Sample records for highly optimized tolerance

  1. Novel AroA from Pseudomonas putida Confers Tobacco Plant with High Tolerance to Glyphosate

    PubMed Central

    Yan, Hai-Qin; Chang, Su-Hua; Tian, Zhe-Xian; Zhang, Le; Sun, Yi-Cheng; Li, Yan; Wang, Jing; Wang, Yi-Ping

    2011-01-01

    Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants. Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame with the optimized aroA gene (PparoA1optimized) at the 5′ end. The PparoA1optimized gene was introduced into the tobacco (Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic plants and its T1 progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1optimized gene exhibit high tolerance to glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with glyphosate tolerance in future. PMID:21611121

  2. Parameter-tolerant design of high contrast gratings

    NASA Astrophysics Data System (ADS)

    Chevallier, Christyves; Fressengeas, Nicolas; Jacquet, Joel; Almuneau, Guilhem; Laaroussi, Youness; Gauthier-Lafaye, Olivier; Cerutti, Laurent; Genty, Frédéric

    2015-02-01

    This work is devoted to the design of high contrast grating mirrors taking into account the technological constraints and tolerance of fabrication. First, a global optimization algorithm has been combined to a numerical analysis of grating structures (RCWA) to automatically design HCG mirrors. Then, the tolerances of the grating dimensions have been precisely studied to develop a robust optimization algorithm with which high contrast gratings, exhibiting not only a high efficiency but also large tolerance values, could be designed. Finally, several structures integrating previously designed HCGs has been simulated to validate and illustrate the interest of such gratings.

  3. Determination of the optimal tolerance for MLC positioning in sliding window and VMAT techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, V., E-mail: vhernandezmasgrau@gmail.com; Abella, R.; Calvo, J. F.

    2015-04-15

    Purpose: Several authors have recommended a 2 mm tolerance for multileaf collimator (MLC) positioning in sliding window treatments. In volumetric modulated arc therapy (VMAT) treatments, however, the optimal tolerance for MLC positioning remains unknown. In this paper, the authors present the results of a multicenter study to determine the optimal tolerance for both techniques. Methods: The procedure used is based on dynalog file analysis. The study was carried out using seven Varian linear accelerators from five different centers. Dynalogs were collected from over 100 000 clinical treatments and in-house software was used to compute the number of tolerance faults as amore » function of the user-defined tolerance. Thus, the optimal value for this tolerance, defined as the lowest achievable value, was investigated. Results: Dynalog files accurately predict the number of tolerance faults as a function of the tolerance value, especially for low fault incidences. All MLCs behaved similarly and the Millennium120 and the HD120 models yielded comparable results. In sliding window techniques, the number of beams with an incidence of hold-offs >1% rapidly decreases for a tolerance of 1.5 mm. In VMAT techniques, the number of tolerance faults sharply drops for tolerances around 2 mm. For a tolerance of 2.5 mm, less than 0.1% of the VMAT arcs presented tolerance faults. Conclusions: Dynalog analysis provides a feasible method for investigating the optimal tolerance for MLC positioning in dynamic fields. In sliding window treatments, the tolerance of 2 mm was found to be adequate, although it can be reduced to 1.5 mm. In VMAT treatments, the typically used 5 mm tolerance is excessively high. Instead, a tolerance of 2.5 mm is recommended.« less

  4. An efficient method of reducing glass dispersion tolerance sensitivity

    NASA Astrophysics Data System (ADS)

    Sparrold, Scott W.; Shepard, R. Hamilton

    2014-12-01

    Constraining the Seidel aberrations of optical surfaces is a common technique for relaxing tolerance sensitivities in the optimization process. We offer an observation that a lens's Abbe number tolerance is directly related to the magnitude by which its longitudinal and transverse color are permitted to vary in production. Based on this observation, we propose a computationally efficient and easy-to-use merit function constraint for relaxing dispersion tolerance sensitivity. Using the relationship between an element's chromatic aberration and dispersion sensitivity, we derive a fundamental limit for lens scale and power that is capable of achieving high production yield for a given performance specification, which provides insight on the point at which lens splitting or melt fitting becomes necessary. The theory is validated by comparing its predictions to a formal tolerance analysis of a Cooke Triplet, and then applied to the design of a 1.5x visible linescan lens to illustrate optimization for reduced dispersion sensitivity. A selection of lenses in high volume production is then used to corroborate the proposed method of dispersion tolerance allocation.

  5. Optimizing the Reliability and Performance of Service Composition Applications with Fault Tolerance in Wireless Sensor Networks

    PubMed Central

    Wu, Zhao; Xiong, Naixue; Huang, Yannong; Xu, Degang; Hu, Chunyang

    2015-01-01

    The services composition technology provides flexible methods for building service composition applications (SCAs) in wireless sensor networks (WSNs). The high reliability and high performance of SCAs help services composition technology promote the practical application of WSNs. The optimization methods for reliability and performance used for traditional software systems are mostly based on the instantiations of software components, which are inapplicable and inefficient in the ever-changing SCAs in WSNs. In this paper, we consider the SCAs with fault tolerance in WSNs. Based on a Universal Generating Function (UGF) we propose a reliability and performance model of SCAs in WSNs, which generalizes a redundancy optimization problem to a multi-state system. Based on this model, an efficient optimization algorithm for reliability and performance of SCAs in WSNs is developed based on a Genetic Algorithm (GA) to find the optimal structure of SCAs with fault-tolerance in WSNs. In order to examine the feasibility of our algorithm, we have evaluated the performance. Furthermore, the interrelationships between the reliability, performance and cost are investigated. In addition, a distinct approach to determine the most suitable parameters in the suggested algorithm is proposed. PMID:26561818

  6. Noise tolerant illumination optimization applied to display devices

    NASA Astrophysics Data System (ADS)

    Cassarly, William J.; Irving, Bruce

    2005-02-01

    Display devices have historically been designed through an iterative process using numerous hardware prototypes. This process is effective but the number of iterations is limited by the time and cost to make the prototypes. In recent years, virtual prototyping using illumination software modeling tools has replaced many of the hardware prototypes. Typically, the designer specifies the design parameters, builds the software model, predicts the performance using a Monte Carlo simulation, and uses the performance results to repeat this process until an acceptable design is obtained. What is highly desired, and now possible, is to use illumination optimization to automate the design process. Illumination optimization provides the ability to explore a wider range of design options while also providing improved performance. Since Monte Carlo simulations are often used to calculate the system performance but those predictions have statistical uncertainty, the use of noise tolerant optimization algorithms is important. The use of noise tolerant illumination optimization is demonstrated by considering display device designs that extract light using 2D paint patterns as well as 3D textured surfaces. A hybrid optimization approach that combines a mesh feedback optimization with a classical optimizer is demonstrated. Displays with LED sources and cold cathode fluorescent lamps are considered.

  7. Optimal fault-tolerant control strategy of a solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojuan; Gao, Danhui

    2017-10-01

    For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.

  8. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster.

    PubMed

    Koštál, Vladimír; Korbelová, Jaroslava; Poupardin, Rodolphe; Moos, Martin; Šimek, Petr

    2016-08-01

    The fruit fly Drosophila melanogaster is an insect of tropical origin. Its larval stage is evolutionarily adapted for rapid growth and development under warm conditions and shows high sensitivity to cold. In this study, we further developed an optimal acclimation and freezing protocol that significantly improves larval freeze tolerance (an ability to survive at -5°C when most of the freezable fraction of water is converted to ice). Using the optimal protocol, freeze survival to adult stage increased from 0.7% to 12.6% in the larvae fed standard diet (agar, sugar, yeast, cornmeal). Next, we fed the larvae diets augmented with 31 different amino compounds, administered in different concentrations, and observed their effects on larval metabolomic composition, viability, rate of development and freeze tolerance. While some diet additives were toxic, others showed positive effects on freeze tolerance. Statistical correlation revealed tight association between high freeze tolerance and high levels of amino compounds involved in arginine and proline metabolism. Proline- and arginine-augmented diets showed the highest potential, improving freeze survival to 42.1% and 50.6%, respectively. Two plausible mechanisms by which high concentrations of proline and arginine might stimulate high freeze tolerance are discussed: (i) proline, probably in combination with trehalose, could reduce partial unfolding of proteins and prevent membrane fusions in the larvae exposed to thermal stress (prior to freezing) or during freeze dehydration; (ii) both arginine and proline are exceptional among amino compounds in their ability to form supramolecular aggregates which probably bind partially unfolded proteins and inhibit their aggregation under increasing freeze dehydration. © 2016. Published by The Company of Biologists Ltd.

  9. CORSSTOL: Cylinder Optimization of Rings, Skin, and Stringers with Tolerance sensitivity

    NASA Technical Reports Server (NTRS)

    Finckenor, J.; Bevill, M.

    1995-01-01

    Cylinder Optimization of Rings, Skin, and Stringers with Tolerance (CORSSTOL) sensitivity is a design optimization program incorporating a method to examine the effects of user-provided manufacturing tolerances on weight and failure. CORSSTOL gives designers a tool to determine tolerances based on need. This is a decisive way to choose the best design among several manufacturing methods with differing capabilities and costs. CORSSTOL initially optimizes a stringer-stiffened cylinder for weight without tolerances. The skin and stringer geometry are varied, subject to stress and buckling constraints. Then the same analysis and optimization routines are used to minimize the maximum material condition weight subject to the least favorable combination of tolerances. The adjusted optimum dimensions are provided with the weight and constraint sensitivities of each design variable. The designer can immediately identify critical tolerances. The safety of parts made out of tolerance can also be determined. During design and development of weight-critical systems, design/analysis tools that provide product-oriented results are of vital significance. The development of this program and methodology provides designers with an effective cost- and weight-saving design tool. The tolerance sensitivity method can be applied to any system defined by a set of deterministic equations.

  10. Realm of Thermoalkaline Lipases in Bioprocess Commodities.

    PubMed

    Lajis, Ahmad Firdaus B

    2018-01-01

    For decades, microbial lipases are notably used as biocatalysts and efficiently catalyze various processes in many important industries. Biocatalysts are less corrosive to industrial equipment and due to their substrate specificity and regioselectivity they produced less harmful waste which promotes environmental sustainability. At present, thermostable and alkaline tolerant lipases have gained enormous interest as biocatalyst due to their stability and robustness under high temperature and alkaline environment operation. Several characteristics of the thermostable and alkaline tolerant lipases are discussed. Their molecular weight and resistance towards a range of temperature, pH, metal, and surfactants are compared. Their industrial applications in biodiesel, biodetergents, biodegreasing, and other types of bioconversions are also described. This review also discusses the advance of fermentation process for thermostable and alkaline tolerant lipases production focusing on the process development in microorganism selection and strain improvement, culture medium optimization via several optimization techniques (i.e., one-factor-at-a-time, surface response methodology, and artificial neural network), and other fermentation parameters (i.e., inoculums size, temperature, pH, agitation rate, dissolved oxygen tension (DOT), and aeration rate). Two common fermentation techniques for thermostable and alkaline tolerant lipases production which are solid-state and submerged fermentation methods are compared and discussed. Recent optimization approaches using evolutionary algorithms (i.e., Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization) are also highlighted in this article.

  11. Optimal Management of Redundant Control Authority for Fault Tolerance

    NASA Technical Reports Server (NTRS)

    Wu, N. Eva; Ju, Jianhong

    2000-01-01

    This paper is intended to demonstrate the feasibility of a solution to a fault tolerant control problem. It explains, through a numerical example, the design and the operation of a novel scheme for fault tolerant control. The fundamental principle of the scheme was formalized in [5] based on the notion of normalized nonspecificity. The novelty lies with the use of a reliability criterion for redundancy management, and therefore leads to a high overall system reliability.

  12. Transmission Scheduling and Routing Algorithms for Delay Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Dudukovich, Rachel; Raible, Daniel E.

    2016-01-01

    The challenges of data processing, transmission scheduling and routing within a space network present a multi-criteria optimization problem. Long delays, intermittent connectivity, asymmetric data rates and potentially high error rates make traditional networking approaches unsuitable. The delay tolerant networking architecture and protocols attempt to mitigate many of these issues, yet transmission scheduling is largely manually configured and routes are determined by a static contact routing graph. A high level of variability exists among the requirements and environmental characteristics of different missions, some of which may allow for the use of more opportunistic routing methods. In all cases, resource allocation and constraints must be balanced with the optimization of data throughput and quality of service. Much work has been done researching routing techniques for terrestrial-based challenged networks in an attempt to optimize contact opportunities and resource usage. This paper examines several popular methods to determine their potential applicability to space networks.

  13. cost and benefits optimization model for fault-tolerant aircraft electronic systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The factors involved in economic assessment of fault tolerant systems (FTS) and fault tolerant flight control systems (FTFCS) are discussed. Algorithms for optimization and economic analysis of FTFCS are documented.

  14. Design and experimental validation for direct-drive fault-tolerant permanent-magnet vernier machines.

    PubMed

    Liu, Guohai; Yang, Junqin; Chen, Ming; Chen, Qian

    2014-01-01

    A fault-tolerant permanent-magnet vernier (FT-PMV) machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs). This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM), the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis.

  15. Long-term lifestyle intervention with optimized high-intensity interval training improves body composition, cardiometabolic risk, and exercise parameters in patients with abdominal obesity.

    PubMed

    Gremeaux, Vincent; Drigny, Joffrey; Nigam, Anil; Juneau, Martin; Guilbeault, Valérie; Latour, Elise; Gayda, Mathieu

    2012-11-01

    The aim of this study was to study the impact of a combined long-term lifestyle and high-intensity interval training intervention on body composition, cardiometabolic risk, and exercise tolerance in overweight and obese subjects. Sixty-two overweight and obese subjects (53.3 ± 9.7 yrs; mean body mass index, 35.8 ± 5 kg/m(2)) were retrospectively identified at their entry into a 9-mo program consisting of individualized nutritional counselling, optimized high-intensity interval exercise, and resistance training two to three times a week. Anthropometric measurements, cardiometabolic risk factors, and exercise tolerance were measured at baseline and program completion. Adherence rate was 97%, and no adverse events occurred with high-intensity interval exercise training. Exercise training was associated with a weekly energy expenditure of 1582 ± 284 kcal. Clinically and statistically significant improvements were observed for body mass (-5.3 ± 5.2 kg), body mass index (-1.9 ± 1.9 kg/m(2)), waist circumference (-5.8 ± 5.4 cm), and maximal exercise capacity (+1.26 ± 0.84 metabolic equivalents) (P < 0.0001 for all parameters). Total fat mass and trunk fat mass, lipid profile, and triglyceride/high-density lipoprotein ratio were also significantly improved (P < 0.0001). At program completion, the prevalence of metabolic syndrome was reduced by 32.5% (P < 0.05). Independent predictors of being a responder to body mass and waist circumference loss were baseline body mass index and resting metabolic rate; those for body mass index decrease were baseline waist circumference and triglyceride/high-density lipoprotein cholesterol ratio. A long-term lifestyle intervention with optimized high-intensity interval exercise improves body composition, cardiometabolic risk, and exercise tolerance in obese subjects. This intervention seems safe, efficient, and well tolerated and could improve adherence to exercise training in this population.

  16. Realm of Thermoalkaline Lipases in Bioprocess Commodities

    PubMed Central

    2018-01-01

    For decades, microbial lipases are notably used as biocatalysts and efficiently catalyze various processes in many important industries. Biocatalysts are less corrosive to industrial equipment and due to their substrate specificity and regioselectivity they produced less harmful waste which promotes environmental sustainability. At present, thermostable and alkaline tolerant lipases have gained enormous interest as biocatalyst due to their stability and robustness under high temperature and alkaline environment operation. Several characteristics of the thermostable and alkaline tolerant lipases are discussed. Their molecular weight and resistance towards a range of temperature, pH, metal, and surfactants are compared. Their industrial applications in biodiesel, biodetergents, biodegreasing, and other types of bioconversions are also described. This review also discusses the advance of fermentation process for thermostable and alkaline tolerant lipases production focusing on the process development in microorganism selection and strain improvement, culture medium optimization via several optimization techniques (i.e., one-factor-at-a-time, surface response methodology, and artificial neural network), and other fermentation parameters (i.e., inoculums size, temperature, pH, agitation rate, dissolved oxygen tension (DOT), and aeration rate). Two common fermentation techniques for thermostable and alkaline tolerant lipases production which are solid-state and submerged fermentation methods are compared and discussed. Recent optimization approaches using evolutionary algorithms (i.e., Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization) are also highlighted in this article. PMID:29666707

  17. Ultralow chirp photonic crystal fiber Mach-Zehnder interferometer.

    PubMed

    Carvalho, William O F; Spadoti, Danilo H; Silvestre, Enrique; Beltran-Mejia, Felipe

    2018-05-20

    A photonic crystal fiber Mach-Zehnder interferometer design was optimized to obtain high performance and ultralow chirp. Two long-period gratings were used to excite the cladding modes, and the rich structure of the cladding was tailored to obtain a slightly chirped free spectral range, as required by the Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T) Norm G.694.1. Finally, a fabrication tolerance analysis was performed. The advantages of the proposed device are an ultralow chirp, high bandwidth, and fabrication robustness tolerance.

  18. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wrigley, C. Y.

    1977-01-01

    A key to the success of this program was the breakthrough development of a technology for producing ultra-thin silicon slices which are very flexible, resilient, and tolerant of moderate handling abuse. Experimental topics investigated were thinning technology, gaseous junction diffusion, aluminum back alloying, internal reflectance, tantalum oxide anti-reflective coating optimization, slice flexibility, handling techniques, production rate limiting steps, low temperature behavior, and radiation tolerance.

  19. Design and Experimental Validation for Direct-Drive Fault-Tolerant Permanent-Magnet Vernier Machines

    PubMed Central

    Liu, Guohai; Yang, Junqin; Chen, Ming; Chen, Qian

    2014-01-01

    A fault-tolerant permanent-magnet vernier (FT-PMV) machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs). This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM), the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis. PMID:25045729

  20. Engineering tolerance to industrially relevant stress factors in yeast cell factories.

    PubMed

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R; Thevelein, Johan M

    2017-06-01

    The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. © FEMS 2017.

  1. Engineering tolerance to industrially relevant stress factors in yeast cell factories

    PubMed Central

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R.

    2017-01-01

    Abstract The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. PMID:28586408

  2. Damage-Survivable and Damage-Tolerant Laminated Composites with Optimally Placed Piezoelectric Layers

    DTIC Science & Technology

    1992-11-13

    AD-A269 879 Damage-Survivable j and Damage-Tolerant Laminated Composites .4.. with Optimally placed Piezoelectric Layers Final Report No. 1 S. P...Damage Surviable and Damage-Tolerant Laminated Composites With Optimally Placed Piezoelectric Layers 12. PERSONAL AUTHOR(S) S.P. Joshi, W.S. Chan ൕa...block number) The main objective of the research is to assure that the embedded sensors/actuators in a smart laminated composite structure are damage

  3. Optimizing the "priming" effect: influence of prior exercise intensity and recovery duration on O2 uptake kinetics and severe-intensity exercise tolerance.

    PubMed

    Bailey, Stephen J; Vanhatalo, Anni; Wilkerson, Daryl P; Dimenna, Fred J; Jones, Andrew M

    2009-12-01

    It has been suggested that a prior bout of high-intensity exercise has the potential to enhance performance during subsequent high-intensity exercise by accelerating the O(2) uptake (Vo(2)) on-response. However, the optimal combination of prior exercise intensity and subsequent recovery duration required to elicit this effect is presently unclear. Eight male participants, aged 18-24 yr, completed step cycle ergometer exercise tests to 80% of the difference between the preestablished gas exchange threshold and maximal Vo(2) (i.e., 80%Delta) after no prior exercise (control) and after six different combinations of prior exercise intensity and recovery duration: 40%Delta with 3 min (40-3-80), 9 min (40-9-80), and 20 min (40-20-80) of recovery and 70%Delta with 3 min (70-3-80), 9 min (70-9-80), and 20 min (70-20-80) of recovery. Overall Vo(2) kinetics were accelerated relative to control in all conditions except for 40-9-80 and 40-20-80 conditions as a consequence of a reduction in the Vo(2) slow component amplitude; the phase II time constant was not significantly altered with any prior exercise/recovery combination. Exercise tolerance at 80%Delta was improved by 15% and 30% above control in the 70-9-80 and 70-20-80 conditions, respectively, but was impaired by 16% in the 70-3-80 condition. Prior exercise at 40%Delta did not significantly influence exercise tolerance regardless of the recovery duration. These data demonstrate that prior high-intensity exercise ( approximately 70%Delta) can enhance the tolerance to subsequent high-intensity exercise provided that it is coupled with adequate recovery duration (>or=9 min). This combination presumably optimizes the balance between preserving the effects of prior exercise on Vo(2) kinetics and providing sufficient time for muscle homeostasis (e.g., muscle phosphocreatine and H(+) concentrations) to be restored.

  4. An optimized implementation of a fault-tolerant clock synchronization circuit

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    1995-01-01

    A fault-tolerant clock synchronization circuit was designed and tested. A comparison to a previous design and the procedure followed to achieve the current optimization are included. The report also includes a description of the system and the results of tests performed to study the synchronization and fault-tolerant characteristics of the implementation.

  5. Investigation of progressive failure robustness and alternate load paths for damage tolerant structures

    NASA Astrophysics Data System (ADS)

    Marhadi, Kun Saptohartyadi

    Structural optimization for damage tolerance under various unforeseen damage scenarios is computationally challenging. It couples non-linear progressive failure analysis with sampling-based stochastic analysis of random damage. The goal of this research was to understand the relationship between alternate load paths available in a structure and its damage tolerance, and to use this information to develop computationally efficient methods for designing damage tolerant structures. Progressive failure of a redundant truss structure subjected to small random variability was investigated to identify features that correlate with robustness and predictability of the structure's progressive failure. The identified features were used to develop numerical surrogate measures that permit computationally efficient deterministic optimization to achieve robustness and predictability of progressive failure. Analysis of damage tolerance on designs with robust progressive failure indicated that robustness and predictability of progressive failure do not guarantee damage tolerance. Damage tolerance requires a structure to redistribute its load to alternate load paths. In order to investigate the load distribution characteristics that lead to damage tolerance in structures, designs with varying degrees of damage tolerance were generated using brute force stochastic optimization. A method based on principal component analysis was used to describe load distributions (alternate load paths) in the structures. Results indicate that a structure that can develop alternate paths is not necessarily damage tolerant. The alternate load paths must have a required minimum load capability. Robustness analysis of damage tolerant optimum designs indicates that designs are tailored to specified damage. A design Optimized under one damage specification can be sensitive to other damages not considered. Effectiveness of existing load path definitions and characterizations were investigated for continuum structures. A load path definition using a relative compliance change measure (U* field) was demonstrated to be the most useful measure of load path. This measure provides quantitative information on load path trajectories and qualitative information on the effectiveness of the load path. The use of the U* description of load paths in optimizing structures for effective load paths was investigated.

  6. Design and optimization of a high-efficiency array generator in the mid-IR with binary subwavelength grooves.

    PubMed

    Bloom, Guillaume; Larat, Christian; Lallier, Eric; Lee-Bouhours, Mane-Si Laure; Loiseaux, Brigitte; Huignard, Jean-Pierre

    2011-02-10

    We have designed a high-efficiency array generator composed of subwavelength grooves etched in a GaAs substrate for operation at 4.5 μm. The method used combines rigorous coupled wave analysis with an optimization algorithm. The optimized beam splitter has both a high efficiency (∼96%) and a good intensity uniformity (∼0.2%). The fabrication error tolerances are numerically calculated, and it is shown that this subwavelength array generator could be fabricated with current electron beam writers and inductively coupled plasma etching. Finally, we studied the effect of a simple and realistic antireflection coating on the performance of the beam splitter.

  7. Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation.

    PubMed

    Kitichantaropas, Yasin; Boonchird, Chuenchit; Sugiyama, Minetaka; Kaneko, Yoshinobu; Harashima, Satoshi; Auesukaree, Choowong

    2016-12-01

    High-temperature ethanol fermentation has several benefits including a reduction in cooling cost, minimizing risk of bacterial contamination, and enabling simultaneous saccharification and fermentation. To achieve the efficient ethanol fermentation at high temperature, yeast strain that tolerates to not only high temperature but also the other stresses present during fermentation, e.g., ethanol, osmotic, and oxidative stresses, is indispensable. The C3253, C3751, and C4377 Saccharomyces cerevisiae strains, which have been previously isolated as thermotolerant yeasts, were found to be multiple stress-tolerant. In these strains, continuous expression of heat shock protein genes and intracellular trehalose accumulation were induced in response to stresses causing protein denaturation. Compared to the control strains, these multiple stress-tolerant strains displayed low intracellular reactive oxygen species levels and effective cell wall remodeling upon exposures to almost all stresses tested. In response to simultaneous multi-stress mimicking fermentation stress, cell wall remodeling and redox homeostasis seem to be the primary mechanisms required for protection against cell damage. Moreover, these strains showed better performances of ethanol production than the control strains at both optimal and high temperatures, suggesting their potential use in high-temperature ethanol fermentation.

  8. Resolution Mechanism and Characterization of an Ammonium Chloride-Tolerant, High-Thermostable, and Salt-Tolerant Phenylalanine Dehydrogenase from Bacillus halodurans.

    PubMed

    Jiang, Wei; Wang, Ya-Li; Fang, Bai-Shan

    2018-05-09

    As phenylalanine dehydrogenase (PheDH) plays an important role in the synthesis of chiral drug intermediates and detection of phenylketonuria, it is significant to obtain a PheDH with specific and high activity. Here, a PheDH gene, pdh, encoding a novel BhPheDH with 61.0% similarity to the known PheDH from Microbacterium sp., was obtained. The BhPheDH showed optimal activity at 60 °C and pH 7.0, and it showed better stability in hot environment (40-70 °C) than the PheDH from Nocardia sp. And its activity and thermostability could be significantly increased by sodium salt. After incubation for 2 h in 3 M NaCl at 60 °C, the residual activity of the BhPheDH was found to be 1.8-fold higher than that of the control group (without NaCl). The BhPheDH could tolerate high concentration of ammonium chloride and its activity could be also enhanced by the high concentration of ammonium salts. These characteristics indicate that the BhPheDH possesses better thermostability, ammonium chloride tolerance, halophilic mechanism, and high salt activation. The mechanism of thermostability and high salt tolerance of the BhPheDH was analyzed by molecular dynamics simulation. These results provide useful information about the enzyme with high-temperature activity, thermostability, halophilic mechanism, tolerance to high concentration of ammonium chloride, higher salt activation and enantio-selectivity, and the application of molecular dynamics simulation in analyzing the mechanism of these distinctive characteristics.

  9. Thermal physiology, disease, and amphibian declines on the eastern slopes of the Andes.

    PubMed

    Catenazzi, Alessandro; Lehr, Edgar; Vredenburg, Vance T

    2014-04-01

    Rising temperatures, a widespread consequence of climate change, have been implicated in enigmatic amphibian declines from habitats with little apparent human impact. The pathogenic fungus Batrachochytrium dendrobatidis (Bd), now widespread in Neotropical mountains, may act in synergy with climate change causing collapse in thermally stressed hosts. We measured the thermal tolerance of frogs along a wide elevational gradient in the Tropical Andes, where frog populations have collapsed. We used the difference between critical thermal maximum and the temperature a frog experiences in nature as a measure of tolerance to high temperatures. Temperature tolerance increased as elevation increased, suggesting that frogs at higher elevations may be less sensitive to rising temperatures. We tested the alternative pathogen optimal growth hypothesis that prevalence of the pathogen should decrease as temperatures fall outside the optimal range of pathogen growth. Our infection-prevalence data supported the pathogen optimal growth hypothesis because we found that prevalence of Bd increased when host temperatures matched its optimal growth range. These findings suggest that rising temperatures may not be the driver of amphibian declines in the eastern slopes of the Andes. Zoonotic outbreaks of Bd are the most parsimonious hypothesis to explain the collapse of montane amphibian faunas; but our results also reveal that lowland tropical amphibians, despite being shielded from Bd by higher temperatures, are vulnerable to climate-warming stress. © 2013 Society for Conservation Biology.

  10. Evolutionary responses to climate change in parasitic systems.

    PubMed

    Chaianunporn, Thotsapol; Hovestadt, Thomas

    2015-08-01

    Species may respond to climate change in many ecological and evolutionary ways. In this simulation study, we focus on the concurrent evolution of three traits in response to climate change, namely dispersal probability, temperature tolerance (or niche width), and temperature preference (optimal habitat). More specifically, we consider evolutionary responses in host species involved in different types of interaction, that is parasitism or commensalism, and for low or high costs of a temperature tolerance-fertility trade-off (cost of generalization). We find that host species potentially evolve all three traits simultaneously in response to increasing temperature but that the evolutionary response interacts and may be compensatory depending on the conditions. The evolutionary adjustment of temperature preference is slower in the parasitism than in commensalism scenario. Parasitism, in turn, selects for higher temperature tolerance and increased dispersal. High costs for temperature tolerance (i.e. generalization) restrict evolution of tolerance and thus lead to a faster response in temperature preference than that observed under low costs. These results emphasize the possible role of biotic interactions and the importance of 'multidimensional' evolutionary responses to climate change. © 2015 John Wiley & Sons Ltd.

  11. High Speed Computing, LANs, and WAMs

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A.; Monacos, Steve

    1994-01-01

    Optical fiber networks may one day offer potential capacities exceeding 10 terabits/sec. This paper describes present gigabit network techniques for distributed computing as illustrated by the CASA gigabit testbed, and then explores future all-optic network architectures that offer increased capacity, more optimized level of service for a given application, high fault tolerance, and dynamic reconfigurability.

  12. Biochemical characterization and structural analysis of a new cold-active and salt-tolerant esterase from the marine bacterium Thalassospira sp.

    PubMed

    De Santi, Concetta; Leiros, Hanna-Kirsti S; Di Scala, Alessia; de Pascale, Donatella; Altermark, Bjørn; Willassen, Nils-Peder

    2016-05-01

    A gene encoding an esterase, ThaEst2349, was identified in the marine psychrophilic bacterium Thalassospira sp. GB04J01. The gene was cloned and overexpressed in E. coli as a His-tagged fusion protein. The recombinant enzyme showed optimal activity at 45 °C and the thermal stability displayed a retention of 75 % relative activity at 40 °C after 2 h. The optimal pH was 8.5 but the enzyme kept more than 75 % of its maximal activity between pH 8.0 and 9.5. ThaEst2349 also showed remarkable tolerance towards high concentrations of salt and it was active against short-chain p-nitrophenyl esters, displaying optimal activity with the acetate. The enzyme was tested for tolerance of organic solvents and the results are suggesting that it could function as an interesting candidate for biotechnological applications. The crystal structure of ThaEst2349 was determined to 1.69 Å revealing an asymmetric unit containing two chains, which also is the biological unit. The structure has a characteristic cap domain and a catalytic triad comprising Ser158, His285 and Asp255. To explain the cold-active nature of the enzyme, we compared it against thermophilic counterparts. Our hypothesis is that a high methionine content, less hydrogen bonds and less ion pairs render the enzyme more flexible at low temperatures.

  13. SU-D-BRC-02: Application of Six Sigma Approach to Improve the Efficiency of Patient-Specific QA in Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LAH, J; Shin, D; Manger, R

    Purpose: To show how the Six Sigma DMAIC (Define-Measure-Analyze-Improve-Control) can be used for improving and optimizing the efficiency of patient-specific QA process by designing site-specific range tolerances. Methods: The Six Sigma tools (process flow diagram, cause and effect, capability analysis, Pareto chart, and control chart) were utilized to determine the steps that need focus for improving the patient-specific QA process. The patient-specific range QA plans were selected according to 7 treatment site groups, a total of 1437 cases. The process capability index, Cpm was used to guide the tolerance design of patient site-specific range. We also analyzed the financial impactmore » of this project. Results: Our results suggested that the patient range measurements were non-capable at the current tolerance level of ±1 mm in clinical proton plans. The optimized tolerances were calculated for treatment sites. Control charts for the patient QA time were constructed to compare QA time before and after the new tolerances were implemented. It is found that overall processing time was decreased by 24.3% after establishing new site-specific range tolerances. The QA failure for whole process in proton therapy would lead up to a 46% increase in total cost. This result can also predict how costs are affected by changes in adopting the tolerance design. Conclusion: We often believe that the quality and performance of proton therapy can easily be improved by merely tightening some or all of its tolerance requirements. This can become costly, however, and it is not necessarily a guarantee of better performance. The tolerance design is not a task to be undertaken without careful thought. The Six Sigma DMAIC can be used to improve the QA process by setting optimized tolerances. When tolerance design is optimized, the quality is reasonably balanced with time and cost demands.« less

  14. Reliability of Fault Tolerant Control Systems. Part 2

    NASA Technical Reports Server (NTRS)

    Wu, N. Eva

    2000-01-01

    This paper reports Part II of a two part effort that is intended to delineate the relationship between reliability and fault tolerant control in a quantitative manner. Reliability properties peculiar to fault-tolerant control systems are emphasized, such as the presence of analytic redundancy in high proportion, the dependence of failures on control performance, and high risks associated with decisions in redundancy management due to multiple sources of uncertainties and sometimes large processing requirements. As a consequence, coverage of failures through redundancy management can be severely limited. The paper proposes to formulate the fault tolerant control problem as an optimization problem that maximizes coverage of failures through redundancy management. Coverage modeling is attempted in a way that captures its dependence on the control performance and on the diagnostic resolution. Under the proposed redundancy management policy, it is shown that an enhanced overall system reliability can be achieved with a control law of a superior robustness, with an estimator of a higher resolution, and with a control performance requirement of a lesser stringency.

  15. Characteristics of two novel cold- and salt-tolerant ammonia-oxidizing bacteria from Liaohe Estuarine Wetland.

    PubMed

    Huang, Xiao; Bai, Jie; Li, Kui-Ran; Zhao, Yang-Guo; Tian, Wei-Jun; Dang, Jia-Jia

    2017-01-15

    To achieve a better contaminant removal efficiency in a low-temperature and high-salt environment, two novel strains of cold- and salt-tolerant ammonia-oxidizing bacteria (AOB), i.e., Ochrobactrum sp. (HXN-1) and Aquamicrobium sp. (HXN-2), were isolated from the surface sediment of Liaohe Estuarine Wetland (LEW), China. The optimization of initial ammonia nitrogen concentration, pH, carbon-nitrogen ratio, and petroleum hydrocarbons (PHCs) to improve the ammonia-oxidation capacity of the two bacterial strains was studied. Both bacterial strains showed a high ammonia nitrogen removal rate of over 80% under a high salinity of 10‰. Even at a temperature as low as 15°C, HXN-1 and HXN-2 could achieve an ammonia nitrogen removal rate of 53% and 62%, respectively. The cold- and salt-tolerant AOB in this study demonstrated a high potential for ammonia nitrogen removal from LEW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. WIPCast: Probabilistic Forecasting for Aviation Decision Aid Applications

    DTIC Science & Technology

    2011-06-01

    traders, or families planning an outing – manage weather-related risk. By quantifying risk , probabilistic forecasting enables optimization of actions via...confidence interval to the user’s risk tolerance helps drive highly effective and innovative decision support mechanisms for visually quantifying risk for

  17. Optimum Tolerance Design Using Component-Amount and Mixture-Amount Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Ozler, Cenk; Sehirlioglu, Ali Kemal

    2013-08-01

    One type of tolerance design problem involves optimizing component and assembly tolerances to minimize the total cost (sum of manufacturing cost and quality loss). Previous literature recommended using traditional response surface (RS) designs and models to solve this type of tolerance design problem. In this article, component-amount (CA) and mixture-amount (MA) approaches are proposed as more appropriate for solving this type of tolerance design problem. The advantages of the CA and MA approaches over the RS approach are discussed. Reasons for choosing between the CA and MA approaches are also discussed. The CA and MA approaches (experimental design, response modeling,more » and optimization) are illustrated using real examples.« less

  18. A fault-tolerant addressable spin qubit in a natural silicon quantum dot

    PubMed Central

    Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo

    2016-01-01

    Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot–based qubits. This result can inspire contributions to quantum computing from industrial communities. PMID:27536725

  19. A fault-tolerant addressable spin qubit in a natural silicon quantum dot.

    PubMed

    Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo

    2016-08-01

    Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot-based qubits. This result can inspire contributions to quantum computing from industrial communities.

  20. Cost and benefits design optimization model for fault tolerant flight control systems

    NASA Technical Reports Server (NTRS)

    Rose, J.

    1982-01-01

    Requirements and specifications for a method of optimizing the design of fault-tolerant flight control systems are provided. Algorithms that could be used for developing new and modifying existing computer programs are also provided, with recommendations for follow-on work.

  1. Bioinspired Concepts: Unified Theory for Complex Biological and Engineering Systems

    DTIC Science & Technology

    2006-01-01

    i.e., data flows of finite size arrive at the system randomly. For such a system , we propose a modified dual scheduling algorithm that stabilizes ...demon. We compute the efficiency of the controller over finite and infinite time intervals, and since the controller is optimal, this yields hard limits...and highly optimized tolerance. PNAS, 102, 2005. 51. G. N. Nair and R. J. Evans. Stabilizability of stochastic linear systems with finite feedback

  2. Treatment tolerance and patient-reported outcomes favor online hemodiafiltration compared to high-flux hemodialysis in the elderly.

    PubMed

    Morena, Marion; Jaussent, Audrey; Chalabi, Lotfi; Leray-Moragues, Hélène; Chenine, Leila; Debure, Alain; Thibaudin, Damien; Azzouz, Lynda; Patrier, Laure; Maurice, Francois; Nicoud, Philippe; Durand, Claude; Seigneuric, Bruno; Dupuy, Anne-Marie; Picot, Marie-Christine; Cristol, Jean-Paul; Canaud, Bernard

    2017-06-01

    Large cohort studies suggest that high convective volumes associated with online hemodiafiltration may reduce the risk of mortality/morbidity compared to optimal high-flux hemodialysis. By contrast, intradialytic tolerance is not well studied. The aim of the FRENCHIE (French Convective versus Hemodialysis in Elderly) study was to compare high-flux hemodialysis and online hemodiafiltration in terms of intradialytic tolerance. In this prospective, open-label randomized controlled trial, 381 elderly chronic hemodialysis patients (over age 65) were randomly assigned in a one-to-one ratio to either high-flux hemodialysis or online hemodiafiltration. The primary outcome was intradialytic tolerance (day 30-day 120). Secondary outcomes included health-related quality of life, cardiovascular risk biomarkers, morbidity, and mortality. During the observational period for intradialytic tolerance, 85% and 84% of patients in high-flux hemodialysis and online hemodiafiltration arms, respectively, experienced at least one adverse event without significant difference between groups. As exploratory analysis, intradialytic tolerance was also studied, considering the sessions as a statistical unit according to treatment actually received. Over a total of 11,981 sessions, 2,935 were complicated by the occurrence of at least one adverse event, with a significantly lower occurrence in online hemodiafiltration with fewer episodes of intradialytic symptomatic hypotension and muscle cramps. By contrast, health-related quality of life, morbidity, and mortality were not different in both groups. An improvement in the control of metabolic bone disease biomarkers and β2-microglobulin level without change in serum albumin concentration was observed with online hemodiafiltration. Thus, overall outcomes favor online hemodiafiltration over high-flux hemodialysis in the elderly. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  3. Optimization of auxiliary optics in active-optics telescopes

    NASA Astrophysics Data System (ADS)

    Ragazzoni, Roberto

    1993-04-01

    The a-priori knowledge of the availability of active optics in a telescope can be advantageous in the design, optimization, and specification of tolerances for auxiliary devices of such a telescope. A modification of the merit function to be used into the optimization process is given, together with some considerations about the design procedure. The different effects of aberrations typically depending upon the position of the field of view (like coma or astigmatism), with those typically constant over the whole field of view (like spherical aberration) are explicitly taken into account in the mathematical treatment. A possible range of applications (prime focus corrector, off-axis field corrector, field flattener, reducing camera, and so on) is discussed. A case study for a field flattener is shown. The general result that can be derived from this paper is that tolerances are generally strongly relaxed, while a significant improvement of the nominal performances can be obtained only in particular cases or assuming a high dynamic range of the active optics correction.

  4. A minimum cost tolerance allocation method for rocket engines and robust rocket engine design

    NASA Technical Reports Server (NTRS)

    Gerth, Richard J.

    1993-01-01

    Rocket engine design follows three phases: systems design, parameter design, and tolerance design. Systems design and parameter design are most effectively conducted in a concurrent engineering (CE) environment that utilize methods such as Quality Function Deployment and Taguchi methods. However, tolerance allocation remains an art driven by experience, handbooks, and rules of thumb. It was desirable to develop and optimization approach to tolerancing. The case study engine was the STME gas generator cycle. The design of the major components had been completed and the functional relationship between the component tolerances and system performance had been computed using the Generic Power Balance model. The system performance nominals (thrust, MR, and Isp) and tolerances were already specified, as were an initial set of component tolerances. However, the question was whether there existed an optimal combination of tolerances that would result in the minimum cost without any degradation in system performance.

  5. Design optimization and tolerance analysis of a spot-size converter for the taper-assisted vertical integration platform in InP.

    PubMed

    Tolstikhin, Valery; Saeidi, Shayan; Dolgaleva, Ksenia

    2018-05-01

    We report on the design optimization and tolerance analysis of a multistep lateral-taper spot-size converter based on indium phosphide (InP), performed using the Monte Carlo method. Being a natural fit to (and a key building block of) the regrowth-free taper-assisted vertical integration platform, such a spot-size converter enables efficient and displacement-tolerant fiber coupling to InP-based photonic integrated circuits at a wavelength of 1.31 μm. An exemplary four-step lateral-taper design featuring 0.35 dB coupling loss at optimal alignment of a standard single-mode fiber; ≥7  μm 1 dB displacement tolerance in any direction in a facet plane; and great stability against manufacturing variances is demonstrated.

  6. Efficient kinetic resolution of secondary alcohols using an organic solvent-tolerant esterase in non-aqueous medium.

    PubMed

    Gao, Wenyuan; Fan, Haiyang; Chen, Lifeng; Wang, Hualei; Wei, Dongzhi

    2016-07-01

    To identify an esterase-mediated kinetic resolution of secondary alcohols in non-aqueous medium. An esterase, EST4, from a marine mud metagenomic library, showed high activity and enantioselectivity for the kinetic resolution of secondary alcohols in non-aqueous medium. Using 1-phenylethanol as the model alcohol, the effects of organic solvents, acyl donors, molar ratio, temperatures and biocatalyst loading on the kinetic resolution catalyzed by the EST4 whole-cell biocatalyst were investigated and optimized. The optimized methodology was effective on resolving 16 various racemic secondary alcohols in neat n-hexane, providing excellent enantiomeric excess (up to 99.9 % ee). Moreover, EST4 exhibited a strong tolerance for high substrate concentration (up to 1 M), and the optical purity of the desired secondary alcohols was kept above 99 % ee. The esterase EST4 is a promising biocatalyst for the enantioselective synthesis of various alcohols and esters with interesting practical applications.

  7. Understanding checkpointing overheads on massive-scale systems : analysis of the IBM Blue Gene/P system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, R.; Naik, H.; Beckman, P.

    Providing fault tolerance in high-end petascale systems, consisting of millions of hardware components and complex software stacks, is becoming an increasingly challenging task. Checkpointing continues to be the most prevalent technique for providing fault tolerance in such high-end systems. Considerable research has focussed on optimizing checkpointing; however, in practice, checkpointing still involves a high-cost overhead for users. In this paper, we study the checkpointing overhead seen by various applications running on leadership-class machines like the IBM Blue Gene/P at Argonne National Laboratory. In addition to studying popular applications, we design a methodology to help users understand and intelligently choose anmore » optimal checkpointing frequency to reduce the overall checkpointing overhead incurred. In particular, we study the Grid-Based Projector-Augmented Wave application, the Carr-Parrinello Molecular Dynamics application, the Nek5000 computational fluid dynamics application and the Parallel Ocean Program application-and analyze their memory usage and possible checkpointing trends on 65,536 processors of the Blue Gene/P system.« less

  8. Genetic variation of germination cold tolerance in Japanese rice germplasm

    PubMed Central

    Bosetti, Fátima; Montebelli, Camila; Novembre, Ana Dionísia L.C.; Chamma, Helena Pescarin; Pinheiro, José Baldin

    2012-01-01

    Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13°C for 28 days (cold stress) and 28°C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold. PMID:23226080

  9. Genetic variation of germination cold tolerance in Japanese rice germplasm.

    PubMed

    Bosetti, Fátima; Montebelli, Camila; Novembre, Ana Dionísia L C; Chamma, Helena Pescarin; Pinheiro, José Baldin

    2012-09-01

    Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13°C for 28 days (cold stress) and 28°C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold.

  10. Design optimization of highly asymmetrical layouts by 2D contour metrology

    NASA Astrophysics Data System (ADS)

    Hu, C. M.; Lo, Fred; Yang, Elvis; Yang, T. H.; Chen, K. C.

    2018-03-01

    As design pitch shrinks to the resolution limit of up-to-date optical lithography technology, the Critical Dimension (CD) variation tolerance has been dramatically decreased for ensuring the functionality of device. One of critical challenges associates with the narrower CD tolerance for whole chip area is the proximity effect control on asymmetrical layout environments. To fulfill the tight CD control of complex features, the Critical Dimension Scanning Electron Microscope (CD-SEM) based measurement results for qualifying process window and establishing the Optical Proximity Correction (OPC) model become insufficient, thus 2D contour extraction technique [1-5] has been an increasingly important approach for complementing the insufficiencies of traditional CD measurement algorithm. To alleviate the long cycle time and high cost penalties for product verification, manufacturing requirements are better to be well handled at design stage to improve the quality and yield of ICs. In this work, in-house 2D contour extraction platform was established for layout design optimization of 39nm half-pitch Self-Aligned Double Patterning (SADP) process layer. Combining with the adoption of Process Variation Band Index (PVBI), the contour extraction platform enables layout optimization speedup as comparing to traditional methods. The capabilities of identifying and handling lithography hotspots in complex layout environments of 2D contour extraction platform allow process window aware layout optimization to meet the manufacturing requirements.

  11. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change

    PubMed Central

    Stratonovitch, Pierre; Semenov, Mikhail A.

    2015-01-01

    To deliver food security for the 9 billon population in 2050, a 70% increase in world food supply will be required. Projected climatic and environmental changes emphasize the need for breeding strategies that delivers both a substantial increase in yield potential and resilience to extreme weather events such as heat waves, late frost, and drought. Heat stress around sensitive stages of wheat development has been identified as a possible threat to wheat production in Europe. However, no estimates have been made to assess yield losses due to increased frequency and magnitude of heat stress under climate change. Using existing experimental data, the Sirius wheat model was refined by incorporating the effects of extreme temperature during flowering and grain filling on accelerated leaf senescence, grain number, and grain weight. This allowed us, for the first time, to quantify yield losses resulting from heat stress under climate change. The model was used to optimize wheat ideotypes for CMIP5-based climate scenarios for 2050 at six sites in Europe with diverse climates. The yield potential for heat-tolerant ideotypes can be substantially increased in the future (e.g. by 80% at Seville, 100% at Debrecen) compared with the current cultivars by selecting an optimal combination of wheat traits, e.g. optimal phenology and extended duration of grain filling. However, at two sites, Seville and Debrecen, the grain yields of heat-sensitive ideotypes were substantially lower (by 54% and 16%) and more variable compared with heat-tolerant ideotypes, because the extended grain filling required for the increased yield potential was in conflict with episodes of high temperature during flowering and grain filling. Despite much earlier flowering at these sites, the risk of heat stress affecting yields of heat-sensitive ideotypes remained high. Therefore, heat tolerance in wheat is likely to become a key trait for increased yield potential and yield stability in southern Europe in the future. PMID:25750425

  12. Fault-tolerant locomotion of the hexapod robot.

    PubMed

    Yang, J M; Kim, J H

    1998-01-01

    In this paper, we propose a scheme for fault detection and tolerance of the hexapod robot locomotion on even terrain. The fault stability margin is defined to represent potential stability which a gait can have in case a sudden fault event occurs to one leg. Based on this, the fault-tolerant quadruped periodic gaits of the hexapod walking over perfectly even terrain are derived. It is demonstrated that the derived quadruped gait is the optimal one the hexapod can have maintaining fault stability margin nonnegative and a geometric condition should be satisfied for the optimal locomotion. By this scheme, when one leg is in failure, the hexapod robot has the modified tripod gait to continue the optimal locomotion.

  13. Purification, characterisation and salt-tolerance molecular mechanisms of aspartyl aminopeptidase from Aspergillus oryzae 3.042.

    PubMed

    Gao, Xianli; Yin, Yiyun; Zhou, Cunshan

    2018-02-01

    A salt-tolerant aspartyl aminopeptidase (approximately 57kDa) from Aspergillus oryzae 3.042 was purified and identified. Specific inhibitor experiments indicated that it was an aminopeptidase containing Zn 2+ . Its optimal and stable pH values and temperatures were 7 and 50°C, respectively. Its relative activity remained beyond 30% in 3M NaCl solution for 15d, and its K m and V max were slightly affected in 3M NaCl solution, indicating its excellent salt-tolerance. A comprehensive analysis including protein homology modelling, molecular dynamics simulation, secondary structure, acidic residues and hydrophobicity of interior residues demonstrated that aspartyl aminopeptidase had a greater stability than non-salt-tolerant protease in high salinity. Higher contents of ordered secondary structures, more salt bridges between hydrated surface acidic residues and specific basic residues and stronger hydrophobicity of interior residues were the salt-tolerance mechanisms of aspartyl aminopeptidase. Copyright © 2017. Published by Elsevier Ltd.

  14. Eigenstructure Assignment for Fault Tolerant Flight Control Design

    NASA Technical Reports Server (NTRS)

    Sobel, Kenneth; Joshi, Suresh (Technical Monitor)

    2002-01-01

    In recent years, fault tolerant flight control systems have gained an increased interest for high performance military aircraft as well as civil aircraft. Fault tolerant control systems can be described as either active or passive. An active fault tolerant control system has to either reconfigure or adapt the controller in response to a failure. One approach is to reconfigure the controller based upon detection and identification of the failure. Another approach is to use direct adaptive control to adjust the controller without explicitly identifying the failure. In contrast, a passive fault tolerant control system uses a fixed controller which achieves acceptable performance for a presumed set of failures. We have obtained a passive fault tolerant flight control law for the F/A-18 aircraft which achieves acceptable handling qualities for a class of control surface failures. The class of failures includes the symmetric failure of any one control surface being stuck at its trim value. A comparison was made of an eigenstructure assignment gain designed for the unfailed aircraft with a fault tolerant multiobjective optimization gain. We have shown that time responses for the unfailed aircraft using the eigenstructure assignment gain and the fault tolerant gain are identical. Furthermore, the fault tolerant gain achieves MIL-F-8785C specifications for all failure conditions.

  15. Effect of methyl jasmonate on seedling tolerance to drought and cold temperature stress

    USDA-ARS?s Scientific Manuscript database

    Environmental conditions are rarely optimal for plant growth, and nearly all plants experience some degree of abiotic stress during production. Commonly caused by inadequate water availability or unfavorably low or high temperatures, environmental stresses cause growth to slow or cease, reduce net p...

  16. Modeling OPC complexity for design for manufacturability

    NASA Astrophysics Data System (ADS)

    Gupta, Puneet; Kahng, Andrew B.; Muddu, Swamy; Nakagawa, Sam; Park, Chul-Hong

    2005-11-01

    Increasing design complexity in sub-90nm designs results in increased mask complexity and cost. Resolution enhancement techniques (RET) such as assist feature addition, phase shifting (attenuated PSM) and aggressive optical proximity correction (OPC) help in preserving feature fidelity in silicon but increase mask complexity and cost. Data volume increase with rise in mask complexity is becoming prohibitive for manufacturing. Mask cost is determined by mask write time and mask inspection time, which are directly related to the complexity of features printed on the mask. Aggressive RET increase complexity by adding assist features and by modifying existing features. Passing design intent to OPC has been identified as a solution for reducing mask complexity and cost in several recent works. The goal of design-aware OPC is to relax OPC tolerances of layout features to minimize mask cost, without sacrificing parametric yield. To convey optimal OPC tolerances for manufacturing, design optimization should drive OPC tolerance optimization using models of mask cost for devices and wires. Design optimization should be aware of impact of OPC correction levels on mask cost and performance of the design. This work introduces mask cost characterization (MCC) that quantifies OPC complexity, measured in terms of fracture count of the mask, for different OPC tolerances. MCC with different OPC tolerances is a critical step in linking design and manufacturing. In this paper, we present a MCC methodology that provides models of fracture count of standard cells and wire patterns for use in design optimization. MCC cannot be performed by designers as they do not have access to foundry OPC recipes and RET tools. To build a fracture count model, we perform OPC and fracturing on a limited set of standard cells and wire configurations with all tolerance combinations. Separately, we identify the characteristics of the layout that impact fracture count. Based on the fracture count (FC) data from OPC and mask data preparation runs, we build models of FC as function of OPC tolerances and layout parameters.

  17. Controlled release of Lactobacillus rhamnosus biofilm probiotics from alginate-locust bean gum microcapsules.

    PubMed

    Cheow, Wean Sin; Kiew, Tie Yi; Hadinoto, Kunn

    2014-03-15

    Chitosan-coated alginate microcapsules containing high-density biofilm Lactobacillus rhamnosus have been previously shown to exhibit higher freeze drying- and thermal-tolerance than their planktonic counterparts. However, their cell release profile remains poor due to the capsules' susceptibility to the gastric environment. Herein the effects of adding locust bean (LB) and xanthan (XT) gums to alginate (AGN) capsules on the stress tolerance and cell release profiles in simulated gastrointestinal fluids are investigated. Compared to the AGN-only capsules, the AGN-LB capsules exhibit improved stress tolerance (i.e. ≈ 6x for freeze drying, 100x for thermotolerance, 10x for acid), whereas the AGN-XT capsules only improve the acid tolerance. Importantly, the AGN-LB capsules possess the optimal cell release profile with a majority of cells released in the simulated intestinal juice than in the gastric juice. The AGN-LB capsules' superiority is attributed to their stronger interaction with the chitosan coating and high swelling capacity, thus delaying their bulk dissolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Development of Novel Glyphosate-Tolerant Japonica Rice Lines: A Step Toward Commercial Release.

    PubMed

    Cui, Ying; Huang, Shuqing; Liu, Ziduo; Yi, Shuyuan; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2016-01-01

    Glyphosate is the most widely used herbicide for its low cost and high efficiency. However, it is rarely applied directly in rice field due to its toxicity to rice. Therefore, glyphosate-tolerant rice can greatly decrease the cost of rice production and provide a more effective weed management strategy. Although, several approaches to develop transgenic rice with glyphosate tolerance have been reported, the agronomic performances of these plants have not been well evaluated, and the feasibility of commercial production has not been confirmed yet. Here, a novel glyphosate-tolerant gene cloned from the bacterium Isoptericola variabilis was identified, codon optimized (designated as I. variabilis-EPSPS (*)), and transferred into Zhonghua11, a widely used japonica rice cultivar. After systematic analysis of the transgene integration via PCR, Southern blot and flanking sequence isolation, three transgenic lines with only one intact I. variabilis-EPSPS (*) expression cassette integrated into intergenic regions were identified. Seed test results showed that the glyphosate tolerance of the transgenic rice was about 240 times that of wild type on plant medium. The glyphosate tolerance of transgenic rice lines was further evaluated based on comprehensive agronomic performances in the field with T3 and T5generations in a 2-year assay, which showed that they were rarely affected by glyphosate even when the dosage was 8400 g ha(-1). To our knowledge, this is the first demonstration of the development of glyphosate-tolerant rice lines based on a comprehensive analysis of agronomic performances in the field. Taken together, the results suggest that the selected glyphosate-tolerant rice lines are highly tolerant to glyphosate and have the possibility of commercial release. I. variabilis-EPSPS (*) also can be a promising candidate gene in other species for developing glyphosate-tolerant crops.

  19. Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode

    NASA Astrophysics Data System (ADS)

    Lv, Peng; Tang, Xun; Zheng, Ruilin; Ma, Xiaobo; Yu, Kehan; Wei, Wei

    2017-12-01

    Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimized PANI mass content of 63 wt% shows the improved specific capacitance of 713 F g-1 in the three-electrode system. And the graphene/PANI aerogel presents a high recoverable compressive strain of 90% due to the strong interaction between PANI and graphene. The all-solid-state supercapacitors were assembled to demonstrate the compression-tolerant ability of graphene/PANI electrodes. The gravimetric capacitance of graphene/PANI electrodes reaches 424 F g-1 and retains 96% even at 90% compressive strain. And a volumetric capacitance of 65.5 F cm-3 is achieved, which is much higher than that of other compressible composite electrodes. Furthermore, several compressible supercapacitors can be integrated and connected in series to enhance the overall output voltage, suggesting the potential to meet the practical application.

  20. Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode.

    PubMed

    Lv, Peng; Tang, Xun; Zheng, Ruilin; Ma, Xiaobo; Yu, Kehan; Wei, Wei

    2017-12-19

    Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimized PANI mass content of 63 wt% shows the improved specific capacitance of 713 F g -1 in the three-electrode system. And the graphene/PANI aerogel presents a high recoverable compressive strain of 90% due to the strong interaction between PANI and graphene. The all-solid-state supercapacitors were assembled to demonstrate the compression-tolerant ability of graphene/PANI electrodes. The gravimetric capacitance of graphene/PANI electrodes reaches 424 F g -1 and retains 96% even at 90% compressive strain. And a volumetric capacitance of 65.5 F cm -3 is achieved, which is much higher than that of other compressible composite electrodes. Furthermore, several compressible supercapacitors can be integrated and connected in series to enhance the overall output voltage, suggesting the potential to meet the practical application.

  1. Specific oral tolerance induction in childhood.

    PubMed

    Peters, Rachel L; Dang, Thanh D; Allen, Katrina J

    2016-12-01

    Food allergy continues to be a significant public health concern for which there are no approved treatments and management strategies primarily include allergen avoidance and pharmacological measures for accidental exposures. Food allergy is thought to result from either a failure to establish oral tolerance or the breakdown of existing oral tolerance, and therefore, experimental preventative and treatment strategies are now aimed at inducing specific oral tolerance. This may occur in infancy prior to the development of food allergy through the optimal timing of dietary exposure (primary oral tolerance induction) or as a treatment for established food allergy through oral immunotherapy (secondary oral tolerance induction). Trials examining the effectiveness of early dietary allergen exposure to prevent food allergy have yielded promising results for peanut allergy but not so for other allergens, although the results of several trials are yet to be published. Although infant feeding guidelines no longer advise to avoid allergenic foods and exposure to food allergens orally is an important step in inducing food tolerance by the immune system, evidence regarding the optimal timing, dose and form of these foods into the infant's diet is lacking. Likewise, oral immunotherapy trials appear promising for inducing desensitization; however, the long-term efficacy in achieving sustained desensitization and optimal protocols to achieve this is unknown. More research is needed in this emerging field. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Improving olefin tolerance and production in E. coli using native and evolved AcrB

    DOE PAGES

    Mingardon, Florence; Clement, Camille; Hirano, Kathleen; ...

    2015-01-20

    Microorganisms can be engineered for the production of chemicals utilized in the polymer industry. However many such target compounds inhibit microbial growth and might correspondingly limit production levels. Here, we focus on compounds that are precursors to bioplastics, specifically styrene and representative alpha-olefins; 1-hexene, 1-octene, and 1-nonene. We evaluated the role of the Escherichia coli efflux pump, AcrAB-TolC, in enhancing tolerance towards these olefin compounds. AcrAB-TolC is involved in the tolerance towards all four compounds in E. coli. Both styrene and 1-hexene are highly toxic to E. coli. Styrene is a model plastics precursor with an established route for productionmore » in E. coli (McKenna and Nielsen, 2011). Though our data indicates that AcrAB-TolC is important for its optimal production, we observed a strong negative selection against the production of styrene in E. coli. Thus we used 1-hexene as a model compound to implement a directed evolution strategy to further improve the tolerance phenotype towards this alpha-olefin. We focused on optimization of AcrB, the inner membrane domain known to be responsible for substrate binding, and found several mutations (A279T, Q584R, F617L, L822P, F927S, and F1033Y) that resulted in improved tolerance. Several of these mutations could also be combined in a synergistic manner. Our study shows efflux pumps to be an important mechanism in host engineering for olefins, and one that can be further improved using strategies such as directed evolution, to increase tolerance and potentially production.« less

  3. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis.

    PubMed

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M; Mora, Diego; Compagno, Concetta

    2016-08-01

    The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis

    PubMed Central

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M.; Mora, Diego

    2016-01-01

    ABSTRACT The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis. We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. IMPORTANCE This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. PMID:27235432

  5. Optimization of Aerospace Structure Subject to Damage Tolerance Criteria

    NASA Technical Reports Server (NTRS)

    Akgun, Mehmet A.

    1999-01-01

    The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers. It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages. A common method for topology optimization is that of compliance minimization which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local and represents a small change in the stiffness matrix compared to the baseline (undamaged) structure. The exact solution to a slightly modified set of equations can be obtained from the baseline solution economically without actually solving the modified system. Sherrnan-Morrison-Woodbury (SMW) formulas are matrix update formulas that allow this. SMW formulas were therefore used here to compute adjoint displacements for sensitivity computation and structural displacements in damaged configurations.

  6. Applying a Dynamic Stomatal Optimization to Predict Shifts in the Functional Composition of Tropical Forests Under Increased Drought And CO2

    NASA Astrophysics Data System (ADS)

    Bartlett, M. K.; Detto, M.; Pacala, S. W.

    2017-12-01

    The accurate prediction of tropical forest carbon fluxes is key to forecasting global climate, but forest responses to projected increases in CO2 and drought are highly uncertain. Here we present a dynamic optimization that derives the trajectory of stomatal conductance (gs) during drought, a key source of model uncertainty, from plant and soil water relations and the carbon economy of the plant hydraulic system. This optimization scheme is novel in two ways. First, by accounting for the ability of capacitance (i.e., the release of water from plant storage tissue; C) to buffer evaporative water loss and maintain gs during drought, this optimization captures both drought tolerant and avoidant hydraulic strategies. Second, by determining the optimal trajectory of plant and soil water potentials, this optimization quantifies species' impacts on the water available to competing plants. These advances allowed us to apply this optimization across the range of physiology trait values observed in tropical species to evaluate shifts in the competitively optimal trait values, or evolutionarily stable hydraulic strategy (ESS), under increased drought and CO2. Increasing the length of the dry season shifted the ESS towards more drought tolerant, rather than avoidant, trait values, and these shifts were larger for longer individual drought periods (i.e., more consecutive days without rainfall), even if the total time spent in drought was the same. Concurrently doubling the CO2 level reduced the magnitude of these shifts and slightly favored drought avoidant strategies under wet conditions. Overall, these analyses predicted that short, frequent droughts would allow elevated CO2 to shift the functional composition in tropical forests towards more drought avoidant species, while infrequent but long drought periods would shift the ESS to more drought tolerant trait values, despite increased CO2. Overall, these analyses quantified the impact of physiology traits on plant performance and competitive ability, and provide a mechanistic, trait-based approach to predict shifts in the functional composition of tropical forests under projected climatic conditions.

  7. Using concatenated quantum codes for universal fault-tolerant quantum gates.

    PubMed

    Jochym-O'Connor, Tomas; Laflamme, Raymond

    2014-01-10

    We propose a method for universal fault-tolerant quantum computation using concatenated quantum error correcting codes. The concatenation scheme exploits the transversal properties of two different codes, combining them to provide a means to protect against low-weight arbitrary errors. We give the required properties of the error correcting codes to ensure universal fault tolerance and discuss a particular example using the 7-qubit Steane and 15-qubit Reed-Muller codes. Namely, other than computational basis state preparation as required by the DiVincenzo criteria, our scheme requires no special ancillary state preparation to achieve universality, as opposed to schemes such as magic state distillation. We believe that optimizing the codes used in such a scheme could provide a useful alternative to state distillation schemes that exhibit high overhead costs.

  8. Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate.

    PubMed

    Chhapekar, Sushil; Raghavendrarao, Sanagala; Pavan, Gadamchetty; Ramakrishna, Chopperla; Singh, Vivek Kumar; Phanindra, Mullapudi Lakshmi Venkata; Dhandapani, Gurusamy; Sreevathsa, Rohini; Ananda Kumar, Polumetla

    2015-05-01

    Highly tolerant herbicide-resistant transgenic rice was developed by expressing codon-modified synthetic CP4--EPSPS. The transformants could tolerate up to 1% commercial glyphosate and has the potential to be used for DSR (direct-seeded rice). Weed infestation is one of the major biotic stress factors that is responsible for yield loss in direct-seeded rice (DSR). Herbicide-resistant rice has potential to improve the efficiency of weed management under DSR. Hence, the popular indica rice cultivar IR64, was genetically modified using Agrobacterium-mediated transformation with a codon-optimized CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene, with N-terminal chloroplast targeting peptide from Petunia hybrida. Integration of the transgenes in the selected rice plants was confirmed by Southern hybridization and expression by Northern and herbicide tolerance assays. Transgenic plants showed EPSPS enzyme activity even at high concentrations of glyphosate, compared to untransformed control plants. T0, T1 and T2 lines were tested by herbicide bioassay and it was confirmed that the transgenic rice could tolerate up to 1% of commercial Roundup, which is five times more in dose used to kill weeds under field condition. All together, the transgenic rice plants developed in the present study could be used efficiently to overcome weed menace.

  9. Wheat plant selection for high yields entailed improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions.

    PubMed

    Brestic, Marian; Zivcak, Marek; Hauptvogel, Pavol; Misheva, Svetlana; Kocheva, Konstantina; Yang, Xinghong; Li, Xiangnan; Allakhverdiev, Suleyman I

    2018-05-01

    Assessment of photosynthetic traits and temperature tolerance was performed on field-grown modern genotype (MG), and the local landrace (LR) of wheat (Triticum aestivum L.) as well as the wild relative species (Aegilops cylindrica Host.). The comparison was based on measurements of the gas exchange (A/c i , light and temperature response curves), slow and fast chlorophyll fluorescence kinetics, and some growth and leaf parameters. In MG, we observed the highest CO 2 assimilation rate [Formula: see text] electron transport rate (J max ) and maximum carboxylation rate [Formula: see text]. The Aegilops leaves had substantially lower values of all photosynthetic parameters; this fact correlated with its lower biomass production. The mesophyll conductance was almost the same in Aegilops and MG, despite the significant differences in leaf phenotype. In contrary, in LR with a higher dry mass per leaf area, the half mesophyll conductance (g m ) values indicated more limited CO 2 diffusion. In Aegilops, we found much lower carboxylation capacity; this can be attributed mainly to thin leaves and lower Rubisco activity. The difference in CO 2 assimilation rate between MG and others was diminished because of its higher mitochondrial respiration activity indicating more intense metabolism. Assessment of temperature response showed lower temperature optimum and a narrow ecological valence (i.e., the range determining the tolerance limits of a species to an environmental factor) in Aegilops. In addition, analysis of photosynthetic thermostability identified the LR as the most sensitive. Our results support the idea that the selection for high yields was accompanied by the increase of photosynthetic productivity through unintentional improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions.

  10. Influence of molecular structure on the tolerogenicity of bacterial dextrans. I. The alpha1--6-linked epitope of dextran B512.

    PubMed Central

    Howard, J G; Vicari, G; Courtenay, B M

    1975-01-01

    Native dextran B512 is a near-linear glucose polymer with 96 per cent alpha1--6 and 4 per cent alpha1--3 linkages and a molecular weight (mol. wt) of 8 X 10(7). Sheep RBC sensitized with its O-stearoyl derivative (prepared by a modified method) have been used satisfactorily in direct PFC assays. B512 immunizes BALB/c mice optimally with doses of 1--10 mug and produces B-cell tolerance with 1 mg upwards. The specificity of the response determined by PFC inhibition analysis, is directed towards an alpha1--6-linked epitope. High dose tolerance is not preceded by immunity and is stable on cell transfer to irradiated recipients in which responsiveness becomes perceptible after 4--6 weeks. Progressive depolymerization of this polysaccharide reduces immunogenicity and tolerogenicity, both of which are extinguished when the mol. wt falls to 2 X 10(4). Optimal immunization with B512 is succeeded by partial tolerance (previously characterized by analogous levan experiments as a B-cell exhaustion process). The tolerance threshold dose of B512 is reduced 1000-fold during immunosuppression with cyclophosphamide. PFC inhibition studies supported the contention that tolerogenicity of polysaccharides is influenced by their overall binding capacities. A direct relationship between inhibitory and tolerogenic activities was found both with B512 fractions of varying mol. wt and with heterologous dextrans. The similarities between B512 and levan argue against the association of a highly branched structure with greater tolerogenicity. The effect of reducing the percentage of alpha1--6 linkages in dextrans suggests, however, that epitope density probably plays a contributory role in determining the outcome of interaction between polysaccharides and B cells. PMID:52612

  11. Optimal design of tilt carrier frequency computer-generated holograms to measure aspherics.

    PubMed

    Peng, Jiantao; Chen, Zhe; Zhang, Xingxiang; Fu, Tianjiao; Ren, Jianyue

    2015-08-20

    Computer-generated holograms (CGHs) provide an approach to high-precision metrology of aspherics. A CGH is designed under the trade-off among size, mapping distortion, and line spacing. This paper describes an optimal design method based on the parametric model for tilt carrier frequency CGHs placed outside the interferometer focus points. Under the condition of retaining an admissible size and a tolerable mapping distortion, the optimal design method has two advantages: (1) separating the parasitic diffraction orders to improve the contrast of the interferograms and (2) achieving the largest line spacing to minimize sensitivity to fabrication errors. This optimal design method is applicable to common concave aspherical surfaces and illustrated with CGH design examples.

  12. Rapid strain improvement through optimized evolution in the cytostat.

    PubMed

    Gilbert, Alan; Sangurdekar, Dipen P; Srienc, Friedrich

    2009-06-15

    Acetate is present in lignocellulosic hydrolysates at growth inhibiting concentrations. Industrial processes based on such feedstock require strains that are tolerant of this and other inhibitors present. We investigated the effect of acetate on Saccharomyces cerevisiae and show that elevated acetate concentrations result in a decreased specific growth rate, an accumulation of cells in the G1 phase of the cell cycle, and an increased cell size. With the cytostat cultivation technology under previously derived optimal operating conditions, several acetate resistant mutants were enriched and isolated in the shortest possible time. In each case, the isolation time was less than 5 days. The independently isolated mutant strains have increased specific growth rates under conditions of high acetate concentrations, high ethanol concentrations, and high temperature. In the presence of high acetate concentrations, the isolated mutants produce ethanol at higher rates and titers than the parental strain and a commercial ethanol producing strain that has been analyzed for comparison. Whole genome microarray analysis revealed gene amplifications in each mutant. In one case, the LPP1 gene, coding for lipid phosphate phosphatase, was amplified. Two mutants contained amplified ENA1, ENA2, and ENA5 genes, which code for P-type ATPase sodium pumps. LPP1 was overexpressed on a plasmid, and the growth data at elevated acetate concentrations suggest that LPP1 likely contributes to the phenotype of acetate tolerance. A diploid cross of the two mutants with the amplified ENA genes grew faster than either individual haploid parent strain when 20 g/L acetate was supplemented to the medium, which suggests that these genes contribute to acetate tolerance in a gene dosage dependent manner. 2009 Wiley Periodicals, Inc.

  13. Optimization of Fermentation Conditions and Rheological Properties of Exopolysaccharide Produced by Deep-Sea Bacterium Zunongwangia profunda SM-A87

    PubMed Central

    Liu, Sheng-Bo; Qiao, Li-Ping; He, Hai-Lun; Zhang, Qian; Chen, Xiu-Lan; Zhou, Wei-Zhi; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2011-01-01

    Zunongwangia profunda SM-A87 isolated from deep-sea sediment can secrete large quantity of exopolysaccharide (EPS). Response surface methodology was applied to optimize the culture conditions for EPS production. Single-factor experiment showed that lactose was the best carbon source. Based on the Plackett–Burman design, lactose, peptone and temperature were selected as significant variables, which were further optimized by the steepest ascent (descent) method and central composite design. The optimal culture conditions for EPS production and broth viscosity were determined as 32.21 g/L lactose, 8.87 g/L peptone and an incubation temperature of 9.8°C. Under these conditions, the maximum EPS yield and broth viscosity were 8.90 g/L and 6551 mPa•s, respectively, which is the first report of such high yield of EPS from a marine bacterium. The aqueous solution of the EPS displayed high viscosity, interesting shearing thinning property and great tolerance to high temperature, a wide range of pH, and high salinity. PMID:22096500

  14. Optimization of a bioremediation system of soluble uranium based on the biostimulation of an indigenous bacterial community.

    PubMed

    Maleke, Maleke; Williams, Peter; Castillo, Julio; Botes, Elsabe; Ojo, Abidemi; DeFlaun, Mary; van Heerden, Esta

    2015-06-01

    High concentrations of uranium(VI) in the Witwatersrand Basin, South Africa from mining leachate is a serious environmental concern. Treatment systems are often ineffective. Therefore, optimization of a bioremediation system that facilitates the bioreduction of U(VI) based on biostimulation of indigenous bacterial communities can be a viable alternative. Tolerance of the indigenous bacteria to high concentrations of U and the amount of citric acid required for U removal was optimized. Two bioreactor studies which showed effective U(VI) removal more than 99 % from low (0.0037 mg L(-1)) and high (10 mg L(-1)) concentrations of U to below the limit allowed by South African National Standards for drinking water (0.0015 mg L(-1)). The second bioreactor was able to successfully adapt even with increasing levels of U(VI) feed water up to 10 mg L(-1), provided that enough electron donor was available. Molecular biology analyses identified Desulfovibrio sp. and Geobacter sp. among known species, which are known to reduce U(VI). The mineralogical analysis determined that part of the uranium precipitated intracellularly, which meant that the remaining U(VI) was precipitated as U(IV) oxides and TEM-EDS also confirmed this analysis. This was predicted with the geochemical model from the chemical data, which demonstrated that the treated drainage was supersaturated with respect to uraninite > U4O9 > U3O8 > UO2(am). Therefore, the tolerance of the indigenous bacterial community could be optimized to remediate up to 10 mg L(-1), and the system can thus be upscaled and employed for remediation of U(VI) impacted sites.

  15. Robust Optimization Design Algorithm for High-Frequency TWTs

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Chevalier, Christine T.

    2010-01-01

    Traveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.

  16. Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete.

    PubMed

    Wang, Jianyun; Jonkers, Henk M; Boon, Nico; De Belie, Nele

    2017-06-01

    The suitability of using a spore-forming ureolytic strain, Bacillus sphaericus, was evaluated for self-healing of concrete cracks. The main focus was on alkaline tolerance, calcium tolerance, oxygen dependence, and low-temperature adaptability. Experimental results show that B. sphaericus had a good tolerance. It can grow and germinate in a broad range of alkaline pH. The optimal pH range is 7 ∼ 9. High alkaline conditions (pH 10 ∼ 11) slow down but not stop the growth and germination. Oxygen was strictly needed during bacterial growth and germination, but not an essential factor during bacterial urea decomposition. B. sphaericus also had a good Ca tolerance, especially at a high bacterial concentration of 10 8  cells/mL; no significant influence was observed on bacterial ureolytic activity of the presence of 0.9M Ca 2+ . Furthermore, at a low temperature (10 °C), bacterial spores germinated and revived ureolytic activity with some retardation. However, this retardation can be counteracted by using a higher bacterial concentration and by supplementing yeast extract. It can be concluded that B. sphaericus is a suitable bacterium for application in bacteria-based self-healing concrete.

  17. An improved ant colony optimization algorithm with fault tolerance for job scheduling in grid computing systems

    PubMed Central

    Idris, Hajara; Junaidu, Sahalu B.; Adewumi, Aderemi O.

    2017-01-01

    The Grid scheduler, schedules user jobs on the best available resource in terms of resource characteristics by optimizing job execution time. Resource failure in Grid is no longer an exception but a regular occurring event as resources are increasingly being used by the scientific community to solve computationally intensive problems which typically run for days or even months. It is therefore absolutely essential that these long-running applications are able to tolerate failures and avoid re-computations from scratch after resource failure has occurred, to satisfy the user’s Quality of Service (QoS) requirement. Job Scheduling with Fault Tolerance in Grid Computing using Ant Colony Optimization is proposed to ensure that jobs are executed successfully even when resource failure has occurred. The technique employed in this paper, is the use of resource failure rate, as well as checkpoint-based roll back recovery strategy. Check-pointing aims at reducing the amount of work that is lost upon failure of the system by immediately saving the state of the system. A comparison of the proposed approach with an existing Ant Colony Optimization (ACO) algorithm is discussed. The experimental results of the implemented Fault Tolerance scheduling algorithm show that there is an improvement in the user’s QoS requirement over the existing ACO algorithm, which has no fault tolerance integrated in it. The performance evaluation of the two algorithms was measured in terms of the three main scheduling performance metrics: makespan, throughput and average turnaround time. PMID:28545075

  18. pH Tolerance in Freshwater Bacterioplankton: Trait Variation of the Community as Measured by Leucine Incorporation

    PubMed Central

    Kritzberg, Emma

    2015-01-01

    pH is an important factor determining bacterial community composition in soil and water. We have directly determined the community tolerance (trait variation) to pH in communities from 22 lakes and streams ranging in pH from 4 to 9 using a growth-based method not relying on distinguishing between individual populations. The pH in the water samples was altered to up to 16 pH values, covering in situ pH ± 2.5 U, and the tolerance was assessed by measuring bacterial growth (Leu incorporation) instantaneously after pH adjustment. The resulting unimodal response curves, reflecting community tolerance to pH, were well modeled with a double logistic equation (mean R2 = 0.97). The optimal pH for growth (pHopt) among the bacterial communities was closely correlated with in situ pH, with a slope (0.89 ± 0.099) close to unity. The pH interval, in which growth was ≥90% of that at pHopt, was 1.1 to 3 pH units wide (mean 2.0 pH units). Tolerance response curves of communities originating from circum-neutral pH were symmetrical, whereas in high-pH (8.9) and especially in low-pH (<5.5) waters, asymmetric tolerance curves were found. In low-pH waters, decreasing pH was more detrimental for bacterial growth than increasing pH, with a tendency for the opposite for high-pH waters. A pH tolerance index, using the ratio of growth at only two pH values (pH 4 and 8), was closely related to pHopt (R2 = 0.83), allowing for easy determination of pH tolerance during rapid changes in pH. PMID:26276108

  19. Acetone, butanol, and ethanol production from gelatinized cassava flour by a new isolates with high butanol tolerance.

    PubMed

    Li, Han-Guang; Ofosu, Fred Kwame; Li, Kun-Tai; Gu, Qiu-Ya; Wang, Qiang; Yu, Xiao-Bin

    2014-11-01

    To obtain native strains resistant to butanol toxicity, a new isolating method and serial enrichment was used in this study. With this effort, mutant strain SE36 was obtained, which could withstand 35g/L (compared to 20g/L of the wild-type strain) butanol challenge. Based on 16s rDNA comparison, the mutant strain was identified as Clostridium acetobutylicum. Under the optimized condition, the phase shift was smoothly triggered and fermentation performances were consequently enhanced. The maximum total solvent and butanol concentration were 23.6% and 24.3%, respectively higher than that of the wild-type strain. Furthermore, the correlation between butanol produced and the butanol tolerance was investigated, suggesting that enhancing butanol tolerance could improve butanol production. These results indicate that the simple but effective isolation method and acclimatization process are a promising technique for isolation and improvement of butanol tolerance and production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Quantum money with nearly optimal error tolerance

    NASA Astrophysics Data System (ADS)

    Amiri, Ryan; Arrazola, Juan Miguel

    2017-06-01

    We present a family of quantum money schemes with classical verification which display a number of benefits over previous proposals. Our schemes are based on hidden matching quantum retrieval games and they tolerate noise up to 23 % , which we conjecture reaches 25 % asymptotically as the dimension of the underlying hidden matching states is increased. Furthermore, we prove that 25 % is the maximum tolerable noise for a wide class of quantum money schemes with classical verification, meaning our schemes are almost optimally noise tolerant. We use methods in semidefinite programming to prove security in a substantially different manner to previous proposals, leading to two main advantages: first, coin verification involves only a constant number of states (with respect to coin size), thereby allowing for smaller coins; second, the reusability of coins within our scheme grows linearly with the size of the coin, which is known to be optimal. Last, we suggest methods by which the coins in our protocol could be implemented using weak coherent states and verified using existing experimental techniques, even in the presence of detector inefficiencies.

  1. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    DOE PAGES

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    2015-06-21

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U 3Si 2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U 3Si 2 has been optimized and high phase purity U 3Si 2 has been successfully produced. Results are presentedmore » from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm 3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.« less

  2. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U 3Si 2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U 3Si 2 has been optimized and high phase purity U 3Si 2 has been successfully produced. Results are presentedmore » from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm 3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.« less

  3. Accuracy analysis and design of A3 parallel spindle head

    NASA Astrophysics Data System (ADS)

    Ni, Yanbing; Zhang, Biao; Sun, Yupeng; Zhang, Yuan

    2016-03-01

    As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.

  4. Distortion control in 20MnCr5 bevel gears after liquid nitriding process to maintain precision dimensions

    NASA Astrophysics Data System (ADS)

    Mahendiran, M.; Kavitha, M.

    2018-02-01

    Robotic and automotive gears are generally very high precision components with limitations in tolerances. Bevel gears are more widely used and dimensionally very close tolerance components that need stability without any backlash or distortion for smooth and trouble free functions. Nitriding is carried out to enhance wear resistance of the surface. The aim of this paper is to reduce the distortion in liquid nitriding process, though plasma nitriding is preferred for high precision components. Various trials were conducted to optimize the process parameters, considering pre dimensional setting for nominal nitriding layer growth. Surface cleaning, suitable fixtures and stress relieving operations were also done to optimize the process. Micro structural analysis and Vickers hardness testing were carried out for analyzing the phase changes, variation in surface hardness and case depth. CNC gear testing machine was used for determining the distortion level. The presence of white layer was found for about 10-15μm in the case depth of 250± 3.5μm showing an average surface hardness of 670 HV. Hence the economical liquid nitriding process was successfully used for producing high hardness and wear resistant coating over 20MnCr5 material with less distortion and reduced secondary grinding process for dimensional control.

  5. Photovoltaic performance of the dome-shaped Fresnel-Köhler concentrator

    NASA Astrophysics Data System (ADS)

    Zamora, Pablo; Benítez, Pablo; Yang, Li; Miñano, Juan Carlos; Mendes-Lopes, Joao; Araki, Kenji

    2012-10-01

    In order to have a cost-effective CPV system, two key issues must be ensured: high concentration factor and high tolerance. The novel concentrator we are presenting, the dome-shaped Fresnel-Köhler, can widely fulfill these two and other essential issues in a CPV module. This concentrator is based on two previous successful CPV designs: the FK concentrator with a flat Fresnel lens and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The concentrator has shown outstanding simulation results, achieving an effective concentration-acceptance product (CAP) value of 0.72, and an optical efficiency of 85% on-axis (no anti-reflective coating has been used). Moreover, Köhler integration provides good irradiance uniformity on the cell surface and low spectral aberration of this irradiance. This ensures an optimal performance of the solar cell, maximizing its efficiency. Besides, the domeshaped FK shows optimal results for very compact designs, especially in the f/0.7-1.0 range. The dome-shaped Fresnel- Köhler concentrator, natural and enhanced evolution of the flat FK concentrator, is a cost-effective CPV optical design, mainly due to its high tolerances. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.

  6. Characterization of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573.

    PubMed

    Boukhris, Ines; Farhat-Khemakhem, Ameny; Blibech, Monia; Bouchaala, Kameleddine; Chouayekh, Hichem

    2015-09-01

    The extracellular phytase produced by the Bacillus amyloliquefaciens US573 strain, isolated from geothermal soil located in Southern Tunisia was purified and characterized. This calcium-dependent and bile-stable enzyme (PHY US573) was optimally active at pH 7.5 and 70 °C. It showed a good stability at pH ranging from 4 to 10, and especially, an exceptional thermostability as it recovered 50 and 62% of activity after heating for 10 min at 100 and 90 °C, respectively. In addition, PHY US573 was found to be extremely salt-tolerant since it preserved 80 and 95% of activity in the presence of 20 g/l of NaCl and LiCl, respectively. The gene corresponding to PHY US573 was cloned. It encodes a 383 amino acids polypeptide exhibiting 99% identity with the highly thermostable phytases from Bacillus sp. MD2 and B. amyloliquefaciens DS11 (3 and 5 residues difference, respectively), suggesting the existence of common molecular determinants responsible for their remarkable heat stability. Overall, our findings illustrated that in addition to its high potential for application in feed industry, the salt tolerance of the PHY US573 phytase, may represent an exciting new avenue for improvement of phosphorus-use efficiency of salt-tolerant plants in soils with high salt and phytate content. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Genomic Sequence of Saccharomyces cerevisiae BAW-6, a Yeast Strain Optimal for Brewing Barley Shochu.

    PubMed

    Kajiwara, Yasuhiro; Mori, Kazuki; Tashiro, Kosuke; Higuchi, Yujiro; Takegawa, Kaoru; Takashita, Hideharu

    2018-04-05

    Here, we report the draft genome sequence of Saccharomyces cerevisiae strain BAW-6, which is used for the production of barley shochu, a traditional Japanese spirit. This genomic information can be used to elucidate the genetic basis underlying the high alcohol production capacity and citric acid tolerance of shochu yeast. Copyright © 2018 Kajiwara et al.

  8. Genomic Sequence of Saccharomyces cerevisiae BAW-6, a Yeast Strain Optimal for Brewing Barley Shochu

    PubMed Central

    Mori, Kazuki; Tashiro, Kosuke; Higuchi, Yujiro; Takashita, Hideharu

    2018-01-01

    ABSTRACT Here, we report the draft genome sequence of Saccharomyces cerevisiae strain BAW-6, which is used for the production of barley shochu, a traditional Japanese spirit. This genomic information can be used to elucidate the genetic basis underlying the high alcohol production capacity and citric acid tolerance of shochu yeast. PMID:29622617

  9. Fertilizer and soil management practices for improving the efficiency of nutrient uptake and use in northern highbush blueberry

    USDA-ARS?s Scientific Manuscript database

    Highbush blueberry is a long-lived perennial crop well-adapted to acidic soils. Plants acquire primarily NH4-N and tolerate relatively low concentrations of P and cations in the soil and high concentrations of plant available metals such as Al and Mn. Recently, we found that optimal leaf nutrient co...

  10. Characterizing and Optimizing Photocathode Laser Distributions for Ultra-low Emittance Electron Beam Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, F.; Bohler, D.; Ding, Y.

    2015-12-07

    Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Lightmore » Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.« less

  11. Variation and Defect Tolerance for Nano Crossbars

    NASA Astrophysics Data System (ADS)

    Tunc, Cihan

    With the extreme shrinking in CMOS technology, quantum effects and manufacturing issues are getting more crucial. Hence, additional shrinking in CMOS feature size seems becoming more challenging, difficult, and costly. On the other hand, emerging nanotechnology has attracted many researchers since additional scaling down has been demonstrated by manufacturing nanowires, Carbon nanotubes as well as molecular switches using bottom-up manufacturing techniques. In addition to the progress in manufacturing, developments in architecture show that emerging nanoelectronic devices will be promising for the future system designs. Using nano crossbars, which are composed of two sets of perpendicular nanowires with programmable intersections, it is possible to implement logic functions. In addition, nano crossbars present some important features as regularity, reprogrammability, and interchangeability. Combining these features, researchers have presented different effective architectures. Although bottom-up nanofabrication can greatly reduce manufacturing costs, due to low controllability in the manufacturing process, some critical issues occur. Bottom- up nanofabrication process results in high variation compared to conventional top- down lithography used in CMOS technology. In addition, an increased failure rate is expected. Variation and defect tolerance methods used for conventional CMOS technology seem inadequate for adapting to emerging nano technology because the variation and the defect rate for emerging nano technology is much more than current CMOS technology. Therefore, variations and defect tolerance methods for emerging nano technology are necessary for a successful transition. In this work, in order to tolerate variations for crossbars, we introduce a framework that is established based on reprogrammability and interchangeability features of nano crossbars. This framework is shown to be applicable for both FET-based and diode-based nano crossbars. We present a characterization testing method which requires minimal number of test vectors. We formulate the variation optimization problem using Simulated Annealing with different optimization goals. Furthermore, we extend the framework for defect tolerance. Experimental results and comparison of proposed framework with exhaustive methods confirm its effectiveness for both variation and defect tolerance.

  12. Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing

    NASA Astrophysics Data System (ADS)

    Bilal, Bisma; Ahmed, Suhaib; Kakkar, Vipan

    2018-02-01

    The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology.

  13. Experimental Evolution of UV-C Radiation Tolerance: Emergence of Adaptive and Non-Adaptive Traits in Escherichia coli Under Differing Flux Regimes

    NASA Astrophysics Data System (ADS)

    Moffet, A.; Okansinski, A.; Sloan, C.; Grace, J. M.; Paulino-Lima, I. G.; Gentry, D.; Rothschild, L. J.; Camps, M.

    2014-12-01

    High-energy ultraviolet (UV-C) radiation is a significant challenge to life in environments such as high altitude areas, the early Earth, the Martian surface, and space. As UV-C exposure is both a selection pressure and a mutagen, adaptation dynamics in such environments include a high rate of change in both tolerance-related and non-tolerance-related genes, as well changes in linkages between the resulting traits. Determining the relationship between the intensity and duration of the UV-C exposure, mutation rate, and emergence of UV-C resistance will inform our understanding of both the emergence of radiation-related extremophily in natural environments and the optimal strategies for generating artificial extremophiles. In this study, we iteratively exposed an Escherichia colistrain to UV-C radiation of two different fluxes, 3.3 J/m^2/s for 6 seconds and 0.5 J/m^2/s for 40 seconds, with the same overall fluence of 20 J/m^2. After each iteration, cells from each exposure regime were assayed for increased UV-C tolerance as an adaptive trait. The exposed cells carried a plasmid bearing a TEM beta-lactamase gene, which in the absence of antibiotic treatment is a neutral reporter for mutagenesis. Sequencing of this gene allowed us to determine the baseline mutation frequency for each flux. As an additional readout for adaptation, the presence of extended-spectrum beta-lactamase mutations was tested by plating UV-exposed cultures in cefotaxime plates. We observed an increase of approximately one-million-fold in UV-C tolerance over seven iterations; no significant difference between the two fluxes was found. Future work will focus on identifying the genomic changes responsible for the change in UV-C tolerance; determining the mechanisms of the emerged UV-C tolerance; and performing competition experiments between the iteration strains to quantify fitness tradeoffs resulting from UV-C adaptation.

  14. Engineering of small interfering RNA-loaded lipidoid-poly(DL-lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: A quality by design-based approach.

    PubMed

    Thanki, Kaushik; Zeng, Xianghui; Justesen, Sarah; Tejlmann, Sarah; Falkenberg, Emily; Van Driessche, Elize; Mørck Nielsen, Hanne; Franzyk, Henrik; Foged, Camilla

    2017-11-01

    Safety and efficacy of therapeutics based on RNA interference, e.g., small interfering RNA (siRNA), are dependent on the optimal engineering of the delivery technology, which is used for intracellular delivery of siRNA to the cytosol of target cells. We investigated the hypothesis that commonly used and poorly tolerated cationic lipids might be replaced with more efficacious and safe lipidoids as the lipid component of siRNA-loaded lipid-polymer hybrid nanoparticles (LPNs) for achieving more efficient gene silencing at lower and safer doses. However, formulation design of such a complex formulation is highly challenging due to a strong interplay between several contributing factors. Hence, critical formulation variables, i.e. the lipidoid content and siRNA:lipidoid ratio, were initially identified, followed by a systematic quality-by-design approach to define the optimal operating space (OOS), eventually resulting in the identification of a robust, highly efficacious and safe formulation. A 17-run design of experiment with an I-optimal approach was performed to systematically assess the effect of selected variables on critical quality attributes (CQAs), i.e. physicochemical properties (hydrodynamic size, zeta potential, siRNA encapsulation/loading) and the biological performance (in vitro gene silencing and cell viability). Model fitting of the obtained data to construct predictive models revealed non-linear relationships for all CQAs, which can be readily overlooked in one-factor-at-a-time optimization approaches. The response surface methodology further enabled the identification of an OOS that met the desired quality target product profile. The optimized lipidoid-modified LPNs revealed more than 50-fold higher in vitro gene silencing at well-tolerated doses and approx. a twofold increase in siRNA loading as compared to reference LPNs modified with the commonly used cationic lipid dioleyltrimethylammonium propane (DOTAP). Thus, lipidoid-modified LPNs show highly promising prospects for efficient and safe intracellular delivery of siRNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A New Class of Antibody-Drug Conjugates with Potent DNA Alkylating Activity.

    PubMed

    Miller, Michael L; Fishkin, Nathan E; Li, Wei; Whiteman, Kathleen R; Kovtun, Yelena; Reid, Emily E; Archer, Katie E; Maloney, Erin K; Audette, Charlene A; Mayo, Michele F; Wilhelm, Alan; Modafferi, Holly A; Singh, Rajeeva; Pinkas, Jan; Goldmacher, Victor; Lambert, John M; Chari, Ravi V J

    2016-08-01

    The promise of tumor-selective delivery of cytotoxic agents in the form of antibody-drug conjugates (ADC) has now been realized, evidenced by the approval of two ADCs, both of which incorporate highly cytotoxic tubulin-interacting agents, for cancer therapy. An ongoing challenge remains in identifying potent agents with alternative mechanisms of cell killing that can provide ADCs with high therapeutic indices and favorable tolerability. Here, we describe the development of a new class of potent DNA alkylating agents that meets these objectives. Through chemical design, we changed the mechanism of action of our novel DNA cross-linking agent to a monofunctional DNA alkylator. This modification, coupled with linker optimization, generated ADCs that were well tolerated in mice and demonstrated robust antitumor activity in multiple tumor models at doses 1.5% to 3.5% of maximally tolerated levels. These properties underscore the considerable potential of these purpose-created, unique DNA-interacting conjugates for broadening the clinical application of ADC technology. Mol Cancer Ther; 15(8); 1870-8. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Phototrophic cultivation of NaCl-tolerant mutant of Spirulina platensis for enhanced C-phycocyanin production under optimized culture conditions and its dynamic modeling.

    PubMed

    Gupta, Apurva; Mohan, Devendra; Saxena, Rishi Kumar; Singh, Surendra

    2018-02-01

    Commercial cultivation of Spirulina sp. is highly popular due to the presence of high amount of C-phycocyanin (C-PC) and other valuable chemicals like carotenoids and γ-linolenic acid. In this study, the pH and the concentrations of nitrogen and carbon source were manipulated to achieve improved cell growth and C-PC production in NaCl-tolerant mutant of Spirulina platensis. In this study, highest C-PC (147 mg · L -1 ) and biomass (2.83 g · L -1 ) production was achieved when a NaCl-tolerant mutant of S. platensis was cultivated in a nitrate and bicarbonate sufficient medium (40 and 60 mM, respectively) at pH 9.0 under phototrophic conditions. Kinetic study of wildtype S. platensis and its NaCl-tolerant mutant was also done to determine optimum nitrate concentrations for maximum growth and C-PC production. Kinetic parameter of inhibition (Haldane model) was fitted to the relationship between specific growth rate and substrate concentration obtained from the growth curves. Results showed that the maximum specific growth rate (μ max ) for NaCl-tolerant mutant increased by 17.94% as compared to its wildtype counterpart, with a slight increase in half-saturation constant (K s ), indicating that this strain could grow well at high concentration of NaNO 3 . C-PC production rate (C max ) in mutant cells increased by 12.2% at almost half the value of K s as compared to its wildtype counterpart. Moreover, the inhibition constant (K i ) value was 207.85% higher in NaCl-tolerant mutant as compared to its wildtype strain, suggesting its ability to produce C-PC even at high concentrations of NaNO 3 . © 2017 Phycological Society of America.

  17. SU-E-T-586: Optimal Determination of Tolerance Level for Radiation Dose Delivery Verification in An in Vivo Dosimetry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y; Souri, S; Gill, G

    Purpose: To statistically determine the optimal tolerance level in the verification of delivery dose compared to the planned dose in an in vivo dosimetry system in radiotherapy. Methods: The LANDAUER MicroSTARii dosimetry system with screened nanoDots (optically stimulated luminescence dosimeters) was used for in vivo dose measurements. Ideally, the measured dose should match with the planned dose and falls within a normal distribution. Any deviation from the normal distribution may be redeemed as a mismatch, therefore a potential sign of the dose misadministration. Randomly mis-positioned nanoDots can yield a continuum background distribution. A percentage difference of the measured dose tomore » its corresponding planned dose (ΔD) can be used to analyze combined data sets for different patients. A model of a Gaussian plus a flat function was used to fit the ΔD distribution. Results: Total 434 nanoDot measurements for breast cancer patients were collected across a period of three months. The fit yields a Gaussian mean of 2.9% and a standard deviation (SD) of 5.3%. The observed shift of the mean from zero is attributed to the machine output bias and calibration of the dosimetry system. A pass interval of −2SD to +2SD was applied and a mismatch background was estimated to be 4.8%. With such a tolerance level, one can expect that 99.99% of patients should pass the verification and at most 0.011% might have a potential dose misadministration that may not be detected after 3 times of repeated measurements. After implementation, a number of new start breast cancer patients were monitored and the measured pass rate is consistent with the model prediction. Conclusion: It is feasible to implement an optimal tolerance level in order to maintain a low limit of potential dose misadministration while still to keep a relatively high pass rate in radiotherapy delivery verification.« less

  18. Application of Methanobrevibacter acididurans in anaerobic digestion.

    PubMed

    Savant, D V; Ranade, D R

    2004-01-01

    To operate anaerobic digesters successfully under acidic conditions, hydrogen utilizing methanogens which can grow efficiently at low pH and tolerate high volatile fatty acids (VFA) are desirable. An acid tolerant hydrogenotrophic methanogen viz. Methanobrevibacter acididurans isolated from slurry of an anaerobic digester running on alcohol distillery wastewater has been described earlier by this lab. This organism could grow optimally at pH 6.0. In the experiments reported herein, M. acididurans showed better methanogenesis under acidic conditions with high VFA, particularly acetate, than Methanobacterium bryantii, a common hydrogenotrophic inhabitant of anaerobic digesters. Addition of M. acididurans culture to digesting slurry of acidogenic as well as methanogenic digesters running on distillery wastewater showed increase in methane production and decrease in accumulation of volatile fatty acids. The results proved the feasibility of application of M. acididurans in anaerobic digesters.

  19. Optimal signal constellation design for ultra-high-speed optical transport in the presence of nonlinear phase noise.

    PubMed

    Liu, Tao; Djordjevic, Ivan B

    2014-12-29

    In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.

  20. Topographical optimization of structures for use in musical instruments and other applications

    NASA Astrophysics Data System (ADS)

    Kirkland, William Brandon

    Mallet percussion instruments such as the xylophone, marimba, and vibraphone have been produced and tuned since their inception by arduously grinding the keys to achieve harmonic ratios between their 1st, 2 nd, and 3rd transverse modes. In consideration of this, it would be preferable to have defined mathematical models such that the keys of these instruments can be produced quickly and reliably. Additionally, physical modeling of these keys or beams provides a useful application of non-uniform beam vibrations as studied by Euler-Bernoulli and Timoshenko beam theories. This thesis work presents a literature review of previous studies regarding mallet percussion instrument design and optimization of non-uniform keys. The progression of previous research from strictly mathematical approaches to finite element methods is shown, ultimately arriving at the most current optimization techniques used by other authors. However, previous research varies slightly in the relative degree of accuracy to which a non-uniform beam can be modeled. Typically, accuracies are shown in literature as 1% to 2% error. While this seems attractive, musical tolerances require 0.25% error and beams are otherwise unsuitable. This research seeks to build on and add to the previous field research by optimizing beam topology and machining keys within tolerances that no further tuning is required. The optimization methods relied on finite element analysis and used harmonic modal frequencies as constraints rather than arguments of an error function to be optimized. Instead, the beam mass was minimized while the modal frequency constraints were required to be satisfied within 0.25% tolerance. The final optimized and machined keys of an A4 vibraphone were shown to be accurate within the required musical tolerances, with strong resonance at the designed frequencies. The findings solidify a systematic method for designing musical structures for accuracy and repeatability upon manufacture.

  1. Tolerance to extended galvanic vestibular stimulation: optimal exposure for astronaut training.

    PubMed

    Dilda, Valentina; MacDougall, Hamish G; Moore, Steven T

    2011-08-01

    We have developed an analogue of postflight sensorimotor dysfunction in astronauts using pseudorandom galvanic vestibular stimulation (GVS). To date there has been no study of the effects of extended GVS on human subjects and our aim was to determine optimal exposure for astronaut training based on tolerance to intermittent and continuous galvanic stimulation. There were 60 subjects who were exposed to a total of 10.5 min of intermittent GVS at a peak current of 3.5 mA or 5 mA. A subset of 24 subjects who tolerated the intermittent stimulus were subsequently exposed to 20-min continuous stimulation at 3.5 mA or 5 mA. During intermittent GVS the large majority of subjects (78.3%) reported no or at most mild motion sickness symptoms, 13.3% reported moderate symptoms, and 8.3% experienced severe nausea and requested termination of the stimulus. During 20-min continuous exposure, 83.3% of subjects reported no or at most mild motion sickness symptoms and 16.7% (all in the 5-mA group) experienced severe nausea. Based on these results, we propose two basic modes of GVS application to minimize the incidence of motion sickness: intermittent high (5 mA) amplitude, suited to simulation of intensive operator tasks requiring a high-fidelity analogue of postflight sensorimotor dysfunction such as landing or docking maneuvers; and continuous low (3.5 mA) amplitude stimulation, for longer simulation scenarios such as extra vehicular activity. Our results suggest that neither mode of stimulation would induce motion sickness in the large majority of subjects for up to 20 min exposure.

  2. A lignocellulosic hydrolysate-tolerant Aurantiochytrium sp. mutant strain for docosahexaenoic acid production.

    PubMed

    Qi, Feng; Zhang, Mingliang; Chen, Youwei; Jiang, Xianzhang; Lin, Jinxin; Cao, Xiao; Huang, Jianzhong

    2017-03-01

    To utilize lignocellulosic hydrolysate for docosahexaenoic acid (DHA) production, a novel mutant Aurantiochytrium sp. FN21 with strong tolerance against inhibitory lignocellulosic hydrolysate was obtained through continuous domestication processes from the parent strain Aurantiochytrium sp. FJU-512. Aurantiochytrium sp. FN21 can accumulate 21.3% and 30.7% more DHA compared to its parent strain cultured in fermentation medium and a medium with 50% (v/v) sugarcane bagasse hydrolysate (SBH), respectively. After optimization with different nitrogen sources, the highest lipid (11.84g/L) and DHA (3.15g/L) production were achieved in SBH. The results demonstrated that Aurantiochytrium sp. FN21 has the commercial applications for DHA production using lignocellulosic hydrolysate. In order to elucidate the tolerance mechanism, transcriptomic profiling of the two strains was studied. The highly up-regulated genes and corresponding cellular pathways (TCA cycle, amino acid biosynthesis, fatty acid metabolism and degradation of aromatic compounds) are considered to be associated with the hydrolysate-tolerance of Aurantiochytrium sp. FN21. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Modeling of Mean-VaR portfolio optimization by risk tolerance when the utility function is quadratic

    NASA Astrophysics Data System (ADS)

    Sukono, Sidi, Pramono; Bon, Abdul Talib bin; Supian, Sudradjat

    2017-03-01

    The problems of investing in financial assets are to choose a combination of weighting a portfolio can be maximized return expectations and minimizing the risk. This paper discusses the modeling of Mean-VaR portfolio optimization by risk tolerance, when square-shaped utility functions. It is assumed that the asset return has a certain distribution, and the risk of the portfolio is measured using the Value-at-Risk (VaR). So, the process of optimization of the portfolio is done based on the model of Mean-VaR portfolio optimization model for the Mean-VaR done using matrix algebra approach, and the Lagrange multiplier method, as well as Khun-Tucker. The results of the modeling portfolio optimization is in the form of a weighting vector equations depends on the vector mean return vector assets, identities, and matrix covariance between return of assets, as well as a factor in risk tolerance. As an illustration of numeric, analyzed five shares traded on the stock market in Indonesia. Based on analysis of five stocks return data gained the vector of weight composition and graphics of efficient surface of portfolio. Vector composition weighting weights and efficient surface charts can be used as a guide for investors in decisions to invest.

  4. A Novel Dual Separate Paths (DSP) Algorithm Providing Fault-Tolerant Communication for Wireless Sensor Networks.

    PubMed

    Tien, Nguyen Xuan; Kim, Semog; Rhee, Jong Myung; Park, Sang Yoon

    2017-07-25

    Fault tolerance has long been a major concern for sensor communications in fault-tolerant cyber physical systems (CPSs). Network failure problems often occur in wireless sensor networks (WSNs) due to various factors such as the insufficient power of sensor nodes, the dislocation of sensor nodes, the unstable state of wireless links, and unpredictable environmental interference. Fault tolerance is thus one of the key requirements for data communications in WSN applications. This paper proposes a novel path redundancy-based algorithm, called dual separate paths (DSP), that provides fault-tolerant communication with the improvement of the network traffic performance for WSN applications, such as fault-tolerant CPSs. The proposed DSP algorithm establishes two separate paths between a source and a destination in a network based on the network topology information. These paths are node-disjoint paths and have optimal path distances. Unicast frames are delivered from the source to the destination in the network through the dual paths, providing fault-tolerant communication and reducing redundant unicast traffic for the network. The DSP algorithm can be applied to wired and wireless networks, such as WSNs, to provide seamless fault-tolerant communication for mission-critical and life-critical applications such as fault-tolerant CPSs. The analyzed and simulated results show that the DSP-based approach not only provides fault-tolerant communication, but also improves network traffic performance. For the case study in this paper, when the DSP algorithm was applied to high-availability seamless redundancy (HSR) networks, the proposed DSP-based approach reduced the network traffic by 80% to 88% compared with the standard HSR protocol, thus improving network traffic performance.

  5. Tolerance allocation for an electronic system using neural network/Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Al-Mohammed, Mohammed; Esteve, Daniel; Boucher, Jaque

    2001-12-01

    The intense global competition to produce quality products at a low cost has led many industrial nations to consider tolerances as a key factor to bring about cost as well as to remain competitive. In actually, Tolerance allocation stays widely applied on the Mechanic System. It is known that to study the tolerances in an electronic domain, Monte-Carlo method well be used. But the later method spends a long time. This paper reviews several methods (Worst-case, Statistical Method, Least Cost Allocation by Optimization methods) that can be used for treating the tolerancing problem for an Electronic System and explains their advantages and their limitations. Then, it proposes an efficient method based on the Neural Networks associated with Monte-Carlo method as basis data. The network is trained using the Error Back Propagation Algorithm to predict the individual part tolerances, minimizing the total cost of the system by a method of optimization. This proposed approach has been applied on Small-Signal Amplifier Circuit as an example. This method can be easily extended to a complex system of n-components.

  6. pH tolerance in freshwater bacterioplankton: trait variation of the community as measured by leucine incorporation.

    PubMed

    Bååth, Erland; Kritzberg, Emma

    2015-11-01

    pH is an important factor determining bacterial community composition in soil and water. We have directly determined the community tolerance (trait variation) to pH in communities from 22 lakes and streams ranging in pH from 4 to 9 using a growth-based method not relying on distinguishing between individual populations. The pH in the water samples was altered to up to 16 pH values, covering in situ pH ± 2.5 U, and the tolerance was assessed by measuring bacterial growth (Leu incorporation) instantaneously after pH adjustment. The resulting unimodal response curves, reflecting community tolerance to pH, were well modeled with a double logistic equation (mean R(2) = 0.97). The optimal pH for growth (pHopt) among the bacterial communities was closely correlated with in situ pH, with a slope (0.89 ± 0.099) close to unity. The pH interval, in which growth was ≥90% of that at pHopt, was 1.1 to 3 pH units wide (mean 2.0 pH units). Tolerance response curves of communities originating from circum-neutral pH were symmetrical, whereas in high-pH (8.9) and especially in low-pH (<5.5) waters, asymmetric tolerance curves were found. In low-pH waters, decreasing pH was more detrimental for bacterial growth than increasing pH, with a tendency for the opposite for high-pH waters. A pH tolerance index, using the ratio of growth at only two pH values (pH 4 and 8), was closely related to pHopt (R(2) = 0.83), allowing for easy determination of pH tolerance during rapid changes in pH. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages.

    PubMed

    Ravelombola, Waltram; Shi, Ainong; Weng, Yuejin; Mou, Beiquan; Motes, Dennis; Clark, John; Chen, Pengyin; Srivastava, Vibha; Qin, Jun; Dong, Lingdi; Yang, Wei; Bhattarai, Gehendra; Sugihara, Yuichi

    2018-01-01

    This is the first report on association analysis of salt tolerance and identification of SNP markers associated with salt tolerance in cowpea. Cowpea (Vigna unguiculata (L.) Walp) is one of the most important cultivated legumes in Africa. The worldwide annual production in cowpea dry seed is 5.4 million metric tons. However, cowpea is unfavorably affected by salinity stress at germination and seedling stages, which is exacerbated by the effects of climate change. The lack of knowledge on the genetic underlying salt tolerance in cowpea limits the establishment of a breeding strategy for developing salt-tolerant cowpea cultivars. The objectives of this study were to conduct association mapping for salt tolerance at germination and seedling stages and to identify SNP markers associated with salt tolerance in cowpea. We analyzed the salt tolerance index of 116 and 155 cowpea accessions at germination and seedling stages, respectively. A total of 1049 SNPs postulated from genotyping-by-sequencing were used for association analysis. Population structure was inferred using Structure 2.3.4; K optimal was determined using Structure Harvester. TASSEL 5, GAPIT, and FarmCPU involving three models such as single marker regression, general linear model, and mixed linear model were used for the association study. Substantial variation in salt tolerance index for germination rate, plant height reduction, fresh and dry shoot biomass reduction, foliar leaf injury, and inhibition of the first trifoliate leaf was observed. The cowpea accessions were structured into two subpopulations. Three SNPs, Scaffold87490_622, Scaffold87490_630, and C35017374_128 were highly associated with salt tolerance at germination stage. Seven SNPs, Scaffold93827_270, Scaffold68489_600, Scaffold87490_633, Scaffold87490_640, Scaffold82042_3387, C35069468_1916, and Scaffold93942_1089 were found to be associated with salt tolerance at seedling stage. The SNP markers were consistent across the three models and could be used as a tool to select salt-tolerant lines for breeding improved cowpea tolerance to salinity.

  8. Balancing efficacy against safety in sublingual immunotherapy with inhalant allergens: what is the best approach?

    PubMed

    Caminati, Marco; Dama, Annarita; Schiappoli, Michele; Senna, Gianenrico

    2013-10-01

    Over the last 20 years, studies and clinical trials have demonstrated efficacy, safety and cost-effectiveness of sublingual immunotherapy (SLIT) for respiratory allergic diseases. Nevertheless, it seems to be mostly used as a second-line therapeutic option, and adherence to treatment is not always optimal. Selective literature research was done in Medline and PubMed, including guidelines, position papers and Cochrane meta-analyses concerning SLIT in adult patients. The most recent reviews confirm SLIT as viable and efficacious treatment especially for allergic rhinitis, even if the optimal dosage, duration, schedule are not clearly established for most of the products. Despite an optimal safety profile, tolerability and patient-reported outcomes concerning SLIT have received poor attention until now. Recently, new tools have been specifically developed in order to investigate these aspects. Regular assessment of tolerability profile and SLIT-related patient-reported outcomes will allow balancing efficacy with tolerability and all the other patient-related variables that may affect treatment effectiveness beyond its efficacy.

  9. Towards Robust Designs Via Multiple-Objective Optimization Methods

    NASA Technical Reports Server (NTRS)

    Man Mohan, Rai

    2006-01-01

    Fabricating and operating complex systems involves dealing with uncertainty in the relevant variables. In the case of aircraft, flow conditions are subject to change during operation. Efficiency and engine noise may be different from the expected values because of manufacturing tolerances and normal wear and tear. Engine components may have a shorter life than expected because of manufacturing tolerances. In spite of the important effect of operating- and manufacturing-uncertainty on the performance and expected life of the component or system, traditional aerodynamic shape optimization has focused on obtaining the best design given a set of deterministic flow conditions. Clearly it is important to both maintain near-optimal performance levels at off-design operating conditions, and, ensure that performance does not degrade appreciably when the component shape differs from the optimal shape due to manufacturing tolerances and normal wear and tear. These requirements naturally lead to the idea of robust optimal design wherein the concept of robustness to various perturbations is built into the design optimization procedure. The basic ideas involved in robust optimal design will be included in this lecture. The imposition of the additional requirement of robustness results in a multiple-objective optimization problem requiring appropriate solution procedures. Typically the costs associated with multiple-objective optimization are substantial. Therefore efficient multiple-objective optimization procedures are crucial to the rapid deployment of the principles of robust design in industry. Hence the companion set of lecture notes (Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks ) deals with methodology for solving multiple-objective Optimization problems efficiently, reliably and with little user intervention. Applications of the methodologies presented in the companion lecture to robust design will be included here. The evolutionary method (DE) is first used to solve a relatively difficult problem in extended surface heat transfer wherein optimal fin geometries are obtained for different safe operating base temperatures. The objective of maximizing the safe operating base temperature range is in direct conflict with the objective of maximizing fin heat transfer. This problem is a good example of achieving robustness in the context of changing operating conditions. The evolutionary method is then used to design a turbine airfoil; the two objectives being reduced sensitivity of the pressure distribution to small changes in the airfoil shape and the maximization of the trailing edge wedge angle with the consequent increase in airfoil thickness and strength. This is a relevant example of achieving robustness to manufacturing tolerances and wear and tear in the presence of other objectives.

  10. Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance.

    PubMed

    Diray-Arce, Joann; Clement, Mark; Gul, Bilquees; Khan, M Ajmal; Nielsen, Brent L

    2015-05-06

    Improvement of crop production is needed to feed the growing world population as the amount and quality of agricultural land decreases and soil salinity increases. This has stimulated research on salt tolerance in plants. Most crops tolerate a limited amount of salt to survive and produce biomass, while halophytes (salt-tolerant plants) have the ability to grow with saline water utilizing specific biochemical mechanisms. However, little is known about the genes involved in salt tolerance. We have characterized the transcriptome of Suaeda fruticosa, a halophyte that has the ability to sequester salts in its leaves. Suaeda fruticosa is an annual shrub in the family Chenopodiaceae found in coastal and inland regions of Pakistan and Mediterranean shores. This plant is an obligate halophyte that grows optimally from 200-400 mM NaCl and can grow at up to 1000 mM NaCl. High throughput sequencing technology was performed to provide understanding of genes involved in the salt tolerance mechanism. De novo assembly of the transcriptome and analysis has allowed identification of differentially expressed and unique genes present in this non-conventional crop. Twelve sequencing libraries prepared from control (0 mM NaCl treated) and optimum (300 mM NaCl treated) plants were sequenced using Illumina Hiseq 2000 to investigate differential gene expression between shoots and roots of Suaeda fruticosa. The transcriptome was assembled de novo using Velvet and Oases k-45 and clustered using CDHIT-EST. There are 54,526 unigenes; among these 475 genes are downregulated and 44 are upregulated when samples from plants grown under optimal salt are compared with those grown without salt. BLAST analysis identified the differentially expressed genes, which were categorized in gene ontology terms and their pathways. This work has identified potential genes involved in salt tolerance in Suaeda fruticosa, and has provided an outline of tools to use for de novo transcriptome analysis. The assemblies that were used provide coverage of a considerable proportion of the transcriptome, which allows analysis of differential gene expression and identification of genes that may be involved in salt tolerance. The transcriptome may serve as a reference sequence for study of other succulent halophytes.

  11. Sensitivity Enhancement in Si Nanophotonic Waveguides Used for Refractive Index Sensing

    PubMed Central

    Shi, Yaocheng; Ma, Ke; Dai, Daoxin

    2016-01-01

    A comparative study is given for the sensitivity of several typical Si nanophotonic waveguides, including SOI (silicon-on-insulator) nanowires, nanoslot waveguides, suspended Si nanowires, and nanofibers. The cases for gas sensing (ncl ~ 1.0) and liquid sensing (ncl ~ 1.33) are considered. When using SOI nanowires (with a SiO2 buffer layer), the sensitivity for liquid sensing (S ~ 0.55) is higher than that for gas sensing (S ~ 0.35) due to lower asymmetry in the vertical direction. By using SOI nanoslot waveguides, suspended Si nanowires, and Si nanofibers, one could achieve a higher sensitivity compared to sensing with a free-space beam (S = 1.0). The sensitivity for gas sensing is higher than that for liquid sensing due to the higher index-contrast. The waveguide sensitivity of an optimized suspended Si nanowire for gas sensing is as high as 1.5, which is much higher than that of a SOI nanoslot waveguide. Furthermore, the optimal design has very large tolerance to the core width variation due to the fabrication error (∆w ~ ±50 nm). In contrast, a Si nanofiber could also give a very high sensitivity (e.g., ~1.43) while the fabrication tolerance is very small (i.e., ∆w < ±5 nm). The comparative study shows that suspended Si nanowire is a good choice to achieve ultra-high waveguide sensitivity. PMID:26950132

  12. Modeling of defect tolerance of IMM multijunction photovoltaics for space application

    NASA Astrophysics Data System (ADS)

    Mehrotra, Akhil; Freundlich, Alex

    2013-03-01

    Reduction of defects by use of thick sophisticated graded metamorphic buffers in inverted metamorphic solar cells has been a requirement to obtain high efficiency devices. With increase in number of metamorphic junctions to obtain higher efficiencies, these graded buffers constitute a significant part of growth time and cost for manufacturer of the solar cells. It's been shown that ultrathin 3 and 4 junction IMM devices perform better in presence of dislocations or/and radiation harsh environment compared to conventional thick IMM devices. Thickness optimization of the device would result in better defect and radiation tolerant behavior of 0.7ev and 1.0ev InGaAs sub-cells which would in turn require thinner buffers with higher efficiencies, hence reducing the total device thickness. It is also shown that for 3 and 4 junc. IMM, with an equivalent 1015 cm-2 1 MeV electron fluence radiation, very high EOL efficiencies can be afforded with substantially higher dislocation densities (<2×107 cm-2) than those commonly perceived as acceptable for IMM devices with remaining power factor as high as 0.85. The irregular radiation degradation behavior in 4-junc IMM is also explained by back photon reflection from gold contacts and reduced by using thickness optimization of 0.7ev and 1.0ev InGaAs sub-cells.

  13. Sensitivity Enhancement in Si Nanophotonic Waveguides Used for Refractive Index Sensing.

    PubMed

    Shi, Yaocheng; Ma, Ke; Dai, Daoxin

    2016-03-03

    A comparative study is given for the sensitivity of several typical Si nanophotonic waveguides, including SOI (silicon-on-insulator) nanowires, nanoslot waveguides, suspended Si nanowires, and nanofibers. The cases for gas sensing (ncl ~ 1.0) and liquid sensing (ncl ~ 1.33) are considered. When using SOI nanowires (with a SiO₂ buffer layer), the sensitivity for liquid sensing (S ~ 0.55) is higher than that for gas sensing (S ~ 0.35) due to lower asymmetry in the vertical direction. By using SOI nanoslot waveguides, suspended Si nanowires, and Si nanofibers, one could achieve a higher sensitivity compared to sensing with a free-space beam (S = 1.0). The sensitivity for gas sensing is higher than that for liquid sensing due to the higher index-contrast. The waveguide sensitivity of an optimized suspended Si nanowire for gas sensing is as high as 1.5, which is much higher than that of a SOI nanoslot waveguide. Furthermore, the optimal design has very large tolerance to the core width variation due to the fabrication error (∆w ~ ±50 nm). In contrast, a Si nanofiber could also give a very high sensitivity (e.g., ~1.43) while the fabrication tolerance is very small (i.e., ∆w < ±5 nm). The comparative study shows that suspended Si nanowire is a good choice to achieve ultra-high waveguide sensitivity.

  14. The association between market availability and adherence to antihypertensive medications: an observational study.

    PubMed

    Evans, Charity D; Eurich, Dean T; Lu, Xinya; Remillard, Alfred J; Shevchuk, Yvonne M; Blackburn, David

    2013-02-01

    High adherence to angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) reported in observational studies has frequently been attributed to improved tolerability. However, these agents are also relatively new to the market compared to other antihypertensive medications. We aimed to determine if an association exists between adherence and market availability of a specific antihypertensive agent. This retrospective cohort study used administrative data from Saskatchewan, Canada. Subjects were ≥40 years of age and received a new antihypertensive medication between 1994 and 2002. The primary outcome was the proportion of subjects achieving optimal adherence (≥80%) at 1 year, stratified by antihypertensive medication class and the year of availability. Adherence was measured using the cumulative mean gap ratio. A total of 36,214 subjects met the inclusion criteria. Optimal adherence was observed in 4987 of 8623 (57.8%) subjects receiving ACEIs and 1013 of 1600 (63.3%) subjects receiving ARBs, but adherence appeared inconsistent when examined within each antihypertensive class. A pattern of increasing mean adherence was observed according to availability in the ACEI subgroup (Spearman r = 0.82; P = 0.007) but not the ARB subgroup (Spearman r = 0.41; P = 0.49). However, the association between availability and optimal adherence converged when ARB and ACEI users were combined (Spearman r = 0.85, P < 0.001). Optimal adherence with ACEIs and ARBs compared to other antihypertensive agents may be associated with their relative availability. To what extent optimal adherence is also associated with improved tolerability, as currently believed, remains to be determined.

  15. Modeling and optimal designs for dislocation and radiation tolerant single and multijunction solar cells

    NASA Astrophysics Data System (ADS)

    Mehrotra, A.; Alemu, A.; Freundlich, A.

    2011-02-01

    Crystalline defects (e.g. dislocations or grain boundaries) as well as electron and proton induced defects cause reduction of minority carrier diffusion length which in turn results in degradation of efficiency of solar cells. Hetro-epitaxial or metamorphic III-V devices with low dislocation density have high BOL efficiencies but electron-proton radiation causes degradation in EOL efficiencies. By optimizing the device design (emitter-base thickness, doping) we can obtain highly dislocated metamorphic devices that are radiation resistant. Here we have modeled III-V single and multi junction solar cells using drift and diffusion equations considering experimental III-V material parameters, dislocation density, 1 Mev equivalent electron radiation doses, thicknesses and doping concentration. Thinner device thickness leads to increment in EOL efficiency of high dislocation density solar cells. By optimizing device design we can obtain nearly same EOL efficiencies from high dislocation solar cells than from defect free III-V multijunction solar cells. As example defect free GaAs solar cell after optimization gives 11.2% EOL efficiency (under typical 5x1015cm-2 1 MeV electron fluence) while a GaAs solar cell with high dislocation density (108 cm-2) after optimization gives 10.6% EOL efficiency. The approach provides an additional degree of freedom in the design of high efficiency space cells and could in turn be used to relax the need for thick defect filtering buffer in metamorphic devices.

  16. Efficient Parameter Searches for Colloidal Materials Design with Digital Alchemy

    NASA Astrophysics Data System (ADS)

    Dodd, Paul, M.; Geng, Yina; van Anders, Greg; Glotzer, Sharon C.

    Optimal colloidal materials design is challenging, even for high-throughput or genomic approaches, because the design space provided by modern colloid synthesis techniques can easily have dozens of dimensions. In this talk we present the methodology of an inverse approach we term ''digital alchemy'' to perform rapid searches of design-paramenter spaces with up to 188 dimensions that yield thermodynamically optimal colloid parameters for target crystal structures with up to 20 particles in a unit cell. The method relies only on fundamental principles of statistical mechanics and Metropolis Monte Carlo techniques, and yields particle attribute tolerances via analogues of familiar stress-strain relationships.

  17. Solution formulation development and efficacy of MJC13 in a preclinical model of castration-resistant prostate cancer.

    PubMed

    Liang, Su; Bian, Xiaomei; Liang, Dong; Sivils, Jeffrey C; Neckers, Leonard M; Cox, Marc B; Xie, Huan

    2016-01-01

    MJC13, a novel FKBP52 targeting agent, has potential use for the treatment of castration-resistant prostate cancer. The purpose of this work was to develop a solution formulation of MJC13, and obtain its efficacy profile in a human prostate cancer xenograft mouse model. Preformulation studies were conducted to evaluate the physicochemical properties. Co-solvent systems were evaluated for aqueous solubility and tolerance. A human prostate cancer xenograft mouse model was established by growing 22Rv1 prostate cancer cells in C.B-17 SCID mice. The optimal formulation was used to study the efficacy of MJC13 in this preclinical model of castrate-resistant prostate cancer. We found that MJC13 was stable (at least for 1 month), highly lipophilic (logP = 6.49), poorly soluble in water (0.28 µg/mL), and highly plasma protein bound (>98%). The optimal formulation consisting of PEG 400 and Tween 80 (1:1, v/v) allowed us to achieve a MJC13 concentration of 7.5 mg/mL, and tolerated an aqueous environment. After twice weekly intratumoral injection with 10 mg/kg MJC13 in this formulation for four consecutive weeks, tumor volumes were significantly reduced compared to vehicle-treated controls.

  18. A proposal of a perfect graphene absorber with enhanced design and fabrication tolerance.

    PubMed

    Lee, Sangjun; Tran, Thang Q; Heo, Hyungjun; Kim, Myunghwan; Kim, Sangin

    2017-07-06

    We propose a novel device structure for the perfect absorption of a one-sided lightwavve illumination, which consists of a high-contrast grating (HCG) and an evanescently coupled slab with an absorbing medium (graphene). The operation principle and design process of the proposed structure are analyzed using the coupled mode theory (CMT), which is confirmed by the rigorous coupled wave analysis (RCWA). According to the CMT analysis, in the design of the proposed perfect absorber, the HCG, functioning as a broadband reflector, and the lossy slab structure can be optimized separately. In addition, we have more design parameters than conditions to satisfy; that is, we have more than enough degrees of freedom in the device design. This significantly relieves the complexity of the perfect absorber design. Moreover, in the proposed perfect absorber, most of the incident wave is confined in the slab region with strong field enhancement, so that the absorption performance is very tolerant to the variation of the design parameters near the optimal values for the perfect absorption. It has been demonstrated numerically that absorption spectrum tuning over a wider wavelength range of ~300 nm is possible, keeping significantly high maximum absorption (>95%). It is also shown that the proposed perfect absorber outperforms the previously proposed scheme in all aspects.

  19. Conjugal transferring of resistance gene ptr for improvement of pristinamycin-producing Streptomyces pristinaespiralis.

    PubMed

    Jin, Zhihua; Jin, Xin; Jin, Qingchao

    2010-03-01

    Improving pristinamycin production from Streptomyces pristinaespiralis was performed by introducing the resistance gene ptr followed by selection for enhanced tolerance to pristinamycin and fermentation test. To transfer ptr into S. pristinaespiralis, an effective method was established for the first time by using the intergeneric conjugation of DNA from Escherichia coli to S. pristinaespiralis. The procedure was optimized with heat treatment, spore concentration, optimum medium used in conjugation, concentration of MgCl(2), etc. With the optimized conditions, the conjugation frequency was up to 1.36 x 10(-3) exconjugants per recipient. The procedure was used to transfer the ptr gene into S. pristinaespiralis, resulting in 146 exconjugants. These exconjugants were screened on the pristinamycin-resistant plates, and then the fermentation test subsequently. Finally, two strains (SPR1 and SPR2) were obtained with a high yield of 0.11 and 0.15 g/l, respectively, which is about six to eight times more than that of wild-strain ATCC25486. The subculture experiments indicated that the hereditary character of the high-producing S. pristinaespiralis SPR1 and SPR2 was stable. Our work suggests that introducing resistance gene ptr into S. pristinaespiralis could be the way to improve the production of pristinamycin through the enhancement of antibiotic tolerance.

  20. Linearity optimizations of analog ring resonator modulators through bias voltage adjustments

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Arash; Middlebrook, Christopher T.

    2018-03-01

    The linearity of ring resonator modulator (RRM) in microwave photonic links is studied in terms of instantaneous bandwidth, fabrication tolerances, and operational bandwidth. A proposed bias voltage adjustment method is shown to maximize spur-free dynamic range (SFDR) at instantaneous bandwidths required by microwave photonic link (MPL) applications while also mitigating RRM fabrication tolerances effects. The proposed bias voltage adjustment method shows RRM SFDR improvement of ∼5.8 dB versus common Mach-Zehnder modulators at 500 MHz instantaneous bandwidth. Analyzing operational bandwidth effects on SFDR shows RRMs can be promising electro-optic modulators for MPL applications which require high operational frequencies while in a limited bandwidth such as radio-over-fiber 60 GHz wireless network access.

  1. Abnormal glucose tolerance post-gestational diabetes mellitus as defined by the International Association of Diabetes and Pregnancy Study Groups criteria.

    PubMed

    Noctor, Eoin; Crowe, Catherine; Carmody, Louise A; Saunders, Jean A; Kirwan, Breda; O'Dea, Angela; Gillespie, Paddy; Glynn, Liam G; McGuire, Brian E; O'Neill, Ciarán; O'Shea, P M; Dunne, F P

    2016-10-01

    An increase in gestational diabetes mellitus (GDM) prevalence has been demonstrated across many countries with adoption of the International Association of the Diabetes and Pregnancy Study Groups (IADPSG) diagnostic criteria. Here, we determine the cumulative incidence of abnormal glucose tolerance among women with previous GDM, and identify clinical risk factors predicting this. Two hundred and seventy women with previous IADPSG-defined GDM were prospectively followed up for 5years (mean 2.6) post-index pregnancy, and compared with 388 women with normal glucose tolerance (NGT) in pregnancy. Cumulative incidence of abnormal glucose tolerance (using American Diabetes Association criteria for impaired fasting glucose, impaired glucose tolerance and diabetes) was determined using the Kaplan-Meier method of survival analysis. Cox regression models were constructed to test for factors predicting abnormal glucose tolerance. Twenty-six percent of women with previous GDM had abnormal glucose tolerance vs 4% with NGT, with the log-rank test demonstrating significantly different survival curves (P<0.001). Women meeting IADPSG, but not the World Health Organization (WHO) 1999 criteria, had a lower cumulative incidence than women meeting both sets of criteria, both in the early post-partum period (4.2% vs 21.7%, P<0.001) and at longer-term follow-up (13.7% vs 32.6%, P<0.001). Predictive factors were glucose levels on the pregnancy oral glucose tolerance test, family history of diabetes, gestational week at testing, and BMI at follow-up. The proportion of women developing abnormal glucose tolerance remains high among those with IADPSG-defined GDM. This demonstrates the need for continued close follow-up, although the optimal frequency and method needs further study. © 2016 European Society of Endocrinology.

  2. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products-A review.

    PubMed

    Chen, Bailing; Wan, Chun; Mehmood, Muhammad Aamer; Chang, Jo-Shu; Bai, Fengwu; Zhao, Xinqing

    2017-11-01

    Microalgae have promising potential to produce lipids and a variety of high-value chemicals. Suitable stress conditions such as nitrogen starvation and high salinity could stimulate synthesis and accumulation of lipids and high-value products by microalgae, therefore, various stress-modification strategies were developed to manipulate and optimize cultivation processes to enhance bioproduction efficiency. On the other hand, advancements in omics-based technologies have boosted the research to globally understand microalgal gene regulation under stress conditions, which enable further improvement of production efficiency via genetic engineering. Moreover, integration of multi-omics data, synthetic biology design, and genetic engineering manipulations exhibits a tremendous potential in the betterment of microalgal biorefinery. This review discusses the process manipulation strategies and omics studies on understanding the regulation of metabolite biosynthesis under various stressful conditions, and proposes genetic engineering of microalgae to improve bioproduction via manipulating stress tolerance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Engineering photosynthetic cyanobacterial chassis: a review].

    PubMed

    Wu, Qin; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2013-08-01

    Photosynthetic cyanobacteria possess a series of good properties, such as their abilities to capture solar energy for CO2 fixation, low nutritional requirements for growth, high growth rate, and relatively simple genetic background. Due to the high oil price and increased concern of the global warming in recent years, cyanobacteria have attracted widespread attention because they can serve as an 'autotrophic microbial factory' for producing renewable biofuels and fine chemicals directly from CO2. Particularly, significant progress has been made in applying synthetic biology techniques and strategies to construct and optimize cyanobacteria chassis. In this article, we critically summarized recent advances in developing new methods to optimize cyanobacteria chassis, improving cyanobacteria photosynthetic efficiency, and in constructing cyanobacteria chassis tolerant to products or environmental stresses. In addition, various industrial applications of cyanobacteria chassis are also discussed.

  4. Modeling and Simulation Reliable Spacecraft On-Board Computing

    NASA Technical Reports Server (NTRS)

    Park, Nohpill

    1999-01-01

    The proposed project will investigate modeling and simulation-driven testing and fault tolerance schemes for Spacecraft On-Board Computing, thereby achieving reliable spacecraft telecommunication. A spacecraft communication system has inherent capabilities of providing multipoint and broadcast transmission, connectivity between any two distant nodes within a wide-area coverage, quick network configuration /reconfiguration, rapid allocation of space segment capacity, and distance-insensitive cost. To realize the capabilities above mentioned, both the size and cost of the ground-station terminals have to be reduced by using reliable, high-throughput, fast and cost-effective on-board computing system which has been known to be a critical contributor to the overall performance of space mission deployment. Controlled vulnerability of mission data (measured in sensitivity), improved performance (measured in throughput and delay) and fault tolerance (measured in reliability) are some of the most important features of these systems. The system should be thoroughly tested and diagnosed before employing a fault tolerance into the system. Testing and fault tolerance strategies should be driven by accurate performance models (i.e. throughput, delay, reliability and sensitivity) to find an optimal solution in terms of reliability and cost. The modeling and simulation tools will be integrated with a system architecture module, a testing module and a module for fault tolerance all of which interacting through a centered graphical user interface.

  5. Characterization of a novel high-pH-tolerant laccase-like multicopper oxidase and its sequence diversity in Thioalkalivibrio sp.

    PubMed

    Ausec, Luka; Črnigoj, Miha; Šnajder, Marko; Ulrih, Nataša Poklar; Mandic-Mulec, Ines

    2015-12-01

    Laccases are oxidoreductases mostly studied in fungi, while bacterial laccases remain poorly studied despite their high genetic diversity and potential for biotechnological application. Our previous bioinformatic analysis identified alkaliphilic bacterial strains Thioalkalivibrio sp. as potential sources of robust bacterial laccases that would be stable at high pH. In the present work, a gene for a laccase-like enzyme from Thioalkalivibrio sp. ALRh was cloned and expressed as a 6× His-tagged protein in Escherichia coli. The purified enzyme was a pH-tolerant laccase stable in the pH range between 2.1 and 9.9 at 20 °C as shown by intrinsic fluorescence emission spectrometry. It had optimal activities at pH 5.0 and pH 9.5 with the laccase substrates 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,6-dimethoxyphenol, respectively. In addition, it could oxidize several other monophenolic compounds and potassium hexacyanoferrate(II) but not tyrosine. It showed highest activity at 50 °C, making it suitable for prolonged incubations at this temperature. The present study shows that Thioalkalivibrio sp. encodes an active, alkaliphilic, and thermo-tolerant laccase and contributes to our understanding of the versatility of bacterial laccase-like multicopper oxidases in general.

  6. Design and analysis of new fault-tolerant permanent magnet motors for four-wheel-driving electric vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Guohai; Gong, Wensheng; Chen, Qian; Jian, Linni; Shen, Yue; Zhao, Wenxiang

    2012-04-01

    In this paper, a novel in-wheel permanent-magnet (PM) motor for four-wheel-driving electrical vehicles is proposed. It adopts an outer-rotor topology, which can help generate a large drive torque, in order to achieve prominent dynamic performance of the vehicle. Moreover, by adopting single-layer concentrated-windings, fault-tolerant teeth, and the optimal combination of slot and pole numbers, the proposed motor inherently offers negligible electromagnetic coupling between different phase windings, hence, it possesses a fault-tolerant characteristic. Meanwhile, the phase back electromotive force waveforms can be designed to be sinusoidal by employing PMs with a trapezoidal shape, eccentric armature teeth, and unequal tooth widths. The electromagnetic performance is comprehensively investigated and the optimal design is conducted by using the finite-element method.

  7. Feasibility study of using statistical process control to customized quality assurance in proton therapy.

    PubMed

    Rah, Jeong-Eun; Shin, Dongho; Oh, Do Hoon; Kim, Tae Hyun; Kim, Gwe-Ya

    2014-09-01

    To evaluate and improve the reliability of proton quality assurance (QA) processes and, to provide an optimal customized tolerance level using the statistical process control (SPC) methodology. The authors investigated the consistency check of dose per monitor unit (D/MU) and range in proton beams to see whether it was within the tolerance level of the daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to improve the patient-specific QA process in proton beams by using process capability indices. The authors established a customized tolerance level of ±2% for D/MU and ±0.5 mm for beam range in the daily proton QA process. In the authors' analysis of the process capability indices, the patient-specific range measurements were capable of a specification limit of ±2% in clinical plans. SPC methodology is a useful tool for customizing the optimal QA tolerance levels and improving the quality of proton machine maintenance, treatment delivery, and ultimately patient safety.

  8. Adjoint Techniques for Topology Optimization of Structures Under Damage Conditions

    NASA Technical Reports Server (NTRS)

    Akgun, Mehmet A.; Haftka, Raphael T.

    2000-01-01

    The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation (Haftka and Gurdal, 1992) in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers (Akgun et al., 1998a and 1999). It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages (Haftka et al., 1983). A common method for topology optimization is that of compliance minimization (Bendsoe, 1995) which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local and represents a small change in the stiffness matrix compared to the baseline (undamaged) structure. The exact solution to a slightly modified set of equations can be obtained from the baseline solution economically without actually solving the modified system.. Shennan-Morrison-Woodbury (SMW) formulas are matrix update formulas that allow this (Akgun et al., 1998b). SMW formulas were therefore used here to compute adjoint displacements for sensitivity computation and structural displacements in damaged configurations.

  9. Optimization studies on production of a salt-tolerant protease from Pseudomonas aeruginosa strain BC1 and its application on tannery saline wastewater treatment

    PubMed Central

    Sivaprakasam, Senthilkumar; Dhandapani, Balaji; Mahadevan, Surianarayanan

    2011-01-01

    Treatment and safe disposal of tannery saline wastewater, a primary effluent stream that is generated by soaking salt-laden hides and skin is one of the major problems faced by the leather manufacturing industries. Conventional treatment methods like solar evaporation ponds and land composting are not eco-friendly as they deteriorate the ground water quality. Though, this waste stream is comprised of high concentration of dissolved proteins the presence of high salinity (1–6 % NaCl by wt) makes it non-biodegradable. Enzymatic treatment is one of the positive alternatives for management of such kind of waste streams. A novel salt-tolerant alkaline protease obtained from P.aeruginosa (isolated from tannery saline wastewater) was used for enzymatic degradation studies. The effect of various physical factors including pH, temperature, incubation time, protein source and salinity on the activity of identified protease were investigated. Kinetic parameters (Km , Vmax) were calculated for the identified alkaline protease at varying substrate concentrations. Tannery saline wastewater treated with identified salt tolerant protease showed 75 % protein removal at 6 h duration and 2 % (v/v) protease addition was found to be the optimum dosage value. PMID:24031785

  10. An alkaline and surfactant-tolerant lipase from Trichoderma lentiforme ACCC30425 with high application potential in the detergent industry.

    PubMed

    Wang, Yuzhou; Ma, Rui; Li, Shigui; Gong, Mingbo; Yao, Bin; Bai, Yingguo; Gu, Jingang

    2018-06-05

    Alkaline lipases with adaptability to low temperatures and strong surfactant tolerance are favorable for application in the detergent industry. In the present study, a lipase-encoding gene, TllipA, was cloned from Trichoderma lentiforme ACCC30425 and expressed in Pichia pastoris GS115. The purified recombinant TlLipA was found to have optimal activities at 50 °C and pH 9.5 and retain stable over the pH range of 6.0-10.0 and 40 °C and below. When using esters of different lengths as substrates, TlLipA showed preference for the medium length p-nitrophenyl octanoate. In comparison to commercial lipases, TlLipA demonstrated higher tolerance to various surfactants (SDS, Tween 20, and Triton X100) and retained more activities after incubation with Triton X100 for up to 24 h. These favorable characteristics make TlLipA prospective as an additive in the detergent industry.

  11. Database on Performance of Neutron Irradiated FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Briggs, Samuel A.; Littrell, Ken

    The present report summarizes and discusses the database on radiation tolerance for Generation I, Generation II, and commercial FeCrAl alloys. This database has been built upon mechanical testing and microstructural characterization on selected alloys irradiated within the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to doses of 13.8 dpa at temperatures ranging from 200°C to 550°C. The structure and performance of these irradiated alloys were characterized using advanced microstructural characterization techniques and mechanical testing. The primary objective of developing this database is to enhance the rapid development of a mechanistic understanding on the radiation tolerancemore » of FeCrAl alloys, thereby enabling informed decisions on the optimization of composition and microstructure of FeCrAl alloys for application as an accident tolerant fuel (ATF) cladding. This report is structured to provide a brief summary of critical results related to the database on radiation tolerance of FeCrAl alloys.« less

  12. Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar

    2018-02-01

    The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.

  13. Additive Manufacturing of Hierarchical Multi-Phase High-Entropy Alloys for Nuclear Component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan

    In recent years, high entropy alloys (HEAs), composed of four or more metallic elements mixed in equal or near equal atomic percent, have attracted significant attention due to their excellent mechanical properties and good corrosion resistance. They show significant promise as candidates for high temperature fission and fusion structural applications. However, the conventional synthesis methods are unlikely to present an industrially suitable route for the production and use of HEAs. Recognizing rapidly evolving additive manufacturing (AM) techniques, the goal of this proposal is to optimize the AM process to fabricate HEAs with predesigned chemical compositions and phase morphologies for nuclearmore » components. For this project, two HEAs FeCrNiMn and FeCrNiMnAl have been successfully synthesized. Correlated mechanical response has been systematically characterized under a variety of laser processing and ion irradiations. Both high entropy alloys are found to present comparable swelling and extraordinary irradiation tolerance (limited voids and stabilized phase structure under high irradiation dose). In addition, the microstructure and radiation-induced hardening can be tailored by laser processing under additive manufacturing. And we have assembled at LANL a unique database of HEAs containing a total of 674 compositions with Phase Stability information. Based on this, the machine learning and Artificial Intelligence capability now are established to predict the microstructure of casted HEAs by given chemical compositions. This unique integration will lead to an optimal AM recipe for fabricating radiation tolerant HEAs. The development of both modeling models and experimental capability will also benefit other programs at LANL.« less

  14. E-Beam Processing of Polymer Matrix Composites for Multifunctional Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Chang, Chie K.; Kiefer, Richard L.

    2005-01-01

    Aliphatic polymers were identified as optimum radiation shielding polymeric materials for building multifunctional structural elements for in-space habitats. Conceptual damage tolerant configurations of polyolefins have been proposed, but many manufacturing issues relied on methods and materials which have sub-optimal radiation shielding characteristics (for example, epoxy matrix and adhesives). In the present approach, we shall investigate e-beam processing technologies for inclusion of high-strength aliphatic polymer reinforcement structures into a highly cross-linked polyolefin matrix. This paper reports the baseline thermo-mechanical properties of low density polyethylene and highly crystallized polyethylene.

  15. Toward the Validation of Maternal Embryonic Leucine Zipper Kinase: Discovery, Optimization of Highly Potent and Selective Inhibitors, and Preliminary Biology Insight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touré, B. Barry; Giraldes, John; Smith, Troy

    2016-05-26

    MELK kinase has been implicated in playing an important role in tumorigenesis. Our previous studies suggested that MELK is involved in the regulation of cell cycle and its genetic depletion leads to growth inhibition in a subset of high MELK-expressing basal-like breast cancer cell lines. Herein we describe the discovery and optimization of novel MELK inhibitors 8a and 8b that recapitulate the cellular effects observed by short hairpin ribonucleic acid (shRNA)-mediated MELK knockdown in cellular models. We also discovered a novel fluorine-induced hydrophobic collapse that locked the ligand in its bioactive conformation and led to a 20-fold gain in potency.more » These novel pharmacological inhibitors achieved high exposure in vivo and were well tolerated, which may allow further in vivo evaluation.« less

  16. Optimal design study of high efficiency indium phosphide space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Recently indium phosphide solar cells have achieved beginning of life AMO efficiencies in excess of 19 pct. at 25 C. The high efficiency prospects along with superb radiation tolerance make indium phosphide a leading material for space power requirements. To achieve cost effectiveness, practical cell efficiencies have to be raised to near theoretical limits and thin film indium phosphide cells need to be developed. The optimal design study is described of high efficiency indium phosphide solar cells for space power applications using the PC-1D computer program. It is shown that cells with efficiencies over 22 pct. AMO at 25 C could be fabricated by achieving proper material and process parameters. It is observed that further improvements in cell material and process parameters could lead to experimental cell efficiencies near theoretical limits. The effect of various emitter and base parameters on cell performance was studied.

  17. Optimization of nonbinary slanted surface-relief gratings as high-efficiency broadband couplers for light guides.

    PubMed

    Bai, Benfeng; Laukkanen, Janne; Kuittinen, Markku; Siitonen, Samuli

    2010-10-01

    We propose and investigate the use of slanted surface-relief gratings with nonbinary profiles as high-efficiency broadband couplers for light guides. First, a Chandezon-method-based rigorous numerical formulation is presented for modeling the slanted gratings with overhanging profiles. Then, two typical types of slanted grating couplers--a sinusoidal one and a trapezoidal one--are studied and optimized numerically, both exhibiting a high coupling efficiency of over 50% over the full band of white LED under the normal illumination of unpolarized light. Reasonable structural parameters with nice tolerance have been obtained for the optimized designs. It is found that the performance of the couplers depends little on the grating profile shape, but primarily on the grating period and the slant angle of the ridge. The underlying mechanism is analyzed by the equivalence rules of gratings, which provide useful guidelines for the design and fabrication of the couplers. Preliminary investigation has been performed on the fabrication and replication of the slanted overhanging grating couplers, which shows the feasibility of fabrication with mature microfabrication techniques and the perspective for mass production.

  18. Non-destructive Determination of Shikimic Acid Concentration in Transgenic Maize Exhibiting Glyphosate Tolerance Using Chlorophyll Fluorescence and Hyperspectral Imaging

    PubMed Central

    Feng, Xuping; Yu, Chenliang; Chen, Yue; Peng, Jiyun; Ye, Lanhan; Shen, Tingting; Wen, Haiyong; He, Yong

    2018-01-01

    The development of transgenic glyphosate-tolerant crops has revolutionized weed control in crops in many regions of the world. The early, non-destructive identification of superior plant phenotypes is an important stage in plant breeding programs. Here, glyphosate-tolerant transgenic maize and its parental wild-type control were studied at 2, 4, 6, and 8 days after glyphosate treatment. Visible and near-infrared hyperspectral imaging and chlorophyll fluorescence imaging techniques were applied to monitor the performance of plants. In our research, transgenic maize, which was highly tolerant to glyphosate, was phenotyped using these high-throughput non-destructive methods to validate low levels of shikimic acid accumulation and high photochemical efficiency of photosystem II as reflected by maximum quantum yield and non-photochemical quenching in response to glyphosate. For hyperspectral imaging analysis, the combination of spectroscopy and chemometric methods was used to predict shikimic acid concentration. Our results indicated that a partial least-squares regression model, built on optimal wavelengths, effectively predicted shikimic acid concentrations, with a coefficient of determination value of 0.79 for the calibration set, and 0.82 for the prediction set. Moreover, shikimic acid concentration estimates from hyperspectral images were visualized on the prediction maps by spectral features, which could help in developing a simple multispectral imaging instrument for non-destructive phenotyping. Specific physiological effects of glyphosate affected the photochemical processes of maize, which induced substantial changes in chlorophyll fluorescence characteristics. A new data-driven method, combining mean fluorescence parameters and featuring a screening approach, provided a satisfactory relationship between fluorescence parameters and shikimic acid content. The glyphosate-tolerant transgenic plants can be identified with the developed discrimination model established on important wavelengths or sensitive fluorescence parameters 6 days after glyphosate treatment. The overall results indicated that both hyperspectral imaging and chlorophyll fluorescence imaging techniques could provide useful tools for stress phenotyping in maize breeding programs and could enable the detection and evaluation of superior genotypes, such as glyphosate tolerance, with a non-destructive high-throughput technique. PMID:29686693

  19. Non-destructive Determination of Shikimic Acid Concentration in Transgenic Maize Exhibiting Glyphosate Tolerance Using Chlorophyll Fluorescence and Hyperspectral Imaging.

    PubMed

    Feng, Xuping; Yu, Chenliang; Chen, Yue; Peng, Jiyun; Ye, Lanhan; Shen, Tingting; Wen, Haiyong; He, Yong

    2018-01-01

    The development of transgenic glyphosate-tolerant crops has revolutionized weed control in crops in many regions of the world. The early, non-destructive identification of superior plant phenotypes is an important stage in plant breeding programs. Here, glyphosate-tolerant transgenic maize and its parental wild-type control were studied at 2, 4, 6, and 8 days after glyphosate treatment. Visible and near-infrared hyperspectral imaging and chlorophyll fluorescence imaging techniques were applied to monitor the performance of plants. In our research, transgenic maize, which was highly tolerant to glyphosate, was phenotyped using these high-throughput non-destructive methods to validate low levels of shikimic acid accumulation and high photochemical efficiency of photosystem II as reflected by maximum quantum yield and non-photochemical quenching in response to glyphosate. For hyperspectral imaging analysis, the combination of spectroscopy and chemometric methods was used to predict shikimic acid concentration. Our results indicated that a partial least-squares regression model, built on optimal wavelengths, effectively predicted shikimic acid concentrations, with a coefficient of determination value of 0.79 for the calibration set, and 0.82 for the prediction set. Moreover, shikimic acid concentration estimates from hyperspectral images were visualized on the prediction maps by spectral features, which could help in developing a simple multispectral imaging instrument for non-destructive phenotyping. Specific physiological effects of glyphosate affected the photochemical processes of maize, which induced substantial changes in chlorophyll fluorescence characteristics. A new data-driven method, combining mean fluorescence parameters and featuring a screening approach, provided a satisfactory relationship between fluorescence parameters and shikimic acid content. The glyphosate-tolerant transgenic plants can be identified with the developed discrimination model established on important wavelengths or sensitive fluorescence parameters 6 days after glyphosate treatment. The overall results indicated that both hyperspectral imaging and chlorophyll fluorescence imaging techniques could provide useful tools for stress phenotyping in maize breeding programs and could enable the detection and evaluation of superior genotypes, such as glyphosate tolerance, with a non-destructive high-throughput technique.

  20. Implications of path tolerance and path characteristics on critical vehicle manoeuvres

    NASA Astrophysics Data System (ADS)

    Lundahl, K.; Frisk, E.; Nielsen, L.

    2017-12-01

    Path planning and path following are core components in safe autonomous driving. Typically, a path planner provides a path with some tolerance on how tightly the path should be followed. Based on that, and other path characteristics, for example, sharpness of curves, a speed profile needs to be assigned so that the vehicle can stay within the given tolerance without going unnecessarily slow. Here, such trajectory planning is based on optimal control formulations where critical cases arise as on-the-limit solutions. The study focuses on heavy commercial vehicles, causing rollover to be of a major concern, due to the relatively high centre of gravity. Several results are obtained on required model complexity depending on path characteristics, for example, quantification of required path tolerance for a simple model to be sufficient, quantification of when yaw inertia needs to be considered in more detail, and how the curvature rate of change interplays with available friction. Overall, in situations where the vehicle is subject to a wide range of driving conditions, from good transport roads to more tricky avoidance manoeuvres, the requirements on the path following will vary. For this, the provided results form a basis for real-time path following.

  1. Blended near-optimal alternative generation, visualization, and interaction for water resources decision making

    NASA Astrophysics Data System (ADS)

    Rosenberg, David E.

    2015-04-01

    State-of-the-art systems analysis techniques focus on efficiently finding optimal solutions. Yet an optimal solution is optimal only for the modeled issues and managers often seek near-optimal alternatives that address unmodeled objectives, preferences, limits, uncertainties, and other issues. Early on, Modeling to Generate Alternatives (MGA) formalized near-optimal as performance within a tolerable deviation from the optimal objective function value and identified a few maximally different alternatives that addressed some unmodeled issues. This paper presents new stratified, Monte-Carlo Markov Chain sampling and parallel coordinate plotting tools that generate and communicate the structure and extent of the near-optimal region to an optimization problem. Interactive plot controls allow users to explore region features of most interest. Controls also streamline the process to elicit unmodeled issues and update the model formulation in response to elicited issues. Use for an example, single-objective, linear water quality management problem at Echo Reservoir, Utah, identifies numerous and flexible practices to reduce the phosphorus load to the reservoir and maintain close-to-optimal performance. Flexibility is upheld by further interactive alternative generation, transforming the formulation into a multiobjective problem, and relaxing the tolerance parameter to expand the near-optimal region. Compared to MGA, the new blended tools generate more numerous alternatives faster, more fully show the near-optimal region, and help elicit a larger set of unmodeled issues.

  2. Remote auditing of radiotherapy facilities using optically stimulated luminescence dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lye, Jessica, E-mail: jessica.lye@arpansa.gov.au; Dunn, Leon; Kenny, John

    Purpose: On 1 July 2012, the Australian Clinical Dosimetry Service (ACDS) released its Optically Stimulated Luminescent Dosimeter (OSLD) Level I audit, replacing the previous TLD based audit. The aim of this work is to present the results from this new service and the complete uncertainty analysis on which the audit tolerances are based. Methods: The audit release was preceded by a rigorous evaluation of the InLight® nanoDot OSLD system from Landauer (Landauer, Inc., Glenwood, IL). Energy dependence, signal fading from multiple irradiations, batch variation, reader variation, and dose response factors were identified and quantified for each individual OSLD. The detectorsmore » are mailed to the facility in small PMMA blocks, based on the design of the existing Radiological Physics Centre audit. Modeling and measurement were used to determine a factor that could convert the dose measured in the PMMA block, to dose in water for the facility's reference conditions. This factor is dependent on the beam spectrum. The TPR{sub 20,10} was used as the beam quality index to determine the specific block factor for a beam being audited. The audit tolerance was defined using a rigorous uncertainty calculation. The audit outcome is then determined using a scientifically based two tiered action level approach. Audit outcomes within two standard deviations were defined as Pass (Optimal Level), within three standard deviations as Pass (Action Level), and outside of three standard deviations the outcome is Fail (Out of Tolerance). Results: To-date the ACDS has audited 108 photon beams with TLD and 162 photon beams with OSLD. The TLD audit results had an average deviation from ACDS of 0.0% and a standard deviation of 1.8%. The OSLD audit results had an average deviation of −0.2% and a standard deviation of 1.4%. The relative combined standard uncertainty was calculated to be 1.3% (1σ). Pass (Optimal Level) was reduced to ≤2.6% (2σ), and Fail (Out of Tolerance) was reduced to >3.9% (3σ) for the new OSLD audit. Previously with the TLD audit the Pass (Optimal Level) and Fail (Out of Tolerance) were set at ≤4.0% (2σ) and >6.0% (3σ). Conclusions: The calculated standard uncertainty of 1.3% at one standard deviation is consistent with the measured standard deviation of 1.4% from the audits and confirming the suitability of the uncertainty budget derived audit tolerances. The OSLD audit shows greater accuracy than the previous TLD audit, justifying the reduction in audit tolerances. In the TLD audit, all outcomes were Pass (Optimal Level) suggesting that the tolerances were too conservative. In the OSLD audit 94% of the audits have resulted in Pass (Optimal level) and 6% of the audits have resulted in Pass (Action Level). All Pass (Action level) results have been resolved with a repeat OSLD audit, or an on-site ion chamber measurement.« less

  3. Evolution of phenotypic plasticity and environmental tolerance of a labile quantitative character in a fluctuating environment.

    PubMed

    Lande, R

    2014-05-01

    Quantitative genetic models of evolution of phenotypic plasticity are used to derive environmental tolerance curves for a population in a changing environment, providing a theoretical foundation for integrating physiological and community ecology with evolutionary genetics of plasticity and norms of reaction. Plasticity is modelled for a labile quantitative character undergoing continuous reversible development and selection in a fluctuating environment. If there is no cost of plasticity, a labile character evolves expected plasticity equalling the slope of the optimal phenotype as a function of the environment. This contrasts with previous theory for plasticity influenced by the environment at a critical stage of early development determining a constant adult phenotype on which selection acts, for which the expected plasticity is reduced by the environmental predictability over the discrete time lag between development and selection. With a cost of plasticity in a labile character, the expected plasticity depends on the cost and on the environmental variance and predictability averaged over the continuous developmental time lag. Environmental tolerance curves derived from this model confirm traditional assumptions in physiological ecology and provide new insights. Tolerance curve width increases with larger environmental variance, but can only evolve within a limited range. The strength of the trade-off between tolerance curve height and width depends on the cost of plasticity. Asymmetric tolerance curves caused by male sterility at high temperature are illustrated. A simple condition is given for a large transient increase in plasticity and tolerance curve width following a sudden change in average environment. © 2014 The Author. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  4. Guidance, Navigation, and Control System Design in a Mass Reduction Exercise

    NASA Technical Reports Server (NTRS)

    Crain, Timothy; Begly, Michael; Jackson, Mark; Broome, Joel

    2008-01-01

    Early Orion GN&C system designs optimized for robustness, simplicity, and utilization of commercially available components. During the System Definition Review (SDR), all subsystems on Orion were asked to re-optimize with component mass and steady state power as primary design metrics. The objective was to create a mass reserve in the Orion point of departure vehicle design prior to beginning the PDR analysis cycle. The Orion GN&C subsystem team transitioned from a philosophy of absolute 2 fault tolerance for crew safety and 1 fault tolerance for mission success to an approach of 1 fault tolerance for crew safety and risk based redundancy to meet probability allocations of loss of mission and loss of crew. This paper will discuss the analyses, rationale, and end results of this activity regarding Orion navigation sensor hardware, control effectors, and trajectory design.

  5. DAKOTA Design Analysis Kit for Optimization and Terascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Dalbey, Keith R.; Eldred, Michael S.

    2010-02-24

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes (computational models) and iterative analysis methods. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and analysis of computational models on high performance computers.A user provides a set of DAKOTA commands in an input file and launches DAKOTA. DAKOTA invokes instances of the computational models, collects their results, and performs systems analyses. DAKOTA contains algorithms for optimization with gradient and nongradient-basedmore » methods; uncertainty quantification with sampling, reliability, polynomial chaos, stochastic collocation, and epistemic methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. Services for parallel computing, simulation interfacing, approximation modeling, fault tolerance, restart, and graphics are also included.« less

  6. Tolerance of Ruppia sinensis Seeds to Desiccation, Low Temperature, and High Salinity With Special Reference to Long-Term Seed Storage.

    PubMed

    Gu, Ruiting; Zhou, Yi; Song, Xiaoyue; Xu, Shaochun; Zhang, Xiaomei; Lin, Haiying; Xu, Shuai; Yue, Shidong; Zhu, Shuyu

    2018-01-01

    Seeds are important materials for the restoration of globally-threatened marine angiosperm (seagrass) populations. In this study, we investigated the differences between different Ruppia sinensis seed types and developed two feasible long-term R. sinensis seed storage methods. The ability of R. sinensis seeds to tolerate the short-term desiccation and extreme cold had been investigated. The tolerance of R. sinensis seeds to long-term exposure of high salinity, cold temperature, and desiccation had been considered as potential methods for long-term seed storage. Also, three morphological and nine physiological indices were measured and compared between two types of seeds: Shape L and Shape S. We found that: (1) wet storage at a salinity of 30-40 psu and 0°C were the optimal long-term storage conditions, and the proportion of viable seeds reached over 90% after a storage period of 11 months since the seeds were collected from the reproductive shoots; (2) dry condition was not the optimal choice for long-term storage of R. sinensis seeds; however, storing seeds in a dry condition at 5°C and 33 ± 10% relative humidity for 9 months had a relatively high percentage (74.44 ± 2.22%) of viable seeds, consequently desiccation exposure could also be an acceptable seed storage method; (3) R. sinensis seeds would lose vigor in the interaction of extreme cold (-27°C) and desiccation; (4) there were significant differences in seed weight, seed curvature, and endocarp thickness between the two types of seeds. These findings provided fundamental physiological information for R. sinensis seeds and supported the long-term storage of its seeds. Our results may also serve as useful reference for seed storage of other threatened seagrass species and facilitate their ex situ conservation and habitat restoration.

  7. Optical and mechanical tolerances in hybrid concentrated thermal-PV solar trough.

    PubMed

    Diaz, Liliana Ruiz; Cocilovo, Byron; Miles, Alexander; Pan, Wei; Blanche, Pierre-Alexandre; Norwood, Robert A

    2018-05-14

    Hybrid thermal-PV solar trough collectors combine concentrated photovoltaics and concentrated solar power technology to harvest and store solar energy. In this work, the optical and mechanical requirements for optimal efficiency are analyzed using non-sequential ray tracing techniques. The results are used to generate opto-mechanical tolerances that can be compared to those of traditional solar collectors. We also explore ideas on how to relieve tracking tolerances for single-axis solar collectors. The objective is to establish a basis for tolerances required for the fabrication and manufacturing of hybrid solar trough collectors.

  8. Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111.

    PubMed

    Thomas, Lebin; Ram, Hari; Kumar, Alok; Singh, Ved Pal

    2016-07-01

    High costs of natural cellulose utilization and cellulase production are an industrial challenge. In view of this, an isolated soil actinobacterium identified as Promicromonospora sp. VP111 showed potential for production of major cellulases (CMCase, FPase, and β-glucosidase) utilizing untreated agricultural lignocellulosic wastes. Extensive disintegration of microcrystalline cellulose and adherence on it during fermentation divulged true cellulolytic efficiency of the strain. Conventional optimization resulted in increased cellulase yield in a cost-effective medium, and the central composite design (CCD) analysis revealed cellulase production to be limited by cellulose and ammonium sulfate. Cellulase activities were enhanced by Co(+2) (1 mM) and retained up to 60 °C and pH 9.0, indicating thermo-alkaline tolerance. Cellulases showed stability in organic solvents (25 % v/v) with log P ow  ≥ 1.24. Untreated wheat straw during submerged fermentation was particularly degraded and yielded about twofold higher levels of cellulases than with commercial cellulose (Na-CMC and avicel) which is especially economical. Thus, this is the first detailed report on cellulases from an efficient strain of Promicromonospora that was non-hemolytic, alkali-halotolerant, antibiotic (erythromycin, kanamycin, rifampicin, cefaclor, ceftazidime) resistant, multiple heavy metal (Mo(+6) = W(+6) > Pb(+2) > Mn(+2) > Cr(+3) > Sn(+2)), and organic solvent (n-hexane, isooctane) tolerant, which is industrially and environmentally valuable.

  9. Abscisic acid induced freezing tolerance in chilling-sensitive suspension cultures and seedlings of rice

    PubMed Central

    2013-01-01

    Background The role of abscisic acid (ABA) as a possible activator of cold acclimation process was postulated since endogenous levels of ABA increase temporarily or constitutively during cold-hardening. Exogenous application of ABA has been known to induce freezing tolerance at ambient temperatures in in vitro systems derived from cold hardy plants. Yet, some cell cultures acquired much greater freezing tolerance by ABA than by cold whilst maintaining active growth. This raises questions about the relationships among ABA, cold acclimation and growth cessation. To address this question, we attempted to 1) determine whether exogenous ABA can confer freezing tolerance in chilling-sensitive rice suspension cells and seedlings, which obviously lack the mechanisms to acquire freezing tolerance in response to cold; 2) characterize this phenomenon by optimizing the conditions and compare with the case of cold hardy bromegrass cells. Results Non-embryogenic suspension cells of rice suffered serious chilling injury when exposed to 4°C. When incubated with ABA at the optimal conditions (0.5-1 g cell inoculum, 75 μM ABA, 25-30°C, 7–10 days), they survived slow freezing (2°C/h) to −9.0 ~ −9.3°C (LT50: 50% killing temperature) while control cells were mostly injured at −3°C (LT50: -0.5 ~ −1.5°C). Ice-inoculation of the cell suspension at −3°C and survival determination by regrowth confirmed that ABA-treated rice cells survived extracellular freezing at −9°C. ABA-induced freezing tolerance did not require any exposure to cold and was best achieved at 25-30°C where the rice cells maintained high growth even in the presence of ABA. ABA treatment also increased tolerance to heat (43°C) as determined by regrowth. ABA-treated cells tended to have more augmented cytoplasm and/or reduced vacuole sizes compared to control cultures with a concomitant increase in osmolarity and a decrease in water content. ABA-treated (2–7 days) in vitro grown seedlings and their leaves survived slow freezing to −3°C with only marginal injury (LT50: -4°C) whereas untreated seedlings were killed at −3°C (LT50: -2°C). Conclusions The results indicate that exogenous ABA can induce some levels of freezing tolerance in chilling-sensitive rice cells and seedlings, probably by eliciting mechanisms different from low temperature-induced cold acclimation. PMID:24004611

  10. The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of insulin resistance but not of β cell function in a Chinese population with different glucose tolerance status.

    PubMed

    Zhou, Meicen; Zhu, Lixin; Cui, Xiangli; Feng, Linbo; Zhao, Xuefeng; He, Shuli; Ping, Fan; Li, Wei; Li, Yuxiu

    2016-06-07

    Triglyceride/high-density lipoprotein-cholesterol (TG/HDL-C) ratio was a surrogate marker of IR; however, the relationship of TG/HDL-C with IR might vary by ethnicity. This study aims to investigate whether lipid ratios-TG/HDL-C, cholesterol/high-density lipoprotein-cholesterol (TC/HDL-C) ratio, low-density lipoprotein-cholesterol/high-density lipoprotein-cholesterol (LDL-C/HDL-C)) could be potential clinical markers of insulin resistance (IR) and β cell function and further to explore the optimal cut-offs in a Chinese population with different levels of glucose tolerance. Four hundred seventy-nine subjects without a history of diabetes underwent a 75 g 2 h Oral Glucose Tolerance Test (OGTT). New-onset diabetes (n = 101), pre-diabetes (n = 186), and normal glucose tolerance (n = 192) were screened. IR was defined by HOMA-IR > 2.69. Based on indices (HOMA-β, early-phase disposition index [DI30], (ΔIns30/ΔGlu30)/HOMA-IR and total-phase index [DI120]) that indicated different phases of insulin secretion, the subjects were divided into two groups, and the lower group was defined as having inadequate β cell compensation. Logistic regression models and accurate estimates of the areas under receiver operating characteristic curves (AUROC) were obtained. In all of the subjects, TG/HDL, TC/HDL-C, LDL-C/HDL-C, and TG were significantly associated with IR. The AUROCs of TG/HDL-C and TG were 0.71 (95 % CI: 0.66-0.75) and 0.71 (95 % CI: 0.65-0.75), respectively. The optimal cut-offs of TG/HDL-C and TG for IR diagnosis were 1.11 and 1.33 mmol/L, respectively. The AUROCs of TC/HDL-C and LDL-C/HDL-C were 0.66 and 0.65, respectively, but they were not acceptable for IR diagnosis. TG/HDL-C,LDL-C/HDL-C and TG were significantly associated with HOMA-β, but AUROCs were less than 0.50; therefore, the lipid ratios could not be predictors of basal β cell dysfunction. None of the lipid ratios was associated with early-phase insulin secretion. Only TG/HDL-C and TG were significantly correlated with total-phase insulin secretion, but they also were not acceptable predictors of total-phase insulin secretion (0.60 < AUROC < 0.70). In a Chinese population with different levels of glucose tolerance, TG/HDL-C and TG could be the predictors of IR. The lipid ratios could not be reliable makers of β cell function in the population.

  11. Oral tolerance in neonates: from basics to potential prevention of allergic disease.

    PubMed

    Verhasselt, V

    2010-07-01

    Oral tolerance refers to the observation that prior feeding of an antigen induces local and systemic immune tolerance to that antigen. Physiologically, this process is probably of central importance for preventing inflammatory responses to the numerous dietary and microbial antigens present in the gut. Defective oral tolerance can lead to gut inflammatory disease, food allergies, and celiac disease. In the last two cases, the diseases develop early in life, stressing the necessity of understanding how oral tolerance is set up in neonates. This article reviews the parameters that have been outlined in adult animal models as necessary for tolerance induction and assesses whether these factors operate in neonates. In addition, we highlight the factors that are specific for this period of life and discuss how they could have an impact on oral tolerance. We pay particular attention to maternal influence on early oral tolerance induction through breast-feeding and outline the major parameters that could be modified to optimize tolerance induction in early life and possibly prevent allergic diseases.

  12. Desiccation tolerance in bryophytes: The dehydration and rehydration transcriptomes in the desiccation-tolerant bryophyte Bryum argenteum.

    PubMed

    Gao, Bei; Li, Xiaoshuang; Zhang, Daoyuan; Liang, Yuqing; Yang, Honglan; Chen, Moxian; Zhang, Yuanming; Zhang, Jianhua; Wood, Andrew J

    2017-08-08

    The desiccation tolerant bryophyte Bryum argenteum is an important component of desert biological soil crusts (BSCs) and is emerging as a model system for studying vegetative desiccation tolerance. Here we present and analyze the hydration-dehydration-rehydration transcriptomes in B. argenteum to establish a desiccation-tolerance transcriptomic atlas. B. argenteum gametophores representing five different hydration stages (hydrated (H0), dehydrated for 2 h (D2), 24 h (D24), then rehydrated for 2 h (R2) and 48 h (R48)), were sampled for transcriptome analyses. Illumina high throughput RNA-Seq technology was employed and generated more than 488.46 million reads. An in-house de novo transcriptome assembly optimization pipeline based on Trinity assembler was developed to obtain a reference Hydration-Dehydration-Rehydration (H-D-R) transcriptome comprising of 76,206 transcripts, with an N50 of 2,016 bp and average length of 1,222 bp. Comprehensive transcription factor (TF) annotation discovered 978 TFs in 62 families, among which 404 TFs within 40 families were differentially expressed upon dehydration-rehydration. Pfam term enrichment analysis revealed 172 protein families/domains were significantly associated with the H-D-R cycle and confirmed early rehydration (i.e. the R2 stage) as exhibiting the maximum stress-induced changes in gene expression.

  13. Tolerance Is Not Enough: The Moderating Role of Optimism on Perceptions of Regional Economic Performance

    ERIC Educational Resources Information Center

    Lopes, Miguel Pereira; da Palma, Patricia Jardim; e Cunha, Miguel Pina

    2011-01-01

    Current theories on economic growth are stressing the important role of creativity and innovation as a main driver of regional development. Some perspectives, like Richard Florida's "creative class theory", have elected tolerance and diversity as a core concept in explaining differential development between different places, but his assumptions…

  14. Feasibility study of using statistical process control to customized quality assurance in proton therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rah, Jeong-Eun; Oh, Do Hoon; Shin, Dongho

    Purpose: To evaluate and improve the reliability of proton quality assurance (QA) processes and, to provide an optimal customized tolerance level using the statistical process control (SPC) methodology. Methods: The authors investigated the consistency check of dose per monitor unit (D/MU) and range in proton beams to see whether it was within the tolerance level of the daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to improve the patient-specific QA process in proton beams by using process capability indices. Results: The authors established a customized tolerance level of ±2% formore » D/MU and ±0.5 mm for beam range in the daily proton QA process. In the authors’ analysis of the process capability indices, the patient-specific range measurements were capable of a specification limit of ±2% in clinical plans. Conclusions: SPC methodology is a useful tool for customizing the optimal QA tolerance levels and improving the quality of proton machine maintenance, treatment delivery, and ultimately patient safety.« less

  15. Enhanced expression of Rubisco activase splicing variants differentially affects Rubisco activity during low temperature treatment in Lolium perenne.

    PubMed

    Jurczyk, Barbara; Pociecha, Ewa; Grzesiak, Maciej; Kalita, Katarzyna; Rapacz, Marcin

    2016-07-01

    Alternative splicing of the Rubisco activase gene was shown to be a point for optimization of photosynthetic carbon assimilation. It can be expected to be a stress-regulated event that depends on plant freezing tolerance. The aim of the study was to examine the relationships among Rubisco activity, the expression of two Rubisco activase splicing variants and photoacclimation to low temperature. The experiment was performed on two Lolium perenne genotypes with contrasting levels of freezing tolerance. The study investigated the effect of pre-hardening (15°C) and cold acclimation (4°C) on net photosynthesis, photosystem II photochemical activity, Rubisco activity and the expression of two splicing variants of the Rubisco activase gene. The results showed an induction of Rubisco activity at both 15°C and 4°C only in a highly freezing-tolerant genotype. The enhanced Rubisco activity after pre-hardening corresponded to increased expression of the splicing variant representing the large isoform, while the increase in Rubisco activity during cold acclimation was due to the activation of both transcript variants. These boosts in Rubisco activity also corresponded to an activation of non-photochemical mechanism of photoacclimation induced at low temperature exclusively in the highly freezing-tolerant genotype. In conclusion, enhanced expression of Rubisco activase splicing variants caused an increase in Rubisco activity during pre-hardening and cold acclimation in the more freezing-tolerant Lolium perenne genotype. The induction of the transcript variant representing the large isoform may be an important element of increasing the carbon assimilation rate supporting the photochemical mechanism of photosynthetic acclimation to cold. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Metabolite and transcript markers for the prediction of potato drought tolerance.

    PubMed

    Sprenger, Heike; Erban, Alexander; Seddig, Sylvia; Rudack, Katharina; Thalhammer, Anja; Le, Mai Q; Walther, Dirk; Zuther, Ellen; Köhl, Karin I; Kopka, Joachim; Hincha, Dirk K

    2018-04-01

    Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. Current potato varieties are highly susceptible to drought stress. In view of global climate change, selection of cultivars with improved drought tolerance and high yield potential is of paramount importance. Drought tolerance breeding of potato is currently based on direct selection according to yield and phenotypic traits and requires multiple trials under drought conditions. Marker-assisted selection (MAS) is cheaper, faster and reduces classification errors caused by noncontrolled environmental effects. We analysed 31 potato cultivars grown under optimal and reduced water supply in six independent field trials. Drought tolerance was determined as tuber starch yield. Leaf samples from young plants were screened for preselected transcript and nontargeted metabolite abundance using qRT-PCR and GC-MS profiling, respectively. Transcript marker candidates were selected from a published RNA-Seq data set. A Random Forest machine learning approach extracted metabolite and transcript markers for drought tolerance prediction with low error rates of 6% and 9%, respectively. Moreover, by combining transcript and metabolite markers, the prediction error was reduced to 4.3%. Feature selection from Random Forest models allowed model minimization, yielding a minimal combination of only 20 metabolite and transcript markers that were successfully tested for their reproducibility in 16 independent agronomic field trials. We demonstrate that a minimum combination of transcript and metabolite markers sampled at early cultivation stages predicts potato yield stability under drought largely independent of seasonal and regional agronomic conditions. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Optimization and enhancement of textile reactive Remazol black B decolorization and detoxification by environmentally isolated pH tolerant Pseudomonas aeruginosa KY284155.

    PubMed

    Hashem, Rasha A; Samir, Reham; Essam, Tamer M; Ali, Amal E; Amin, Magdy A

    2018-05-21

    Azo dyes are complex derivatives of diazene used in food and textile manufacture. They are highly recalcitrant compounds, and account for severe environmental and health problems. Different strains of Pseudomonas species were isolated from textile wastewater effluents. The bioconversion of Remazol black B (a commonly used water soluble dye) by Pseudomonas aeruginosa was observed in static conditions. The bio-decolorization process was optimized by a multi factorial Plackett-Burman experimental design. Decolorization of 200 mg L -1 reached 100% in 32 h. Interestingly, the presence of yeast extract, magnesium and iron in the culture media, highly accelerated the rate of decolorization. Moreover, one of our isolates, P. aeruginosa KY284155, was kept high degradation rates at high pH (pH = 9), which represents the pH of most textile wastewater effluents, and was able to tolerate high concentration of dye up to 500 mg L -1 . In bacteria, azo-dye degradation is often initiated by reductive azo compound cleavage catalyzed by azo-reductases. Three genes encoding azo-reductases, paazoR1, paazoR2 and paazoR3, could be identified in the genome of the isolated P. aeruginosa stain (B1). Bioinformatics analyses of the paazoR1, paazoR2 and paazoR3 genes reveal their prevalence and conservation in other P. aeruginosa strains. Chemical oxygen demand dramatically decreased and phyto-detoxification of the azo dye was accomplished by photocatalytic post treatment of the biodegradation products. We suggest applying combined biological photocatalytic post treatment for azo dyes on large scale, for effective, cheap decolorization and detoxification of azo-dyes, rendering them safe enough to be discharged in the environment.

  18. Overexpression of a novel thermostable and chloride-tolerant laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization.

    PubMed

    Liu, Huiping; Cheng, Yu; Du, Bing; Tong, Chaofan; Liang, Shuli; Han, Shuangyan; Zheng, Suiping; Lin, Ying

    2015-01-01

    Laccases have been used for the decolorization and detoxification of synthetic dyes due to their ability to oxidize a wide variety of dyes with water as the sole byproduct. A putative laccase gene (LacTT) from Thermus thermophilus SG0.5JP17-16 was screened using the genome mining approach, and it was highly expressed in Pichia pastoris, yielding a high laccase activity of 6130 U/L in a 10-L fermentor. The LacTT open reading frame encoded a protein of 466 amino acid residues with four putative Cu-binding regions. The optimal pH of the recombinant LacTT was 4.5, 6.0, 7.5 and 8.0 with 2,2'-azino-bis(3-ethylbenzothazoline-6-sulfonic acid) (ABTS), syringaldazine (SGZ), guaiacol, and 2,6-dimethoxyphenol (2,6-DMP) as the substrate, respectively. The optimal temperature of LacTT was 90°C with guaiacol as the substrate. LacTT was highly stable at pH 4.0-11.0 and thermostable at 40°C-90°C, confirming that it is a pH-stable and thermostable laccase. Furthermore, LacTT also exhibited high tolerance to halides such as NaCl, NaBr and NaF, and decolorized 100%, 94%, 94% and 73% of Congo Red, Reactive Black B and Reactive Black WNN, and Remazol Brilliant Blue R, respectively. Interestingly, addition of high concentration of NaCl increased the RBBR decolorization efficiency of LacTT. These results suggest that LacTT is a good candidate for industrial applications such as dyestuff processing and degradation of dyes in textile wastewaters.

  19. Overexpression of a Novel Thermostable and Chloride-Tolerant Laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and Its Application in Synthetic Dye Decolorization

    PubMed Central

    Liu, Huiping; Cheng, Yu; Du, Bing; Tong, Chaofan; Liang, Shuli; Han, Shuangyan; Zheng, Suiping; Lin, Ying

    2015-01-01

    Laccases have been used for the decolorization and detoxification of synthetic dyes due to their ability to oxidize a wide variety of dyes with water as the sole byproduct. A putative laccase gene (LacTT) from Thermus thermophilus SG0.5JP17-16 was screened using the genome mining approach, and it was highly expressed in Pichia pastoris, yielding a high laccase activity of 6130 U/L in a 10-L fermentor. The LacTT open reading frame encoded a protein of 466 amino acid residues with four putative Cu-binding regions. The optimal pH of the recombinant LacTT was 4.5, 6.0, 7.5 and 8.0 with 2,2'-azino-bis(3-ethylbenzothazoline-6-sulfonic acid) (ABTS), syringaldazine (SGZ), guaiacol, and 2,6-dimethoxyphenol (2,6-DMP) as the substrate, respectively. The optimal temperature of LacTT was 90°C with guaiacol as the substrate. LacTT was highly stable at pH 4.0–11.0 and thermostable at 40°C–90°C, confirming that it is a pH-stable and thermostable laccase. Furthermore, LacTT also exhibited high tolerance to halides such as NaCl, NaBr and NaF, and decolorized 100%, 94%, 94% and 73% of Congo Red, Reactive Black B and Reactive Black WNN, and Remazol Brilliant Blue R, respectively. Interestingly, addition of high concentration of NaCl increased the RBBR decolorization efficiency of LacTT. These results suggest that LacTT is a good candidate for industrial applications such as dyestuff processing and degradation of dyes in textile wastewaters. PMID:25790466

  20. Applying thermosettable zwitterionic copolymers as general fouling-resistant and thermal-tolerant biomaterial interfaces.

    PubMed

    Chou, Ying-Nien; Chang, Yung; Wen, Ten-Chin

    2015-05-20

    We introduced a thermosettable zwitterionic copolymer to design a high temperature tolerance biomaterial as a general antifouling polymer interface. The original synthetic fouling-resistant copolymer, poly(vinylpyrrolidone)-co-poly(sulfobetaine methacrylate) (poly(VP-co-SBMA)), is both thermal-tolerant and fouling-resistant, and the antifouling stability of copolymer coated interfaces can be effectively controlled by regulating the VP/SBMA composition ratio. We studied poly(VP-co-SBMA) copolymer gels and networks with a focus on their general resistance to protein, cell, and bacterial bioadhesion, as influenced by the thermosetting process. Interestingly, we found that the shape of the poly(VP-co-SBMA) copolymer material can be set at a high annealing temperature of 200 °C while maintaining good antifouling properties. However, while the zwitterionic PSBMA polymer gels were bioinert as expected, control of the fouling resistance of the PSBMA polymer networks was lost in the high temperature annealing process. A poly(VP-co-SBMA) copolymer network composed of PSBMA segments at 32 mol % showed reduced fibrinogen adsorption, tissue cell adhesion, and bacterial attachment, but a relatively higher PSBMA content of 61 mol % was required to optimize resistance to platelet adhesion and erythrocyte attachment to confer hemocompatibility to human blood. We suggest that poly(VP-co-SBMA) copolymers capable of retaining stable fouling resistance after high temperature shaping have a potential application as thermosettable materials in a bioinert interface for medical devices, such as the thermosettable coating on a stainless steel blood-compatible metal stent investigated in this study.

  1. Damage modeling of small-scale experiments on dental enamel with hierarchical microstructure.

    PubMed

    Scheider, I; Xiao, T; Yilmaz, E; Schneider, G A; Huber, N; Bargmann, S

    2015-03-01

    Dental enamel is a highly anisotropic and heterogeneous material, which exhibits an optimal reliability with respect to the various loads occurring over years. In this work, enamel's microstructure of parallel aligned rods of mineral fibers is modeled and mechanical properties are evaluated in terms of strength and toughness with the help of a multiscale modeling method. The established model is validated by comparing it with the stress-strain curves identified by microcantilever beam experiments extracted from these rods. Moreover, in order to gain further insight in the damage-tolerant behavior of enamel, the size of crystallites below which the structure becomes insensitive to flaws is studied by a microstructural finite element model. The assumption regarding the fiber strength is verified by a numerical study leading to accordance of fiber size and flaw tolerance size, and the debonding strength is estimated by optimizing the failure behavior of the microstructure on the hierarchical level above the individual fibers. Based on these well-grounded properties, the material behavior is predicted well by homogenization of a representative unit cell including damage, taking imperfections (like microcracks in the present case) into account. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Characterization of a Torulaspora delbrueckii diploid strain with optimized performance in sweet and frozen sweet dough.

    PubMed

    Hernández-López, Maria José; Pallotti, Claudia; Andreu, Pasqual; Aguilera, Jaime; Prieto, José Antonio; Randez-Gil, Francisca

    2007-05-01

    Torulaspora delbrueckii is a baker's yeast that is highly tolerant to freeze-thaw stress, making it suitable for frozen dough technology. The T. delbrueckii strain PYCC5321, isolated from traditional bread dough, combines this tolerance with a high degree of ionic and osmotic stress resistance. However, the industrial use of this strain for frozen and sweet frozen baking is hampered by its small cell size, which causes clogging problems at the filtering stage. Here, we report the construction of a stable diploid strain of T. delbrueckii PYCC5321, which we named Td21-2n. The new strain was more than 2.7-fold bigger than their haploid counterpart, whereas biomass yield, stress resistance and sweet dough leavening ability were found to be similar in both strains. Moreover, the gassing power of the diploid after dough freezing also remained unaltered. Thus, Td21-2n meets the requirements necessary for industrial production and is suitable for application in frozen sweet baking products.

  3. Hyperkalemia in Heart Failure.

    PubMed

    Sarwar, Chaudhry M S; Papadimitriou, Lampros; Pitt, Bertram; Piña, Ileana; Zannad, Faiez; Anker, Stefan D; Gheorghiade, Mihai; Butler, Javed

    2016-10-04

    Disorders of potassium homeostasis can potentiate the already elevated risk of arrhythmia in heart failure. Heart failure patients have a high prevalence of chronic kidney disease, which further heightens the risk of hyperkalemia, especially when renin-angiotensin-aldosterone system inhibitors are used. Acute treatment for hyperkalemia may not be tolerated in the long term. Recent data for patiromer and sodium zirconium cyclosilicate, used to treat and prevent high serum potassium levels on a more chronic basis, have sparked interest in the treatment of hyperkalemia, as well as the potential use of renin-angiotensin-aldosterone system inhibitors in patients who were previously unable to take these drugs or tolerated only low doses. This review discusses the epidemiology, pathophysiology, and outcomes of hyperkalemia in heart failure; provides an overview of traditional and novel ways to approach management of hyperkalemia; and discusses the need for further research to optimally treat heart failure. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  4. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions

    PubMed Central

    Singh, Devesh; Buhmann, Anne K.; Flowers, Tim J.; Seal, Charlotte E.; Papenbrock, Jutta

    2014-01-01

    Rising sea levels and salinization of groundwater due to global climate change result in fast-dwindling sources of freshwater. Therefore, it is important to find alternatives to grow food crops and vegetables. Halophytes are naturally evolved salt-tolerant plants that are adapted to grow in environments that inhibit the growth of most glycophytic crop plants substantially. Members of the Salicornioideae are promising candidates for saline agriculture due to their high tolerance to salinity. Our aim was to develop genetically characterized lines of Salicornia and Sarcocornia for further breeding and to determine optimal cultivation conditions. To obtain a large and diverse genetic pool, seeds were collected from different countries and ecological conditions. The external transcribed spacer (ETS) sequence of 62 Salicornia and Sarcocornia accessions was analysed: ETS sequence data showed a clear distinction between the two genera and between different Salicornia taxa. However, in some cases the ETS was not sufficiently variable to resolve morphologically distinct species. For the determination of optimal cultivation conditions, experiments on germination, seedling establishment and growth to a harvestable size were performed using different accessions of Salicornia spp. Experiments revealed that the percentage germination was greatest at lower salinities and with temperatures of 20/10 °C (day/night). Salicornia spp. produced more harvestable biomass in hydroponic culture than in sand culture, but the nutrient concentration requires optimization as hydroponically grown plants showed symptoms of stress. Salicornia ramosissima produced more harvestable biomass than Salicornia dolichostachya in artificial sea water containing 257 mM NaCl. Based on preliminary tests on ease of cultivation, gain in biomass, morphology and taste, S. dolichostachya was investigated in more detail, and the optimal salinity for seedling establishment was found to be 100 mM. Harvesting of S. dolichostachya twice in a growing season was successful, but the interval between the harvests needs to be optimized to maximize biomass production. PMID:25387752

  5. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions.

    PubMed

    Singh, Devesh; Buhmann, Anne K; Flowers, Tim J; Seal, Charlotte E; Papenbrock, Jutta

    2014-11-10

    Rising sea levels and salinization of groundwater due to global climate change result in fast-dwindling sources of freshwater. Therefore, it is important to find alternatives to grow food crops and vegetables. Halophytes are naturally evolved salt-tolerant plants that are adapted to grow in environments that inhibit the growth of most glycophytic crop plants substantially. Members of the Salicornioideae are promising candidates for saline agriculture due to their high tolerance to salinity. Our aim was to develop genetically characterized lines of Salicornia and Sarcocornia for further breeding and to determine optimal cultivation conditions. To obtain a large and diverse genetic pool, seeds were collected from different countries and ecological conditions. The external transcribed spacer (ETS) sequence of 62 Salicornia and Sarcocornia accessions was analysed: ETS sequence data showed a clear distinction between the two genera and between different Salicornia taxa. However, in some cases the ETS was not sufficiently variable to resolve morphologically distinct species. For the determination of optimal cultivation conditions, experiments on germination, seedling establishment and growth to a harvestable size were performed using different accessions of Salicornia spp. Experiments revealed that the percentage germination was greatest at lower salinities and with temperatures of 20/10 °C (day/night). Salicornia spp. produced more harvestable biomass in hydroponic culture than in sand culture, but the nutrient concentration requires optimization as hydroponically grown plants showed symptoms of stress. Salicornia ramosissima produced more harvestable biomass than Salicornia dolichostachya in artificial sea water containing 257 mM NaCl. Based on preliminary tests on ease of cultivation, gain in biomass, morphology and taste, S. dolichostachya was investigated in more detail, and the optimal salinity for seedling establishment was found to be 100 mM. Harvesting of S. dolichostachya twice in a growing season was successful, but the interval between the harvests needs to be optimized to maximize biomass production. Published by Oxford University Press on behalf of the Annals of Botany Company.

  6. Case Example of Dose Optimization Using Data From Bortezomib Dose-Finding Clinical Trials

    PubMed Central

    Backenroth, Daniel; Cheung, Ying Kuen Ken; Hershman, Dawn L.; Vulih, Diana; Anderson, Barry; Ivy, Percy; Minasian, Lori

    2016-01-01

    Purpose The current dose-finding methodology for estimating the maximum tolerated dose of investigational anticancer agents is based on the cytotoxic chemotherapy paradigm. Molecularly targeted agents (MTAs) have different toxicity profiles, which may lead to more long-lasting mild or moderate toxicities as well as to late-onset and cumulative toxicities. Several approved MTAs have been poorly tolerated during long-term administration, leading to postmarketing dose optimization studies to re-evaluate the optimal treatment dose. Using data from completed bortezomib dose-finding trials, we explore its toxicity profile, optimize its dose, and examine the appropriateness of current designs for identifying an optimal dose. Patients and Methods We classified the toxicities captured from 481 patients in 14 bortezomib dose-finding studies conducted through the National Cancer Institute Cancer Therapy Evaluation Program, computed the incidence of late-onset toxicities, and compared the incidence of dose-limiting toxicities (DLTs) among groups of patients receiving different doses of bortezomib. Results A total of 13,008 toxicities were captured: 46% of patients’ first DLTs and 88% of dose reductions or discontinuations of treatment because of toxicity were observed after the first cycle. Moreover, for the approved dose of 1.3 mg/m2, the estimated cumulative incidence of DLT was > 50%, and the estimated cumulative incidence of dose reduction or treatment discontinuation because of toxicity was nearly 40%. Conclusions When considering the entire course of treatment, the approved bortezomib dose exceeds the conventional ceiling DLT rate of 20% to 33%. Retrospective analysis of trial data provides an opportunity for dose optimization of MTAs. Future dose-finding studies of MTAs should take into account late-onset toxicities to ensure that a tolerable dose is identified for future efficacy and comparative trials. PMID:26926682

  7. Case Example of Dose Optimization Using Data From Bortezomib Dose-Finding Clinical Trials.

    PubMed

    Lee, Shing M; Backenroth, Daniel; Cheung, Ying Kuen Ken; Hershman, Dawn L; Vulih, Diana; Anderson, Barry; Ivy, Percy; Minasian, Lori

    2016-04-20

    The current dose-finding methodology for estimating the maximum tolerated dose of investigational anticancer agents is based on the cytotoxic chemotherapy paradigm. Molecularly targeted agents (MTAs) have different toxicity profiles, which may lead to more long-lasting mild or moderate toxicities as well as to late-onset and cumulative toxicities. Several approved MTAs have been poorly tolerated during long-term administration, leading to postmarketing dose optimization studies to re-evaluate the optimal treatment dose. Using data from completed bortezomib dose-finding trials, we explore its toxicity profile, optimize its dose, and examine the appropriateness of current designs for identifying an optimal dose. We classified the toxicities captured from 481 patients in 14 bortezomib dose-finding studies conducted through the National Cancer Institute Cancer Therapy Evaluation Program, computed the incidence of late-onset toxicities, and compared the incidence of dose-limiting toxicities (DLTs) among groups of patients receiving different doses of bortezomib. A total of 13,008 toxicities were captured: 46% of patients' first DLTs and 88% of dose reductions or discontinuations of treatment because of toxicity were observed after the first cycle. Moreover, for the approved dose of 1.3 mg/m(2), the estimated cumulative incidence of DLT was > 50%, and the estimated cumulative incidence of dose reduction or treatment discontinuation because of toxicity was nearly 40%. When considering the entire course of treatment, the approved bortezomib dose exceeds the conventional ceiling DLT rate of 20% to 33%. Retrospective analysis of trial data provides an opportunity for dose optimization of MTAs. Future dose-finding studies of MTAs should take into account late-onset toxicities to ensure that a tolerable dose is identified for future efficacy and comparative trials. © 2016 by American Society of Clinical Oncology.

  8. Complexity and robustness

    PubMed Central

    Carlson, J. M.; Doyle, John

    2002-01-01

    Highly optimized tolerance (HOT) was recently introduced as a conceptual framework to study fundamental aspects of complexity. HOT is motivated primarily by systems from biology and engineering and emphasizes, (i) highly structured, nongeneric, self-dissimilar internal configurations, and (ii) robust yet fragile external behavior. HOT claims these are the most important features of complexity and not accidents of evolution or artifices of engineering design but are inevitably intertwined and mutually reinforcing. In the spirit of this collection, our paper contrasts HOT with alternative perspectives on complexity, drawing on real-world examples and also model systems, particularly those from self-organized criticality. PMID:11875207

  9. Tolerance for Nutrient Imbalance in an Intermittently Feeding Herbivorous Cricket, the Wellington Tree Weta

    PubMed Central

    Wehi, Priscilla M.; Raubenheimer, David; Morgan-Richards, Mary

    2013-01-01

    Organisms that regulate nutrient intake have an advantage over those that do not, given that the nutrient composition of any one resource rarely matches optimal nutrient requirements. We used nutritional geometry to model protein and carbohydrate intake and identify an intake target for a sexually dimorphic species, the Wellington tree weta (Hemideina crassidens). Despite pronounced sexual dimorphism in this large generalist herbivorous insect, intake targets did not differ by sex. In a series of laboratory experiments, we then investigated whether tree weta demonstrate compensatory responses for enforced periods of imbalanced nutrient intake. Weta pre-fed high or low carbohydrate: protein diets showed large variation in compensatory nutrient intake over short (<48 h) time periods when provided with a choice. Individuals did not strongly defend nutrient targets, although there was some evidence for weak regulation. Many weta tended to select high and low protein foods in a ratio similar to their previously identified nutrient optimum. These results suggest that weta have a wide tolerance to nutritional imbalance, and that the time scale of weta nutrient balancing could lie outside of the short time span tested here. A wide tolerance to imbalance is consistent with the intermittent feeding displayed in the wild by weta and may be important in understanding weta foraging patterns in New Zealand forests. PMID:24358369

  10. Design, testing, and damage tolerance study of bonded stiffened composite wing cover panels

    NASA Technical Reports Server (NTRS)

    Madan, Ram C.; Sutton, Jason O.

    1988-01-01

    Results are presented from the application of damage tolerance criteria for composite panels to multistringer composite wing cover panels developed under NASA's Composite Transport Wing Technology Development contract. This conceptual wing design integrated aeroelastic stiffness constraints with an enhanced damage tolerance material system, in order to yield optimized producibility and structural performance. Damage tolerance was demonstrated in a test program using full-sized cover panel subcomponents; panel skins were impacted at midbay between stiffeners, directly over a stiffener, and over the stiffener flange edge. None of the impacts produced visible damage. NASTRAN analyses were performed to simulate NDI-detected invisible damage.

  11. Optimization of composite sandwich cover panels subjected to compressive loadings

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.

    1991-01-01

    An analysis and design method is presented for the design of composite sandwich cover panels that include the transverse shear effects and damage tolerance considerations. This method is incorporated into a sandwich optimization computer program entitled SANDOP. As a demonstration of its capabilities, SANDOP is used in the present study to design optimized composite sandwich cover panels for for transport aircraft wing applications. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to satisfy individual constraints. The results also indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and +/- 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density. Thus, core density should be chosen by criteria other than minimum weight (e.g., damage tolerance, ease of manufacture, etc.).

  12. Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel A.; Brun, Todd A.

    2013-09-01

    Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and Harold Baranger; 26. Critique of fault-tolerant quantum information processing Robert Alicki; References; Index.

  13. Traveling-Wave Tube Efficiency Enhancement

    NASA Technical Reports Server (NTRS)

    Dayton, James A., Jr.

    2011-01-01

    Traveling-wave tubes (TWT's) are used to amplify microwave communication signals on virtually all NASA and commercial spacecraft. Because TWT's are a primary power user, increasing their power efficiency is important for reducing spacecraft weight and cost. NASA Glenn Research Center has played a major role in increasing TWT efficiency over the last thirty years. In particular, two types of efficiency optimization algorithms have been developed for coupled-cavity TWT's. The first is the phase-adjusted taper which was used to increase the RF power from 420 to 1000 watts and the RF efficiency from 9.6% to 22.6% for a Ka-band (29.5 GHz) TWT. This was a record efficiency at this frequency level. The second is an optimization algorithm based on simulated annealing. This improved algorithm is more general and can be used to optimize efficiency over a frequency bandwidth and to provide a robust design for very high frequency TWT's in which dimensional tolerance variations are significant.

  14. Ideal sinks are not always ideal. Radiation damage accumulation in nanocomposites

    DOE PAGES

    Uberuaga, Blas Pedro; Choudhury, Samrat; Caro, Alfredo

    2014-11-27

    Designing radiation tolerant materials is one of the primary challenges associated with advanced nuclear energy systems. One attractive route that has received much attention world-wide is to introduce a high density of sinks, often in the form of interfaces or secondary phases. Here, we develop a simple model of such nanocomposites and examine the ramifications of various factors on the overall radiation stability of the material. In particular, we determine how the distribution of secondary phases, the relative sink strength of those phases, and the irradiation temperature influence the radiation tolerance of the matrix. We find that the best scenariomore » is one in which the sinks have intermediate strength, transiently trapping defects before releasing them back into the matrix.This provides new insight into the optimal properties of nanocomposites for radiation damage environments.« less

  15. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions

    PubMed Central

    Rong, Xing; Geng, Jianpei; Shi, Fazhan; Liu, Ying; Xu, Kebiao; Ma, Wenchao; Kong, Fei; Jiang, Zhen; Wu, Yang; Du, Jiangfeng

    2015-01-01

    Quantum computation provides great speedup over its classical counterpart for certain problems. One of the key challenges for quantum computation is to realize precise control of the quantum system in the presence of noise. Control of the spin-qubits in solids with the accuracy required by fault-tolerant quantum computation under ambient conditions remains elusive. Here, we quantitatively characterize the source of noise during quantum gate operation and demonstrate strategies to suppress the effect of these. A universal set of logic gates in a nitrogen-vacancy centre in diamond are reported with an average single-qubit gate fidelity of 0.999952 and two-qubit gate fidelity of 0.992. These high control fidelities have been achieved at room temperature in naturally abundant 13C diamond via composite pulses and an optimized control method. PMID:26602456

  16. Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis.

    PubMed

    Ma, Kedong; Ruan, Zhiyong; Shui, Zongxia; Wang, Yanwei; Hu, Guoquan; He, Mingxiong

    2016-03-01

    The aim of present study was to develop a process for open ethanol fermentation from food waste using an acid-tolerant mutant of Zymomonas mobilis (ZMA7-2). The mutant showed strong tolerance to acid condition of food waste hydrolysate and high ethanol production performance. By optimizing fermentation parameters, ethanol fermentation with initial glucose concentration of 200 g/L, pH value around 4.0, inoculum size of 10% and without nutrient addition was considered as best conditions. Moreover, the potential of bench scales fermentation and cell reusability was also examined. The fermentation in bench scales (44 h) was faster than flask scale (48 h), and the maximum ethanol concentration and ethanol yield (99.78 g/L, 0.50 g/g) higher than that of flask scale (98.31 g/L, 0.49 g/g). In addition, the stable cell growth and ethanol production profile in five cycles successive fermentation was observed, indicating the mutant was suitable for industrial ethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Polymer taper bridge for silicon waveguide to single mode waveguide coupling

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin; Middlebrook, Christopher T.

    2016-03-01

    Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.

  18. Scalable Optical-Fiber Communication Networks

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Peterson, John C.

    1993-01-01

    Scalable arbitrary fiber extension network (SAFEnet) is conceptual fiber-optic communication network passing digital signals among variety of computers and input/output devices at rates from 200 Mb/s to more than 100 Gb/s. Intended for use with very-high-speed computers and other data-processing and communication systems in which message-passing delays must be kept short. Inherent flexibility makes it possible to match performance of network to computers by optimizing configuration of interconnections. In addition, interconnections made redundant to provide tolerance to faults.

  19. Prospects for improving the salt tolerance of forest trees: A review

    USGS Publications Warehouse

    Allen, J.A.; Chambers, J.L.; Stine, M.

    1994-01-01

    Three major themes related to the improvement of salt tolerance in forest tree species are examined. First, evidence demonstrating that substantial intraspecific variation in salt tolerance exists in many species is presented. This evidence is important because it suggests that efforts to improve salt tolerance through conventional plant breeding techniques are justified. Second, the physiological and genetic mechanisms controlling salt tolerance are discussed briefly. Although salt tolerance involves the integration of numerous physiological processes, there is considerable evidence that differences in the ability to exclude Na+ and Cl- from leaves are the most important factors underlying intraspecific differences in tolerance. It is also becoming apparent that, although salt tolerance is a multigenic trait, major genes play an important role. Third, progress to date in improving salt tolerance of forest tree species is assessed. Compared with agricultural crops, relatively little progress has been made with either conventional or biotechnological methods, but field trials designed to test clones identified as salt tolerant in screening trials are underway now in several countries. We conclude that there is justification for cautious optimism about the prospects for improving salt tolerance in forest tree species.

  20. Inverse design of near unity efficiency perfectly vertical grating couplers.

    PubMed

    Michaels, Andrew; Yablonovitch, Eli

    2018-02-19

    Efficient coupling between integrated optical waveguides and optical fibers is essential to the success of silicon photonics. While many solutions exist, perfectly vertical grating couplers that scatter light out of a waveguide in the direction normal to the waveguide's top surface are an ideal candidate due to their potential to reduce packaging complexity. Designing such couplers with high efficiencies, however, has proven difficult. In this paper, we use inverse electromagnetic design techniques to optimize a high efficiency two-layer perfectly vertical silicon grating coupler. Our base design achieves a chip-to-fiber coupling efficiency of 99.2% (-0.035 dB) at 1550 nm. Using this base design as a starting point, we run subsequent constrained optimizations to realize vertical couplers with coupling efficiencies over 96% and back reflections of less than -40 dB which can be fabricated using 65 nm-resolution lithography. These results demonstrate a new path forward for designing fabrication-tolerant ultra high efficiency grating couplers.

  1. Analog Module Architecture for Space-Qualified Field-Programmable Mixed-Signal Arrays

    NASA Technical Reports Server (NTRS)

    Edwards, R. Timothy; Strohbehn, Kim; Jaskulek, Steven E.; Katz, Richard

    1999-01-01

    Spacecraft require all manner of both digital and analog circuits. Onboard digital systems are constructed almost exclusively from field-programmable gate array (FPGA) circuits providing numerous advantages over discrete design including high integration density, high reliability, fast turn-around design cycle time, lower mass, volume, and power consumption, and lower parts acquisition and flight qualification costs. Analog and mixed-signal circuits perform tasks ranging from housekeeping to signal conditioning and processing. These circuits are painstakingly designed and built using discrete components due to a lack of options for field-programmability. FPAA (Field-Programmable Analog Array) and FPMA (Field-Programmable Mixed-signal Array) parts exist but not in radiation-tolerant technology and not necessarily in an architecture optimal for the design of analog circuits for spaceflight applications. This paper outlines an architecture proposed for an FPAA fabricated in an existing commercial digital CMOS process used to make radiation-tolerant antifuse-based FPGA devices. The primary concerns are the impact of the technology and the overall array architecture on the flexibility of programming, the bandwidth available for high-speed analog circuits, and the accuracy of the components for high-performance applications.

  2. Combined use of fasting plasma glucose and glycated hemoglobin A1c in the screening of diabetes and impaired glucose tolerance.

    PubMed

    Hu, Yaomin; Liu, Wei; Chen, Yawen; Zhang, Ming; Wang, Lihua; Zhou, Huan; Wu, Peihong; Teng, Xiangyu; Dong, Ying; Zhou, Jia wen; Xu, Hua; Zheng, Jun; Li, Shengxian; Tao, Tao; Hu, Yumei; Jia, Yun

    2010-09-01

    The aim of this study is to assess the validity of combined use of fasting plasma glucose (FPG) and glycated hemoglobin A1c (HbA1c) as screening tests for diabetes and impaired glucose tolerance (IGT) in high-risk subjects. A total of 2,298 subjects were included. All subjects underwent a 75-g oral glucose tolerance test (OGTT) and HbA1c measurement. Receiver operating characteristic curve (ROC curve) analysis was used to examine the sensitivity and specificity of FPG and HbA1c for detecting diabetes and IGT, which was defined according to the 1999 World Health Organization (WHO) criteria. (1) Based on the ROC curve, the optimal cut point of FPG related to diabetes diagnosed by OGTT was 6.1 mmol/l that was associated with a sensitivity and specificity of 81.5 and 81.0%, respectively; The optimal cut point of HbA1c related to diabetes diagnosed by OGTT was 6.1%, which was associated with a sensitivity and specificity of 81.0 and 81.0%, respectively; The screening model using FPG > or = 6.1 mmol/l or HbA1c > or = 6.1% had sensitivity of 96.5% for detecting undiagnosed diabetes; the screening model using FPG > or = 6.1 mmol/l and HbA1c > or = 6.1% had specificity of 96.3% for detecting undiagnosed diabetes. (2) Based on the ROC curve, the optimal cut point of FPG related to IGT diagnosed by OGTT was 5.6 mmol/l that was associated with a sensitivity and specificity of 64.1 and 65.4%, respectively; The optimal cut point of HbA1c related to IGT diagnosed by OGTT was 5.6%, which was associated with a sensitivity and specificity of 66.2 and 51.0%, respectively; The screening model using FPG > or = 5.6 mmol/l or HbA1c > or = 5.6% had sensitivity of 87.9% for detecting undiagnosed IGT; The screening model using FPG > or = 5.6 mmol/l and HbA1c > or = 5.6% had specificity of 82.4% for detecting undiagnosed IGT. Compared with FPG or HbA1c alone, the simultaneous measurement of FPG and HbA1c (FPG and/or HbA1C) might be a more sensitive and specific screening tool for identifying high-risk individuals with diabetes and IGT at an early stage.

  3. Effects of vicarious pain on self-pain perception: investigating the role of awareness

    PubMed Central

    Terrighena, Esslin L; Lu, Ge; Yuen, Wai Ping; Lee, Tatia MC; Keuper, Kati

    2017-01-01

    The observation of pain in others may enhance or reduce self-pain, yet the boundary conditions and factors that determine the direction of such effects are poorly understood. The current study set out to show that visual stimulus awareness plays a crucial role in determining whether vicarious pain primarily activates behavioral defense systems that enhance pain sensitivity and stimulate withdrawal or appetitive systems that attenuate pain sensitivity and stimulate approach. We employed a mixed factorial design with the between-subject factors exposure time (subliminal vs optimal) and vicarious pain (pain vs no pain images), and the within-subject factor session (baseline vs trial) to investigate how visual awareness of vicarious pain images affects subsequent self-pain in the cold-pressor test. Self-pain tolerance, intensity and unpleasantness were evaluated in a sample of 77 healthy participants. Results revealed significant interactions of exposure time and vicarious pain in all three dependent measures. In the presence of visual awareness (optimal condition), vicarious pain compared to no-pain elicited overall enhanced self-pain sensitivity, indexed by reduced pain tolerance and enhanced ratings of pain intensity and unpleasantness. Conversely, in the absence of visual awareness (subliminal condition), vicarious pain evoked decreased self-pain intensity and unpleasantness while pain tolerance remained unaffected. These findings suggest that the activation of defense mechanisms by vicarious pain depends on relatively elaborate cognitive processes, while – strikingly – the appetitive system is activated in highly automatic manner independent from stimulus awareness. Such mechanisms may have evolved to facilitate empathic, protective approach responses toward suffering individuals, ensuring survival of the protective social group. PMID:28831270

  4. Optimal body balance disturbance tolerance skills as a methodological basis for selection of firefighters to solve difficult rescue tasks.

    PubMed

    Jagiełło, Władysław; Wójcicki, Zbigniew; Barczyński, Bartłomiej J; Litwiniuk, Artur; Kalina, Roman Maciej

    2014-01-01

    The aim of this study is the methodology of optimal choice of firefighters to solve difficult rescue tasks. 27 firefighters were analyzed: aged from 22-50 years of age, and with 2-27 years of work experience. Body balance disturbance tolerance skills (BBDTS) measured by the 'Rotational Test' (RT) and time of transition (back and forth) on a 4 meter beam located 3 meters above the ground, was the criterion for simulation of a rescue task (SRT). RT and SRT were carried out first in a sports tracksuit and then in protective clothing. A total of 4 results of the RT and SRT is the substantive base of the 4 rankings. The correlation of the RT and SRT results with 3 criteria for estimating BBDTS and 2 categories ranged from 0.478 (p<0.01) - 0.884 (p<0.01) and the results of SRT 0.911 (p<0.01). The basic ranking very highly correlated indicators of SRT (0.860 and 0.844), while the 6 indicators of RT only 2 (0.396 and 0.381; p<0.05). There was no correlation between the results of the RT and SRT, but there was an important partial correlation of these variables, but only then was the effect stabilized. The Rotational Test is a simple and easy to use tool for measuring body balance disturbance tolerance skills. However, the BBDTS typology is an accurate criteria for forecasting on this basis, including the results of accurate motor simulations, and the periodic ability of firefighters to solve the most difficult rescue tasks.

  5. Bioterrorism Preparedness for Infectious Disease (BTPID) Proposal

    DTIC Science & Technology

    2007-01-01

    approximately $210,000/ year x 5 years. (Pending) Safety, Tolerability and Immunogenicity of ACAM3000 Modified Vaccinia Ankara (MVA) Small Pox ...Hospital. • (Pending) Safety, Tolerability and Immunogenicity of ACAM3000 Modified Vaccinia Ankara (MVA) Small Pox Vaccine in HIV-Seropositive...choosing optimal pox virus derived vectors as vaccines in terms of reducing clinical reactogenicity and inducing dendritic cell (DC) aturation. 2006 Elsevier

  6. Organizing principles underlying microorganism's growth-robustness trade-off.

    PubMed

    Bolli, Alessandro; Salvador, Armindo

    2014-10-01

    Growth Robustness Reciprocity (GRR) is an intriguing microbial manifestation: the impairment of microorganism's growth enhances their ability to resist acute stresses, and vice-versa. This is caused by regulatory interactions that determine higher expression of protection mechanisms in response to low growth rates. But because such regulatory mechanisms are species-specific, GRR must result from convergent evolution. Why does natural selection favor such an outcome? We used mathematical models of optimal cellular resource allocation to identify the general principles underlying GRR. Non-linear optimization allowed to predict allocation patterns of biosynthetic resources (ribosomes devoted to the synthesis of each cell component) that maximize growth. These models predict the down-regulation of stress defenses under high substrate availabilities and low stress levels. Under these conditions, stress tolerance ensues from growth-related damage dilution: the higher the substrate availability, the fastest the dilution of damaged proteins by newly synthesized proteins, the lower the accumulation of damaged components into the cell. In turn, under low substrate availability growth is too slow for effective damage dilution, and the expression of the defenses up to some optimal level then increases growth. As a consequence, slow-growing cells are pre-adapted to withstand acute stresses. Therefore, the observed negative correlation between growth and stress tolerance can be explained as a consequence of optimal resource allocation for maximal growth. We acknowledge fellowship SFRH/BPD/90065/2012 and grants PEst-C/SAU/LA0001/2013-2014 and FCOMP-01-0124-FEDER-020978 financed by FEDER through the "Programa Operacional Factores de Competitividade, COMPETE" and by national funds through "FCT, Fundação para a Ciência e a Tecnologia" (project PTDC/QUI-BIQ/119657/2010). Copyright © 2014. Published by Elsevier Inc.

  7. Quantification of Carbohydrates in Grape Tissues Using Capillary Zone Electrophoresis

    PubMed Central

    Zhao, Lu; Chanon, Ann M.; Chattopadhyay, Nabanita; Dami, Imed E.; Blakeslee, Joshua J.

    2016-01-01

    Soluble sugars play an important role in freezing tolerance in both herbaceous and woody plants, functioning in both the reduction of freezing-induced dehydration and the cryoprotection of cellular constituents. The quantification of soluble sugars in plant tissues is, therefore, essential in understanding freezing tolerance. While a number of analytical techniques and methods have been used to quantify sugars, most of these are expensive and time-consuming due to complex sample preparation procedures which require the derivatization of the carbohydrates being analyzed. Analysis of soluble sugars using capillary zone electrophoresis (CZE) under alkaline conditions with direct UV detection has previously been used to quantify simple sugars in fruit juices. However, it was unclear whether CZE-based methods could be successfully used to quantify the broader range of sugars present in complex plant extracts. Here, we present the development of an optimized CZE method capable of separating and quantifying mono-, di-, and tri-saccharides isolated from plant tissues. This optimized CZE method employs a column electrolyte buffer containing 130 mM NaOH, pH 13.0, creating a current of 185 μA when a separation voltage of 10 kV is employed. The optimized CZE method provides limits-of-detection (an average of 1.5 ng/μL) for individual carbohydrates comparable or superior to those obtained using gas chromatography–mass spectrometry, and allows resolution of non-structural sugars and cell wall components (structural sugars). The optimized CZE method was successfully used to quantify sugars from grape leaves and buds, and is a robust tool for the quantification of plant sugars found in vegetative and woody tissues. The increased analytical efficiency of this CZE method makes it ideal for use in high-throughput metabolomics studies designed to quantify plant sugars. PMID:27379118

  8. A model for plasma volume changes during short duration spaceflight

    NASA Technical Reports Server (NTRS)

    Davis, John E.

    1989-01-01

    It is well established that plasma volume decreases during spaceflight and simulated weightlessness (bedrest). The decrement in plasma volume is thought to contribute to the orthostatic intolerance that has been observed in some crew members following spaceflight. To date, no studies have evaluated the effectiveness of fluid countermeasures of varying osmolality in the restoration of plasma volume and orthostatic tolerance in a controlled study. The overall objectives of this project were to: (1) provide a model that would rapidly and safely produce a fluid loss comparable to that which occurs during short duration spaceflight; and (2) design a study that would determine the optimal drink solution to restore orthostatic tolerance and describe the mechanism(s) whereby orthostatic tolerance is restored. In summary, Lasix can be used as a way of simulating the plasma volume changes that occur during short duration spaceflight. The total loss of plasma is comparable to spaceflight. Lasix is fast acting, and has relatively few side effects. The present design for evaluating the optimal fluid countermeasures will have important implications in restoring orthostatic tolerance and function in the latter stages of spaceflight when it is essential for safe operation of the spacecraft.

  9. Dynamic Resource Allocation and Access Class Barring Scheme for Delay-Sensitive Devices in Machine to Machine (M2M) Communications.

    PubMed

    Li, Ning; Cao, Chao; Wang, Cong

    2017-06-15

    Supporting simultaneous access of machine-type devices is a critical challenge in machine-to-machine (M2M) communications. In this paper, we propose an optimal scheme to dynamically adjust the Access Class Barring (ACB) factor and the number of random access channel (RACH) resources for clustered machine-to-machine (M2M) communications, in which Delay-Sensitive (DS) devices coexist with Delay-Tolerant (DT) ones. In M2M communications, since delay-sensitive devices share random access resources with delay-tolerant devices, reducing the resources consumed by delay-sensitive devices means that there will be more resources available to delay-tolerant ones. Our goal is to optimize the random access scheme, which can not only satisfy the requirements of delay-sensitive devices, but also take the communication quality of delay-tolerant ones into consideration. We discuss this problem from the perspective of delay-sensitive services by adjusting the resource allocation and ACB scheme for these devices dynamically. Simulation results show that our proposed scheme realizes good performance in satisfying the delay-sensitive services as well as increasing the utilization rate of the random access resources allocated to them.

  10. Continuous spatial public goods game with self and peer punishment based on particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Quan, Ji; Yang, Xiukang; Wang, Xianjia

    2018-07-01

    How cooperative behavior emerges and evolves in human society remains a puzzle. It has been observed that the sense of guilt rooted from free-riding and the sense of justice for punishing the free-riders are prevalent in the real world. Inspired by this observation, two punishment mechanisms have been introduced in the spatial public goods game which are called self-punishment and peer punishment respectively in this paper. In each situation, we have introduced a corresponding parameter to describe the level of individual tolerance or social tolerance. For each individual, whether to punish others or whether it will be punished by others depends on the corresponding tolerance parameter. We focus on the effects of the two kinds of tolerance parameters on the cooperation of the population. The particle swarm optimization (PSO)-based learning rule is used to describe the strategy updating process of individuals. We consider both of the memory and the imitation in our model. Via simulation experiments, we find that both of the two punishment mechanisms could facilitate the promotion of cooperation to a large extent. For the self-punishment and for most parameters in the peer punishment, the smaller the tolerance parameter, the more conducive it is to promote cooperation. These results can help us to better understand the prevailing phenomenon of cooperation in the real world.

  11. Make or buy analysis model based on tolerance allocation to minimize manufacturing cost and fuzzy quality loss

    NASA Astrophysics Data System (ADS)

    Rosyidi, C. N.; Puspitoingrum, W.; Jauhari, W. A.; Suhardi, B.; Hamada, K.

    2016-02-01

    The specification of tolerances has a significant impact on the quality of product and final production cost. The company should carefully pay attention to the component or product tolerance so they can produce a good quality product at the lowest cost. Tolerance allocation has been widely used to solve problem in selecting particular process or supplier. But before merely getting into the selection process, the company must first make a plan to analyse whether the component must be made in house (make), to be purchased from a supplier (buy), or used the combination of both. This paper discusses an optimization model of process and supplier selection in order to minimize the manufacturing costs and the fuzzy quality loss. This model can also be used to determine the allocation of components to the selected processes or suppliers. Tolerance, process capability and production capacity are three important constraints that affect the decision. Fuzzy quality loss function is used in this paper to describe the semantic of the quality, in which the product quality level is divided into several grades. The implementation of the proposed model has been demonstrated by solving a numerical example problem that used a simple assembly product which consists of three components. The metaheuristic approach were implemented to OptQuest software from Oracle Crystal Ball in order to obtain the optimal solution of the numerical example.

  12. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors.

    PubMed

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-09-21

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.

  13. INTERRELATIONSHIP BETWEEN TEMPERATURE AND SODIUM CHLORIDE ON GROWTH OF LACTIC ACID BACTERIA ISOLATED FROM MEAT-CURING BRINES.

    PubMed

    GOLDMAN, M; DEIBEL, R H; NIVEN, C F

    1963-05-01

    Goldman, Manuel (American Meat Institute Foundation, Chicago, Ill.), R. H. Deibel, and C. F. Niven, Jr. Interrelationship between temperature and sodium chloride on growth of lactic acid bacteria isolated from meat-curing brines. J. Bacteriol. 85:1017-1021. 1963.-An elevation of the temperature limit for growth of some Pediococcus homari (Gaffkya homari) and motile Lactobacillus strains could be effected by the addition of sodium chloride to the growth medium. At the optimal temperature for growth, sodium chloride was stimulatory, and as the temperature of incubation was increased a mandatory requirement for sodium chloride was manifested. At the optimal temperature for growth (30 C), the highest sodium chloride concentrations were tolerated; as the temperature was increased, this tolerance decreased, although the optimal sodium chloride concentration increased. No other substances were found that would replace the sodium chloride requirement at higher temperatures of incubation.

  14. INTERRELATIONSHIP BETWEEN TEMPERATURE AND SODIUM CHLORIDE ON GROWTH OF LACTIC ACID BACTERIA ISOLATED FROM MEAT-CURING BRINES1

    PubMed Central

    Goldman, Manuel; Deibel, R. H.; Niven, C. F.

    1963-01-01

    Goldman, Manuel (American Meat Institute Foundation, Chicago, Ill.), R. H. Deibel, and C. F. Niven, Jr. Interrelationship between temperature and sodium chloride on growth of lactic acid bacteria isolated from meat-curing brines. J. Bacteriol. 85:1017–1021. 1963.—An elevation of the temperature limit for growth of some Pediococcus homari (Gaffkya homari) and motile Lactobacillus strains could be effected by the addition of sodium chloride to the growth medium. At the optimal temperature for growth, sodium chloride was stimulatory, and as the temperature of incubation was increased a mandatory requirement for sodium chloride was manifested. At the optimal temperature for growth (30 C), the highest sodium chloride concentrations were tolerated; as the temperature was increased, this tolerance decreased, although the optimal sodium chloride concentration increased. No other substances were found that would replace the sodium chloride requirement at higher temperatures of incubation. PMID:14043988

  15. Identification of Atuveciclib (BAY 1143572), the First Highly Selective, Clinical PTEFb/CDK9 Inhibitor for the Treatment of Cancer

    PubMed Central

    Scholz, Arne; Lienau, Philip; Siemeister, Gerhard; Kosemund, Dirk; Bohlmann, Rolf; Briem, Hans; Terebesi, Ildiko; Meyer, Kirstin; Prelle, Katja; Denner, Karsten; Bömer, Ulf; Schäfer, Martina; Eis, Knut; Valencia, Ray; Ince, Stuart; von Nussbaum, Franz; Mumberg, Dominik; Ziegelbauer, Karl; Klebl, Bert; Choidas, Axel; Nussbaumer, Peter; Baumann, Matthias; Schultz‐Fademrecht, Carsten; Rühter, Gerd; Eickhoff, Jan; Brands, Michael

    2017-01-01

    Abstract Selective inhibition of exclusively transcription‐regulating PTEFb/CDK9 is a promising new approach in cancer therapy. Starting from lead compound BAY‐958, lead optimization efforts strictly focusing on kinase selectivity, physicochemical and DMPK properties finally led to the identification of the orally available clinical candidate atuveciclib (BAY 1143572). Structurally characterized by an unusual benzyl sulfoximine group, BAY 1143572 exhibited the best overall profile in vitro and in vivo, including high efficacy and good tolerability in xenograft models in mice and rats. BAY 1143572 is the first potent and highly selective PTEFb/CDK9 inhibitor to enter clinical trials for the treatment of cancer. PMID:28961375

  16. Hydraulics of high-yield orchard trees: a case study of three Malus domestica cultivars.

    PubMed

    Beikircher, Barbara; De Cesare, Chiara; Mayr, Stefan

    2013-12-01

    The drought tolerance of three economically important apple cultivars, Golden Delicious, Braeburn and Red Delicious, was analysed. The work offers insights into the hydraulics of these high-yield trees and indicates a possible hydraulic limitation of carbon gain. The hydraulic safety and efficiency of branch xylem and leaves were quantified, drought tolerance of living tissues was measured and stomatal regulation, turgor-loss point and osmotic potential at full turgor were analysed. Physiological measurements were correlated with anatomical parameters, such as conduit diameter, cell-wall reinforcement, stomatal density and stomatal pore length. Hydraulic safety differed considerably between the three cultivars with Golden Delicious being significantly less vulnerable to drought-induced embolism than Braeburn and Red Delicious. In Golden Delicious, leaves were less resistant than branch xylem, while in the other cultivars leaves were more resistant than branch xylem. Hydraulic efficiency and xylem anatomical measurements indicate differences in pit properties, which may also be responsible for variations in hydraulic safety. In all three cultivars, full stomatal closure occurred at water potentials where turgor had already been lost and severe loss of hydraulic conductivity as well as damage to living cells had been induced. The consequential negative safety margins pose a risk for hydraulic failure but facilitate carbon gain, which is further improved by the observed high stomatal conductance. Maximal stomatal conductance was clearly seen to be related to stomatal density and size. Based on our results, these three high-yield Malus domestica Borkh. cultivars span a wide range of drought tolerances, appear optimized for maximal carbon gain and, thus, all perform best under well-managed growing conditions.

  17. Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR.

    PubMed

    Skinner, Thomas E; Reiss, Timo O; Luy, Burkhard; Khaneja, Navin; Glaser, Steffen J

    2003-07-01

    Optimal control theory is considered as a methodology for pulse sequence design in NMR. It provides the flexibility for systematically imposing desirable constraints on spin system evolution and therefore has a wealth of applications. We have chosen an elementary example to illustrate the capabilities of the optimal control formalism: broadband, constant phase excitation which tolerates miscalibration of RF power and variations in RF homogeneity relevant for standard high-resolution probes. The chosen design criteria were transformation of I(z)-->I(x) over resonance offsets of +/- 20 kHz and RF variability of +/-5%, with a pulse length of 2 ms. Simulations of the resulting pulse transform I(z)-->0.995I(x) over the target ranges in resonance offset and RF variability. Acceptably uniform excitation is obtained over a much larger range of RF variability (approximately 45%) than the strict design limits. The pulse performs well in simulations that include homonuclear and heteronuclear J-couplings. Experimental spectra obtained from 100% 13C-labeled lysine show only minimal coupling effects, in excellent agreement with the simulations. By increasing pulse power and reducing pulse length, we demonstrate experimental excitation of 1H over +/-32 kHz, with phase variations in the spectra <8 degrees and peak amplitudes >93% of maximum. Further improvements in broadband excitation by optimized pulses (BEBOP) may be possible by applying more sophisticated implementations of the optimal control formalism.

  18. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model

    PubMed Central

    Song, Jie; Wang, Baoshan

    2015-01-01

    Background As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. Scope Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered. PMID:25288631

  19. Optimal disturbance rejecting control of hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Biswas, Saroj K.; Ahmed, N. U.

    1994-01-01

    Optimal regulation of hyperbolic systems in the presence of unknown disturbances is considered. Necessary conditions for determining the optimal control that tracks a desired trajectory in the presence of the worst possible perturbations are developed. The results also characterize the worst possible disturbance that the system will be able to tolerate before any degradation of the system performance. Numerical results on the control of a vibrating beam are presented.

  20. Optimal Fault-Tolerant Control for Discrete-Time Nonlinear Strict-Feedback Systems Based on Adaptive Critic Design.

    PubMed

    Wang, Zhanshan; Liu, Lei; Wu, Yanming; Zhang, Huaguang

    2018-06-01

    This paper investigates the problem of optimal fault-tolerant control (FTC) for a class of unknown nonlinear discrete-time systems with actuator fault in the framework of adaptive critic design (ACD). A pivotal highlight is the adaptive auxiliary signal of the actuator fault, which is designed to offset the effect of the fault. The considered systems are in strict-feedback forms and involve unknown nonlinear functions, which will result in the causal problem. To solve this problem, the original nonlinear systems are transformed into a novel system by employing the diffeomorphism theory. Besides, the action neural networks (ANNs) are utilized to approximate a predefined unknown function in the backstepping design procedure. Combined the strategic utility function and the ACD technique, a reinforcement learning algorithm is proposed to set up an optimal FTC, in which the critic neural networks (CNNs) provide an approximate structure of the cost function. In this case, it not only guarantees the stability of the systems, but also achieves the optimal control performance as well. In the end, two simulation examples are used to show the effectiveness of the proposed optimal FTC strategy.

  1. Robust design of an inkjet-printed capacitive sensor for position tracking of a MOEMS-mirror in a Michelson interferometer setup

    NASA Astrophysics Data System (ADS)

    Faller, Lisa-Marie; Zangl, Hubert

    2017-05-01

    To guarantee high performance of Micro Optical Electro Mechanical Systems (MOEMS), precise position feedback is crucial. To overcome drawbacks of widely used optical feedback, we propose an inkjet-printed capacitive position sensor as smart packaging solution. Printing processes suffer from tolerances in excess of those from standard processes. Thus, FEM simulations covering assumed tolerances of the system are adopted. These simulations are structured following a Design Of Computer Experiments (DOCE) and are then employed to determine a optimal sensor design. Based on the simulation results, statistical models are adopted for the dynamic system. These models are to be used together with specifically designed hardware, considered to cope with challenging requirements of ≍50nm position accuracy at 10MS/s with 1000μm measurement range. Noise analysis is performed considering the influence of uncertainties to assess resolution and bandwidth capabilities.

  2. Improvement of two-way continuous-variable quantum key distribution with virtual photon subtraction

    NASA Astrophysics Data System (ADS)

    Zhao, Yijia; Zhang, Yichen; Li, Zhengyu; Yu, Song; Guo, Hong

    2017-08-01

    We propose a method to improve the performance of two-way continuous-variable quantum key distribution protocol by virtual photon subtraction. The virtual photon subtraction implemented via non-Gaussian post-selection not only enhances the entanglement of two-mode squeezed vacuum state but also has advantages in simplifying physical operation and promoting efficiency. In two-way protocol, virtual photon subtraction could be applied on two sources independently. Numerical simulations show that the optimal performance of renovated two-way protocol is obtained with photon subtraction only used by Alice. The transmission distance and tolerable excess noise are improved by using the virtual photon subtraction with appropriate parameters. Moreover, the tolerable excess noise maintains a high value with the increase in distance so that the robustness of two-way continuous-variable quantum key distribution system is significantly improved, especially at long transmission distance.

  3. Origins of timed cancer treatment: early marker rhythm-guided individualized chronochemotherapy*

    PubMed Central

    Halberg, Franz; Prem, Konald; Halberg, Francine; Norman, Catherine; Cornélissen, Germaine

    2008-01-01

    A 21-year old patient who presented in 1973 with a rare and highly malignant ovarian endodermal sinus tumor with spillage into the peritoneal cavity is alive and well today after receiving chronochemotherapy. During the first four courses of treatment, medications were given at different circadian stages. Complete blood counts and marker variables such as mood, vigor, nausea, and temperature were monitored around the clock and analyzed by cosinor to seek times of highest tolerance. Remaining treatment courses were administered at a time corresponding to the patient's best drug tolerance, rather than extrapolating the timing of optimal cyclophosphamide administration from also-implemented parallel laboratory studies on mice. Notwithstanding remaining hurdles in bringing chronochemotherapy to the clinic for routine care, merits of marker rhythm-guided chronotherapy documented in this and other case reports have led to the doubling of the two-year disease-free survival of patients with large perioral tumors in a clinical trial. PMID:17228525

  4. A novel botanical formula prevents diabetes by improving insulin resistance.

    PubMed

    Kan, Juntao; Velliquette, Rodney A; Grann, Kerry; Burns, Charlie R; Scholten, Jeff; Tian, Feng; Zhang, Qi; Gui, Min

    2017-07-05

    Type 2 diabetes mellitus (T2DM) is a major risk factor for cardiovascular disease, and the prevalence has increased significantly in recent decades to epidemic proportions in China. Individually, fenugreek (Trigonella foenum graecum) seed, mulberry (Morus alba L.) leaf and American ginseng (Panax quinquefolius) root can improve glycemia in various animal models and humans with impaired glucose metabolism and T2DM. The aim of this study was to design an optimized botanical formula containing these herbal extracts as a nutritional strategy for the prevention of insulin resistance and T2DM. Cell-free α-amylase and α-glucosidase enzyme assays were used to determine inhibitory potential of extracts. Glucose uptake was examined in differentiated human adipocytes using radiolabeled 2-deoxyglucose. Male Sprague Dawley rats were divided and glycemia balanced into 5 groups: two controls (naïve and model) and three doses of the botanical test formula containing standardized fenugreek seed, mulberry leaf and American ginseng extracts (42.33, 84.66 and 169.33 mg/kg BW). Insulin resistance and T2DM was induced by feeding animals a high fat diet and with an alloxan injection. Glucose tolerance was examined by measuring serum glucose levels following an oral glucose load. Fenugreek seed and mulberry leaf dose dependently inhibited α-amylase (IC50 = 73.2 μg/mL) and α-glucosidase (IC50 = 111.8 ng/mL), respectively. All three botanical extracts improved insulin sensitivity and glucose uptake in human adipocytes, which lead to the design of an optimized botanical test formula. In a rat model of insulin resistance and T2DM, the optimized botanical test formula improved fasting serum glucose levels, fasting insulin resistance and the development of impaired glucose tolerance. The reduction in epididymal adipose tissue GLUT4 and PDK1 expression induced by high fat diet and alloxan was blunted by the botanical test formula. A novel botanical formula containing standardized extracts of mulberry leaf, fenugreek seed and American ginseng at a ratio of 1:1.3:3.4 prevented the development of insulin resistance, impaired glucose tolerance and T2DM. Given the rising need for effective non-drug targeting of insulin resistance and progression to T2DM, complementary and alternative nutritional strategies without intolerable side effects could have meaningful impact on metabolic health and diabetes risks.

  5. Design of fused-silica rectangular transmission gratings for polarizing beam splitter based on modal method.

    PubMed

    Zhao, Huajun; Yuan, Dairong

    2010-02-10

    Examples of optimal designs for a fused-silica transmitted grating with high-intensity tolerance are discussed. It has the potential of placing up to 99% incident polarized light in a single diffraction order. The modal method has been used to analyze the effective indices for TE and TM polarization propagating through the grating region, and the eigenvalue equation of the modal method is transformed to a new form. It is shown that the effective indices of the first two modes depend on the value of the period under Littrow mounting with filling factor f=0.5. The polarization properties of the polarizing beam splitter are analyzed by rigorous coupled-wave analysis (RCWA) at the wavelength of 1.064 microm. The optimal design perfectly matches the RCWA simulation result.

  6. Automated design and optimization of flexible booster autopilots via linear programming, volume 1

    NASA Technical Reports Server (NTRS)

    Hauser, F. D.

    1972-01-01

    A nonlinear programming technique was developed for the automated design and optimization of autopilots for large flexible launch vehicles. This technique, which resulted in the COEBRA program, uses the iterative application of linear programming. The method deals directly with the three main requirements of booster autopilot design: to provide (1) good response to guidance commands; (2) response to external disturbances (e.g. wind) to minimize structural bending moment loads and trajectory dispersions; and (3) stability with specified tolerances on the vehicle and flight control system parameters. The method is applicable to very high order systems (30th and greater per flight condition). Examples are provided that demonstrate the successful application of the employed algorithm to the design of autopilots for both single and multiple flight conditions.

  7. Low-temperature-active and salt-tolerant β-mannanase from a newly isolated Enterobacter sp. strain N18.

    PubMed

    You, Jia; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2016-02-01

    A low-temperature-active and salt-tolerant β-mannanase produced by a novel mannanase-producer, Enterobacter sp. strain N18, was isolated, purified and then evaluated for its potential application as a gel-breaker in relation to viscosity reduction of guar-based hydraulic fracturing fluids used in oil field. The enzyme could lower the viscosity of guar gum solution by more than 95% within 10 min. The purified β-mannanase with molecular mass of 90 kDa displayed high activity in a broad range of pH and temperature: more than 70% of activity was retained in the pH range of 3.0-8.0 with the optimal pH 7.5, about 50% activity at 20°C with the optimal temperature 50°C. Furthermore, the enzyme retained >70% activity in the presence of 0.5-4.0 M NaCl. These properties implied that the enzyme from strain N18 had potential for serving as a gel-breaker for low temperature oil wells and other industrial fields, where chemical gel breakers were inactive due to low temperature. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Quasi-Linear Circuit

    NASA Technical Reports Server (NTRS)

    Bradley, William; Bird, Ross; Eldred, Dennis; Zook, Jon; Knowles, Gareth

    2013-01-01

    This work involved developing spacequalifiable switch mode DC/DC power supplies that improve performance with fewer components, and result in elimination of digital components and reduction in magnetics. This design is for missions where systems may be operating under extreme conditions, especially at elevated temperature levels from 200 to 300 degC. Prior art for radiation-tolerant DC/DC converters has been accomplished utilizing classical magnetic-based switch mode converter topologies; however, this requires specific shielding and component de-rating to meet the high-reliability specifications. It requires complex measurement and feedback components, and will not enable automatic re-optimization for larger changes in voltage supply or electrical loading condition. The innovation is a switch mode DC/DC power supply that eliminates the need for processors and most magnetics. It can provide a well-regulated voltage supply with a gain of 1:100 step-up to 8:1 step down, tolerating an up to 30% fluctuation of the voltage supply parameters. The circuit incorporates a ceramic core transformer in a manner that enables it to provide a well-regulated voltage output without use of any processor components or magnetic transformers. The circuit adjusts its internal parameters to re-optimize its performance for changes in supply voltage, environmental conditions, or electrical loading at the output

  9. Solution Formulation Development and Efficacy of MJC13 in a Preclinical Model of Castrate-Resistant Prostate Cancer

    PubMed Central

    Liang, Su; Bian, Xiaomei; Liang, Dong; Sivils, Jeffrey C.; Neckers, Leonard M.; Cox, Marc B.; Xie, Huan

    2015-01-01

    MJC13, a novel FKBP52 targeting agent, has potential use for the treatment of castrate-resistant prostate cancer. The purpose of this work was to develop a solution formulation of MJC13, and obtain its efficacy profile in a human prostate cancer xenograft mouse model. Preformulation studies were conducted to evaluate the physicochemical properties. Co-solvent systems were evaluated for aqueous solubility and tolerance. A human prostate cancer xenograft mouse model was established by growing 22Rv1 prostate cancer cells in C.B-17 SCID mice. The optimal formulation was used to study the efficacy of MJC13 in this preclinical model of castrate-resistant prostate cancer. We found that MJC13 was stable (at least for 1 month), very lipophilic (logP = 6.49), poorly soluble in water (0.28 μg/mL), and highly plasma protein bound (> 98%). The optimal formulation consisting of PEG 400 and Tween 80 (1:1, v/v) allowed us to achieve a MJC13 concentration of 7.5 mg/mL, and tolerated an aqueous environment. After twice weekly intratumoral injection with 10 mg/kg MJC13 in this formulation for 4 consecutive weeks, tumor volumes were significantly reduced compared to vehicle-treated controls. PMID:25380396

  10. Zinc tolerance and accumulation in stable cell suspension cultures and in vitro regenerated plants of the emerging model plant Arabidopsis halleri (Brassicaceae).

    PubMed

    Vera-Estrella, Rosario; Miranda-Vergara, Maria Cristina; Barkla, Bronwyn J

    2009-03-01

    Arabidopsis halleri is increasingly employed as a model plant for studying heavy metal hyperaccumulation. With the aim of providing valuable tools for studies on cellular physiology and molecular biology of metal tolerance and transport, this study reports the development of successful and highly efficient methods for the in vitro regeneration of A. halleri plants and production of stable cell suspension lines. Plants were regenerated from leaf explants of A. halleri via a three-step procedure: callus induction, somatic embryogenesis and shoot development. Efficiency of callus proliferation and regeneration depended on the initial callus induction media and was optimal in the presence of 1 mg L(-1) 2,4-dichlorophenoxyacetic acid, and 0.05 mg L(-1) benzylaminopurine. Subsequent shoot and root regeneration from callus initiated under these conditions reached levels of 100% efficiency. High friability of the callus supported the development of cell suspension cultures with minimal cellular aggregates. Characterization of regenerated plants and cell cultures determined that they maintained not only the zinc tolerance and requirement of the whole plant but also the ability to accumulate zinc; with plants accumulating up to 50.0 micromoles zinc g(-1) FW, and cell suspension cultures 30.9 micromoles zinc g(-1) DW. Together this work will provide the experimental basis for furthering our knowledge of A. halleri as a model heavy metal hyperaccumulating plant.

  11. H∞ robust fault-tolerant controller design for an autonomous underwater vehicle's navigation control system

    NASA Astrophysics Data System (ADS)

    Cheng, Xiang-Qin; Qu, Jing-Yuan; Yan, Zhe-Ping; Bian, Xin-Qian

    2010-03-01

    In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain. Operating conditions and the design method were then analyzed so that the control problem could be expressed as a mathematical optimization problem. This permitted the use of linear matrix inequalities (LMI) to solve for the H∞ controller for the system. When considering different actuator failures, these conditions were then also mathematically expressed, allowing the H∞ robust controller to solve for these events and thus be fault-tolerant. Finally, simulation results showed that the H∞ robust fault-tolerant controller could provide precise AUV navigation control with strong robustness.

  12. Statistical optimization of arsenic biosorption by microbial enzyme via Ca-alginate beads.

    PubMed

    Banerjee, Suchetana; Banerjee, Anindita; Sarkar, Priyabrata

    2018-04-16

    Bioremediation of arsenic using green technology via microbial enzymes has attracted scientists due to its simplicity and cost effectiveness. Statistical optimization of arsenate bioremediation was conducted by the enzyme arsenate reductase extracted from arsenic tolerant bacterium Pseudomonas alcaligenes. Response surface methodology based on Box-Behnken design matrix was performed to determine the optimal operational conditions of a multivariable system and their interactive effects on the bioremediation process. The highest biosorptive activity of 96.2 µg gm -1 of beads was achieved under optimized conditions (pH = 7.0; As (V) concentration = 1000 ppb; time = 2 h). SEM analysis showed the morphological changes on the surface of enzyme immobilized gluteraldehyde crosslinked Ca-alginate beads. The immobilized enzyme retained its activity for 8 cycles. ANOVA with a high correlation coefficient (R 2 > 0.99) and lower "Prob > F"value (<0.0001) corroborated the second-order polynomial model for the biosorption process. This study on the adsorptive removal of As (V) by enzyme-loaded biosorbent revealed a possible way of its application in large scale treatment of As (V)-contaminated water bodies.

  13. Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition

    NASA Astrophysics Data System (ADS)

    Kesrarat, Darun; Patanavijit, Vorapoj

    2017-02-01

    In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).

  14. Metal resistance in acidophilic microorganisms and its significance for biotechnologies.

    PubMed

    Dopson, Mark; Holmes, David S

    2014-10-01

    Extremely acidophilic microorganisms have an optimal pH of <3 and are found in all three domains of life. As metals are more soluble at acid pH, acidophiles are often challenged by very high metal concentrations. Acidophiles are metal-tolerant by both intrinsic, passive mechanisms as well as active systems. Passive mechanisms include an internal positive membrane potential that creates a chemiosmotic gradient against which metal cations must move, as well as the formation of metal sulfate complexes reducing the concentration of the free metal ion. Active systems include efflux proteins that pump metals out of the cytoplasm and conversion of the metal to a less toxic form. Acidophiles are exploited in a number of biotechnologies including biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications.

  15. Versatile polyion complex micelles for peptide and siRNA vectorization to engineer tolerogenic dendritic cells.

    PubMed

    Mebarek, Naila; Vicente, Rita; Aubert-Pouëssel, Anne; Quentin, Julie; Mausset-Bonnefont, Anne-Laure; Devoisselle, Jean-Marie; Jorgensen, Christian; Bégu, Sylvie; Louis-Plence, Pascale

    2015-05-01

    Dendritic cells (DCs) are professional antigen-presenting cells that play a critical role in maintaining the balance between immunity and tolerance and, as such are a promising immunotherapy tool to induce immunity or to restore tolerance. The main challenge to harness the tolerogenic properties of DCs is to preserve their immature phenotype. We recently developed polyion complex micelles, formulated with double hydrophilic block copolymers of poly(methacrylic acid) and poly(ethylene oxide) blocks and able to entrap therapeutic molecules, which did not induce DC maturation. In the current study, the intrinsic destabilizing membrane properties of the polymers were used to optimize endosomal escape property of the micelles in order to propose various strategies to restore tolerance. On the first hand, we showed that high molecular weight (Mw) copolymer-based micelles were efficient to favor the release of the micelle-entrapped peptide into the endosomes, and thus to improve peptide presentation by immature (i) DCs. On the second hand, we put in evidence that low Mw copolymer-based micelles were able to favor the cytosolic release of micelle-entrapped small interfering RNAs, dampening the DCs immunogenicity. Therefore, we demonstrate the versatile use of polyionic complex micelles to preserve tolerogenic properties of DCs. Altogether, our results underscored the potential of such micelle-loaded iDCs as a therapeutic tool to restore tolerance in autoimmune diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Thermal ecotypes of amphi-Atlantic algae. I. Algae of Arctic to cold-temperate distribution ( Chaetomorpha melagonium, Devaleraea ramentacea and Phycodrys rubens)

    NASA Astrophysics Data System (ADS)

    Novaczek, I.; Lubbers, G. W.; Breeman, A. M.

    1990-09-01

    Three species of Arctic to cold-temperate amphi-Atlantic algae, all occurring also in the North Pacific, were tested for growth and/or survival at temperatures of -20 to 30°C. When isolates from both western and eastern Atlantic shores were tested side-by-side, it was found that thermal ecotypes may occur in such Arctic algae. Chaetomorpha melagonium was the most eurythermal of the 3 species. Isolates of this alga were alike in temperature tolerance and growth rate but Icelandic plants were more sensitive to the lethal temperature of 25°C than were more southerly isolates from both east and west. With regard to Devaleraea ramentacea, one Canadian isolate grew extraordinarily well at -2 and 0°C, and all tolerated temperatures 2 3°C higher than the lethal limit (18 20°C) of isolates from Europe. Concerning Phycodrys rubens, both eastern and western isolates died at 20°C but European plants tolerated the lethal high temperature longer, were more sensitive to freezing, and attained more rapid growth at optimal temperatures. The intertidal species, C. melagonium and D. ramentacea, both survived freezing at -5 and -20°C, at least for short time periods. C. melagonium was more susceptible than D. ramentacea to desiccation. Patterns of thermal tolerance may provide insight into the evolutionary history of seaweed species.

  17. The WOMEN study: what is the optimal method for ischemia evaluation in women? A multi-center, prospective, randomized study to establish the optimal method for detection of coronary artery disease (CAD) risk in women at an intermediate-high pretest likelihood of CAD: study design.

    PubMed

    Mieres, Jennifer H; Shaw, Leslee J; Hendel, Robert C; Heller, Gary V

    2009-01-01

    Coronary artery disease remains the leading cause of morbidity and mortality in women. The optimal non-invasive test for evaluation of ischemic heart disease in women is unknown. Although current guidelines support the choice of the exercise tolerance test (ETT) as a first line test for women with a normal baseline ECG and adequate exercise capabilities, supportive data for this recommendation are controversial. The what is the optimal method for ischemia evaluation in women? (WOMEN) study was designed to determine the optimal non-invasive strategy for CAD risk detection of intermediate and high risk women presenting with chest pain or equivalent symptoms suggestive of ischemic heart disease. The study will prospectively compare the 2-year event rates in women capable of performing exercise treadmill testing or Tc-99 m tetrofosmin SPECT myocardial perfusion imaging (MPI). The study will enroll women presenting for the evaluation of chest pain or anginal equivalent symptoms who are capable of performing >5 METs of exercise while at intermediate-high pretest risk for ischemic heart disease who will be randomized to either ETT testing alone or with Tc-99 m tetrofosmin SPECT MPI. The null hypothesis for this project is that the exercise ECG has the same negative predictive value for risk detection as gated myocardial perfusion SPECT in women. The primary aim is to compare 2-year cardiac event rates in women randomized to SPECT MPI to those randomized to ETT. The WOMEN study seeks to provide objective information for guidelines for the evaluation of symptomatic women with an intermediate-high likelihood for CAD.

  18. Radiation-Resistant Photon-Counting Detector Package Providing Sub-ps Stability for Laser Time Transfer in Space

    NASA Technical Reports Server (NTRS)

    Prochzaka, Ivan; Kodat, Jan; Blazej, Josef; Sun, Xiaoli (Editor)

    2015-01-01

    We are reporting on a design, construction and performance of photon-counting detector packages based on silicon avalanche photodiodes. These photon-counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for future applications in fundamental metrology and optical time transfer in space. The detectors have been qualified for operation in space missions. The exceptional radiation tolerance of the detection chip itself and of all critical components of a detector package has been verified in a series of experiments.

  19. E-Selective Semi-Hydrogenation of Alkynes by Heterobimetallic Catalysis.

    PubMed

    Karunananda, Malkanthi K; Mankad, Neal P

    2015-11-25

    A unique cooperative H2 activation reaction by heterobimetallic (NHC)M'-MCp(CO)2 complexes (NHC = N-heterocyclic carbene, M' = Cu or Ag, M = Fe or Ru) has been leveraged to develop a catalytic alkyne semi-hydrogenation transformation. The optimal Ag-Ru catalyst gives high selectivity for converting alkynes to E-alkenes, a rare selectivity mode for reduction reactions with H2. The transformation is tolerant of many reducible functional groups. Computational analysis of H2 activation thermodynamics guided rational catalyst development. Bimetallic alkyne hydrogenation and alkene isomerization mechanisms are proposed.

  20. Potent and Orally Bioavailable GPR142 Agonists as Novel Insulin Secretagogues for the Treatment of Type 2 Diabetes

    PubMed Central

    2013-01-01

    GPR142 is a G protein-coupled receptor that is predominantly expressed in pancreatic β-cells. GPR142 agonists stimulate insulin secretion in the presence of high glucose concentration, so that they could be novel insulin secretagogues with reduced or no risk of hypoglycemia. We report here the optimization of HTS hit compound 1 toward a proof of concept compound 33, which showed potent glucose lowering effects during an oral glucose tolerance test in mice and monkeys. PMID:24900747

  1. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice.

    PubMed

    Lo, Shuen-Fang; Ho, Tuan-Hua David; Liu, Yi-Lun; Jiang, Mirng-Jier; Hsieh, Kun-Ting; Chen, Ku-Ting; Yu, Lin-Chih; Lee, Miin-Huey; Chen, Chi-Yu; Huang, Tzu-Pi; Kojima, Mikiko; Sakakibara, Hitoshi; Chen, Liang-Jwu; Yu, Su-May

    2017-07-01

    A major challenge of modern agricultural biotechnology is the optimization of plant architecture for enhanced productivity, stress tolerance and water use efficiency (WUE). To optimize plant height and tillering that directly link to grain yield in cereals and are known to be tightly regulated by gibberellins (GAs), we attenuated the endogenous levels of GAs in rice via its degradation. GA 2-oxidase (GA2ox) is a key enzyme that inactivates endogenous GAs and their precursors. We identified three conserved domains in a unique class of C 20 GA2ox, GA2ox6, which is known to regulate the architecture and function of rice plants. We mutated nine specific amino acids in these conserved domains and observed a gradient of effects on plant height. Ectopic expression of some of these GA2ox6 mutants moderately lowered GA levels and reprogrammed transcriptional networks, leading to reduced plant height, more productive tillers, expanded root system, higher WUE and photosynthesis rate, and elevated abiotic and biotic stress tolerance in transgenic rice. Combinations of these beneficial traits conferred not only drought and disease tolerance but also increased grain yield by 10-30% in field trials. Our studies hold the promise of manipulating GA levels to substantially improve plant architecture, stress tolerance and grain yield in rice and possibly in other major crops. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Understanding product cost vs. performance through an in-depth system Monte Carlo analysis

    NASA Astrophysics Data System (ADS)

    Sanson, Mark C.

    2017-08-01

    The manner in which an optical system is toleranced and compensated greatly affects the cost to build it. By having a detailed understanding of different tolerance and compensation methods, the end user can decide on the balance of cost and performance. A detailed phased approach Monte Carlo analysis can be used to demonstrate the tradeoffs between cost and performance. In complex high performance optical systems, performance is fine-tuned by making adjustments to the optical systems after they are initially built. This process enables the overall best system performance, without the need for fabricating components to stringent tolerance levels that often can be outside of a fabricator's manufacturing capabilities. A good performance simulation of as built performance can interrogate different steps of the fabrication and build process. Such a simulation may aid the evaluation of whether the measured parameters are within the acceptable range of system performance at that stage of the build process. Finding errors before an optical system progresses further into the build process saves both time and money. Having the appropriate tolerances and compensation strategy tied to a specific performance level will optimize the overall product cost.

  3. Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco.

    PubMed

    Charrier, Aurélie; Planchet, Elisabeth; Cerveau, Delphine; Gimeno-Gilles, Christine; Verdu, Isabelle; Limami, Anis M; Lelièvre, Eric

    2012-08-01

    The impact of Medicago truncatula stress-associated protein gene (MtSAP1) overexpression has been investigated in Nicotiana tabacum transgenic seedlings. Under optimal conditions, transgenic lines overexpressing MtSAP1 revealed better plant development and higher chlorophyll content as compared to wild type seedlings. Interestingly, transgenic lines showed a stronger accumulation of nitric oxide (NO), a signaling molecule involved in growth and development processes. This NO production seemed to be partially nitrate reductase dependent. Due to the fact that NO has been also reported to play a role in tolerance acquisition of plants to abiotic stresses, the responses of MtSAP1 overexpressors to osmotic and salt stress have been studied. Compared to the wild type, transgenic lines were less affected in their growth and development. Moreover, NO content in MtSAP1 overexpressors was always higher than that detected in wild seedlings under stress conditions. It seems that this better tolerance induced by MtSAP1 overexpression could be associated with this higher NO production that would enable seedlings to reach a high protection level to prepare them to cope with abiotic stresses.

  4. Clinical relevance of cannabis tolerance and dependence.

    PubMed

    Jones, R T; Benowitz, N L; Herning, R I

    1981-01-01

    Psychoactive drugs are often widely used before tolerance and dependence is fully appreciated. Tolerance to cannabis-induced cardiovascular and autonomic changes, decreased intraocular pressure, sleep and sleep EEG, mood and behavioral changes is acquired and, to a great degree, lost rapidly with optimal conditions. Mechanisms appear more functional than metabolic. Acquisition rate depends on dose and dose schedule. Dependence, manifested by withdrawal symptoms after as little as 7 days of THC administration, is characterized by irritability, restlessness, insomnia, anorexia, nausea, sweating, salivation, increased body temperature, altered sleep and waking EEG, tremor, and weight loss. Mild and transient in the 120 subjects studied, the syndrome was similar to sedative drug withdrawal. Tolerance to drug side effects can be useful. Tolerance to therapeutic effects or target symptoms poses problems. Clinical significance of dependence is difficult to assess since drug-seeking behavior has many determinants. Cannabis-induced super sensitivity should be considered wherever chronic drug administration is anticipated in conditions like epilepsy, glaucoma or chronic pain. Cannabis pharmacology suggests ways of minimizing tolerance and dependence problems.

  5. Clinically Effective Treatment of Fibromyalgia Pain With High-Definition Transcranial Direct Current Stimulation: Phase II Open-Label Dose Optimization.

    PubMed

    Castillo-Saavedra, Laura; Gebodh, Nigel; Bikson, Marom; Diaz-Cruz, Camilo; Brandao, Rivail; Coutinho, Livia; Truong, Dennis; Datta, Abhishek; Shani-Hershkovich, Revital; Weiss, Michal; Laufer, Ilan; Reches, Amit; Peremen, Ziv; Geva, Amir; Parra, Lucas C; Fregni, Felipe

    2016-01-01

    Despite promising preliminary results in treating fibromyalgia (FM) pain, no neuromodulation technique has been adopted in clinical practice because of limited efficacy, low response rate, or poor tolerability. This phase II open-label trial aims to define a methodology for a clinically effective treatment of pain in FM by establishing treatment protocols and screening procedures to maximize efficacy and response rate. High-definition transcranial direct current stimulation (HD-tDCS) provides targeted subthreshold brain stimulation, combining tolerability with specificity. We aimed to establish the number of HD-tDCS sessions required to achieve a 50% FM pain reduction, and to characterize the biometrics of the response, including brain network activation pain scores of contact heat-evoked potentials. We report a clinically significant benefit of a 50% pain reduction in half (n = 7) of the patients (N = 14), with responders and nonresponders alike benefiting from a cumulative effect of treatment, reflected in significant pain reduction (P = .035) as well as improved quality of life (P = .001) over time. We also report an aggregate 6-week response rate of 50% of patients and estimate 15 as the median number of HD-tDCS sessions to reach clinically meaningful outcomes. The methodology for a pivotal FM neuromodulation clinical trial with individualized treatment is thus supported. Registered in Clinicaltrials.gov under registry number NCT01842009. In this article, an optimized protocol for the treatment of fibromyalgia pain with targeted subthreshold brain stimulation using high-definition transcranial direct current stimulation is outlined. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  6. Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerant Burkholderia vietnamiensis M6 isolated from ginseng rhizospheric soil.

    PubMed

    Park, Ki-Hyun; Lee, O-Mi; Jung, Ho-Il; Jeong, Jin-Ha; Jeon, Young-Dong; Hwang, Dae-Youn; Lee, Chung-Yeol; Son, Hong-Joo

    2010-04-01

    We isolated and characterized novel insoluble phosphate (P)-solubilizing bacteria tolerant to environmental factors like high salt, low and high pHs, and low temperature. A bacterium M6 was isolated from a ginseng rhizospheric soil and confirmed to belong to Burkholderia vietnamiensis by BIOLOG system and 16S rRNA gene analysis. The optimal cultural conditions for the solubilization of P were 2.5% (w/v) glucose, 0.015% (w/v) urea, and 0.4% (w/v) MgCl(2).6H(2)O along with initial pH 7.0 at 35 degrees C. High-performance liquid chromatography analysis showed that B. vietnamiensis M6 produced gluconic and 2-ketogluconic acids. During the culture, the pH was reduced with increase in gluconic acid concentration and was inversely correlated with P solubilization. Insoluble P solubilization in the optimal medium was about 902 mg l(-1), which was approximately 1.6-fold higher than the yield in NBRIP medium (580 mg l(-1)). B. vietnamiensis M6 showed resistance against different environmental stresses like 10-45 degrees C, 1-5% (w/v) salt, and 2-11 pH range. The maximal concentration of soluble P produced by B. vietnamiensis M6 from Ca(3)(PO(4))(2), CaHPO(4), and hydroxyapatite was 1,039, 2,132, and 1,754 mg l(-1), respectively. However, the strain M6 produced soluble P with 20 mg l(-1) from FePO(4) after 2 days and 100 mg l(-1) from AlPO(4) after 6 days, respectively. Our results indicate that B. vietnamiensis M6 could be a potential candidate for the development of biofertilizer applicable to environmentally stressed soil.

  7. Tool Support for Software Lookup Table Optimization

    DOE PAGES

    Wilcox, Chris; Strout, Michelle Mills; Bieman, James M.

    2011-01-01

    A number of scientific applications are performance-limited by expressions that repeatedly call costly elementary functions. Lookup table (LUT) optimization accelerates the evaluation of such functions by reusing previously computed results. LUT methods can speed up applications that tolerate an approximation of function results, thereby achieving a high level of fuzzy reuse. One problem with LUT optimization is the difficulty of controlling the tradeoff between performance and accuracy. The current practice of manual LUT optimization adds programming effort by requiring extensive experimentation to make this tradeoff, and such hand tuning can obfuscate algorithms. In this paper we describe a methodology andmore » tool implementation to improve the application of software LUT optimization. Our Mesa tool implements source-to-source transformations for C or C++ code to automate the tedious and error-prone aspects of LUT generation such as domain profiling, error analysis, and code generation. We evaluate Mesa with five scientific applications. Our results show a performance improvement of 3.0× and 6.9× for two molecular biology algorithms, 1.4× for a molecular dynamics program, 2.1× to 2.8× for a neural network application, and 4.6× for a hydrology calculation. We find that Mesa enables LUT optimization with more control over accuracy and less effort than manual approaches.« less

  8. Synthesis of Conformal Phased Antenna Arrays With A Novel Multiobjective Invasive Weed Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Wen Tao; Hei, Yong Qiang; Shi, Xiao Wei

    2018-04-01

    By virtue of the excellent aerodynamic performances, conformal phased arrays have been attracting considerable attention. However, for the synthesis of patterns with low/ultra-low sidelobes of the conventional conformal arrays, the obtained dynamic range ratios of amplitude excitations could be quite high, which results in stringent requirements on various error tolerances for practical implementation. Time-modulated array (TMA) has the advantages of low sidelobe and reduced dynamic range ratio requirement of amplitude excitations. This paper takes full advantages of conformal antenna arrays and time-modulated arrays. The active-element-pattern, including element mutual coupling and platform effects, is employed in the whole design process. To optimize the pulse durations and the switch-on instants of the time-modulated elements, multiobjective invasive weed optimization (MOIWO) algorithm based on the nondominated sorting of the solutions is proposed. A S-band 8-element cylindrical conformal array is designed and a S-band 16-element cylindrical-parabolic conformal array is constructed and tested at two different steering angles.

  9. Role of gender norms and group identification on hypothetical and experimental pain tolerance.

    PubMed

    Pool, Gregory J; Schwegler, Andria F; Theodore, Brian R; Fuchs, Perry N

    2007-05-01

    Previous research indicates that men typically tolerate more pain in experimental settings than women. One likely explanation for these group differences in pain tolerance is conformity to traditional, gender group social norms (i.e., the ideal man is masculine and tolerates more pain; the ideal woman is feminine and tolerates less pain). According to self-categorization theory, norms guide behavior to the degree that group members adopt the group identity. Therefore, high-identifying men are expected to conform to gender norms and tolerate more pain than high-identifying women who conform to different gender norms as a guide for their behavior. We conducted two studies to investigate whether gender group identification moderates individuals' conformity to pain tolerance and reporting norms. In the first study, participants indicated their gender identification and expected tolerance of a hypothetical painful stimulus. As anticipated, high-identifying men reported significantly greater pain tolerance than high-identifying women. No differences existed between low-identifying men and women. To determine if self-reported pain tolerance in a role-playing scenario corresponds to actual pain tolerance in an experimental setting, the second study examined pain tolerance to a noxious stimulus induced by electrical stimulation of the index finger. The experimental outcome revealed that high-identifying men tolerated more painful stimulation than high-identifying women. Further, high-identifying men tolerated more pain than low-identifying men. These results highlight the influence of social norms on behavior and suggest the need to further explore the role of norms in pain reporting behaviors.

  10. 11 Efficacy and Tolerability of HDM Injective Immunotherapy With Monomeric Allergoid

    PubMed Central

    Compalati, Enrico; Atzeni, Isabella; Cabras, Sergio; Fancello, Paolo; Gaspardini, Giulio; Longo, Rocco; Patella, Vincenzo; Tore, Giorgio

    2012-01-01

    Background Subcutaneous immunotherapy (SCIT) is an effective treatment of respiratory allergy and carbamylated monomeric allergoids (monoids), by virtue of their reduced IgE-binding activity, resulted clinically safe by sublingual administration. Purpose of this study was to investigate the efficacy and tolerability of immunotherapy with house dust mites (HDM) monoid administered by injective route in patients with allergic rhinoconjunctivitis (AR). Methods A preparation of 0.70 mL of 10 BU/mL containing modified extract with 50% Dermatophagoides pteronyssinus and 50% Dermatophagoides farinae (amount of major allergen: 4 μg of group 1 per milliliter) was delivered monthly for 12 months, following a 5-week build-up induction phase (0.10–0.20–0.30–0.50–0.70 mL), to 58 patients (60% males, mean age 25.1 ± 12.7) suffering from AR due to mites for at least 2 years, whereas 60 patients with similar baseline characteristics were observed as controls. All patients were allowed to assume traditional drug therapy for their condition. At the end of the study changes from baseline in symptoms scores, in number of days with drug assumption, in severity of AR (according to ARIA classification) were compared between the 2 groups; moreover an overall assessment of clinical efficacy and tolerability was based on patients' and physicians' judgements (unsatisfactory, mild, good, optimal). Results In respect to baseline both groups showed, after 1 year, an improvement in symptoms score (P < 0.001) with a significant difference in favour of SCIT group (P < 0.05). Days of drug intake were significantly lower in patients receiving SCIT (P < 0.05). The number of patients with severe AR decreased in the first group while no variation was observed in controls. The subjective clinical overall assessment was optimal in 31 cases and good in 24 according to physicians' and patients' judgements; similarly 38 patients judged tolerability as optimal and 18 as good, whereas according to physicians it was optimal in 37 patients and good in 19; in only 1 patient the treatment was considered unsatisfactory. Conclusions In this prospective controlled study, SCIT with HDM carbamylated allergoid was associated with a significant clinical benefit observed through objective and subjective outcomes; the traditional safety of monomeric allergoids was confirmed by the subjective judgements of tolerability.

  11. [Customization of hemodialysis therapy: dialysis is not a washing machine].

    PubMed

    Santoro, Antonio

    2018-02-01

    In recent years, the population of chronic dialysis has grown in number but also in age and frequency of co-morbidies such as cardiac diseases, vascular pathologies, diabetes, etc. The majority of patients on chronic hemodialysis are over 70 years and, given the high number of comorbidities, they often exhibit poor tolerance to dialysis treatments. A non-tolerated dialytic treatment can have side-effects that would require an intensification of the dialysis sessions and many hospitalizations. Consequently, the problematic dialysis treatments, as well as harmful for the patient, become economically more detrimental than other treatments apparently more expensive but more tolerated ones In the current days we have, thanks to the huge developments in dialysis technology, powerful weapons to ensure effective and scarcely symptomatic dialysis treatments to the majority of the HD patients. New, highly biocompatible membranes with defined and modular cut-off and / or absorption capacity may allow us to provide adequate purification. Moreover the monitoring and biofeedback systems such as blood volume tracking, body temperature monitoring (BTM) and blood pressure (BPM) can be very useful in reducing the risk of intra-dialytic hypotension and symptoms. Therefore, the dialytic therapy, as well as all the pharmacological therapies for the chronic patient, must consider the specificity of the patient, basing on his metabolic problems, cardiovascular tolerance, residual renal function and on his dietary and general compliance. The central aim of the nephrologist is to formulate the better prescription for the individual patient, considering the dialysis modalities, the membrane type, the dry weight (ideal post-dialysis body weight), the frequency and the duration of the weekly sessions and the technological tools that can optimize the treatment. Copyright by Società Italiana di Nefrologia SIN, Rome, Italy.

  12. Fault-tolerant bandwidth reservation strategies for data transfers in high-performance networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Liudong; Zhu, Michelle M.; Wu, Chase Q.

    2016-11-22

    Many next-generation e-science applications need fast and reliable transfer of large volumes of data with guaranteed performance, which is typically enabled by the bandwidth reservation service in high-performance networks. One prominent issue in such network environments with large footprints is that node and link failures are inevitable, hence potentially degrading the quality of data transfer. We consider two generic types of bandwidth reservation requests (BRRs) concerning data transfer reliability: (i) to achieve the highest data transfer reliability under a given data transfer deadline, and (ii) to achieve the earliest data transfer completion time while satisfying a given data transfer reliabilitymore » requirement. We propose two periodic bandwidth reservation algorithms with rigorous optimality proofs to optimize the scheduling of individual BRRs within BRR batches. The efficacy of the proposed algorithms is illustrated through extensive simulations in comparison with scheduling algorithms widely adopted in production networks in terms of various performance metrics.« less

  13. Optimum color filters for CCD digital cameras

    NASA Astrophysics Data System (ADS)

    Engelhardt, Kai; Kunz, Rino E.; Seitz, Peter; Brunner, Harald; Knop, Karl

    1993-12-01

    As part of the ESPRIT II project No. 2103 (MASCOT) a high performance prototype color CCD still video camera was developed. Intended for professional usage such as in the graphic arts, the camera provides a maximum resolution of 3k X 3k full color pixels. A high colorimetric performance was achieved through specially designed dielectric filters and optimized matrixing. The color transformation was obtained by computer simulation of the camera system and non-linear optimization which minimized the perceivable color errors as measured in the 1976 CIELUV uniform color space for a set of about 200 carefully selected test colors. The color filters were designed to allow perfect colorimetric reproduction in principle and at the same time with imperceptible color noise and with special attention to fabrication tolerances. The camera system includes a special real-time digital color processor which carries out the color transformation. The transformation can be selected from a set of sixteen matrices optimized for different illuminants and output devices. Because the actual filter design was based on slightly incorrect data the prototype camera showed a mean colorimetric error of 2.7 j.n.d. (CIELUV) in experiments. Using correct input data in the redesign of the filters, a mean colorimetric error of only 1 j.n.d. (CIELUV) seems to be feasible, implying that it is possible with such an optimized color camera to achieve such a high colorimetric performance that the reproduced colors in an image cannot be distinguished from the original colors in a scene, even in direct comparison.

  14. Synthesis of cis-C-Iodo-N-Tosyl-Aziridines using Diiodomethyllithium: Reaction Optimization, Product Scope and Stability, and a Protocol for Selection of Stationary Phase for Chromatography

    PubMed Central

    2013-01-01

    The preparation of C-iodo-N-Ts-aziridines with excellent cis-diastereoselectivity has been achieved in high yields by the addition of diiodomethyllithium to N-tosylimines and N-tosylimine–HSO2Tol adducts. This addition-cyclization protocol successfully provided a wide range of cis-iodoaziridines, including the first examples of alkyl-substituted iodoaziridines, with the reaction tolerating both aryl imines and alkyl imines. An ortho-chlorophenyl imine afforded a β-amino gem-diiodide under the optimized reaction conditions due to a postulated coordinated intermediate preventing cyclization. An effective protocol to assess the stability of the sensitive iodoaziridine functional group to chromatography was also developed. As a result of the judicious choice of stationary phase, the iodoaziridines could be purified by column chromatography; the use of deactivated basic alumina (activity IV) afforded high yield and purity. Rearrangements of electron-rich aryl-iodoaziridines have been promoted, selectively affording either novel α-iodo-N-Ts-imines or α-iodo-aldehydes in high yield. PMID:23738857

  15. Production of volatile fatty acids from sewage organic matter by combined bioflocculation and alkaline fermentation.

    PubMed

    Khiewwijit, Rungnapha; Temmink, Hardy; Labanda, Alvaro; Rijnaarts, Huub; Keesman, Karel J

    2015-12-01

    This study explored the potential of volatile fatty acids (VFA) production from sewage by a combined high-loaded membrane bioreactor and sequencing batch fermenter. VFA production was optimized with respect to SRT and alkaline pH (pH 8-10). Application of pH shock to a value of 9 at the start of a sequencing batch cycle, followed by a pH uncontrolled phase for 7days, gave the highest VFA yield of 440mgVFA-COD/g VSS. This yield was much higher than at fermentation without pH control or at a constant pH between 8 and 10. The high yield in the pH 9 shocked system could be explained by (1) a reduction of methanogenic activity, or (2) a high degree of solids degradation or (3) an enhanced protein hydrolysis and fermentation. VFA production can be further optimized by fine-tuning pH level and longer operation, possibly allowing enrichment of alkalophilic and alkali-tolerant fermenting microorganisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Robustness of mission plans for unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Niendorf, Moritz

    This thesis studies the robustness of optimal mission plans for unmanned aircraft. Mission planning typically involves tactical planning and path planning. Tactical planning refers to task scheduling and in multi aircraft scenarios also includes establishing a communication topology. Path planning refers to computing a feasible and collision-free trajectory. For a prototypical mission planning problem, the traveling salesman problem on a weighted graph, the robustness of an optimal tour is analyzed with respect to changes to the edge costs. Specifically, the stability region of an optimal tour is obtained, i.e., the set of all edge cost perturbations for which that tour is optimal. The exact stability region of solutions to variants of the traveling salesman problems is obtained from a linear programming relaxation of an auxiliary problem. Edge cost tolerances and edge criticalities are derived from the stability region. For Euclidean traveling salesman problems, robustness with respect to perturbations to vertex locations is considered and safe radii and vertex criticalities are introduced. For weighted-sum multi-objective problems, stability regions with respect to changes in the objectives, weights, and simultaneous changes are given. Most critical weight perturbations are derived. Computing exact stability regions is intractable for large instances. Therefore, tractable approximations are desirable. The stability region of solutions to relaxations of the traveling salesman problem give under approximations and sets of tours give over approximations. The application of these results to the two-neighborhood and the minimum 1-tree relaxation are discussed. Bounds on edge cost tolerances and approximate criticalities are obtainable likewise. A minimum spanning tree is an optimal communication topology for minimizing the cumulative transmission power in multi aircraft missions. The stability region of a minimum spanning tree is given and tolerances, stability balls, and criticalities are derived. This analysis is extended to Euclidean minimum spanning trees. This thesis aims at enabling increased mission performance by providing means of assessing the robustness and optimality of a mission and methods for identifying critical elements. Examples of the application to mission planning in contested environments, cargo aircraft mission planning, multi-objective mission planning, and planning optimal communication topologies for teams of unmanned aircraft are given.

  17. Design Optimization of Composite Structures under Uncertainty

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    2003-01-01

    Design optimization under uncertainty is computationally expensive and is also challenging in terms of alternative formulation. The work under the grant focused on developing methods for design against uncertainty that are applicable to composite structural design with emphasis on response surface techniques. Applications included design of stiffened composite plates for improved damage tolerance, the use of response surfaces for fitting weights obtained by structural optimization, and simultaneous design of structure and inspection periods for fail-safe structures.

  18. An efficient constraint to account for mistuning effects in the optimal design of engine rotors

    NASA Technical Reports Server (NTRS)

    Murthy, Durbha V.; Pierre, Christophe; Ottarsson, Gisli

    1992-01-01

    Blade-to-blade differences in structural properties, unavoidable in practice due to manufacturing tolerances, can have significant influence on the vibratory response of engine rotor blade. Accounting for these differences, also known as mistuning, in design and in optimization procedures is generally not possible. This note presents an easily calculated constraint that can be used in design and optimization procedures to control the sensitivity of final designs to mistuning.

  19. Endothelial function and insulin resistance in polycystic ovary syndrome: the effects of medical therapy.

    PubMed

    Teede, Helena J; Meyer, Caroline; Hutchison, Samantha K; Zoungas, Sophia; McGrath, Barry P; Moran, Lisa J

    2010-01-01

    To assess the interaction between insulin resistance and endothelial function and the optimal treatment strategy addressing cardiovascular risk in polycystic ovary syndrome. Randomized controlled trial. Controlled clinical study. Overweight age- and body mass index-matched women with polycystic ovary syndrome. Six months metformin (1 g two times per day, n = 36) or oral contraceptive pill (OCP) (35 microg ethinyl E(2)-2 mg cytoproterone acetate, n = 30). Fasting and oral glucose tolerance test glucose and insulin levels, endothelial function (flow-mediated dilation, asymmetric dimethylarginine, plasminogen activator inhibitor-1, von Willebrand factor), inflammatory markers (high-sensitivity C-reactive protein), lipids, and hyperandrogenism. The OCP increased levels of glucose and insulin on oral glucose tolerance test, high-sensitivity C-reactive protein, triglycerides, and sex-hormone binding globulin and decreased levels of low-density lipoprotein cholesterol and T. Metformin decreased levels of fasting insulin, oral glucose tolerance test insulin, high-density lipoprotein cholesterol, and high-sensitivity C-reactive protein. Flow-mediated dilation increased only with metformin (+2.2% +/- 4.8%), whereas asymmetric dimethylarginine decreased equivalently for OCP and metformin (-0.3 +/- 0.1 vs. -0.1 +/- 0.1 mmol/L). Greater decreases in plasminogen activator inhibitor-1 occurred for the OCP than for metformin (-1.8 +/- 1.6 vs. -0.7 +/- 1.7 U/mL). In polycystic ovary syndrome, metformin improves insulin resistance, inflammatory markers, and endothelial function. The OCP worsens insulin resistance and glucose homeostasis, inflammatory markers, and triglycerides and has neutral or positive endothelial effects. The effect of the OCP on cardiovascular risk in polycystic ovary syndrome is unclear. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Magnetic Resonance Imaging-Guided, Open-Label, High-Frequency Repetitive Transcranial Magnetic Stimulation for Adolescents with Major Depressive Disorder.

    PubMed

    Wall, Christopher A; Croarkin, Paul E; Maroney-Smith, Mandie J; Haugen, Laura M; Baruth, Joshua M; Frye, Mark A; Sampson, Shirlene M; Port, John D

    2016-09-01

    Preliminary studies suggest that repetitive transcranial magnetic stimulation (rTMS) may be an effective and tolerable intervention for adolescents with treatment-resistant depression. There is limited rationale to inform coil placement for rTMS dosing in this population. We sought to examine and compare three localization techniques for coil placement in the context of an open-label trial of high-frequency rTMS for adolescents with treatment-resistant depression. Ten adolescents with treatment-resistant depression were enrolled in an open-label trial of high-frequency rTMS. Participants were offered 30 rTMS sessions (10 Hz, 120% motor threshold, left 3000 pulses applied to the dorsolateral prefrontal cortex) over 6-8 weeks. Coil placement for treatment was MRI guided. The scalp location for treatment was compared with the locations identified with standard 5 cm rule and Beam F3 methods. Seven adolescents completed 30 rTMS sessions. No safety or tolerability concerns were identified. Depression severity as assessed with the Children's Depression Rating Scale Revised improved from baseline to treatment 10, treatment 20, and treatment 30. Gains in depressive symptom improvement were maintained at 6 month follow-up visits. An MRI-guided approach for coil localization was feasible and efficient. Our results suggest that the 5 cm rule, Beam F3, and the MRI-guided localization approaches provided variable scalp targets for rTMS treatment. Open-label, high-frequency rTMS was feasible, tolerable, and effective for adolescents with treatment-resistant depression. Larger, blinded, sham-controlled trials are needed for definitive safety and efficacy data. Further efforts to understand optimal delivery, dosing, and biomarker development for rTMS treatments of adolescent depression are warranted.

  1. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors

    PubMed Central

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-01-01

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors. PMID:28934163

  2. Processing time tolerance-based ACO algorithm for solving job-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Luo, Yabo; Waden, Yongo P.

    2017-06-01

    Ordinarily, Job Shop Scheduling Problem (JSSP) is known as NP-hard problem which has uncertainty and complexity that cannot be handled by a linear method. Thus, currently studies on JSSP are concentrated mainly on applying different methods of improving the heuristics for optimizing the JSSP. However, there still exist many problems for efficient optimization in the JSSP, namely, low efficiency and poor reliability, which can easily trap the optimization process of JSSP into local optima. Therefore, to solve this problem, a study on Ant Colony Optimization (ACO) algorithm combined with constraint handling tactics is carried out in this paper. Further, the problem is subdivided into three parts: (1) Analysis of processing time tolerance-based constraint features in the JSSP which is performed by the constraint satisfying model; (2) Satisfying the constraints by considering the consistency technology and the constraint spreading algorithm in order to improve the performance of ACO algorithm. Hence, the JSSP model based on the improved ACO algorithm is constructed; (3) The effectiveness of the proposed method based on reliability and efficiency is shown through comparative experiments which are performed on benchmark problems. Consequently, the results obtained by the proposed method are better, and the applied technique can be used in optimizing JSSP.

  3. Modeling of defect-tolerant thin multi-junction solar cells for space application

    NASA Astrophysics Data System (ADS)

    Mehrotra, A.; Alemu, A.; Freundlich, A.

    2012-02-01

    Using drift-diffusion model and considering experimental III-V material parameters, AM0 efficiencies of lattice-matched multijunction solar cells have been calculated and the effects of dislocations and radiation damage have been analyzed. Ultrathin multi-junction devices perform better in presence of dislocations or/and radiation harsh environment compared to conventional thick multijunction devices. Our results show that device design optimization of Ga0.51In0.49P/GaAs multijunction devices leads to an improvement in EOL efficiency from 4.8%, for the conventional thick device design, to 12.7%, for the EOL optimized thin devices. In addition, an optimized defect free lattice matched Ga0.51In0.49P/GaAs solar cell under 1016cm-2 1Mev equivalent electron fluence is shown to give an EOL efficiency of 12.7%; while a Ga0.51In0.49P/GaAs solar cell with 108 cm-2 dislocation density under 1016cm-2 electron fluence gives an EOL efficiency of 12.3%. The results suggest that by optimizing the device design, we can obtain nearly the same EOL efficiencies for high dislocation metamorphic solar cells and defect filtered metamorphic multijunction solar cells. The findings relax the need for thick or graded buffer used for defect filtering in metamorphic devices. It is found that device design optimization allows highly dislocated devices to be nearly as efficient as defect free devices for space applications.

  4. Optimal design of DC-based polarization beam splitter in lithium niobate on insulator

    NASA Astrophysics Data System (ADS)

    Gong, Zisu; Yin, Rui; Ji, Wei; Wang, Junbao; Wu, Chonghao; Li, Xiao; Zhang, Shicheng

    2017-08-01

    We propose a DC-based polarization beam splitter (PBS) in lithium niobate on insulator (LNOI). Utilizing the high birefringence property of Lithium Niobate (LiNbO3, LN), the device is achieved by simple structure in a short length. With the use of beam propagation method (BPM), the simulation results show that the device has a good performance for the separation of TE and TM polarizations with a high extinction ratio (about 35 dB). The simulated fabrication tolerance for the variation of the waveguide width is about 100 nm and the bandwidth is about 65 nm when the extinction ratio is higher than 10 dB.

  5. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC.

    PubMed

    Gonzalez-Mira, E; Egea, M A; Garcia, M L; Souto, E B

    2010-12-01

    Packaging small drug molecules, such as non-steroidal anti-inflammatory drugs (NSAIDs) into nanoparticulate systems has been reported as a promising approach to improve the drug's bioavailability, biocompatibility and safety profiles. In the last 20 years, lipid nanoparticles (lipid dispersions) entered the nanoparticulate library as novel carrier systems due to their great potential as an alternative to other systems such as polymeric nanoparticles and liposomes for several administration routes. For ocular instillation nanoparticulate carriers are required to have a low mean particle size, with the lowest polydispersity as possible. The purpose of this work was to study the combined influence of 2-level, 4-factor variables on the formulation of flurbiprofen (FB), a lipophilic NSAID, in lipid carriers currently named as nanostructured lipid carriers (NLC). NLC were produced with stearic acid (SA) and castor oil (CO) stabilized by Tween® 80 (non-ionic surfactant) in aqueous dispersion. A 2(4) full factorial design based on 4 independent variables was used to plan the experiments, namely, the percentage of SA with regard to the total lipid, the FB concentration, the stabilizer concentration, and the storage conditions (i.e., storage temperature). The effects of these parameters on the mean particle size, polydispersity index (PI) and zeta potential (ZP) were investigated as dependent variables. The optimization process was achieved and the best formulation corresponded to the NLC formulation composed of 0.05 (wt%) FB, 1.6 (wt%) Tween® 80 and a 50:50 ratio of SA to CO, with an average diameter of 288 nm, PI 0.245 of and ZP of -29 mV. This factorial design study has proven to be a useful tool in optimizing FB-loaded NLC formulations. Stability of the optimized NLC was predicted using a TurbiScanLab® and the ocular tolerance was assessed in vitro and in vivo by the Eytex® and Draize test, respectively. The developed systems were shown physico-chemically stable with high tolerance for eye instillation. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Choosing the optimal dose in sublingual immunotherapy: Rationale for the 300 index of reactivity dose.

    PubMed

    Demoly, Pascal; Passalacqua, Gianni; Calderon, Moises A; Yalaoui, Tarik

    2015-01-01

    Sublingual immunotherapy (SLIT) is an effective and well-tolerated method of treating allergic respiratory diseases associated with seasonal and perennial allergens. In contrast to the subcutaneous route, SLIT requires a much greater amount of antigen to achieve a clinical effect. Many studies have shown that SLIT involves a dose-response relationship, and therefore it is important to use a proven clinically effective dose from the onset of treatment, because low doses are ineffective and very high doses may increase the risk of side effects. A well-defined standardization of allergen content is also crucial to ensure consistent quality, potency and appropriate immunomodulatory action of the SLIT product. Several methods of measuring antigenicity are used by manufacturers of SLIT products, including the index of reactivity (IR), standardized quality tablet unit, and bioequivalent allergy unit. A large body of evidence has established the 300 IR dose of SLIT as offering optimal efficacy and tolerability for allergic rhinitis due to grass and birch pollen and HDM, and HDM-induced moderate, persistent allergic asthma. The 300 IR dose also offers consistency of dosing across a variety of different allergens, and is associated with higher rates of adherence and patient satisfaction. Studies in patients with grass pollen allergies showed that the 300 IR dose has a rapid onset of action, is effective in both adults and children in the short term and, when administered pre-coseasonally in the long term, and maintains the clinical benefit, even after cessation of treatment. In patients with HDM-associated AR and/or asthma, the 300 IR dose also demonstrated significant improvements in symptoms and quality of life, and significantly decreased use of symptomatic medication. The 300 IR dose is well tolerated, with adverse events generally being of mild or moderate severity, declining in frequency and severity over time and in the subsequent courses. We discuss herein the most important factors that affect the selection of the optimal dose of SLIT with natural allergens, and review the rationale and evidence supporting the use of the 300 IR dose.

  7. Design, Modeling and Performance Optimization of a Novel Rotary Piezoelectric Motor

    NASA Technical Reports Server (NTRS)

    Duong, Khanh A.; Garcia, Ephrahim

    1997-01-01

    This work has demonstrated a proof of concept for a torsional inchworm type motor. The prototype motor has shown that piezoelectric stack actuators can be used for rotary inchworm motor. The discrete linear motion of piezoelectric stacks can be converted into rotary stepping motion. The stacks with its high force and displacement output are suitable actuators for use in piezoelectric motor. The designed motor is capable of delivering high torque and speed. Critical issues involving the design and operation of piezoelectric motors were studied. The tolerance between the contact shoes and the rotor has proved to be very critical to the performance of the motor. Based on the prototype motor, a waveform optimization scheme was proposed and implemented to improve the performance of the motor. The motor was successfully modeled in MATLAB. The model closely represents the behavior of the prototype motor. Using the motor model, the input waveforms were successfully optimized to improve the performance of the motor in term of speed, torque, power and precision. These optimized waveforms drastically improve the speed of the motor at different frequencies and loading conditions experimentally. The optimized waveforms also increase the level of precision of the motor. The use of the optimized waveform is a break-away from the traditional use of sinusoidal and square waves as the driving signals. This waveform optimization scheme can be applied to any inchworm motors to improve their performance. The prototype motor in this dissertation as a proof of concept was designed to be robust and large. Future motor can be designed much smaller and more efficient with lessons learned from the prototype motor.

  8. 14 day sequential therapy versus 10 day bismuth quadruple therapy containing high-dose esomeprazole in the first-line and second-line treatment of Helicobacter pylori: a multicentre, non-inferiority, randomized trial.

    PubMed

    Liou, Jyh-Ming; Chen, Chieh-Chang; Fang, Yu-Jen; Chen, Po-Yueh; Chang, Chi-Yang; Chou, Chu-Kuang; Chen, Mei-Jyh; Tseng, Cheng-Hao; Lee, Ji-Yuh; Yang, Tsung-Hua; Chiu, Min-Chin; Yu, Jian-Jyun; Kuo, Chia-Chi; Luo, Jiing-Chyuan; Hsu, Wen-Feng; Hu, Wen-Hao; Tsai, Min-Horn; Lin, Jaw-Town; Shun, Chia-Tung; Twu, Gary; Lee, Yi-Chia; Bair, Ming-Jong; Wu, Ming-Shiang

    2018-05-29

    Whether extending the treatment length and the use of high-dose esomeprazole may optimize the efficacy of Helicobacter pylori eradication remains unknown. To compare the efficacy and tolerability of optimized 14 day sequential therapy and 10 day bismuth quadruple therapy containing high-dose esomeprazole in first-line therapy. We recruited 620 adult patients (≥20 years of age) with H. pylori infection naive to treatment in this multicentre, open-label, randomized trial. Patients were randomly assigned to receive 14 day sequential therapy or 10 day bismuth quadruple therapy, both containing esomeprazole 40 mg twice daily. Those who failed after 14 day sequential therapy received rescue therapy with 10 day bismuth quadruple therapy and vice versa. Our primary outcome was the eradication rate in the first-line therapy. Antibiotic susceptibility was determined. ClinicalTrials.gov: NCT03156855. The eradication rates of 14 day sequential therapy and 10 day bismuth quadruple therapy were 91.3% (283 of 310, 95% CI 87.4%-94.1%) and 91.6% (284 of 310, 95% CI 87.8%-94.3%) in the ITT analysis, respectively (difference -0.3%, 95% CI -4.7% to 4.4%, P = 0.886). However, the frequencies of adverse effects were significantly higher in patients treated with 10 day bismuth quadruple therapy than those treated with 14 day sequential therapy (74.4% versus 36.7% P < 0.0001). The eradication rate of 14 day sequential therapy in strains with and without 23S ribosomal RNA mutation was 80% (24 of 30) and 99% (193 of 195), respectively (P < 0.0001). Optimized 14 day sequential therapy was non-inferior to, but better tolerated than 10 day bismuth quadruple therapy and both may be used in first-line treatment in populations with low to intermediate clarithromycin resistance.

  9. Effective use of congestion in complex networks

    NASA Astrophysics Data System (ADS)

    Echagüe, Juan; Cholvi, Vicent; Kowalski, Dariusz R.

    2018-03-01

    In this paper, we introduce a congestion-aware routing protocol that selects the paths according to the congestion of nodes in the network. The aim is twofold: on one hand, and in order to prevent the networks from collapsing, it provides a good tolerance to nodes' overloads; on the other hand, and in order to guarantee efficient communication, it also incentivize the routes to follow short paths. We analyze the performance of our proposed routing strategy by means of a series of experiments carried out by using simulations. We show that it provides a tolerance to collapse close to the optimal value. Furthermore, the average length of the paths behaves optimally up to the certain value of packet generation rate ρ and it grows in a linear fashion with the increase of ρ.

  10. Variable Complexity Optimization of Composite Structures

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    2002-01-01

    The use of several levels of modeling in design has been dubbed variable complexity modeling. The work under the grant focused on developing variable complexity modeling strategies with emphasis on response surface techniques. Applications included design of stiffened composite plates for improved damage tolerance, the use of response surfaces for fitting weights obtained by structural optimization, and design against uncertainty using response surface techniques.

  11. A Randomized, Double-Blind, Placebo-Controlled, Laboratory Classroom Assessment of Methylphenidate Transdermal System in Children with ADHD

    ERIC Educational Resources Information Center

    McGough, James J.; Wigal, Sharon B.; Abikoff, Howard; Turnbow, John M.; Posner, Kelly; Moon, Eliot

    2006-01-01

    Objective: This study evaluates the efficacy, duration of action, and tolerability of methylphenidate transdermal system (MTS) in children with ADHD. Method: Participants were dose optimized over 5 weeks utilizing patch doses of 10, 16, 20, and 27 mg applied in the morning and worn for 9 hours. Following optimization, 80 participants were…

  12. The effects of cold acclimation on photosynthetic apparatus and the expression of COR14b in four genotypes of barley (Hordeum vulgare) contrasting in their tolerance to freezing and high-light treatment in cold conditions.

    PubMed

    Rapacz, Marcin; Wolanin, Barbara; Hura, Katarzyna; Tyrka, Miroslaw

    2008-04-01

    Cold acclimation modifies the balance of the energy absorbed and metabolized in the dark processes of photosynthesis, which may affect the expression of cold-regulated (COR) genes. At the same time, a gradual acclimation to the relatively high light conditions is observed, thereby minimizing the potential for photo-oxidative damage. As a result, the resistance to photoinhibition in the cold has often been identified as a trait closely related to freezing tolerance. Using four barley genotypes that differentially express both traits, the effect of cold acclimation on freezing tolerance and high-light tolerance was studied together with the expression of COR14b, one of the best-characterized barley COR genes. Plants were cold acclimated for 2 weeks at 2 degrees C. Freezing tolerance was studied by means of electrolyte leakage. Changes in photosynthetic apparatus and high-light tolerance were monitored by means of chlorophyll fluorescence. Accumulation of COR14b and some proteins important in photosynthetic acclimation to cold were studied with western analysis. COR14b transcript accumulation during cold acclimation was assessed with real-time PCR. Cold acclimation increased both freezing tolerance and high-light tolerance, especially when plants were treated with high light after non-lethal freezing. In all plants, cold acclimation triggered the increase in photosynthetic capacity during high-light treatment. In two plants that were characterized by higher high-light tolerance but lower freezing tolerance, higher accumulation of COR14b transcript and protein was observed after 7 d and 14 d of cold acclimation, while a higher transient induction of COR14b expression was observed in freezing-tolerant plants during the first day of cold acclimation. High-light tolerant plants were also characterized with a higher level of PsbS accumulation and more efficient dissipation of excess light energy. Accumulation of COR14b in barley seems to be important for resistance to combined freezing and high-light tolerance, but not for freezing tolerance per se.

  13. Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice

    PubMed Central

    Shrestha, Asis; Dziwornu, Ambrose Kwaku; Ueda, Yoshiaki; Wu, Lin-Bo; Mathew, Boby

    2018-01-01

    Manganese (Mn) is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS) to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.). A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks) at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP) markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170) with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits. PMID:29425206

  14. Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice.

    PubMed

    Shrestha, Asis; Dziwornu, Ambrose Kwaku; Ueda, Yoshiaki; Wu, Lin-Bo; Mathew, Boby; Frei, Michael

    2018-01-01

    Manganese (Mn) is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS) to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.). A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks) at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP) markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170) with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits.

  15. Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf.

    PubMed

    Prusty, Manas R; Kim, Sung-Ryul; Vinarao, Ricky; Entila, Frederickson; Egdane, James; Diaz, Maria G Q; Jena, Kshirod K

    2018-01-01

    Cultivated rice ( Oryza sativa L.) is very sensitive to salt stress. So far a few rice landraces have been identified as a source of salt tolerance and utilized in rice improvement. These tolerant lines primarily use Na + exclusion mechanism in root which removes Na + from the xylem stream by membrane Na + and K + transporters, and resulted in low Na + accumulation in shoot. Identification of a new donor source conferring high salt tolerance is imperative. Wild relatives of rice having wide genetic diversity are regarded as a potential source for crop improvement. However, they have been less exploited against salt stress. Here, we simultaneously evaluated all 22 wild Oryza species along with the cultivated tolerant lines including Pokkali, Nona Bokra, and FL478, and sensitive check varieties under high salinity (240 mM NaCl). Based on the visual salt injury score, three species ( O . alta, O . latifolia , and O . coarctata ) and four species ( O . rhizomatis, O . eichingeri, O . minuta , and O . grandiglumis ) showed higher and similar level of tolerance compared to the tolerant checks, respectively. All three CCDD genome species exhibited salt tolerance, suggesting that the CCDD genome might possess the common genetic factors for salt tolerance. Physiological and biochemical experiments were conducted using the newly isolated tolerant species together with checks under 180 mM NaCl. Interestingly, all wild species showed high Na + concentration in shoot and low concentration in root unlike the tolerant checks. In addition, the wild-tolerant accessions showed a tendency of a high tissue tolerance in leaf, low malondialdehyde level in shoot, and high retention of chlorophyll in the young leaves. These results suggest that the wild species employ tissue tolerance mechanism to manage salt stress. Gene expression analyses of the key salt tolerance-related genes suggested that high Na + in leaf of wild species might be affected by OsHKT1;4 -mediated Na + exclusion in leaf and the following Na + sequestration in leaf might be occurring independent of tonoplast-localized OsNHX1. The newly isolated wild rice accessions will be valuable materials for both rice improvement to salinity stress and the study of salt tolerance mechanism in plants.

  16. Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes.

    PubMed

    Oyola, Samuel O; Otto, Thomas D; Gu, Yong; Maslen, Gareth; Manske, Magnus; Campino, Susana; Turner, Daniel J; Macinnis, Bronwyn; Kwiatkowski, Dominic P; Swerdlow, Harold P; Quail, Michael A

    2012-01-03

    Massively parallel sequencing technology is revolutionizing approaches to genomic and genetic research. Since its advent, the scale and efficiency of Next-Generation Sequencing (NGS) has rapidly improved. In spite of this success, sequencing genomes or genomic regions with extremely biased base composition is still a great challenge to the currently available NGS platforms. The genomes of some important pathogenic organisms like Plasmodium falciparum (high AT content) and Mycobacterium tuberculosis (high GC content) display extremes of base composition. The standard library preparation procedures that employ PCR amplification have been shown to cause uneven read coverage particularly across AT and GC rich regions, leading to problems in genome assembly and variation analyses. Alternative library-preparation approaches that omit PCR amplification require large quantities of starting material and hence are not suitable for small amounts of DNA/RNA such as those from clinical isolates. We have developed and optimized library-preparation procedures suitable for low quantity starting material and tolerant to extremely high AT content sequences. We have used our optimized conditions in parallel with standard methods to prepare Illumina sequencing libraries from a non-clinical and a clinical isolate (containing ~53% host contamination). By analyzing and comparing the quality of sequence data generated, we show that our optimized conditions that involve a PCR additive (TMAC), produces amplified libraries with improved coverage of extremely AT-rich regions and reduced bias toward GC neutral templates. We have developed a robust and optimized Next-Generation Sequencing library amplification method suitable for extremely AT-rich genomes. The new amplification conditions significantly reduce bias and retain the complexity of either extremes of base composition. This development will greatly benefit sequencing clinical samples that often require amplification due to low mass of DNA starting material.

  17. Predictive factors of head and neck squamous cell carcinoma patient tolerance to high-dose cisplatin in concurrent chemoradiotherapy

    PubMed Central

    NAKANO, KENJI; SATO, YASUYOSHI; TOSHIYASU, TAKASHI; SATO, YUKIKO; INAGAKI, LINA; TOMOMATSU, JUNICHI; SASAKI, TORU; SHIMBASHI, WATARU; FUKUSHIMA, HIROFUMI; YONEKAWA, HIROYUKI; MITANI, HIROKI; KAWABATA, KAZUYOSHI; TAKAHASHI, SHUNJI

    2016-01-01

    Although high-dose cisplatin is the standard regimen of concurrent chemoradiotherapy (CCRT) for locally advanced head and neck squamous cell carcinoma (HNSCC), varying levels of patient tolerance towards cisplatin have been reported, and the predictive factors of cisplatin tolerance remain to be elucidated. The present study retrospectively reviewed newly diagnosed HNSCC patients who received CCRT. Cisplatin (80 mg/m2) was administered every 3 weeks. The proportion of high-dose cisplatin-tolerant patients (cumulative cisplatin dose, ≥200 mg/m2) was determined, and the predictive factors of cisplatin tolerance were analyzed in a logistic regression analysis. Between June 2006 and March 2013, a total of 159 patients were treated with CCRT. The median follow-up time was 36.7 months. A total of 73 patients (46%) tolerated a cumulative cisplatin dose ≥200 mg/m2; male gender [odds ratio (OR), 25.00; P=0.005] and high body surface area (BSA) (>1.80 m2; OR, 2.21; P=0.032) were significantly predictive of high-dose cisplatin tolerance. The high-dose cisplatin-tolerant patients had a significantly higher complete response (CR) rate (82 vs. 67%, P=0.045); however, there were no significant between-group differences in the 3-year OS (79.5 vs. 81.2%, P=0.59) or PFS (70.4 vs. 44.6%, P=0.076) by cisplatin tolerance. In clinical practice, approximately one-half of the patients tolerated high-dose cisplatin in CCRT. Male gender and high BSA could be predictive of cisplatin tolerance. PMID:26893880

  18. Retirement investment theory explains patterns in songbird nest-site choice

    USGS Publications Warehouse

    Streby, Henry M.; Refsnider, Jeanine M.; Peterson, Sean M.; Andersen, David E.

    2014-01-01

    When opposing evolutionary selection pressures act on a behavioural trait, the result is often stabilizing selection for an intermediate optimal phenotype, with deviations from the predicted optimum attributed to tracking a moving target, development of behavioural syndromes or shifts in riskiness over an individual's lifetime. We investigated nest-site choice by female golden-winged warblers, and the selection pressures acting on that choice by two fitness components, nest success and fledgling survival. We observed strong and consistent opposing selection pressures on nest-site choice for maximizing these two fitness components, and an abrupt, within-season switch in the fitness component birds prioritize via nest-site choice, dependent on the time remaining for additional nesting attempts. We found that females consistently deviated from the predicted optimal behaviour when choosing nest sites because they can make multiple attempts at one fitness component, nest success, but only one attempt at the subsequent component, fledgling survival. Our results demonstrate a unique natural strategy for balancing opposing selection pressures to maximize total fitness. This time-dependent switch from high to low risk tolerance in nest-site choice maximizes songbird fitness in the same way a well-timed switch in human investor risk tolerance can maximize one's nest egg at retirement. Our results also provide strong evidence for the adaptive nature of songbird nest-site choice, which we suggest has been elusive primarily due to a lack of consideration for fledgling survival.

  19. Heat tolerance in a wild Oryza species is attributed to maintenance of Rubisco activation by a thermally stable Rubisco activase ortholog.

    PubMed

    Scafaro, Andrew P; Gallé, Alexander; Van Rie, Jeroen; Carmo-Silva, Elizabete; Salvucci, Michael E; Atwell, Brian J

    2016-08-01

    The mechanistic basis of tolerance to heat stress was investigated in Oryza sativa and two wild rice species, Oryza meridionalis and Oryza australiensis. The wild relatives are endemic to the hot, arid Australian savannah. Leaf elongation rates and gas exchange were measured during short periods of supra-optimal heat, revealing species differences. The Rubisco activase (RCA) gene from each species was sequenced. Using expressed recombinant RCA and leaf-extracted RCA, the kinetic properties of the two isoforms were studied under high temperatures. Leaf elongation was undiminished at 45°C in O. australiensis. The net photosynthetic rate was almost 50% slower in O. sativa at 45°C than at 28°C, while in O. australiensis it was unaffected. Oryza meridionalis exhibited intermediate heat tolerance. Based on previous reports that RCA is heat-labile, the Rubisco activation state was measured. It correlated positively with leaf elongation rates across all three species and four periods of exposure to 45°C. Sequence analysis revealed numerous polymorphisms in the RCA amino acid sequence from O. australiensis. The O. australiensis RCA enzyme was thermally stable up to 42°C, contrasting with RCA from O. sativa, which was inhibited at 36°C. We attribute heat tolerance in the wild species to thermal stability of RCA, enabling Rubisco to remain active. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qing, E-mail: qing.gao.chance@gmail.com; Dong, Daoyi, E-mail: daoyidong@gmail.com; Petersen, Ian R., E-mail: i.r.petersen@gmai.com

    The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.

  1. Design Trade-off Between Performance and Fault-Tolerance of Space Onboard Computers

    NASA Astrophysics Data System (ADS)

    Gorbunov, M. S.; Antonov, A. A.

    2017-01-01

    It is well known that there is a trade-off between performance and power consumption in onboard computers. The fault-tolerance is another important factor affecting performance, chip area and power consumption. Involving special SRAM cells and error-correcting codes is often too expensive with relation to the performance needed. We discuss the possibility of finding the optimal solutions for modern onboard computer for scientific apparatus focusing on multi-level cache memory design.

  2. The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses.

    PubMed

    Ramakrishna, Chopperla; Singh, Sonam; Raghavendrarao, Sangala; Padaria, Jasdeep C; Mohanty, Sasmita; Sharma, Tilak Raj; Solanke, Amolkumar U

    2018-02-01

    The occurrence of various stresses, as the outcome of global climate change, results in the yield losses of crop plants. Prospecting of genes in stress tolerant plant species may help to protect and improve their agronomic performance. Finger millet (Eleusine coracana L.) is a valuable source of superior genes and alleles for stress tolerance. In this study, we isolated a novel endoplasmic reticulum (ER) membrane tethered bZIP transcription factor from finger millet, EcbZIP17. Transgenic tobacco plants overexpressing this gene showed better vegetative growth and seed yield compared with wild type (WT) plants under optimal growth conditions and confirmed upregulation of brassinosteroid signalling genes. Under various abiotic stresses, such as 250 mM NaCl, 10% PEG6000, 400 mM mannitol, water withdrawal, and heat stress, the transgenic plants showed higher germination rate, biomass, primary and secondary root formation, and recovery rate, compared with WT plants. The transgenic plants exposed to an ER stress inducer resulted in greater leaf diameter and plant height as well as higher expression of the ER stress-responsive genes BiP, PDIL, and CRT1. Overall, our results indicated that EcbZIP17 improves plant growth at optimal conditions through brassinosteroid signalling and provide tolerance to various environmental stresses via ER signalling pathways.

  3. The Effectiveness and Tolerability of Central Nervous System Stimulants in School-Age Children with Attention-Deficit/Hyperactivity Disorder and Disruptive Mood Dysregulation Disorder Across Home and School.

    PubMed

    Baweja, Raman; Belin, Peter J; Humphrey, Hugh H; Babocsai, Lysett; Pariseau, Meaghan E; Waschbusch, Daniel A; Hoffman, Martin T; Akinnusi, Opeolowa O; Haak, Jenifer L; Pelham, William E; Waxmonsky, James G

    2016-03-01

    This study examines the effectiveness and tolerability of stimulants in children with attention-deficit/hyperactivity disorder (ADHD) and disruptive mood dysregulation disorder (DMDD). To be eligible, participants had to meet Diagnostic and Statistical Manual of Mental Disorders, 4th ed., Text Revision (DSM-IV) criteria for the combined subtype of ADHD and National Institute of Mental Health (NIMH) severe mood dysregulation criteria. The Diagnostic and Statistical Manual of Mental Disorders, 5th ed. (DSM-V) DMDD criteria were retrospectively assessed after the study was completed. An open-label medication trial lasting up to 6 weeks was completed to optimize the central nervous system (CNS) stimulant dose. Measures of affective symptoms, ADHD symptoms and other disruptive behaviors, impairment, and structured side effect ratings were collected before and after the medication trial. Optimization of stimulant medication was associated with a significant decline in depressive symptoms on the Childhood Depression Rating Score-Revised Scale (p<0.05, Cohen's d=0.61) and Mood Severity Index score (p<0.05, Cohen's d=0.55), but not in manic-like symptoms on the Young Mania Rating Scale. There was a significant reduction in ADHD (p<0.05, Cohen's d=0.95), oppositional defiant disorder (ODD) (p<0.05, Cohen's d=0.5), and conduct disorder (CD) symptoms (p<0.05, Cohen's d=0.65) as rated by parents. There was also a significant reduction in teacher-rated ADHD (p<0.05, Cohen's d=0.33) but not in ODD symptoms. Medications were well tolerated and there was no increase in side effect ratings seen with dose optimization. Significant improvement in functioning was reported by clinicians and parents (all p's<0.05), but youth still manifested appreciable impairment at end-point. CNS simulants were well tolerated by children with ADHD comorbid with a diagnosis of DMDD. CNS stimulants were associated with clinically significant reductions in externalizing symptoms, along with smaller improvements in mood. However, most participants still exhibited significant impairment, suggesting that additional treatments may be needed to optimize functioning.

  4. The Effectiveness and Tolerability of Central Nervous System Stimulants in School-Age Children with Attention-Deficit/Hyperactivity Disorder and Disruptive Mood Dysregulation Disorder Across Home and School

    PubMed Central

    Belin, Peter J.; Humphrey, Hugh H.; Babocsai, Lysett; Pariseau, Meaghan E.; Waschbusch, Daniel A.; Hoffman, Martin T.; Akinnusi, Opeolowa O.; Haak, Jenifer L.; Pelham, William E.; Waxmonsky, James G.

    2016-01-01

    Abstract Objective: This study examines the effectiveness and tolerability of stimulants in children with attention-deficit/hyperactivity disorder (ADHD) and disruptive mood dysregulation disorder (DMDD). Methods: To be eligible, participants had to meet Diagnostic and Statistical Manual of Mental Disorders, 4th ed., Text Revision (DSM-IV) criteria for the combined subtype of ADHD and National Institute of Mental Health (NIMH) severe mood dysregulation criteria. The Diagnostic and Statistical Manual of Mental Disorders, 5th ed. (DSM-V) DMDD criteria were retrospectively assessed after the study was completed. An open-label medication trial lasting up to 6 weeks was completed to optimize the central nervous system (CNS) stimulant dose. Measures of affective symptoms, ADHD symptoms and other disruptive behaviors, impairment, and structured side effect ratings were collected before and after the medication trial. Results: Optimization of stimulant medication was associated with a significant decline in depressive symptoms on the Childhood Depression Rating Score–Revised Scale (p<0.05, Cohen's d=0.61) and Mood Severity Index score (p<0.05, Cohen's d=0.55), but not in manic-like symptoms on the Young Mania Rating Scale. There was a significant reduction in ADHD (p<0.05, Cohen's d=0.95), oppositional defiant disorder (ODD) (p<0.05, Cohen's d=0.5), and conduct disorder (CD) symptoms (p<0.05, Cohen's d=0.65) as rated by parents. There was also a significant reduction in teacher-rated ADHD (p<0.05, Cohen's d=0.33) but not in ODD symptoms. Medications were well tolerated and there was no increase in side effect ratings seen with dose optimization. Significant improvement in functioning was reported by clinicians and parents (all p's<0.05), but youth still manifested appreciable impairment at end-point. Conclusions: CNS simulants were well tolerated by children with ADHD comorbid with a diagnosis of DMDD. CNS stimulants were associated with clinically significant reductions in externalizing symptoms, along with smaller improvements in mood. However, most participants still exhibited significant impairment, suggesting that additional treatments may be needed to optimize functioning. PMID:26771437

  5. Poaceae vs. Abiotic Stress: Focus on Drought and Salt Stress, Recent Insights and Perspectives

    PubMed Central

    Landi, Simone; Hausman, Jean-Francois; Guerriero, Gea; Esposito, Sergio

    2017-01-01

    Poaceae represent the most important group of crops susceptible to abiotic stress. This large family of monocotyledonous plants, commonly known as grasses, counts several important cultivated species, namely wheat (Triticum aestivum), rice (Oryza sativa), maize (Zea mays), and barley (Hordeum vulgare). These crops, notably, show different behaviors under abiotic stress conditions: wheat and rice are considered sensitive, showing serious yield reduction upon water scarcity and soil salinity, while barley presents a natural drought and salt tolerance. During the green revolution (1940–1960), cereal breeding was very successful in developing high-yield crops varieties; however, these cultivars were maximized for highest yield under optimal conditions, and did not present suitable traits for tolerance under unfavorable conditions. The improvement of crop abiotic stress tolerance requires a deep knowledge of the phenomena underlying tolerance, to devise novel approaches and decipher the key components of agricultural production systems. Approaches to improve food production combining both enhanced water use efficiency (WUE) and acceptable yields are critical to create a sustainable agriculture in the future. This paper analyzes the latest results on abiotic stress tolerance in Poaceae. In particular, the focus will be directed toward various aspects of water deprivation and salinity response efficiency in Poaceae. Aspects related to cell wall metabolism will be covered, given the importance of the plant cell wall in sensing environmental constraints and in mediating a response; the role of silicon (Si), an important element for monocots' normal growth and development, will also be discussed, since it activates a broad-spectrum response to different exogenous stresses. Perspectives valorizing studies on landraces conclude the survey, as they help identify key traits for breeding purposes. PMID:28744298

  6. Highly Regioselective Synthesis of Substituted Isoindolinones via Ruthenium-Catalyzed Alkyne Cyclotrimerizations

    PubMed Central

    Foster, Robert W; Tame, Christopher J; Hailes, Helen C; Sheppard, Tom D

    2013-01-01

    (Cyclooctadiene)(pentamethylcyclopentadiene)ruthenium chloride [Cp*RuCl(cod)] has been used to catalyze the regioselective cyclization of amide-tethered diynes with monosubstituted alkynes to give polysubstituted isoindolinones. Notably, the presence of a trimethylsilyl group on the diyne generally led to complete control over the regioselectivity of the alkyne cyclotrimerization. The cyclization reaction worked well in a sustainable non-chlorinated solvent and was tolerant of moisture. The optimized conditions were effective with a diverse range of alkynes and diynes. The 7-silylisoindolinone products could be halogenated, protodesilylated or ring opened to access a range of usefully functionalized products. PMID:24124414

  7. Evaluation of the Morpho-physiology characteristics of maize inbred lines introduced from CIMMYT to identify the best candidates for planting in acidic soil in Jasinga, Indonesia

    NASA Astrophysics Data System (ADS)

    Lubis, K.; Sutjahjo, S. H.; Syukur, M.; Trikoesoemaningtyas

    2016-08-01

    Technological developments and climate change have affected crop planting strategies. For example, maize production has expanded to sub-optimal lands, including acidic soil common in areas like Indonesia. Breeding programs have created inbred lines of maize introduced from CIMMYT; they were tested locally in acidic soils to determine their adaptability and tolerance mechanisms. Breeds CLA 46 and NEI 9008 were found to be excellent candidates for acidic soil due to their ASI, high number of grains per year, and suitable dry seed weight.

  8. Establishing a Wild, Ex Situ Population of a Critically Endangered Shade-Tolerant Rainforest Conifer: A Translocation Experiment

    PubMed Central

    Zimmer, Heidi C.; Offord, Catherine A.; Auld, Tony D.; Baker, Patrick J.

    2016-01-01

    Translocation can reduce extinction risk by increasing population size and geographic range, and is increasingly being used in the management of rare and threatened plant species. A critical determinant of successful plant establishment is light environment. Wollemia nobilis (Wollemi pine) is a critically endangered conifer, with a wild population of 83 mature trees and a highly restricted distribution of less than 10 km2. We used under-planting to establish a population of W. nobilis in a new rainforest site. Because its optimal establishment conditions were unknown, we conducted an experimental translocation, planting in a range of different light conditions from deeply shaded to high light gaps. Two years after the experimental translocation, 85% of plants had survived. There were two distinct responses: very high survival (94%) but very low growth, and lower survival (69%) and higher growth, associated with initial plant condition. Overall survival of translocated W. nobilis was strongly increased in planting sites with higher light, in contrast to previous studies demonstrating long-term survival of wild W. nobilis juveniles in deep shade. Translocation by under-planting may be useful in establishing new populations of shade-tolerant plant species, not least by utilizing the range of light conditions that occur in forest understories. PMID:27403527

  9. Establishing a Wild, Ex Situ Population of a Critically Endangered Shade-Tolerant Rainforest Conifer: A Translocation Experiment.

    PubMed

    Zimmer, Heidi C; Offord, Catherine A; Auld, Tony D; Baker, Patrick J

    2016-01-01

    Translocation can reduce extinction risk by increasing population size and geographic range, and is increasingly being used in the management of rare and threatened plant species. A critical determinant of successful plant establishment is light environment. Wollemia nobilis (Wollemi pine) is a critically endangered conifer, with a wild population of 83 mature trees and a highly restricted distribution of less than 10 km2. We used under-planting to establish a population of W. nobilis in a new rainforest site. Because its optimal establishment conditions were unknown, we conducted an experimental translocation, planting in a range of different light conditions from deeply shaded to high light gaps. Two years after the experimental translocation, 85% of plants had survived. There were two distinct responses: very high survival (94%) but very low growth, and lower survival (69%) and higher growth, associated with initial plant condition. Overall survival of translocated W. nobilis was strongly increased in planting sites with higher light, in contrast to previous studies demonstrating long-term survival of wild W. nobilis juveniles in deep shade. Translocation by under-planting may be useful in establishing new populations of shade-tolerant plant species, not least by utilizing the range of light conditions that occur in forest understories.

  10. Advanced development of double-injection, deep-impurity semiconductor switches

    NASA Technical Reports Server (NTRS)

    Hanes, M. H.

    1987-01-01

    Deep-impurity, double-injection devices, commonly refered to as (DI) squared devices, represent a class of semiconductor switches possessing a very high degree of tolerance to electron and neutron irradiation and to elevated temperature operation. These properties have caused them to be considered as attractive candidates for space power applications. The design, fabrication, and testing of several varieties of (DI) squared devices intended for power switching are described. All of these designs were based upon gold-doped silicon material. Test results, along with results of computer simulations of device operation, other calculations based upon the assumed mode of operation of (DI) squared devices, and empirical information regarding power semiconductor device operation and limitations, have led to the conculsion that these devices are not well suited to high-power applications. When operated in power circuitry configurations, they exhibit high-power losses in both the off-state and on-state modes. These losses are caused by phenomena inherent to the physics and material of the devices and cannot be much reduced by device design optimizations. The (DI) squared technology may, however, find application in low-power functions such as sensing, logic, and memory, when tolerance to radiation and temperature are desirable (especially is device performance is improved by incorporation of deep-level impurities other than gold.

  11. Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity.

    PubMed

    Yamamoto, Soh; Kuramoto, Kenta; Wang, Nan; Situ, Xiaolei; Priyadarshini, Medha; Zhang, Weiran; Cordoba-Chacon, Jose; Layden, Brian T; He, Congcong

    2018-06-12

    Autophagy, a stress-induced lysosomal degradative pathway, has been assumed to exert similar metabolic effects in different organs. Here, we establish a model where autophagy plays different roles in insulin-producing β cells versus insulin-responsive cells, utilizing knockin (Becn1 F121A ) mice manifesting constitutively active autophagy. With a high-fat-diet challenge, the autophagy-hyperactive mice unexpectedly show impaired glucose tolerance, but improved insulin sensitivity, compared to mice with normal autophagy. Autophagy hyperactivation enhances insulin signaling, via suppressing ER stress in insulin-responsive cells, but decreases insulin secretion by selectively sequestrating and degrading insulin granule vesicles in β cells, a process we term "vesicophagy." The reduction in insulin storage, insulin secretion, and glucose tolerance is reversed by transient treatment of autophagy inhibitors. Thus, β cells and insulin-responsive tissues require different autophagy levels for optimal function. To improve insulin sensitivity without hampering secretion, acute or intermittent, rather than chronic, activation of autophagy should be considered in diabetic therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. System Architectural Considerations on Reliable Guidance, Navigation, and Control (GN and C) for Constellation Program (CxP) Spacecraft

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2010-01-01

    This final report summarizes the results of a comparative assessment of the fault tolerance and reliability of different Guidance, Navigation and Control (GN&C) architectural approaches. This study was proactively performed by a combined Massachusetts Institute of Technology (MIT) and Draper Laboratory team as a GN&C "Discipline-Advancing" activity sponsored by the NASA Engineering and Safety Center (NESC). This systematic comparative assessment of GN&C system architectural approaches was undertaken as a fundamental step towards understanding the opportunities for, and limitations of, architecting highly reliable and fault tolerant GN&C systems composed of common avionic components. The primary goal of this study was to obtain architectural 'rules of thumb' that could positively influence future designs in the direction of an optimized (i.e., most reliable and cost-efficient) GN&C system. A secondary goal was to demonstrate the application and the utility of a systematic modeling approach that maps the entire possible architecture solution space.

  13. Pathway engineering to improve ethanol production by thermophilic bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practicalmore » utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.« less

  14. Toward Earlier Inclusion of Pregnant and Postpartum Women in Tuberculosis Drug Trials: Consensus Statements From an International Expert Panel

    PubMed Central

    Gupta, Amita; Mathad, Jyoti S.; Abdel-Rahman, Susan M.; Albano, Jessica D.; Botgros, Radu; Brown, Vikki; Browning, Renee S.; Dawson, Liza; Dooley, Kelly E.; Gnanashanmugam, Devasena; Grinsztejn, Beatriz; Hernandez-Diaz, Sonia; Jean-Philippe, Patrick; Kim, Peter; Lyerly, Anne D.; Mirochnick, Mark; Mofenson, Lynne M.; Montepiedra, Grace; Piper, Jeanna; Sahin, Leyla; Savic, Radojka; Smith, Betsy; Spiegel, Hans; Swaminathan, Soumya; Watts, D. Heather; White, Amina

    2016-01-01

    Tuberculosis is a major cause of morbidity and mortality in women of childbearing age (15–44 years). Despite increased tuberculosis risk during pregnancy, optimal clinical treatment remains unclear: safety, tolerability, and pharmacokinetic data for many tuberculosis drugs are lacking, and trials of promising new tuberculosis drugs exclude pregnant women. To advance inclusion of pregnant and postpartum women in tuberculosis drug trials, the US National Institutes of Health convened an international expert panel. Discussions generated consensus statements (>75% agreement among panelists) identifying high-priority research areas during pregnancy, including: (1) preventing progression of latent tuberculosis infection, especially in women coinfected with human immunodeficiency virus; (2) evaluating new agents/regimens for treatment of multidrug-resistant tuberculosis; and (3) evaluating safety, tolerability and pharmacokinetics of tuberculosis drugs already in use during pregnancy and postpartum. Incorporating pregnant women into clinical trials would extend evidence-based tuberculosis prevention and treatment standards to this special population. PMID:26658057

  15. In Silico Design of DNP Polarizing Agents: Can Current Dinitroxides Be Improved?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perras, Frédéric A.; Sadow, Aaron; Pruski, Marek

    Numerical calculations of enhancement factors offered by dynamic nuclear polarization in solids under magic angle spinning (DNP-MAS) were performed to determine the optimal EPR parameters for a dinitroxide polarizing agent. We found that the DNP performance of a biradical is more tolerant to the relative orientation of the two nitroxide moieties than previously thought. In general, any condition in which the gyy tensor components of both radicals are perpendicular to one another is expected to have near-optimal DNP performance. These results highlight the important role of the exchange coupling, which can lessen the sensitivity of DNP performance to the inter-radicalmore » distance, but also lead to lower enhancements when the number of atoms in the linker becomes less than three. Finally, the calculations showed that the electron T1e value should be near 500μs to yield optimal performance. Importantly, the newest polarizing agents already feature all of the qualities of the optimal polarizing agent, leaving little room for further improvement. Further research into DNP polarizing agents should then target non-nitroxide radicals, as well as improvements in sample formulations to advance high-temperature DNP and limit quenching and reactivity.« less

  16. In Silico Design of DNP Polarizing Agents: Can Current Dinitroxides Be Improved?

    DOE PAGES

    Perras, Frédéric A.; Sadow, Aaron; Pruski, Marek

    2017-06-09

    Numerical calculations of enhancement factors offered by dynamic nuclear polarization in solids under magic angle spinning (DNP-MAS) were performed to determine the optimal EPR parameters for a dinitroxide polarizing agent. We found that the DNP performance of a biradical is more tolerant to the relative orientation of the two nitroxide moieties than previously thought. In general, any condition in which the gyy tensor components of both radicals are perpendicular to one another is expected to have near-optimal DNP performance. These results highlight the important role of the exchange coupling, which can lessen the sensitivity of DNP performance to the inter-radicalmore » distance, but also lead to lower enhancements when the number of atoms in the linker becomes less than three. Finally, the calculations showed that the electron T1e value should be near 500μs to yield optimal performance. Importantly, the newest polarizing agents already feature all of the qualities of the optimal polarizing agent, leaving little room for further improvement. Further research into DNP polarizing agents should then target non-nitroxide radicals, as well as improvements in sample formulations to advance high-temperature DNP and limit quenching and reactivity.« less

  17. A Bandwidth-Optimized Multi-Core Architecture for Irregular Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    This paper presents an architecture template for next-generation high performance computing systems specifically targeted to irregular applications. We start our work by considering that future generation interconnection and memory bandwidth full-system numbers are expected to grow by a factor of 10. In order to keep up with such a communication capacity, while still resorting to fine-grained multithreading as the main way to tolerate unpredictable memory access latencies of irregular applications, we show how overall performance scaling can benefit from the multi-core paradigm. At the same time, we also show how such an architecture template must be coupled with specific techniquesmore » in order to optimize bandwidth utilization and achieve the maximum scalability. We propose a technique based on memory references aggregation, together with the related hardware implementation, as one of such optimization techniques. We explore the proposed architecture template by focusing on the Cray XMT architecture and, using a dedicated simulation infrastructure, validate the performance of our template with two typical irregular applications. Our experimental results prove the benefits provided by both the multi-core approach and the bandwidth optimization reference aggregation technique.« less

  18. High-level expression of a novel thermostable and mannose-tolerant β-mannosidase from Thermotoga thermarum DSM 5069 in Escherichia coli

    PubMed Central

    2013-01-01

    Background Mannan is one of the primary polysaccharides in hemicellulose and is widely distributed in plants. β-Mannosidase is an important constituent of the mannan-degrading enzyme system and it plays an important role in many industrial applications, such as food, feed and pulp/paper industries as well as the production of second generation bio-fuel. Therefore, the mannose-tolerant β-mannosidase with high catalytic efficiency for bioconversion of mannan has a great potential in the fields as above. Results A β-mannosidase gene (Tth man5) of 1,827 bp was cloned from the extremely thermophilic bacterium Thermotoga thermarum DSM 5069 that encodes a protein containing 608 amino acid residues, and was over-expressed in Escherichia coli BL21 (DE3). The results of phylogenetic analysis, amino acid alignment and biochemical properties indicate that the Tth Man5 is a novel β-mannosidase of glycoside hydrolase family 5. The optimal activity of the Tth Man5 β-mannosidase was obtained at pH 5.5 and 85°C and was stable over a pH range of 5.0 to 8.5 and exhibited 2 h half-life at 90°C. The kinetic parameters Km and Vmax values for p-nitrophenyl-β-D-mannopyranoside and 1,4-β-D-mannan were 4.36±0.5 mM and 227.27±1.59 μmol min-1 mg-1, 58.34±1.75 mg mL-1 and 285.71±10.86 μmol min-1 mg-1, respectively. The kcat/Km values for p-nitrophenyl-β-D-mannopyranoside and 1,4-β-D-mannan were 441.35±0.04 mM-1 s-1 and 41.47±1.58 s-1 mg-1 mL, respectively. It displayed high tolerance to mannose, with a Ki value of approximately 900 mM. Conclusions This work provides a novel and useful β-mannosidase with high mannose tolerance, thermostability and catalytic efficiency, and these characteristics constitute a powerful tool for improving the enzymatic conversion of mannan through synergetic action with other mannan-degrading enzymes. PMID:24099409

  19. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model.

    PubMed

    Song, Jie; Wang, Baoshan

    2015-02-01

    As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Self-contained high-pressure cell, apparatus, and procedure for the preparation of encapsulated proteins dissolved in low viscosity fluids for nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Peterson, Ronald W.; Wand, A. Joshua

    2005-09-01

    The design of a sample cell for high-performance nuclear magnetic resonance (NMR) at elevated pressure is described. The cell has been optimized for the study of encapsulated proteins dissolved in low viscosity fluids but is suitable for more general nuclear magnetic resonance (NMR) spectroscopy of biomolecules at elevated pressure. The NMR cell is comprised of an alumina-toughened zirconia tube mounted on a self-sealing nonmagnetic metallic valve. The cell has several advantages, including relatively low cost, excellent NMR performance, high-pressure tolerance, chemical inertness, and a relatively large active volume. Also described is a low volume sample preparation device that allows for the preparation of samples under high hydrostatic pressure and their subsequent transfer to the NMR cell.

  1. The effect of statistical noise on IMRT plan quality and convergence for MC-based and MC-correction-based optimized treatment plans.

    PubMed

    Siebers, Jeffrey V

    2008-04-04

    Monte Carlo (MC) is rarely used for IMRT plan optimization outside of research centres due to the extensive computational resources or long computation times required to complete the process. Time can be reduced by degrading the statistical precision of the MC dose calculation used within the optimization loop. However, this eventually introduces optimization convergence errors (OCEs). This study determines the statistical noise levels tolerated during MC-IMRT optimization under the condition that the optimized plan has OCEs <100 cGy (1.5% of the prescription dose) for MC-optimized IMRT treatment plans.Seven-field prostate IMRT treatment plans for 10 prostate patients are used in this study. Pre-optimization is performed for deliverable beams with a pencil-beam (PB) dose algorithm. Further deliverable-based optimization proceeds using: (1) MC-based optimization, where dose is recomputed with MC after each intensity update or (2) a once-corrected (OC) MC-hybrid optimization, where a MC dose computation defines beam-by-beam dose correction matrices that are used during a PB-based optimization. Optimizations are performed with nominal per beam MC statistical precisions of 2, 5, 8, 10, 15, and 20%. Following optimizer convergence, beams are re-computed with MC using 2% per beam nominal statistical precision and the 2 PTV and 10 OAR dose indices used in the optimization objective function are tallied. For both the MC-optimization and OC-optimization methods, statistical equivalence tests found that OCEs are less than 1.5% of the prescription dose for plans optimized with nominal statistical uncertainties of up to 10% per beam. The achieved statistical uncertainty in the patient for the 10% per beam simulations from the combination of the 7 beams is ~3% with respect to maximum dose for voxels with D>0.5D(max). The MC dose computation time for the OC-optimization is only 6.2 minutes on a single 3 Ghz processor with results clinically equivalent to high precision MC computations.

  2. FY04 Advanced Life Support Architecture and Technology Studies: Mid-Year Presentation

    NASA Technical Reports Server (NTRS)

    Lange, Kevin; Anderson, Molly; Duffield, Bruce; Hanford, Tony; Jeng, Frank

    2004-01-01

    Long-Term Objective: Identify optimal advanced life support system designs that meet existing and projected requirements for future human spaceflight missions. a) Include failure-tolerance, reliability, and safe-haven requirements. b) Compare designs based on multiple criteria including equivalent system mass (ESM), technology readiness level (TRL), simplicity, commonality, etc. c) Develop and evaluate new, more optimal, architecture concepts and technology applications.

  3. Biofuel as an Integrated Farm Drainage Management crop: A bioeconomic analysis

    NASA Astrophysics Data System (ADS)

    Levers, L. R.; Schwabe, K. A.

    2017-04-01

    Irrigated agricultural lands in arid regions often suffer from soil salinization and lack of drainage, which affect environmental quality and productivity. Integrated Farm Drainage Management (IFDM) systems, where drainage water generated from higher-valued crops grown on high quality soils are used to irrigate salt-tolerant crops grown on marginal soils, is one possible strategy for managing salinity and drainage problems. If the IFDM crop were a biofuel crop, both environmental and private benefits may be generated; however, little is known about this possibility. As such, we develop a bioeconomic programming model of irrigated agricultural production to examine the role salt-tolerant biofuel crops might play within an IFDM system. Our results, generated by optimizing profits over land, water, and crop choice decisions subject to resource constraints, suggest that based on the private profits alone, biofuel crops can be a competitive alternative to the common practices of land retirement and nonbiofuel crop production under both low to high drainage water salinity. Yet IFDM biofuel crop production generates 30-35% fewer GHG emissions than the other strategies. The private market competitiveness coupled with the public good benefits may justify policy changes encouraging the growth of IFDM biofuel crops in arid agricultural areas globally.

  4. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations.

    PubMed

    Sun, Zhizeng; Mehta, Shrenik C; Adamski, Carolyn J; Gibbs, Richard A; Palzkill, Timothy

    2016-09-12

    CphA is a Zn(2+)-dependent metallo-β-lactamase that efficiently hydrolyzes only carbapenem antibiotics. To understand the sequence requirements for CphA function, single codon random mutant libraries were constructed for residues in and near the active site and mutants were selected for E. coli growth on increasing concentrations of imipenem, a carbapenem antibiotic. At high concentrations of imipenem that select for phenotypically wild-type mutants, the active-site residues exhibit stringent sequence requirements in that nearly all residues in positions that contact zinc, the substrate, or the catalytic water do not tolerate amino acid substitutions. In addition, at high imipenem concentrations a number of residues that do not directly contact zinc or substrate are also essential and do not tolerate substitutions. Biochemical analysis confirmed that amino acid substitutions at essential positions decreased the stability or catalytic activity of the CphA enzyme. Therefore, the CphA active - site is fragile to substitutions, suggesting active-site residues are optimized for imipenem hydrolysis. These results also suggest that resistance to inhibitors targeted to the CphA active site would be slow to develop because of the strong sequence constraints on function.

  5. Optimization of Lead Removal via Napier Grass in Synthetic Brackish Water using Response Surface Model

    NASA Astrophysics Data System (ADS)

    Hongsawat, P.; Suttiarporn, P.; Wutsanthia, K.; Kongsiri, G.

    2018-03-01

    The efficiency of the lead (Pb) phytoremediation by Napier grass was studied on the plant’s growth and plant’s tolerance on the Pb toxicity in synthetic brackish water. It was found that the plant was high tolerance to high level of Pb concentration (10 mg/l) in synthetic brackish water. Which revealed on the possibilities of plant’s growth under the presence of Pb contaminated condition. According to the Pb removal efficiency, the highest one (88.63±4.9%) was found at 10 ppm Pb concentration, 0.3 g/l NaCl concentration during the period 45 day. However, this study investigated the optimum condition for lead (Pb) removal from synthetic brackish water using phytoremediation treatment with Napier grass through a Box-Behnken Design. Three operational variables, i.e. Pb concentration (1, 5.5, 10 mg/l), NaCl (0.1, 0.3, 0.5 g/l) and period time (7, 26, 45 day), were determined. The results were provided evidence that the highest Pb removal efficiency (93.56%) from synthetic brackish water via Napier grass was Pb and NaCl concentration at 10 mg/l and 0.5 g/l during 45 day.

  6. The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae.

    PubMed

    Wang, Pin-Mei; Zheng, Dao-Qiong; Liu, Tian-Zhe; Tao, Xiang-Lin; Feng, Ming-Guang; Min, Hang; Jiang, Xin-Hang; Wu, Xue-Chang

    2012-03-01

    A challenge associated with the ethanol productivity under very-high-gravity (VHG) conditions, optimizing multi-traits (i.e. byproduct formation and stress tolerance) of industrial yeast strains, is overcome by a combination of metabolic engineering and genome shuffling. First, industrial strain Y12 was deleted with a glycerol exporter Fps1p and hetero-expressed with glyceraldehydes-3-phosphate dehydrogenase, resulting in the modified strain YFG12 with lower glycerol yield. Second, YFG12 was subjected to three rounds of drug resistance marker-aided genome shuffling to increase its ethanol tolerance, and the best shuffled strain TS5 was obtained. Compared with wild strain Y12, shuffled strain TS5 not only decreased glycerol formation by 14.8%, but also increased fermentation rate and ethanol yield by 3.7% and 7.6%, respectively. Moreover, the system of genetic modification and Cre/loxP in aid of three different drug-resistance markers presented in the study significantly improved breeding efficiency and will facilitate the application of breeding technologies in prototrophic industrial microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A novel cold-adapted and glucose-tolerant GH1 β-glucosidase from Exiguobacterium antarcticum B7.

    PubMed

    Crespim, Elaine; Zanphorlin, Letícia M; de Souza, Flavio H M; Diogo, José A; Gazolla, Alex C; Machado, Carla B; Figueiredo, Fernanda; Sousa, Amanda S; Nóbrega, Felipe; Pellizari, Vivian H; Murakami, Mário T; Ruller, Roberto

    2016-01-01

    A novel GH1 β-glucosidase (EaBgl1A) from a bacterium isolated from Antarctica soil samples was recombinantly overexpressed in Escherichia coli cells and characterized. The enzyme showed unusual pH dependence with maximum activity at neutral pH and retention of high catalytic activity in the pH range 6 to 9, indicating a catalytic machinery compatible with alkaline conditions. EaBgl1A is also a cold-adapted enzyme, exhibiting activity in the temperature range from 10 to 40°C with optimal activity at 30°C, which allows its application in industrial processes using low temperatures. Kinetic characterization revealed an enzymatic turnover (Kcat) of 6.92s(-1) (cellobiose) and 32.98s(-1) (pNPG) and a high tolerance for product inhibition, which is an extremely desirable feature for biotechnological purposes. Interestingly, the enzyme was stimulated by up to 200 mM glucose, whereas the commercial cocktails tested were found fully inhibited at this concentration. These properties indicate EaBgl1A as a promising biocatalyst for biotechnological applications where low temperatures are required. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Quantifying the efficiency of photoprotection

    PubMed Central

    2017-01-01

    A novel emerging technology for the assessment of the photoprotective ‘power’ of non-photochemical fluorescence quenching (NPQ) has been reviewed and its insightful outcomes are explained using several examples. The principles of the method are described in detail as well as the work undertaken for its justification. This pulse amplitude modulated chlorophyll fluorescence approach has been applied for the past 5 years to quantify the photoprotective effectiveness of the NPQ and the light tolerance in Arabidopsis plants grown under various light conditions, during ontogenetic development as well as in a range of mutants impaired in carotenoid and protein biosynthesis. The future applications of this approach for the assessment of crop plant light tolerance are outlined. The perspective of obtaining detailed information about how the extent of photoinhibition and photoprotection can affect plant development, growth and productivity is highlighted, including the potential for us to predict the influence of environmental elements on plant performance and yield of crops. The novel methodology can be used to build up comprehensive light tolerance databases for various current and emerging varieties of crops that are grown outdoors as well as in artificial light environments, in order to optimize for the best environmental conditions that enable high crop productivity. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’. PMID:28808106

  9. High sustained +Gz acceleration: physiological adaptation to high-G tolerance

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1998-01-01

    Since the early 1940s, a significant volume of research has been conducted in an effort to describe the impact of acute exposures to high-G acceleration on cardiovascular mechanisms responsible to maintaining cerebral perfusion and conscious in high performance aircraft pilots during aerial combat maneuvers. The value of understanding hemodynamic characteristics that underlie G-induced loss of consciousness has been instrumental in the evolution of optimal technology development (e.g., G-suits, positive pressure breathing, COMBAT EDGE, etc.) and pilot training (e.g., anti-G straining maneuvers). Although the emphasis of research has been placed on the development of protection against acute high +Gz acceleration effects, recent observations suggest that adaptation of cardiovascular mechanism associated with blood pressure regulation may contribute to a protective 'G-training' effect. Regular training at high G enhances G tolerance in humans, rats, guinea pigs, and dogs while prolonged layoff from exposure in high G profiles (G-layoff) can result in reduced G endurance. It seems probable that adaptations in physiological functions following chronically-repeated high G exposure (G training) or G-layoff could have significant impacts on performance during sustained high-G acceleration since protective technology such as G-suits and anit-G straining maneuvers are applied consistently during these periods of training. The purpose of this paper is to present a review of new data from three experiments that support the notion that repeated exposure on a regular basis to high sustained +Gz acceleration induces significant physiological adaptations which are associated with improved blood pressure regulation and subsequent protection of cerebral perfusion during orthostatic challenges.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederix, Marijke; Mingardon, Florence; Hu, Matthew

    Biological production of chemicals and fuels using microbial transformation of sustainable carbon sources, such as pretreated and saccharified plant biomass, is a multi-step process. Typically, each segment of the workflow is optimized separately, often generating conditions that may not be suitable for integration or consolidation with the upstream or downstream steps. While significant effort has gone into developing solutions to incompatibilities at discrete steps, very few studies report the consolidation of the multi-step workflow into a single pot reactor system. Here we demonstrate a one-pot biofuel production process that uses the ionic liquid 1-ethyl-3-methylimidazolium acetate (C 2C 1Im][OAc] ) formore » pretreatment of switchgrass biomass. [C 2C 1Im][OAc] is highly effective in deconstructing lignocellulose, but nonetheless leaves behind residual reagents that are toxic to standard saccharification enzymes and the microbial production host. We report the discovery of an [C 2C 1Im]-tolerant E. coli strain, where [C 2C 1Im] tolerance is bestowed by a P7Q mutation in the transcriptional regulator encoded by rcdA. We establish that the causal impact of this mutation is the derepression of a hitherto uncharacterized major facilitator family transporter, YbjJ. To develop the strain for a one-pot process we engineered this [C 2C 1Im]-tolerant strain to express a recently reported d-limonene production pathway. We also screened previously reported [C 2C 1Im]-tolerant cellulases to select one that would function with the range of E. coli cultivation conditions and expressed it in the [C 2C 1 Im]-tolerant E. coli strain so as to secrete this [C 2C 1Im]-tolerant cellulase. The final strain digests pretreated biomass, and uses the liberated sugars to produce the bio-jet fuel candidate precursor d-limonene in a one-pot process.« less

  11. The [NiFe]-Hydrogenase of Pyrococcus furiosus Exhibits a New Type of Oxygen Tolerance.

    PubMed

    Kwan, Patrick; McIntosh, Chelsea L; Jennings, David P; Hopkins, R Chris; Chandrayan, Sanjeev K; Wu, Chang-Hao; Adams, Michael W W; Jones, Anne K

    2015-10-28

    We report the first direct electrochemical characterization of the impact of oxygen on the hydrogen oxidation activity of an oxygen-tolerant, group 3, soluble [NiFe]-hydrogenase: hydrogenase I from Pyrococcus furiosus (PfSHI), which grows optimally near 100 °C. Chronoamperometric experiments were used to probe the sensitivity of PfSHI hydrogen oxidation activity to both brief and prolonged exposure to oxygen. For experiments between 15 and 80 °C, following short (<200 s) exposure to 14 μM O2 under oxidizing conditions, PfSHI always maintains some fraction of its initial hydrogen oxidation activity; i.e., it is oxygen-tolerant. Reactivation experiments show that two inactive states are formed by interaction with oxygen and both can be quickly (<150 s) reactivated. Analogous experiments, in which the interval of oxygen exposure is extended to 900 s, reveal that the response is highly temperature-dependent. At 25 °C, under sustained 1% O2/ 99% H2 exposure, the H2oxidation activity drops nearly to zero. However, at 80 °C, up to 32% of the enzyme's oxidation activity is retained. Reactivation of PfSHI following sustained exposure to oxygen occurs on a much longer time scale (tens of minutes), suggesting that a third inactive species predominates under these conditions. These results stand in contrast to the properties of oxygen-tolerant, group 1 [NiFe]-hydrogenases, which form a single state upon reaction with oxygen, and we propose that this new type of hydrogenase should be referred to as oxygen-resilient. Furthermore, PfSHI, like other group 3 [NiFe]-hydrogenases, does not possess the proximal [4Fe3S] cluster associated with the oxygen tolerance of some group 1 enzymes. Thus, a new mechanism is necessary to explain the observed oxygen tolerance in soluble, group 3 [NiFe]-hydrogenases, and we present a model integrating both electrochemical and spectroscopic results to define the relationships of these inactive states.

  12. Development of an E. coli strain for one-pot biofuel production from ionic liquid pretreated cellulose and switchgrass

    DOE PAGES

    Frederix, Marijke; Mingardon, Florence; Hu, Matthew; ...

    2016-04-11

    Biological production of chemicals and fuels using microbial transformation of sustainable carbon sources, such as pretreated and saccharified plant biomass, is a multi-step process. Typically, each segment of the workflow is optimized separately, often generating conditions that may not be suitable for integration or consolidation with the upstream or downstream steps. While significant effort has gone into developing solutions to incompatibilities at discrete steps, very few studies report the consolidation of the multi-step workflow into a single pot reactor system. Here we demonstrate a one-pot biofuel production process that uses the ionic liquid 1-ethyl-3-methylimidazolium acetate (C 2C 1Im][OAc] ) formore » pretreatment of switchgrass biomass. [C 2C 1Im][OAc] is highly effective in deconstructing lignocellulose, but nonetheless leaves behind residual reagents that are toxic to standard saccharification enzymes and the microbial production host. We report the discovery of an [C 2C 1Im]-tolerant E. coli strain, where [C 2C 1Im] tolerance is bestowed by a P7Q mutation in the transcriptional regulator encoded by rcdA. We establish that the causal impact of this mutation is the derepression of a hitherto uncharacterized major facilitator family transporter, YbjJ. To develop the strain for a one-pot process we engineered this [C 2C 1Im]-tolerant strain to express a recently reported d-limonene production pathway. We also screened previously reported [C 2C 1Im]-tolerant cellulases to select one that would function with the range of E. coli cultivation conditions and expressed it in the [C 2C 1 Im]-tolerant E. coli strain so as to secrete this [C 2C 1Im]-tolerant cellulase. The final strain digests pretreated biomass, and uses the liberated sugars to produce the bio-jet fuel candidate precursor d-limonene in a one-pot process.« less

  13. Lack of tolerable treatment options for patients with schizophrenia.

    PubMed

    Citrome, Leslie; Eramo, Anna; Francois, Clement; Duffy, Ruth; Legacy, Susan N; Offord, Steve J; Krasa, Holly B; Johnston, Stephen S; Guiraud-Diawara, Alice; Kamat, Siddhesh A; Rohman, Patricia

    2015-01-01

    Atypical antipsychotics (AAs), an effective treatment for schizophrenia, have a range of pharmacologic properties leading to differences in tolerability as well as heterogeneity in treatment response. Individual patient characteristics must be considered when making treatment choices, especially from an adverse event (AE) or tolerability perspective. Despite the availability of numerous AAs, after appraising patient characteristics at the time of treatment selection, physicians may quickly run out of tolerable treatment options. AE risk factors, defined as having either a prior history of an AE or a risk factor for that AE, were determined for Medicaid-insured and Commercially insured patients using database analysis. Patients receiving AA treatment between January 1, 2010 and December 31, 2012 defined the index date of first observed AA prescription during this period. Nine AAs were evaluated for association with AE risk factors as informed by drug prescribing information from the different manufacturers and published meta-analyses. The proportion of patients with pre-index AE risk factors prescribed an AA associated with that risk factor was then determined. A high proportion of patients (>80%) were prescribed an AA associated with extrapyramidal symptoms or akathisia despite experiencing extrapyramidal symptoms or akathisia prior to AA treatment initiation. Similar trends were observed among patients with diabetes (>60%) and obesity (>40%). From the nine treatment options available, the number of optimal choices for individual patient segments were limited based on their prior history, including those with cardiometabolic and cardiovascular comorbidities (four); experiencing prolactin elevation-related problems (seven); needing to avoid excessive sedation (four); or at risk of extrapyramidal symptoms or akathisia (two). Options were then further restricted among patients in more than one segment when multiple pre-index AE risk factors were combined. When combining patient risk profile with antipsychotic AE profile, physicians may quickly run out of tolerable treatment options for individual patients, despite the availability of many AAs, suggesting a need for additional treatment options with better tolerability and without compromising efficacy.

  14. A dynamic multi-level optimal design method with embedded finite-element modeling for power transformers

    NASA Astrophysics Data System (ADS)

    Zhang, Yunpeng; Ho, Siu-lau; Fu, Weinong

    2018-05-01

    This paper proposes a dynamic multi-level optimal design method for power transformer design optimization (TDO) problems. A response surface generated by second-order polynomial regression analysis is updated dynamically by adding more design points, which are selected by Shifted Hammersley Method (SHM) and calculated by finite-element method (FEM). The updating stops when the accuracy requirement is satisfied, and optimized solutions of the preliminary design are derived simultaneously. The optimal design level is modulated through changing the level of error tolerance. Based on the response surface of the preliminary design, a refined optimal design is added using multi-objective genetic algorithm (MOGA). The effectiveness of the proposed optimal design method is validated through a classic three-phase power TDO problem.

  15. Hypoallergenic formulas: optimal choices for treatment versus prevention.

    PubMed

    Bahna, Sami L

    2008-11-01

    To provide information on certain formulas that are relevant to allergy practice, focusing on their protein source and allergenicity, and to provide recommendations for selecting an optimal formula, taking into consideration efficacy, safety, palatability, and cost. A literature search using the PubMed database for the following keywords: hypoallergenic formulas, infant formulas, hydrolysate formulas, elemental formulas, and amino acids formulas. Information was derived from pertinent original studies and selected reviews, including recent Cochrane Database Systematic Reviews, published in the English-language literature. For a formula to be considered hypoallergenic, it should be well tolerated by at least 90% of individuals who are allergic to the parent protein from which that formula has been derived. Extensively hydrolyzed formulas (EHFs), derived from bovine casein or whey, are tolerated by approximately 95% of cow's milk allergic individuals. Elemental formulas are prepared from synthesized free amino acids and are well tolerated practically by all individuals, including those who are allergic to EHFs. Partially hydrolyzed whey formula (PHWFs) cause allergy in one-third to half of milk allergic individuals and are not considered hypoallergenic. Both EHFs and PHWFs seem to be equally effective in reducing the risk of development of allergy in infants of atopic families. The EHFs and amino acids formulas, but not the partially hydrolyzed formulas, are optimal for milk allergic individuals. All 3 types of formulas are useful for prevention. The cost and palatability should be considered in deciding which formula to use.

  16. Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf

    PubMed Central

    Prusty, Manas R.; Kim, Sung-Ryul; Vinarao, Ricky; Entila, Frederickson; Egdane, James; Diaz, Maria G. Q.; Jena, Kshirod K.

    2018-01-01

    Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. So far a few rice landraces have been identified as a source of salt tolerance and utilized in rice improvement. These tolerant lines primarily use Na+ exclusion mechanism in root which removes Na+ from the xylem stream by membrane Na+ and K+ transporters, and resulted in low Na+ accumulation in shoot. Identification of a new donor source conferring high salt tolerance is imperative. Wild relatives of rice having wide genetic diversity are regarded as a potential source for crop improvement. However, they have been less exploited against salt stress. Here, we simultaneously evaluated all 22 wild Oryza species along with the cultivated tolerant lines including Pokkali, Nona Bokra, and FL478, and sensitive check varieties under high salinity (240 mM NaCl). Based on the visual salt injury score, three species (O. alta, O. latifolia, and O. coarctata) and four species (O. rhizomatis, O. eichingeri, O. minuta, and O. grandiglumis) showed higher and similar level of tolerance compared to the tolerant checks, respectively. All three CCDD genome species exhibited salt tolerance, suggesting that the CCDD genome might possess the common genetic factors for salt tolerance. Physiological and biochemical experiments were conducted using the newly isolated tolerant species together with checks under 180 mM NaCl. Interestingly, all wild species showed high Na+ concentration in shoot and low concentration in root unlike the tolerant checks. In addition, the wild-tolerant accessions showed a tendency of a high tissue tolerance in leaf, low malondialdehyde level in shoot, and high retention of chlorophyll in the young leaves. These results suggest that the wild species employ tissue tolerance mechanism to manage salt stress. Gene expression analyses of the key salt tolerance-related genes suggested that high Na+ in leaf of wild species might be affected by OsHKT1;4-mediated Na+ exclusion in leaf and the following Na+ sequestration in leaf might be occurring independent of tonoplast-localized OsNHX1. The newly isolated wild rice accessions will be valuable materials for both rice improvement to salinity stress and the study of salt tolerance mechanism in plants. PMID:29740456

  17. Gradient ascent pulse engineering approach to CNOT gates in donor electron spin quantum computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, D.-B.; Goan, H.-S.

    2008-11-07

    In this paper, we demonstrate how gradient ascent pulse engineering (GRAPE) optimal control methods can be implemented on donor electron spin qubits in semiconductors with an architecture complementary to the original Kane's proposal. We focus on the high fidelity controlled-NOT (CNOT) gate and we explicitly find the digitized control sequences for a controlled-NOT gate by optimizing its fidelity using the effective, reduced donor electron spin Hamiltonian with external controls over the hyperfine A and exchange J interactions. We then simulate the CNOT-gate sequence with the full spin Hamiltonian and find that it has an error of 10{sup -6} that ismore » below the error threshold of 10{sup -4} required for fault-tolerant quantum computation. Also the CNOT gate operation time of 100 ns is 3 times faster than 297 ns of the proposed global control scheme.« less

  18. Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor.

    PubMed

    Aziz, Marya; Husson, Florence; Kermasha, Selim

    2015-01-01

    Commercial lipases, from porcine pancreas (PPL), Candida rugosa (CRL), and Thermomyces lanuginosus (Lipozyme TL IM), were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO) for the liberation of free linoleic acid (LA), used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%), its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%). On the basis of the experimental findings, CRL was selected as the most appropriate biocatalyst, with 84.1% degree of hydrolysis. The chromatographic analyses showed that the CRL-hydrolyzed SO is composed mainly of free LA.

  19. Comparative studies of various hyaluronic acids produced by microbial fermentation for potential topical ophthalmic applications.

    PubMed

    Guillaumie, Fanny; Furrer, Pascal; Felt-Baeyens, Olivia; Fuhlendorff, Birgit L; Nymand, Søren; Westh, Peter; Gurny, Robert; Schwach-Abdellaoui, Khadija

    2010-03-15

    This work presents a comparative study of various hyaluronic acids (HA) produced by fermentation of either Bacillus subtilis or Streptococcus towards the selection of an optimal molecular weight (MW) HA for the preparation of topical ophthalmic formulations. The influence of HA MW on water binding capacity, sterile filtration, rheological properties, precorneal residence time and ocular tolerance of ophthalmic solutions was investigated. Molecular weight did not affect hydration of hyaluronic acid according to differential scanning calorimetry (DSC). In general, medium MW HA (0.6-1 MDa) resulted in solutions that were superior in terms of sterile filtration and kinematic viscosity requirements compared to high MW HA (>1 MDa). Moreover, all HA-based solutions exhibited well-defined viscoelastic properties that depend on MW. Gamma scintigraphic data indicated that HA MW at 0.1% concentration (w/v) and HA origin did not significantly affect the corneal residence time on rabbit eyes. A 0.3% solution of high MW HA had a prolonged residence time in the precorneal area compared to a medium MW HA at the same concentration. Finally, an in vivo ocular irritation test based on confocal laser scanning ophthalmoscopy (CLSO) conclusively showed the excellent tolerance of both Bacillus-derived HA and Streptococcus-derived HA after topical instillation onto the corneal surface. Overall, this comprehensive work highlights the superiority of medium MW hyaluronic acid for topical ophthalmic formulations based on their physico-chemical and biological properties, tolerance and handling. Such solutions are expected to enhance tear film stability, to allow for maximum comfort, and to exhibit high residence times, while being biocompatible and easy to sterile filter. (c) 2009 Wiley Periodicals, Inc.

  20. High production of cold-tolerant chitinases on shrimp wastes in bench-top bioreactor by the Antarctic fungus Lecanicillium muscarium CCFEE 5003: bioprocess optimization and characterization of two main enzymes.

    PubMed

    Barghini, Paolo; Moscatelli, Deborah; Garzillo, Anna Maria Vittoria; Crognale, Silvia; Fenice, Massimiliano

    2013-10-10

    The Antarctic fungus Lecanicillium muscarium CCFEE-5003 was preliminary cultivated in shaken flasks to check its chitinase production on rough shrimp and crab wastes. Production on shrimp shells was much higher than that on crab shells (104.6±9.3 and 48.6±3.1U/L, respectively). For possible industrial applications, bioprocess optimization was studied on shrimp shells in bioreactor using RSM to state best conditions of pH and substrate concentration. Optimization improved the production by 137% (243.6±17.3). Two chitinolytic enzymes (CHI1 and CHI2) were purified and characterized. CHI1 (MW ca. 61kDa) showed optima at pH 5.5 and 45°C while CHI2 (MW ca. 25kDa) optima were at pH 4.5 and 40°C. Both enzymes maintained high activity levels at 5°C and were inhibited by Fe(++), Hg(++) and Cu(++). CHI2 was strongly allosamidin-sensitive. Both proteins were N-acetyl-hexosaminidases (E.C. 3.2.1.52) but showed different roles in chitin hydrolysis: CHI1 could be defined as "chitobiase" while CHI2 revealed a main "eso-chitinase" activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Systematic Optimization of Battery Materials: Key Parameter Optimization for the Scalable Synthesis of Uniform, High-Energy, and High Stability LiNi0.6Mn0.2Co0.2O2 Cathode Material for Lithium-Ion Batteries.

    PubMed

    Ren, Dong; Shen, Yun; Yang, Yao; Shen, Luxi; Levin, Barnaby D A; Yu, Yingchao; Muller, David A; Abruña, Héctor D

    2017-10-18

    Ni-rich LiNi x Mn y Co 1-x-y O 2 (x > 0.5) (NMC) materials have attracted a great deal of interest as promising cathode candidates for Li-ion batteries due to their low cost and high energy density. However, several issues, including sensitivity to moisture, difficulty in reproducibly preparing well-controlled morphology particles and, poor cyclability, have hindered their large scale deployment; especially for electric vehicle (EV) applications. In this work, we have developed a uniform, highly stable, high-energy density, Ni-rich LiNi 0.6 Mn 0.2 Co 0.2 O 2 cathode material by systematically optimizing synthesis parameters, including pH, stirring rate, and calcination temperature. The particles exhibit a spherical morphology and uniform size distribution, with a well-defined structure and homogeneous transition-metal distribution, owing to the well-controlled synthesis parameters. The material exhibited superior electrochemical properties, when compared to a commercial sample, with an initial discharge capacity of 205 mAh/g at 0.1 C. It also exhibited a remarkable rate capability with discharge capacities of 157 mAh/g and 137 mAh/g at 10 and 20 C, respectively, as well as high tolerance to air and moisture. In order to demonstrate incorporation into a commercial scale EV, a large-scale 4.7 Ah LiNi 0.6 Mn 0.2 Co 0.2 O 2 Al-full pouch cell with a high cathode loading of 21.6 mg/cm 2 , paired with a graphite anode, was fabricated. It exhibited exceptional cyclability with a capacity retention of 96% after 500 cycles at room temperature. This material, which was obtained by a fully optimized scalable synthesis, delivered combined performance metrics that are among the best for NMC materials reported to date.

  2. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Xu, Jingjing; Lu, Shiyao; Chen, Xu; Wang, Jianan; Zhang, Bo; Zhang, Xinyu; Xiao, Chunhui; Ding, Shujiang

    2017-12-01

    Investigating low-cost and highly active electrocatalysts for oxygen reduction reactions (ORR) is of crucial importance for energy conversion and storage devices. Herein, we design and prepare mesoporous carbon supported nitrogen-doped carbon by pyrolysis of polyaniline coated on CMK-3. This electrocatalyst exhibits excellent performance towards ORR in alkaline media. The optimized nitrogen-doped mesoporous electrocatalyst show an onset potential (E onset) of 0.95 V (versus reversible hydrogen electrode (RHE)) and half-wave potential (E 1/2) of 0.83 V (versus RHE) in 0.1 M KOH. Furthermore, the as-prepared catalyst presents superior durability and methanol tolerance compared to commercial Pt/C indicating its potential applications in fuel cells and metal-air batteries.

  3. Determining Metacarpophalangeal Flexion Angle Tolerance for Reliable Volumetric Joint Space Measurements by High-resolution Peripheral Quantitative Computed Tomography.

    PubMed

    Tom, Stephanie; Frayne, Mark; Manske, Sarah L; Burghardt, Andrew J; Stok, Kathryn S; Boyd, Steven K; Barnabe, Cheryl

    2016-10-01

    The position-dependence of a method to measure the joint space of metacarpophalangeal (MCP) joints using high-resolution peripheral quantitative computed tomography (HR-pQCT) was studied. Cadaveric MCP were imaged at 7 flexion angles between 0 and 30 degrees. The variability in reproducibility for mean, minimum, and maximum joint space widths and volume measurements was calculated for increasing degrees of flexion. Root mean square coefficient of variance values were < 5% under 20 degrees of flexion for mean, maximum, and volumetric joint spaces. Values for minimum joint space width were optimized under 10 degrees of flexion. MCP joint space measurements should be acquired at < 10 degrees of flexion in longitudinal studies.

  4. Depth optimal sorting networks resistant to k passive faults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotrow, M.

    In this paper, we study the problem of constructing a sorting network that is tolerant to faults and whose running time (i.e. depth) is as small as possible. We consider the scenario of worst-case comparator faults and follow the model of passive comparator failure proposed by Yao and Yao, in which a faulty comparator outputs directly its inputs without comparison. Our main result is the first construction of an N-input, k-fault-tolerant sorting network that is of an asymptotically optimal depth {theta}(log N+k). That improves over the recent result of Leighton and Ma, whose network is of depth O(log N +more » k log log N/log k). Actually, we present a fault-tolerant correction network that can be added after any N-input sorting network to correct its output in the presence of at most k faulty comparators. Since the depth of the network is O(log N + k) and the constants hidden behind the {open_quotes}O{close_quotes} notation are not big, the construction can be of practical use. Developing the techniques necessary to show the main result, we construct a fault-tolerant network for the insertion problem. As a by-product, we get an N-input, O(log N)-depth INSERT-network that is tolerant to random faults, thereby answering a question posed by Ma in his PhD thesis. The results are based on a new notion of constant delay comparator networks, that is, networks in which each register is used (compared) only in a period of time of a constant length. Copies of such networks can be put one after another with only a constant increase in depth per copy.« less

  5. A Fault Oblivious Extreme-Scale Execution Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKie, Jim

    The FOX project, funded under the ASCR X-stack I program, developed systems software and runtime libraries for a new approach to the data and work distribution for massively parallel, fault oblivious application execution. Our work was motivated by the premise that exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today’s machines. To deliver the capability of exascale hardware, the systems software must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massivemore » data analysis in a highly unreliable hardware environment with billions of threads of execution. Our OS research has prototyped new methods to provide efficient resource sharing, synchronization, and protection in a many-core compute node. We have experimented with alternative task/dataflow programming models and shown scalability in some cases to hundreds of thousands of cores. Much of our software is in active development through open source projects. Concepts from FOX are being pursued in next generation exascale operating systems. Our OS work focused on adaptive, application tailored OS services optimized for multi → many core processors. We developed a new operating system NIX that supports role-based allocation of cores to processes which was released to open source. We contributed to the IBM FusedOS project, which promoted the concept of latency-optimized and throughput-optimized cores. We built a task queue library based on distributed, fault tolerant key-value store and identified scaling issues. A second fault tolerant task parallel library was developed, based on the Linda tuple space model, that used low level interconnect primitives for optimized communication. We designed fault tolerance mechanisms for task parallel computations employing work stealing for load balancing that scaled to the largest existing supercomputers. Finally, we implemented the Elastic Building Blocks runtime, a library to manage object-oriented distributed software components. To support the research, we won two INCITE awards for time on Intrepid (BG/P) and Mira (BG/Q). Much of our work has had impact in the OS and runtime community through the ASCR Exascale OS/R workshop and report, leading to the research agenda of the Exascale OS/R program. Our project was, however, also affected by attrition of multiple PIs. While the PIs continued to participate and offer guidance as time permitted, losing these key individuals was unfortunate both for the project and for the DOE HPC community.« less

  6. The provision of clearances accuracy in piston - cylinder mating

    NASA Astrophysics Data System (ADS)

    Glukhov, V. I.; Shalay, V. V.

    2017-08-01

    The paper is aimed at increasing the quality of the pumping equipment in oil and gas industry. The main purpose of the study is to stabilize maximum values of productivity and durability of the pumping equipment based on the selective assembly of the cylinder-piston kinematic mating by optimization criterion. It is shown that the minimum clearance in the piston-cylinder mating is formed by maximum material dimensions. It is proved that maximum material dimensions are characterized by their own laws of distribution within the tolerance limits for the diameters of the cylinder internal mirror and the outer cylindrical surface of the piston. At that, their dispersion zones should be divided into size groups with a group tolerance equal to half the tolerance for the minimum clearance. The techniques for measuring the material dimensions - the smallest cylinder diameter and the largest piston diameter according to the envelope condition - are developed for sorting them into size groups. Reliable control of the dimensions precision ensures optimal minimum clearances of the piston-cylinder mating in all the size groups of the pumping equipment, necessary for increasing the equipment productivity and durability during the production, operation and repair processes.

  7. Engineering glycoside hydrolase stability by the introduction of zinc binding

    DOE PAGES

    Ellinghaus, Thomas L.; Pereira, Jose H.; McAndrew, Ryan P.; ...

    2018-06-27

    The development of robust enzymes, in particular cellulases, is a key step in the success of biological routes to `second-generation' biofuels. The typical sources of the enzymes used to degrade biomass include mesophilic and thermophilic organisms. The endoglucanase J30 from glycoside hydrolase family 9 was originally identified through metagenomic analyses of compost-derived bacterial consortia. These studies, which were tailored to favor growth on targeted feedstocks, have already been shown to identify cellulases with considerable thermal tolerance. The amino-acid sequence of J30 shows comparably low identity to those of previously analyzed enzymes. As an enzyme that combines a well measurable activitymore » with a relatively low optimal temperature (50°C) and a modest thermal tolerance, it offers the potential for structural optimization aimed at increased stability. Here, the crystal structure of wild-type J30 is presented along with that of a designed triple-mutant variant with improved characteristics for industrial applications. Through the introduction of a structural Zn 2+ site, the thermal tolerance was increased by more than 10°C and was paralleled by an increase in the catalytic optimum temperature by more than 5°C.« less

  8. Engineering glycoside hydrolase stability by the introduction of zinc binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellinghaus, Thomas L.; Pereira, Jose H.; McAndrew, Ryan P.

    The development of robust enzymes, in particular cellulases, is a key step in the success of biological routes to `second-generation' biofuels. The typical sources of the enzymes used to degrade biomass include mesophilic and thermophilic organisms. The endoglucanase J30 from glycoside hydrolase family 9 was originally identified through metagenomic analyses of compost-derived bacterial consortia. These studies, which were tailored to favor growth on targeted feedstocks, have already been shown to identify cellulases with considerable thermal tolerance. The amino-acid sequence of J30 shows comparably low identity to those of previously analyzed enzymes. As an enzyme that combines a well measurable activitymore » with a relatively low optimal temperature (50°C) and a modest thermal tolerance, it offers the potential for structural optimization aimed at increased stability. Here, the crystal structure of wild-type J30 is presented along with that of a designed triple-mutant variant with improved characteristics for industrial applications. Through the introduction of a structural Zn 2+ site, the thermal tolerance was increased by more than 10°C and was paralleled by an increase in the catalytic optimum temperature by more than 5°C.« less

  9. Bioleaching of Gold and Silver from Waste Printed Circuit Boards by Pseudomonas balearica SAE1 Isolated from an e-Waste Recycling Facility.

    PubMed

    Kumar, Anil; Saini, Harvinder Singh; Kumar, Sudhir

    2018-02-01

    Indigenous bacterial strain Pseudomonas balearica SAE1, tolerant to e-waste toxicity was isolated from an e-waste recycling facility Exigo Recycling Pvt. Ltd., India. Toxicity tolerance of bacterial strain was analyzed using crushed (particle size ≤150 µm) waste computer printed circuit boards (PCBs)/liter (L) of culture medium. The EC 50 value for SAE1 was 325.7 g/L of the e-waste pulp density. Two-step bioleaching was then applied to achieve the dissolution of gold (Au) and silver (Ag) from the e-waste. To maximize precious metal dissolution, factors including pulp density, glycine concentration, pH level, and temperature were optimized. The optimization resulted in 68.5 and 33.8% of Au and Ag dissolution, respectively, at a pH of 9.0, a pulp density of 10 g/L, a temperature of 30 °C, and a glycine concentration of 5 g/L. This is the first study of Au and Ag bioleaching using indigenous e-waste bacteria and its analysis to determine e-waste toxicity tolerance.

  10. Fault tolerance of artificial neural networks with applications in critical systems

    NASA Technical Reports Server (NTRS)

    Protzel, Peter W.; Palumbo, Daniel L.; Arras, Michael K.

    1992-01-01

    This paper investigates the fault tolerance characteristics of time continuous recurrent artificial neural networks (ANN) that can be used to solve optimization problems. The principle of operations and performance of these networks are first illustrated by using well-known model problems like the traveling salesman problem and the assignment problem. The ANNs are then subjected to 13 simultaneous 'stuck at 1' or 'stuck at 0' faults for network sizes of up to 900 'neurons'. The effects of these faults is demonstrated and the cause for the observed fault tolerance is discussed. An application is presented in which a network performs a critical task for a real-time distributed processing system by generating new task allocations during the reconfiguration of the system. The performance degradation of the ANN under the presence of faults is investigated by large-scale simulations, and the potential benefits of delegating a critical task to a fault tolerant network are discussed.

  11. Machine-checked proofs of the design and implementation of a fault-tolerant circuit

    NASA Technical Reports Server (NTRS)

    Bevier, William R.; Young, William D.

    1990-01-01

    A formally verified implementation of the 'oral messages' algorithm of Pease, Shostak, and Lamport is described. An abstract implementation of the algorithm is verified to achieve interactive consistency in the presence of faults. This abstract characterization is then mapped down to a hardware level implementation which inherits the fault-tolerant characteristics of the abstract version. All steps in the proof were checked with the Boyer-Moore theorem prover. A significant results is the demonstration of a fault-tolerant device that is formally specified and whose implementation is proved correct with respect to this specification. A significant simplifying assumption is that the redundant processors behave synchronously. A mechanically checked proof that the oral messages algorithm is 'optimal' in the sense that no algorithm which achieves agreement via similar message passing can tolerate a larger proportion of faulty processor is also described.

  12. Fault-tolerant dynamic task graph scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal

    2014-11-16

    In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space andmore » time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.« less

  13. Design, Optimization, and Evaluation of Integrally-Stiffened Al-2139 Panel with Curved Stiffeners

    NASA Technical Reports Server (NTRS)

    Havens, David; Shiyekar, Sandeep; Norris, Ashley; Bird, R. Keith; Kapania, Rakesh K.; Olliffe, Robert

    2011-01-01

    A curvilinear stiffened panel was designed, manufactured, and tested in the Combined Load Test Fixture at NASA Langley Research Center. The panel is representative of a large wing engine pylon rib and was optimized for minimum mass subjected to three combined load cases. The optimization included constraints on web buckling, material yielding, crippling or local stiffener failure, and damage tolerance using a new analysis tool named EBF3PanelOpt. Testing was performed for the critical combined compression-shear loading configuration. The panel was loaded beyond initial buckling, and strains and out-of-plane displacements were extracted from a total of 20 strain gages and 6 linear variable displacement transducers. The VIC-3D system was utilized to obtain full field displacements/strains in the stiffened side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high fidelity nonlinear finite element analysis. The experimental data were also compared with linear elastic finite element results of the panel/test-fixture assembly. Overall, the panel buckled very near to the predicted load in the web regions.

  14. What's new in perioperative nutritional support?

    PubMed

    Awad, Sherif; Lobo, Dileep N

    2011-06-01

    To highlight recent developments in the field of perioperative nutritional support by reviewing clinically pertinent English language articles from October 2008 to December 2010, that examined the effects of malnutrition on surgical outcomes, optimizing metabolic function and nutritional status preoperatively and postoperatively. Recognition of patients with or at risk of malnutrition remains poor despite the availability of numerous clinical aids and clear evidence of the adverse effects of poor nutritional status on postoperative clinical outcomes. Unfortunately, poor design and significant heterogeneity remain amongst many studies of nutritional interventions in surgical patients. Patients undergoing elective surgery should be managed within a multimodal pathway that includes evidence-based interventions to optimize nutritional status perioperatively. The aforementioned should include screening patients to identify those at high nutritional risk, perioperative immuno-nutrition, minimizing 'metabolic stress' and insulin resistance by preoperative conditioning with carbohydrate-based drinks, glutamine supplementation, minimal access surgery and enhanced recovery protocols. Finally gut-specific nutrients and prokinetics should be utilized to improve enteral feed tolerance thereby permitting early enteral feeding. An evidence-based multimodal pathway that includes interventions to optimize nutritional status may improve outcomes following elective surgery.

  15. Optimization of an integrated wavelength monitor device

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Farrell, Gerald

    2011-05-01

    In this paper an edge filter based on multimode interference in an integrated waveguide is optimized for a wavelength monitoring application. This can also be used as a demodulation element in a fibre Bragg grating sensing system. A global optimization algorithm is presented for the optimum design of the multimode interference device, including a range of parameters of the multimode waveguide, such as length, width and position of the input and output waveguides. The designed structure demonstrates the desired spectral response for wavelength measurements. Fabrication tolerance is also analysed numerically for this structure.

  16. Generating high temperature tolerant transgenic plants: Achievements and challenges.

    PubMed

    Grover, Anil; Mittal, Dheeraj; Negi, Manisha; Lavania, Dhruv

    2013-05-01

    Production of plants tolerant to high temperature stress is of immense significance in the light of global warming and climate change. Plant cells respond to high temperature stress by re-programming their genetic machinery for survival and reproduction. High temperature tolerance in transgenic plants has largely been achieved either by over-expressing heat shock protein genes or by altering levels of heat shock factors that regulate expression of heat shock and non-heat shock genes. Apart from heat shock factors, over-expression of other trans-acting factors like DREB2A, bZIP28 and WRKY proteins has proven useful in imparting high temperature tolerance. Besides these, elevating the genetic levels of proteins involved in osmotic adjustment, reactive oxygen species removal, saturation of membrane-associated lipids, photosynthetic reactions, production of polyamines and protein biosynthesis process have yielded positive results in equipping transgenic plants with high temperature tolerance. Cyclic nucleotide gated calcium channel proteins that regulate calcium influxes across the cell membrane have recently been shown to be the key players in induction of high temperature tolerance. The involvement of calmodulins and kinases in activation of heat shock factors has been implicated as an important event in governing high temperature tolerance. Unfilled gaps limiting the production of high temperature tolerant transgenic plants for field level cultivation are discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    St James, S; Bloch, C; Saini, J

    Purpose: Proton pencil beam scanning is used clinically across the United States. There are no current guidelines on tolerances for daily QA specific to pencil beam scanning, specifically related to the individual spot properties (spot width). Using a stochastic method to determine tolerances has the potential to optimize tolerances on individual spots and decrease the number of false positive failures in daily QA. Individual and global spot tolerances were evaluated. Methods: As part of daily QA for proton pencil beam scanning, a field of 16 spots (corresponding to 8 energies) is measured using an array of ion chambers (Matrixx, IBA).more » Each individual spot is fit to two Gaussian functions (x,y). The spot width (σ) in × and y are recorded (32 parameters). Results from the daily QA were retrospectively analyzed for 100 days of data. The deviations of the spot widths were histogrammed and fit to a Gaussian function. The stochastic spot tolerance was taken to be the mean ± 3σ. Using these results, tolerances were developed and tested against known deviations in spot width. Results: The individual spot tolerances derived with the stochastic method decreased in 30/32 instances. Using the previous tolerances (± 20% width), the daily QA would have detected 0/20 days of the deviation. Using a tolerance of any 6 spots failing the stochastic tolerance, 18/20 days of the deviation would have been detected. Conclusion: Using a stochastic method we have been able to decrease daily tolerances on the spot widths for 30/32 spot widths measured. The stochastic tolerances can lead to detection of deviations that previously would have been picked up on monthly QA and missed by daily QA. This method could be easily extended for evaluation of other QA parameters in proton spot scanning.« less

  18. Advanced I&C for Fault-Tolerant Supervisory Control of Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Daniel G.

    In this research, we have developed a supervisory control approach to enable automated control of SMRs. By design the supervisory control system has an hierarchical, interconnected, adaptive control architecture. A considerable advantage to this architecture is that it allows subsystems to communicate at different/finer granularity, facilitates monitoring of process at the modular and plant levels, and enables supervisory control. We have investigated the deployment of automation, monitoring, and data collection technologies to enable operation of multiple SMRs. Each unit's controller collects and transfers information from local loops and optimize that unit’s parameters. Information is passed from the each SMR unitmore » controller to the supervisory controller, which supervises the actions of SMR units and manage plant processes. The information processed at the supervisory level will provide operators the necessary information needed for reactor, unit, and plant operation. In conjunction with the supervisory effort, we have investigated techniques for fault-tolerant networks, over which information is transmitted between local loops and the supervisory controller to maintain a safe level of operational normalcy in the presence of anomalies. The fault-tolerance of the supervisory control architecture, the network that supports it, and the impact of fault-tolerance on multi-unit SMR plant control has been a second focus of this research. To this end, we have investigated the deployment of advanced automation, monitoring, and data collection and communications technologies to enable operation of multiple SMRs. We have created a fault-tolerant multi-unit SMR supervisory controller that collects and transfers information from local loops, supervise their actions, and adaptively optimize the controller parameters. The goal of this research has been to develop the methodologies and procedures for fault-tolerant supervisory control of small modular reactors. To achieve this goal, we have identified the following objectives. These objective are an ordered approach to the research: I) Development of a supervisory digital I&C system II) Fault-tolerance of the supervisory control architecture III) Automated decision making and online monitoring.« less

  19. High-temperature responses of North American cacti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.D.; Didden-Zopfy, B.; Nobel, P.S.

    1984-04-01

    High-temperature tolerances of 14 species of North American cacti were investigated. A reduction in the proportion of chlorenchyma cells taking up a vital stain (neutral red) and reduced nocturnal acid accumulation were used as indicators of high-temperature damage. All species tolerated relatively high tissue temperatures, the mean maximum tolerance being 64/sup 0/C, with an absolute maximum of 69/sup 0/ for two species of ferocactus. Such tissue tolerances to high temperature may be unsurpassed in vascular plants. Morphological features can affect tissue temperatures. Specifically, thin-stemmed species such as the cylindropuntias attain lower maximum temperatures under identical microclimatic conditions than do moremore » massive species; they also tend to be less tolerant of high-temperature stress. Stem diameter changes of three species of columnar ceriod cacti along a Sonoran Desert latitudinal transect were previously attributed to adaptation to progressively colder temperatures northward. Such changes can also be interpreted as a morphological adaptation to high temperatures, particularly in the southern Sonoran Desert. Interspecific differences in high-temperature tolerance may account for distributional differences among other species. Acclimation of high-temperature tolerances in response to increasing day/night air temperatures was observed in all 14 species, especially at higher growh temperatures. From 40/sup 0/ day/30/sup 0/ night to 50/sup 0//40/sup 0/, the tolerable tissue temperatures increased an average of 6/sup 0/. Half-times for the acclimation shifts were 1-3d. Although cacti attain extremely high tissue temperatures in desert habitats, tolerance of high temperatures and pronounced acclimation potential allow them to occur in some of the hottest habitats in North America.« less

  20. Personal protective equipment and improving compliance among healthcare workers in high-risk settings.

    PubMed

    Honda, Hitoshi; Iwata, Kentaro

    2016-08-01

    Personal protective equipment (PPE) protects healthcare workers (HCWs) from infection by highly virulent pathogens via exposure to body fluids and respiratory droplets. Given the recent outbreaks of contagious infectious diseases worldwide, including Ebola virus and Middle Eastern respiratory syndrome, there is urgent need for further research to determine optimal PPE use in high-risk settings. This review intends to provide a general understanding of PPE and to provide guidelines for appropriate use based on current evidence. Although previous studies have focused on the efficacy of PPE in preventing transmission of pathogens, recent studies have examined the dangers to HCWs during removal of PPE when risk of contamination is highest. Access to adequate PPE supplies is crucial to preventing transmission of pathogens, especially in resource-limited settings. Adherence to appropriate PPE use is a challenge due to inadequate education on its usage, technical difficulties, and tolerability of PPE in the workplace. Future projects aim at ameliorating this situation, including redesigning PPE which is crucial to improving the safety of HCWs. PPE remains the most important strategy for protecting HCW from potentially fatal pathogens. Further research into optimal PPE design and use to improve the safety of HCWs is urgently needed.

  1. An Analytic Approach for Optimal Geometrical Design of GaAs Nanowires for Maximal Light Harvesting in Photovoltaic Cells

    PubMed Central

    Wu, Dan; Tang, Xiaohong; Wang, Kai; Li, Xianqiang

    2017-01-01

    Semiconductor nanowires(NWs) with subwavelength scale diameters have demonstrated superior light trapping features, which unravel a new pathway for low cost and high efficiency future generation solar cells. Unlike other published work, a fully analytic design is for the first time proposed for optimal geometrical parameters of vertically-aligned GaAs NW arrays for maximal energy harvesting. Using photocurrent density as the light absorbing evaluation standard, 2 μm length NW arrays whose multiple diameters and periodicity are quantitatively identified achieving the maximal value of 29.88 mA/cm2 under solar illumination. It also turns out that our method has wide suitability for single, double and four different diameters of NW arrays for highest photon energy harvesting. To validate this analytical method, intensive numerical three-dimensional finite-difference time-domain simulations of the NWs’ light harvesting are also carried out. Compared with the simulation results, the predicted maximal photocurrent densities lie within 1.5% tolerance for all cases. Along with the high accuracy, through directly disclosing the exact geometrical dimensions of NW arrays, this method provides an effective and efficient route for high performance photovoltaic design. PMID:28425488

  2. Modelling and Optimization Studies on a Novel Lipase Production by Staphylococcus arlettae through Submerged Fermentation

    PubMed Central

    Chauhan, Mamta; Chauhan, Rajinder Singh; Garlapati, Vijay Kumar

    2013-01-01

    Microbial enzymes from extremophilic regions such as hot spring serve as an important source of various stable and valuable industrial enzymes. The present paper encompasses the modeling and optimization approach for production of halophilic, solvent, tolerant, and alkaline lipase from Staphylococcus arlettae through response surface methodology integrated nature inspired genetic algorithm. Response surface model based on central composite design has been developed by considering the individual and interaction effects of fermentation conditions on lipase production through submerged fermentation. The validated input space of response surface model (with R 2 value of 96.6%) has been utilized for optimization through genetic algorithm. An optimum lipase yield of 6.5 U/mL has been obtained using binary coded genetic algorithm predicted conditions of 9.39% inoculum with the oil concentration of 10.285% in 2.99 hrs using pH of 7.32 at 38.8°C. This outcome could contribute to introducing this extremophilic lipase (halophilic, solvent, and tolerant) to industrial biotechnology sector and will be a probable choice for different food, detergent, chemical, and pharmaceutical industries. The present work also demonstrated the feasibility of statistical design tools integration with computational tools for optimization of fermentation conditions for maximum lipase production. PMID:24455210

  3. [Index screening and comprehensive evaluation of phenotypic traits of low nitrogen tolerance using BILs population derived from Dongxiang wild rice (Oryza rufipogon Griff)].

    PubMed

    Hu, Biao-lin; Li, Xia; Wan, Yong; Qiu, Zai-hui; Nie, Yuan-yuan; Xie, Jian-kun

    2015-08-01

    To identify the low nitrogen tolerance of Dongxiang wild rice (DXWR) and its progenies, ten phenotypic traits including plant height (PH), heading day (HD), panicle length (PL), number of effective tillers per plant (NETP), number of filled grains per panicle (NFGP), number of grains per panicle (NGP), grain density (GD), spikelet fertility (SF), 1000-grain mass (TGM) and grain yield per plant (GYP) were studied under normal and low nitrogen treatments, using backcross inbred lines (BILs) of Xieqingzao B//DXWR/Xieqingzao B in BC1 F12. Comprehensive evaluation on the low nitrogen tolerance of the BILs population was conducted using principal component analysis and the subordinate function. The evaluation results indicated that the low nitrogen tolerance of the line 116, 143 and 157 was the strongest, which could be served as the intermediate materials for genetic studies on the low nitrogen tolerance of DXWR and breeding for the low nitrogen tolerance in rice. The optimal regression equation of the low nitrogen tolerance in rice was established using stepwise regression analysis. The relative values of five traits including PH, NGP, SF, TGM and GYP were screened out and could be used as comprehensive evaluation indices for the low nitrogen tolerance in the whole growth stage. Therefore, more attention should be paid to the relative values of these five traits, especially for NGP and GYP, in the genetic improvement of the low nitrogen tolerance in rice.

  4. Acid-Tolerant Moderately Thermophilic Methanotrophs of the Class Gammaproteobacteria Isolated From Tropical Topsoil with Methane Seeps

    PubMed Central

    Islam, Tajul; Torsvik, Vigdis; Larsen, Øivind; Bodrossy, Levente; Øvreås, Lise; Birkeland, Nils-Kåre

    2016-01-01

    Terrestrial tropical methane seep habitats are important ecosystems in the methane cycle. Methane oxidizing bacteria play a key role in these ecosystems as they reduce methane emissions to the atmosphere. Here, we describe the isolation and initial characterization of two novel moderately thermophilic and acid-tolerant obligate methanotrophs, assigned BFH1 and BFH2 recovered from a tropical methane seep topsoil habitat. The new isolates were strictly aerobic, non-motile, coccus-shaped and utilized methane and methanol as sole carbon and energy source. Isolates grew at pH range 4.2–7.5 (optimal 5.5–6.0) and at a temperature range of 30–60°C (optimal 51–55°C). 16S rRNA gene phylogeny placed them in a well-separated branch forming a cluster together with the genus Methylocaldum as the closest relatives (93.1–94.1% sequence similarity). The genes pmoA, mxaF, and cbbL were detected, but mmoX was absent. Strains BFH1 and BFH2 are, to our knowledge, the first isolated acid-tolerant moderately thermophilic methane oxidizers of the class Gammaproteobacteria. Each strain probably denotes a novel species and they most likely represent a novel genus within the family Methylococcaceae of type I methanotrophs. Furthermore, the isolates increase our knowledge of acid-tolerant aerobic methanotrophs and signify a previously unrecognized biological methane sink in tropical ecosystems. PMID:27379029

  5. Developing Rice with High Yield under Phosphorus Deficiency: Pup1 Sequence to Application1[W][OA

    PubMed Central

    Chin, Joong Hyoun; Gamuyao, Rico; Dalid, Cheryl; Bustamam, Masdiar; Prasetiyono, Joko; Moeljopawiro, Sugiono; Wissuwa, Matthias; Heuer, Sigrid

    2011-01-01

    The major quantitative trait locus (QTL) Phosphorus uptake1 (Pup1) confers tolerance of phosphorus deficiency in soil and is currently one of the most promising QTLs for the development of tolerant rice (Oryza sativa) varieties. To facilitate targeted introgression of Pup1 into intolerant varieties, the gene models predicted in the Pup1 region in the donor variety Kasalath were used to develop gene-based molecular markers that are evenly distributed over the fine-mapped 278-kb QTL region. To validate the gene models and optimize the markers, gene expression analyses and partial allelic sequencing were conducted. The markers were tested in more than 80 diverse rice accessions revealing three main groups with different Pup1 allele constitution. Accessions with tolerant (group I) and intolerant (group III) Pup1 alleles were distinguished from genotypes with Kasalath alleles at some of the analyzed loci (partial Pup1; group II). A germplasm survey additionally confirmed earlier data showing that Pup1 is largely absent from irrigated rice varieties but conserved in varieties and breeding lines adapted to drought-prone environments. A core set of Pup1 markers has been defined, and sequence polymorphisms suitable for single-nucleotide polymorphism marker development for high-throughput genotyping were identified. Following a marker-assisted backcrossing approach, Pup1 was introgressed into two irrigated rice varieties and three Indonesian upland varieties. First phenotypic evaluations of the introgression lines suggest that Pup1 is effective in different genetic backgrounds and environments and that it has the potential to significantly enhance grain yield under field conditions. PMID:21602323

  6. Heterogeneity in patterns of DSM-5 posttraumatic stress disorder and depression symptoms: Latent profile analyses.

    PubMed

    Contractor, Ateka A; Roley-Roberts, Michelle E; Lagdon, Susan; Armour, Cherie

    2017-04-01

    Posttraumatic stress disorder (PTSD) and depression co-occur frequently following the experience of potentially traumatizing events (PTE; Morina et al., 2013). A person-centered approach to discern heterogeneous patterns of such co-occurring symptoms is recommended (Galatzer-Levy and Bryant, 2013). We assessed heterogeneity in PTSD and depression symptomatology; and subsequently assessed relations between class membership with psychopathology constructs (alcohol use, distress tolerance, dissociative experiences). The sample consisted of 268 university students who had experienced a PTE and susequently endorsed clinical levels of PTSD or depression severity. Latent profile analyses (LPA) was used to identify the best-fitting class solution accouring to recommended fit indices (Nylund et al., 2007a); and the effects of covariates was analyzed using a 3-step approach (Vermunt, 2010). Results of the LPA indicated an optimal 3-class solutions: high severity (Class 2), lower PTSD-higher depression (Class 1), and higher PTSD-lower depression (Class 3). Covariates of distress tolerance, and different kinds of dissociative experiences differentiated the latent classes. Use of self-report measure could lead to response biases; and the specific nature of the sample limits generalizability of results. We found evidence for a depressive subtype of PTSD differentiated from other classes in terms of lower distress tolerance and greater dissociative experiences. Thus, transdiagnostic treatment protocols may be most beneficial for these latent class members. Further, the distinctiveness of PTSD and depression at comparatively lower levels of PTSD severity was supported (mainly in terms of distress tolerance abilities); hence supporting the current classification system placement of these disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fault Tolerant Real-Time Networks

    DTIC Science & Technology

    2007-05-30

    Alberto Sangiovanni-Vincentelli, editors Hybrid Systems: Computation and Control. Fourth International Workshop (HSCC󈧅, Rome, Italy, March 2001...average dwell time by solving optimization problems. In Ashish Tiwari and Joao P. Hespanha, editors, Hybrid Systems: Computation and Control (HSCC 06

  8. Lipid-anthropometric index optimization for insulin sensitivity estimation

    NASA Astrophysics Data System (ADS)

    Velásquez, J.; Wong, S.; Encalada, L.; Herrera, H.; Severeyn, E.

    2015-12-01

    Insulin sensitivity (IS) is the ability of cells to react due to insulińs presence; when this ability is diminished, low insulin sensitivity or insulin resistance (IR) is considered. IR had been related to other metabolic disorders as metabolic syndrome (MS), obesity, dyslipidemia and diabetes. IS can be determined using direct or indirect methods. The indirect methods are less accurate and invasive than direct and they use glucose and insulin values from oral glucose tolerance test (OGTT). The accuracy is established by comparison using spearman rank correlation coefficient between direct and indirect method. This paper aims to propose a lipid-anthropometric index which offers acceptable correlation to insulin sensitivity index for different populations (DB1=MS subjects, DB2=sedentary without MS subjects and DB3=marathoners subjects) without to use OGTT glucose and insulin values. The proposed method is parametrically optimized through a random cross-validation, using the spearman rank correlation as comparator with CAUMO method. CAUMO is an indirect method designed from a simplification of the minimal model intravenous glucose tolerance test direct method (MINMOD-IGTT) and with acceptable correlation (0.89). The results show that the proposed optimized method got a better correlation with CAUMO in all populations compared to non-optimized. On the other hand, it was observed that the optimized method has better correlation with CAUMO in DB2 and DB3 groups than HOMA-IR method, which is the most widely used for diagnosing insulin resistance. The optimized propose method could detect incipient insulin resistance, when classify as insulin resistant subjects that present impaired postprandial insulin and glucose values.

  9. Social networks in primates: smart and tolerant species have more efficient networks.

    PubMed

    Pasquaretta, Cristian; Levé, Marine; Claidière, Nicolas; van de Waal, Erica; Whiten, Andrew; MacIntosh, Andrew J J; Pelé, Marie; Bergstrom, Mackenzie L; Borgeaud, Christèle; Brosnan, Sarah F; Crofoot, Margaret C; Fedigan, Linda M; Fichtel, Claudia; Hopper, Lydia M; Mareno, Mary Catherine; Petit, Odile; Schnoell, Anna Viktoria; di Sorrentino, Eugenia Polizzi; Thierry, Bernard; Tiddi, Barbara; Sueur, Cédric

    2014-12-23

    Network optimality has been described in genes, proteins and human communicative networks. In the latter, optimality leads to the efficient transmission of information with a minimum number of connections. Whilst studies show that differences in centrality exist in animal networks with central individuals having higher fitness, network efficiency has never been studied in animal groups. Here we studied 78 groups of primates (24 species). We found that group size and neocortex ratio were correlated with network efficiency. Centralisation (whether several individuals are central in the group) and modularity (how a group is clustered) had opposing effects on network efficiency, showing that tolerant species have more efficient networks. Such network properties affecting individual fitness could be shaped by natural selection. Our results are in accordance with the social brain and cultural intelligence hypotheses, which suggest that the importance of network efficiency and information flow through social learning relates to cognitive abilities.

  10. Social networks in primates: smart and tolerant species have more efficient networks

    PubMed Central

    Pasquaretta, Cristian; Levé, Marine; Claidière, Nicolas; van de Waal, Erica; Whiten, Andrew; MacIntosh, Andrew J. J.; Pelé, Marie; Bergstrom, Mackenzie L.; Borgeaud, Christèle; Brosnan, Sarah F.; Crofoot, Margaret C.; Fedigan, Linda M.; Fichtel, Claudia; Hopper, Lydia M.; Mareno, Mary Catherine; Petit, Odile; Schnoell, Anna Viktoria; di Sorrentino, Eugenia Polizzi; Thierry, Bernard; Tiddi, Barbara; Sueur, Cédric

    2014-01-01

    Network optimality has been described in genes, proteins and human communicative networks. In the latter, optimality leads to the efficient transmission of information with a minimum number of connections. Whilst studies show that differences in centrality exist in animal networks with central individuals having higher fitness, network efficiency has never been studied in animal groups. Here we studied 78 groups of primates (24 species). We found that group size and neocortex ratio were correlated with network efficiency. Centralisation (whether several individuals are central in the group) and modularity (how a group is clustered) had opposing effects on network efficiency, showing that tolerant species have more efficient networks. Such network properties affecting individual fitness could be shaped by natural selection. Our results are in accordance with the social brain and cultural intelligence hypotheses, which suggest that the importance of network efficiency and information flow through social learning relates to cognitive abilities. PMID:25534964

  11. Supportive care for children with cancer. Guidelines of the Childrens Cancer Study Group. The use of nutritional therapy.

    PubMed

    Lukens, J N

    1984-01-01

    Nutritional support for children with cancer is predicated on the belief that optimal nutrition promotes tolerance of anti-neoplastic therapy and preserves immunologic responsiveness. The use of nutritional support is based on the assumption that there is effective therapy for the primary disease and that there will be a predictable period of nutritional stress. The most common nutritional problem is posed by the failure of sick children willingly to eat enough to maintain nutritional homeostasis. Supplementation of oral intake with a nutritional formula given by a small-bore nasogastric tube is simple, effective, and economical. If the sum of oral and tolerated nasogastric tube feedings is less than that required for optimal nutrition, unmet needs may be satisfied by nutrients given into a peripheral vein. Total parenteral nutrition, given by central vein, is reserved for situations in which the combination of enteral and peripheral venous alimentation is inadequate.

  12. Fault-Tolerant Control of ANPC Three-Level Inverter Based on Order-Reduction Optimal Control Strategy under Multi-Device Open-Circuit Fault.

    PubMed

    Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang

    2017-10-31

    The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.

  13. Starvation, Together with the SOS Response, Mediates High Biofilm-Specific Tolerance to the Fluoroquinolone Ofloxacin

    PubMed Central

    Bernier, Steve P.; Lebeaux, David; DeFrancesco, Alicia S.; Valomon, Amandine; Soubigou, Guillaume; Coppée, Jean-Yves; Ghigo, Jean-Marc; Beloin, Christophe

    2013-01-01

    High levels of antibiotic tolerance are a hallmark of bacterial biofilms. In contrast to well-characterized inherited antibiotic resistance, molecular mechanisms leading to reversible and transient antibiotic tolerance displayed by biofilm bacteria are still poorly understood. The physiological heterogeneity of biofilms influences the formation of transient specialized subpopulations that may be more tolerant to antibiotics. In this study, we used random transposon mutagenesis to identify biofilm-specific tolerant mutants normally exhibited by subpopulations located in specialized niches of heterogeneous biofilms. Using Escherichia coli as a model organism, we demonstrated, through identification of amino acid auxotroph mutants, that starved biofilms exhibited significantly greater tolerance towards fluoroquinolone ofloxacin than their planktonic counterparts. We demonstrated that the biofilm-associated tolerance to ofloxacin was fully dependent on a functional SOS response upon starvation to both amino acids and carbon source and partially dependent on the stringent response upon leucine starvation. However, the biofilm-specific ofloxacin increased tolerance did not involve any of the SOS-induced toxin–antitoxin systems previously associated with formation of highly tolerant persisters. We further demonstrated that ofloxacin tolerance was induced as a function of biofilm age, which was dependent on the SOS response. Our results therefore show that the SOS stress response induced in heterogeneous and nutrient-deprived biofilm microenvironments is a molecular mechanism leading to biofilm-specific high tolerance to the fluoroquinolone ofloxacin. PMID:23300476

  14. Boron and oxygen-codoped porous carbon as efficient oxygen reduction catalysts

    NASA Astrophysics Data System (ADS)

    Lei, Zhidan; Chen, Hongbiao; Yang, Mei; Yang, Duanguang; Li, Huaming

    2017-12-01

    A low-cost boron- and oxygen-codoped porous carbon electrocatalyst towards oxygen reduction reaction (ORR) has been fabricated by a facile one-step pyrolysis approach, while a boron- and oxygen-rich polymer network was used as precursor. The boron- and oxygen-codoped carbon catalyst with high ORR electrocatalytic activity is comparable to that of Pt/C and is superior to that of catalysts doped solely with boron atoms or with oxygen atoms. Furthermore, the optimized boron- and oxygen-codoped carbon catalyst possesses excellent methanol tolerance and long-term durability in alkaline media. The high electrocatalytic activity of the dual-doped carbon catalysts can be attributed to the synergistic effects of high surface area, predominant mesostructure, abundant active oxygen-containing groups, and effective boron doping. The present results show that this boron- and oxygen-codoping strategy could be as a promising way for the preparation of highly efficient ORR catalysts.

  15. Towards gene banking amphibian maternal germ lines: short-term incubation, cryoprotectant tolerance and cryopreservation of embryonic cells of the frog, Limnodynastes peronii.

    PubMed

    Lawson, Bianca; Clulow, Simon; Mahony, Michael J; Clulow, John

    2013-01-01

    Gene banking is arguably the best method available to prevent the loss of genetic diversity caused by declines in wild populations, when the causes of decline cannot be halted or reversed. For one of the most impacted vertebrate groups, the amphibians, gene banking technologies have advanced considerably, and gametes from the male line can be banked successfully for many species. However, cryopreserving the female germ line remains challenging, with attempts at cryopreserving oocytes unsuccessful due to their large size and yolk content. One possible solution is to target cryopreservation of early embryos that contain the maternal germ line, but consist of smaller cells. Here, we investigate the short term incubation, cryoprotectant tolerance, and cryopreservation of dissociated early embryonic cells from gastrulae and neurulae of the Striped Marsh Frog, Limnodynastes peronii. Embryos were dissociated and cells were incubated for up to 24 hours in various media. Viability of both gastrula and neurula cells remained high (means up to 40-60%) over 24 hours of incubation in all media, although viability was maintained at a higher level in Ca(2+)-free Simplified Amphibian Ringer; low speed centrifugation did not reduce cell viability. Tolerance of dissociated embryonic cells was tested for two cryoprotectants, glycerol and dimethyl sulphoxide; dissociated cells of both gastrulae and neurulae were highly tolerant to both-indeed, cell viability over 24 hours was higher in media containing low-to-medium concentrations than in equivalent cryoprotectant-free media. Viability over 24 hours was lower in concentrations of cryoprotectant higher than 10%. Live cells were recovered following cryopreservation of both gastrula and neurula cells, but only at low rates. Optimal cryodiluents were identified for gastrula and neurula cells. This is the first report of a slow cooling protocol for cryopreservation of amphibian embryonic cells, and sets future research directions for cryopreserving amphibian maternal germ lines.

  16. Large-area high-power VCSEL pump arrays optimized for high-energy lasers

    NASA Astrophysics Data System (ADS)

    Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel

    2012-06-01

    Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.

  17. Nitrogen and Fluorine-Codoped Carbon Nanowire Aerogels as Metal-Free Electrocatalysts for Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua

    2017-07-11

    The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.

  18. Mechanically and optically reliable folding structure with a hyperelastic material for seamless foldable displays

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk-Jun; Shim, HongShik; Kim, Sunkook; Choi, Woong; Chun, Youngtea; Kee, InSeo; Lee, SangYoon

    2011-04-01

    We report a mechanically and optically robust folding structure to realize a foldable active matrix organic-light-emitting-diode (AMOLED) display without a visible crease at the junction. A nonlinear stress analysis, based on a finite element method, provided an optimized design. The folding-unfolding test on the structure exhibited negligible deterioration of the relative brightness at the junction of the individual panels up to 105 cycles at a folding radius of 1 mm, indicating highly reliable mechanical and optical tolerances. These results demonstrate the feasibility of seamless foldable AMOLED displays, with potentially important technical implications on fabricating large size flexible displays.

  19. Retirement investment theory explains patterns in songbird nest-site choice

    PubMed Central

    Streby, Henry M.; Refsnider, Jeanine M.; Peterson, Sean M.; Andersen, David E.

    2014-01-01

    When opposing evolutionary selection pressures act on a behavioural trait, the result is often stabilizing selection for an intermediate optimal phenotype, with deviations from the predicted optimum attributed to tracking a moving target, development of behavioural syndromes or shifts in riskiness over an individual's lifetime. We investigated nest-site choice by female golden-winged warblers, and the selection pressures acting on that choice by two fitness components, nest success and fledgling survival. We observed strong and consistent opposing selection pressures on nest-site choice for maximizing these two fitness components, and an abrupt, within-season switch in the fitness component birds prioritize via nest-site choice, dependent on the time remaining for additional nesting attempts. We found that females consistently deviated from the predicted optimal behaviour when choosing nest sites because they can make multiple attempts at one fitness component, nest success, but only one attempt at the subsequent component, fledgling survival. Our results demonstrate a unique natural strategy for balancing opposing selection pressures to maximize total fitness. This time-dependent switch from high to low risk tolerance in nest-site choice maximizes songbird fitness in the same way a well-timed switch in human investor risk tolerance can maximize one's nest egg at retirement. Our results also provide strong evidence for the adaptive nature of songbird nest-site choice, which we suggest has been elusive primarily due to a lack of consideration for fledgling survival. PMID:24403320

  20. Optimization of the intravenous glucose tolerance test in T2DM patients using optimal experimental design.

    PubMed

    Silber, Hanna E; Nyberg, Joakim; Hooker, Andrew C; Karlsson, Mats O

    2009-06-01

    Intravenous glucose tolerance test (IVGTT) provocations are informative, but complex and laborious, for studying the glucose-insulin system. The objective of this study was to evaluate, through optimal design methodology, the possibilities of more informative and/or less laborious study design of the insulin modified IVGTT in type 2 diabetic patients. A previously developed model for glucose and insulin regulation was implemented in the optimal design software PopED 2.0. The following aspects of the study design of the insulin modified IVGTT were evaluated; (1) glucose dose, (2) insulin infusion, (3) combination of (1) and (2), (4) sampling times, (5) exclusion of labeled glucose. Constraints were incorporated to avoid prolonged hyper- and/or hypoglycemia and a reduced design was used to decrease run times. Design efficiency was calculated as a measure of the improvement with an optimal design compared to the basic design. The results showed that the design of the insulin modified IVGTT could be substantially improved by the use of an optimized design compared to the standard design and that it was possible to use a reduced number of samples. Optimization of sample times gave the largest improvement followed by insulin dose. The results further showed that it was possible to reduce the total sample time with only a minor loss in efficiency. Simulations confirmed the predictions from PopED. The predicted uncertainty of parameter estimates (CV) was low in all tested cases, despite the reduction in the number of samples/subject. The best design had a predicted average CV of parameter estimates of 19.5%. We conclude that improvement can be made to the design of the insulin modified IVGTT and that the most important design factor was the placement of sample times followed by the use of an optimal insulin dose. This paper illustrates how complex provocation experiments can be improved by sequential modeling and optimal design.

  1. Optimal therapies of a virus replication model with pharmacological delays based on reverse transcriptase inhibitors and protease inhibitors

    NASA Astrophysics Data System (ADS)

    Pei, Yongzhen; Li, Changguo; Liang, Xiyin

    2017-11-01

    A short delay in the pharmacological effect on account of the time required for drug absorption, distribution, and penetration into target cells after application of any anti-viral drug, is defined by the pharmacological delay (Herz et al 1996 Proc. Natl Acad. Sci. USA 93 7247-51). In this paper, a virus replication model with Beddington-DeAngelis incidence rate and the pharmacological and intracellular delays is presented to describe the treatment to cure the virus infection. The optimal controls represent the efficiency of reverse transcriptase inhibitors and protease inhibitors in suppressing viral production and prohibiting new infections. Due to the fact that both the control and state variables contain delays, we derive a necessary conditions for our optimal problem. Based on these results, numerical simulations are implemented not only to show the optimal therapeutic schedules for different infection and release rates, but also to compare the effective of three treatment programs. Furthermore, comparison of therapeutic effects under different maximum tolerable dosages is shown. Our research indicates that (1) the proper and specific treatment program should be determined according to the infection rates of different virus particles; (2) the optimal combined drug treatment is the most efficient; (3) the appropriate proportion of medicament must be formulated during the therapy due to the non-monotonic relationship between maximum tolerable dosages and therapeutic effects; (4) the therapeutic effect is advantageous when the pharmacological delay is considered.

  2. A study of remote sensing as applied to regional and small watersheds. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Ambaruch, R.

    1974-01-01

    The accuracy of remotely sensed measurements to provide inputs to hydrologic models of watersheds is studied. A series of sensitivity analyses on continuous simulation models of three watersheds determined: (1)Optimal values and permissible tolerances of inputs to achieve accurate simulation of streamflow from the watersheds; (2) Which model inputs can be quantified from remote sensing, directly, indirectly or by inference; and (3) How accurate remotely sensed measurements (from spacecraft or aircraft) must be to provide a basis for quantifying model inputs within permissible tolerances.

  3. QTLs for tolerance of drought and breeding for tolerance of abiotic and biotic stress: an integrated approach.

    PubMed

    Dixit, Shalabh; Huang, B Emma; Sta Cruz, Ma Teresa; Maturan, Paul T; Ontoy, Jhon Christian E; Kumar, Arvind

    2014-01-01

    The coupling of biotic and abiotic stresses leads to high yield losses in rainfed rice (Oryza sativa L.) growing areas. While several studies target these stresses independently, breeding strategies to combat multiple stresses seldom exist. This study reports an integrated strategy that combines QTL mapping and phenotypic selection to develop rice lines with high grain yield (GY) under drought stress and non-stress conditions, and tolerance of rice blast. A blast-tolerant BC2F3-derived population was developed from the cross of tropical japonica cultivar Moroberekan (blast- and drought-tolerant) and high-yielding indica variety Swarna (blast- and drought-susceptible) through phenotypic selection for blast tolerance at the BC2F2 generation. The population was studied for segregation distortion patterns and QTLs for GY under drought were identified along with study of epistatic interactions for the trait. Segregation distortion, in favour of Moroberekan, was observed at 50 of the 59 loci. Majority of these marker loci co-localized with known QTLs for blast tolerance or NBS-LRR disease resistance genes. Despite the presence of segregation distortion, high variation for DTF, PH and GY was observed and several QTLs were identified under drought stress and non-stress conditions for the three traits. Epistatic interactions were also detected for GY which explained a large proportion of phenotypic variance observed in the population. This strategy allowed us to identify QTLs for GY along with rapid development of high-yielding purelines tolerant to blast and drought with considerably reduced efforts. Apart from this, it also allowed us to study the effects of the selection cycle for blast tolerance. The developed lines were screened at IRRI and in the target environment, and drought and blast tolerant lines with high yield were identified. With tolerance to two major stresses and high yield potential, these lines may provide yield stability in rainfed rice areas.

  4. Daily Rifapentine for Treatment of Pulmonary Tuberculosis. A Randomized, Dose-Ranging Trial

    PubMed Central

    Savic, Radojka M.; Goldberg, Stefan; Stout, Jason E.; Schluger, Neil; Muzanyi, Grace; Johnson, John L.; Nahid, Payam; Hecker, Emily J.; Heilig, Charles M.; Bozeman, Lorna; Feng, Pei-Jean I.; Moro, Ruth N.; MacKenzie, William; Dooley, Kelly E.; Nuermberger, Eric L.; Vernon, Andrew; Weiner, Marc

    2015-01-01

    Rationale: Rifapentine has potent activity in mouse models of tuberculosis chemotherapy but its optimal dose and exposure in humans are unknown. Objectives: We conducted a randomized, partially blinded dose-ranging study to determine tolerability, safety, and antimicrobial activity of daily rifapentine for pulmonary tuberculosis treatment. Methods: Adults with sputum smear-positive pulmonary tuberculosis were assigned rifapentine 10, 15, or 20 mg/kg or rifampin 10 mg/kg daily for 8 weeks (intensive phase), with isoniazid, pyrazinamide, and ethambutol. The primary tolerability end point was treatment discontinuation. The primary efficacy end point was negative sputum cultures at completion of intensive phase. Measurements and Main Results: A total of 334 participants were enrolled. At completion of intensive phase, cultures on solid media were negative in 81.3% of participants in the rifampin group versus 92.5% (P = 0.097), 89.4% (P = 0.29), and 94.7% (P = 0.049) in the rifapentine 10, 15, and 20 mg/kg groups. Liquid cultures were negative in 56.3% (rifampin group) versus 74.6% (P = 0.042), 69.7% (P = 0.16), and 82.5% (P = 0.004), respectively. Compared with the rifampin group, the proportion negative at the end of intensive phase was higher among rifapentine recipients who had high rifapentine areas under the concentration–time curve. Percentages of participants discontinuing assigned treatment for reasons other than microbiologic ineligibility were similar across groups (rifampin, 8.2%; rifapentine 10, 15, or 20 mg/kg, 3.4, 2.5, and 7.4%, respectively). Conclusions: Daily rifapentine was well-tolerated and safe. High rifapentine exposures were associated with high levels of sputum sterilization at completion of intensive phase. Further studies are warranted to determine if regimens that deliver high rifapentine exposures can shorten treatment duration to less than 6 months. Clinical trial registered with www.clinicaltrials.gov (NCT 00694629). PMID:25489785

  5. Daily rifapentine for treatment of pulmonary tuberculosis. A randomized, dose-ranging trial.

    PubMed

    Dorman, Susan E; Savic, Radojka M; Goldberg, Stefan; Stout, Jason E; Schluger, Neil; Muzanyi, Grace; Johnson, John L; Nahid, Payam; Hecker, Emily J; Heilig, Charles M; Bozeman, Lorna; Feng, Pei-Jean I; Moro, Ruth N; MacKenzie, William; Dooley, Kelly E; Nuermberger, Eric L; Vernon, Andrew; Weiner, Marc

    2015-02-01

    Rifapentine has potent activity in mouse models of tuberculosis chemotherapy but its optimal dose and exposure in humans are unknown. We conducted a randomized, partially blinded dose-ranging study to determine tolerability, safety, and antimicrobial activity of daily rifapentine for pulmonary tuberculosis treatment. Adults with sputum smear-positive pulmonary tuberculosis were assigned rifapentine 10, 15, or 20 mg/kg or rifampin 10 mg/kg daily for 8 weeks (intensive phase), with isoniazid, pyrazinamide, and ethambutol. The primary tolerability end point was treatment discontinuation. The primary efficacy end point was negative sputum cultures at completion of intensive phase. A total of 334 participants were enrolled. At completion of intensive phase, cultures on solid media were negative in 81.3% of participants in the rifampin group versus 92.5% (P = 0.097), 89.4% (P = 0.29), and 94.7% (P = 0.049) in the rifapentine 10, 15, and 20 mg/kg groups. Liquid cultures were negative in 56.3% (rifampin group) versus 74.6% (P = 0.042), 69.7% (P = 0.16), and 82.5% (P = 0.004), respectively. Compared with the rifampin group, the proportion negative at the end of intensive phase was higher among rifapentine recipients who had high rifapentine areas under the concentration-time curve. Percentages of participants discontinuing assigned treatment for reasons other than microbiologic ineligibility were similar across groups (rifampin, 8.2%; rifapentine 10, 15, or 20 mg/kg, 3.4, 2.5, and 7.4%, respectively). Daily rifapentine was well-tolerated and safe. High rifapentine exposures were associated with high levels of sputum sterilization at completion of intensive phase. Further studies are warranted to determine if regimens that deliver high rifapentine exposures can shorten treatment duration to less than 6 months. Clinical trial registered with www.clinicaltrials.gov (NCT 00694629).

  6. Repetitive transient extraction for machinery fault diagnosis using multiscale fractional order entropy infogram

    NASA Astrophysics Data System (ADS)

    Xu, Xuefang; Qiao, Zijian; Lei, Yaguo

    2018-03-01

    The presence of repetitive transients in vibration signals is a typical symptom of local faults of rotating machinery. Infogram was developed to extract the repetitive transients from vibration signals based on Shannon entropy. Unfortunately, the Shannon entropy is maximized for random processes and unable to quantify the repetitive transients buried in heavy random noise. In addition, the vibration signals always contain multiple intrinsic oscillatory modes due to interaction and coupling effects between machine components. Under this circumstance, high values of Shannon entropy appear in several frequency bands or high value of Shannon entropy doesn't appear in the optimal frequency band, and the infogram becomes difficult to interpret. Thus, it also becomes difficult to select the optimal frequency band for extracting the repetitive transients from the whole frequency bands. To solve these problems, multiscale fractional order entropy (MSFE) infogram is proposed in this paper. With the help of MSFE infogram, the complexity and nonlinear signatures of the vibration signals can be evaluated by quantifying spectral entropy over a range of scales in fractional domain. Moreover, the similarity tolerance of MSFE infogram is helpful for assessing the regularity of signals. A simulation and two experiments concerning a locomotive bearing and a wind turbine gear are used to validate the MSFE infogram. The results demonstrate that the MSFE infogram is more robust to the heavy noise than infogram and the high value is able to only appear in the optimal frequency band for the repetitive transient extraction.

  7. Breeding for plant heat tolerance at vegetative and reproductive stages.

    PubMed

    Driedonks, Nicky; Rieu, Ivo; Vriezen, Wim H

    2016-06-01

    Thermotolerant crop research. Global warming has become a serious worldwide threat. High temperature is a major environmental factor limiting crop productivity. Current adaptations to high temperature via alterations to technical and management systems are insufficient to sustain yield. For this reason, breeding for heat-tolerant crops is in high demand. This review provides an overview of the effects of high temperature on plant physiology, fertility and crop yield and discusses the strategies for breeding heat-tolerant cultivars. Generating thermotolerant crops seems to be a challenging task as heat sensitivity is highly variable across developmental stages and processes. In response to heat, plants trigger a cascade of events, switching on numerous genes. Although breeding has made substantial advances in developing heat-tolerant lines, the genetic basis and diversity of heat tolerance in plants remain largely unknown. The development of new varieties is expensive and time-consuming, and knowledge of heat tolerance mechanisms would aid the design of strategies to screen germplasm for heat tolerance traits. However, gains in heat tolerance are limited by the often narrow genetic diversity. Exploration and use of wild relatives and landraces in breeding can increase useful genetic diversity in current crops. Due to the complex nature of plant heat tolerance and its immediate global concern, it is essential to face this breeding challenge in a multidisciplinary holistic approach involving governmental agencies, private companies and academic institutions.

  8. Response Ant Colony Optimization of End Milling Surface Roughness

    PubMed Central

    Kadirgama, K.; Noor, M. M.; Abd Alla, Ahmed N.

    2010-01-01

    Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Response Ant Colony Optimization (RACO). The approach is based on Response Surface Method (RSM) and Ant Colony Optimization (ACO). The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth). The first order model indicates that the feedrate is the most significant factor affecting surface roughness. PMID:22294914

  9. GaAs/AlOx high-contrast grating mirrors for mid-infrared VCSELs

    NASA Astrophysics Data System (ADS)

    Almuneau, G.; Laaroussi, Y.; Chevallier, C.; Genty, F.; Fressengeas, N. s.; Cerutti, L.; Gauthier-Lafaye, Olivier

    2015-02-01

    Mid-infrared Vertical cavity surface emitting lasers (MIR-VCSEL) are very attractive compact sources for spectroscopic measurements above 2μm, relevant for molecules sensing in various application domains. A long-standing issue for long wavelength VCSEL is the large structure thickness affecting the laser properties, added for the MIR to the tricky technological implementation of the antimonide alloys system. In this paper, we propose a new geometry for MIR-VCSEL including both a lateral confinement by an oxide aperture, and a high-contrast sub-wavelength grating mirror (HCG mirror) formed by the high contrast combination AIOx/GaAs in place of GaSb/A|AsSb top Bragg reflector. In addition to drastically simplifying the vertical stack, HCG mirror allows to control through its design the beam properties. The robust design of the HCG has been ensured by an original method of optimization based on particle swarm optimization algorithm combined with an anti-optimization one, thus allowing large error tolerance for the nano-fabrication. Oxide-based electro-optical confinement has been adapted to mid-infrared lasers, byusing a metamorphic approach with (Al) GaAs layer directly epitaxially grown on the GaSb-based VCSEL bottom structure. This approach combines the advantages of the will-controlled oxidation of AlAs layer and the efficient gain media of Sb-based for mid-infrared emission. We finally present the results obtained on electrically pumped mid-IR-VCSELs structures, for which we included oxide aperturing for lateral confinement and HCG as high reflectivity output mirrors, both based on AlxOy/GaAs heterostructures.

  10. Phenotypic Graphs and Evolution Unfold the Standard Genetic Code as the Optimal

    NASA Astrophysics Data System (ADS)

    Zamudio, Gabriel S.; José, Marco V.

    2018-03-01

    In this work, we explicitly consider the evolution of the Standard Genetic Code (SGC) by assuming two evolutionary stages, to wit, the primeval RNY code and two intermediate codes in between. We used network theory and graph theory to measure the connectivity of each phenotypic graph. The connectivity values are compared to the values of the codes under different randomization scenarios. An error-correcting optimal code is one in which the algebraic connectivity is minimized. We show that the SGC is optimal in regard to its robustness and error-tolerance when compared to all random codes under different assumptions.

  11. Parallel Aircraft Trajectory Optimization with Analytic Derivatives

    NASA Technical Reports Server (NTRS)

    Falck, Robert D.; Gray, Justin S.; Naylor, Bret

    2016-01-01

    Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging aircraft technologies have introduced new demands on trajectory analysis that current tools are not well suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing wings requires consideration of the operational behavior as well as the physical design characteristics of the aircraft. The addition of operational variables can dramatically increase the number of design variables which motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization framework. This collocation method uses an implicit time integration scheme that provides a high degree of sparsity and thus several potential options for parallelization. The performance of the new implementation was investigated via a series of single and multi-trajectory optimizations using a combination of parallel computing and constraint aggregation. The computational performance results show that in order to take full advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and the derivative computations themselves. The constraint aggregation results showed a significant numerical challenge due to difficulty in achieving tight convergence tolerances. Overall, the results demonstrate the value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future application of this collocation based method to the design of aircraft with where operational scheduling of technologies is key to achieving good performance.

  12. Portfolio optimization by using linear programing models based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  13. Laccase Production from a Temperature and pH Tolerant Fungal Strain of Trametes hirsuta (MTCC 11397).

    PubMed

    Dhakar, Kusum; Pandey, Anita

    2013-01-01

    Laccase production by a temperature and pH tolerant fungal strain (GBPI-CDF-03) isolated from a glacial site in Indian Himalayan Region (IHR) has been investigated. The fungus developed white cottony mass on potato dextrose agar and revealed thread-like mycelium under microscope. ITS region analysis of fungus showed its 100% similarity with Trametes hirsuta. The fungus tolerated temperature from 4 to 48°C ± 2 (25°C opt.) and pH 3-13 (5-7 opt.). Molecular weight of laccase was determined approximately 45 kDa by native PAGE. Amplification of laccase gene fragment (corresponding to the copper-binding conserved domain) contained 200 bp. The optimum pH for laccase production, at optimum growth temperature, was determined between 5.5 and 7.5. In optimization experiments, fructose and ammonium sulfate were found to be the best carbon and nitrogen sources, respectively, for enhancing the laccase production. Production of laccase was favored by high carbon/nitrogen ratio. Addition of CuSO4 (up to 1.0 mM) induced laccase production up to 2-fold, in case of 0.4 mM concentration. Addition of organic solvents also induced the production of laccase; acetone showed the highest (2-fold) induction. The study has implications in bioprospecting of ecologically resilient microbial strains.

  14. Low-dose interleukin-2 as a modulator of Treg homeostasis after HSCT: current understanding and future perspectives.

    PubMed

    Matsuoka, Ken-Ichi

    2018-02-01

    CD4 + CD25 + Foxp3 + Treg is a functionally distinct subset of mature T cells with broad suppressive activity and has been shown to play an important role in the establishment of immune tolerance after HSCT. Altered cytokine environment in post-HSCT lymphopenia with a relative functional deficiency of IL-2 could hamper the reconstitution of Treg, leading to refractory GVHD. Based on the theory of low-dose IL-2 in which Treg can be selectively stimulated through the high-affinity IL-2 receptor, clinical studies have been conducted and demonstrated that low-dose IL-2 administration can restore Treg homeostasis and promote the expansion of this subset on the polymorphic processes of Treg reconstitution after HSCT. The new therapeutic indication of IL-2 for immune tolerance has launched in the field of HSCT and is spreading to the other fields including the treatment for autoimmune diseases. To further extend the indication of low-dose IL-2 to more patients with various immunological problems, the optimization of the timing and dosing of IL-2 intervention and the concomitant immune suppressive therapy according to each patient-based assessment are to be desired in the near future. Further prospective studies may facilitate the development of novel therapeutic algorithms for the effective and safe induction of immune tolerance after HSCT.

  15. Advanced design for lightweight structures: Review and prospects

    NASA Astrophysics Data System (ADS)

    Braga, Daniel F. O.; Tavares, S. M. O.; da Silva, Lucas F. M.; Moreira, P. M. G. P.; de Castro, Paulo M. S. T.

    2014-08-01

    Current demand for fuel efficient aircraft has been pushing the aeronautical sector to develop ever more lightweight designs while keeping safe operation and required structural strength. Along with light-weighting, new structural design concepts have also been established in order to maintain the aircraft in service for longer periods of time, with high reliability levels. All these innovations and requirements have led to deeply optimized aeronautical structures contributing to more sustainable air transport. This article reviews the major design philosophies which have been employed in aircraft structures, including safe-life, fail-safe and damage tolerance taking into account their impact on the structural design. A brief historical review is performed in order to analyse what led to the development of each philosophy. Material properties are related to each of the design philosophies. Damage tolerant design has emerged as the main structural design philosophy in aeronautics, requiring deep knowledge on materials fatigue and corrosion strength, as well as potential failure modes and non-destructive inspection techniques, particularly minimum detectable defect and scan times. A discussion on the implementation of structural health monitoring and self-healing structures within the current panorama of structures designed according to the damage tolerant philosophy is presented. This discussion is aided by a review of research on these two subjects. These two concepts show potential for further improving safety and durability of aircraft structures.

  16. Attitudes toward patient aggression amongst mental health nurses in the 'zero tolerance' era: associations with burnout and length of experience.

    PubMed

    Whittington, Richard

    2002-11-01

    UK government policy now officially encourages an attitude of 'zero tolerance' towards aggression against health care staff. This study examines levels of such tolerance amongst a group of mental health care staff and associations between tolerance and other occupational and stress factors. Thirty-seven staff completed a Tolerance Scale (from the Perceptions of Aggression Scale) and the Maslach Burnout Inventory. Tolerance for aggression was higher amongst more experienced staff (P < 0.01) and high tolerance was associated with low emotional exhaustion, low depersonalization and high personal accomplishment (P < 0.01). Some staff endorse positive statements about patient aggression and a tolerant attitude may be linked to low burnout. Nurse attitudes to patient aggression therefore are complex and do not necessarily equate with an approach of 'zero tolerance'.

  17. Tolerance in liver transplantation: Biomarkers and clinical relevance

    PubMed Central

    Baroja-Mazo, Alberto; Revilla-Nuin, Beatriz; Parrilla, Pascual; Martínez-Alarcón, Laura; Ramírez, Pablo; Pons, José Antonio

    2016-01-01

    Transplantation is the optimal treatment for end-stage organ failure, and modern immunosuppression has allowed important progress in short-term outcomes. However, immunosuppression poorly influences chronic rejection and elicits chronic toxicity in current clinical practice. Thus, a major goal in transplantation is to understand and induce tolerance. It is well established that human regulatory T cells expressing the transcription factor FoxP3 play important roles in the maintenance of immunological self-tolerance and immune homeostasis. The major regulatory T cell subsets and mechanisms of expansion that are critical for induction and long-term maintenance of graft tolerance and survival are being actively investigated. Likewise, other immune cells, such as dendritic cells, monocyte/macrophages or natural killer cells, have been described as part of the process known as “operational tolerance”. However, translation of these results towards clinical practice needs solid tools to identify accurately and reliably patients who are going to be tolerant. In this way, a plethora of genetic and cellular biomarkers is raising and being validated worldwide in large multi-center clinical trials. Few of the studies performed so far have provided a detailed analysis of the impact of immunosuppression withdrawal on pre-existing complications derived from the long-term administration of immunosuppressive drugs and the side effects associated with them. The future of liver transplantation is aimed to develop new therapies which increase the actual low tolerant vs non-tolerant recipients ratio. PMID:27678350

  18. Economic modeling of fault tolerant flight control systems in commercial applications

    NASA Technical Reports Server (NTRS)

    Finelli, G. B.

    1982-01-01

    This paper describes the current development of a comprehensive model which will supply the assessment and analysis capability to investigate the economic viability of Fault Tolerant Flight Control Systems (FTFCS) for commercial aircraft of the 1990's and beyond. An introduction to the unique attributes of fault tolerance and how they will influence aircraft operations and consequent airline costs and benefits is presented. Specific modeling issues and elements necessary for accurate assessment of all costs affected by ownership and operation of FTFCS are delineated. Trade-off factors are presented, aimed at exposing economically optimal realizations of system implementations, resource allocation, and operating policies. A trade-off example is furnished to graphically display some of the analysis capabilities of the comprehensive simulation model now being developed.

  19. Ensemble yield simulations: Using heat-tolerant and later-maturing varieties to adapt to climate warming.

    PubMed

    Zhang, Yi; Zhao, Yanxia

    2017-01-01

    The use of modern crop varieties is a dominant method of obtaining high yields in crop production. Efforts to identify suitable varieties, with characteristics that would increase crop yield under future climate conditions, remain essential to developing sustainable agriculture and food security. This work aims to evaluate potential genotypic adaptations (i.e., using varieties with increased ability to produce desirable grain numbers under high temperatures and with enhanced thermal time requirements during the grain-filling period) to cope with the negative impacts of climate change on maize yield. The contributions of different options were investigated at six sites in the North China Plain using the APSIM model and the outputs of 8 GCMs under RCP4.5 scenarios. It was found that without considering adaptation options, mean maize yield would decrease by 7~18% during 2010-2039 relative to 1976-2005. A large decrease in grain number relative to stabilized grain weight decreased maize yield under future climate scenarios. Using heat-tolerant varieties, maize yield could increase on average by 6% to 10%. Using later maturing varieties, e.g., enhanced thermal time requirements during the grain-filling period, maize yield could increase by 7% to 10%. The optimal adaptation options were site specific.

  20. Ensemble yield simulations: Using heat-tolerant and later-maturing varieties to adapt to climate warming

    PubMed Central

    Zhang, Yi

    2017-01-01

    The use of modern crop varieties is a dominant method of obtaining high yields in crop production. Efforts to identify suitable varieties, with characteristics that would increase crop yield under future climate conditions, remain essential to developing sustainable agriculture and food security. This work aims to evaluate potential genotypic adaptations (i.e., using varieties with increased ability to produce desirable grain numbers under high temperatures and with enhanced thermal time requirements during the grain-filling period) to cope with the negative impacts of climate change on maize yield. The contributions of different options were investigated at six sites in the North China Plain using the APSIM model and the outputs of 8 GCMs under RCP4.5 scenarios. It was found that without considering adaptation options, mean maize yield would decrease by 7~18% during 2010–2039 relative to 1976–2005. A large decrease in grain number relative to stabilized grain weight decreased maize yield under future climate scenarios. Using heat-tolerant varieties, maize yield could increase on average by 6% to 10%. Using later maturing varieties, e.g., enhanced thermal time requirements during the grain-filling period, maize yield could increase by 7% to 10%. The optimal adaptation options were site specific. PMID:28459880

  1. An organic solvent-, detergent-, and thermo-stable alkaline protease from the mesophilic, organic solvent-tolerant Bacillus licheniformis 3C5.

    PubMed

    Rachadech, W; Navacharoen, A; Ruangsit, W; Pongtharangkul, T; Vangnai, A S

    2010-01-01

    Bacillus licheniformis 3C5, isolated as mesophilic bacterium, exhibited tolerance towards a wide range of non-polar and polar organic solvents at 45 degrees C. It produced an extracellular organic solvent-stable protease with an apparent molecular mass of approximately 32 kDa. The inhibitory effect of PMSF and EDTA suggested it is likely to be an alkaline serine protease. The protease was active over abroad range of temperatures (45-70 degrees C) and pH (8-10) range with an optimum activity at pH 10 and 65 degrees C. It was comparatively stable in the presence ofa relatively high concentration (35% (v/v)) of organic solvents and various types of detergents even at a relatively high temperature (45 degrees C). The protease production by B. licheniformis 3C5 was growth-dependent. The optimization of carbon and nitrogen sources for cell growth and protease production revealed that yeast extract was an important medium component to support both cell growth and the protease production. The overall properties of the protease produced by B. licheniformis 3C5 suggested that this thermo-stable, solvent-stable, detergent-stable alkaline protease is a promising potential biocatalyst for industrial and environmental applications.

  2. Reduction of methylviologen-mediated oxidative stress tolerance in antisense transgenic tobacco seedlings through restricted expression of StAPX.

    PubMed

    Sun, Wei-Hong; Wang, Yong; He, Hua-Gang; Li, Xue; Song, Wan; Du, Bin; Meng, Qing-Wei

    2013-07-01

    Ascorbate peroxidases are directly involved in reactive oxygen species (ROS) scavenging by reducing hydrogen peroxide to water. The tomato thylakoid-bound ascorbate peroxidase gene (StAPX) was introduced into tobacco. RNA gel blot analysis confirmed that StAPX in tomato leaves was induced by methylviologen-mediated oxidative stress. The sense transgenic seedlings exhibited higher tAPX activity than that of the wild type (WT) plants under oxidative stress conditions, while the antisense seedlings exhibited lower tAPX activity. Lower APX activities of antisense transgenic seedlings caused higher malondialdehyde contents and relative electrical conductivity. The sense transgenic seedlings with higher tAPX activity maintained higher chlorophyll content and showed the importance of tAPX in maintaining the optimal chloroplast development under methylviologen stress conditions, whereas the antisense lines maintained lower chlorophyll content than WT seedlings. Results indicated that the over-expression of StAPX enhanced tolerance to methylviologen-mediated oxidative stress in sense transgenic tobacco early seedlings, whereas the suppression of StAPX in antisense transgenic seedlings showed high sensitivity to oxidative stress.

  3. Spatial and temporal accuracy of asynchrony-tolerant finite difference schemes for partial differential equations at extreme scales

    NASA Astrophysics Data System (ADS)

    Kumari, Komal; Donzis, Diego

    2017-11-01

    Highly resolved computational simulations on massively parallel machines are critical in understanding the physics of a vast number of complex phenomena in nature governed by partial differential equations. Simulations at extreme levels of parallelism present many challenges with communication between processing elements (PEs) being a major bottleneck. In order to fully exploit the computational power of exascale machines one needs to devise numerical schemes that relax global synchronizations across PEs. This asynchronous computations, however, have a degrading effect on the accuracy of standard numerical schemes.We have developed asynchrony-tolerant (AT) schemes that maintain order of accuracy despite relaxed communications. We show, analytically and numerically, that these schemes retain their numerical properties with multi-step higher order temporal Runge-Kutta schemes. We also show that for a range of optimized parameters,the computation time and error for AT schemes is less than their synchronous counterpart. Stability of the AT schemes which depends upon history and random nature of delays, are also discussed. Support from NSF is gratefully acknowledged.

  4. Investigation of radiation hardened SOI wafer fabricated by ion-cut technique

    NASA Astrophysics Data System (ADS)

    Chang, Yongwei; Wei, Xing; Zhu, Lei; Su, Xin; Gao, Nan; Dong, Yemin

    2018-07-01

    Total ionizing dose (TID) effect on Silicon-on-Insulator (SOI) wafers due to inherent buried oxide (BOX) is a significant concern as it leads to the degradation of electrical properties of SOI-based devices and circuits, even failures of the systems associated with them. This paper reports the radiation hardening implementation of SOI wafer fabricated by ion-cut technique integrated with low-energy Si+ implantation. The electrical properties and radiation response of pseudo-MOS transistors are analyzed. The results demonstrate that the hardening process can significantly improve the TID tolerance of SOI wafers by generating Si nanocrystals (Si-NCs) within the BOX. The presence of Si-NCs created through Si+ implantation is evidenced by high-resolution transmission electron microscopy (HR-TEM). Under the pass gate (PG) irradiation bias, the anti-radiation properties of H-gate SOI nMOSFETs suggest that the radiation hardened SOI wafers with optimized Si implantation dose can perform effectively in a radiation environment. The radiation hardening process provides an excellent way to reinforce the TID tolerance of SOI wafers.

  5. Quantitative Trait Loci (QTL)-Guided Metabolic Engineering of a Complex Trait.

    PubMed

    Maurer, Matthew J; Sutardja, Lawrence; Pinel, Dominic; Bauer, Stefan; Muehlbauer, Amanda L; Ames, Tyler D; Skerker, Jeffrey M; Arkin, Adam P

    2017-03-17

    Engineering complex phenotypes for industrial and synthetic biology applications is difficult and often confounds rational design. Bioethanol production from lignocellulosic feedstocks is a complex trait that requires multiple host systems to utilize, detoxify, and metabolize a mixture of sugars and inhibitors present in plant hydrolysates. Here, we demonstrate an integrated approach to discovering and optimizing host factors that impact fitness of Saccharomyces cerevisiae during fermentation of a Miscanthus x giganteus plant hydrolysate. We first used high-resolution Quantitative Trait Loci (QTL) mapping and systematic bulk Reciprocal Hemizygosity Analysis (bRHA) to discover 17 loci that differentiate hydrolysate tolerance between an industrially related (JAY291) and a laboratory (S288C) strain. We then used this data to identify a subset of favorable allelic loci that were most amenable for strain engineering. Guided by this "genetic blueprint", and using a dual-guide Cas9-based method to efficiently perform multikilobase locus replacements, we engineered an S288C-derived strain with superior hydrolysate tolerance than JAY291. Our methods should be generalizable to engineering any complex trait in S. cerevisiae, as well as other organisms.

  6. New nanomicelle curcumin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment.

    PubMed

    Li, Mengshuang; Xin, Meng; Guo, Chuanlong; Lin, Guiming; Wu, Xianggen

    2017-11-01

    A stable topical ophthalmic curcumin formulation with high solubility, stability, and efficacy is needed for pharmaceutical use in clinics. The objective of this article was to describe a novel curcumin containing a nanomicelle formulation using a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (PVCL-PVA-PEG) graft copolymer. Nanomicelle curcumin was formulated and optimized and then further evaluated for in vitro cytotoxicity/in vivo ocular irritation, in vitro cellular uptake/in vivo corneal permeation, and in vitro antioxidant activity/in vivo anti-inflammatory efficacy. The solubility, chemical stability, and antioxidant activity were greatly improved after the encapsulation of the PVCL-PVA-PEG nanomicelles. The nanomicelle curcumin ophthalmic solution was simple to prepare and the nanomicelles are stable to the storage conditions, and it had good cellular tolerance. Nanomicelle curcumin also had excellent ocular tolerance in rabbits. The use of nanomicelles significantly improved in vitro cellular uptake and in vivo corneal permeation as well as improved anti-inflammatory efficacy when compared with a free curcumin solution. These findings indicate that nanomicelles could be promising topical delivery systems for the ocular administration of curcumin.

  7. Tolerance of chufa (Cyperus esculentus) as a vegetation unit's representative of bioregenerative life support systems to elevated temperatures

    NASA Astrophysics Data System (ADS)

    Shklavtsova, Ekaterina; Ushakova, Sofya; Shikhov, Valentin; Kudenko, Yurii

    Plants inclusion in the photosynthesizing unit of bioregenerative life support systems (BLSS) expects knowledge of both production characteristics of plants cultivated under optimal condi-tions and their tolerance to stress-factors' effect caused by contingency origination in a system. The work was aimed at investigation of chufa (Cyperus esculentus) tolerance to the effect of super optimal air temperature of 44 subject to PAR intensity and exposure duration. Chufa was grown in light culture conditions by hydroponics method on expanded clay aggregate. The Knop solution was used as nutrition medium. Up to 30 days the plants were cultivated at the intensity of 690 micromole*m-2*s*-1 and air temperature of 25. Heat shock was employed at the age of 30 days under the air temperature of 44 during 7, 20 and 44 hours at two different PAR intensities of 690 and 1150 micromole*m-2*s*-1. Chufa heat tolerance was estimated by intensity of external 2 gas exchange and by state of leaves' photosynthetic apparatus (PSA). Effect of disturbing temperature during 44 hours at PAR intensity of 690 micromole*m-2*s*-1 resulted in frozen-in damage of PSA-leaves' die-off. Chufa plants exposed to heat stress at PAR intensity of 690 micromole*m-2*s*-1 during both 7 and 20-hours demonstrated respiration dominance over photosynthesis; and 2 emission was observed by light. Functional activity of photosynthetic apparatus estimated with respect to parameters of pulse-amplitude-modulated chlorophyll fluorescence of photosystem 2 (PS 2) decreased on 40

  8. Electromagnetic nonlinearities in a Roebel-cable-based accelerator magnet prototype: variational approach

    NASA Astrophysics Data System (ADS)

    Ruuskanen, J.; Stenvall, A.; Lahtinen, V.; Pardo, E.

    2017-02-01

    Superconducting magnets are the most expensive series of components produced in the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN). When developing such magnets beyond state-of-the-art technology, one possible option is to use high-temperature superconductors (HTS) that are capable of tolerating much higher magnetic fields than low-temperature superconductors (LTS), carrying simultaneously high current densities. Significant cost reductions due to decreased prototype construction needs can be achieved by careful modelling of the magnets. Simulations are used, e.g. for designing magnets fulfilling the field quality requirements of the beampipe, and adequate protection by studying the losses occurring during charging and discharging. We model the hysteresis losses and the magnetic field nonlinearity in the beampipe as a function of the magnet’s current. These simulations rely on the minimum magnetic energy variation principle, with optimization algorithms provided by the open-source optimization library interior point optimizer. We utilize this methodology to investigate a research and development accelerator magnet prototype made of REBCO Roebel cable. The applicability of this approach, when the magnetic field dependence of the superconductor’s critical current density is considered, is discussed. We also scrutinize the influence of the necessary modelling decisions one needs to make with this approach. The results show that different decisions can lead to notably different results, and experiments are required to study the electromagnetic behaviour of such magnets further.

  9. Development of a chromatographic method with multi-criteria decision making design for simultaneous determination of nifedipine and atenolol in content uniformity testing.

    PubMed

    Ahmed, Sameh; Alqurshi, Abdulmalik; Mohamed, Abdel-Maaboud Ismail

    2018-07-01

    A new robust and reliable high-performance liquid chromatography (HPLC) method with multi-criteria decision making (MCDM) approach was developed to allow simultaneous quantification of atenolol (ATN) and nifedipine (NFD) in content uniformity testing. Felodipine (FLD) was used as an internal standard (I.S.) in this study. A novel marriage between a new interactive response optimizer and a HPLC method was suggested for multiple response optimizations of target responses. An interactive response optimizer was used as a decision and prediction tool for the optimal settings of target responses, according to specified criteria, based on Derringer's desirability. Four independent variables were considered in this study: Acetonitrile%, buffer pH and concentration along with column temperature. Eight responses were optimized: retention times of ATN, NFD, and FLD, resolutions between ATN/NFD and NFD/FLD, and plate numbers for ATN, NFD, and FLD. Multiple regression analysis was applied in order to scan the influences of the most significant variables for the regression models. The experimental design was set to give minimum retention times, maximum resolution and plate numbers. The interactive response optimizer allowed prediction of optimum conditions according to these criteria with a good composite desirability value of 0.98156. The developed method was validated according to the International Conference on Harmonization (ICH) guidelines with the aid of the experimental design. The developed MCDM-HPLC method showed superior robustness and resolution in short analysis time allowing successful simultaneous content uniformity testing of ATN and NFD in marketed capsules. The current work presents an interactive response optimizer as an efficient platform to optimize, predict responses, and validate HPLC methodology with tolerable design space for assay in quality control laboratories. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. High speed fault tolerant secure communication for muon chamber using FPGA based GBTx emulator

    NASA Astrophysics Data System (ADS)

    Sau, Suman; Mandal, Swagata; Saini, Jogender; Chakrabarti, Amlan; Chattopadhyay, Subhasis

    2015-12-01

    The Compressed Baryonic Matter (CBM) experiment is a part of the Facility for Antiproton and Ion Research (FAIR) in Darmstadt at the GSI. The CBM experiment will investigate the highly compressed nuclear matter using nucleus-nucleus collisions. This experiment will examine lieavy-ion collisions in fixed target geometry and will be able to measure hadrons, electrons and muons. CBM requires precise time synchronization, compact hardware, radiation tolerance, self-triggered front-end electronics, efficient data aggregation schemes and capability to handle high data rate (up to several TB/s). As a part of the implementation of read out chain of Muon Cliamber(MUCH) [1] in India, we have tried to implement FPGA based emulator of GBTx in India. GBTx is a radiation tolerant ASIC that can be used to implement multipurpose high speed bidirectional optical links for high-energy physics (HEP) experiments and is developed by CERN. GBTx will be used in highly irradiated area and more prone to be affected by multi bit error. To mitigate this effect instead of single bit error correcting RS code we have used two bit error correcting (15, 7) BCH code. It will increase the redundancy which in turn increases the reliability of the coded data. So the coded data will be less prone to be affected by noise due to radiation. The data will go from detector to PC through multiple nodes through the communication channel. The computing resources are connected to a network which can be accessed by authorized person to prevent unauthorized data access which might happen by compromising the network security. Thus data encryption is essential. In order to make the data communication secure, advanced encryption standard [2] (AES - a symmetric key cryptography) and RSA [3], [4] (asymmetric key cryptography) are used after the channel coding. We have implemented GBTx emulator on two Xilinx Kintex-7 boards (KC705). One will act as transmitter and other will act as receiver and they are connected through optical fiber through small form-factor pluggable (SFP) port. We have tested the setup in the runtime environment using Xilinx Cliipscope Pro Analyzer. We also measure the resource utilization, throughput., power optimization of implemented design.

  11. Development of a model for optimal food fortification: vitamin D among adults in Finland.

    PubMed

    Hirvonen, Tero; Sinkko, Harri; Valsta, Liisa; Hannila, Marja-Leena; Pietinen, Pirjo

    2007-08-01

    Average vitamin D intake is low in Finland. Even though almost all retail milk and margarine are fortified with vitamin D, the vitamin D intake is inadequate for a significant proportion of the population. Consequently, expanded food fortification with vitamin D would be motivated. However, there is a risk of unacceptably high intakes due to the rather narrow range of the adequate and safe intake. Therefore, a safe and efficient food fortification practice should be found for vitamin D. To develop a model for optimal food fortification and apply it to vitamin D. The FINDIET 2002 Study (48-h recall and data on supplement use (n = 2007), and 3 + 3 days' food records, n = 247) was used as the test data. The proportion of the population whose vitamin D intake is between the recommended intake (RI) and the upper tolerable intake level (UL) was plotted against the fortification level per energy for selected foods. The fortification level that maximized the proportion of the population falling between RI and UL was considered the optimal fortification level. If only milk, butter milk, yoghurt and margarine were fortified, it would be impossible to find a fortification level by which the intake of the whole population would lie within the RI-UL range. However, if all potentially fortifiable foods were fortified with vitamin D at level 1.2-1.5 microg/100 kcal, the intake of the whole adult population would be between the currently recommended intake of 7.5 microg/d and the current tolerable upper intake level of 50 microg/day (model 1). If the RI was set to 40 microg/day and UL to 250 microg/day, the optimal fortification level would be 9.2 microg/100 kcal in the scenario where all potentially fortifiable foods were fortified (model 2). Also in this model the whole population would fall between the RI-UL range. Our model of adding a specific level of vitamin D/100 kcal to all potentially fortifiable foods (1.2-1.5 microg/100 kcal in model 1 and 9.2 microg/100 kcal in model 2) seems to be an efficient and safe food fortification practise.

  12. Exercise increases pressure pain tolerance but not pressure and heat pain thresholds in healthy young men.

    PubMed

    Vaegter, H B; Hoeger Bement, M; Madsen, A B; Fridriksson, J; Dasa, M; Graven-Nielsen, T

    2017-01-01

    Exercise causes an acute decrease in the pain sensitivity known as exercise-induced hypoalgesia (EIH), but the specificity to certain pain modalities remains unknown. This study aimed to compare the effect of isometric exercise on the heat and pressure pain sensitivity. On three different days, 20 healthy young men performed two submaximal isometric knee extensions (30% maximal voluntary contraction in 3 min) and a control condition (quiet rest). Before and immediately after exercise and rest, the sensitivity to heat pain and pressure pain was assessed in randomized and counterbalanced order. Cuff pressure pain threshold (cPPT) and pain tolerance (cPTT) were assessed on the ipsilateral lower leg by computer-controlled cuff algometry. Heat pain threshold (HPT) was recorded on the ipsilateral foot by a computer-controlled thermal stimulator. Cuff pressure pain tolerance was significantly increased after exercise compared with baseline and rest (p < 0.05). Compared with rest, cPPT and HPT were not significantly increased by exercise. No significant correlation between exercise-induced changes in HPT and cPPT was found. Test-retest reliability before and after the rest condition was better for cPPT and CPTT (intraclass correlation > 0.77) compared with HPT (intraclass correlation = 0.54). The results indicate that hypoalgesia after submaximal isometric exercise is primarily affecting tolerance of pressure pain compared with the pain threshold. These data contribute to the understanding of how isometric exercise influences pain perception, which is necessary to optimize the clinical utility of exercise in management of chronic pain. The effect of isometric exercise on pain tolerance may be relevant for patients in chronic musculoskeletal pain as a pain-coping strategy. WHAT DOES THIS STUDY ADD?: The results indicate that hypoalgesia after submaximal isometric exercise is primarily affecting tolerance of pressure pain compared with the heat and pressure pain threshold. These data contribute to the understanding of how isometric exercise influences pain perception, which is necessary to optimize the clinical utility of exercise in management of chronic pain. © 2016 European Pain Federation - EFIC®.

  13. Status Report on the Fabrication of Fuel Cladding Chemical Interaction Test Articles for ATR Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard H.

    FeCrAl alloys are a promising new class of alloys for light water reactor (LWR) applications due to their superior oxidation and corrosion resistance in high temperature environments. The current R&D efforts have focused on the alloy composition and processing routes to generate nuclear grade FeCrAl alloys with optimized properties for enhanced accident tolerance while maintaining properties needed for normal operation conditions. Therefore, the composition and processing routes must be optimized to maintain the high temperature steam oxidation (typically achieved by increasing the Cr and Al content) while still exhibiting properties conducive to normal operation in a LWR (such as radiationmore » tolerance where reducing Cr content is favorable). Within this balancing act is the addition of understanding the influence on composition and processing routes on the FeCrAl alloys for fuel-cladding chemical interactions (FCCI). Currently, limited knowledge exists on FCCI for the FeCrAl-UO 2 clad-fuel system. To overcome the knowledge gaps on the FCCI for the FeCrAl-UO2 clad-fuel system a series of fueled irradiation tests have been developed for irradiation in the Advanced Test Reactor (ATR) housed at the Idaho National Laboratory (INL). The first series of tests has already been reported. These tests used miniaturized 17x17 PWR fuel geometry rodlets of second-generation FeCrAl alloys fueled with industrial Westinghouse UO 2 fuel. These rodlets were encapsulated within a stainless steel housing.To provide high fidelity experiments and more robust testing, a new series of rodlets have been developed deemed the Accident Tolerant Fuel Experiment #1 Oak Ridge National Laboratory FCCI test (ATF-1 ORNL FCCI). The main driving factor, which is discussed in detail, was to provide a radiation environment where prototypical fuel-clad interface temperatures are met while still maintaining constant contact between industrial fuel and the candidate cladding alloys, hence promoting FCCI between the fuel-clad systems. The other factor was to develop a test bed where multiple candidate alloys could be evaluated within a single irradiation test train, thereby reducing overall costs and increasing efficiency in alloy screening efforts. A collaboration between ORNL and INL was developed to facilitate the completion of the test bed for FCCI testing. The report highlights the activities related to the development of the ATF-1 ORNL FCCI rodlets for irradiation in INL’s ATR as part of the on-going ATF-1 experiments.« less

  14. Performance-limiting factors for x-ray free electron laser oscillator as a highly coherent, high spectral purity x-ray source

    NASA Astrophysics Data System (ADS)

    Park, Gunn Tae

    X-ray Free Electron Laser (XFEL) is a light source for coherent X-ray using the radiation from relativistic electrons and interaction between the two. In particular, XFEL oscillator(XFELO) uses optical cavity to repeatedly bring back the radiation to electron beam for the interaction. Its optimal performance, maximum single pass gain and minimum round trip loss, critically depends on cavity optics. In ideal case, the optimal performance would be achieved by the periodic radiation mode maximally overlapping with electron beam while the radiation mode is impinging on curved mirror that gives the radiation the focusing, below critical angle and angular divergence being kept small enough at each crystal for Bragg scattering, which is used for near-normal reflection. In reality, there exist various performance degrading factors in the cavity such as heat load on the crystal surface, misalignments of crystals and mirrors and mirror surface errors. In this thesis, we study via both analytic computation and numerical simulation the optimal design and performance of XFELO cavity in the presence of these factors. In optimal design, we implement asymmetric crystals into cavity to enhance the performance. In general, it has undesirable effect of pulse dilation. We present the configuration that avoids pulse length dilation. Then the effects of misalignments, focal length errors and mirror surface errors are to be evaluated and their tolerances are estimated. In particular, the simulation demonstrates that the effect of mirror surface errors on gain and round trip loss is well-within desired performance of XFELO.

  15. Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements

    PubMed Central

    Whitaker, May

    2016-01-01

    Purpose Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. Material and methods This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. Results The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. Conclusions The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected. PMID:27504129

  16. Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements.

    PubMed

    Poder, Joel; Whitaker, May

    2016-06-01

    Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected.

  17. Multimetric indices: How many metrics?

    EPA Science Inventory

    Multimetric indices (MMI’s) often include 5 to 15 metrics, each representing a different attribute of assemblage condition, such as species diversity, tolerant taxa, and nonnative taxa. Is there an optimal number of metrics for MMIs? To explore this question, I created 1000 9-met...

  18. Response of plant productivity to experimental flooding in a stable and a submerging marsh

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.

    2015-01-01

    Recent models of tidal marsh evolution rely largely on the premise that plants are most productive at an optimal flooding regime that occurs when soil elevations are somewhere between mean sea level and mean high tide. Here, we use 4 years of manipulative “marsh organ” flooding experiments to test the generality of this conceptual framework and to examine how the optimal flooding frequency may change between years and locations. In our experiments, above and belowground growth of Schoenoplectus americanus was most rapid when flooded about 40% of the time in a rapidly submerging marsh and when flooded about 25% of the time in a historically stable marsh. Optimum flooding durations were nearly identical in each year of the experiment and did not differ for above and belowground growth. In contrast, above and belowground growth of Spartina patensdecreased monotonically with increased flooding in all years and at both sites, indicating no optimal flooding frequency or elevation relative to sea level. Growth patterns in both species suggest a wider tolerance to flooding, and greater biomass for a given flooding duration, in the rapidly deteriorating marsh.

  19. Copper tolerance in clones of Agrostis gigantea from a mine waste site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, G.D.; Courtin, G.M.; Rauser, W.E.

    1977-04-15

    A mine waste site from Sudbury, Ontario, contaminated with heavy metals is described. The dominant vegetative cover was formed by two grasses: Agrostis gigantea Roth. and Agrostis scabra Willd. Testing of 10 clones of A. gigantea from the roast bed and an adjoining area for copper tolerance showed that two clones collected from the roast bed were tolerant to increased copper levels. Copper tolerance was found in clones growing on soils with high copper contents and low pHs. The combination of high copper content and low pH brought about a high level of extractable copper within the soil. Soils withmore » equally high copper levels but higher pHs and therefore low extractable-copper levels did not support copper-tolerant clones.« less

  20. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.

    PubMed

    Smith, Colin A; Kortemme, Tanja

    2011-01-01

    Predicting the set of sequences that are tolerated by a protein or protein interface, while maintaining a desired function, is useful for characterizing protein interaction specificity and for computationally designing sequence libraries to engineer proteins with new functions. Here we provide a general method, a detailed set of protocols, and several benchmarks and analyses for estimating tolerated sequences using flexible backbone protein design implemented in the Rosetta molecular modeling software suite. The input to the method is at least one experimentally determined three-dimensional protein structure or high-quality model. The starting structure(s) are expanded or refined into a conformational ensemble using Monte Carlo simulations consisting of backrub backbone and side chain moves in Rosetta. The method then uses a combination of simulated annealing and genetic algorithm optimization methods to enrich for low-energy sequences for the individual members of the ensemble. To emphasize certain functional requirements (e.g. forming a binding interface), interactions between and within parts of the structure (e.g. domains) can be reweighted in the scoring function. Results from each backbone structure are merged together to create a single estimate for the tolerated sequence space. We provide an extensive description of the protocol and its parameters, all source code, example analysis scripts and three tests applying this method to finding sequences predicted to stabilize proteins or protein interfaces. The generality of this method makes many other applications possible, for example stabilizing interactions with small molecules, DNA, or RNA. Through the use of within-domain reweighting and/or multistate design, it may also be possible to use this method to find sequences that stabilize particular protein conformations or binding interactions over others.

  1. Effectiveness of switching to the rivastigmine transdermal patch from oral cholinesterase inhibitors: a naturalistic prospective study in Alzheimer's disease.

    PubMed

    Cagnin, Annachiara; Cester, Alberto; Costa, Bruno; Ermani, Mario; Gabelli, Carlo; Gambina, Giuseppe

    2015-03-01

    Oral donepezil and rivastigmine are two commonly used cholinesterase inhibitors (ChEIs) used in Alzheimer's disease (AD). The rivastigmine transdermal patch formulation has high tolerability profile, allowing patients to achieve optimal therapeutic doses and providing potential advantages over oral ChEIs. This is a 6-month, multicentre, observational efficacy and tolerability study of switching from oral ChEIs to rivastigmine patch in AD patients who failed to show benefit from previous treatment. The reasons of the switch were: (1) lack/loss of benefit from previous oral ChEI treatment; (2) tolerability problems. The primary outcome was cognitive changes measured with the mini-mental state examination (MMSE) test. Secondary outcomes were modifications of functional independence and behavioral disturbances and occurrence of adverse events (AEs) after switching. 174 patients, over 180 patients screened, entered the study (lack/loss of efficacy: 57 %, tolerability problems: 33 %, both reasons: 10 %). 6 months after switching 56 % of patients stabilized or increased the MMSE score respect to baseline. The only predictor of this outcome was the response at 3 months. In the group with lack/loss of response to oral ChEI, the decline of the MMSE score changed from -3.4 ± 2.5 points in the 6 months before switching to -0.5 ± 3.2 in the 6 months after the switch (p < 0.001). There were no significant changes in the IADL or NPI scores. Drug discontinuation rate was 20 %, due to AEs (18 %) and lack of compliance (2 %). Switching from an unsuccessful oral ChEI therapy to rivastigmine patch is effective and safe in more than half of the switched patients after a 6-month period.

  2. Rate of Dehydration and Cumulative Desiccation Stress Interacted to Modulate Desiccation Tolerance of Recalcitrant Cocoa and Ginkgo Embryonic Tissues1

    PubMed Central

    Liang, Yongheng; Sun, Wendell Q.

    2002-01-01

    Rate of dehydration greatly affects desiccation tolerance of recalcitrant seeds. This effect is presumably related to two different stress vectors: direct mechanical or physical stress because of the loss of water and physicochemical damage of tissues as a result of metabolic alterations during drying. The present study proposed a new theoretic approach to represent these two types of stresses and investigated how seed tissues responded differently to two stress vectors, using the models of isolated cocoa (Theobroma cacao) and ginkgo (Ginkgo biloba) embryonic tissues dehydrated under various drying conditions. This approach used the differential change in axis water potential (ΔΨ/Δt) to quantify rate of dehydration and the intensity of direct physical stress experienced by embryonic tissues during desiccation. Physicochemical effect of drying was expressed by cumulative desiccation stress [∫\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\pagestyle{empty} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{o}^{t}}}\\end{equation*}\\end{document}f(ψ,t)], a function of both the rate and time of dehydration. Rapid dehydration increased the sensitivity of embryonic tissues to desiccation as indicated by high critical water contents, below which desiccation damage occurred. Cumulative desiccation stress increased sharply under slow drying conditions, which was also detrimental to embryonic tissues. This quantitative analysis of the stress-time-response relationship helps to understand the physiological basis for the existence of an optimal dehydration rate, with which maximum desiccation tolerance could be achieved. The established numerical analysis model will prove valuable for the design of experiments that aim to elucidate biochemical and physiological mechanisms of desiccation tolerance. PMID:11950981

  3. Assessing inspection sensitivity as it relates to damage tolerance in composite rotor hubs

    NASA Astrophysics Data System (ADS)

    Roach, Dennis P.; Rackow, Kirk

    2001-08-01

    Increasing niche applications, growing international markets, and the emergence of advanced rotorcraft technology are expected to greatly increase the population of helicopters over the next decade. In terms of fuselage fatigue, helicopters show similar trends as fixed-wing aircraft. The highly unsteady loads experienced by rotating wings not only directly affect components in the dynamic systems but are also transferred to the fixed airframe structure. Expanded use of rotorcraft has focused attention on the use of new materials and the optimization of maintenance practices. The FAA's Airworthiness Assurance Center (AANC) at Sandia National Labs has joined with Bell Helicopter andother agencies in the rotorcraft industry to evaluate nondestructive inspection (NDI) capabilities in light of the damage tolerance of assorted rotorcraft structure components. Currently, the program's emphasis is on composite rotor hubs. The rotorcraft industry is constantly evaluating new types of lightweight composite materials that not only enhance the safety and reliability of rotor components but also improve performance and extended operating life as well. Composite rotor hubs have led to the use of bearingless rotor systems that are less complex and require less maintenance than their predecessors. The test facility described in this paper allows the structural stability and damage tolerance of composite hubs to be evaluated using realistic flight load spectrums of centrifugal force and bending loads. NDI was integrated into the life-cycle fatigue tests in order to evaluate flaw detection sensitivity simultaneously wiht residual strength and general rotor hub peformance. This paper will describe the evolving use of damage tolerance analysis (DTA) to direct and improve rotorcraft maintenance along with the related use of nondestructive inspections to manage helicopter safety. OVeralll, the data from this project will provide information to improve the producibility, inspectability, serviceability, and cost effectively of rotorcraft components.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadayappan, Ponnuswamy

    Exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today's machines. Systems software for exascale machines must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. We propose a new approach to the data and work distribution model provided by system software based on the unifying formalism of an abstract file system. The proposed hierarchical data model providesmore » simple, familiar visibility and access to data structures through the file system hierarchy, while providing fault tolerance through selective redundancy. The hierarchical task model features work queues whose form and organization are represented as file system objects. Data and work are both first class entities. By exposing the relationships between data and work to the runtime system, information is available to optimize execution time and provide fault tolerance. The data distribution scheme provides replication (where desirable and possible) for fault tolerance and efficiency, and it is hierarchical to make it possible to take advantage of locality. The user, tools, and applications, including legacy applications, can interface with the data, work queues, and one another through the abstract file model. This runtime environment will provide multiple interfaces to support traditional Message Passing Interface applications, languages developed under DARPA's High Productivity Computing Systems program, as well as other, experimental programming models. We will validate our runtime system with pilot codes on existing platforms and will use simulation to validate for exascale-class platforms. In this final report, we summarize research results from the work done at the Ohio State University towards the larger goals of the project listed above.« less

  5. Ethanol Production and Maximum Cell Growth Are Highly Correlated with Membrane Lipid Composition during Fermentation as Determined by Lipidomic Analysis of 22 Saccharomyces cerevisiae Strains

    PubMed Central

    Henderson, Clark M.; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L.

    2013-01-01

    Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R2 = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R2 = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems. PMID:23064336

  6. Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains.

    PubMed

    Henderson, Clark M; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L; Block, David E

    2013-01-01

    Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R(2) = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R(2) = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems.

  7. Contribution of constitutive characteristics of lipids and phenolics in roots of tree species in Myrtales to aluminum tolerance.

    PubMed

    Maejima, Eriko; Osaki, Mitsuru; Wagatsuma, Tadao; Watanabe, Toshihiro

    2017-05-01

    High aluminum (Al) concentration in soil solution is the most important factor restricting plant growth in acidic soils. However, various plant species naturally grow in such soils. Generally, they are highly tolerant to Al, but organic acid exudation, the most common Al tolerance mechanism, cannot explain their tolerance. Lower phospholipid and higher sterol proportions in root plasma membrane enhance Al tolerance. Other cellular components, such as cell walls and phenolics, may also be involved in Al tolerance mechanisms. In this study, the relationships between these cellular components and the Al tolerance mechanisms in Melastoma malabathricum and Melaleuca cajuputi, both highly Al-tolerant species growing in strongly acidic soils, were investigated. Both species contained lower proportions of phospholipids and higher proportions of sterols in roots, respectively. Concentrations of phenolics in roots of both species were higher than that of rice; their phenolics could form chelates with Al. In these species, phenolic concentrations and composition were the same irrespective of the presence or absence of Al in the medium, suggesting that a higher concentration of phenolics is not a physiological response to Al but a constitutive characteristic. These characteristics of cellular components in roots may be cooperatively involved in their high Al tolerance. © 2016 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

  8. Optimizing 6-mercaptopurine and azathioprine therapy in the management of inflammatory bowel disease

    PubMed Central

    Bradford, Kara; Shih, David Q

    2011-01-01

    The thiopurine drugs, 6-mercaptopurine (6-MP) and azathioprine, are efficacious in the arsenal of inflammatory bowel disease (IBD) therapy. Previous reports indicate that 6-thioguanine nucleotide (6-TGN) levels correlate with therapeutic efficacy, whereas high 6-methylmercaptopurine (6-MMP) levels are associated with hepatotoxicity and myelotoxicity. Due to their complex metabolism, there is wide individual variation in patient response therein, both in achieving therapeutic drug levels as well as in developing adverse reactions. Several strategies to optimize 6-TGN while minimizing 6-MMP levels have been adopted to administer the thiopurine class of drugs to patients who otherwise would not tolerate these drugs due to side-effects. In this report, we will review different approaches to administer the thiopurine medications, including the administration of 6-mercaptopurine in those unsuccessfully treated with azathioprine; co-administration of thiopurine with allopurinol; co-administration of thiopurine with anti-tumor necrosis factor α; 6-TGN administration; desensitization trials; and split dosing of 6-MP. PMID:22072847

  9. Optimizing 6-mercaptopurine and azathioprine therapy in the management of inflammatory bowel disease.

    PubMed

    Bradford, Kara; Shih, David Q

    2011-10-07

    The thiopurine drugs, 6-mercaptopurine (6-MP) and azathioprine, are efficacious in the arsenal of inflammatory bowel disease (IBD) therapy. Previous reports indicate that 6-thioguanine nucleotide (6-TGN) levels correlate with therapeutic efficacy, whereas high 6-methylmercaptopurine (6-MMP) levels are associated with hepatotoxicity and myelotoxicity. Due to their complex metabolism, there is wide individual variation in patient response therein, both in achieving therapeutic drug levels as well as in developing adverse reactions. Several strategies to optimize 6-TGN while minimizing 6-MMP levels have been adopted to administer the thiopurine class of drugs to patients who otherwise would not tolerate these drugs due to side-effects. In this report, we will review different approaches to administer the thiopurine medications, including the administration of 6-mercaptopurine in those unsuccessfully treated with azathioprine; co-administration of thiopurine with allopurinol; co-administration of thiopurine with anti-tumor necrosis factor α; 6-TGN administration; desensitization trials; and split dosing of 6-MP.

  10. Characterization of an Invertase with pH Tolerance and Truncation of Its N-Terminal to Shift Optimum Activity toward Neutral pH

    PubMed Central

    Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme. PMID:23638032

  11. Characterization of an invertase with pH tolerance and truncation of its N-terminal to shift optimum activity toward neutral pH.

    PubMed

    Du, Liqin; Pang, Hao; Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme.

  12. Recent developments of artificial intelligence in drying of fresh food: A review.

    PubMed

    Sun, Qing; Zhang, Min; Mujumdar, Arun S

    2018-03-01

    Intellectualization is an important direction of drying development and artificial intelligence (AI) technologies have been widely used to solve problems of nonlinear function approximation, pattern detection, data interpretation, optimization, simulation, diagnosis, control, data sorting, clustering, and noise reduction in different food drying technologies due to the advantages of self-learning ability, adaptive ability, strong fault tolerance and high degree robustness to map the nonlinear structures of arbitrarily complex and dynamic phenomena. This article presents a comprehensive review on intelligent drying technologies and their applications. The paper starts with the introduction of basic theoretical knowledge of ANN, fuzzy logic and expert system. Then, we summarize the AI application of modeling, predicting, and optimization of heat and mass transfer, thermodynamic performance parameters, and quality indicators as well as physiochemical properties of dried products in artificial biomimetic technology (electronic nose, computer vision) and different conventional drying technologies. Furthermore, opportunities and limitations of AI technique in drying are also outlined to provide more ideas for researchers in this area.

  13. Multidisciplinary Optimization and Damage Tolerance of Stiffened Structures

    NASA Astrophysics Data System (ADS)

    Jrad, Mohamed

    THE structural optimization of a cantilever aircraft wing with curvilinear spars and ribs and stiffeners is described. For the optimization of a complex wing, a common strategy is to divide the optimization procedure into two subsystems: the global wing optimization which optimizes the geometry of spars, ribs and wing skins; and the local panel optimization which optimizes the design variables of local panels bordered by spars and ribs. The stiffeners are placed on the local panels to increase the stiffness and buckling resistance. During the local panel optimization, the stress information is taken from the global model as a displacement boundary condition on the panel edges using the so-called "Global-Local Approach". Particle swarm optimization is used in the integration of global/local optimization to optimize the SpaRibs. Parallel computing approach has been developed in the Python programming language to reduce the CPU time. The license cycle-check method and memory self-adjustment method are two approaches that have been applied in the parallel framework in order to optimize the use of the resources by reducing the license and memory limitations and making the code robust. The integrated global-local optimization approach has been applied to subsonic NASA common research model (CRM) wing, which proves the methodology's application scaling with medium fidelity FEM analysis. The structural weight of the wing has been reduced by 42% and the parallel implementation allowed a reduction in the CPU time by 89%. The aforementioned Global-Local Approach is investigated and applied to a composite panel with crack at its center. Because of composite laminates' heterogeneity, an accurate analysis of these requires very high time and storage space. A possible alternative to reduce the computational complexity is the global-local analysis which involves an approximate analysis of the whole structure followed by a detailed analysis of a significantly smaller region of interest. Buckling analysis of a composite panel with attached longitudinal stiffeners under compressive loads is performed using Ritz method with trigonometric functions. Results are then compared to those from Abaqus FEA for different shell elements. The case of composite panel with one, two, and three stiffeners is investigated. The effect of the distance between the stiffeners on the buckling load is also studied. The variation of the buckling load and buckling modes with the stiffeners' height is investigated. It is shown that there is an optimum value of stiffeners' height beyond which the structural response of the stiffened panel is not improved and the buckling load does not increase. Furthermore, there exist different critical values of stiffener's height at which the buckling mode of the structure changes. Next, buckling analysis of a composite panel with two straight stiffeners and a crack at the center is performed. Finally, buckling analysis of a composite panel with curvilinear stiffeners and a crack at the center is also conducted. Results show that panels with a larger crack have a reduced buckling load and that the buckling load decreases slightly when using higher order 2D shell FEM elements. A damage tolerance framework, EBF3PanelOpt, has been developed to design and analyze curvilinearly stiffened panels. The framework is written with the scripting language Python and it interacts with the commercial software MSC. Patran (for geometry and mesh creation), MSC. Nastran (for finite element analysis), and MSC. Marc (for damage tolerance analysis). The crack location is set to the location of the maximum value of the major principal stress while its orientation is set normal to the major principal axis direction. The effective stress intensity factor is calculated using the Virtual Crack Closure Technique and compared to the fracture toughness of the material in order to decide whether the crack will expand or not. The ratio of these two quantities is used as a constraint, along with the buckling factor, Kreisselmeier and Steinhauser criteria, and crippling factor. The EBF3PanelOpt framework is integrated within a two-step Particle Swarm Optimization in order to minimize the weight of the panel while satisfying the aforementioned constraints and using all the shape and thickness parameters as design variables. The result of the PSO is used then as an initial guess for the Gradient Based Optimization using only the thickness parameters as design variables and employing VisualDOC. Stiffened panel with two curvilinear stiffeners is optimized for two load cases. In both cases, significant reduction has been made for the panel's weight.

  14. Plasma-assisted physical vapor deposition surface treatments for tribological control

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1990-01-01

    In any mechanical or engineering system where contacting surfaces are in relative motion, adhesion, wear, and friction affect reliability and performance. With the advancement of space age transportation systems, the tribological requirements have dramatically increased. This is due to the optimized design, precision tolerance requirements, and high reliability expected for solid lubricating films in order to withstand hostile operating conditions (vacuum, high-low temperatures, high loads, and space radiation). For these problem areas the ion-assisted deposition/modification processes (plasma-based and ion beam techniques) offer the greatest potential for the synthesis of thin films and the tailoring of adherence and chemical and structural properties for optimized tribological performance. The present practices and new approaches of applying soft solid lubricant and hard wear resistant films to engineering substrates are reviewed. The ion bombardment treatments have increased film adherence, lowered friction coefficients, and enhanced wear life of the solid lubricating films such as the dichalcogenides (MoS2) and the soft metals (Au, Ag, Pb). Currently, sputtering is the preferred method of applying MoS2 films; and ion plating, the soft metallic films. Ultralow friction coefficients (less than 0.01) were achieved with sputtered MoS2. Further, new diamond-like carbon and BN lubricating films are being developed by using the ion assisted deposition techniques.

  15. Characteristics of the Copper,Zinc Superoxide Dismutase of a Hadal Sea Cucumber (Paelopatides sp.) from the Mariana Trench.

    PubMed

    Li, Yanan; Kong, Xue; Chen, Jiawei; Liu, Helu; Zhang, Haibin

    2018-05-18

    Superoxide dismutases (SODs) are among the most important antioxidant enzymes and show great potential in preventing adverse effects during therapeutic trials. In the present study, cloning, expression, and characterization of a novel Cu,Zn superoxide dismutase (Ps-Cu,Zn-SOD) from a hadal sea cucumber ( Paelopatides sp.) were reported. Phylogenetic analysis showed that Ps-Cu,Zn-SOD belonged to a class of intracellular SOD. Its K m and V max were 0.0258 ± 0.0048 mM and 925.1816 ± 28.0430 units/mg, respectively. The low K m value of this enzyme represents a high substrate affinity and can adapt to the low metabolic rate of deep sea organisms. The enzyme functioned from 0 °C to 80 °C with an optimal temperature of 40 °C. Moreover, the enzyme activity was maintained up to 87.12% at 5 °C. The enzyme was active at pH 4 to 12 with an optimal pH of 8.5. Furthermore, Ps-Cu,Zn-SOD tolerated high concentration of urea and GuHCl, resisted hydrolysis by proteases, and maintained stability at high pressure. All these features demonstrated that the deep sea Ps-Cu,Zn-SOD is a potential candidate for application to the biopharmaceutical field.

  16. Adaptation to metals in widespread and endemic plants.

    PubMed Central

    Shaw, A J

    1994-01-01

    Bryophytes, including the mosses, liverworts, and hornworts, occur in a variety of habitats with high concentrations of metals and have other characteristics that are advantageous for studies of metal tolerance. Mosses may evolve genetically specialized, metal-tolerant races less frequently than flowering plants. Some species of mosses appear to have inherently high levels of metal tolerance even in individuals that have not been subjected to natural selection in contaminated environments. Scopelophila cataractae, one of the so-called copper mosses, not only tolerates extremely high concentrations of metals in its substrates, but requires these substrates for optimum growth. This species should be included in mechanistic studies of tolerance at the cellular and molecular levels. PMID:7713025

  17. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.

    PubMed

    Mira, Nuno P; Palma, Margarida; Guerreiro, Joana F; Sá-Correia, Isabel

    2010-10-25

    Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5). Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to this weak acid. These are novel candidate genes for genetic engineering to obtain more robust yeast strains against acetic acid toxicity. Among these genes there are number of transcription factors that are documented regulators of a large percentage of the genes found to exert protection against acetic acid thus being considered interesting targets for subsequent genetic engineering. The increase of potassium concentration in the growth medium was found to improve the expression of maximal tolerance to acetic acid, consistent with the idea that the adequate manipulation of nutrient concentration of industrial growth medium can be an interesting strategy to surpass the deleterious effects of this weak acid in yeast cells.

  18. Determination of moderate-to-severe postoperative pain on the numeric rating scale: a cut-off point analysis applying four different methods.

    PubMed

    Gerbershagen, H J; Rothaug, J; Kalkman, C J; Meissner, W

    2011-10-01

    Cut-off points (CPs) of the numeric rating scale (NRS 0-10) are regularly used in postoperative pain treatment. However, there is insufficient evidence to identify the optimal CP between mild and moderate pain. A total of 435 patients undergoing general, trauma, or oral and maxillofacial surgery were studied. To determine the optimal CP for pain treatment, four approaches were used: first, patients estimated their tolerable postoperative pain intensity before operation; secondly, 24 h after surgery, they indicated if they would have preferred to receive more analgesics; thirdly, satisfaction with pain treatment was analysed, and fourthly, multivariate analysis was used to calculate the optimal CP for pain intensities in relation to pain-related interference with movement, breathing, sleep, and mood. The estimated tolerable postoperative pain before operation was median (range) NRS 4.0 (0-10). Patients who would have liked more analgesics reported significantly higher average pain since surgery [median NRS 5.0 (0-9)] compared with those without this request [NRS 3.0 (0-8)]. Patients satisfied with pain treatment reported an average pain intensity of median NRS 3.0 (0-8) compared with less satisfied patients with NRS 5.0 (2-9). Analysis of average postoperative pain in relation to pain-related interference with mood and activity indicated pain categories of NRS 0-2, mild; 3-4, moderate; and 5-10, severe pain. Three of the four methods identified a treatment threshold of average pain of NRS≥4. This was considered to identify patients with pain of moderate-to-severe intensity. This cut-off was indentified as the tolerable pain threshold.

  19. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species.

    PubMed

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Eyles, Alieta; Shabala, Sergey

    2016-10-01

    Three different species of Brassica, with differential salt sensitivity were used to understand physiological mechanisms of salt tolerance operating in these species and to evaluate the relative contribution of different strategies to cope with salt load. Brassica napus was the most tolerant species in terms of the overall performance, with Brassica juncea and Brassica oleracea being much more sensitive to salt stress with no obvious difference between them. While prominent reduction in net CO2 assimilation was observed in both sensitive species, physiological mechanisms beyond this reduction differed strongly. Brassica juncea plants possessed high osmotolerance and were able to maintain high transpiration rate but showed a significant reduction in leaf chlorophyll content and efficiency of leaf photochemistry. On the contrary, B. oleracea plants possessed the highest (among the three species) tissue tolerance but showed a very significant stomatal limitation of photosynthesis. Electrophysiological experiments revealed that the high tissue tolerance in B. oleracea was related to the ability of leaf mesophyll cells to maintain highly negative membrane potential in the presence of high apoplastic Na(+) . In addition to high osmotolerance, the most tolerant B. napus showed also lesser accumulation of toxic Na(+) and Cl(-) in the leaf, possessed moderate tissue tolerance and had a superior K(+) retention ability. Taken together, the results from this study indicate that the three Brassica species employ very different mechanisms to cope with salinity and, despite its overall sensitivity to salinity, B. oleracea could be recommended as a valuable 'donor' of tissue tolerance genes to confer this trait for marker-assisted breeding programs. © 2016 Scandinavian Plant Physiology Society.

  20. High tolerance to high-light conditions for the protected species Ariocarpus kotschoubeyanus (Cactaceae)

    PubMed Central

    Arroyo-Pérez, Erika; González-Salvatierra, Claudia; Matías-Palafox, María L.; Jiménez-Sierra, Cecilia

    2017-01-01

    Abstract We determined the seasonal ecophysiological performance under perennial plants and under high solar radiation for adult individuals from the ‘living rock’ cactus Ariocarpus kotschoubeyanus, which occurs equally under nurse plants and in open spaces. We evaluated the effective quantum yield of photosystem II (ΦPSII) and the dissipation of thermal energy [non-photochemical quenching (NPQ)] thorough the year. The maximum apparent electron transport rate (ETRmax) and the saturating photosynthetically active photon flux density for PSII (PFDsat) were also determined from rapid light curves. We found that although the ΦPSII was higher in shaded sites under potential nurse plants than in exposed sites, all values were close to the optimal value of 0.83. The high ΦPSII found for A. kotschoubeyanus plants suggests that they use a great proportion of the absorbed light for photosynthesis, under nurse plants as well as in open spaces. We also found higher NPQ values in exposed sites than in shaded ones but only in Autumn, thus reducing the risk of photoinhibition. In addition, the PFDsat was higher in exposed sites than in shaded ones in Spring, Summer and Autumn, but in Winter there were no differences between treatments. We also found high saturating light levels for ETR (PFDsat higher than 1378 μmol m−2 s−1) in all seasons but in winter for shaded and non-shaded plants. Our findings indicate that A. kotschoubeyanus plants use a great proportion of the light that they absorb for photosynthesis. This high tolerance to high-light conditions could explain why A. kotschoubeyanus do not show preferences for protected sites under nurse plants. PMID:28729902

  1. Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production.

    PubMed

    Demeke, Mekonnen M; Dumortier, Françoise; Li, Yingying; Broeckx, Tom; Foulquié-Moreno, María R; Thevelein, Johan M

    2013-08-26

    In addition to efficient pentose utilization, high inhibitor tolerance is a key trait required in any organism used for economically viable industrial bioethanol production with lignocellulose biomass. Although recent work has succeeded in establishing efficient xylose fermentation in robust industrial Saccharomyces cerevisiae strains, the resulting strains still lacked sufficient inhibitor tolerance for efficient sugar fermentation in lignocellulose hydrolysates. The aim of the present work was to combine high xylose fermentation activity and high inhibitor tolerance in a single industrial yeast strain. We have screened 580 yeast strains for high inhibitor tolerance using undetoxified acid-pretreated spruce hydrolysate and identified a triploid industrial baker's yeast strain as having the highest inhibitor tolerance. From this strain, a mating competent diploid segregant with even higher inhibitor tolerance was obtained. It was crossed with the recently developed D-xylose fermenting diploid industrial strain GS1.11-26, with the Ethanol Red genetic background. Screening of 819 diploid segregants from the tetraploid hybrid resulted in two strains, GSF335 and GSF767, combining high inhibitor tolerance and efficient xylose fermentation. In a parallel approach, meiotic recombination of GS1.11-26 with a haploid segregant of Ethanol Red and screening of 104 segregants resulted in a similar inhibitor tolerant diploid strain, GSE16. The three superior strains exhibited significantly improved tolerance to inhibitors in spruce hydrolysate, higher glucose consumption rates, higher aerobic growth rates and higher maximal ethanol accumulation capacity in very-high gravity fermentation, compared to GS1.11-26. In complex medium, the D-xylose utilization rate by the three superior strains ranged from 0.36 to 0.67 g/g DW/h, which was lower than that of GS1.11-26 (1.10 g/g DW/h). On the other hand, in batch fermentation of undetoxified acid-pretreated spruce hydrolysate, the three superior strains showed comparable D-xylose utilization rates as GS1.11-26, probably because of their higher inhibitor tolerance. They produced up to 23% more ethanol compared to Ethanol Red. We have successfully constructed three superior industrial S. cerevisiae strains that combine efficient D-xylose utilization with high inhibitor tolerance. Since the background strain Ethanol Red has a proven record of successful industrial application, the three new superior strains have strong potential for direct application in industrial bioethanol production.

  2. Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production

    PubMed Central

    2013-01-01

    Background In addition to efficient pentose utilization, high inhibitor tolerance is a key trait required in any organism used for economically viable industrial bioethanol production with lignocellulose biomass. Although recent work has succeeded in establishing efficient xylose fermentation in robust industrial Saccharomyces cerevisiae strains, the resulting strains still lacked sufficient inhibitor tolerance for efficient sugar fermentation in lignocellulose hydrolysates. The aim of the present work was to combine high xylose fermentation activity and high inhibitor tolerance in a single industrial yeast strain. Results We have screened 580 yeast strains for high inhibitor tolerance using undetoxified acid-pretreated spruce hydrolysate and identified a triploid industrial baker’s yeast strain as having the highest inhibitor tolerance. From this strain, a mating competent diploid segregant with even higher inhibitor tolerance was obtained. It was crossed with the recently developed D-xylose fermenting diploid industrial strain GS1.11-26, with the Ethanol Red genetic background. Screening of 819 diploid segregants from the tetraploid hybrid resulted in two strains, GSF335 and GSF767, combining high inhibitor tolerance and efficient xylose fermentation. In a parallel approach, meiotic recombination of GS1.11-26 with a haploid segregant of Ethanol Red and screening of 104 segregants resulted in a similar inhibitor tolerant diploid strain, GSE16. The three superior strains exhibited significantly improved tolerance to inhibitors in spruce hydrolysate, higher glucose consumption rates, higher aerobic growth rates and higher maximal ethanol accumulation capacity in very-high gravity fermentation, compared to GS1.11-26. In complex medium, the D-xylose utilization rate by the three superior strains ranged from 0.36 to 0.67 g/g DW/h, which was lower than that of GS1.11-26 (1.10 g/g DW/h). On the other hand, in batch fermentation of undetoxified acid-pretreated spruce hydrolysate, the three superior strains showed comparable D-xylose utilization rates as GS1.11-26, probably because of their higher inhibitor tolerance. They produced up to 23% more ethanol compared to Ethanol Red. Conclusions We have successfully constructed three superior industrial S. cerevisiae strains that combine efficient D-xylose utilization with high inhibitor tolerance. Since the background strain Ethanol Red has a proven record of successful industrial application, the three new superior strains have strong potential for direct application in industrial bioethanol production. PMID:23971950

  3. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review.

    PubMed

    Rehman, Muhammad Zia Ur; Rizwan, Muhammad; Ali, Shafaqat; Ok, Yong Sik; Ishaque, Wajid; Saifullah; Nawaz, Muhammad Farrakh; Akmal, Fatima; Waqar, Maqsooda

    2017-09-01

    Heavy metals are among the major environmental pollutants and the accumulation of these metals in soils is of great concern in agricultural production due to the toxic effects on crop growth and food quality. Phytoremediation is a promising technique which is being considered as an alternative and low-cost technology for the remediation of metal-contaminated soils. Solanum nigrum is widely studied for the remediation of heavy metal-contaminated soils owing to its ability for metal uptake and tolerance. S. nigrum can tolerate excess amount of certain metals through different mechanism including enhancing the activities of antioxidant enzymes and metal deposition in non-active parts of the plant. An overview of heavy metal uptake and tolerance in S. nigrum is given. Both endophytic and soil microorganisms can play a role in enhancing metal tolerance in S. nigrum. Additionally, optimization of soil management practices and exogenous application of amendments can also be used to enhance metal uptake and tolerance in this plant. The main objective of the present review is to highlight and discuss the recent progresses in using S. nigrum for remediation of metal contaminated soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Fault tolerant high-performance PACS network design and implementation

    NASA Astrophysics Data System (ADS)

    Chimiak, William J.; Boehme, Johannes M.

    1998-07-01

    The Wake Forest University School of Medicine and the Wake Forest University/Baptist Medical Center (WFUBMC) are implementing a second generation PACS. The first generation PACS provided helpful information about the functional and temporal requirements of the system. It highlighted the importance of image retrieval speed, system availability, RIS/HIS integration, the ability to rapidly view images on any PACS workstation, network bandwidth, equipment redundancy, and the ability for the system to evolve using standards-based components. This paper deals with the network design and implementation of the PACS. The physical layout of the hospital areas served by the PACS, the choice of network equipment and installation issues encountered are addressed. Efforts to optimize fault tolerance are discussed. The PACS network is a gigabit, mixed-media network based on LAN emulation over ATM (LANE) with a rapid migration from LANE to Multiple Protocols Over ATM (MPOA) planned. Two fault-tolerant backbone ATM switches serve to distribute network accesses with two load-balancing 622 megabit per second (Mbps) OC-12 interconnections. The switch was sized to be upgradable to provide a 2.54 Gbps OC-48 interconnection with an OC-12 interconnection as a load-balancing backup. Modalities connect with legacy network interface cards to a switched-ethernet device. This device has two 155 Mbps OC-3 load-balancing uplinks to each of the backbone ATM switches of the PACS. This provides a fault-tolerant logical connection to the modality servers which pass verified DICOM images to the PACS servers and proper PACS diagnostic workstations. Where fiber pulls were prohibitively expensive, edge ATM switches were installed with an OC-12 uplink to a backbone ATM switches. The PACS and data base servers are fault-tolerant, hot-swappable Sun Enterprise Servers with an OC-12 connection to a backbone ATM switch and a fast-ethernet connection to a back-up network. The workstations come with 10/100 BASET autosense cards. A redundant switched-ethernet network will be installed to provide yet another degree of network fault-tolerance. The switched-ethernet devices are connected to each of the backbone ATM switches with two-load-balancing OC-3 connections to provide fault-tolerant connectivity in the event of a primary network failure.

  5. Defense Small Business Innovation Research Program (SBIR). Volume 3. Air Force Abstracts of Phase 1 Awards

    DTIC Science & Technology

    1990-01-01

    THERE WILL BE A CONTINUING NEED FOR A SENSITIVE, RAPID, AND ECONOMICAL TESTING PROCEDURE CAPABLE OF DETECTING DEFECTS AND PROVIDING FEEDBACK FOR QUALITY...SOLUTIONS. THE DKF METHOD PROVIDES OPTIMAL OR NEAR-OPTIMAL ACCURACY, REDUCE PROCESSING BURDEN, AND IMPROVE FAULT TOLERANCE. THE DKF/MMAE ( DMAE ) TECHNIQUES...DEVICES FOR B-SiC IS TO BE ABLE TO CONSISTENTLY PRODUCE INTRINSIC FILMS WITH VERY LOW DEFECTS AND TO DEVELOP SCHOTTKY AND OHMIC CONTACT MATERIALS THAT WILL

  6. Waveguide Modulator for Interference Tolerant Functional Near Infrared Spectrometer (fNIRS)

    NASA Technical Reports Server (NTRS)

    Walton, Joanne; Tin, Padetha; Mackey, Jeffrey

    2017-01-01

    Many crew-related errors in aviation and astronautics are caused by hazardous cognitive states including overstress, disengagement, high fatigue and ineffective crew coordination. Safety can be improved by monitoring and predicting these cognitive states in a non-intrusive manner and designing mitigation strategies. Measuring hemoglobin concentration changes in the brain with functional Near Infrared Spectroscopy is a promising technique for monitoring cognitive state and optimizing human performance during both space and aviation operations. A compact, wearable fNIRS system would provide an innovative early warning system during long duration missions to detect and prevent vigilance decrements in pilots and astronauts. This effort focused on developing a waveguide modulator for use in a fNIRS system.

  7. Systems metabolic engineering: genome-scale models and beyond.

    PubMed

    Blazeck, John; Alper, Hal

    2010-07-01

    The advent of high throughput genome-scale bioinformatics has led to an exponential increase in available cellular system data. Systems metabolic engineering attempts to use data-driven approaches--based on the data collected with high throughput technologies--to identify gene targets and optimize phenotypical properties on a systems level. Current systems metabolic engineering tools are limited for predicting and defining complex phenotypes such as chemical tolerances and other global, multigenic traits. The most pragmatic systems-based tool for metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we examine here how this approach can be expanded for novel organisms. This review will highlight advances of the systems metabolic engineering approach with a focus on de novo development and use of genome-scale metabolic reconstructions for metabolic engineering applications. We will then discuss the challenges and prospects for this emerging field to enable model-based metabolic engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering techniques represent a viable first step for improving product yield that still must be followed by combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems.

  8. Habituation of Salmonella spp. at Reduced Water Activity and Its Effect on Heat Tolerance

    PubMed Central

    Mattick, K. L.; Jørgensen, F.; Legan, J. D.; Lappin-Scott, H. M.; Humphrey, T. J.

    2000-01-01

    The effect of habituation at reduced water activity (aw) on heat tolerance of Salmonella spp. was investigated. Stationary-phase cells were exposed to aw 0.95 in broths containing glucose-fructose, sodium chloride, or glycerol at 21°C for up to a week prior to heat challenge at 54°C. In addition, the effects of different aws and heat challenge temperatures were investigated. Habituation at aw 0.95 resulted in increased heat tolerance at 54°C with all solutes tested. The extent of the increase and the optimal habituation time depended on the solute used. Exposure to broths containing glucose-fructose (aw 0.95) for 12 h resulted in maximal heat tolerance, with more than a fourfold increase in D54 values. Cells held for more than 72 h in these conditions, however, became as heat sensitive as nonhabituated populations. Habituation in the presence of sodium chloride or glycerol gave rise to less pronounced but still significant increases in heat tolerance at 54°C, and a shorter incubation time was required to maximize tolerance. The increase in heat tolerance following habituation in broths containing glucose-fructose (aw 0.95) was RpoS independent. The presence of chloramphenicol or rifampin during habituation and inactivation did not affect the extent of heat tolerance achieved, suggesting that de novo protein synthesis was probably not necessary. These data highlight the importance of cell prehistory prior to heat inactivation and may have implications for food manufacturers using low-aw ingredients. PMID:11055944

  9. Rotational 3D printing of damage-tolerant composites with programmable mechanics

    PubMed Central

    Raney, Jordan R.; Compton, Brett G.; Ober, Thomas J.; Shea, Kristina; Lewis, Jennifer A.

    2018-01-01

    Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber–epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. PMID:29348206

  10. Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis.

    PubMed

    Kasajima, Ichiro

    2017-04-26

    Oxidative stress is considered to be involved in growth retardation of plants when they are exposed to a variety of biotic and abiotic stresses. Despite its potential importance in improving crop production, comparative studies on oxidative stress tolerance between rice (Oryza sativa L.) cultivars are limited. This work describes the difference in term of oxidative stress tolerance between 72 rice cultivars. 72 rice cultivars grown under naturally lit greenhouse were used in this study. Excised leaf discs were subjected to a low concentration of methyl viologen (paraquat), a chemical reagent known to generate reactive oxygen species in chloroplast. Chlorophyll fluorescence analysis using a two-dimensional fluorescence meter, ion leakage analysis as well as the measurement of chlorophyll contents were used to evaluate the oxidative stress tolerance of leaf discs. Furthermore, fluorescence intensities were finely analyzed based on new fluorescence theories that we have optimized. Treatment of leaf discs with methyl viologen caused differential decrease of maximum quantum yield of photosystem II (Fv/Fm) between cultivars. Decrease of Fv/Fm was also closely correlated with increase of ion leakage and decrease of chlorophyll a/b ratio. Fv/Fm was factorized into photochemical and non-photochemical parameters to classify rice cultivars into sensitive and tolerant ones. Among the 72 compared rice cultivars, the traditional cultivar Co13 was identified as the most tolerant to oxidative stress. Koshihikari, a dominant modern Japonica cultivar in Japan as well as IR58, one of the modern Indica breeding lines exhibited a strong tolerance to oxidative stress. Close correlation between Fv/Fm and chlorophyll a/b ratio provides a simple method to estimate oxidative stress tolerance, without measurement of chlorophyll fluorescence with special equipment. The fact that modern cultivars, especially major cultivars possessed tolerance to oxidative stress suggests that oxidative stress tolerance is one of the agricultural traits prerequisite for improvement of modern rice cultivars. Data presented in this study would enable breeding of rice cultivars having strong tolerance to oxidative stress.

  11. Determining the Optimal Spectral Sampling Frequency and Uncertainty Thresholds for Hyperspectral Remote Sensing of Ocean Color

    NASA Technical Reports Server (NTRS)

    Vandermeulen, Ryan A.; Mannino, Antonio; Neeley, Aimee; Werdell, Jeremy; Arnone, Robert

    2017-01-01

    Using a modified geostatistical technique, empirical variograms were constructed from the first derivative of several diverse remote sensing reflectance and phytoplankton absorbance spectra to describe how data points are correlated with distance across the spectra. The maximum rate of information gain is measured as a function of the kurtosis associated with the Gaussian structure of the output, and is determined for discrete segments of spectra obtained from a variety of water types (turbid river filaments, coastal waters, shelf waters, a dense Microcystis bloom, and oligotrophic waters), as well as individual and mixed phytoplankton functional types (PFTs; diatoms, chlorophytes, cyanobacteria, coccolithophores). Results show that a continuous spectrum of 5 to 7 nm spectral resolution is optimal to resolve the variability across mixed reflectance and absorbance spectra. In addition, the impact of uncertainty on subsequent derivative analysis is assessed, showing that a limit of 3 Gaussian noise (SNR 66) is tolerated without smoothing the spectrum, and 13 (SNR 15) noise is tolerated with smoothing.

  12. Optimization design of wireless charging system for autonomous robots based on magnetic resonance coupling

    NASA Astrophysics Data System (ADS)

    Wang, Junhua; Hu, Meilin; Cai, Changsong; Lin, Zhongzheng; Li, Liang; Fang, Zhijian

    2018-05-01

    Wireless charging is the key technology to realize real autonomy of mobile robots. As the core part of wireless power transfer system, coupling mechanism including coupling coils and compensation topology is analyzed and optimized through simulations, to achieve stable and practical wireless charging suitable for ordinary robots. Multi-layer coil structure, especially double-layer coil is explored and selected to greatly enhance coupling performance, while shape of ferrite shielding goes through distributed optimization to guarantee coil fault tolerance and cost effectiveness. On the basis of optimized coils, primary compensation topology is analyzed to adopt composite LCL compensation, to stabilize operations of the primary side under variations of mutual inductance. Experimental results show the optimized system does make sense for wireless charging application for robots based on magnetic resonance coupling, to realize long-term autonomy of robots.

  13. Design of clinical trials of antidepressants: should a placebo control arm be included?

    PubMed

    Fritze, J; Möller, H J

    2001-01-01

    There is no doubt that available antidepressants are efficacious and effective. Nevertheless, more effective drugs with improved tolerability are needed. With this need in mind, some protagonists claim that future antidepressants should be proved superior to, or at least as effective as, established antidepressants, making placebo control methodologically dispensable in clinical trials. Moreover, the use of placebo control is criticised as unethical because it might result in effective treatment being withheld. There are, however, a number of methodological reasons why placebo control is indispensable for the proof of efficacy of antidepressants. Comparing investigational antidepressants only with standard antidepressants and not placebo yields ambiguous results that are difficult to interpret, be it in superiority or equivalence testing, and this method of assessment requires larger sample sizes than those required with the use of placebo control. Experimental methodology not adhering to the optimal study design is ethically questionable. Restricting the testing of investigational antidepressants only to superiority over standard antidepressants is an obstacle to therapeutic progress in terms of tolerability and the detection of innovative mechanisms of action from which certain subgroups of future patients might benefit. The use of a methodology that requires larger samples for testing of superiority or equivalence is also ethically questionable. In view of the high placebo response rates in trials of antidepressants, placebo treatment does not mean withholding effective treatment. Accepting the necessity of the clinical evaluation of new, potentially ineffective antidepressants implicitly means accepting placebo control as ethically justified. Three- or multi-arm comparisons including placebo and an active reference represent the optimal study design.

  14. Variation in temperature tolerance among families of Atlantic salmon (Salmo salar) is associated with hypoxia tolerance, ventricle size and myoglobin level.

    PubMed

    Anttila, Katja; Dhillon, Rashpal S; Boulding, Elizabeth G; Farrell, Anthony P; Glebe, Brian D; Elliott, Jake A K; Wolters, William R; Schulte, Patricia M

    2013-04-01

    In fishes, performance failure at high temperature is thought to be due to a limitation on oxygen delivery (the theory of oxygen and capacity limited thermal tolerance, OCLTT), which suggests that thermal tolerance and hypoxia tolerance might be functionally associated. Here we examined variation in temperature and hypoxia tolerance among 41 families of Atlantic salmon (Salmo salar), which allowed us to evaluate the association between these two traits. Both temperature and hypoxia tolerance varied significantly among families and there was a significant positive correlation between critical maximum temperature (CTmax) and hypoxia tolerance, supporting the OCLTT concept. At the organ and cellular levels, we also discovered support for the OCLTT concept as relative ventricle mass (RVM) and cardiac myoglobin (Mb) levels both correlated positively with CTmax (R(2)=0.21, P<0.001 and R(2)=0.17, P=0.003, respectively). A large RVM has previously been shown to be associated with high cardiac output, which might facilitate tissue oxygen supply during elevated oxygen demand at high temperatures, while Mb facilitates the oxygen transfer from the blood to tissues, especially during hypoxia. The data presented here demonstrate for the first time that RVM and Mb are correlated with increased upper temperature tolerance in fish. High phenotypic variation between families and greater similarity among full- and half-siblings suggests that there is substantial standing genetic variation in thermal and hypoxia tolerance, which could respond to selection either in aquaculture or in response to anthropogenic stressors such as global climate change.

  15. Regulation of µ-Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance

    PubMed Central

    Williams, John T.; Ingram, Susan L.; Henderson, Graeme; Chavkin, Charles; von Zastrow, Mark; Schulz, Stefan; Koch, Thomas; Evans, Christopher J.

    2013-01-01

    Morphine and related µ-opioid receptor (MOR) agonists remain among the most effective drugs known for acute relief of severe pain. A major problem in treating painful conditions is that tolerance limits the long-term utility of opioid agonists. Considerable effort has been expended on developing an understanding of the molecular and cellular processes that underlie acute MOR signaling, short-term receptor regulation, and the progression of events that lead to tolerance for different MOR agonists. Although great progress has been made in the past decade, many points of contention and controversy cloud the realization of this progress. This review attempts to clarify some confusion by clearly defining terms, such as desensitization and tolerance, and addressing optimal pharmacological analyses for discerning relative importance of these cellular mechanisms. Cellular and molecular mechanisms regulating MOR function by phosphorylation relative to receptor desensitization and endocytosis are comprehensively reviewed, with an emphasis on agonist-biased regulation and areas where knowledge is lacking or controversial. The implications of these mechanisms for understanding the substantial contribution of MOR signaling to opioid tolerance are then considered in detail. While some functional MOR regulatory mechanisms contributing to tolerance are clearly understood, there are large gaps in understanding the molecular processes responsible for loss of MOR function after chronic exposure to opioids. Further elucidation of the cellular mechanisms that are regulated by opioids will be necessary for the successful development of MOR-based approaches to new pain therapeutics that limit the development of tolerance. PMID:23321159

  16. Effects of indigestible dextrin on glucose tolerance in rats.

    PubMed

    Wakabayashi, S; Kishimoto, Y; Matsuoka, A

    1995-03-01

    A recently developed indigestible dextrin (IDex) was studied for its effects on glucose tolerance in male Sprague-Dawley rats. IDex is a low viscosity, water-soluble dietary fibre obtained by heating and enzyme treatment of potato starch. It has an average molecular weight of 1600. An oral glucose tolerance test was conducted with 8-week-old rats to evaluate the effects of IDex on the increase in plasma glucose and insulin levels after a single administration of various sugars (1.5 g/kg body weight). The increase in both plasma glucose and insulin levels following sucrose, maltose and maltodextrin loading was significantly reduced by IDex (0.15 g/kg body weight). This effect was not noted following glucose, high fructose syrup and lactose loading. To evaluate the effects of continual IDex ingestion on glucose tolerance, 5-week-old rats were kept for 8 weeks on a stock diet, a high sucrose diet or an IDex-supplemented high sucrose diet. An oral glucose (1.5 g/kg body weight) tolerance test was conducted in week 8. Increases in both plasma glucose and insulin levels following glucose loading were higher in the rats given a high sucrose diet than in the rats fed a stock diet. However, when IDex was included in the high sucrose diet, the impairment of glucose tolerance was alleviated. Moreover, IDex feeding also significantly reduced accumulation of body fat, regardless of changes in body weight. These findings suggest that IDex not only improves glucose tolerance following sucrose, maltose and maltodextrin loading but also stops progressive decrease in glucose tolerance by preventing a high sucrose diet from causing obesity.

  17. Downhole fiber optic sensing: the oilfield service provider's perspective: from the cradle to the grave

    NASA Astrophysics Data System (ADS)

    Skinner, Neal G.; Maida, John L.

    2014-06-01

    For almost three decades, interest has continued to increase with respect to the application of fiber-optic sensing techniques for the upstream oil and gas industry. This paper reviews optical sensing technologies that have been and are being adopted downhole, as well as their drivers. A brief description of the life of a well, from the cradle to the grave, and the roles fiber-optic sensing can play in optimizing production, safety, and protection of the environment are also presented. The performance expectations (accuracy, resolution, stability, and operational lifetime) that oil companies and oil service companies have for fiber-optic sensing systems is described. Additionally, the environmental conditions (high hydrostatic pressures, high temperatures, shock, vibration, crush, and chemical exposure) that these systems must tolerate to provide reliable and economically attractive oilfield monitoring solutions are described.

  18. FEL (free-electron lasers) undulator technology and synchrotron radiation source requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, K.; Quimby, D.; Slater, J.

    This paper describes design and construction considerations of the THUNDER undulator, for use in free-electron laser experiments at visible wavelengths. For the parameters of these experiments, an unusually high degree of optimization of the electron-photon interaction is required and, as a result, THUNDER is built to especially high mechanical and magnetic precision. Except for its narrow magnet gap, the 5-meter THUNDER undulator is quite similar to insertion devices under consideration for the proposed 6-GeV storage ring. The engineering and physics approach adopted for this FEL modulator design is directly applicable to insertion device development. The tolerance limits to THUNDER, establishedmore » by modeling and design and achieved through careful control of mechanical and magnetic errors, are essential to the next generation of insertion devices.« less

  19. Orbit and uncertainty propagation: a comparison of Gauss-Legendre-, Dormand-Prince-, and Chebyshev-Picard-based approaches

    NASA Astrophysics Data System (ADS)

    Aristoff, Jeffrey M.; Horwood, Joshua T.; Poore, Aubrey B.

    2014-01-01

    We present a new variable-step Gauss-Legendre implicit-Runge-Kutta-based approach for orbit and uncertainty propagation, VGL-IRK, which includes adaptive step-size error control and which collectively, rather than individually, propagates nearby sigma points or states. The performance of VGL-IRK is compared to a professional (variable-step) implementation of Dormand-Prince 8(7) (DP8) and to a fixed-step, optimally-tuned, implementation of modified Chebyshev-Picard iteration (MCPI). Both nearly-circular and highly-elliptic orbits are considered using high-fidelity gravity models and realistic integration tolerances. VGL-IRK is shown to be up to eleven times faster than DP8 and up to 45 times faster than MCPI (for the same accuracy), in a serial computing environment. Parallelization of VGL-IRK and MCPI is also discussed.

  20. Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration

    NASA Technical Reports Server (NTRS)

    DeGregorio, Kelly; Wilson, Dale G.

    2009-01-01

    Two prototype Reconfigurable, Bi-directional Flexfet Level Shifters (ReBiLS) have been developed, where one version is a stand-alone component designed to interface between external low voltage and high voltage, and the other version is an embedded integrated circuit (IC) for interface between internal low-voltage logic and external high-voltage components. Targeting stand-alone and embedded circuits separately allows optimization for these distinct applications. Both ReBiLS designs use the commercially available 180-nm Flex fet Independently Double-Gated (IDG) SOI CMOS (silicon on insulator, complementary metal oxide semiconductor) technology. Embedded ReBiLS circuits were integrated with a Reed-Solomon (RS) encoder using CMOS Ultra-Low-Power Radiation Tolerant (CULPRiT) double-gated digital logic circuits. The scope of the project includes: creation of a new high-voltage process, development of ReBiLS circuit designs, and adjustment of the designs to maximize performance through simulation, layout, and manufacture of prototypes. The primary technical objectives were to develop a high-voltage, thick oxide option for the 180-nm Flexfet process, and to develop a stand-alone ReBiLS IC with two 8-channel I/O busses, 1.8 2.5 I/O on the low-voltage pins, 5.0-V-tolerant input and 3.3-V output I/O on the high-voltage pins, and 100-MHz minimum operation with 10-pF external loads. Another objective was to develop an embedded, rad-hard ReBiLS I/O cell with 0.5-V low-voltage operation for interface with core logic, 5.0-V-tolerant input and 3.3-V output I/O pins, and 100-MHz minimum operation with 10- pF external loads. A third objective was to develop a 0.5- V Reed-Solomon Encoder with embedded ReBilS I/O: Transfer the existing CULPRiT RS encoder from a 0.35-micron bulk-CMOS process to the ASI 180-nm Flexfet, rad-hard SOI Process. 0.5-V low-voltage core logic. 5.0-V-tolerant input and 3.3-V output I/O pins. 100-MHz minimum operation with 10- pF external loads. The stand-alone ReBiLS chip will allow system designers to provide efficient bi-directional communication between components operating at different voltages. Embedding the ReBiLS cells into the proven Reed-Solomon encoder will demonstrate the ability to support new product development in a commercially viable, rad-hard, scalable 180-nm SOI CMOS process.

  1. Cardiorespiratory collapse at high temperature in swimming adult sockeye salmon

    PubMed Central

    Eliason, Erika J.; Clark, Timothy D.; Hinch, Scott G.; Farrell, Anthony P.

    2013-01-01

    Elevated summer river temperatures are associated with high in-river mortality in adult sockeye salmon (Oncorhynchus nerka) during their once-in-a-lifetime spawning migration up the Fraser River (British Columbia, Canada). However, the mechanisms underlying the decrease in whole-animal performance and cardiorespiratory collapse above optimal temperatures for aerobic scope (Topt) remain elusive for aquatic ectotherms. This is in part because all the relevant cardiorespiratory variables have rarely been measured directly and simultaneously during exercise at supra-optimal temperatures. Using the oxygen- and capacity-limited thermal tolerance hypothesis as a framework, this study simultaneously and directly measured oxygen consumption rate (MO2), cardiac output , heart rate (fH), and cardiac stroke volume (Vs), as well as arterial and venous blood oxygen status in adult sockeye salmon swimming at temperatures that bracketed Topt to elucidate possible limitations in oxygen uptake into the blood or internal delivery through the oxygen cascade. Above Topt, the decline in MO2max and aerobic scope was best explained by a cardiac limitation, triggered by reduced scope for fH. The highest test temperatures were characterized by a negative scope for fH, dramatic decreases in maximal and maximal Vs, and cardiac dysrhythmias. In contrast, arterial blood oxygen content and partial pressure were almost insensitive to supra-optimal temperature, suggesting that oxygen delivery to and uptake by the gill were not a limiting factor. We propose that the high-temperature-induced en route mortality in migrating sockeye salmon may be at least partly attributed to physiological limitations in aerobic performance due to cardiac collapse via insufficient scope for fH. Furthermore, this improved mechanistic understanding of cardiorespiratory collapse at high temperature is likely to have broader application to other salmonids and perhaps other aquatic ectotherms. PMID:27293592

  2. Cardiorespiratory collapse at high temperature in swimming adult sockeye salmon.

    PubMed

    Eliason, Erika J; Clark, Timothy D; Hinch, Scott G; Farrell, Anthony P

    2013-01-01

    Elevated summer river temperatures are associated with high in-river mortality in adult sockeye salmon (Oncorhynchus nerka) during their once-in-a-lifetime spawning migration up the Fraser River (British Columbia, Canada). However, the mechanisms underlying the decrease in whole-animal performance and cardiorespiratory collapse above optimal temperatures for aerobic scope (T opt) remain elusive for aquatic ectotherms. This is in part because all the relevant cardiorespiratory variables have rarely been measured directly and simultaneously during exercise at supra-optimal temperatures. Using the oxygen- and capacity-limited thermal tolerance hypothesis as a framework, this study simultaneously and directly measured oxygen consumption rate (MO2), cardiac output [Formula: see text], heart rate (f H), and cardiac stroke volume (V s), as well as arterial and venous blood oxygen status in adult sockeye salmon swimming at temperatures that bracketed T opt to elucidate possible limitations in oxygen uptake into the blood or internal delivery through the oxygen cascade. Above T opt, the decline in MO2max and aerobic scope was best explained by a cardiac limitation, triggered by reduced scope for f H. The highest test temperatures were characterized by a negative scope for f H, dramatic decreases in maximal [Formula: see text] and maximal V s, and cardiac dysrhythmias. In contrast, arterial blood oxygen content and partial pressure were almost insensitive to supra-optimal temperature, suggesting that oxygen delivery to and uptake by the gill were not a limiting factor. We propose that the high-temperature-induced en route mortality in migrating sockeye salmon may be at least partly attributed to physiological limitations in aerobic performance due to cardiac collapse via insufficient scope for f H. Furthermore, this improved mechanistic understanding of cardiorespiratory collapse at high temperature is likely to have broader application to other salmonids and perhaps other aquatic ectotherms.

  3. Natural Selection on Individual Variation in Tolerance of Gastrointestinal Nematode Infection

    PubMed Central

    Hayward, Adam D.; Nussey, Daniel H.; Wilson, Alastair J.; Berenos, Camillo; Pilkington, Jill G.; Watt, Kathryn A.; Pemberton, Josephine M.; Graham, Andrea L.

    2014-01-01

    Hosts may mitigate the impact of parasites by two broad strategies: resistance, which limits parasite burden, and tolerance, which limits the fitness or health cost of increasing parasite burden. The degree and causes of variation in both resistance and tolerance are expected to influence host–parasite evolutionary and epidemiological dynamics and inform disease management, yet very little empirical work has addressed tolerance in wild vertebrates. Here, we applied random regression models to longitudinal data from an unmanaged population of Soay sheep to estimate individual tolerance, defined as the rate of decline in body weight with increasing burden of highly prevalent gastrointestinal nematode parasites. On average, individuals lost weight as parasite burden increased, but whereas some lost weight slowly as burden increased (exhibiting high tolerance), other individuals lost weight significantly more rapidly (exhibiting low tolerance). We then investigated associations between tolerance and fitness using selection gradients that accounted for selection on correlated traits, including body weight. We found evidence for positive phenotypic selection on tolerance: on average, individuals who lost weight more slowly with increasing parasite burden had higher lifetime breeding success. This variation did not have an additive genetic basis. These results reveal that selection on tolerance operates under natural conditions. They also support theoretical predictions for the erosion of additive genetic variance of traits under strong directional selection and fixation of genes conferring tolerance. Our findings provide the first evidence of selection on individual tolerance of infection in animals and suggest practical applications in animal and human disease management in the face of highly prevalent parasites. PMID:25072883

  4. Membrane lipid physiology and toxin catabolism underlie ethanol and acetic acid tolerance in Drosophila melanogaster.

    PubMed

    Montooth, Kristi L; Siebenthall, Kyle T; Clark, Andrew G

    2006-10-01

    Drosophila melanogaster has evolved the ability to tolerate and utilize high levels of ethanol and acetic acid encountered in its rotting-fruit niche. Investigation of this phenomenon has focused on ethanol catabolism, particularly by the enzyme alcohol dehydrogenase. Here we report that survival under ethanol and acetic acid stress in D. melanogaster from high- and low-latitude populations is an integrated consequence of toxin catabolism and alteration of physical properties of cellular membranes by ethanol. Metabolic detoxification contributed to differences in ethanol tolerance between populations and acclimation temperatures via changes in both alcohol dehydrogenase and acetyl-CoA synthetase mRNA expression and enzyme activity. Independent of changes in ethanol catabolism, rapid thermal shifts that change membrane fluidity had dramatic effects on ethanol tolerance. Cold temperature treatments upregulated phospholipid metabolism genes and enhanced acetic acid tolerance, consistent with the predicted effects of restoring membrane fluidity. Phospholipase D was expressed at high levels in all treatments that conferred enhanced ethanol tolerance, suggesting that this lipid-mediated signaling enzyme may enhance tolerance by sequestering ethanol in membranes as phophatidylethanol. These results reveal new candidate genes underlying toxin tolerance and membrane adaptation to temperature in Drosophila and provide insight into how interactions between these phenotypes may underlie the maintenance of latitudinal clines in ethanol tolerance.

  5. The Essential Role of the Deinococcus radiodurans ssb Gene in Cell Survival and Radiation Tolerance

    PubMed Central

    Lockhart, J. Scott; DeVeaux, Linda C.

    2013-01-01

    Recent evidence has implicated single-stranded DNA-binding protein (SSB) expression level as an important factor in microbial radiation resistance. The genome of the extremely radiation resistant bacterium Deinococcus radiodurans contains genes for two SSB homologs: the homodimeric, canonical Ssb, encoded by the gene ssb, and a novel pentameric protein encoded by the gene ddrB. ddrB is highly induced upon exposure to radiation, and deletions result in decreased radiation-resistance, suggesting an integral role of the protein in the extreme resistance exhibited by this organism. Although expression of ssb is also induced after irradiation, Ssb is thought to be involved primarily in replication. In this study, we demonstrate that Ssb in D. radiodurans is essential for cell survival. The lethality of an ssb deletion cannot be complemented by providing ddrB in trans. In addition, the radiation-sensitive phenotype conferred by a ddrB deletion is not alleviated by providing ssb in trans. By altering expression of the ssb gene, we also show that lower levels of transcription are required for optimal growth than are necessary for high radiation resistance. When expression is reduced to that of E. coli, ionizing radiation resistance is similarly reduced. UV resistance is also decreased under low ssb transcript levels where growth is unimpaired. These results indicate that the expression of ssb is a key component of both normal cellular metabolism as well as pathways responsible for the high radiation tolerance of D. radiodurans. PMID:23951213

  6. Highly Efficient Ternary-Blend Polymer Solar Cells Enabled by a Nonfullerene Acceptor and Two Polymer Donors with a Broad Composition Tolerance.

    PubMed

    Xu, Xiaopeng; Bi, Zhaozhao; Ma, Wei; Wang, Zishuai; Choy, Wallace C H; Wu, Wenlin; Zhang, Guangjun; Li, Ying; Peng, Qiang

    2017-12-01

    In this work, highly efficient ternary-blend organic solar cells (TB-OSCs) are reported based on a low-bandgap copolymer of PTB7-Th, a medium-bandgap copolymer of PBDB-T, and a wide-bandgap small molecule of SFBRCN. The ternary-blend layer exhibits a good complementary absorption in the range of 300-800 nm, in which PTB7-Th and PBDB-T have excellent miscibility with each other and a desirable phase separation with SFBRCN. In such devices, there exist multiple energy transfer pathways from PBDB-T to PTB7-Th, and from SFBRCN to the above two polymer donors. The hole-back transfer from PTB7-Th to PBDB-T and multiple electron transfers between the acceptor and the donor materials are also observed for elevating the whole device performance. After systematically optimizing the weight ratio of PBDB-T:PTB7-Th:SFBRCN, a champion power conversion efficiency (PCE) of 12.27% is finally achieved with an open-circuit voltage (V oc ) of 0.93 V, a short-circuit current density (J sc ) of 17.86 mA cm -2 , and a fill factor of 73.9%, which is the highest value for the ternary OSCs reported so far. Importantly, the TB-OSCs exhibit a broad composition tolerance with a high PCE over 10% throughout the whole blend ratios. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nutrition and fluid optimization for patients with short bowel syndrome.

    PubMed

    Matarese, Laura E

    2013-03-01

    Short bowel syndrome (SBS) is characterized by nutrient malabsorption and occurs following surgical resection, congenital defect, or disease of the bowel. The severity of SBS depends on the length and anatomy of the bowel resected and the health of the remaining tissue. During the 2 years following resection, the remnant bowel undergoes an adaptation process that increases its absorptive capacity. Oral diet and enteral nutrition (EN) enhance intestinal adaptation; although patients require parenteral nutrition (PN) and/or intravenous (IV) fluids in the immediate postresection period, diet and EN should be reintroduced as soon as possible. The SBS diet should include complex carbohydrates; simple sugars should be avoided. Optimal fat intake varies based on patient anatomy; patients with end-jejunostomies can tolerate a higher proportion of calories from dietary fat than patients with a remnant colon. Patients with SBS are prone to deficiencies in vitamins, minerals, and essential fatty acids; serum levels should be periodically monitored and supplements provided as needed. Prebiotic or probiotic therapy may be beneficial for patients with SBS, although further research is needed to determine optimal protocols. Patients with SBS, particularly those without a colon, are at high risk of dehydration; oral rehydration solutions sipped throughout the day can help maintain hydration. One of the primary goals of SBS therapy is to reduce or eliminate dependence on PN/IV; optimization of EN and hydration substantially increases the probability of successful PN/IV weaning.

  8. Optimizing hydroxyurea therapy for sickle cell anemia.

    PubMed

    Ware, Russell E

    2015-01-01

    Hydroxyurea has proven efficacy in numerous clinical trials as a disease-modifying treatment for patients with sickle cell anemia (SCA) but is currently under-used in clinical practice. To improve the effectiveness of hydroxyurea therapy, efforts should be directed toward broadening the clinical treatment indications, optimizing the daily dosage, and emphasizing the benefits of early and extended treatment. Here, various issues related to hydroxyurea treatment are discussed, focusing on both published evidence and clinical experience. Specific guidance is provided regarding important but potentially unfamiliar aspects of hydroxyurea treatment for SCA, such as escalating to maximum tolerated dose, treating in the setting of cerebrovascular disease, switching from chronic transfusions to hydroxyurea, and using serial phlebotomy to alleviate iron overload. Future research directions to optimize hydroxyurea therapy are also discussed, including personalized dosing based on pharmacokinetic modeling, prediction of fetal hemoglobin responses based on pharmacogenomics, and the risks and benefits of hydroxyurea for non-SCA genotypes and during pregnancy/lactation. Another critical initiative is the introduction of hydroxyurea safely and effectively into global regions that have a high disease burden of SCA but limited resources, such as sub-Saharan Africa, the Caribbean, and India. Final considerations emphasize the long-term goal of optimizing hydroxyurea therapy, which is to help treatment become accepted as standard of care for all patients with SCA. © 2015 by The American Society of Hematology. All rights reserved.

  9. Estimating heat tolerance of plants by ion leakage: a new method based on gradual heating.

    PubMed

    Ilík, Petr; Špundová, Martina; Šicner, Michal; Melkovičová, Helena; Kučerová, Zuzana; Krchňák, Pavel; Fürst, Tomáš; Večeřová, Kristýna; Panzarová, Klára; Benediktyová, Zuzana; Trtílek, Martin

    2018-05-01

    Heat tolerance of plants related to cell membrane thermostability is commonly estimated via the measurement of ion leakage from plant segments after defined heat treatment. To compare heat tolerance of various plants, it is crucial to select suitable heating conditions. This selection is time-consuming and optimizing the conditions for all investigated plants may even be impossible. Another problem of the method is its tendency to overestimate basal heat tolerance. Here we present an improved ion leakage method, which does not suffer from these drawbacks. It is based on gradual heating of plant segments in a water bath or algal suspensions from room temperature up to 70-75°C. The electrical conductivity of the bath/suspension, which is measured continuously during heating, abruptly increases at a certain temperature T COND (within 55-70°C). The T COND value can be taken as a measure of cell membrane thermostability, representing the heat tolerance of plants/organisms. Higher T COND corresponds to higher heat tolerance (basal or acquired) connected to higher thermostability of the cell membrane, as evidenced by the common ion leakage method. The new method also enables determination of the thermostability of photochemical reactions in photosynthetic samples via the simultaneous measurement of Chl fluorescence. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  10. Advanced information processing system: Hosting of advanced guidance, navigation and control algorithms on AIPS using ASTER

    NASA Technical Reports Server (NTRS)

    Brenner, Richard; Lala, Jaynarayan H.; Nagle, Gail A.; Schor, Andrei; Turkovich, John

    1994-01-01

    This program demonstrated the integration of a number of technologies that can increase the availability and reliability of launch vehicles while lowering costs. Availability is increased with an advanced guidance algorithm that adapts trajectories in real-time. Reliability is increased with fault-tolerant computers and communication protocols. Costs are reduced by automatically generating code and documentation. This program was realized through the cooperative efforts of academia, industry, and government. The NASA-LaRC coordinated the effort, while Draper performed the integration. Georgia Institute of Technology supplied a weak Hamiltonian finite element method for optimal control problems. Martin Marietta used MATLAB to apply this method to a launch vehicle (FENOC). Draper supplied the fault-tolerant computing and software automation technology. The fault-tolerant technology includes sequential and parallel fault-tolerant processors (FTP & FTPP) and authentication protocols (AP) for communication. Fault-tolerant technology was incrementally incorporated. Development culminated with a heterogeneous network of workstations and fault-tolerant computers using AP. Draper's software automation system, ASTER, was used to specify a static guidance system based on FENOC, navigation, flight control (GN&C), models, and the interface to a user interface for mission control. ASTER generated Ada code for GN&C and C code for models. An algebraic transform engine (ATE) was developed to automatically translate MATLAB scripts into ASTER.

  11. Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs

    PubMed Central

    Mutisya, Daniel; Selvam, Chelliah; Lunstad, Benjamin D.; Pallan, Pradeep S.; Haas, Amanda; Leake, Devin; Egli, Martin; Rozners, Eriks

    2014-01-01

    RNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies. Using X-ray crystallography and RNAi activity assays, the present study demonstrates that 3′-CH2-CO-NH-5′ amides are excellent replacements for phosphodiester internucleoside linkages in RNA. The crystal structure shows that amide-modified RNA forms a typical A-form duplex. The amide carbonyl group points into the major groove and assumes an orientation that is similar to the P–OP2 bond in the phosphate linkage. Amide linkages are well hydrated by tandem waters linking the carbonyl group and adjacent phosphate oxygens. Amides are tolerated at internal positions of both the guide and passenger strand of siRNAs and may increase the silencing activity when placed near the 5′-end of the passenger strand. As a result, an siRNA containing eight amide linkages is more active than the unmodified control. The results suggest that RNAi may tolerate even more extensive amide modification, which may be useful for optimization of siRNAs for in vivo applications. PMID:24813446

  12. Augmented design and analysis of computer experiments: a novel tolerance embedded global optimization approach applied to SWIR hyperspectral illumination design.

    PubMed

    Keresztes, Janos C; John Koshel, R; D'huys, Karlien; De Ketelaere, Bart; Audenaert, Jan; Goos, Peter; Saeys, Wouter

    2016-12-26

    A novel meta-heuristic approach for minimizing nonlinear constrained problems is proposed, which offers tolerance information during the search for the global optimum. The method is based on the concept of design and analysis of computer experiments combined with a novel two phase design augmentation (DACEDA), which models the entire merit space using a Gaussian process, with iteratively increased resolution around the optimum. The algorithm is introduced through a series of cases studies with increasing complexity for optimizing uniformity of a short-wave infrared (SWIR) hyperspectral imaging (HSI) illumination system (IS). The method is first demonstrated for a two-dimensional problem consisting of the positioning of analytical isotropic point sources. The method is further applied to two-dimensional (2D) and five-dimensional (5D) SWIR HSI IS versions using close- and far-field measured source models applied within the non-sequential ray-tracing software FRED, including inherent stochastic noise. The proposed method is compared to other heuristic approaches such as simplex and simulated annealing (SA). It is shown that DACEDA converges towards a minimum with 1 % improvement compared to simplex and SA, and more importantly requiring only half the number of simulations. Finally, a concurrent tolerance analysis is done within DACEDA for to the five-dimensional case such that further simulations are not required.

  13. Production optimization of a heat-tolerant alkaline pectinase from Bacillus subtilis ZGL14 and its purification and characterization.

    PubMed

    Yu, Ping; Zhang, Yishu; Gu, Donglu

    2017-09-03

    Alkaline pectinase has important applications in the pretreatment of waste water from food processing and in both the fabric and paper industries. In this study, a 2-level factorial design was used to screen significant factors that affect the activity of alkaline pectinase, and the response surface methodology (RSM) with a Box-Behnken design (BBD) was used to optimize their concentrations. Starch, peptone, KH 2 PO 4 and K 2 HPO 4 ·3H 2 O were found to significantly affect the activity of alkaline pectinase. Their optimal concentrations were as follows: 4.68% starch, 1.6% peptone, 0.26% KH 2 PO 4 and 0.68% K 2 HPO 4 ·3H 2 O. Under the above conditions, the activity of alkaline pectinase was significantly improved to 734.11 U/mL. Alkaline pectinase was purified to homogeneity with a recovery rate of 9.6% and a specific activity of 52372.52 U/mg. Its optimal temperature and pH were 50°C and 8.6, respectively. The purified enzyme showed strong thermo-stability and good alkali resistance. In addition, the activity of alkaline pectinase was improved in the presence of Mg 2+ . Cu 2+ , Mn 2+ , and Co 2+ significantly inhibited its activity. This study provides an important basis for the future development and use of a heat-tolerant alkaline pectinase from B. subtilis ZGL14.

  14. Production optimization of a heat-tolerant alkaline pectinase from Bacillus subtilis ZGL14 and its purification and characterization

    PubMed Central

    Yu, Ping; Zhang, Yishu; Gu, Donglu

    2017-01-01

    ABSTRACT Alkaline pectinase has important applications in the pretreatment of waste water from food processing and in both the fabric and paper industries. In this study, a 2-level factorial design was used to screen significant factors that affect the activity of alkaline pectinase, and the response surface methodology (RSM) with a Box-Behnken design (BBD) was used to optimize their concentrations. Starch, peptone, KH2PO4 and K2HPO4·3H2O were found to significantly affect the activity of alkaline pectinase. Their optimal concentrations were as follows: 4.68% starch, 1.6% peptone, 0.26% KH2PO4 and 0.68% K2HPO4·3H2O. Under the above conditions, the activity of alkaline pectinase was significantly improved to 734.11 U/mL. Alkaline pectinase was purified to homogeneity with a recovery rate of 9.6% and a specific activity of 52372.52 U/mg. Its optimal temperature and pH were 50°C and 8.6, respectively. The purified enzyme showed strong thermo-stability and good alkali resistance. In addition, the activity of alkaline pectinase was improved in the presence of Mg2+. Cu2+, Mn2+, and Co2+ significantly inhibited its activity. This study provides an important basis for the future development and use of a heat-tolerant alkaline pectinase from B. subtilis ZGL14. PMID:28282260

  15. FTAPE: A fault injection tool to measure fault tolerance

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-01-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  16. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes

    PubMed Central

    Flowers, Timothy J.; Munns, Rana; Colmer, Timothy D.

    2015-01-01

    Background Halophytes are the flora of saline soils. They adjust osmotically to soil salinity by accumulating ions and sequestering the vast majority of these (generally Na+ and Cl−) in vacuoles, while in the cytoplasm organic solutes are accumulated to prevent adverse effects on metabolism. At high salinities, however, growth is inhibited. Possible causes are: toxicity to metabolism of Na+ and/or Cl− in the cytoplasm; insufficient osmotic adjustment resulting in reduced net photosynthesis because of stomatal closure; reduced turgor for expansion growth; adverse cellular water relations if ions build up in the apoplast (cell walls) of leaves; diversion of energy needed to maintain solute homeostasis; sub-optimal levels of K+ (or other mineral nutrients) required for maintaining enzyme activities; possible damage from reactive oxygen species; or changes in hormonal concentrations. Scope This review discusses the evidence for Na+ and Cl− toxicity and the concept of tissue tolerance in relation to halophytes. Conclusions The data reviewed here suggest that halophytes tolerate cytoplasmic Na+ and Cl− concentrations of 100–200 mm, but whether these ions ever reach toxic concentrations that inhibit metabolism in the cytoplasm or cause death is unknown. Measurements of ion concentrations in the cytosol of various cell types for contrasting species and growth conditions are needed. Future work should also focus on the properties of the tonoplast that enable ion accumulation and prevent ion leakage, such as the special properties of ion transporters and of the lipids that determine membrane permeability. PMID:25466549

  17. Genetic and Computational Approaches for Studying Plant Development and Abiotic Stress Responses Using Image-Based Phenotyping

    NASA Astrophysics Data System (ADS)

    Campbell, M. T.; Walia, H.; Grondin, A.; Knecht, A.

    2017-12-01

    The development of abiotic stress tolerant crops (i.e. drought, salinity, or heat stress) requires the discovery of DNA sequence variants associated with stress tolerance-related traits. However, many traits underlying adaptation to abiotic stress involve a suite of physiological pathways that may be induced at different times throughout the duration of stress. Conventional single-point phenotyping approaches fail to fully capture these temporal responses, and thus downstream genetic analysis may only identify a subset of the genetic variants that are important for adaptation to sub-optimal environments. Although genomic resources for crops have advanced tremendously, the collection of phenotypic data for morphological and physiological traits is laborious and remains a significant bottleneck in bridging the phenotype-genotype gap. In recent years, the availability of automated, image-based phenotyping platforms has provided researchers with an opportunity to collect morphological and physiological traits non-destructively in a highly controlled environment. Moreover, these platforms allow abiotic stress responses to be recorded throughout the duration of the experiment, and have facilitated the use of function-valued traits for genetic analyses in major crops. We will present our approaches for addressing abiotic stress tolerance in cereals. This talk will focus on novel open-source software to process and extract biological meaningful data from images generated from these phenomics platforms. In addition, we will discuss the statistical approaches to model longitudinal phenotypes and dissect the genetic basis of dynamic responses to these abiotic stresses throughout development.

  18. A systematic review on the role of anticonvulsants in the treatment of acute bipolar depression.

    PubMed

    Reinares, María; Rosa, Adriane R; Franco, Carolina; Goikolea, José Manuel; Fountoulakis, Kostas; Siamouli, Melina; Gonda, Xenia; Frangou, Sophia; Vieta, Eduard

    2013-03-01

    Despite the high morbidity and mortality associated with bipolar depression, the optimal treatment for this phase is still a matter of debate. The aim of the current review was to provide updated evidence about the efficacy and tolerability of anticonvulsants in the treatment of acute bipolar depression. A comprehensive review of randomized controlled trials (RCTs) evaluating the use of anticonvulsants for the treatment of acute bipolar depression up to June 2011 was conducted by means of the PubMed-Medline database. Eligibility criteria included active comparator-controlled or placebo-controlled randomized studies involving monotherapy or combination therapy. A total of 18 RCTs fulfilled the inclusion criteria. Studies supported the efficacy of divalproex as monotherapy in acute bipolar depression but small sample size was a common methodological limitation. Findings were inconclusive for lamotrigine and carbamazepine although overall lamotrigine may have a beneficial but modest effect. Negative results were found for levetiracetam and gabapentin but the evidence base on these agents is scant. All anticonvulsants were generally well tolerated. No double-blind RCTs were found for the use of other anticonvulsants such as oxcarbazepine, licarbazepine, zonisamide, retigabine, pregabalin, tiagabine, felbamate and vigabatrine in the acute treatment of bipolar depression. To sum up, taking into consideration the efficacy and tolerability profiles of anticonvulsants, current evidence supports the use of divalproex and lamotrigine in the treatment of acute bipolar depression. However, available data for most other anticonvulsants are inconclusive and further RCTs with larger sample sizes are needed before drawing firm conclusions.

  19. Patient-reported Outcome Measurements on the Tolerance of Magnetic Resonance Imaging-guided Radiation Therapy

    PubMed Central

    Tetar, Shyama; Bakker, Roosje; Jeulink, Marloes; Slotman, Ben J.; Oei, Swie; Haasbeek, Cornelis; De Jong, Karel; Senan, Suresh; Lagerwaard, Frank

    2018-01-01

    Purpose Magnetic resonance imaging-guided radiation therapy (MRgRT) requires patient positioning within the MR bore and prolonged MR imaging during delivery, both of which are new in radiation oncology. Patient tolerance of MRgRT was prospectively evaluated using patient-reported outcome questionnaires (PRO-Q). Methods Our MRgRT procedure involves daily high-resolution MR scanning, limited re-contouring, daily plan re-optimization, quality assurance (QA), and gated delivery. Patients with claustrophobia are excluded. Mean fraction duration was 45 and 60 minutes for stereotactic treatments during free-breathing and breath-hold, respectively. Patient-controlled video-feedback was used for breath-hold delivery. PRO-Qs collected in the first 150 patients treated included questions on MR-related complaints and also evaluated aspects of active participation. Results Almost one-third of patients (29%) scored at least one PRO-Q item on MR-related complaints as ‘moderate’ or ‘very much’, with noise, feeling cold, and paresthesia being the most frequently scored in this way. Considerable anxiety was reported by 5%, but no medication was required for this in any patient. Patient participation in video feedback for breath-hold delivery was appreciated by the majority of patients, all of whom completed the procedure. Only 5% of patients considered treatment duration to be unacceptably long. Conclusion Despite the lengthy MRgRT procedure, outcomes of PRO-Q indicate that it was well-tolerated by patients. PMID:29719739

  20. BESIU Physical Analysis on Hadoop Platform

    NASA Astrophysics Data System (ADS)

    Huo, Jing; Zang, Dongsong; Lei, Xiaofeng; Li, Qiang; Sun, Gongxing

    2014-06-01

    In the past 20 years, computing cluster has been widely used for High Energy Physics data processing. The jobs running on the traditional cluster with a Data-to-Computing structure, have to read large volumes of data via the network to the computing nodes for analysis, thereby making the I/O latency become a bottleneck of the whole system. The new distributed computing technology based on the MapReduce programming model has many advantages, such as high concurrency, high scalability and high fault tolerance, and it can benefit us in dealing with Big Data. This paper brings the idea of using MapReduce model to do BESIII physical analysis, and presents a new data analysis system structure based on Hadoop platform, which not only greatly improve the efficiency of data analysis, but also reduces the cost of system building. Moreover, this paper establishes an event pre-selection system based on the event level metadata(TAGs) database to optimize the data analyzing procedure.

  1. Penicillin allergy: optimizing diagnostic protocols, public health implications, and future research needs.

    PubMed

    Macy, Eric

    2015-08-01

    Unverified penicillin allergy is being increasingly recognized as a public health concern. The ideal protocol for verifying true clinically significant IgE-mediated penicillin allergy needs to use only commercially available materials, be well tolerated and easy to perform in both the inpatient and outpatient settings, and minimize false-positive determinations. This review concentrates on articles published in 2013 and 2014 that present new data relating to the diagnosis and management of penicillin allergy. Penicillin allergy can be safely evaluated at this time, in patients with an appropriate clinical history of penicillin allergy, using only penicilloyl-poly-lysine and native penicillin G as skin test reagents, if an oral challenge with amoxicillin 250 mg, followed by 1 h of observation, is given to all skin test negative individuals. Millions of individuals falsely labeled with penicillin allergy need to be evaluated to safely allow them to use penicillin-class antibiotics and avoid morbidity associated with penicillin avoidance. Further research is needed to determine optimal protocol(s). There will still be a 1-2% rate of adverse reactions reported with all future therapeutic penicillin-class antibiotic use, even with optimal methods used to determine acute penicillin tolerance. Only a small minority of these new reactions will be IgE-mediated.

  2. Pharmacokinetics of continuous once-a-week combination 17β-Estradiol/Low- or high-dose levonorgestrel transdermal delivery systems in postmenopausal women.

    PubMed

    Karara, Adel H; Harrison, Lester I; Melikian, Armen P; Poola, Nagaraju; Morrison, Dennis; Bourg, Dale; Bourg, Linda; Zurth, Christian

    2014-05-01

    Two open-label, randomized, two-period, crossover studies were performed to determine the safety, delivery rates, and pharmacokinetic properties of a combination estradiol (E2)/levonorgestrel (LNG) transdermal delivery system (TDS). Study 1 enrolled 24 postmenopausal women who received a single TDS containing 4.4 mg E2 and 1.39 mg of LNG (E2/LNG Low) or E2 0.050 mg/24 hours TDS and 0.090 mg LNG oral tablet. Study 2 enrolled 44 postmenopausal women who received either E2/LNG Low or TDS containing 4.4 mg E2 and 2.75 mg LNG (E2/LNG High) weekly for a period of 4 weeks. E2, estrone (E1), LNG, and sex hormone-binding globulin (SHBG) serum concentrations were determined. Overall, both E2/LNG TDS were well tolerated and had excellent adhesion properties. The average daily delivery for E2/LNG Low was 0.045 mg for E2 and 0.0132 mg for LNG. Following weekly delivery of E2/LNG Low or High for 4 weeks, the combination of E2 with two different strengths of LNG did not alter the pharmacokinetic profile of E2. SHBG, total cholesterol, and triglycerides concentrations significantly decreased compared to baseline. Both E2/LNG Low and High TDSs were well tolerated and provided continuous drug delivery over 7 days supporting the benefits of the transdermal route of administration in optimally delivering hormonal therapy. © 2014, The American College of Clinical Pharmacology.

  3. Reactor-Scale Cultivation of the Hyperthermophilic Methanarchaeon Methanococcus jannaschii to High Cell Densities

    PubMed Central

    Mukhopadhyay, Biswarup; Johnson, Eric F.; Wolfe, Ralph S.

    1999-01-01

    For the hyperthermophilic and barophilic methanarchaeon Methanococcus jannaschii, we have developed a medium and protocols for reactor-scale cultivation that improved the final cell yield per liter from ∼0.5 to ∼7.5 g of packed wet cells (∼1.8 g dry cell mass) under autotrophic growth conditions and to ∼8.5 g of packed wet cells (∼2 g dry cell mass) with yeast extract (2 g liter−1) and tryptone (2 g liter−1) as medium supplements. For growth in a sealed bottle it was necessary to add Se to the medium, and a level of 2 μM for added Se gave the highest final cell yield. In a reactor M. jannaschii grew without added Se in the medium; it is plausible that the cells received Se as a contaminant from the reactor vessel and the H2S supply. But, for the optimal performance of a reactor culture, an addition of Se to a final concentration of 50 to 100 μM was needed. Also, cell growth in a reactor culture was inhibited at much higher Se concentrations. These observations and the data from previous work with methanogen cell extracts (B. C. McBride and R. S. Wolfe, Biochemistry 10:4312–4317, 1971) suggested that from a continuously sparged reactor culture Se was lost in the exhaust gas as volatile selenides, and this loss raised the apparent required level of and tolerance for Se. In spite of having a proteinaceous cell wall, M. jannaschii withstood an impeller tip speed of 235.5 cms−1, which was optimal for achieving high cell density and also was the higher limit for the tolerated shear rate. The organism secreted one or more acidic compounds, which lowered pH in cultures without pH control; this secretion continued even after cessation of growth. PMID:10543823

  4. A diverse assemblage of reef corals thriving in a dynamic intertidal reef setting (Bonaparte Archipelago, Kimberley, Australia).

    PubMed

    Richards, Zoe T; Garcia, Rodrigo A; Wallace, Carden C; Rosser, Natalie L; Muir, Paul R

    2015-01-01

    The susceptibility of reef-building corals to climatic anomalies is well documented and a cause of great concern for the future of coral reefs. Reef corals are normally considered to tolerate only a narrow range of climatic conditions with only a small number of species considered heat-tolerant. Occasionally however, corals can be seen thriving in unusually harsh reef settings and these are cause for some optimism about the future of coral reefs. Here we document for the first time a diverse assemblage of 225 species of hard corals occurring in the intertidal zone of the Bonaparte Archipelago, north western Australia. We compare the environmental conditions at our study site (tidal regime, SST and level of turbidity) with those experienced at four other more typical tropical reef locations with similar levels of diversity. Physical extremes in the Bonaparte Archipelago include tidal oscillations of up to 8 m, long subaerial exposure times (>3.5 hrs), prolonged exposure to high SST and fluctuating turbidity levels. We conclude the timing of low tide in the coolest parts of the day ameliorates the severity of subaerial exposure, and the combination of strong currents and a naturally high sediment regime helps to offset light and heat stress. The low level of anthropogenic impact and proximity to the Indo-west Pacific centre of diversity are likely to further promote resistance and resilience in this community. This assemblage provides an indication of what corals may have existed in other nearshore locations in the past prior to widespread coastal development, eutrophication, coral predator and disease outbreaks and coral bleaching events. Our results call for a re-evaluation of what conditions are optimal for coral survival, and the Bonaparte intertidal community presents an ideal model system for exploring how species resilience is conferred in the absence of confounding factors such as pollution.

  5. Variation in temperature tolerance among families of Atlantic salmon (Salmo salar L.) is associated with hypoxia tolerance, ventricle size and myoglobin level

    USDA-ARS?s Scientific Manuscript database

    In fishes, performance failure at high temperature is thought to be due to a limitation on oxygen delivery (the theory of oxygen and capacity limited thermal tolerance, OCLTT), which suggests that thermal tolerance and hypoxia tolerance might be functionally associated. Here we examined variation in...

  6. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms.

    PubMed

    Dopson, Mark; Ossandon, Francisco J; Lövgren, Lars; Holmes, David S

    2014-01-01

    All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Extremely acidophilic microorganisms have an optimum growth of pH <3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account.

  7. Design and optimization of a volume-phase holographic grating for simultaneous use with red, green, and blue light using unpolarized light.

    PubMed

    Mahamat, Adoum H; Narducci, Frank A; Schwiegerling, James

    2016-03-01

    Volume-phase holographic (VPH) gratings have been designed for use in many areas of science and technology, such as optical communication, optical imaging, and astronomy. In this paper, the design of a volume-phase holographic grating, simultaneously optimized to operate in the red, green, and blue wavelengths, is presented along with a study of its fabrication tolerances. The grating is optimized to produce 98% efficiency at λ=532  nm and at least 75% efficiency in the region between 400 and 700 nm, when the incident light is unpolarized. The optimization is done for recording in dichromated gelatin with a thickness of 12 μm, an average refractive index of 1.5, and a refractive index modulation of 0.022.

  8. Enrichment of microbial communities tolerant to the ionic liquids tetrabutylphosphonium chloride and tributylethylphosphonium diethylphosphate

    DOE PAGES

    Pace, Sara; Ceballos, Shannon J.; Harrold, Duff; ...

    2016-04-22

    Our aims were to identify thermophilic microbial communities that degrade green waste in the presence of the ionic liquids (IL) tetrabutylphosphonium chloride and tributylethylphosphonium diethylphosphate and examine preservation methods for IL-tolerant communities. High-solids incubations with stepwise increases in IL concentration were conducted to enrich for thermophilic IL-tolerant communities that decomposed green waste. 16S rRNA sequencing of enriched communities revealed microorganisms capable of tolerating high levels of IL. Furthermore, cryogenic preservation of enriched communities reduced the IL tolerance of the community and decreased the relative abundance of IL-tolerant organisms. The use of cryoprotectants did not have an effect on microbial activitymore » on green waste of the stored community. A successful approach was developed to enrich communities that decompose green waste in thermophilic high-solids environments in the presence of IL. Alternative community storage and revival methods are necessary for maintenance and recovery of IL-tolerant communities. The enriched communities provide a targeted source of enzymes for the bioconversion of IL-pretreated green waste for conversion to biofuels.« less

  9. Mapping QTL for the traits associated with heat tolerance in Wheat (Triticum Aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    High temperature (heat) stress during grain filling is a major problem in most of the wheat growing areas. Developing heat-tolerant cultivars is becoming a principal breeding goal in the Southern and Central Great Plain areas of USA. Traits associated with high temperature tolerance can be used to d...

  10. Regulation of the calcium-sensing receptor in both stomatal movement and photosynthetic electron transport is crucial for water use efficiency and drought tolerance in Arabidopsis.

    PubMed

    Wang, Wen-Hua; Chen, Juan; Liu, Ting-Wu; Chen, Juan; Han, Ai-Dong; Simon, Martin; Dong, Xue-Jun; He, Jun-Xian; Zheng, Hai-Lei

    2014-01-01

    Production per amount of water used (water use efficiency, WUE) is closely correlated with drought tolerance. Although stomatal aperture can regulate WUE, the underlying molecular mechanisms are still unclear. Previous reports revealed that stomatal closure was inhibited in the calcium-sensing receptor (CAS) antisense line of Arabidopsis (CASas). Here it is shown that decreased drought tolerance and WUE of CASas was associated with higher stomatal conductance due to improper regulation of stomatal aperture, rather than any change of stomatal density. CASas plants also had a lower CO2 assimilation rate that was attributed to a lower photosynthetic electron transport rate, leading to higher chlorophyll fluorescence. Gene co-expression combined with analyses of chlorophyll content and transcription levels of photosynthesis-related genes indicate that CAS is involved in the formation of the photosynthetic electron transport system. These data suggest that CAS regulates transpiration and optimizes photosynthesis by playing important roles in stomatal movement and formation of photosynthetic electron transport, thereby regulating WUE and drought tolerance.

  11. Opioid analgesics and P-glycoprotein efflux transporters: a potential systems-level contribution to analgesic tolerance.

    PubMed

    Mercer, Susan L; Coop, Andrew

    2011-01-01

    Chronic clinical pain remains poorly treated. Despite attempts to develop novel analgesic agents, opioids remain the standard analgesics of choice in the clinical management of chronic and severe pain. However, mu opioid analgesics have undesired side effects including, but not limited to, respiratory depression, physical dependence and tolerance. A growing body of evidence suggests that P-glycoprotein (P-gp), an efflux transporter, may contribute a systems-level approach to the development of opioid tolerance. Herein, we describe current in vitro and in vivo methodology available to analyze interactions between opioids and P-gp and critically analyze P-gp data associated with six commonly used mu opioids to include morphine, methadone, loperamide, meperidine, oxycodone, and fentanyl. Recent studies focused on the development of opioids lacking P-gp substrate activity are explored, concentrating on structure-activity relationships to develop an optimal opioid analgesic lacking this systems-level contribution to tolerance development. Continued work in this area will potentially allow for delineation of the mechanism responsible for opioid-related P-gp up-regulation and provide further support for evidence based medicine supporting clinical opioid rotation.

  12. Tolerance to Gamma Radiation in the Marine Heterotardigrade, Echiniscoides sigismundi.

    PubMed

    Jönsson, K Ingemar; Hygum, Thomas L; Andersen, Kasper N; Clausen, Lykke K B; Møbjerg, Nadja

    2016-01-01

    Tardigrades belong to the most radiation tolerant animals on Earth, as documented by a number of studies using both low-LET and high-LET ionizing radiation. Previous studies have focused on semi-terrestrial species, which are also very tolerant to desiccation. The predominant view on the reason for the high radiation tolerance among these semi-terrestrial species is that it relies on molecular mechanisms that evolved as adaptations for surviving dehydration. In this study we report the first study on radiation tolerance in a marine tardigrade, Echiniscoides sigismundi. Adult specimens in the hydrated active state were exposed to doses of gamma radiation from 100 to 5000 Gy. The results showed little effect of radiation at 100 and 500 Gy but a clear decline in activity at 1000 Gy and higher. The highest dose survived was 4000 Gy, at which ca. 8% of the tardigrades were active 7 days after irradiation. LD50 in the first 7 days after irradiation was in the range of 1100-1600 Gy. Compared to previous studies on radiation tolerance in semi-terrestrial and limnic tardigrades, Echiniscoides sigismundi seems to have a lower tolerance. However, the species still fits into the category of tardigrades that have high tolerance to both desiccation and radiation, supporting the hypothesis that radiation tolerance is a by-product of adaptive mechanisms to survive desiccation. More studies on radiation tolerance in tardigrade species adapted to permanently wet conditions, both marine and freshwater, are needed to obtain a more comprehensive picture of the patterns of radiation tolerance.

  13. Tolerance to Gamma Radiation in the Marine Heterotardigrade, Echiniscoides sigismundi

    PubMed Central

    Hygum, Thomas L.; Andersen, Kasper N.; Clausen, Lykke K. B.; Møbjerg, Nadja

    2016-01-01

    Tardigrades belong to the most radiation tolerant animals on Earth, as documented by a number of studies using both low-LET and high-LET ionizing radiation. Previous studies have focused on semi-terrestrial species, which are also very tolerant to desiccation. The predominant view on the reason for the high radiation tolerance among these semi-terrestrial species is that it relies on molecular mechanisms that evolved as adaptations for surviving dehydration. In this study we report the first study on radiation tolerance in a marine tardigrade, Echiniscoides sigismundi. Adult specimens in the hydrated active state were exposed to doses of gamma radiation from 100 to 5000 Gy. The results showed little effect of radiation at 100 and 500 Gy but a clear decline in activity at 1000 Gy and higher. The highest dose survived was 4000 Gy, at which ca. 8% of the tardigrades were active 7 days after irradiation. LD50 in the first 7 days after irradiation was in the range of 1100–1600 Gy. Compared to previous studies on radiation tolerance in semi-terrestrial and limnic tardigrades, Echiniscoides sigismundi seems to have a lower tolerance. However, the species still fits into the category of tardigrades that have high tolerance to both desiccation and radiation, supporting the hypothesis that radiation tolerance is a by-product of adaptive mechanisms to survive desiccation. More studies on radiation tolerance in tardigrade species adapted to permanently wet conditions, both marine and freshwater, are needed to obtain a more comprehensive picture of the patterns of radiation tolerance. PMID:27997621

  14. Mathematical solution of multilevel fractional programming problem with fuzzy goal programming approach

    NASA Astrophysics Data System (ADS)

    Lachhwani, Kailash; Poonia, Mahaveer Prasad

    2012-08-01

    In this paper, we show a procedure for solving multilevel fractional programming problems in a large hierarchical decentralized organization using fuzzy goal programming approach. In the proposed method, the tolerance membership functions for the fuzzily described numerator and denominator part of the objective functions of all levels as well as the control vectors of the higher level decision makers are respectively defined by determining individual optimal solutions of each of the level decision makers. A possible relaxation of the higher level decision is considered for avoiding decision deadlock due to the conflicting nature of objective functions. Then, fuzzy goal programming approach is used for achieving the highest degree of each of the membership goal by minimizing negative deviational variables. We also provide sensitivity analysis with variation of tolerance values on decision vectors to show how the solution is sensitive to the change of tolerance values with the help of a numerical example.

  15. On flaw tolerance of nacre: a theoretical study

    PubMed Central

    Shao, Yue; Zhao, Hong-Ping; Feng, Xi-Qiao

    2014-01-01

    As a natural composite, nacre has an elegant staggered ‘brick-and-mortar’ microstructure consisting of mineral platelets glued by organic macromolecules, which endows the material with superior mechanical properties to achieve its biological functions. In this paper, a microstructure-based crack-bridging model is employed to investigate how the strength of nacre is affected by pre-existing structural defects. Our analysis demonstrates that owing to its special microstructure and the toughening effect of platelets, nacre has a superior flaw-tolerance feature. The maximal crack size that does not evidently reduce the tensile strength of nacre is up to tens of micrometres, about three orders higher than that of pure aragonite. Through dimensional analysis, a non-dimensional parameter is proposed to quantify the flaw-tolerance ability of nacreous materials in a wide range of structural parameters. This study provides us some inspirations for optimal design of advanced biomimetic composites. PMID:24402917

  16. Effects of Notch Misalignment and Tip Radius on Displacement Field in V-Notch Rail Shear Test as Determined by Photogrammetry

    NASA Technical Reports Server (NTRS)

    Hill, Charles S.; Oliveras, Ovidio M.

    2011-01-01

    Evolution of the 3D strain field during ASTM-D-7078 v-notch rail shear tests on 8-ply quasi-isotropic carbon fiber/epoxy laminates was determined by optical photogrammetry using an ARAMIS system. Specimens having non-optimal geometry and minor discrepancies in dimensional tolerances were shown to display non-symmetry and/or stress concentration in the vicinity of the notch relative to a specimen meeting the requirements of the standard, but resulting shear strength and modulus values remained within acceptable bounds of standard deviation. Based on these results, and reported difficulty machining specimens to the required tolerances using available methods, it is suggested that a parametric study combining analytical methods and experiment may provide rationale to increase the tolerances on some specimen dimensions, reducing machining costs, increasing the proportion of acceptable results, and enabling a wider adoption of the test method.

  17. Topical Vehicle Formulations in the Treatment of Acne.

    PubMed

    Hoffman, Lauren K; Bhatia, Neal; Zeichner, Joshua; Kircik, Leon H

    2018-06-01

    Topical treatment is the mainstay of acne therapy. The most commonly prescribed topical medications for acne include benzoyl peroxide, clindamycin, and retinoids. Despite their effectiveness in treating mild to moderate acne vulgaris, these topical medications are found to be irritating, and are historically associated with poor tolerability and diminished patient adherence. Thus, choosing the right formulation that will be effective and well tolerated is essential. Novel formulations that optimize drug concentration and utilize improved delivery vehicles have helped to enhance the tolerability and efficacy, and allow for less frequent application or co-application of drugs that were previously considered incompatible. This article will review the goals of topical therapy for the treatment of acne, in addition to common therapies and their challenges. Advanced formulations and combination formulations of benzoyl peroxide, clindamycin, and tretinoin will also be discussed. J Drugs Dermatol. 2018;17(6 Suppl):s6-10.

  18. Rotational 3D printing of damage-tolerant composites with programmable mechanics.

    PubMed

    Raney, Jordan R; Compton, Brett G; Mueller, Jochen; Ober, Thomas J; Shea, Kristina; Lewis, Jennifer A

    2018-02-06

    Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber-epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. Copyright © 2018 the Author(s). Published by PNAS.

  19. Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol concentration and ionomer content on cell performance

    NASA Astrophysics Data System (ADS)

    Park, Jong Cheol; Choi, Chang Hyuck

    2017-08-01

    Non-precious metal catalysts (typically Fe(Co)-N-C catalysts) have been widely investigated for use as cost-effective cathode materials in low temperature fuel cells. Despite the high oxygen reduction activity and methanol-tolerance of graphene-based Fe(Co)-N-C catalysts in an acidic medium, their use in direct methanol fuel cells (DMFCs) has not yet been successfully implemented, and only a few studies have investigated this topic. Herein, we synthesized a nano-sized graphene-derived Fe/Co-N-C catalyst by physical ball-milling and a subsequent chemical modification of the graphene oxide. Twelve membrane-electrode-assemblies are fabricated with various cathode compositions to determine the effects of the methanol concentration, ionomer (i.e. Nafion) content, and catalyst loading on the DMFC performance. The results show that a graphene-based catalyst is capable of tolerating a highly-concentrated methanol feed up to 10.0 M. The optimized electrode composition has an ionomer content and catalyst loading of 66.7 wt% and 5.0 mg cm-2, respectively. The highest maximum power density is ca. 32 mW cm-2 with a relatively low PtRu content (2 mgPtRu cm-2). This study overcomes the drawbacks of conventional graphene-based electrodes using a nano-sized graphene-based catalyst and further shows the feasibility of their potential applications in DMFC systems.

  20. Study of Protein Phosphatase 2A (PP2A) Activity in LPS-Induced Tolerance Using Fluorescence-Based and Immunoprecipitation-Aided Methodology.

    PubMed

    Sun, Lei; Ii, Adlai L Pappy; Pham, Tiffany T; Shanley, Thomas P

    2015-06-29

    Protein phosphatase 2A (PP2A) is one of the most abundant intracellular serine/threonine (Ser/Thr) phosphatases accounting for 1% of the total cellular protein content. PP2A is comprised of a heterodimeric core enzyme and a substrate-specific regulatory subunit. Potentially, at least seventy different compositions of PP2A exist because of variable regulatory subunit binding that accounts for various activity modulating numerous cell functions. Due to the constitutive phosphatase activity present inside cells, a sensitive assay is required to detect the changes of PP2A activity under various experimental conditions. We optimized a fluorescence assay (DIFMU assay) by combining it with prior anti-PP2A immunoprecipitation to quantify PP2A-specific phosphatase activity. It is also known that prior exposure to lipopolysaccharides (LPS) induces "immune tolerance" of the cells to subsequent stimulation. Herein we report that PP2A activity is upregulated in tolerized peritoneal macrophages, corresponding to decreased TNF-α secretion upon second LPS stimulation. We further examined the role of PP2A in the tolerance effect by using PP2ACαl°xl°x;lyM-Cre conditional knockout macrophages. We found that PP2A phosphatase activity cannot be further increased by tolerance. TNF-α secretion from tolerized PP2ACαl°xl°x;lyM-Cre macrophages is higher than tolerized control macrophages. Furthermore, we showed that the increased TNF-α secretion may be due to an epigenetic transcriptionally active signature on the promoter of TNF-α gene rather than regulation of the NFκB/IκB signaling pathway. These results suggest a role for increased PP2A activity in the regulation of immune tolerance.

  1. Optimizing probability of detection point estimate demonstration

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2017-04-01

    The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using point estimate method. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. Traditionally largest flaw size in the set is considered to be a conservative estimate of the flaw size with minimum 90% probability and 95% confidence. The flaw size is denoted as α90/95PE. The paper investigates relationship between range of flaw sizes in relation to α90, i.e. 90% probability flaw size, to provide a desired PPD. The range of flaw sizes is expressed as a proportion of the standard deviation of the probability density distribution. Difference between median or average of the 29 flaws and α90 is also expressed as a proportion of standard deviation of the probability density distribution. In general, it is concluded that, if probability of detection increases with flaw size, average of 29 flaw sizes would always be larger than or equal to α90 and is an acceptable measure of α90/95PE. If NDE technique has sufficient sensitivity and signal-to-noise ratio, then the 29 flaw-set can be optimized to meet requirements of minimum required PPD, maximum allowable POF, requirements on flaw size tolerance about mean flaw size and flaw size detectability requirements. The paper provides procedure for optimizing flaw sizes in the point estimate demonstration flaw-set.

  2. Grapevines undergo varying shifts in secondary metabolic profiles when infected with Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease (PD) is a devastating disease of grapevine caused by the bacterial pathogen Xylella fastidiosa (Xf). Key to the development and optimization of PD-tolerant grape cultivars is improved understanding about how grapevines defend themselves against Xf. This study complements histologica...

  3. Resiliency Scales for Children and Adolescents: Profiles of Juvenile Offenders

    ERIC Educational Resources Information Center

    Mowder, Melissa H.; Cummings, Jack A.; McKinney, Robert

    2010-01-01

    An exploratory study of resiliency profiles of male and female juvenile offenders committed to a juvenile correctional facility was conducted. The goal of the present study was to examine juvenile offenders' positive characteristics (e.g., adaptability, optimism, self-efficacy, tolerance of differences). To assess positive characteristics and…

  4. Reproductive sink of sweet corn in response to plant density and hybrid

    USDA-ARS?s Scientific Manuscript database

    Improvements in plant density tolerance have played an essential role in grain corn yield gains for ~80 years; however, plant density effects on sweet corn biomass allocation to the ear (the reproductive ‘sink’) is poorly quantified. Moreover, optimal plant densities for modern white-kernel shrunke...

  5. Targeted and efficient transfer of multiple value-added genes into wheat varieties

    USDA-ARS?s Scientific Manuscript database

    With an objective to optimize an approach to transfer multiple value added genes to a wheat variety while maintaining and improving agronomic performance, two alleles with mutations in the acetolactate synthase (ALS) gene located on wheat chromosomes 6B and 6D providing tolerance to imidazolinone (I...

  6. Performance and Fault-Tolerance of Neural Networks for Optimization

    DTIC Science & Technology

    1991-06-01

    initialization to overcome the unstable equilibrium point at uij--O. "’ used the initial values Vij--0.5+6 with small, uniform noise _10-7򔄮 -7 . The...connectionist network: Investigations of acquired dyslexia . Technical Report CRG-TR-89-3, Dept. of Computer Science, University of Toronto, May 1989

  7. Tolerance to exercise intensity modulates pleasure when exercising in music: The upsides of acoustic energy for High Tolerant individuals.

    PubMed

    Carlier, Mauraine; Delevoye-Turrell, Yvonne

    2017-01-01

    Moderate physical activity can be experienced by some as pleasurable and by others as discouraging. This may be why many people lack sufficient motivation to participate in the recommended 150 minutes of moderately intense exercise per week. In the present study, we assessed how pleasure and enjoyment were modulated differently by one's tolerance to self-paced physical activity. Sixty-three healthy individuals were allocated to three independent experimental conditions: a resting condition (watching TV), a cycling in silence condition, and a cycling in music condition. The tolerance threshold was assessed using the PRETIE-Questionnaire. Physical activity consisted in cycling during 30 minutes, at an intensity perceived as "somewhat difficult" on the Ratings of Perceived Exertion Scale. While controlling for self-reported physical activity level, results revealed that for the same perception of exertion and a similar level of enjoyment, the High Tolerance group produced more power output than the Low Tolerance group. There was a positive effect of music for High Tolerant individuals only, with music inducing greater power output and more pleasure. There was an effect of music on heart rate frequency in the Low Tolerant individuals without benefits in power output or pleasure. Our results suggest that for Low Tolerant individuals, energizing environments can interfere with the promised (positive) distracting effects of music. Hence, tolerance to physical effort must be taken into account to conceive training sessions that seek to use distracting methods as means to sustain pleasurable exercising over time.

  8. Mixed-Strategy Chance Constrained Optimal Control

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J.

    2013-01-01

    This paper presents a novel chance constrained optimal control (CCOC) algorithm that chooses a control action probabilistically. A CCOC problem is to find a control input that minimizes the expected cost while guaranteeing that the probability of violating a set of constraints is below a user-specified threshold. We show that a probabilistic control approach, which we refer to as a mixed control strategy, enables us to obtain a cost that is better than what deterministic control strategies can achieve when the CCOC problem is nonconvex. The resulting mixed-strategy CCOC problem turns out to be a convexification of the original nonconvex CCOC problem. Furthermore, we also show that a mixed control strategy only needs to "mix" up to two deterministic control actions in order to achieve optimality. Building upon an iterative dual optimization, the proposed algorithm quickly converges to the optimal mixed control strategy with a user-specified tolerance.

  9. The Development of Design Tools for Fault Tolerant Quantum Dot Cellular Automata Based Logic

    NASA Technical Reports Server (NTRS)

    Armstrong, Curtis D.; Humphreys, William M.

    2003-01-01

    We are developing software to explore the fault tolerance of quantum dot cellular automata gate architectures in the presence of manufacturing variations and device defects. The Topology Optimization Methodology using Applied Statistics (TOMAS) framework extends the capabilities of the A Quantum Interconnected Network Array Simulator (AQUINAS) by adding front-end and back-end software and creating an environment that integrates all of these components. The front-end tools establish all simulation parameters, configure the simulation system, automate the Monte Carlo generation of simulation files, and execute the simulation of these files. The back-end tools perform automated data parsing, statistical analysis and report generation.

  10. [Heavy metal tolerance of Miscanthus plants and their phytoremediation potential in abandoned mine land].

    PubMed

    Wu, Dao Ming; Chen, Xiao Yang; Zeng, Shu Cai

    2017-04-18

    Miscanthus has been recognized as promising candidate for phytoremediation in abandoned mine land, because of its high tolerance to heavy metals and bioenergy potential. Miscanthus has been reported tolerant to several heavy metal elements. However, it has not been recognized as hyperaccumulator for these elements. The detailed mechanisms by which Miscanthus tolerates these heavy metal elements are still unclear. According to recent studies, several mechanisms, such as high metabolic capacity in root, an abundance of microbes in the root-rhizosphere, and high capacity of antioxidation and photosynthesis might contribute to enhance the heavy metal tolerance of Miscanthus. Miscanthus has a certain potential in the phytoremediation of abandoned mine land, because of its high suitability for the phytostabilization of heavy metals. Moreover, Miscanthus cropping is a promising practice to enhance the diversity of botanical species and soil organism, and to improve soil physical and chemical properties. Here we reviewed recent literatures on the biological characteristics and the heavy metal tolerance of Miscanthus, and its phytoremediation potential in abandoned mine land. A basic guideline for using Miscanthus in abandoned mine land phytoremediation and an outlook for further study on the mechanisms of heavy metals tolerance in Miscanthus were further proposed. We hoped to provide theoretical references for phytoremediation in abandoned mine land by using Miscanthus.

  11. G-Equivalent Acceleration Tolerance in the Eutardigrade Species Hypsibius dujardini.

    PubMed

    Vasanthan, Tarushika; Alejaldre, Lorea; Hider, Jessica; Patel, Shreya; Husain, Nabiha; Umapathisivam, Bavithra; Stone, Jonathon

    2017-01-01

    Tardigrades are microscopic organisms renowned for their ability to survive extreme environmental conditions. Tardigrade extreme-tolerance research has centered on the ability to withstand desiccation, low and high temperatures, and high hydrostatic pressure and radiation levels. Tardigrade tolerance to hypergravity, however, has yet to be described. We used the eutardigrade species Hypsibius dujardini to investigate short-term tolerance to g-equivalent accelerations (i.e., mimicking g-forces). Data obtained from specimens centrifuged between 3421g and 16,060g for 1 min inclusively reveal tolerance in an acceleration-dependent relation, with lower survivorship and egg production at higher accelerations. This is the first study to demonstrate tardigrade potential for tolerance to hypergravity and describe expected effects on tardigrade survival and reproduction. These findings will prove to be useful in lithopanspermia research (i.e., viable spread in meteoritic rocks). Key Words: Astrobiology-Extreme tolerance-Hypergravity-Tardigrade. Astrobiology 17, 55-60.

  12. Network Candidate Genes in Breeding for Drought Tolerant Crops

    PubMed Central

    Krannich, Christoph Tim; Maletzki, Lisa; Kurowsky, Christina; Horn, Renate

    2015-01-01

    Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance. PMID:26193269

  13. Molecular markers associated with aluminium tolerance in Sorghum bicolor.

    PubMed

    Too, Emily Jepkosgei; Onkware, Augustino Osoro; Were, Beatrice Ang'iyo; Gudu, Samuel; Carlsson, Anders; Geleta, Mulatu

    2018-01-01

    Sorghum ( Sorghum bicolor , L. Moench) production in many agro-ecologies is constrained by a variety of stresses, including high levels of aluminium (Al) commonly found in acid soils. Therefore, for such soils, growing Al tolerant cultivars is imperative for high productivity. In this study, molecular markers associated with Al tolerance were identified using a mapping population developed by crossing two contrasting genotypes for this trait. Four SSR ( Xtxp34 , Sb5_236 , Sb6_34 , and Sb6_342 ), one STS ( CTG29_3b ) and three ISSR ( 811_1400 , 835_200 and 884_200 ) markers produced alleles that showed significant association with Al tolerance. CTG29_3b, 811_1400 , Xtxp34 and Sb5_ 236 are located on chromosome 3 with the first two markers located close to Alt SB , a locus that underlie the Al tolerance gene ( SbMATE ) implying that their association with Al tolerance is due to their linkage to this gene. Although CTG29_3b and 811_ 1400 are located closer to Alt SB , Xtxp34 and Sb5_236 explained higher phenotypic variance of Al tolerance indices. Markers 835_200 , 884_200 , Sb6_34 and Sb6_342 are located on different chromosomes, which implies the presence of several genes involved in Al tolerance in addition to S bMATE in sorghum. These molecular markers have a high potential for use in breeding for Al tolerance in sorghum.

  14. Network Candidate Genes in Breeding for Drought Tolerant Crops.

    PubMed

    Krannich, Christoph Tim; Maletzki, Lisa; Kurowsky, Christina; Horn, Renate

    2015-07-17

    Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance.

  15. Tolerance measurements on internal- and external-hexagon implants.

    PubMed

    Braian, Michael; De Bruyn, Hugo; Fransson, Håkan; Christersson, Cecilia; Wennerberg, Ann

    2014-01-01

    To measure the horizontal machining tolerances of the interface between internal- and external-hexagon implants and analogs with corresponding components after delivery from the manufacturer. These values may be a valuable tool for evaluating increasing misfit caused by fabrication, processing, and wear. Seven implants and seven analogs with external- and internal-hexagon connections (Biomet 3i) with corresponding prefabricated gold cylinders and gold screws, prefabricated cylindric plastic cylinders, and laboratory screws were studied. One set of components from the external and internal groups was measured manually and digitally. Measurements from the test subjects were compared with identical measurements from the virtual model to obtain threshold values. The virtual model was then used to obtain optimally oriented cuts. The horizontal machining tolerances for castable plastic abutments on external implants were 12 ± 89 μm, and for internal implants they were 86 ± 47 μm. Tolerance measurements on prefabricated gold abutments for external implants were 44 ± 9 μm, and for internal implants they were 58 ± 28 μm. The groups with metallic components showed the smallest tolerance at < 50 μm for the external group and < 90 μm for the internal group. The prefabricated plastic cylinder groups ranged from < 100 μm for external and < 130 μm for internal connection.

  16. The Stringent Response Controls Catalases in Pseudomonas aeruginosa and Is Required for Hydrogen Peroxide and Antibiotic Tolerance

    PubMed Central

    Khakimova, Malika; Ahlgren, Heather G.; Harrison, Joe J.; English, Ann M.

    2013-01-01

    Pseudomonas aeruginosa, a human opportunistic pathogen, possesses a number of antioxidant defense enzymes under the control of multiple regulatory systems. We recently reported that inactivation of the P. aeruginosa stringent response (SR), a starvation stress response controlled by the alarmone (p)ppGpp, caused impaired antioxidant defenses and antibiotic tolerance. Since catalases are key antioxidant enzymes in P. aeruginosa, we compared the levels of H2O2 susceptibility and catalase activity in P. aeruginosa wild-type and ΔrelA ΔspoT (ΔSR) mutant cells. We found that the SR was required for optimal catalase activity and mediated H2O2 tolerance during both planktonic and biofilm growth. Upon amino acid starvation, induction of the SR upregulated catalase activity. Full expression of katA and katB also required the SR, and this regulation occurred through both RpoS-independent and RpoS-dependent mechanisms. Furthermore, overexpression of katA was sufficient to restore H2O2 tolerance and to partially rescue the antibiotic tolerance of ΔSR cells. All together, these results suggest that the SR regulates catalases and that this is an important mechanism in protecting nutrient-starved and biofilm bacteria from H2O2- and antibiotic-mediated killing. PMID:23457248

  17. Basking behavior predicts the evolution of heat tolerance in Australian rainforest lizards.

    PubMed

    Muñoz, Martha M; Langham, Gary M; Brandley, Matthew C; Rosauer, Dan F; Williams, Stephen E; Moritz, Craig

    2016-11-01

    There is pressing urgency to understand how tropical ectotherms can behaviorally and physiologically respond to climate warming. We examine how basking behavior and thermal environment interact to influence evolutionary variation in thermal physiology of multiple species of lygosomine rainforest skinks from the Wet Tropics of northeastern Queensland, Australia (AWT). These tropical lizards are behaviorally specialized to exploit canopy or sun, and are distributed across marked thermal clines in the AWT. Using phylogenetic analyses, we demonstrate that physiological parameters are either associated with changes in local thermal habitat or to basking behavior, but not both. Cold tolerance, the optimal sprint speed, and performance breadth are primarily influenced by local thermal environment. Specifically, montane lizards are more cool tolerant, have broader performance breadths, and higher optimum sprinting temperatures than their lowland counterparts. Heat tolerance, in contrast, is strongly affected by basking behavior: there are two evolutionary optima, with basking species having considerably higher heat tolerance than shade skinks, with no effect of elevation. These distinct responses among traits indicate the multiple selective pressures and constraints that shape the evolution of thermal performance. We discuss how behavior and physiology interact to shape organisms' vulnerability and potential resilience to climate change. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  18. Paradoxical effects of density on measurement of copper tolerance in Silene paradoxa L.

    PubMed

    Capuana, Maurizio; Colzi, Ilaria; Buccianti, Antonella; Coppi, Andrea; Palm, Emily; Del Bubba, Massimo; Gonnelli, Cristina

    2018-01-01

    This work investigated if the assessment of tolerance to trace metals can depend on plant density in the experimental design. A non-metallicolous and a metallicolous populations of Silene paradoxa were hydroponically cultivated at increasing density and in both the absence (-Cu conditions) and excess of copper (+Cu conditions). In -Cu conditions, the metallicolous population showed a lower susceptibility to plant density in comparison to the non-metallicolous one, explained by a higher capacity of the metallicolous population to exploit resources. In +Cu conditions, an alleviating effect of increasing density was found in roots. Such effect was present to a greater extent in the non-metallicolous population, thus making the populations equally copper-tolerant at the highest density used. In shoots, an additive effect of increasing plant density to copper toxicity was reported. Its higher intensity in the metallicolous population reverted the copper tolerance relationship at the highest plant densities used. In both populations, a density-induced decrease in root copper accumulation was observed, thus concurring to the reported mitigation in +Cu conditions. Our work revealed the importance of density studies on the optimization of eco-toxicological bioassays and of metal tolerance assessment and it can be considered the first example of an alleviating effect of increasing plant number on copper stress in a metallophyte.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, Sara; Ceballos, Shannon J.; Harrold, Duff

    Our aims were to identify thermophilic microbial communities that degrade green waste in the presence of the ionic liquids (IL) tetrabutylphosphonium chloride and tributylethylphosphonium diethylphosphate and examine preservation methods for IL-tolerant communities. High-solids incubations with stepwise increases in IL concentration were conducted to enrich for thermophilic IL-tolerant communities that decomposed green waste. 16S rRNA sequencing of enriched communities revealed microorganisms capable of tolerating high levels of IL. Furthermore, cryogenic preservation of enriched communities reduced the IL tolerance of the community and decreased the relative abundance of IL-tolerant organisms. The use of cryoprotectants did not have an effect on microbial activitymore » on green waste of the stored community. A successful approach was developed to enrich communities that decompose green waste in thermophilic high-solids environments in the presence of IL. Alternative community storage and revival methods are necessary for maintenance and recovery of IL-tolerant communities. The enriched communities provide a targeted source of enzymes for the bioconversion of IL-pretreated green waste for conversion to biofuels.« less

  20. Global optimization of multimode interference structure for ratiometric wavelength measurement

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Farrell, Gerald; Hatta, Agus Muhamad

    2007-07-01

    The multimode interference structure is conventionally used as a splitter/combiner. In this paper, it is optimised as an edge filter for ratiometric wavelength measurement, which can be used in demodulation of fiber Bragg grating sensing. The global optimization algorithm-adaptive simulated annealing is introduced in the design of multimode interference structure including the length and width of the multimode waveguide section, and positions of the input and output waveguides. The designed structure shows a suitable spectral response for wavelength measurement and a good fabrication tolerance.

  1. Tolerancing the alignment of large-core optical fibers, fiber bundles and light guides using a Fourier approach.

    PubMed

    Sawyer, Travis W; Petersburg, Ryan; Bohndiek, Sarah E

    2017-04-20

    Optical fiber technology is found in a wide variety of applications to flexibly relay light between two points, enabling information transfer across long distances and allowing access to hard-to-reach areas. Large-core optical fibers and light guides find frequent use in illumination and spectroscopic applications, for example, endoscopy and high-resolution astronomical spectroscopy. Proper alignment is critical for maximizing throughput in optical fiber coupling systems; however, there currently are no formal approaches to tolerancing the alignment of a light-guide coupling system. Here, we propose a Fourier alignment sensitivity (FAS) algorithm to determine the optimal tolerances on the alignment of a light guide by computing the alignment sensitivity. The algorithm shows excellent agreement with both simulated and experimentally measured values and improves on the computation time of equivalent ray-tracing simulations by two orders of magnitude. We then apply FAS to tolerance and fabricate a coupling system, which is shown to meet specifications, thus validating FAS as a tolerancing technique. These results indicate that FAS is a flexible and rapid means to quantify the alignment sensitivity of a light guide, widely informing the design and tolerancing of coupling systems.

  2. TCR signaling by conventional CD4+ T cells is required for optimal maintenance of peripheral regulatory T cell numbers.

    PubMed

    Leichner, Theresa M; Satake, Atsushi; Kambayashi, Taku

    2016-06-01

    To maintain immune tolerance, regulatory T cell (Treg) numbers must be closely indexed to the number of conventional T cells (Tconvs) so that an adequate Treg:Tconv ratio can be maintained. Two factors important in this process are the cytokine interleukin-2 (IL-2) and T cell receptor (TCR) stimulation by major histocompatibility complex class II (MHC-II). Here, we report that in addition to TCR stimulation of Tregs themselves, the maintenance of Tregs also requires TCR signaling by Tconvs. We found that Tconvs produce IL-2 in response to self-peptide-MHC-II complexes and that Tconvs possessing more highly self-reactive TCRs express more IL-2 at baseline. Furthermore, selective disruption of TCR signaling in Tconvs led to a trend toward decreased expression of IL-2 and attenuated their ability to maintain Treg numbers. These data suggest that in order to maintain an adequate Treg:Tconv ratio, Tregs are continuously indexed to self-peptide-MHC-II-induced TCR signaling of Tconvs. These results have implications in attempts to modulate immune tolerance, as Treg numbers adjust to the self-reactivity, and ultimately IL-2 production by the T cells around them.

  3. Tolerancing the alignment of large-core optical fibers, fiber bundles and light guides using a Fourier approach

    PubMed Central

    Sawyer, Travis W.; Petersburg, Ryan; Bohndiek, Sarah E.

    2017-01-01

    Optical fiber technology is found in a wide variety of applications to flexibly relay light between two points, enabling information transfer across long distances and allowing access to hard-to-reach areas. Large-core optical fibers and light guides find frequent use in illumination and spectroscopic applications; for example, endoscopy and high-resolution astronomical spectroscopy. Proper alignment is critical for maximizing throughput in optical fiber coupling systems, however, there currently are no formal approaches to tolerancing the alignment of a light guide coupling system. Here, we propose a Fourier Alignment Sensitivity (FAS) algorithm to determine the optimal tolerances on the alignment of a light guide by computing the alignment sensitivity. The algorithm shows excellent agreement with both simulated and experimentally measured values and improves on the computation time of equivalent ray tracing simulations by two orders of magnitude. We then apply FAS to tolerance and fabricate a coupling system, which is shown to meet specifications, thus validating FAS as a tolerancing technique. These results indicate that FAS is a flexible and rapid means to quantify the alignment sensitivity of a light guide, widely informing the design and tolerancing of coupling systems. PMID:28430250

  4. Adaptive laboratory evolution of Klebsiella pneumoniae for improving 2,3-butanediol production

    PubMed Central

    Li, Hongbiao; Zhang, Genlin; Dang, Yanyan

    2016-01-01

    ABSTRACT Microbial production of 2,3-butanediol is limited by the toxic components in the lignocellulose hydrolysate. To improve the 2,3-butanediol production via Klebsiella pneumoniae from cotton stalk hydrolysate, a method coupling a high tolerance of strain and detoxification of the hydrolysate was thus investigated in this study. The strain tolerance of K. pneumoniae to the cotton stalk hydrolysate was improved via an adaptive laboratory evolution, which involved a stepwise increase in the hydrolysate concentration in the medium. Compared with the initial strain, the resulting strain increased the biomass 3.2-fold in a medium of 20 g/L hydrolysate and produced 10.45 g/L of 2,3-butanediol at an optimal concentration of 60 g/L hydrolysate. After detoxification of cotton stalk hydrolysate, the cell metabolism of K. pneumoniae was further promoted, and the 2,3-butanediol production increased by 1.2 folds. Using fed-batch fermentation, the concentration of 2,3-butanediol reached 35.5 g/L with a yield of 0.43 g/g. The results demonstrated that the bioconversion of low-cost cotton stalk hydrolysate into 2,3-butanediol improves the economics of microbial 2,3-butanediol production. PMID:27442598

  5. Conversion of spent mushroom substrate to biofertilizer using a stress-tolerant phosphate-solubilizing Pichia farinose FL7.

    PubMed

    Zhu, Hong-Ji; Sun, Li-Fan; Zhang, Yan-Fei; Zhang, Xiao-Li; Qiao, Jian-Jun

    2012-05-01

    To develop high-efficient biofertilizer, an environmental stress-tolerant phosphate-solubilizing microorganism (PSM) was isolated from agricultural wastes compost, and then applied to spent mushroom substrate (SMS). The isolate FL7 was identified as Pichia farinose with resistance against multiple environmental stresses, including 5-45°C temperature, 3-10 pH range, 0-23% (w/v) NaCl and 0-6M ammonium ion. Under the optimized cultivation condition, 852.8 mg/l total organic acids can be produced and pH can be reduced to 3.8 after 60 h, meanwhile, the soluble phosphate content reached 816.16 mg/l. The P. farinose was used to convert SMS to a phosphate biofertilizer through a semi-solid fermentation (SSF) process. After fermentation of 10 days, cell density can be increased to 5.6 × 10(8)CFU/g in biomass and pH in this medium can be decreased to 4.0. SMS biofertilizer produced by P. farinose significantly improved the growth of soybean in pot experiments, demonstrating a tremendous potential in agricultural application. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Design intent optimization at the beyond 7nm node: the intersection of DTCO and EUVL stochastic mitigation techniques

    NASA Astrophysics Data System (ADS)

    Crouse, Michael; Liebmann, Lars; Plachecki, Vince; Salama, Mohamed; Chen, Yulu; Saulnier, Nicole; Dunn, Derren; Matthew, Itty; Hsu, Stephen; Gronlund, Keith; Goodwin, Francis

    2017-03-01

    The initial readiness of EUV patterning was demonstrated in 2016 with IBM Alliance's 7nm device technology. The focus has now shifted to driving the 'effective' k1 factor and enabling the second generation of EUV patterning. Thus, Design Technology Co-optimization (DTCO) has become a critical part of technology enablement as scaling has become more challenging and the industry pushes the limits of EUV lithography. The working partnership between the design teams and the process development teams typically involves an iterative approach to evaluate the manufacturability of proposed designs, subsequent modifications to those designs and finally a design manual for the technology. While this approach has served the industry well for many generations, the challenges at the Beyond 7nm node require a more efficient approach. In this work, we describe the use of "Design Intent" lithographic layout optimization where we remove the iterative component of DTCO and replace it with an optimization that achieves both a "patterning friendly" design and minimizes the well-known EUV stochastic effects. Solved together, this "design intent" approach can more quickly achieve superior lithographic results while still meeting the original device's functional specifications. Specifically, in this work we will demonstrate "design intent" optimization for critical BEOL layers using design tolerance bands to guide the source mask co-optimization. The design tolerance bands can be either supplied as part of the original design or derived from some basic rules. Additionally, the EUV stochastic behavior is mitigated by enhancing the image log slope (ILS) for specific key features as part of the overall optimization. We will show the benefit of the "design intent approach" on both bidirectional and unidirectional 28nm min pitch standard logic layouts and compare the more typical iterative SMO approach. Thus demonstrating the benefit of allowing the design to float within the specified range. Lastly, we discuss how the evolution of this approach could lead to layout optimization based entirely on some minimal set of functional requirements and process constraints.

  7. A rapid enzymatic assay for high-throughput screening of adenosine-producing strains

    PubMed Central

    Dong, Huina; Zu, Xin; Zheng, Ping; Zhang, Dawei

    2015-01-01

    Adenosine is a major local regulator of tissue function and industrially useful as precursor for the production of medicinal nucleoside substances. High-throughput screening of adenosine overproducers is important for industrial microorganism breeding. An enzymatic assay of adenosine was developed by combined adenosine deaminase (ADA) with indophenol method. The ADA catalyzes the cleavage of adenosine to inosine and NH3, the latter can be accurately determined by indophenol method. The assay system was optimized to deliver a good performance and could tolerate the addition of inorganic salts and many nutrition components to the assay mixtures. Adenosine could be accurately determined by this assay using 96-well microplates. Spike and recovery tests showed that this assay can accurately and reproducibly determine increases in adenosine in fermentation broth without any pretreatment to remove proteins and potentially interfering low-molecular-weight molecules. This assay was also applied to high-throughput screening for high adenosine-producing strains. The high selectivity and accuracy of the ADA assay provides rapid and high-throughput analysis of adenosine in large numbers of samples. PMID:25580842

  8. The Metabolic Basis of Pollen Thermo-Tolerance: Perspectives for Breeding

    PubMed Central

    Paupière, Marine J.; van Heusden, Adriaan W.; Bovy, Arnaud G.

    2014-01-01

    Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1–3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of) metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed. PMID:25271355

  9. The metabolic basis of pollen thermo-tolerance: perspectives for breeding.

    PubMed

    Paupière, Marine J; van Heusden, Adriaan W; Bovy, Arnaud G

    2014-09-30

    Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1-3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of) metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed.

  10. An Integrated Fault Tolerant Robotic Controller System for High Reliability and Safety

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Tso, Kam S.; Hecht, Myron

    1994-01-01

    This paper describes the concepts and features of a fault-tolerant intelligent robotic control system being developed for applications that require high dependability (reliability, availability, and safety). The system consists of two major elements: a fault-tolerant controller and an operator workstation. The fault-tolerant controller uses a strategy which allows for detection and recovery of hardware, operating system, and application software failures.The fault-tolerant controller can be used by itself in a wide variety of applications in industry, process control, and communications. The controller in combination with the operator workstation can be applied to robotic applications such as spaceborne extravehicular activities, hazardous materials handling, inspection and maintenance of high value items (e.g., space vehicles, reactor internals, or aircraft), medicine, and other tasks where a robot system failure poses a significant risk to life or property.

  11. Cassava biology and physiology.

    PubMed

    El-Sharkawy, Mabrouk A

    2004-11-01

    Cassava or manioc (Manihot esculenta Crantz), a perennial shrub of the New World, currently is the sixth world food crop for more than 500 million people in tropical and sub-tropical Africa, Asia and Latin America. It is cultivated mainly by resource-limited small farmers for its starchy roots, which are used as human food either fresh when low in cyanogens or in many processed forms and products, mostly starch, flour, and for animal feed. Because of its inherent tolerance to stressful environments, where other food crops would fail, it is often considered a food-security source against famine, requiring minimal care. Under optimal environmental conditions, it compares favorably in production of energy with most other major staple food crops due to its high yield potential. Recent research at the Centro Internacional de Agricultura Tropical (CIAT) in Colombia has demonstrated the ability of cassava to assimilate carbon at very high rates under high levels of humidity, temperature and solar radiation,which correlates with productivity across all environments whether dry or humid. When grown on very poor soils under prolonged drought for more than 6 months, the crop reduce both its leaf canopy and transpiration water loss, but its attached leaves remain photosynthetically active, though at greatly reduced rates. The main physiological mechanism underlying such a remarkable tolerance to drought was rapid stomatal closure under both atmospheric and edaphic water stress, protecting the leaf against dehydration while the plant depletes available soil water slowly during long dry periods. This drought tolerance mechanism leads to high crop water use efficiency values. Although the cassava fine root system is sparse, compared to other crops, it can penetrate below 2 m soil,thus enabling the crop to exploit deep water if available. Leaves of cassava and wild Manihot possess elevated activities of the C4 enzyme PEP carboxylase but lack the leaf Kranz anatomy typical of C4 species, pointing to the need for further research on cultivated and wild Manihot to further improve its photosynthetic potential and yield,particularly under stressful environments. Moreover, a wide range in values of Km (CO2) for the C3 photosynthetic enzyme Rubisco was found among cassava cultivars indicating the possibility of selection for higher affinity to CO2, and consequently higher leaf photosynthesis. Several plant traits that may be of value in crop breeding and improvement have been identified, such as an extensive fine root system, long leaf life, strong root sink and high leaf photosynthesis. Selection of parental materials for tolerance to drought and infertile soils under representative field conditions have resulted in developing improved cultivars that have high yields in favorable environments while producing reasonable and stable yields under stress.

  12. Cost of resistance to trematodes in freshwater snail populations with low clonal diversity.

    PubMed

    Dagan, Yael; Kosman, Evsey; Ben-Ami, Frida

    2017-12-13

    The persistence of high genetic variability in natural populations garners considerable interest among ecologists and evolutionary biologists. One proposed hypothesis for the maintenance of high levels of genetic diversity relies on frequency-dependent selection imposed by parasites on host populations (Red Queen hypothesis). A complementary hypothesis suggests that a trade-off between fitness costs associated with tolerance to stress factors and fitness costs associated with resistance to parasites is responsible for the maintenance of host genetic diversity. The present study investigated whether host resistance to parasites is traded off with tolerance to environmental stress factors (high/low temperatures, high salinity), by comparing populations of the freshwater snail Melanoides tuberculata with low vs. high clonal diversity. Since polyclonal populations were found to be more parasitized than populations with low clonal diversity, we expected them to be tolerant to environmental stress factors. We found that clonal diversity explained most of the variation in snail survival under high temperature, thereby suggesting that tolerance to high temperatures of clonally diverse populations is higher than that of populations with low clonal diversity. Our results suggest that resistance to parasites may come at a cost of reduced tolerance to certain environmental stress factors.

  13. Comparative Investigation of Copper Tolerance and Identification of Putative Tolerance Related Genes in Tardigrades

    PubMed Central

    Hygum, Thomas L.; Fobian, Dannie; Kamilari, Maria; Jørgensen, Aslak; Schiøtt, Morten; Grosell, Martin; Møbjerg, Nadja

    2017-01-01

    Tardigrades are microscopic aquatic animals renowned for their tolerance toward extreme environmental conditions. The current study is the first to investigate their tolerance toward heavy metals and we present a novel tardigrade toxicant tolerance assay based on activity assessments as a measure of survival. Specifically, we compare tolerance toward copper in four species representing different evolutionary lineages, habitats and adaptation strategies, i.e., a marine heterotardigrade, Echiniscoides sigismundi, a limno-terrestrial heterotardigrade, Echiniscus testudo, a limno-terrestrial eutardigrade, Ramazzottius oberhaeuseri, and a marine eutardigrade, Halobiotus crispae. The latter was sampled at a time of year, when the population is predominantly represented by aberrant P1 cysts, while the other species were in normal active states prior to exposure. Based on volume measurements and a general relation between body mass and copper tolerance, expected tardigrade EC50 values were estimated at 0.5–2 μg l−1. Following 24 h of exposure, tolerance was high with no apparent link to lineage or habitat. EC50s (95% CI), 24 h after exposure, were estimated at 178 (168–186) and 310 (295–328) μg l−1, respectively, for E. sigismundi and R. oberhaeuseri, whereas E. testudo and H. crispae were less affected. Highest tolerance was observed in H. crispae with a mean ± s.e.m. activity of 77 ± 2% (n = 3) 24 h after removal from ~3 mg l−1 copper, suggesting that tardigrade cysts have increased tolerance toward toxicants. In order to identify putative tolerance related genes, an E. sigismundi transcriptome was searched for key enzymes involved in osmoregulation, antioxidant defense and copper metabolism. We found high expression of Na/K ATPase and carbonic anhydrase, known targets for copper. Our transcriptome, furthermore, revealed high expression of antioxidant enzymes, copper transporters, ATOX1, and a Cu-ATPase. In summary, our results indicate that tardigrades express well-known key osmoregulatory enzymes, supporting the hypothesis that copper inhibits sodium turnover as demonstrated for other aquatic organisms. Tardigrades, nevertheless, have high tolerance toward the toxicant, which is likely linked to high expression of antioxidant enzymes and an ability to enter dormant states. Tardigrades, furthermore, seem to have a well-developed battery of cuproproteins involved in copper homeostasis, providing basis for active copper sequestering and excretion. PMID:28293195

  14. Comparative Investigation of Copper Tolerance and Identification of Putative Tolerance Related Genes in Tardigrades.

    PubMed

    Hygum, Thomas L; Fobian, Dannie; Kamilari, Maria; Jørgensen, Aslak; Schiøtt, Morten; Grosell, Martin; Møbjerg, Nadja

    2017-01-01

    Tardigrades are microscopic aquatic animals renowned for their tolerance toward extreme environmental conditions. The current study is the first to investigate their tolerance toward heavy metals and we present a novel tardigrade toxicant tolerance assay based on activity assessments as a measure of survival. Specifically, we compare tolerance toward copper in four species representing different evolutionary lineages, habitats and adaptation strategies, i.e., a marine heterotardigrade, Echiniscoides sigismundi , a limno-terrestrial heterotardigrade, Echiniscus testudo , a limno-terrestrial eutardigrade, Ramazzottius oberhaeuseri , and a marine eutardigrade, Halobiotus crispae . The latter was sampled at a time of year, when the population is predominantly represented by aberrant P1 cysts, while the other species were in normal active states prior to exposure. Based on volume measurements and a general relation between body mass and copper tolerance, expected tardigrade EC50 values were estimated at 0.5-2 μg l -1 . Following 24 h of exposure, tolerance was high with no apparent link to lineage or habitat. EC50s (95% CI), 24 h after exposure, were estimated at 178 (168-186) and 310 (295-328) μg l -1 , respectively, for E. sigismundi and R. oberhaeuseri , whereas E. testudo and H. crispae were less affected. Highest tolerance was observed in H. crispae with a mean ± s.e.m . activity of 77 ± 2% ( n = 3) 24 h after removal from ~3 mg l -1 copper, suggesting that tardigrade cysts have increased tolerance toward toxicants. In order to identify putative tolerance related genes, an E. sigismundi transcriptome was searched for key enzymes involved in osmoregulation, antioxidant defense and copper metabolism. We found high expression of Na/K ATPase and carbonic anhydrase, known targets for copper. Our transcriptome, furthermore, revealed high expression of antioxidant enzymes, copper transporters, ATOX1, and a Cu-ATPase. In summary, our results indicate that tardigrades express well-known key osmoregulatory enzymes, supporting the hypothesis that copper inhibits sodium turnover as demonstrated for other aquatic organisms. Tardigrades, nevertheless, have high tolerance toward the toxicant, which is likely linked to high expression of antioxidant enzymes and an ability to enter dormant states. Tardigrades, furthermore, seem to have a well-developed battery of cuproproteins involved in copper homeostasis, providing basis for active copper sequestering and excretion.

  15. Chelonia: A self-healing, replicated storage system

    NASA Astrophysics Data System (ADS)

    Kerr Nilsen, Jon; Toor, Salman; Nagy, Zsombor; Read, Alex

    2011-12-01

    Chelonia is a novel grid storage system designed to fill the requirements gap between those of large, sophisticated scientific collaborations which have adopted the grid paradigm for their distributed storage needs, and of corporate business communities gravitating towards the cloud paradigm. Chelonia is an integrated system of heterogeneous, geographically dispersed storage sites which is easily and dynamically expandable and optimized for high availability and scalability. The architecture and implementation in term of web-services running inside the Advanced Resource Connector Hosting Environment Dameon (ARC HED) are described and results of tests in both local -area and wide-area networks that demonstrate the fault tolerance, stability and scalability of Chelonia will be presented. In addition, example setups for production deployments for small and medium-sized VO's are described.

  16. Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.)

    PubMed Central

    Graf, Brittany L.; Rojas-Silva, Patricio; Rojo, Leonel E.; Delatorre-Herrera, Jose; Baldeón, Manuel E.; Raskin, Ilya

    2016-01-01

    Quinoa (Chenopodium quinoa Willd., Amaranthaceae) is a grain-like, stress-tolerant food crop that has provided subsistence, nutrition, and medicine for Andean indigenous cultures for thousands of years. Quinoa contains a high content of health-beneficial phytochemicals, including amino acids, fiber, polyunsaturated fatty acids, vitamins, minerals, saponins, phytosterols, phytoecdysteroids, phenolics, betalains, and glycine betaine. Over the past 2 decades, numerous food and nutraceutical products and processes have been developed from quinoa. Furthermore, 4 clinical studies have demonstrated that quinoa supplementation exerts significant, positive effects on metabolic, cardiovascular, and gastrointestinal health in humans. However, vast challenges and opportunities remain within the scientific, agricultural, and development sectors to optimize quinoa's role in the promotion of global human health and nutrition. PMID:27453695

  17. Preliminary design of the spatial filters used in the multipass amplification system of TIL

    NASA Astrophysics Data System (ADS)

    Zhu, Qihua; Zhang, Xiao Min; Jing, Feng

    1998-12-01

    The spatial filters are used in Technique Integration Line, which has a multi-pass amplifier, not only to suppress parasitic high spatial frequency modes but also to provide places for inserting a light isolator and injecting the seed beam, and to relay image while the beam passes through the amplifiers several times. To fulfill these functions, the parameters of the spatial filters are optimized by calculations and analyzes with the consideration of avoiding the plasma blow-off effect and components demanding by ghost beam focus. The 'ghost beams' are calculated by ray tracing. A software was developed to evaluate the tolerance of the spatial filters and their components, and to align the whole system on computer simultaneously.

  18. Large Area Microencapsulated Reflective Guest-Host Liquid Crystal Displays and Their Applications

    NASA Astrophysics Data System (ADS)

    Nakai, Yutaka; Tanaka, Masao; Enomoto, Shintaro; Iwanaga, Hiroki; Hotta, Aira; Kobayashi, Hitoshi; Oka, Toshiyuki; Kizaki, Yukio; Kidzu, Yuko; Naito, Katsuyuki

    2002-07-01

    We have developed reflective liquid crystal displays using microencapsulated guest-host liquid crystals, whose size was sufficiently large for viewing documents. A high-brightness image can be realized because there is no need for polarizers. Easy fabrication processes, consisting of screen-printing of microencapsulated liquid crystal and film adhesion, have enabled the realization of thinner and lighter cell structures. It has been confirmed that the display is tolerant of the pressures to which it would be subject in actual use. The optimization of fabrication processes has enabled the realization of reflectance uniformity in the display area and reduction of the driving voltage. Our developed display is suitable for portable information systems, such as electronic book applications.

  19. Optimization of composite sandwich cover panels subjected to compressive loadings

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.

    1991-01-01

    An analysis and design method is presented for the design of composite sandwich cover panels that includes transverse shear effects and damage tolerance considerations. This method is incorporated into an optimization program called SANDOP (SANDwich OPtimization). SANDOP is used in the present study to design optimized composite sandwich cover panels for transport aircraft wing applications as a demonstration of its capabilities. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to identical constraints. Results indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and plus or minus 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density.

  20. Solid strong base K-Pt/NaY zeolite nano-catalytic system for completed elimination of formaldehyde at room temperature

    NASA Astrophysics Data System (ADS)

    Song, Shaoqing; Wu, Xi; Lu, Changhai; Wen, Meicheng; Le, Zhanggao; Jiang, Shujuan

    2018-06-01

    Solid strong base nano-catalytic system of K-modification NaY zeolite supported 0.08% Pt (K-Pt/NaY) were constructed for eliminating HCHO at room temperature. In the catalytic process, activation energy over K-Pt/NaY nano-catalytic system was greatly decreased along with the enhanced reaction rate. Characterization and catalytic tests revealed the surface electron structure of K-Pt/NaY was improved, as reflected by the enhanced HCHO adsorption capability, high sbnd OH concentration, and low-temperature reducibility. Therefore, the optimal K-Pt/NaY showed high catalytic efficiency and strong H2O tolerance for HCHO elimination by directly promoting the reaction between active sbnd OH and formate species. These results may suggest a new way for probing the advanced solid strong base nano-catalytic system for the catalytic elimination of indoor HCHO.

Top