cycle model DALECv2 (Data Assimilation Linked Ecosystem Carbon). Ecological and dynamical constraints have recently been introduced to constrain unresolved components of this otherwise ill-posed problem. We recast these constraints as a multivariate Gaussian distribution to incorporate them into the variational framework and we demonstrate their advantage through a linear analysis. By using an adjoint method we study a linear approximation of the inverse problem: firstly we perform a sensitivity analysis of the different outputs under consideration, and secondly we use the concept of resolution matricesmore » to diagnose the nature of the ill-posedness and evaluate regularisation strategies. We then study the non-linear problem with an application to real data. Finally, we propose a modification to the model: introducing a spin-up period provides us with a built-in formulation of some ecological constraints which facilitates the variational approach.« less

  8. Constraining DALECv2 using multiple data streams and ecological constraints: analysis and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy

    We use a variational method to assimilate multiple data streams into the terrestrial ecosystem carbon cycle model DALECv2 (Data Assimilation Linked Ecosystem Carbon). Ecological and dynamical constraints have recently been introduced to constrain unresolved components of this otherwise ill-posed problem. We recast these constraints as a multivariate Gaussian distribution to incorporate them into the variational framework and we demonstrate their advantage through a linear analysis. By using an adjoint method we study a linear approximation of the inverse problem: firstly we perform a sensitivity analysis of the different outputs under consideration, and secondly we use the concept of resolution matricesmore » to diagnose the nature of the ill-posedness and evaluate regularisation strategies. We then study the non-linear problem with an application to real data. Finally, we propose a modification to the model: introducing a spin-up period provides us with a built-in formulation of some ecological constraints which facilitates the variational approach.« less

  9. Broad-band simulation of M7.2 earthquake on the North Tehran fault, considering non-linear soil effects

    NASA Astrophysics Data System (ADS)

    Majidinejad, A.; Zafarani, H.; Vahdani, S.

    2018-05-01

    The North Tehran fault (NTF) is known to be one of the most drastic sources of seismic hazard on the city of Tehran. In this study, we provide broad-band (0-10 Hz) ground motions for the city as a consequence of probable M7.2 earthquake on the NTF. Low-frequency motions (0-2 Hz) are provided from spectral element dynamic simulation of 17 scenario models. High-frequency (2-10 Hz) motions are calculated with a physics-based method based on S-to-S backscattering theory. Broad-band ground motions at the bedrock level show amplifications, both at low and high frequencies, due to the existence of deep Tehran basin in the vicinity of the NTF. By employing soil profiles obtained from regional studies, effect of shallow soil layers on broad-band ground motions is investigated by both linear and non-linear analyses. While linear soil response overestimate ground motion prediction equations, non-linear response predicts plausible results within one standard deviation of empirical relationships. Average Peak Ground Accelerations (PGAs) at the northern, central and southern parts of the city are estimated about 0.93, 0.59 and 0.4 g, respectively. Increased damping caused by non-linear soil behaviour, reduces the soil linear responses considerably, in particular at frequencies above 3 Hz. Non-linear deamplification reduces linear spectral accelerations up to 63 per cent at stations above soft thick sediments. By performing more general analyses, which exclude source-to-site effects on stations, a correction function is proposed for typical site classes of Tehran. Parameters for the function which reduces linear soil response in order to take into account non-linear soil deamplification are provided for various frequencies in the range of engineering interest. In addition to fully non-linear analyses, equivalent-linear calculations were also conducted which their comparison revealed appropriateness of the method for large peaks and low frequencies, but its shortage for small to medium peaks and motions with higher than 3 Hz frequencies.

  10. A distributed lag approach to fitting non-linear dose-response models in particulate matter air pollution time series investigations.

    PubMed

    Roberts, Steven; Martin, Michael A

    2007-06-01

    The majority of studies that have investigated the relationship between particulate matter (PM) air pollution and mortality have assumed a linear dose-response relationship and have used either a single-day's PM or a 2- or 3-day moving average of PM as the measure of PM exposure. Both of these modeling choices have come under scrutiny in the literature, the linear assumption because it does not allow for non-linearities in the dose-response relationship, and the use of the single- or multi-day moving average PM measure because it does not allow for differential PM-mortality effects spread over time. These two problems have been dealt with on a piecemeal basis with non-linear dose-response models used in some studies and distributed lag models (DLMs) used in others. In this paper, we propose a method for investigating the shape of the PM-mortality dose-response relationship that combines a non-linear dose-response model with a DLM. This combined model will be shown to produce satisfactory estimates of the PM-mortality dose-response relationship in situations where non-linear dose response models and DLMs alone do not; that is, the combined model did not systemically underestimate or overestimate the effect of PM on mortality. The combined model is applied to ten cities in the US and a pooled dose-response model formed. When fitted with a change-point value of 60 microg/m(3), the pooled model provides evidence for a positive association between PM and mortality. The combined model produced larger estimates for the effect of PM on mortality than when using a non-linear dose-response model or a DLM in isolation. For the combined model, the estimated percentage increase in mortality for PM concentrations of 25 and 75 microg/m(3) were 3.3% and 5.4%, respectively. In contrast, the corresponding values from a DLM used in isolation were 1.2% and 3.5%, respectively.

  11. Conceptual problems in detecting the evolution of dark energy when using distance measurements

    NASA Astrophysics Data System (ADS)

    Bolejko, K.

    2011-01-01

    Context. Dark energy is now one of the most important and topical problems in cosmology. The first step to reveal its nature is to detect the evolution of dark energy or to prove beyond doubt that the cosmological constant is indeed constant. However, in the standard approach to cosmology, the Universe is described by the homogeneous and isotropic Friedmann models. Aims: We aim to show that in the perturbed universe (even if perturbations vanish if averaged over sufficiently large scales) the distance-redshift relation is not the same as in the unperturbed universe. This has a serious consequence when studying the nature of dark energy and, as shown here, can impair the analysis and studies of dark energy. Methods: The analysis is based on two methods: the linear lensing approximation and the non-linear Szekeres Swiss-Cheese model. The inhomogeneity scale is ~50 Mpc, and both models have the same density fluctuations along the line of sight. Results: The comparison between linear and non-linear methods shows that non-linear corrections are not negligible. When inhomogeneities are present the distance changes by several percent. To show how this change influences the measurements of dark energy, ten future observations with 2% uncertainties are generated. It is shown the using the standard methods (i.e. under the assumption of homogeneity) the systematics due to inhomogeneities can distort our analysis, and may lead to a conclusion that dark energy evolves when in fact it is constant (or vice versa). Conclusions: Therefore, if future observations are analysed only within the homogeneous framework then the impact of inhomogeneities (such as voids and superclusters) can be mistaken for evolving dark energy. Since the robust distinction between the evolution and non-evolution of dark energy is the first step to understanding the nature of dark energy a proper handling of inhomogeneities is essential.

  12. Using Microcomputers to Teach Non-Linear Equations at Sixth Form Level.

    ERIC Educational Resources Information Center

    Cheung, Y. L.

    1984-01-01

    Promotes the use of the microcomputer in mathematics instruction, reviewing approaches to teaching nonlinear equations. Examples of computer diagrams are illustrated and compared to textbook samples. An example of a problem-solving program is included. (ML)

  13. Optimal fabrication processes for unidirectional metal-matrix composites: A computational simulation

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Murthy, P. L. N.; Morel, M.

    1990-01-01

    A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with non-linear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.

  14. Summation by parts, projections, and stability

    NASA Technical Reports Server (NTRS)

    Olsson, Pelle

    1993-01-01

    We have derived stability results for high-order finite difference approximations of mixed hyperbolic-parabolic initial-boundary value problems (IBVP). The results are obtained using summation by parts and a new way of representing general linear boundary conditions as an orthogonal projection. By slightly rearranging the analytic equations, we can prove strict stability for hyperbolic-parabolic IBVP. Furthermore, we generalize our technique so as to yield strict stability on curvilinear non-smooth domains in two space dimensions. Finally, we show how to incorporate inhomogeneous boundary data while retaining strict stability. Using the same procedure one can prove strict stability in higher dimensions as well.

  15. Three-dimensional Probabilistic Earthquake Location Applied to 2002-2003 Mt. Etna Eruption

    NASA Astrophysics Data System (ADS)

    Mostaccio, A.; Tuve', T.; Zuccarello, L.; Patane', D.; Saccorotti, G.; D'Agostino, M.

    2005-12-01

    Recorded seismicity for the Mt. Etna volcano, occurred during the 2002-2003 eruption, has been relocated using a probabilistic, non-linear, earthquake location approach. We used the software package NonLinLoc (Lomax et al., 2000) adopting the 3D velocity model obtained by Cocina et al., 2005. We applied our data through different algorithms: (1) via a grid-search; (2) via a Metropolis-Gibbs; and (3) via an Oct-tree. The Oct-Tree algorithm gives efficient, faster and accurate mapping of the PDF (Probability Density Function) of the earthquake location problem. More than 300 seismic events were analyzed in order to compare non-linear location results with the ones obtained by using traditional, linearized earthquake location algorithm such as Hypoellipse, and a 3D linearized inversion (Thurber, 1983). Moreover, we compare 38 focal mechanisms, chosen following stricta criteria selection, with the ones obtained by the 3D and 1D results. Although the presented approach is more of a traditional relocation application, probabilistic earthquake location could be used in routinely survey.

  16. The solution of non-linear hyperbolic equation systems by the finite element method

    NASA Technical Reports Server (NTRS)

    Loehner, R.; Morgan, K.; Zienkiewicz, O. C.

    1984-01-01

    A finite-element method for the solution of nonlinear hyperbolic systems of equations, such as those encountered in non-self-adjoint problems of transient phenomena in convection-diffusion or in the mixed representation of wave problems, is developed and demonstrated. The problem is rewritten in moving coordinates and reinterpolated to the original mesh by a Taylor expansion prior to a standard Galerkin spatial discretization, and it is shown that this procedure is equivalent to the time-discretization approach of Donea (1984). Numerical results for sample problems are presented graphically, including such shallow-water problems as the breaking of a dam, the shoaling of a wave, and the outflow of a river; compressible flows such as the isothermal flow in a nozzle and the Riemann shock-tube problem; and the two-dimensional scalar-advection, nonlinear-shallow-water, and Euler equations.

  17. Mitigating PQ Problems in Legacy Data Centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilinets, Boris; /SLAC

    2011-06-01

    The conclusions of this presentation are: (1) Problems with PQ in legacy data centers still exist and need to be mitigated; (2) Harmonics generated by non-linear IT load can be lowered by passive, active and hybrid cancellation methods; (3) Harmonic study is necessary to find the best way to treat PQ problems; (4) AHF's and harmonic cancellation transformers proved to be very efficient in mitigating PQ problems; and (5) It is important that IT leaders partner with electrical engineering to appropriate ROI statements, justifying many of these expenditures.

  18. POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in

    2016-12-10

    For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-componentmore » supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.« less

  19. Non-Evolutionarity of a Reconnecting Current Sheet as a Cause of Its Splitting into MHD Shocks

    NASA Astrophysics Data System (ADS)

    Markovsky, S. A.; Somov, B. V.

    1995-04-01

    Numerical simulations of the magnetic reconnection process in a current sheet show that, in some cases, MHD shocks appear to be attached to edges of the sheet. The appearance of the shocks may be considered to be a result of splitting of the sheet. In the present paper we suppose that this splitting takes place in consequence of non-evolutionarity of the reconnecting current sheet as a discontinuity. The problem of time evolution of small perturbations does not have a unique solution for a non-evolutionary discontinuity, and it splits into other (evolutionary) discontinuities. Such an approach allows us to determine conditions under which the splitting of the-sheet occurs. The main difficulty of this approach is that a current sheet is not reduced to a classified 1D discontinuity, because inhomogeneity of flow velocity inside the sheet is two-dimensional. To formulate the non-evolutionarity problem, we solve the linear MHD equations inside and outside the sheet and deduce linearized 1D boundary conditions at its surface. We show that for large enough conductivity, small perturbations exist which interact with the sheet as with a discontinuity. Then we obtain a non-evolutionarity criterion, with respect to these perturbations, in the form of a restriction on the flow velocity across the surface of the sheet.

  20. Anomaly General Circulation Models.

    NASA Astrophysics Data System (ADS)

    Navarra, Antonio

    The feasibility of the anomaly model is assessed using barotropic and baroclinic models. In the barotropic case, both a stationary and a time-dependent model has been formulated and constructed, whereas only the stationary, linear case is considered in the baroclinic case. Results from the barotropic model indicate that a relation between the stationary solution and the time-averaged non-linear solution exists. The stationary linear baroclinic solution can therefore be considered with some confidence. The linear baroclinic anomaly model poses a formidable mathematical problem because it is necessary to solve a gigantic linear system to obtain the solution. A new method to find solution of large linear system, based on a projection on the Krylov subspace is shown to be successful when applied to the linearized baroclinic anomaly model. The scheme consists of projecting the original linear system on the Krylov subspace, thereby reducing the dimensionality of the matrix to be inverted to obtain the solution. With an appropriate setting of the damping parameters, the iterative Krylov method reaches a solution even using a Krylov subspace ten times smaller than the original space of the problem. This generality allows the treatment of the important problem of linear waves in the atmosphere. A larger class (nonzonally symmetric) of basic states can now be treated for the baroclinic primitive equations. These problem leads to large unsymmetrical linear systems of order 10000 and more which can now be successfully tackled by the Krylov method. The (R7) linear anomaly model is used to investigate extensively the linear response to equatorial and mid-latitude prescribed heating. The results indicate that the solution is deeply affected by the presence of the stationary waves in the basic state. The instability of the asymmetric flows, first pointed out by Simmons et al. (1983), is active also in the baroclinic case. However, the presence of baroclinic processes modifies the dominant response. The most sensitive areas are identified; they correspond to north Japan, the Pole and Greenland regions. A limited set of higher resolution (R15) experiments indicate that this situation is still present and enhanced at higher resolution. The linear anomaly model is also applied to a realistic case. (Abstract shortened with permission of author.).

  1. Population heterogeneity of trait anger and differential associations of trait anger facets with borderline personality features, neuroticism, depression, Attention Deficit Hyperactivity Disorder (ADHD), and alcohol problems.

    PubMed

    Lubke, Gitta H; Ouwens, Klaasjan G; de Moor, Marleen H M; Trull, Timothy J; Boomsma, Dorret I

    2015-12-15

    Anger is an emotion consisting of feelings of variable intensity ranging from mild irritation to intense fury. High levels of trait anger are associated with a range of psychiatric, interpersonal, and health problems. The objectives of this study were to explore heterogeneity of anger as measured by the Spielberger Trait Anger Scale (STAS), and to assess the association of the different anger facets with a selection of psychiatric disorders covering externalizing and internalizing problems, personality disorders, and substance use. Factor mixture models differentiated between a high and low scoring class (28% vs. 72%), and between three factors (anger-temperament, anger-reaction, and immediacy of an anger response). Whereas all psychiatric scales correlated significantly with the STAS total score, regressing the three STAS factors on psychiatric behaviors model showed a more detailed pattern. Only borderline affect instability and depression were significantly associated with all three factors in both classes whereas other problem behaviors were associated only with 1 or 2 of the factors. Alcohol problems were associated with immediacy only in the high scoring class, indicating a non-linear relation in the total sample. Taking into account these more specific associations is likely to be beneficial when investigating differential treatment strategies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Imaging metallic samples using electrical capacitance tomography: forward modelling and reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Hosani, E. Al; Zhang, M.; Abascal, J. F. P. J.; Soleimani, M.

    2016-11-01

    Electrical capacitance tomography (ECT) is an imaging technology used to reconstruct the permittivity distribution within the sensing region. So far, ECT has been primarily used to image non-conductive media only, since if the conductivity of the imaged object is high, the capacitance measuring circuit will be almost shortened by the conductivity path and a clear image cannot be produced using the standard image reconstruction approaches. This paper tackles the problem of imaging metallic samples using conventional ECT systems by investigating the two main aspects of image reconstruction algorithms, namely the forward problem and the inverse problem. For the forward problem, two different methods to model the region of high conductivity in ECT is presented. On the other hand, for the inverse problem, three different algorithms to reconstruct the high contrast images are examined. The first two methods are the linear single step Tikhonov method and the iterative total variation regularization method, and use two sets of ECT data to reconstruct the image in time difference mode. The third method, namely the level set method, uses absolute ECT measurements and was developed using a metallic forward model. The results indicate that the applications of conventional ECT systems can be extended to metal samples using the suggested algorithms and forward model, especially using a level set algorithm to find the boundary of the metal.

  3. Poverty and behavior problems trajectories from 1.5 to 8 years of age: Is the gap widening between poor and non-poor children?

    PubMed

    Mazza, Julia Rachel S E; Boivin, Michel; Tremblay, Richard E; Michel, Gregory; Salla, Julie; Lambert, Jean; Zunzunegui, Maria Victoria; Côté, Sylvana M

    2016-08-01

    Poverty has been associated with high levels of behavior problems across childhood, yet patterns of associations over time remain understudied. This study aims: (a) to examine whether poverty predicts changes in behavior problems between 1.5 and 8 years of age; (b) to estimate potential selection bias for the observed associations. We used the 1998-2006 waves of the Quebec Longitudinal Study of Child Development (N = 2120). Main outcomes were maternal ratings of hyperactivity, opposition and physical aggression from 1.5 to 8 years of age. Linear mixed-effects models were used to assess the longitudinal association between poverty and behavior problems. Models were re-estimated adjusting for wave nonresponse and using multiple imputation to account for attrition. Poverty predicted higher levels of behavior problems between 1.5 and 8 years of age. Poverty predicted hyperactivity and opposition in a time dependent manner. Hyperactivity [Bpoverty*age = 0.052; CI 95 % (0.002; 0.101)] and opposition [Bpoverty*age = 0.049; CI 95 % (0.018; 0.079)] increased at a faster rate up to age 5 years, and then decreased at a slower rate for poor than non-poor children. Physical aggression decreased at a steady rate over time for all children [Bpoverty*age = -0.030; p = 0.064). Estimates remained similar when accounting for attrition. Poverty predicted higher levels of behavior problems between 1.5 and 8 years of age. The difference between poor and non-poor children was stable over time for physical aggression, but increased with age for hyperactivity and opposition. Attrition among poor children did not compromise the validity of results.

  4. Multivariable optimization of liquid rocket engines using particle swarm algorithms

    NASA Astrophysics Data System (ADS)

    Jones, Daniel Ray

    Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.

  5. Control of non-linear actuator of artificial muscles for the use in low-cost robotics prosthetics limbs

    NASA Astrophysics Data System (ADS)

    Anis Atikah, Nurul; Yeng Weng, Leong; Anuar, Adzly; Chien Fat, Chau; Sahari, Khairul Salleh Mohamed; Zainal Abidin, Izham

    2017-10-01

    Currently, the methods of actuating robotic-based prosthetic limbs are moving away from bulky actuators to more fluid materials such as artificial muscles. The main disadvantages of these artificial muscles are their high cost of manufacturing, low-force generation, cumbersome and complex controls. A recent discovery into using super coiled polymer (SCP) proved to have low manufacturing costs, high force generation, compact and simple controls. Nevertheless, the non-linear controls still exists due to the nature of heat-based actuation, which is hysteresis. This makes position control difficult. Using electrically conductive devices allows for very quick heating, but not quick cooling. This research tries to solve the problem by using peltier devices, which can effectively heat and cool the SCP, hence giving way to a more precise control. The peltier device does not actively introduce more energy to a volume of space, which the coiled heating does; instead, it acts as a heat pump. Experiments were conducted to test the feasibility of using peltier as an actuating method on different diameters of nylon fishing strings. Based on these experiments, the performance characteristics of the strings were plotted, which could be used to control the actuation of the string efficiently in the future.

  6. An inclusive SUSY approach to position dependent mass systems

    NASA Astrophysics Data System (ADS)

    Karthiga, S.; Chithiika Ruby, V.; Senthilvelan, M.

    2018-06-01

    The supersymmetry (SUSY) formalism for a position dependent mass problem with a more general ordering is yet to be formulated. In this paper, we present an unified SUSY approach for PDM problems of any ordering. Highlighting all non-Hermitian Hamiltonians of PDM problems are of quasi-Hermitian nature, the SUSY operators of these problems are constructed using similarity transformation. The methodology that we propose here is applicable for even more general cases where the kinetic energy term is represented by linear combination of infinite number of possible orderings. We illustrate the method with an example, namely Mathews-Lakshmanan (ML) oscillator. Our results show that the latter system is shape invariant for all possible orderings. We derive eigenvalues and eigenvectors of this nonlinear oscillator for all possible orderings including Hermitian and non-Hermitian ones.

  7. Using genetic algorithms to determine near-optimal pricing, investment and operating strategies in the electric power industry

    NASA Astrophysics Data System (ADS)

    Wu, Dongjun

    Network industries have technologies characterized by a spatial hierarchy, the "network," with capital-intensive interconnections and time-dependent, capacity-limited flows of products and services through the network to customers. This dissertation studies service pricing, investment and business operating strategies for the electric power network. First-best solutions for a variety of pricing and investment problems have been studied. The evaluation of genetic algorithms (GA, which are methods based on the idea of natural evolution) as a primary means of solving complicated network problems, both w.r.t. pricing: as well as w.r.t. investment and other operating decisions, has been conducted. New constraint-handling techniques in GAs have been studied and tested. The actual application of such constraint-handling techniques in solving practical non-linear optimization problems has been tested on several complex network design problems with encouraging initial results. Genetic algorithms provide solutions that are feasible and close to optimal when the optimal solution is know; in some instances, the near-optimal solutions for small problems by the proposed GA approach can only be tested by pushing the limits of currently available non-linear optimization software. The performance is far better than several commercially available GA programs, which are generally inadequate in solving any of the problems studied in this dissertation, primarily because of their poor handling of constraints. Genetic algorithms, if carefully designed, seem very promising in solving difficult problems which are intractable by traditional analytic methods.

  8. Optimising the extraction rate of a non-durable non-renewable resource in a monopolistic market: a mathematical programming approach.

    PubMed

    Corominas, Albert; Fossas, Enric

    2015-01-01

    We assume a monopolistic market for a non-durable non-renewable resource such as crude oil, phosphates or fossil water. Stating the problem of obtaining optimal policies on extraction and pricing of the resource as a non-linear program allows general conclusions to be drawn under diverse assumptions about the demand curve, discount rates and length of the planning horizon. We compare the results with some common beliefs about the pace of exhaustion of this kind of resources.

  9. Time-domain induced polarization - an analysis of Cole-Cole parameter resolution and correlation using Markov Chain Monte Carlo inversion

    NASA Astrophysics Data System (ADS)

    Madsen, Line Meldgaard; Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2017-12-01

    The application of time-domain induced polarization (TDIP) is increasing with advances in acquisition techniques, data processing and spectral inversion schemes. An inversion of TDIP data for the spectral Cole-Cole parameters is a non-linear problem, but by applying a 1-D Markov Chain Monte Carlo (MCMC) inversion algorithm, a full non-linear uncertainty analysis of the parameters and the parameter correlations can be accessed. This is essential to understand to what degree the spectral Cole-Cole parameters can be resolved from TDIP data. MCMC inversions of synthetic TDIP data, which show bell-shaped probability distributions with a single maximum, show that the Cole-Cole parameters can be resolved from TDIP data if an acquisition range above two decades in time is applied. Linear correlations between the Cole-Cole parameters are observed and by decreasing the acquisitions ranges, the correlations increase and become non-linear. It is further investigated how waveform and parameter values influence the resolution of the Cole-Cole parameters. A limiting factor is the value of the frequency exponent, C. As C decreases, the resolution of all the Cole-Cole parameters decreases and the results become increasingly non-linear. While the values of the time constant, τ, must be in the acquisition range to resolve the parameters well, the choice between a 50 per cent and a 100 per cent duty cycle for the current injection does not have an influence on the parameter resolution. The limits of resolution and linearity are also studied in a comparison between the MCMC and a linearized gradient-based inversion approach. The two methods are consistent for resolved models, but the linearized approach tends to underestimate the uncertainties for poorly resolved parameters due to the corresponding non-linear features. Finally, an MCMC inversion of 1-D field data verifies that spectral Cole-Cole parameters can also be resolved from TD field measurements.

  10. All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Hu, Xiaoyong; Li, Chong; Yang, Hong; Gong, Qihuang

    2018-01-01

    Low-power, ultra-fast all-optical tunable dual Fano resonance was realized in a metamaterial coated with a non-linear nanocomposite layer composed of gold nanoparticle-doped polycrystalline barium strontium titanate and multilayer tungsten disulphide microsheets. A high non-linear refractive index of -2.148 × 10-11 m2/W was achieved in the nanocomposite material that originated in the non-linearity enhancement associated with the quantum confinement effect, the local-field enhancement effect, and reinforced interactions between photons and the multilayer tungsten disulphide microsheets. An ultra-low threshold pump intensity of 600 kW/cm2 was obtained. An ultra-fast response time of 25.4 ps was maintained because of the fast relaxation dynamics of the bound electrons in the nanoscale polycrystalline barium strontium titanate grains. The large third-order non-linear responses of the metamaterial were confirmed with a high third harmonic generation conversion efficiency of 5.4 × 10-5. This work may help to pave the way towards realization of ultra-high-speed information processing chips and multifunctional integrated photonic devices based on metamaterials.

  11. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.

    PubMed

    Lyubetsky, Vassily; Gershgorin, Roman; Gorbunov, Konstantin

    2017-12-06

    Chromosome structure is a very limited model of the genome including the information about its chromosomes such as their linear or circular organization, the order of genes on them, and the DNA strand encoding a gene. Gene lengths, nucleotide composition, and intergenic regions are ignored. Although highly incomplete, such structure can be used in many cases, e.g., to reconstruct phylogeny and evolutionary events, to identify gene synteny, regulatory elements and promoters (considering highly conserved elements), etc. Three problems are considered; all assume unequal gene content and the presence of gene paralogs. The distance problem is to determine the minimum number of operations required to transform one chromosome structure into another and the corresponding transformation itself including the identification of paralogs in two structures. We use the DCJ model which is one of the most studied combinatorial rearrangement models. Double-, sesqui-, and single-operations as well as deletion and insertion of a chromosome region are considered in the model; the single ones comprise cut and join. In the reconstruction problem, a phylogenetic tree with chromosome structures in the leaves is given. It is necessary to assign the structures to inner nodes of the tree to minimize the sum of distances between terminal structures of each edge and to identify the mutual paralogs in a fairly large set of structures. A linear algorithm is known for the distance problem without paralogs, while the presence of paralogs makes it NP-hard. If paralogs are allowed but the insertion and deletion operations are missing (and special constraints are imposed), the reduction of the distance problem to integer linear programming is known. Apparently, the reconstruction problem is NP-hard even in the absence of paralogs. The problem of contigs is to find the optimal arrangements for each given set of contigs, which also includes the mutual identification of paralogs. We proved that these problems can be reduced to integer linear programming formulations, which allows an algorithm to redefine the problems to implement a very special case of the integer linear programming tool. The results were tested on synthetic and biological samples. Three well-known problems were reduced to a very special case of integer linear programming, which is a new method of their solutions. Integer linear programming is clearly among the main computational methods and, as generally accepted, is fast on average; in particular, computation systems specifically targeted at it are available. The challenges are to reduce the size of the corresponding integer linear programming formulations and to incorporate a more detailed biological concept in our model of the reconstruction.

  12. Linearity-Preserving Limiters on Irregular Grids

    NASA Technical Reports Server (NTRS)

    Berger, Marsha; Aftosmis, Michael; Murman, Scott

    2004-01-01

    This paper examines the behavior of flux and slope limiters on non-uniform grids in multiple dimensions. We note that on non-uniform grids the scalar formulation in standard use today sacrifices k-exactness, even for linear solutions, impacting both accuracy and convergence. We rewrite some well-known limiters in a n way to highlight their underlying symmetry, and use this to examine both traditional and novel limiter formulations. A consistent method of handling stretched meshes is developed, as is a new directional formulation in multiple dimensions for irregular grids. Results are presented demonstrating improved accuracy and convergence using a combination of model problems and complex three-dimensional examples.

  13. The use of artificial neural networks and multiple linear regression to predict rate of medical waste generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahandideh, Sepideh; Jahandideh, Samad; Asadabadi, Ebrahim Barzegari

    2009-11-15

    Prediction of the amount of hospital waste production will be helpful in the storage, transportation and disposal of hospital waste management. Based on this fact, two predictor models including artificial neural networks (ANNs) and multiple linear regression (MLR) were applied to predict the rate of medical waste generation totally and in different types of sharp, infectious and general. In this study, a 5-fold cross-validation procedure on a database containing total of 50 hospitals of Fars province (Iran) were used to verify the performance of the models. Three performance measures including MAR, RMSE and R{sup 2} were used to evaluate performancemore » of models. The MLR as a conventional model obtained poor prediction performance measure values. However, MLR distinguished hospital capacity and bed occupancy as more significant parameters. On the other hand, ANNs as a more powerful model, which has not been introduced in predicting rate of medical waste generation, showed high performance measure values, especially 0.99 value of R{sup 2} confirming the good fit of the data. Such satisfactory results could be attributed to the non-linear nature of ANNs in problem solving which provides the opportunity for relating independent variables to dependent ones non-linearly. In conclusion, the obtained results showed that our ANN-based model approach is very promising and may play a useful role in developing a better cost-effective strategy for waste management in future.« less

  14. Computational Physics.

    ERIC Educational Resources Information Center

    Borcherds, P. H.

    1986-01-01

    Describes an optional course in "computational physics" offered at the University of Birmingham. Includes an introduction to numerical methods and presents exercises involving fast-Fourier transforms, non-linear least-squares, Monte Carlo methods, and the three-body problem. Recommends adding laboratory work into the course in the…

  15. Inference of Vohradský's Models of Genetic Networks by Solving Two-Dimensional Function Optimization Problems

    PubMed Central

    Kimura, Shuhei; Sato, Masanao; Okada-Hatakeyama, Mariko

    2013-01-01

    The inference of a genetic network is a problem in which mutual interactions among genes are inferred from time-series of gene expression levels. While a number of models have been proposed to describe genetic networks, this study focuses on a mathematical model proposed by Vohradský. Because of its advantageous features, several researchers have proposed the inference methods based on Vohradský's model. When trying to analyze large-scale networks consisting of dozens of genes, however, these methods must solve high-dimensional non-linear function optimization problems. In order to resolve the difficulty of estimating the parameters of the Vohradský's model, this study proposes a new method that defines the problem as several two-dimensional function optimization problems. Through numerical experiments on artificial genetic network inference problems, we showed that, although the computation time of the proposed method is not the shortest, the method has the ability to estimate parameters of Vohradský's models more effectively with sufficiently short computation times. This study then applied the proposed method to an actual inference problem of the bacterial SOS DNA repair system, and succeeded in finding several reasonable regulations. PMID:24386175

  16. An iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach

    NASA Astrophysics Data System (ADS)

    Kassa, Semu Mitiku; Tsegay, Teklay Hailay

    2017-08-01

    Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of problems. In this paper, we investigate a tri-level programming problem with quadratic fractional objective functions at each of the three levels. A solution algorithm has been proposed by applying fuzzy goal programming approach and by reformulating the fractional constraints to equivalent but non-fractional non-linear constraints. Based on the transformed formulation, an iterative procedure is developed that can yield a satisfactory solution to the tri-level problem. The numerical results on various illustrative examples demonstrated that the proposed algorithm is very much promising and it can also be used to solve larger-sized as well as n-level problems of similar structure.

  17. Development of Interactive Videodisc Instruction for Problem Solving and Armor Skills

    DTIC Science & Technology

    1986-05-01

    skills in both tactical and non-tactical environments. The main body of the lesson is approximately 30 minutes long (linear play time), and is divided...because the test takes a long time and the task is not a problem for most students. The basis on which the above tasks were selected for diagnostic...selection he could given the time available. This is a short-term solution to the task selection problem, but in the long -term a more comprehensive and

  18. A study of pressure-based methodology for resonant flows in non-linear combustion instabilities

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Pindera, M. Z.; Przekwas, A. J.; Tucker, K.

    1992-01-01

    This paper presents a systematic assessment of a large variety of spatial and temporal differencing schemes on nonstaggered grids by the pressure-based methods for the problems of fast transient flows. The observation from the present study is that for steady state flow problems, pressure-based methods can be very competitive with the density-based methods. For transient flow problems, pressure-based methods utilizing the same differencing scheme are less accurate, even though the wave speeds are correctly predicted.

  19. The averaging method in applied problems

    NASA Astrophysics Data System (ADS)

    Grebenikov, E. A.

    1986-04-01

    The totality of methods, allowing to research complicated non-linear oscillating systems, named in the literature "averaging method" has been given. THe author is describing the constructive part of this method, or a concrete form and corresponding algorithms, on mathematical models, sufficiently general , but built on concrete problems. The style of the book is that the reader interested in the Technics and algorithms of the asymptotic theory of the ordinary differential equations, could solve individually such problems. For specialists in the area of applied mathematics and mechanics.

  20. Gas evolution from spheres

    NASA Astrophysics Data System (ADS)

    Longhurst, G. R.

    1991-04-01

    Gas evolution from spherical solids or liquids where no convective processes are active is analyzed. Three problem classes are considered: (1) constant concentration boundary, (2) Henry's law (first order) boundary, and (3) Sieverts' law (second order) boundary. General expressions are derived for dimensionless times and transport parameters appropriate to each of the classes considered. However, in the second order case, the non-linearities of the problem require the presence of explicit dimensional variables in the solution. Sample problems are solved to illustrate the method.

  1. A fully non-linear multi-species Fokker–Planck–Landau collision operator for simulation of fusion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert, E-mail: rhager@pppl.gov; Yoon, E.S., E-mail: yoone@rpi.edu; Ku, S., E-mail: sku@pppl.gov

    2016-06-15

    Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. In this article, the non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. The finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable onmore » high-performance computing systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. The collision operator's good weak and strong scaling behavior are shown.« less

  2. A fully non-linear multi-species Fokker–Planck–Landau collision operator for simulation of fusion plasma

    DOE PAGES

    Hager, Robert; Yoon, E. S.; Ku, S.; ...

    2016-04-04

    Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. The non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. Moreover, the finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable on high-performance computingmore » systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. As a result, the collision operator's good weak and strong scaling behavior are shown.« less

  3. On some Aitken-like acceleration of the Schwarz method

    NASA Astrophysics Data System (ADS)

    Garbey, M.; Tromeur-Dervout, D.

    2002-12-01

    In this paper we present a family of domain decomposition based on Aitken-like acceleration of the Schwarz method seen as an iterative procedure with a linear rate of convergence. We first present the so-called Aitken-Schwarz procedure for linear differential operators. The solver can be a direct solver when applied to the Helmholtz problem with five-point finite difference scheme on regular grids. We then introduce the Steffensen-Schwarz variant which is an iterative domain decomposition solver that can be applied to linear and nonlinear problems. We show that these solvers have reasonable numerical efficiency compared to classical fast solvers for the Poisson problem or multigrids for more general linear and nonlinear elliptic problems. However, the salient feature of our method is that our algorithm has high tolerance to slow network in the context of distributed parallel computing and is attractive, generally speaking, to use with computer architecture for which performance is limited by the memory bandwidth rather than the flop performance of the CPU. This is nowadays the case for most parallel. computer using the RISC processor architecture. We will illustrate this highly desirable property of our algorithm with large-scale computing experiments.

  4. Convergence and Applications of a Gossip-Based Gauss-Newton Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Scaglione, Anna

    2013-11-01

    The Gauss-Newton algorithm is a popular and efficient centralized method for solving non-linear least squares problems. In this paper, we propose a multi-agent distributed version of this algorithm, named Gossip-based Gauss-Newton (GGN) algorithm, which can be applied in general problems with non-convex objectives. Furthermore, we analyze and present sufficient conditions for its convergence and show numerically that the GGN algorithm achieves performance comparable to the centralized algorithm, with graceful degradation in case of network failures. More importantly, the GGN algorithm provides significant performance gains compared to other distributed first order methods.

  5. Overcoming learning barriers through knowledge management.

    PubMed

    Dror, Itiel E; Makany, Tamas; Kemp, Jonathan

    2011-02-01

    The ability to learn highly depends on how knowledge is managed. Specifically, different techniques for note-taking utilize different cognitive processes and strategies. In this paper, we compared dyslexic and control participants when using linear and non-linear note-taking. All our participants were professionals working in the banking and financial sector. We examined comprehension, accuracy, mental imagery & complexity, metacognition, and memory. We found that participants with dyslexia, when using a non-linear note-taking technique outperformed the control group using linear note-taking and matched the performance of the control group using non-linear note-taking. These findings emphasize how different knowledge management techniques can avoid some of the barriers to learners. Copyright © 2010 John Wiley & Sons, Ltd.

  6. Diffusive Public Goods and Coexistence of Cooperators and Cheaters on a 1D Lattice

    PubMed Central

    Scheuring, István

    2014-01-01

    Many populations of cells cooperate through the production of extracellular materials. These materials (enzymes, siderophores) spread by diffusion and can be applied by both the cooperator and cheater (non-producer) cells. In this paper the problem of coexistence of cooperator and cheater cells is studied on a 1D lattice where cooperator cells produce a diffusive material which is beneficial to the individuals according to the local concentration of this public good. The reproduction success of a cell increases linearly with the benefit in the first model version and increases non-linearly (saturates) in the second version. Two types of update rules are considered; either the cooperative cell stops producing material before death (death-production-birth, DpB) or it produces the common material before it is selected to die (production-death-birth, pDB). The empty space is occupied by its neighbors according to their replication rates. By using analytical and numerical methods I have shown that coexistence of the cooperator and cheater cells is possible although atypical in the linear version of this 1D model if either DpB or pDB update rule is assumed. While coexistence is impossible in the non-linear model with pDB update rule, it is one of the typical behaviors in case of the non-linear model with DpB update rule. PMID:25025985

  7. A Higher Harmonic Optimal Controller to Optimise Rotorcraft Aeromechanical Behaviour

    NASA Technical Reports Server (NTRS)

    Leyland, Jane Anne

    1996-01-01

    Three methods to optimize rotorcraft aeromechanical behavior for those cases where the rotorcraft plant can be adequately represented by a linear model system matrix were identified and implemented in a stand-alone code. These methods determine the optimal control vector which minimizes the vibration metric subject to constraints at discrete time points, and differ from the commonly used non-optimal constraint penalty methods such as those employed by conventional controllers in that the constraints are handled as actual constraints to an optimization problem rather than as just additional terms in the performance index. The first method is to use a Non-linear Programming algorithm to solve the problem directly. The second method is to solve the full set of non-linear equations which define the necessary conditions for optimality. The third method is to solve each of the possible reduced sets of equations defining the necessary conditions for optimality when the constraints are pre-selected to be either active or inactive, and then to simply select the best solution. The effects of maneuvers and aeroelasticity on the systems matrix are modelled by using a pseudo-random pseudo-row-dependency scheme to define the systems matrix. Cases run to date indicate that the first method of solution is reliable, robust, and easiest to use, and that it was superior to the conventional controllers which were considered.

  8. Assessing the Liquidity of Firms: Robust Neural Network Regression as an Alternative to the Current Ratio

    NASA Astrophysics Data System (ADS)

    de Andrés, Javier; Landajo, Manuel; Lorca, Pedro; Labra, Jose; Ordóñez, Patricia

    Artificial neural networks have proven to be useful tools for solving financial analysis problems such as financial distress prediction and audit risk assessment. In this paper we focus on the performance of robust (least absolute deviation-based) neural networks on measuring liquidity of firms. The problem of learning the bivariate relationship between the components (namely, current liabilities and current assets) of the so-called current ratio is analyzed, and the predictive performance of several modelling paradigms (namely, linear and log-linear regressions, classical ratios and neural networks) is compared. An empirical analysis is conducted on a representative data base from the Spanish economy. Results indicate that classical ratio models are largely inadequate as a realistic description of the studied relationship, especially when used for predictive purposes. In a number of cases, especially when the analyzed firms are microenterprises, the linear specification is improved by considering the flexible non-linear structures provided by neural networks.

  9. Non-Born-Oppenheimer Spectroscopy of Cyclic Triatomics

    DTIC Science & Technology

    2011-10-11

    n nmnm mn m nm nm nm nm ss n IV E 2/ if,2/1 2/ if, ])2/1()/[( )2/1()/( 2 1 12 22 222 22 2/,,4 23 )3(   Here ZPE ...integer values of m . The perturbation theory expression gives us seven parameters for a non-linear fitting problem: ZPE , 0I , 1I , 2I , 3V , 6V and

  10. A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov

    NASA Astrophysics Data System (ADS)

    Greenough, J. A.; Rider, W. J.

    2004-05-01

    A numerical study is undertaken comparing a fifth-order version of the weighted essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov's (PLMDE) method for the compressible Euler equations. A series of one-dimensional test problems are examined beginning with classical linear problems and ending with complex shock interactions. The problems considered are: (1) linear advection of a Gaussian pulse in density, (2) Sod's shock tube problem, (3) the "peak" shock tube problem, (4) a version of the Shu and Osher shock entropy wave interaction and (5) the Woodward and Colella interacting shock wave problem. For each problem and method, run times, density error norms and convergence rates are reported for each method as produced from a common code test-bed. The linear problem exhibits the advertised convergence rate for both methods as well as the expected large disparity in overall error levels; WENO5 has the smaller errors and an enormous advantage in overall efficiency (in accuracy per unit CPU time). For the nonlinear problems with discontinuities, however, we generally see both first-order self-convergence of error as compared to an exact solution, or when an analytic solution is not available, a converged solution generated on an extremely fine grid. The overall comparison of error levels shows some variation from problem to problem. For Sod's shock tube, PLMDE has nearly half the error, while on the peak problem the errors are nearly the same. For the interacting blast wave problem the two methods again produce a similar level of error with a slight edge for the PLMDE. On the other hand, for the Shu-Osher problem, the errors are similar on the coarser grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases holding mesh resolution constant though, PLMDE is less costly in terms of CPU time by approximately a factor of 6. If the CPU cost is taken as fixed, that is run times are equal for both numerical methods, then PLMDE uniformly produces lower errors than WENO for the fixed computation cost on the test problems considered here.

  11. Computational process to study the wave propagation In a non-linear medium by quasi- linearization

    NASA Astrophysics Data System (ADS)

    Sharath Babu, K.; Venkata Brammam, J.; Baby Rani, CH

    2018-03-01

    Two objects having distinct velocities come into contact an impact can occur. The impact study i.e., in the displacement of the objects after the impact, the impact force is function of time‘t’ which is behaves similar to compression force. The impact tenure is very short so impulses must be generated subsequently high stresses are generated. In this work we are examined the wave propagation inside the object after collision and measured the object non-linear behavior in the one-dimensional case. Wave transmission is studied by means of material acoustic parameter value. The objective of this paper is to present a computational study of propagating pulsation and harmonic waves in nonlinear media using quasi-linearization and subsequently utilized the central difference scheme. This study gives focus on longitudinal, one- dimensional wave propagation. In the finite difference scheme Non-linear system is reduced to a linear system by applying quasi-linearization method. The computed results exhibit good agreement on par with the selected non-liner wave propagation.

  12. Problem decomposition by mutual information and force-based clustering

    NASA Astrophysics Data System (ADS)

    Otero, Richard Edward

    The scale of engineering problems has sharply increased over the last twenty years. Larger coupled systems, increasing complexity, and limited resources create a need for methods that automatically decompose problems into manageable sub-problems by discovering and leveraging problem structure. The ability to learn the coupling (inter-dependence) structure and reorganize the original problem could lead to large reductions in the time to analyze complex problems. Such decomposition methods could also provide engineering insight on the fundamental physics driving problem solution. This work forwards the current state of the art in engineering decomposition through the application of techniques originally developed within computer science and information theory. The work describes the current state of automatic problem decomposition in engineering and utilizes several promising ideas to advance the state of the practice. Mutual information is a novel metric for data dependence and works on both continuous and discrete data. Mutual information can measure both the linear and non-linear dependence between variables without the limitations of linear dependence measured through covariance. Mutual information is also able to handle data that does not have derivative information, unlike other metrics that require it. The value of mutual information to engineering design work is demonstrated on a planetary entry problem. This study utilizes a novel tool developed in this work for planetary entry system synthesis. A graphical method, force-based clustering, is used to discover related sub-graph structure as a function of problem structure and links ranked by their mutual information. This method does not require the stochastic use of neural networks and could be used with any link ranking method currently utilized in the field. Application of this method is demonstrated on a large, coupled low-thrust trajectory problem. Mutual information also serves as the basis for an alternative global optimizer, called MIMIC, which is unrelated to Genetic Algorithms. Advancement to the current practice demonstrates the use of MIMIC as a global method that explicitly models problem structure with mutual information, providing an alternate method for globally searching multi-modal domains. By leveraging discovered problem inter- dependencies, MIMIC may be appropriate for highly coupled problems or those with large function evaluation cost. This work introduces a useful addition to the MIMIC algorithm that enables its use on continuous input variables. By leveraging automatic decision tree generation methods from Machine Learning and a set of randomly generated test problems, decision trees for which method to apply are also created, quantifying decomposition performance over a large region of the design space.

  13. The Integration of Social-Ecological Resilience and Law

    EPA Science Inventory

    Growing recognition of the inherent uncertainty associated with the dynamics of ecological systems and their often non-linear and surprising behavior, however, presents a set of problems outside the scope of classic environmental law, and has lead to a fundamental understanding a...

  14. History of Physical Terms: "Pressure"

    ERIC Educational Resources Information Center

    Frontali, Clara

    2013-01-01

    Scientific terms drawn from common language are often charged with suggestions that may even be inconsistent with their restricted scientific meaning, thus posing didactic problems. The (non-linear) historical journey of the word "pressure" is illustrated here through original quotations from Stevinus, Torricelli, Pascal, Boyle,…

  15. Fluid displacement between two parallel plates: a non-empirical model displaying change of type from hyperbolic to elliptic equations

    NASA Astrophysics Data System (ADS)

    Shariati, M.; Talon, L.; Martin, J.; Rakotomalala, N.; Salin, D.; Yortsos, Y. C.

    2004-11-01

    We consider miscible displacement between parallel plates in the absence of diffusion, with a concentration-dependent viscosity. By selecting a piecewise viscosity function, this can also be considered as ‘three-fluid’ flow in the same geometry. Assuming symmetry across the gap and based on the lubrication (‘equilibrium’) approximation, a description in terms of two quasi-linear hyperbolic equations is obtained. We find that the system is hyperbolic and can be solved analytically, when the mobility profile is monotonic, or when the mobility of the middle phase is smaller than its neighbours. When the mobility of the middle phase is larger, a change of type is displayed, an elliptic region developing in the composition space. Numerical solutions of Riemann problems of the hyperbolic system spanning the elliptic region, with small diffusion added, show good agreement with the analytical outside, but an unstable behaviour inside the elliptic region. In these problems, the elliptic region arises precisely at the displacement front. Crossing the elliptic region requires the solution of essentially an eigenvalue problem of the full higher-dimensional model, obtained here using lattice BGK simulations. The hyperbolic-to-elliptic change-of-type reflects the failing of the lubrication approximation, underlying the quasi-linear hyperbolic formalism, to describe the problem uniformly. The obtained solution is analogous to non-classical shocks recently suggested in problems with change of type.

  16. Thermal elastoplastic structural analysis of non-metallic thermal protection systems

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Yagawa, G.

    1972-01-01

    An incremental theory and numerical procedure to analyze a three-dimensional thermoelastoplastic structure subjected to high temperature, surface heat flux, and volume heat supply as well as mechanical loadings are presented. Heat conduction equations and equilibrium equations are derived by assuming a specific form of incremental free energy, entropy, stresses and heat flux together with the first and second laws of thermodynamics, von Mises yield criteria and Prandtl-Reuss flow rule. The finite element discretization using the linear isotropic three-dimensional element for the space domain and a difference operator corresponding to a linear variation of temperature within a small time increment for the time domain lead to systematic solutions of temperature distribution and displacement and stress fields. Various boundary conditions such as insulated surfaces and convection through uninsulated surface can be easily treated. To demonstrate effectiveness of the present formulation a number of example problems are presented.

  17. Non-linear vibrating systems excited by a nonideal energy source with a large slope characteristic

    NASA Astrophysics Data System (ADS)

    González-Carbajal, Javier; Domínguez, Jaime

    2017-11-01

    This paper revisits the problem of an unbalanced motor attached to a fixed frame by means of a nonlinear spring and a linear damper. The excitation provided by the motor is, in general, nonideal, which means it is affected by the vibratory response. Since the system behaviour is highly dependent on the order of magnitude of the motor characteristic slope, the case of large slope is considered herein. Some Perturbation Methods are applied to the system of equations, which allows transforming the original 4D system into a much simpler 2D system. The fixed points of this reduced system and their stability are carefully studied. We find the existence of a Hopf bifurcation which, to the authors' knowledge, has not been addressed before in the literature. These analytical results are supported by numerical simulations. We also compare our approach and results with those published by other authors.

  18. Classification of hyperspectral imagery using MapReduce on a NVIDIA graphics processing unit (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ramirez, Andres; Rahnemoonfar, Maryam

    2017-04-01

    A hyperspectral image provides multidimensional figure rich in data consisting of hundreds of spectral dimensions. Analyzing the spectral and spatial information of such image with linear and non-linear algorithms will result in high computational time. In order to overcome this problem, this research presents a system using a MapReduce-Graphics Processing Unit (GPU) model that can help analyzing a hyperspectral image through the usage of parallel hardware and a parallel programming model, which will be simpler to handle compared to other low-level parallel programming models. Additionally, Hadoop was used as an open-source version of the MapReduce parallel programming model. This research compared classification accuracy results and timing results between the Hadoop and GPU system and tested it against the following test cases: the CPU and GPU test case, a CPU test case and a test case where no dimensional reduction was applied.

  19. Seatbelt compliance and mortality in the Gulf Cooperation Council countries in comparison with other high-income countries.

    PubMed

    Abbas, Alaa K; Hefny, Ashraf F; Abu-Zidan, Fikri M

    2011-01-01

    Mortality from road traffic collisions (RTC) is a major problem in the Gulf Cooperation Council (GCC) countries. Low compliance with seatbelt usage can be a contributing factor for increased mortality. The present study aimed to ascertain the presence of a relationship between seatbelt non-compliance of vehicle occupants and mortality rates in the GCC countries versus other high-income countries. Observational and descriptive study using information published by the World Health Organization. Data for all GCC countries (n=6) and other high-income countries (n=37) were retrieved and compared with regard to population, gross national income, number of vehicles, seatbelt non-compliance and road traffic death rates. Univariate and multivariate analysis were used to define factors affecting the mortality rates. The median road traffic death rates, occupant death rates, and the percentage of seatbelt non-compliance were significantly higher in the GCC countries (P<.0001, P=.02, P<.001, respectively). There was a strong correlation between occupant death rates and seatbelt non-compliance (R=.52, P=.008). Seatbelt non-compliance percentage was the only significant factor predicting mortality in the multiple linear regression model (P=.015). Seatbelt non-compliance percentages in the GCC countries are significantly higher than in other high-income countries. This is a contributing factor in the increased road traffic collision mortality rate in these countries. Enforcement of seatbelt usage by law should be mandatory so as to reduce the toll of death of RTC in the GCC countries.

  20. Non-linear Parameter Estimates from Non-stationary MEG Data

    PubMed Central

    Martínez-Vargas, Juan D.; López, Jose D.; Baker, Adam; Castellanos-Dominguez, German; Woolrich, Mark W.; Barnes, Gareth

    2016-01-01

    We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast. PMID:27597815

  1. On structural identifiability analysis of the cascaded linear dynamic systems in isotopically non-stationary 13C labelling experiments.

    PubMed

    Lin, Weilu; Wang, Zejian; Huang, Mingzhi; Zhuang, Yingping; Zhang, Siliang

    2018-06-01

    The isotopically non-stationary 13C labelling experiments, as an emerging experimental technique, can estimate the intracellular fluxes of the cell culture under an isotopic transient period. However, to the best of our knowledge, the issue of the structural identifiability analysis of non-stationary isotope experiments is not well addressed in the literature. In this work, the local structural identifiability analysis for non-stationary cumomer balance equations is conducted based on the Taylor series approach. The numerical rank of the Jacobian matrices of the finite extended time derivatives of the measured fractions with respect to the free parameters is taken as the criterion. It turns out that only one single time point is necessary to achieve the structural identifiability analysis of the cascaded linear dynamic system of non-stationary isotope experiments. The equivalence between the local structural identifiability of the cascaded linear dynamic systems and the local optimum condition of the nonlinear least squares problem is elucidated in the work. Optimal measurements sets can then be determined for the metabolic network. Two simulated metabolic networks are adopted to demonstrate the utility of the proposed method. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Nonreciprocal Signal Routing in an Active Quantum Network

    NASA Astrophysics Data System (ADS)

    Tureci, Hakan E.; Metelmann, Anja

    As superconductor quantum technologies are moving towards large-scale integrated circuits, a robust and flexible approach to routing photons at the quantum level becomes a critical problem. Active circuits, which contain driven linear or non-linear elements judiciously embedded in the circuit offer a viable solution. We present a general strategy for routing non-reciprocally quantum signals between two sites of a given lattice of resonators, implementable with existing superconducting circuit components. Our approach makes use of a dual lattice of superconducting non-linear elements on the links connecting the nodes of the main lattice. Solutions for spatially selective driving of the link-elements can be found, which optimally balance coherent and dissipative hopping of microwave photons to non-reciprocally route signals between two given nodes. In certain lattices these optimal solutions are obtained at the exceptional point of the scattering matrix of the network. The presented strategy provides a design space that is governed by a dynamically tunable non-Hermitian generator that can be used to minimize the added quantum noise as well. This work was supported by the U.S. Army Research Office (ARO) under Grant No. W911NF-15-1-0299.

  3. Pairing phase diagram of three holes in the generalized Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarro, O.; Espinosa, J.E.

    Investigations of high-{Tc} superconductors suggest that the electronic correlation may play a significant role in the formation of pairs. Although the main interest is on the physic of two-dimensional highly correlated electron systems, the one-dimensional models related to high temperature superconductivity are very popular due to the conjecture that properties of the 1D and 2D variants of certain models have common aspects. Within the models for correlated electron systems, that attempt to capture the essential physics of high-temperature superconductors and parent compounds, the Hubbard model is one of the simplest. Here, the pairing problem of a three electrons system hasmore » been studied by using a real-space method and the generalized Hubbard Hamiltonian. This method includes the correlated hopping interactions as an extension of the previously proposed mapping method, and is based on mapping the correlated many body problem onto an equivalent site- and bond-impurity tight-binding one in a higher dimensional space, where the problem was solved in a non-perturbative way. In a linear chain, the authors analyzed the pairing phase diagram of three correlated holes for different values of the Hamiltonian parameters. For some value of the hopping parameters they obtain an analytical solution for all kind of interactions.« less

  4. High-performance computing on GPUs for resistivity logging of oil and gas wells

    NASA Astrophysics Data System (ADS)

    Glinskikh, V.; Dudaev, A.; Nechaev, O.; Surodina, I.

    2017-10-01

    We developed and implemented into software an algorithm for high-performance simulation of electrical logs from oil and gas wells using high-performance heterogeneous computing. The numerical solution of the 2D forward problem is based on the finite-element method and the Cholesky decomposition for solving a system of linear algebraic equations (SLAE). Software implementations of the algorithm used the NVIDIA CUDA technology and computing libraries are made, allowing us to perform decomposition of SLAE and find its solution on central processor unit (CPU) and graphics processor unit (GPU). The calculation time is analyzed depending on the matrix size and number of its non-zero elements. We estimated the computing speed on CPU and GPU, including high-performance heterogeneous CPU-GPU computing. Using the developed algorithm, we simulated resistivity data in realistic models.

  5. Modelization of highly nonlinear waves in coastal regions

    NASA Astrophysics Data System (ADS)

    Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre

    2015-04-01

    The proposed work deals with the development of a highly non-linear model for water wave propagation in coastal regions. The accurate modelization of surface gravity waves is of major interest in ocean engineering, especially in the field of marine renewable energy. These marine structures are intended to be settled in coastal regions where the effect of variable bathymetry may be significant on local wave conditions. This study presents a numerical model for the wave propagation with complex bathymetry. It is based on High-Order Spectral (HOS) method, initially limited to the propagation of non-linear wave fields over flat bottom. Such a model has been developed and validated at the LHEEA Lab. (Ecole Centrale Nantes) over the past few years and the current developments will enlarge its application range. This new numerical model will keep the interesting numerical properties of the original pseudo-spectral approach (convergence, efficiency with the use of FFTs, …) and enable the possibility to propagate highly non-linear wave fields over long time and large distance. Different validations will be provided in addition to the presentation of the method. At first, Bragg reflection will be studied with the proposed approach. If the Bragg condition is satisfied, the reflected wave generated by a sinusoidal bottom patch should be amplified as a result of resonant quadratic interactions between incident wave and bottom. Comparisons will be provided with experiments and reference solutions. Then, the method will be used to consider the transformation of a non-linear monochromatic wave as it propagates up and over a submerged bar. As the waves travel up the front slope of the bar, it steepens and high harmonics are generated due to non-linear interactions. Comparisons with experimental data will be provided. The different test cases will assess the accuracy and efficiency of the method proposed.

  6. Non-linear HRV indices under autonomic nervous system blockade.

    PubMed

    Bolea, Juan; Pueyo, Esther; Laguna, Pablo; Bailón, Raquel

    2014-01-01

    Heart rate variability (HRV) has been studied as a non-invasive technique to characterize the autonomic nervous system (ANS) regulation of the heart. Non-linear methods based on chaos theory have been used during the last decades as markers for risk stratification. However, interpretation of these nonlinear methods in terms of sympathetic and parasympathetic activity is not fully established. In this work we study linear and non-linear HRV indices during ANS blockades in order to assess their relation with sympathetic and parasympathetic activities. Power spectral content in low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) bands of HRV, as well as correlation dimension, sample and approximate entropies were computed in a database of subjects during single and dual ANS blockade with atropine and/or propranolol. Parasympathetic blockade caused a significant decrease in the low and high frequency power of HRV, as well as in correlation dimension and sample and approximate entropies. Sympathetic blockade caused a significant increase in approximate entropy. Sympathetic activation due to postural change from supine to standing caused a significant decrease in all the investigated non-linear indices and a significant increase in the normalized power in the low frequency band. The other investigated linear indices did not show significant changes. Results suggest that parasympathetic activity has a direct relation with sample and approximate entropies.

  7. Eshelby's problem of non-elliptical inclusions

    NASA Astrophysics Data System (ADS)

    Zou, Wennan; He, Qichang; Huang, Mojia; Zheng, Quanshui

    2010-03-01

    The Eshelby problem consists in determining the strain field of an infinite linearly elastic homogeneous medium due to a uniform eigenstrain prescribed over a subdomain, called inclusion, of the medium. The salient feature of Eshelby's solution for an ellipsoidal inclusion is that the strain tensor field inside the latter is uniform. This uniformity has the important consequence that the solution to the fundamental problem of determination of the strain field in an infinite linearly elastic homogeneous medium containing an embedded ellipsoidal inhomogeneity and subjected to remote uniform loading can be readily deduced from Eshelby's solution for an ellipsoidal inclusion upon imposing appropriate uniform eigenstrains. Based on this result, most of the existing micromechanics schemes dedicated to estimating the effective properties of inhomogeneous materials have been nevertheless applied to a number of materials of practical interest where inhomogeneities are in reality non-ellipsoidal. Aiming to examine the validity of the ellipsoidal approximation of inhomogeneities underlying various micromechanics schemes, we first derive a new boundary integral expression for calculating Eshelby's tensor field (ETF) in the context of two-dimensional isotropic elasticity. The simple and compact structure of the new boundary integral expression leads us to obtain the explicit expressions of ETF and its average for a wide variety of non-elliptical inclusions including arbitrary polygonal ones and those characterized by the finite Laurent series. In light of these new analytical results, we show that: (i) the elliptical approximation to the average of ETF is valid for a convex non-elliptical inclusion but becomes inacceptable for a non-convex non-elliptical inclusion; (ii) in general, the Eshelby tensor field inside a non-elliptical inclusion is quite non-uniform and cannot be replaced by its average; (iii) the substitution of the generalized Eshelby tensor involved in various micromechanics schemes by the average Eshelby tensor for non-elliptical inhomogeneities is in general inadmissible.

  8. Advances in the Application of High-order Techniques in Simulation of Multi-disciplinary Phenomena

    NASA Astrophysics Data System (ADS)

    Gaitonde, D. V.; Visbal, M. R.

    2003-03-01

    This paper describes the development of a comprehensive high-fidelity algorithmic framework to simulate the three-dimensional fields associated with multi-disciplinary physics. A wide range of phenomena is considered, from aero-acoustics and turbulence to electromagnetics, non-linear fluid-structure interactions, and magnetogasdynamics. The scheme depends primarily on "spectral-like," up to sixth-order accurate compact-differencing and up to tenth-order filtering techniques. The tightly coupled procedure suppresses numerical instabilities commonly encountered with high-order methods on non-uniform meshes, near computational boundaries or in the simulation of nonlinear dynamics. Particular emphasis is placed on developing the proper metric evaluation procedures for three-dimensional moving and curvilinear meshes so that the advantages of higher-order schemes are retained in practical calculations. A domain-decomposition strategy based on finite-sized overlap regions and interface boundary treatments enables the development of highly scalable solvers. The utility of the method to simulate problems governed by widely disparate governing equations is demonstrated with several examples encompassing vortex dynamics, wave scattering, electro-fluid plasma interactions, and panel flutter.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.; Petersson, N. A.; Rodgers, A.

    Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examplesmore » and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.« less

  10. Asymmetric electroosmotic pumping across porous media sandwiched with perforated ion-exchange membranes.

    PubMed

    Yaroshchuk, A; Licón, E E; Zholkovskiy, E K; Bondarenko, M P; Heldal, T

    2017-07-01

    To have non-zero net flow in AC electroosmotic pumps, the electroosmosis (EO) has to be non-linear and asymmetric. This can be achieved due to ionic concentration polarization. This is known to occur close to micro-/nano-interfaces provided that the sizes of the nanopores are not too large compared to the Debye screening length. However, operation of the corresponding EO pumps can be quite sensitive to the solution concentration and, thus, unstable in practical applications. Concentration polarization of ion-exchange membranes is much more robust. However, the hydraulic permeability of the membrane is very low, which makes EO flows through them extremely small. This communication shows theoretically how this problem can be resolved via making scarce microscopic perforations in an ion-exchange membrane and putting it in series with an EO-active nano-porous medium. The problem of coupled flow, concentration and electrostatic-potential distributions is solved numerically by using finite-element methods. This analysis reveals that even quite scarce perforations of micron-scale diameters are sufficient to observe practically-interesting EO flows in the system. If the average distance between the perforations is smaller than the thickness of the EO-active layer, there is an effective homogenization of the electrolyte concentration and hydrostatic pressure in the lateral direction at some distance from the interface. The simulations show this distance to be somewhat lower than the half-distance between the perforations. On the other hand, when the surface fraction of perforations is sufficiently small (below a fraction of a percent) this "homogeneous" concentration is considerably reduced (or increased, depending on the current direction), which makes the EO strongly non-linear and asymmetric. This analysis provides initial guidance for the design of high-productivity and inexpensive AC electroosmotic pumps.

  11. High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters

    DTIC Science & Technology

    2017-04-22

    signatures which can be used for direct, non -invasive, comparison with experimental diagnostics can be produced. This research will be directly... experimental campaign is critical to developing general design philosophies for low-power plasmoid formation, the complexity of non -linear plasma processes...advanced space propulsion. The work consists of numerical method development, physical model development, and systematic studies of the non -linear

  12. Problems Relating Mathematics and Science in the High School.

    ERIC Educational Resources Information Center

    Morrow, Richard; Beard, Earl

    This document contains various science problems which require a mathematical solution. The problems are arranged under two general areas. The first (algebra I) contains biology, chemistry, and physics problems which require solutions related to linear equations, exponentials, and nonlinear equations. The second (algebra II) contains physics…

  13. Sampling schemes and parameter estimation for nonlinear Bernoulli-Gaussian sparse models

    NASA Astrophysics Data System (ADS)

    Boudineau, Mégane; Carfantan, Hervé; Bourguignon, Sébastien; Bazot, Michael

    2016-06-01

    We address the sparse approximation problem in the case where the data are approximated by the linear combination of a small number of elementary signals, each of these signals depending non-linearly on additional parameters. Sparsity is explicitly expressed through a Bernoulli-Gaussian hierarchical model in a Bayesian framework. Posterior mean estimates are computed using Markov Chain Monte-Carlo algorithms. We generalize the partially marginalized Gibbs sampler proposed in the linear case in [1], and build an hybrid Hastings-within-Gibbs algorithm in order to account for the nonlinear parameters. All model parameters are then estimated in an unsupervised procedure. The resulting method is evaluated on a sparse spectral analysis problem. It is shown to converge more efficiently than the classical joint estimation procedure, with only a slight increase of the computational cost per iteration, consequently reducing the global cost of the estimation procedure.

  14. Preconditioned alternating direction method of multipliers for inverse problems with constraints

    NASA Astrophysics Data System (ADS)

    Jiao, Yuling; Jin, Qinian; Lu, Xiliang; Wang, Weijie

    2017-02-01

    We propose a preconditioned alternating direction method of multipliers (ADMM) to solve linear inverse problems in Hilbert spaces with constraints, where the feature of the sought solution under a linear transformation is captured by a possibly non-smooth convex function. During each iteration step, our method avoids solving large linear systems by choosing a suitable preconditioning operator. In case the data is given exactly, we prove the convergence of our preconditioned ADMM without assuming the existence of a Lagrange multiplier. In case the data is corrupted by noise, we propose a stopping rule using information on noise level and show that our preconditioned ADMM is a regularization method; we also propose a heuristic rule when the information on noise level is unavailable or unreliable and give its detailed analysis. Numerical examples are presented to test the performance of the proposed method.

  15. Linear Water Waves

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N.; Maz'ya, V.; Vainberg, B.

    2002-08-01

    This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'

  16. Regularized two-step brain activity reconstruction from spatiotemporal EEG data

    NASA Astrophysics Data System (ADS)

    Alecu, Teodor I.; Voloshynovskiy, Sviatoslav; Pun, Thierry

    2004-10-01

    We are aiming at using EEG source localization in the framework of a Brain Computer Interface project. We propose here a new reconstruction procedure, targeting source (or equivalently mental task) differentiation. EEG data can be thought of as a collection of time continuous streams from sparse locations. The measured electric potential on one electrode is the result of the superposition of synchronized synaptic activity from sources in all the brain volume. Consequently, the EEG inverse problem is a highly underdetermined (and ill-posed) problem. Moreover, each source contribution is linear with respect to its amplitude but non-linear with respect to its localization and orientation. In order to overcome these drawbacks we propose a novel two-step inversion procedure. The solution is based on a double scale division of the solution space. The first step uses a coarse discretization and has the sole purpose of globally identifying the active regions, via a sparse approximation algorithm. The second step is applied only on the retained regions and makes use of a fine discretization of the space, aiming at detailing the brain activity. The local configuration of sources is recovered using an iterative stochastic estimator with adaptive joint minimum energy and directional consistency constraints.

  17. Physics-Based Preconditioning of a Compressible Flow Solver for Large-Scale Simulations of Additive Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Weston, Brian; Nourgaliev, Robert; Delplanque, Jean-Pierre

    2017-11-01

    We present a new block-based Schur complement preconditioner for simulating all-speed compressible flow with phase change. The conservation equations are discretized with a reconstructed Discontinuous Galerkin method and integrated in time with fully implicit time discretization schemes. The resulting set of non-linear equations is converged using a robust Newton-Krylov framework. Due to the stiffness of the underlying physics associated with stiff acoustic waves and viscous material strength effects, we solve for the primitive-variables (pressure, velocity, and temperature). To enable convergence of the highly ill-conditioned linearized systems, we develop a physics-based preconditioner, utilizing approximate block factorization techniques to reduce the fully-coupled 3×3 system to a pair of reduced 2×2 systems. We demonstrate that our preconditioned Newton-Krylov framework converges on very stiff multi-physics problems, corresponding to large CFL and Fourier numbers, with excellent algorithmic and parallel scalability. Results are shown for the classic lid-driven cavity flow problem as well as for 3D laser-induced phase change. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Nanoprobe diffusion in entangled polymer solutions: Linear vs. unconcatenated ring chains

    NASA Astrophysics Data System (ADS)

    Nahali, Negar; Rosa, Angelo

    2018-05-01

    We employ large-scale molecular dynamics computer simulations to study the problem of nanoprobe diffusion in entangled solutions of linear polymers and unknotted and unconcatenated circular (ring) polymers. By tuning both the diameter of the nanoprobe and the density of the solution, we show that nanoprobes of diameter smaller than the entanglement distance (tube diameter) of the solution display the same (Rouse-like) behavior in solutions of both polymer architectures. Instead, nanoprobes with larger diameters appear to diffuse markedly faster in solutions of rings than in solutions of linear chains. Finally, by analysing the distribution functions of spatial displacements, we find that nanoprobe motion in rings' solutions shows both Gaussian and ergodic behaviors, in all regimes considered, while, in solutions of linear chains, nanoprobes exceeding the size of the tube diameter show a transition to non-Gaussian and non-ergodic motion. Our results emphasize the role of chain architecture in the motion of nanoprobes dispersed in polymer solutions.

  19. The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R.

    PubMed

    Pang, Haotian; Liu, Han; Vanderbei, Robert

    2014-02-01

    We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L 1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems.

  20. Trans-dimensional Bayesian inversion of airborne electromagnetic data for 2D conductivity profiles

    NASA Astrophysics Data System (ADS)

    Hawkins, Rhys; Brodie, Ross C.; Sambridge, Malcolm

    2018-02-01

    This paper presents the application of a novel trans-dimensional sampling approach to a time domain airborne electromagnetic (AEM) inverse problem to solve for plausible conductivities of the subsurface. Geophysical inverse field problems, such as time domain AEM, are well known to have a large degree of non-uniqueness. Common least-squares optimisation approaches fail to take this into account and provide a single solution with linearised estimates of uncertainty that can result in overly optimistic appraisal of the conductivity of the subsurface. In this new non-linear approach, the spatial complexity of a 2D profile is controlled directly by the data. By examining an ensemble of proposed conductivity profiles it accommodates non-uniqueness and provides more robust estimates of uncertainties.

  1. IGA-ADS: Isogeometric analysis FEM using ADS solver

    NASA Astrophysics Data System (ADS)

    Łoś, Marcin M.; Woźniak, Maciej; Paszyński, Maciej; Lenharth, Andrew; Hassaan, Muhamm Amber; Pingali, Keshav

    2017-08-01

    In this paper we present a fast explicit solver for solution of non-stationary problems using L2 projections with isogeometric finite element method. The solver has been implemented within GALOIS framework. It enables parallel multi-core simulations of different time-dependent problems, in 1D, 2D, or 3D. We have prepared the solver framework in a way that enables direct implementation of the selected PDE and corresponding boundary conditions. In this paper we describe the installation, implementation of exemplary three PDEs, and execution of the simulations on multi-core Linux cluster nodes. We consider three case studies, including heat transfer, linear elasticity, as well as non-linear flow in heterogeneous media. The presented package generates output suitable for interfacing with Gnuplot and ParaView visualization software. The exemplary simulations show near perfect scalability on Gilbert shared-memory node with four Intel® Xeon® CPU E7-4860 processors, each possessing 10 physical cores (for a total of 40 cores).

  2. Stability analysis of an equilibrium position in the photogravitational Sitnikov problem

    NASA Astrophysics Data System (ADS)

    Bardin, B. S.; Avdushkin, A. N.

    2018-05-01

    We deal with the so-called photogravitational Sitnikov problem, that is we consider rectilinear motion of a body of infinitesimal mass in a field of two graviting and radiating primaries, which have equal masses and act on the body with equal repulsive forces of radiation pressure. The body has equilibrium position in the barycenter of the system. In this paper the stability of the equilibrium position is investigated in detail. In particular, by the study of the linearized system we have found in the plane of parameter values the regions of instability. It appears that the instability regions alternate with stability regions and become very narrower when the eccentricity of the primaries orbits approaches to 1. Outside the instability regions we have performed non-linear stability analysis and shown that the stability of the equilibrium position in the sense of Lyapunov takes place both in resonant and non-resonant cases. The results of the study are represented in a form of stability diagram.

  3. Non-Linear Steady State Vibrations of Beams Excited by Vortex Shedding

    NASA Astrophysics Data System (ADS)

    LEWANDOWSKI, R.

    2002-05-01

    In this paper the non-linear vibrations of beams excited by vortex-shedding are considered. In particular, the steady state responses of beams near the synchronization region are taken into account. The main aerodynamic properties of wind are described by using the semi-empirical model proposed by Hartlen and Currie. The finite element method and the strip method are used to formulate the equation of motion of the system treated. The harmonic balance method is adopted to derive the amplitude equations. These equations are solved with the help of the continuation method which is very convenient to perform the parametric studies of the problem and to determine the response curve in the synchronization region. Moreover, the equations of motion are also integrated using the Newmark method. The results of calculations of several example problems are also shown to confirm the efficiency and accuracy of the presented method. The results obtained by the harmonic balance method and by the Newmark methods are in good agreement with each other.

  4. A simultaneous all-optical half/full-subtraction strategy using cascaded highly nonlinear fibers

    NASA Astrophysics Data System (ADS)

    Singh, Karamdeep; Kaur, Gurmeet; Singh, Maninder Lal

    2018-02-01

    Using non-linear effects such as cross-gain modulation (XGM) and cross-phase modulation (XPM) inside two highly non-linear fibres (HNLF) arranged in cascaded configuration, a simultaneous half/full-subtracter is proposed. The proposed simultaneous half/full-subtracter design is attractive due to several features such as input data pattern independence and usage of minimal number of non-linear elements i.e. HNLFs. Proof of concept simulations have been conducted at 100 Gbps rate, indicating fine performance, as extinction ratio (dB) > 6.28 dB and eye opening factors (EO) > 77.1072% are recorded for each implemented output. The proposed simultaneous half/full-subtracter can be used as a key component in all-optical information processing circuits.

  5. Solution of underdetermined systems of equations with gridded a priori constraints.

    PubMed

    Stiros, Stathis C; Saltogianni, Vasso

    2014-01-01

    The TOPINV, Topological Inversion algorithm (or TGS, Topological Grid Search) initially developed for the inversion of highly non-linear redundant systems of equations, can solve a wide range of underdetermined systems of non-linear equations. This approach is a generalization of a previous conclusion that this algorithm can be used for the solution of certain integer ambiguity problems in Geodesy. The overall approach is based on additional (a priori) information for the unknown variables. In the past, such information was used either to linearize equations around approximate solutions, or to expand systems of observation equations solved on the basis of generalized inverses. In the proposed algorithm, the a priori additional information is used in a third way, as topological constraints to the unknown n variables, leading to an R(n) grid containing an approximation of the real solution. The TOPINV algorithm does not focus on point-solutions, but exploits the structural and topological constraints in each system of underdetermined equations in order to identify an optimal closed space in the R(n) containing the real solution. The centre of gravity of the grid points defining this space corresponds to global, minimum-norm solutions. The rationale and validity of the overall approach are demonstrated on the basis of examples and case studies, including fault modelling, in comparison with SVD solutions and true (reference) values, in an accuracy-oriented approach.

  6. Phase-matched generation of coherent soft and hard X-rays using IR lasers

    DOEpatents

    Popmintchev, Tenio V.; Chen, Ming-Chang; Bahabad, Alon; Murnane, Margaret M.; Kapteyn, Henry C.

    2013-06-11

    Phase-matched high-order harmonic generation of soft and hard X-rays is accomplished using infrared driving lasers in a high-pressure non-linear medium. The pressure of the non-linear medium is increased to multi-atmospheres and a mid-IR (or higher) laser device provides the driving pulse. Based on this scaling, also a general method for global optimization of the flux of phase-matched high-order harmonic generation at a desired wavelength is designed.

  7. Generation of High Purity Photon-Pair in a Short Highly Non-Linear Fiber

    DTIC Science & Technology

    2013-01-01

    Avalanche photodiode. A 10 m long HNLF fabricated by Sumitomo with a core diameter of 4 microns is fusion spliced to a single mode fiber for a...parametric down conversion (SPDC) was first observed in χ(2) nonlinear crystal [3]. However, the compatibility of a nonlinear crystal source with fiber and...PAIR IN A SHORT HIGHLY NON-LINEAR FIBER 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8750-12-1-0136 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, C.G.

    Starting with the initial understanding that pulsation in variable stars is caused by the heat engine of Hydrogen and Helium ionization in their atmospheres (A.S. Eddington in Cox 1980) it was soon realized that non-linear effects were responsible for the detailed features on their light and velocity curves. With the advent of the computer we were able to solve the coupled set of hydrodynamics and radiation diffusion equations to model these non-linear features. This paper describes some recent model results for long period (LP) Cepheids in an attempt to get another handle on Cepheid masses. Section II discusses these resultsmore » and Section III considers the implications of these model results on the problem of the Cepheid mass discrepancy.« less

  9. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, part 2

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Nachtigal, Noel M.

    1990-01-01

    It is shown how the look-ahead Lanczos process (combined with a quasi-minimal residual QMR) approach) can be used to develop a robust black box solver for large sparse non-Hermitian linear systems. Details of an implementation of the resulting QMR algorithm are presented. It is demonstrated that the QMR method is closely related to the biconjugate gradient (BCG) algorithm; however, unlike BCG, the QMR algorithm has smooth convergence curves and good numerical properties. We report numerical experiments with our implementation of the look-ahead Lanczos algorithm, both for eigenvalue problem and linear systems. Also, program listings of FORTRAN implementations of the look-ahead algorithm and the QMR method are included.

  10. QMR: A Quasi-Minimal Residual method for non-Hermitian linear systems

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Nachtigal, Noel M.

    1990-01-01

    The biconjugate gradient (BCG) method is the natural generalization of the classical conjugate gradient algorithm for Hermitian positive definite matrices to general non-Hermitian linear systems. Unfortunately, the original BCG algorithm is susceptible to possible breakdowns and numerical instabilities. A novel BCG like approach is presented called the quasi-minimal residual (QMR) method, which overcomes the problems of BCG. An implementation of QMR based on a look-ahead version of the nonsymmetric Lanczos algorithm is proposed. It is shown how BCG iterates can be recovered stably from the QMR process. Some further properties of the QMR approach are given and an error bound is presented. Finally, numerical experiments are reported.

  11. Quantum teleportation via quantum channels with non-maximal Schmidt rank

    NASA Astrophysics Data System (ADS)

    Solís-Prosser, M. A.; Jiménez, O.; Neves, L.; Delgado, A.

    2013-03-01

    We study the problem of teleporting unknown pure states of a single qudit via a pure quantum channel with non-maximal Schmidt rank. We relate this process to the discrimination of linearly dependent symmetric states with the help of the maximum-confidence discrimination strategy. We show that with a certain probability, it is possible to teleport with a fidelity larger than the fidelity optimal deterministic teleportation.

  12. A high-accuracy optical linear algebra processor for finite element applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  13. The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: A careful study of the boundary error

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul; Don, Wai-Sun

    1993-01-01

    The conventional method of imposing time dependent boundary conditions for Runge-Kutta (RK) time advancement reduces the formal accuracy of the space-time method to first order locally, and second order globally, independently of the spatial operator. This counter intuitive result is analyzed in this paper. Two methods of eliminating this problem are proposed for the linear constant coefficient case: (1) impose the exact boundary condition only at the end of the complete RK cycle, (2) impose consistent intermediate boundary conditions derived from the physical boundary condition and its derivatives. The first method, while retaining the RK accuracy in all cases, results in a scheme with much reduced CFL condition, rendering the RK scheme less attractive. The second method retains the same allowable time step as the periodic problem. However it is a general remedy only for the linear case. For non-linear hyperbolic equations the second method is effective only for for RK schemes of third order accuracy or less. Numerical studies are presented to verify the efficacy of each approach.

  14. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models

    PubMed Central

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  15. Simulating run-up on steep slopes with operational Boussinesq models; capabilities, spurious effects and instabilities

    NASA Astrophysics Data System (ADS)

    Løvholt, F.; Lynett, P.; Pedersen, G.

    2013-06-01

    Tsunamis induced by rock slides plunging into fjords constitute a severe threat to local coastal communities. The rock slide impact may give rise to highly non-linear waves in the near field, and because the wave lengths are relatively short, frequency dispersion comes into play. Fjord systems are rugged with steep slopes, and modeling non-linear dispersive waves in this environment with simultaneous run-up is demanding. We have run an operational Boussinesq-type TVD (total variation diminishing) model using different run-up formulations. Two different tests are considered, inundation on steep slopes and propagation in a trapezoidal channel. In addition, a set of Lagrangian models serves as reference models. Demanding test cases with solitary waves with amplitudes ranging from 0.1 to 0.5 were applied, and slopes were ranging from 10 to 50°. Different run-up formulations yielded clearly different accuracy and stability, and only some provided similar accuracy as the reference models. The test cases revealed that the model was prone to instabilities for large non-linearity and fine resolution. Some of the instabilities were linked with false breaking during the first positive inundation, which was not observed for the reference models. None of the models were able to handle the bore forming during drawdown, however. The instabilities are linked to short-crested undulations on the grid scale, and appear on fine resolution during inundation. As a consequence, convergence was not always obtained. It is reason to believe that the instability may be a general problem for Boussinesq models in fjords.

  16. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    PubMed

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  17. LOOPREF: A Fluid Code for the Simulation of Coronal Loops

    NASA Technical Reports Server (NTRS)

    deFainchtein, Rosalinda; Antiochos, Spiro; Spicer, Daniel

    1998-01-01

    This report documents the code LOOPREF. LOOPREF is a semi-one dimensional finite element code that is especially well suited to simulate coronal-loop phenomena. It has a full implementation of adaptive mesh refinement (AMR), which is crucial for this type of simulation. The AMR routines are an improved version of AMR1D. LOOPREF's versatility makes is suitable to simulate a wide variety of problems. In addition to efficiently providing very high resolution in rapidly changing regions of the domain, it is equipped to treat loops of variable cross section, any non-linear form of heat conduction, shocks, gravitational effects, and radiative loss.

  18. An exploration of viscosity models in the realm of kinetic theory of liquids originated fluids

    NASA Astrophysics Data System (ADS)

    Hussain, Azad; Ghafoor, Saadia; Malik, M. Y.; Jamal, Sarmad

    The preeminent perspective of this article is to study flow of an Eyring Powell fluid model past a penetrable plate. To find the effects of variable viscosity on fluid model, continuity, momentum and energy equations are elaborated. Here, viscosity is taken as function of temperature. To understand the phenomenon, Reynold and Vogel models of variable viscosity are incorporated. The highly non-linear partial differential equations are transfigured into ordinary differential equations with the help of suitable similarity transformations. The numerical solution of the problem is presented. Graphs are plotted to visualize the behavior of pertinent parameters on the velocity and temperature profiles.

  19. Geographical variation of cerebrovascular disease in New York State: the correlation with income

    PubMed Central

    Han, Daikwon; Carrow, Shannon S; Rogerson, Peter A; Munschauer, Frederick E

    2005-01-01

    Background Income is known to be associated with cerebrovascular disease; however, little is known about the more detailed relationship between cerebrovascular disease and income. We examined the hypothesis that the geographical distribution of cerebrovascular disease in New York State may be predicted by a nonlinear model using income as a surrogate socioeconomic risk factor. Results We used spatial clustering methods to identify areas with high and low prevalence of cerebrovascular disease at the ZIP code level after smoothing rates and correcting for edge effects; geographic locations of high and low clusters of cerebrovascular disease in New York State were identified with and without income adjustment. To examine effects of income, we calculated the excess number of cases using a non-linear regression with cerebrovascular disease rates taken as the dependent variable and income and income squared taken as independent variables. The resulting regression equation was: excess rate = 32.075 - 1.22*10-4(income) + 8.068*10-10(income2), and both income and income squared variables were significant at the 0.01 level. When income was included as a covariate in the non-linear regression, the number and size of clusters of high cerebrovascular disease prevalence decreased. Some 87 ZIP codes exceeded the critical value of the local statistic yielding a relative risk of 1.2. The majority of low cerebrovascular disease prevalence geographic clusters disappeared when the non-linear income effect was included. For linear regression, the excess rate of cerebrovascular disease falls with income; each $10,000 increase in median income of each ZIP code resulted in an average reduction of 3.83 observed cases. The significant nonlinear effect indicates a lessening of this income effect with increasing income. Conclusion Income is a non-linear predictor of excess cerebrovascular disease rates, with both low and high observed cerebrovascular disease rate areas associated with higher income. Income alone explains a significant amount of the geographical variance in cerebrovascular disease across New York State since both high and low clusters of cerebrovascular disease dissipate or disappear with income adjustment. Geographical modeling, including non-linear effects of income, may allow for better identification of other non-traditional risk factors. PMID:16242043

  20. Lasing eigenvalue problems: the electromagnetic modelling of microlasers

    NASA Astrophysics Data System (ADS)

    Benson, Trevor; Nosich, Alexander; Smotrova, Elena; Balaban, Mikhail; Sewell, Phillip

    2007-02-01

    Comprehensive microcavity laser models should account for several physical mechanisms, e.g. carrier transport, heating and optical confinement, coupled by non-linear effects. Nevertheless, considerable useful information can still be obtained if all non-electromagnetic effects are neglected, often within an additional effective-index reduction to an equivalent 2D problem, and the optical modes viewed as solutions of Maxwell's equations. Integral equation (IE) formulations have many advantages over numerical techniques such as FDTD for the study of such microcavity laser problems. The most notable advantages of an IE approach are computational efficiency, the correct description of cavity boundaries without stair-step errors, and the direct solution of an eigenvalue problem rather than the spectral analysis of a transient signal. Boundary IE (BIE) formulations are more economic that volume IE (VIE) ones, because of their lower dimensionality, but they are only applicable to the constant cavity refractive index case. The Muller BIE, being free of 'defect' frequencies and having smooth or integrable kernels, provides a reliable tool for the modal analysis of microcavities. Whilst such an approach can readily identify complex-valued natural frequencies and Q-factors, the lasing condition is not addressed directly. We have thus suggested using a Muller BIE approach to solve a lasing eigenvalue problem (LEP), i.e. a linear eigenvalue solution in the form of two real-valued numbers (lasing wavelength and threshold information) when macroscopic gain is introduced into the cavity material within an active region. Such an approach yields clear insight into the lasing thresholds of individual cavities with uniform and non-uniform gain, cavities coupled as photonic molecules and cavities equipped with one or more quantum dots.

  1. The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking

    NASA Astrophysics Data System (ADS)

    Farrell, Steven; Anderson, Dustin; Calafiura, Paolo; Cerati, Giuseppe; Gray, Lindsey; Kowalkowski, Jim; Mudigonda, Mayur; Prabhat; Spentzouris, Panagiotis; Spiropoulou, Maria; Tsaris, Aristeidis; Vlimant, Jean-Roch; Zheng, Stephan

    2017-08-01

    Particle track reconstruction in dense environments such as the detectors of the High Luminosity Large Hadron Collider (HL-LHC) is a challenging pattern recognition problem. Traditional tracking algorithms such as the combinatorial Kalman Filter have been used with great success in LHC experiments for years. However, these state-of-the-art techniques are inherently sequential and scale poorly with the expected increases in detector occupancy in the HL-LHC conditions. The HEP.TrkX project is a pilot project with the aim to identify and develop cross-experiment solutions based on machine learning algorithms for track reconstruction. Machine learning algorithms bring a lot of potential to this problem thanks to their capability to model complex non-linear data dependencies, to learn effective representations of high-dimensional data through training, and to parallelize easily on high-throughput architectures such as GPUs. This contribution will describe our initial explorations into this relatively unexplored idea space. We will discuss the use of recurrent (LSTM) and convolutional neural networks to find and fit tracks in toy detector data.

  2. Testing for nonlinearity in non-stationary physiological time series.

    PubMed

    Guarín, Diego; Delgado, Edilson; Orozco, Álvaro

    2011-01-01

    Testing for nonlinearity is one of the most important preprocessing steps in nonlinear time series analysis. Typically, this is done by means of the linear surrogate data methods. But it is a known fact that the validity of the results heavily depends on the stationarity of the time series. Since most physiological signals are non-stationary, it is easy to falsely detect nonlinearity using the linear surrogate data methods. In this document, we propose a methodology to extend the procedure for generating constrained surrogate time series in order to assess nonlinearity in non-stationary data. The method is based on the band-phase-randomized surrogates, which consists (contrary to the linear surrogate data methods) in randomizing only a portion of the Fourier phases in the high frequency domain. Analysis of simulated time series showed that in comparison to the linear surrogate data method, our method is able to discriminate between linear stationarity, linear non-stationary and nonlinear time series. Applying our methodology to heart rate variability (HRV) records of five healthy patients, we encountered that nonlinear correlations are present in this non-stationary physiological signals.

  3. Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES

    NASA Astrophysics Data System (ADS)

    Marras, Simone; Nazarov, Murtazo; Giraldo, Francis X.

    2015-11-01

    The high order spectral element approximation of the Euler equations is stabilized via a dynamic sub-grid scale model (Dyn-SGS). This model was originally designed for linear finite elements to solve compressible flows at large Mach numbers. We extend its application to high-order spectral elements to solve the Euler equations of low Mach number stratified flows. The major justification of this work is twofold: stabilization and large eddy simulation are achieved via one scheme only. Because the diffusion coefficients of the regularization stresses obtained via Dyn-SGS are residual-based, the effect of the artificial diffusion is minimal in the regions where the solution is smooth. The direct consequence is that the nominal convergence rate of the high-order solution of smooth problems is not degraded. To our knowledge, this is the first application in atmospheric modeling of a spectral element model stabilized by an eddy viscosity scheme that, by construction, may fulfill stabilization requirements, can model turbulence via LES, and is completely free of a user-tunable parameter. From its derivation, it will be immediately clear that Dyn-SGS is independent of the numerical method; it could be implemented in a discontinuous Galerkin, finite volume, or other environments alike. Preliminary discontinuous Galerkin results are reported as well. The straightforward extension to non-linear scalar problems is also described. A suite of 1D, 2D, and 3D test cases is used to assess the method, with some comparison against the results obtained with the most known Lilly-Smagorinsky SGS model.

  4. Frequency assignments for HFDF receivers in a search and rescue network

    NASA Astrophysics Data System (ADS)

    Johnson, Krista E.

    1990-03-01

    This thesis applies a multiobjective linear programming approach to the problem of assigning frequencies to high frequency direction finding (HFDF) receivers in a search-and-rescue network in order to maximize the expected number of geolocations of vessels in distress. The problem is formulated as a multiobjective integer linear programming problem. The integrality of the solutions is guaranteed by the totally unimodularity of the A-matrix. Two approaches are taken to solve the multiobjective linear programming problem: (1) the multiobjective simplex method as implemented in ADBASE; and (2) an iterative approach. In this approach, the individual objective functions are weighted and combined in a single additive objective function. The resulting single objective problem is expressed as a network programming problem and solved using SAS NETFLOW. The process is then repeated with different weightings for the objective functions. The solutions obtained from the multiobjective linear programs are evaluated using a FORTRAN program to determine which solution provides the greatest expected number of geolocations. This solution is then compared to the sample mean and standard deviation for the expected number of geolocations resulting from 10,000 random frequency assignments for the network.

  5. Puzzling Findings in Studying the Outcome of “Real World” Adolescent Mental Health Services: The TRAILS Study

    PubMed Central

    Jörg, Frederike; Ormel, Johan; Reijneveld, Sijmen A.; Jansen, Daniëlle E. M. C.; Verhulst, Frank C.; Oldehinkel, Albertine J.

    2012-01-01

    Background The increased use and costs of specialist child and adolescent mental health services (MHS) urge us to assess the effectiveness of these services. The aim of this paper is to compare the course of emotional and behavioural problems in adolescents with and without MHS use in a naturalistic setting. Method and Findings Participants are 2230 (pre)adolescents that enrolled in a prospective cohort study, the TRacking Adolescents' Individual Lives Survey (TRAILS). Response rate was 76%, mean age at baseline 11.09 (SD 0.56), 50.8% girls. We used data from the first three assessment waves, covering a six year period. Multiple linear regression analysis, propensity score matching, and data validation were used to compare the course of emotional and behavioural problems of adolescents with and without MHS use. The association between MHS and follow-up problem score (β 0.20, SE 0.03, p-value<0.001) was not confounded by baseline severity, markers of adolescent vulnerability or resilience nor stressful life events. The propensity score matching strategy revealed that follow-up problem scores of non-MHS-users decreased while the problem scores of MHS users remained high. When taking into account future MHS (non)use, it appeared that problem scores decreased with limited MHS use, albeit not as much as without any MHS use, and that problem scores with continuous MHS use remained high. Data validation showed that using a different outcome measure, multiple assessment waves and multiple imputation of missing values did not alter the results. A limitation of the study is that, although we know what type of MHS participants used, and during which period, we lack information on the duration of the treatment. Conclusions The benefits of MHS are questionable. Replication studies should reveal whether a critical examination of everyday care is necessary or an artefact is responsible for these results. PMID:23028584

  6. Puzzling findings in studying the outcome of "real world" adolescent mental health services: the TRAILS study.

    PubMed

    Jörg, Frederike; Ormel, Johan; Reijneveld, Sijmen A; Jansen, Daniëlle E M C; Verhulst, Frank C; Oldehinkel, Albertine J

    2012-01-01

    The increased use and costs of specialist child and adolescent mental health services (MHS) urge us to assess the effectiveness of these services. The aim of this paper is to compare the course of emotional and behavioural problems in adolescents with and without MHS use in a naturalistic setting. Participants are 2230 (pre)adolescents that enrolled in a prospective cohort study, the TRacking Adolescents' Individual Lives Survey (TRAILS). Response rate was 76%, mean age at baseline 11.09 (SD 0.56), 50.8% girls. We used data from the first three assessment waves, covering a six year period. Multiple linear regression analysis, propensity score matching, and data validation were used to compare the course of emotional and behavioural problems of adolescents with and without MHS use. The association between MHS and follow-up problem score (β 0.20, SE 0.03, p-value<0.001) was not confounded by baseline severity, markers of adolescent vulnerability or resilience nor stressful life events. The propensity score matching strategy revealed that follow-up problem scores of non-MHS-users decreased while the problem scores of MHS users remained high. When taking into account future MHS (non)use, it appeared that problem scores decreased with limited MHS use, albeit not as much as without any MHS use, and that problem scores with continuous MHS use remained high. Data validation showed that using a different outcome measure, multiple assessment waves and multiple imputation of missing values did not alter the results. A limitation of the study is that, although we know what type of MHS participants used, and during which period, we lack information on the duration of the treatment. The benefits of MHS are questionable. Replication studies should reveal whether a critical examination of everyday care is necessary or an artefact is responsible for these results.

  7. Benchmark Problems for Space Mission Formation Flying

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Leitner, Jesse A.; Folta, David C.; Burns, Richard

    2003-01-01

    To provide a high-level focus to distributed space system flight dynamics and control research, several benchmark problems are suggested for space mission formation flying. The problems cover formation flying in low altitude, near-circular Earth orbit, high altitude, highly elliptical Earth orbits, and large amplitude lissajous trajectories about co-linear libration points of the Sun-Earth/Moon system. These problems are not specific to any current or proposed mission, but instead are intended to capture high-level features that would be generic to many similar missions that are of interest to various agencies.

  8. Mixed problems for the Korteweg-de Vries equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faminskii, A V

    1999-06-30

    Results are established concerning the non-local solubility and wellposedness in various function spaces of the mixed problem for the Korteweg-de Vries equation u{sub t}+u{sub xxx}+au{sub x}+uu{sub x}=f(t,x) in the half-strip (0,T)x(-{infinity},0). Some a priori estimates of the solutions are obtained using a special solution J(t,x) of the linearized KdV equation of boundary potential type. Properties of J are studied which differ essentially as x{yields}+{infinity} or x{yields}-{infinity}. Application of this boundary potential enables us in particular to prove the existence of generalized solutions with non-regular boundary values.

  9. An interlaboratory comparison of dosimetry for a multi-institutional radiobiological research project: Observations, problems, solutions and lessons learned.

    PubMed

    Seed, Thomas M; Xiao, Shiyun; Manley, Nancy; Nikolich-Zugich, Janko; Pugh, Jason; Van den Brink, Marcel; Hirabayashi, Yoko; Yasutomo, Koji; Iwama, Atsushi; Koyasu, Shigeo; Shterev, Ivo; Sempowski, Gregory; Macchiarini, Francesca; Nakachi, Kei; Kunugi, Keith C; Hammer, Clifford G; Dewerd, Lawrence A

    2016-01-01

    An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤5%. Comparable rates of 'dosimetric compliance' were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between 'measured' and 'target' doses, with errors falling largely between 0 and 20%. Outliers were most notable for OSL-based tests, while multiple tests by 'non-compliant' laboratories using orthovoltage X-rays contributed heavily to the wide variation in dosing errors. For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized.

  10. Challenges in Characterizing and Controlling Complex Cellular Systems

    NASA Astrophysics Data System (ADS)

    Wikswo, John

    2011-03-01

    Multicellular dynamic biological processes such as developmental differentiation, wound repair, disease, aging, and even homeostasis can be represented by trajectories through a phase space whose extent reflects the genetic, post-translational, and metabolic complexity of the process - easily extending to tens of thousands of dimensions. Intra- and inter-cellular sensing and regulatory systems and their nested, redundant, and non-linear feed-forward and feed-back controls create high-dimensioned attractors in this phase space. Metabolism provides free energy to drive non-equilibrium processes and dynamically reconfigure attractors. Studies of single molecules and cells provide only minimalist projections onto a small number of axes. It may be difficult to infer larger-scale emergent behavior from linearized experiments that perform only small amplitude perturbations on a limited number of the dimensions. Complete characterization may succeed for bounded component problems, such as an individual cell cycle or signaling cascade, but larger systems problems will require a coarse-grained approach. Hence a new experimental and analytical framework is needed. Possibly one could utilize high-amplitude, multi-variable driving of the system to infer coarse-grained, effective models, which in turn can be tested by their ability to control systems behavior. Navigation at will between attractors in a high-dimensioned dynamical system will provide not only detailed knowledge of the shape of attractor basins, but also measures of underlying stochastic events such as noise in gene expression or receptor binding and how both affect system stability and robustness. Needed for this are wide-bandwidth methods to sense and actuate large numbers of intracellular and extracellular variables and automatically and rapidly infer dynamic control models. The success of this approach may be determined by how broadly the sensors and actuators can span the full dimensionality of the phase space. Supported by the Defense Threat Reduction Agency HDTRA-09-1-0013, NIH National Institute on Drug Abuse RC2DA028981, the National Academies Keck Futures Initiative, and the Vanderbilt Institute for Integrative Biosystems Research and Education.

  11. On a comparison of two schemes in sequential data assimilation

    NASA Astrophysics Data System (ADS)

    Grishina, Anastasiia A.; Penenko, Alexey V.

    2017-11-01

    This paper is focused on variational data assimilation as an approach to mathematical modeling. Realization of the approach requires a sequence of connected inverse problems with different sets of observational data to be solved. Two variational data assimilation schemes, "implicit" and "explicit", are considered in the article. Their equivalence is shown and the numerical results are given on a basis of non-linear Robertson system. To avoid the "inverse problem crime" different schemes were used to produce synthetic measurement and to solve the data assimilation problem.

  12. Efficient hybrid-symbolic methods for quantum mechanical calculations

    NASA Astrophysics Data System (ADS)

    Scott, T. C.; Zhang, Wenxing

    2015-06-01

    We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.

  13. Analysis of junior high school students' attempt to solve a linear inequality problem

    NASA Astrophysics Data System (ADS)

    Taqiyuddin, Muhammad; Sumiaty, Encum; Jupri, Al

    2017-08-01

    Linear inequality is one of fundamental subjects within junior high school mathematics curricula. Several studies have been conducted to asses students' perform on linear inequality. However, it can hardly be found that linear inequality problems are in the form of "ax + b < dx + e" with "a, d ≠ 0", and "a ≠ d" as it can be seen on the textbook used by Indonesian students and several studies. This condition leads to the research questions concerning students' attempt on solving a simple linear inequality problem in this form. In order to do so, the written test was administered to 58 students from two schools in Bandung followed by interviews. The other sources of the data are from teachers' interview and mathematics books used by students. After that, the constant comparative method was used to analyse the data. The result shows that the majority approached the question by doing algebraic operations. Interestingly, most of them did it incorrectly. In contrast, algebraic operations were correctly used by some of them. Moreover, the others performed expected-numbers solution, rewriting the question, translating the inequality into words, and blank answer. Furthermore, we found that there is no one who was conscious of the existence of all-numbers solution. It was found that this condition is reasonably due to how little the learning components concern about why a procedure of solving a linear inequality works and possibilities of linear inequality solution.

  14. A Streamlined Monitoring Framework for Sustainable and Low Impact Development Stormwater Management Practices - 2

    EPA Science Inventory

    The problems of urbanization and stormwater management, as they pertain to monitoring the condition of water and environmental resources, are grounded in issues of scale, connectivity, temporal and non-linear change. Given our current understanding of these issues, the challenge ...

  15. Application of higher-order cepstral techniques in problems of fetal heart signal extraction

    NASA Astrophysics Data System (ADS)

    Sabry-Rizk, Madiha; Zgallai, Walid; Hardiman, P.; O'Riordan, J.

    1996-10-01

    Recently, cepstral analysis based on second order statistics and homomorphic filtering techniques have been used in the adaptive decomposition of overlapping, or otherwise, and noise contaminated ECG complexes of mothers and fetals obtained by a transabdominal surface electrodes connected to a monitoring instrument, an interface card, and a PC. Differential time delays of fetal heart beats measured from a reference point located on the mother complex after transformation to cepstra domains are first obtained and this is followed by fetal heart rate variability computations. Homomorphic filtering in the complex cepstral domain and the subuent transformation to the time domain results in fetal complex recovery. However, three problems have been identified with second-order based cepstral techniques that needed rectification in this paper. These are (1) errors resulting from the phase unwrapping algorithms and leading to fetal complex perturbation, (2) the unavoidable conversion of noise statistics from Gaussianess to non-Gaussianess due to the highly non-linear nature of homomorphic transform does warrant stringent noise cancellation routines, (3) due to the aforementioned problems in (1) and (2), it is difficult to adaptively optimize windows to include all individual fetal complexes in the time domain based on amplitude thresholding routines in the complex cepstral domain (i.e. the task of `zooming' in on weak fetal complexes requires more processing time). The use of third-order based high resolution differential cepstrum technique results in recovery of the delay of the order of 120 milliseconds.

  16. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadat Hayatshahi, Sayyed Hamed; Abdolmaleki, Parviz; Safarian, Shahrokh

    2005-12-16

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k {sub i} values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, themore » previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%.« less

  17. An ensemble of dissimilarity based classifiers for Mackerel gender determination

    NASA Astrophysics Data System (ADS)

    Blanco, A.; Rodriguez, R.; Martinez-Maranon, I.

    2014-03-01

    Mackerel is an infravalored fish captured by European fishing vessels. A manner to add value to this specie can be achieved by trying to classify it attending to its sex. Colour measurements were performed on Mackerel females and males (fresh and defrozen) extracted gonads to obtain differences between sexes. Several linear and non linear classifiers such as Support Vector Machines (SVM), k Nearest Neighbors (k-NN) or Diagonal Linear Discriminant Analysis (DLDA) can been applied to this problem. However, theyare usually based on Euclidean distances that fail to reflect accurately the sample proximities. Classifiers based on non-Euclidean dissimilarities misclassify a different set of patterns. We combine different kind of dissimilarity based classifiers. The diversity is induced considering a set of complementary dissimilarities for each model. The experimental results suggest that our algorithm helps to improve classifiers based on a single dissimilarity.

  18. Metaheuristic optimisation methods for approximate solving of singular boundary value problems

    NASA Astrophysics Data System (ADS)

    Sadollah, Ali; Yadav, Neha; Gao, Kaizhou; Su, Rong

    2017-07-01

    This paper presents a novel approximation technique based on metaheuristics and weighted residual function (WRF) for tackling singular boundary value problems (BVPs) arising in engineering and science. With the aid of certain fundamental concepts of mathematics, Fourier series expansion, and metaheuristic optimisation algorithms, singular BVPs can be approximated as an optimisation problem with boundary conditions as constraints. The target is to minimise the WRF (i.e. error function) constructed in approximation of BVPs. The scheme involves generational distance metric for quality evaluation of the approximate solutions against exact solutions (i.e. error evaluator metric). Four test problems including two linear and two non-linear singular BVPs are considered in this paper to check the efficiency and accuracy of the proposed algorithm. The optimisation task is performed using three different optimisers including the particle swarm optimisation, the water cycle algorithm, and the harmony search algorithm. Optimisation results obtained show that the suggested technique can be successfully applied for approximate solving of singular BVPs.

  19. Determination and analysis of non-linear index profiles in electron-beam-deposited MgOAl2O3ZrO2 ternary composite thin-film optical coatings

    NASA Astrophysics Data System (ADS)

    Sahoo, N. K.; Thakur, S.; Senthilkumar, M.; Das, N. C.

    2005-02-01

    Thickness-dependent index non-linearity in thin films has been a thought provoking as well as intriguing topic in the field of optical coatings. The characterization and analysis of such inhomogeneous index profiles pose several degrees of challenges to thin-film researchers depending upon the availability of relevant experimental and process-monitoring-related information. In the present work, a variety of novel experimental non-linear index profiles have been observed in thin films of MgOAl2O3ZrO2 ternary composites in solid solution under various electron-beam deposition parameters. Analysis and derivation of these non-linear spectral index profiles have been carried out by an inverse-synthesis approach using a real-time optical monitoring signal and post-deposition transmittance and reflection spectra. Most of the non-linear index functions are observed to fit polynomial equations of order seven or eight very well. In this paper, the application of such a non-linear index function has also been demonstrated in designing electric-field-optimized high-damage-threshold multilayer coatings such as normal- and oblique-incidence edge filters and a broadband beam splitter for p-polarized light. Such designs can also advantageously maintain the microstructural stability of the multilayer structure due to the low stress factor of the non-linear ternary composite layers.

  20. Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities

    NASA Astrophysics Data System (ADS)

    Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred

    2012-07-01

    The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in the frame of an ESA TRP study [1]. A bread-board including typical non-linearities has been designed, manufactured and tested through a typical spacecraft dynamic test campaign. The study has demonstrate the capabilities to perform non-linear dynamic test predictions on a flight representative spacecraft, the good correlation of test results with respect to Finite Elements Model (FEM) prediction and the possibility to identify modal behaviour and to characterize non-linearities characteristics from test results. As a synthesis for this study, overall guidelines have been derived on the mechanical verification process to improve level of expertise on tests involving spacecraft including non-linearity.

  1. Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed R.; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar

    Characteristics of heat transfer of gold nanoparticles (Au-NPs) in flow past a power-law stretching surface are discussed. Sisko bio-nanofluid flow (with blood as a base fluid) in existence of non-linear thermal radiation is studied. The resulting equations system is abbreviated to model the suggested problem in non-linear PDEs. Along with initial and boundary-conditions, the equations are made non-dimensional and then resolved numerically utilizing 4th-5th order Runge-Kutta-Fehlberg (RKF45) technique with shooting integration procedure. Various flow quantities behaviors are examined for parametric consideration such as the Au-NPs volume fraction, the exponentially stretching and thermal radiation parameters. It is observed that radiation drives to shortage the thermal boundary-layer thickness and therefore resulted in better heat transfer at surface.

  2. Eigensensitivity analysis of rotating clamped uniform beams with the asymptotic numerical method

    NASA Astrophysics Data System (ADS)

    Bekhoucha, F.; Rechak, S.; Cadou, J. M.

    2016-12-01

    In this paper, free vibrations of a rotating clamped Euler-Bernoulli beams with uniform cross section are studied using continuation method, namely asymptotic numerical method. The governing equations of motion are derived using Lagrange's method. The kinetic and strain energy expression are derived from Rayleigh-Ritz method using a set of hybrid variables and based on a linear deflection assumption. The derived equations are transformed in two eigenvalue problems, where the first is a linear gyroscopic eigenvalue problem and presents the coupled lagging and stretch motions through gyroscopic terms. While the second is standard eigenvalue problem and corresponds to the flapping motion. Those two eigenvalue problems are transformed into two functionals treated by continuation method, the Asymptotic Numerical Method. New method proposed for the solution of the linear gyroscopic system based on an augmented system, which transforms the original problem to a standard form with real symmetric matrices. By using some techniques to resolve these singular problems by the continuation method, evolution curves of the natural frequencies against dimensionless angular velocity are determined. At high angular velocity, some singular points, due to the linear elastic assumption, are computed. Numerical tests of convergence are conducted and the obtained results are compared to the exact values. Results obtained by continuation are compared to those computed with discrete eigenvalue problem.

  3. Digital Biomass Accumulation Using High-Throughput Plant Phenotype Data Analysis.

    PubMed

    Rahaman, Md Matiur; Ahsan, Md Asif; Gillani, Zeeshan; Chen, Ming

    2017-09-01

    Biomass is an important phenotypic trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive, and they require numerous individuals to be cultivated for repeated measurements. With the advent of image-based high-throughput plant phenotyping facilities, non-destructive biomass measuring methods have attempted to overcome this problem. Thus, the estimation of plant biomass of individual plants from their digital images is becoming more important. In this paper, we propose an approach to biomass estimation based on image derived phenotypic traits. Several image-based biomass studies state that the estimation of plant biomass is only a linear function of the projected plant area in images. However, we modeled the plant volume as a function of plant area, plant compactness, and plant age to generalize the linear biomass model. The obtained results confirm the proposed model and can explain most of the observed variance during image-derived biomass estimation. Moreover, a small difference was observed between actual and estimated digital biomass, which indicates that our proposed approach can be used to estimate digital biomass accurately.

  4. A Review of High-Order and Optimized Finite-Difference Methods for Simulating Linear Wave Phenomena

    NASA Technical Reports Server (NTRS)

    Zingg, David W.

    1996-01-01

    This paper presents a review of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, or elastic waves. The spatial operators reviewed include compact schemes, non-compact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-marching methods discussed include Runge-Kutta methods, Adams-Bashforth methods, and the leapfrog method. In addition, the following fourth-order fully-discrete finite-difference methods are considered: a one-step implicit scheme with a three-point spatial stencil, a one-step explicit scheme with a five-point spatial stencil, and a two-step explicit scheme with a five-point spatial stencil. For each method studied, the number of grid points per wavelength required for accurate simulation of wave propagation over large distances is presented. Recommendations are made with respect to the suitability of the methods for specific problems and practical aspects of their use, such as appropriate Courant numbers and grid densities. Avenues for future research are suggested.

  5. Electron kinetic effects on interferometry, polarimetry and Thomson scattering measurements in burning plasmas (invited).

    PubMed

    Mirnov, V V; Brower, D L; Den Hartog, D J; Ding, W X; Duff, J; Parke, E

    2014-11-01

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = Te/mec(2) model may be insufficient; we present a more precise model with τ(2)-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of Te measurement relevant to ITER operational scenarios.

  6. FEAST fundamental framework for electronic structure calculations: Reformulation and solution of the muffin-tin problem

    NASA Astrophysics Data System (ADS)

    Levin, Alan R.; Zhang, Deyin; Polizzi, Eric

    2012-11-01

    In a recent article Polizzi (2009) [15], the FEAST algorithm has been presented as a general purpose eigenvalue solver which is ideally suited for addressing the numerical challenges in electronic structure calculations. Here, FEAST is presented beyond the “black-box” solver as a fundamental modeling framework which can naturally address the original numerical complexity of the electronic structure problem as formulated by Slater in 1937 [3]. The non-linear eigenvalue problem arising from the muffin-tin decomposition of the real-space domain is first derived and then reformulated to be solved exactly within the FEAST framework. This new framework is presented as a fundamental and practical solution for performing both accurate and scalable electronic structure calculations, bypassing the various issues of using traditional approaches such as linearization and pseudopotential techniques. A finite element implementation of this FEAST framework along with simulation results for various molecular systems is also presented and discussed.

  7. A validated non-linear Kelvin-Helmholtz benchmark for numerical hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lecoanet, D.; McCourt, M.; Quataert, E.; Burns, K. J.; Vasil, G. M.; Oishi, J. S.; Brown, B. P.; Stone, J. M.; O'Leary, R. M.

    2016-02-01

    The non-linear evolution of the Kelvin-Helmholtz instability is a popular test for code verification. To date, most Kelvin-Helmholtz problems discussed in the literature are ill-posed: they do not converge to any single solution with increasing resolution. This precludes comparisons among different codes and severely limits the utility of the Kelvin-Helmholtz instability as a test problem. The lack of a reference solution has led various authors to assert the accuracy of their simulations based on ad hoc proxies, e.g. the existence of small-scale structures. This paper proposes well-posed two-dimensional Kelvin-Helmholtz problems with smooth initial conditions and explicit diffusion. We show that in many cases numerical errors/noise can seed spurious small-scale structure in Kelvin-Helmholtz problems. We demonstrate convergence to a reference solution using both ATHENA, a Godunov code, and DEDALUS, a pseudo-spectral code. Problems with constant initial density throughout the domain are relatively straightforward for both codes. However, problems with an initial density jump (which are the norm in astrophysical systems) exhibit rich behaviour and are more computationally challenging. In the latter case, ATHENA simulations are prone to an instability of the inner rolled-up vortex; this instability is seeded by grid-scale errors introduced by the algorithm, and disappears as resolution increases. Both ATHENA and DEDALUS exhibit late-time chaos. Inviscid simulations are riddled with extremely vigorous secondary instabilities which induce more mixing than simulations with explicit diffusion. Our results highlight the importance of running well-posed test problems with demonstrated convergence to a reference solution. To facilitate future comparisons, we include as supplementary material the resolved, converged solutions to the Kelvin-Helmholtz problems in this paper in machine-readable form.

  8. A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus

    2014-12-01

    An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.

  9. Efficient reverse saturable absorption of sol-gel hybrid plasmonic glasses

    NASA Astrophysics Data System (ADS)

    Lundén, H.; Lopes, C.; Lindgren, M.; Liotta, A.; Chateau, D.; Lerouge, F.; Chaput, F.; Désert, A.; Parola, S.

    2017-07-01

    Monolithic silica sol-gel glasses doped with platinum(II) acetylide complexes possessing respectively four or six phenylacetylene units (PE2-CH2OH and PE3-CH2OH) in combination with various concentrations of spherical and bipyramidal gold nanoparticles (AuNPs) known to enhance non-linear optical absorption, were prepared and polished to high optical quality. The non-linear absorption of the glasses was measured and compared to glasses doped solely with AuNPs, a platinum(II) acetylide with shorter delocalized structure, or combinations of both. At 532 nm excitation wavelength the chromophore inhibited the non-linear scattering previously found for glasses only doped with AuNPs. The measured non-linear absorption was attributed to reverse saturable absorption from the chromophore, as previously reported for PE2-CH2OH/AuNP glasses. At 600 nm strong nonlinear absorption was observed for the PE3-CH2OH/AuNPs glasses, also attributed to reverse saturable absorption. But contrary to previous findings for PE2-CH2OH/AuNPs, no distinct enhancement of the non-linear absorption for PE3-CH2OH/AuNPs was observed. A numerical population model for PE3-CH2OH was used to give a qualitative explanation of this difference. A stronger linear absorption in PE3-CH2OH would cause the highly absorbing triplet state to populate quicker during the leading edge of the laser pulse and this would in turn reduce the influence from two-photon absorption enhancement from AuNPs.

  10. Modelling female fertility traits in beef cattle using linear and non-linear models.

    PubMed

    Naya, H; Peñagaricano, F; Urioste, J I

    2017-06-01

    Female fertility traits are key components of the profitability of beef cattle production. However, these traits are difficult and expensive to measure, particularly under extensive pastoral conditions, and consequently, fertility records are in general scarce and somehow incomplete. Moreover, fertility traits are usually dominated by the effects of herd-year environment, and it is generally assumed that relatively small margins are kept for genetic improvement. New ways of modelling genetic variation in these traits are needed. Inspired in the methodological developments made by Prof. Daniel Gianola and co-workers, we assayed linear (Gaussian), Poisson, probit (threshold), censored Poisson and censored Gaussian models to three different kinds of endpoints, namely calving success (CS), number of days from first calving (CD) and number of failed oestrus (FE). For models involving FE and CS, non-linear models overperformed their linear counterparts. For models derived from CD, linear versions displayed better adjustment than the non-linear counterparts. Non-linear models showed consistently higher estimates of heritability and repeatability in all cases (h 2  < 0.08 and r < 0.13, for linear models; h 2  > 0.23 and r > 0.24, for non-linear models). While additive and permanent environment effects showed highly favourable correlations between all models (>0.789), consistency in selecting the 10% best sires showed important differences, mainly amongst the considered endpoints (FE, CS and CD). In consequence, endpoints should be considered as modelling different underlying genetic effects, with linear models more appropriate to describe CD and non-linear models better for FE and CS. © 2017 Blackwell Verlag GmbH.

  11. Homotopy approach to optimal, linear quadratic, fixed architecture compensation

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1991-01-01

    Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.

  12. CSOLNP: Numerical Optimization Engine for Solving Non-linearly Constrained Problems.

    PubMed

    Zahery, Mahsa; Maes, Hermine H; Neale, Michael C

    2017-08-01

    We introduce the optimizer CSOLNP, which is a C++ implementation of the R package RSOLNP (Ghalanos & Theussl, 2012, Rsolnp: General non-linear optimization using augmented Lagrange multiplier method. R package version, 1) alongside some improvements. CSOLNP solves non-linearly constrained optimization problems using a Sequential Quadratic Programming (SQP) algorithm. CSOLNP, NPSOL (a very popular implementation of SQP method in FORTRAN (Gill et al., 1986, User's guide for NPSOL (version 4.0): A Fortran package for nonlinear programming (No. SOL-86-2). Stanford, CA: Stanford University Systems Optimization Laboratory), and SLSQP (another SQP implementation available as part of the NLOPT collection (Johnson, 2014, The NLopt nonlinear-optimization package. Retrieved from http://ab-initio.mit.edu/nlopt)) are three optimizers available in OpenMx package. These optimizers are compared in terms of runtimes, final objective values, and memory consumption. A Monte Carlo analysis of the performance of the optimizers was performed on ordinal and continuous models with five variables and one or two factors. While the relative difference between the objective values is less than 0.5%, CSOLNP is in general faster than NPSOL and SLSQP for ordinal analysis. As for continuous data, none of the optimizers performs consistently faster than the others. In terms of memory usage, we used Valgrind's heap profiler tool, called Massif, on one-factor threshold models. CSOLNP and NPSOL consume the same amount of memory, while SLSQP uses 71 MB more memory than the other two optimizers.

  13. Time-periodic solutions of the Benjamin-Ono equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose , D.M.; Wilkening, Jon

    2008-04-01

    We present a spectrally accurate numerical method for finding non-trivial time-periodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one ofmore » the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached (or until the solution blows up). By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODE's governing the evolution of solitons using the ansatz suggested by the numerical simulations.« less

  14. Fully 3D modeling of tokamak vertical displacement events with realistic parameters

    NASA Astrophysics Data System (ADS)

    Pfefferle, David; Ferraro, Nathaniel; Jardin, Stephen; Bhattacharjee, Amitava

    2016-10-01

    In this work, we model the complex multi-domain and highly non-linear physics of Vertical Displacement Events (VDEs), one of the most damaging off-normal events in tokamaks, with the implicit 3D extended MHD code M3D-C1. The code has recently acquired the capability to include finite thickness conducting structures within the computational domain. By exploiting the possibility of running a linear 3D calculation on top of a non-linear 2D simulation, we monitor the non-axisymmetric stability and assess the eigen-structure of kink modes as the simulation proceeds. Once a stability boundary is crossed, a fully 3D non-linear calculation is launched for the remainder of the simulation, starting from an earlier time of the 2D run. This procedure, along with adaptive zoning, greatly increases the efficiency of the calculation, and allows to perform VDE simulations with realistic parameters and high resolution. Simulations are being validated with NSTX data where both axisymmetric (toroidally averaged) and non-axisymmetric induced and conductive (halo) currents have been measured. This work is supported by US DOE Grant DE-AC02-09CH11466.

  15. Estimation of biological parameters of marine organisms using linear and nonlinear acoustic scattering model-based inversion methods.

    PubMed

    Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H

    2016-05-01

    The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.

  16. Genetics-based control of a mimo boiler-turbine plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimeo, R.M.; Lee, K.Y.

    1994-12-31

    A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.

  17. Entropy Analysis in Mixed Convection MHD flow of Nanofluid over a Non-linear Stretching Sheet

    NASA Astrophysics Data System (ADS)

    Matin, Meisam Habibi; Nobari, Mohammad Reza Heirani; Jahangiri, Pouyan

    This article deals with a numerical study of entropy analysis in mixed convection MHD flow of nanofluid over a non-linear stretching sheet taking into account the effects of viscous dissipation and variable magnetic field. The nanofluid is made of such nano particles as SiO2 with pure water as a base fluid. To analyze the problem, at first the boundary layer equations are transformed into non-linear ordinary equations using a similarity transformation. The resultant equations are then solved numerically using the Keller-Box scheme based on the implicit finite-difference method. The effects of different non-dimensional governing parameters such as magnetic parameter, nanoparticles volume fraction, Nusselt, Richardson, Eckert, Hartman, Brinkman, Reynolds and entropy generation numbers are investigated in details. The results indicate that increasing the nano particles to the base fluids causes the reduction in shear forces and a decrease in stretching sheet heat transfer coefficient. Also, decreasing the magnetic parameter and increasing the Eckert number result in improves heat transfer rate. Furthermore, the surface acts as a strong source of irreversibility due to the higher entropy generation number near the surface.

  18. Aeroelasticity of morphing wings using neural networks

    NASA Astrophysics Data System (ADS)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to represent the aerodynamic loading over the bump. A second neural network is trained for calculating the actuator loads, bump displacement and lift, drag forces over the airfoil using the finite element solver, ANSYS and the previously trained neural network. This non-linear aeroelastic model of the deforming bump on an airfoil surface using neural networks can serve as a fore-runner for other non-linear aeroelastic problems.

  19. Cross hole GPR traveltime inversion using a fast and accurate neural network as a forward model

    NASA Astrophysics Data System (ADS)

    Mejer Hansen, Thomas

    2017-04-01

    Probabilistic formulated inverse problems can be solved using Monte Carlo based sampling methods. In principle both advanced prior information, such as based on geostatistics, and complex non-linear forward physical models can be considered. However, in practice these methods can be associated with huge computational costs that in practice limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error, that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival travel time inversion of cross hole ground-penetrating radar (GPR) data. An accurate forward model, based on 2D full-waveform modeling followed by automatic travel time picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the full forward model, and considerably faster, and more accurate, than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of the types of inverse problems that can be solved using non-linear Monte Carlo sampling techniques.

  20. Angular-Rate Estimation Using Delayed Quaternion Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, I. Y.; Harman, R. R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared one that uses differentiated quaternion measurements to yield coarse rate measurements, which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear part of the rotas rotational dynamics equation of a body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This non unique decomposition, enables the treatment of the nonlinear spacecraft (SC) dynamics model as a linear one and, thus, the application of a PseudoLinear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the gain matrix and thus eliminates the need to compute recursively the filter covariance matrix. The replacement of the rotational dynamics by a simple Markov model is also examined. In this paper special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results are presented.

Top