Ali, Ghafar; Ahmad, Maqsood; Akhter, Javed Iqbal; Maqbool, Muhammad; Cho, Sung Oh
2010-08-01
A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H(2)SO(4) electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 microm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time. (c) 2010 Elsevier Ltd. All rights reserved.
High-speed MCP anodes for high time resolution low-energy charged particle spectrometers
NASA Astrophysics Data System (ADS)
Saito, Yoshifumi; Yokota, Shoichiro; Asamura, Kazushi; Krieger, Amanda
2017-02-01
The time resolution of low-energy charged particle measurements is becoming higher and higher. In order to realize high time resolution measurements, a 1-D circular delay line anode has been developed as a high-speed microchannel plate (MCP) anode. The maximum count rate of the 1-D circular delay line anode is around 1 × 107/s/360°, which is much higher than the widely used resistive anode, whose maximum count rate is around 1 × 106/s/360°. In order to achieve much higher speeds, an MCP anode with application-specific integrated circuit (ASIC) has been developed. We have decided to adopt an anode configuration in which a discrete anode is formed on a ceramic substrate, and a bare ASIC chip is installed on the back of the ceramic. It has been found that the anode can detect at a high count rate of 2 × 108/s/360°. Developments in both delay line and discrete anodes, as well as readout electronics, will be reviewed.
Template-Growth of Highly Ordered Carbon Nanotube Arrays on Silicon POSTPRINT
2006-09-01
packed uni- form CNTs that are spatially isolated from each other is to use a growth template. Highly ordered anodic aluminum oxide ( AAO ) template can...process for evaporating thick aluminum of high quality and good adhesion. 15. SUBJECT TERMS Anodic Aluminum Oxide Template, Carbon Nanotubes (CNTs...within the highly ordered nanopores of an alumina oxide template, which is in turn formed on silicon through anodization of aluminum of unprecedented
Fabrication of Highly Ordered Anodic Aluminium Oxide Templates on Silicon Substrates
2007-01-01
highly ordered anodic aluminium oxide ( AAO ) templates of unprecedented pore uniformity directly on Si, enabled by new advances on two fronts – direct...field emitter, sensors, oscillators and photodetectors. 15. SUBJECT TERMS Anodic aluminum oxide , template-assisted nanofabrication, carbon nanotube...Fabrication of the aligned and patterned carbon nanotube field emitters using the anodic aluminum oxide nano-template on a Si wafer’, Synth. Met
Study of the highly ordered TiO2 nanotubes physical properties prepared with two-step anodization
NASA Astrophysics Data System (ADS)
Pishkar, Negin; Ghoranneviss, Mahmood; Ghorannevis, Zohreh; Akbari, Hossein
2018-06-01
Highly ordered hexagonal closely packed titanium dioxide nanotubes (TiO2 NTs) were successfully grown by a two-step anodization process. The TiO2 NTs were synthesized by electrochemical anodization of titanium foils in an ethylene glycol based electrolyte solution containing 0.3 wt% NH4F and 2 vol% deionized (DI) water at constant potential (50 V) for 1 h at room temperature. Physical properties of the TiO2 NTs, which were prepared via one and two-step anodization, were investigated. Atomic Force Microscopy (AFM) analysis revealed that anodization and subsequently peeled off the TiO2 NTs caused to the periodic pattern on the Ti surface. In order To study the nanotubes morphology, Field Emission Scanning Electron Microscopy (FESEM) was used, which was revealed that the two-step anodization resulted highly ordered hexagonal TiO2 NTs. Crystal structures of the TiO2 NTs were mainly anatase, determined by X-ray diffraction analysis. Optical studies were performed by Diffuse Reflection Spectra (DRS) and Photoluminescence (PL) analysis showed that the band gap of TiO2 NTs prepared via two-step anodization was lower than the band gap of samples prepared by one-step anodization process.
NASA Astrophysics Data System (ADS)
Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong
2010-10-01
Highly ordered TiO2 nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 µm min - 1), which is nearly 16 times faster than traditional fabrication of TiO2 at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO2 nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO2 nanotubular arrays for practical applications.
Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong
2010-10-08
Highly ordered TiO(2) nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 microm min(-1)), which is nearly 16 times faster than traditional fabrication of TiO(2) at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO(2) nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO(2) nanotubular arrays for practical applications.
Engineering of highly ordered TiO2 nanopore arrays by anodization
NASA Astrophysics Data System (ADS)
Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng
2016-07-01
Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.
Synthesis of highly ordered TiO2 nanotube in malonic acid solution by anodization.
Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang
2008-10-01
We synthesized TiO2 nanotube array by anodizing in a solution of malonic acid (HOOCCH2COOH) and NH4F, and analyzed the morphology of the nanotube using scanning electron microscopy (SEM). The morphology of TiO2 nanotube was largely affected by anodizing time, anodizing voltage, and malonic acid concentration. With increasing the anodizing voltage from 5 V to 20 V, the diameter of TiO2 nanotube was increased from about 20 nm to 110 nm and its length from about 10 nm to 700 nm. In addition, the length of TiO2 nanotube was increased with increasing anodizing time up to 6 h at 20 V. We obtained the longest and the most highly ordered nanotube structure when anodizing Ti in a solution of 0.5 wt% NH4F and 1 M malonic acid at 20 V for 6 h.
Fabrication of Well-Ordered, Anodic Aluminum Oxide Membrane Using Hybrid Anodization.
Kim, Jungyoon; Ganorkar, Shraddha; Choi, Jinnil; Kim, Young-Hwan; Kim, Seong-II
2017-01-01
Anodic Aluminum Oxide (AAO) is one of the most favorable candidates for fabrication of nano-meshed membrane for various applications due to its controllable pore size and self-ordered structure. The mechanism of AAO membrane is a simple and has been studied by many research groups, however the actual fabrication of membrane has several difficulties owing to its sensitivity of ordering, long anodizing time and unclearness of the pore. In this work, we have demonstrated enhanced process of fabrication symmetric AAO membrane by using “hybrid anodizing” (Hyb-A) method which include mild anodization (MA) followed by hard anodization (HA). This Hyb-A process can give highly ordered membrane with more vivid pore than two-step anodizing process. HA was implemented on the Al plate which has been already textured by MA for more ordered structure and HA plays a key role for formation of more obvious pore in Hyb-A. Our experimental results indicate that Hyb-A with proper process sequence would be one of the fast and useful fabrication methods for the AAO membrane.
NASA Astrophysics Data System (ADS)
Almasi Kashi, Mohammad; Ramazani, Abdolali; Mayamai, Yashar; Noormohammadi, Mohammad
2010-01-01
Well-ordered nanoporous arrays have been obtained using hard anodization of aluminium in oxalic/sulfuric mixture. Various ordered nanoporous alumina films with pore intervals from 69 to 115 nm were fabricated on aluminum by high current anodization approach with various sulfuric concentrations in the oxalic/sulfuric mixture electrolyte under 36-60 V. The sulfuric acid concentration was changed from 0.06 to 0.2 M. Different configurations of the current-time curve are seen to influence the self-ordering of the nanohole arrays. A current density-time curve with exponential oscillating decay configuration is seen to damage the self-ordered array of the nanopores while those with exponential decay under certain conditions cause ordered nanopore arrays. For each electrolyte mixture, the interpore distance was dependent upon the anodization voltages with proportionality constants of almost 2 nm V-1. The porosity of the samples (about 3.5%) follows the porosity rule of HA. Final anodization and increasing voltage rate (rin) as a function of sulfuric acid concentration are the main sources to influence the self-ordering of the samples.
Ordered and Ultra-High Aspect Ratio Nanocapillary Arrays as a Model System
2015-10-13
formation and deep pore growth of anodized aluminum oxide ( AAO )-based nanocapillary arrays as the basis for high density, safe and high rate gas... anodized aluminum oxide , nanocapillary arrays 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME... Aluminum Page 7 Copyright © 2015 Mainstream Engineering Corporation CPE Mitigation Schemes Control thermal and flow profile -> even anodization
Design, Fabrication, Characterization and Modeling of Integrated Functional Materials
2014-10-01
oxide ( AAO ) membranes were fabricated from high purity aluminum foil (99.999%) by electrochemical route using a controlled two-step anodization ...deposition of Fe and Co in anodized alumina templates. We used commercially prepared AAO templates which had pore diameters of 100 nm (300 nm), an...a thermal decomposition method. The final product was suspended in high-purity hexane to create a ferrofluid. Custom highly ordered anodic aluminum
NASA Astrophysics Data System (ADS)
Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Maryam, W.; Ahmad, M. A.; Bououdina, M.
2015-12-01
Highly-ordered and hexagonal-shaped nanoporous anodic aluminum oxide (AAO) of 1 μm thickness of Al pre-deposited onto Si substrate using two-step anodization was successfully fabricated. The growth mechanism of the porous AAO film was investigated by anodization current-time behavior for different anodizing voltages and by visualizing the microstructural procedure of the fabrication of AAO film by two-step anodization using cross-sectional and top view of FESEM imaging. Optimum conditions of the process variables such as annealing time of the as-deposited Al thin film and pore widening time of porous AAO film were experimentally determined to obtain AAO films with uniformly distributed and vertically aligned porous microstructure. Pores with diameter ranging from 50 nm to 110 nm and thicknesses between 250 nm and 1400 nm, were obtained by controlling two main influential anodization parameters: the anodizing voltage and time of the second-step anodization. X-ray diffraction analysis reveals amorphous-to-crystalline phase transformation after annealing at temperatures above 800 °C. AFM images show optimum ordering of the porous AAO film anodized under low voltage condition. AAO films may be exploited as templates with desired size distribution for the fabrication of CuO nanorod arrays. Such nanostructured materials exhibit unique properties and hold high potential for nanotechnology devices.
NASA Astrophysics Data System (ADS)
Zaraska, Leszek; Stępniowski, Wojciech J.; Jaskuła, Marian; Sulka, Grzegorz D.
2014-06-01
Anodic aluminum oxide (AAO) layers were formed by a simple two-step anodization in 0.3 M oxalic acid at relatively high temperatures (20-30 °C) and various anodizing potentials (30-65 V). The effect of anodizing conditions on structural features of as-obtained oxides was carefully investigated. A linear and exponential relationships between cell diameter, pore density and anodizing potential were confirmed, respectively. On the other hand, no effect of temperature and duration of anodization on pore spacing and pore density was found. Detailed quantitative and qualitative analyses of hexagonal arrangement of nanopore arrays were performed for all studied samples. The nanopore arrangement was evaluated using various methods based on the fast Fourier transform (FFT) images, Delaunay triangulations (defect maps), pair distribution functions (PDF), and angular distribution functions (ADF). It was found that for short anodizations performed at relatively high temperatures, the optimal anodizing potential that results in formation of nanostructures with the highest degree of pore order is 45 V. No direct effect of temperature and time of anodization on the nanopore arrangement was observed.
NASA Astrophysics Data System (ADS)
Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna
2016-09-01
In a significant amount of cases, the highly ordered TiO2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm-2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.
Fan, Jiangxia; Zhu, Xinxin; Wang, Kunzhou; Chen, Xiaoyuan; Wang, Xinqing; Yan, Minhao; Ren, Yong
2018-05-01
We have fabricated highly ordered anodized aluminum oxide (AAO) membranes with different diameter through improved hard anodization (HA) at high temperature. This process can generate thick AAO membranes (30 μm) in a short anodizing time with high growth rate 20-60 μm h-1 which is much faster than that in traditional mild two-step anodization. We enlarged the AAO pore diameter by adjusting the voltage rise rate at the same time, which has a great influence on current density and temperature. The AAO pore diameter varies from 60-110 nm to 160-190 nm. The pore diameter (Dp) of the AAO prepared by this improved process is much larger than that prepared by HA (40-60 nm) when H2C2O4 as electrolyte. It can expand potential use of the AAO membranes such as for the template-based synthesis of nanowires or nanotubes with modulated diameters and also for practical separation technology. We also has used the AAO with different diameters prepared by this improved HA to fabricate Co nanowires and γ-Fe2O3 superparamagnetic nanorods.
Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina
2017-12-01
In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.
High-speed microstrip multi-anode multichannel plate detector system
NASA Astrophysics Data System (ADS)
Riedo, Andreas; Tulej, Marek; Rohner, Urs; Wurz, Peter
2017-04-01
High-speed detector systems with high dynamic range and pulse width characteristics in the sub-nanosecond regime are mandatory for high resolution and highly sensitive time-of-flight mass spectrometers. Typically, for a reasonable detector area, an impedance-matched anode design is necessary to transmit the registered signal fast and distortion-free from the anode to the signal acquisition system. In this report, a high-speed microstrip multi-anode multichannel plate detector is presented and discussed. The anode consists of four separate active concentric anode segments allowing a simultaneous readout of signal with a dynamic range of about eight orders of magnitude. The impedance matched anode segments show pulse width of about 250 ps, measured at full width at half maximum, and rise time of ˜170 ps, measured with an oscilloscope with a sampling rate of 20 GS/s and 4 GHz analogue bandwidth. The usage of multichannel plates as signal amplifier allowed the design of a lightweight, low power consuming, and compact detector system, suitable, e.g., for the integration into space instrumentation or portable systems where size, weight, and power consumption are limited parameters.
Kim, Minwoo; Ha, Yoon-Cheol; Nguyen, Truong Nhat; Choi, Hae Young; Kim, Doohun
2013-12-20
We report here a fast and reliable hard anodization process to make asymmetric anodic aluminum oxide (AAO) membranes which can serve as a template for large pitch-distance nanostructures. In order to make larger pitch distances possible, the common burning failure associated with the high current density during the conventional constant voltage hard anodization, especially at a voltage higher than a known limit, i.e., 155 V for oxalic acid, was effectively suppressed by using a burning-protective agent. A new self-ordering regime beyond the voltage limit was observed with a different voltage-interpore distance relationship of 2.2 nm V(-1) compared to the reported 2.0 nm V(-1) for hard anodization. Combining a sulfuric acid mild anodization with this new regime of hard anodization, we further demonstrate a scalable process to make an asymmetric membrane with size up to ~47 mm in diameter and ~60 μm in thickness. This free-standing membrane can be used as a template for novel nanopatterned structures such as arrays of quantum dots, nanowires or nanotubes with diameters of a few tens of nanometers and pitch distance of over 400 nm.
NASA Astrophysics Data System (ADS)
Kim, Minwoo; Ha, Yoon-Cheol; Nhat Nguyen, Truong; Choi, Hae Young; Kim, Doohun
2013-12-01
We report here a fast and reliable hard anodization process to make asymmetric anodic aluminum oxide (AAO) membranes which can serve as a template for large pitch-distance nanostructures. In order to make larger pitch distances possible, the common burning failure associated with the high current density during the conventional constant voltage hard anodization, especially at a voltage higher than a known limit, i.e., 155 V for oxalic acid, was effectively suppressed by using a burning-protective agent. A new self-ordering regime beyond the voltage limit was observed with a different voltage-interpore distance relationship of 2.2 nm V-1 compared to the reported 2.0 nm V-1 for hard anodization. Combining a sulfuric acid mild anodization with this new regime of hard anodization, we further demonstrate a scalable process to make an asymmetric membrane with size up to ˜47 mm in diameter and ˜60 μm in thickness. This free-standing membrane can be used as a template for novel nanopatterned structures such as arrays of quantum dots, nanowires or nanotubes with diameters of a few tens of nanometers and pitch distance of over 400 nm.
NASA Astrophysics Data System (ADS)
Ohara, S.; Maric, R.; Zhang, X.; Mukai, K.; Fukui, T.; Yoshida, H.; Inagaki, T.; Miura, K.
A Ni-samaria-doped ceria (SDC) cermet was selected as the anode material for reduced temperature (800°C) solid oxide fuel cells. The NiO-SDC composite powder, synthesized by spray pyrolysis, was employed as the starting anode powder in this study. The influence of Ni content in Ni-SDC cermets on the electrode performance was investigated in order to create the most suitable microstructures. It was found that anodic polarization was strongly influenced by the Ni content in Ni-SDC cermets. The best results were obtained for anode cermets with Ni content of around 50 vol.%; anodic polarization was about 30 mV at a current density of 300 mA/cm 2. This high performance seems to be attributable to the microstructure, in which Ni grains form a skeleton with well-connected SDC grains finely distributed over the Ni grains surfaces; such microstructure was also conducive to high stability of the anode.
Structural evolution of self-ordered alumina tapered nanopores with 100 nm interpore distance
NASA Astrophysics Data System (ADS)
Li, Juan; Li, Congshan; Gao, Xuefeng
2011-10-01
We in-detail investigated the profile evolution processes of highly ordered alumina under the cyclic treatment of mild anodizing of aluminum foils in oxalic acid followed by etching in phosphoric acid. With the cyclic times increasing, the profiles of nanopores were gradually evolved into the parabola-like, trumpet-like and conical shape. Although the inserted etching itself nearly had no impact on the growth rate of the nanopores due to the rapid recovering of thinned barrier layer at the initial stage of next anodizing, overmuch etching could bring apparent side effects such as wall-breaking, thinning and taper-removing from the top down. The anodizing and etching kinetics and their synergetic effects in modulating different aspect ratios and open sizes of conical pores were studied systematically. These findings are helpful to tailor high-quality anodic alumina taper-pores with tunable profiles.
Li, Mei; Ma, Chao; Zhu, Qian-Cheng; Xu, Shu-Mao; Wei, Xiao; Wu, Yong-Min; Tang, Wei-Ping; Wang, Kai-Xue; Chen, Jie-Sheng
2017-04-11
Sodium-ion batteries have attracted considerable attention in recent years. In order to promote the practical application of sodium-ion batteries, the electrochemical performances, such as specific capacity, reversibility, and rate capability of the anode materials, should be further improved. In this work, a Fe 2 O 3 /C composite with a well-ordered mesoporous structure is prepared via a facile co-impregnation method by using mesoporous silica SBA-15 as a hard template. When used as an anode material for sodium-ion batteries, the well-ordered mesoporous structure ensures fast mass transport kinetics. The presence of nano-sized Fe 2 O 3 particles confined within the carbon walls significantly enhances the specific capacity of the composite. The carbon walls in the composite act not only as an active material contributing to the specific capacity, but also as a conductive matrix improving the cycling stability of Fe 2 O 3 nanoparticles. As a result, the well-ordered mesoporous Fe 2 O 3 /C composite exhibits high specific capacity, excellent cycleability, and high rate capability. It is proposed that this simple co-impregnation method is applicable for the preparation of well-ordered mesoporous transition oxide/carbon composite electrode materials for high performance sodium-ion and lithium-ion batteries.
Fabrication and structural characterization of highly ordered titania nanotube arrays
NASA Astrophysics Data System (ADS)
Shi, Hongtao; Ordonez, Rosita
Titanium (Ti) dioxide nanotubes have drawn much attention in the past decade due to the fact that titania is an extremely versatile material with a variety of technological applications. Anodizing Ti in different electrolytes has proved to be quite successful so far in creating the nanotubes, however, their degree of order is still not nearly as good as nanoporous anodic alumina. In this work, we first deposit a thin layer of aluminum (Al) onto electropolished Ti substrates, using thermal evaporation. Such an Al layer is then anodized in 0.3 M oxalic acid, forming an ordered nanoporous alumina mask on top of Ti. Afterwards, the anodization of Ti is accomplished at 20 V in solutions containing 1 M NaH2PO4 and 0.5% HF or H2SO4, which results in the creation of ordered titania nanotube arrays. The inner pore diameter of the nanotubes can be tuned from ~50 nm to ~75 nm, depending on the anodization voltage applied to Al or Ti. X-ray diffractometry shows the as-grown titania nanotubes are amorphous. Samples annealed at different temperatures in ambient atmosphere will be also reported.
Self-Ordered Nanoporous Alumina Templates Formed by Anodization of Aluminum in Oxalic Acid
NASA Astrophysics Data System (ADS)
Vida-Simiti, Ioan; Nemes, Dorel; Jumate, Nicolaie; Thalmaier, Gyorgy; Sechel, Niculina
2012-10-01
Anodic aluminum oxide (AAO) membranes with highly ordered nanopores serve as ideal templates for the formation of various nanostructured materials. The procedure of the template preparation is based on a two-step self-organized anodization of aluminum. In the current study, AAO templates were fabricated in 0.3 M oxalic acid under the anodizing potential range of 30-60 V at an electrolyte temperature of ~5°C. The AAO templates were analyzed using scanning electron microscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, and differential thermal analysis. The as obtained layers are amorphous; the mean pore size is between 40 nm and 75 nm and increases with the increase of the anodization potential. Well-defined pores across the whole aluminum template, a pore density of ~1010 pores/cm2, and a tendency to form a porous structure with hexagonal symmetry were observed.
NASA Astrophysics Data System (ADS)
Ma, Yingjun; Wen, Yihao; Li, Juan; Li, Yuxin; Zhang, Zhiying; Feng, Chenchen; Sun, Runguang
2016-12-01
Self-organized porous anodic alumina (PAA) formed by electrochemical anodization have become a fundamental tool to develop various functional nanomaterials. However, it is still a great challenge to break the interpore distance (Dint) limit (500 nm) by using current anodization technologies of mild anodization (MA) and hard anodization (HA). Here, we reported a new anodization mode named “Janus anodization” (JA) to controllably fabricate self-ordered PAA with large Dint at high voltage of 350-400 V. JA naturally occurs as anodizing Al foils in citric acid solution, which possessing both the characteristics of MA and HA. The process can be divided into two stages: I, slow pore nucleation stage similar to MA; II, unequilibrium self-organization process similar to HA. The as-prepared films had the highest modulus (7.0 GPa) and hardness (127.2 GPa) values compared with the alumina obtained by MA and HA. The optical studies showed that the black films have low reflectance (<10 %) in the wavelength range of 250-1500 nm and photoluminescence property. Dint can be tuned between 645-884 nm by controlling citric acid concentration or anodization voltage. JA is a potential technology to efficiently and controllably fabricate microstructured or hybrid micro- and nanostructured materials with novel properties.
Ma, Yingjun; Wen, Yihao; Li, Juan; Li, Yuxin; Zhang, Zhiying; Feng, Chenchen; Sun, Runguang
2016-01-01
Self-organized porous anodic alumina (PAA) formed by electrochemical anodization have become a fundamental tool to develop various functional nanomaterials. However, it is still a great challenge to break the interpore distance (Dint) limit (500 nm) by using current anodization technologies of mild anodization (MA) and hard anodization (HA). Here, we reported a new anodization mode named “Janus anodization” (JA) to controllably fabricate self-ordered PAA with large Dint at high voltage of 350–400 V. JA naturally occurs as anodizing Al foils in citric acid solution, which possessing both the characteristics of MA and HA. The process can be divided into two stages: I, slow pore nucleation stage similar to MA; II, unequilibrium self-organization process similar to HA. The as-prepared films had the highest modulus (7.0 GPa) and hardness (127.2 GPa) values compared with the alumina obtained by MA and HA. The optical studies showed that the black films have low reflectance (<10 %) in the wavelength range of 250–1500 nm and photoluminescence property. Dint can be tuned between 645–884 nm by controlling citric acid concentration or anodization voltage. JA is a potential technology to efficiently and controllably fabricate microstructured or hybrid micro- and nanostructured materials with novel properties. PMID:27958365
Silicon Nanostructures, Excitonic Interactions, Laser Consequences
2008-07-11
etching using an anodized aluminum oxide membrane as mask. The results described here lay a solid foundation for the next phase of development aimed at...achieved though reactive-ion-etching using an anodized aluminum oxide membrane as mask. The results described here lay a solid foundation for the next...Materials, April 4, 2006 issue). 6. Aijun Yin, Marian Tzolov, David Cardimona and Jimmy Xu, "Fabrication of Highly Ordered Anodic Aluminum Oxide
NASA Astrophysics Data System (ADS)
Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Qaeed, M. A.; Bououdina, M.
2014-12-01
In this study, anodic aluminum oxide (AAO) templates of Aluminum thin films onto Ti-coated silicon substrates were prepared for growth of nanostructure materials. Hexagonally highly ordered thin AAO templates were fabricated under controllable conditions by using a two-step anodization. The obtained thin AAO templates were approximately 70 nm in pore diameter and 250 nm in length with 110 nm interpore distances within an area of 3 cm2. The difference between first and second anodization was investigated in details by in situ monitoring of current-time curve. A bottom barrier layer of the AAO templates was removed during dropping the voltage in the last period of the anodization process followed by a wet etching using phosphoric acid (5 wt%) for several minutes at ambient temperature. As an application, Zn nanorod arrays embedded in anodic alumina (AAO) template were fabricated by electrodeposition. Oxygen was used to oxidize the electrodeposited Zn nanorods in the AAO template at 700 °C. The morphology, structure and photoluminescence properties of ZnO/AAO assembly were analyzed using Field-emission scanning electron microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Atomic force microscope (AFM), X-ray diffraction (XRD) and photoluminescence (PL).
Facile preparation of porous alumina through-hole masks for sputtering by two-layer anodization
NASA Astrophysics Data System (ADS)
Yanagishita, Takashi; Masuda, Hideki
2016-08-01
Highly ordered porous alumina through-hole masks were fabricated on a substrate by combining two-layer anodization with subsequent through-holing by selective etching. This process allowed the fabrication of porous alumina masks without an increase in pore size during the etching performed for through-holing. Additionally, the process contributed to improved operability in the setting of the masks on substrates because the second anodizing layer acts as a supporting layer for the handling of the mask. The fabrication of ordered Au nanodot arrays was demonstrated as an example application of the through-hole masks obtained by the present process.
The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films
NASA Astrophysics Data System (ADS)
Ren, Jianjun; Zuo, Yu
2012-11-01
The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.
Anode sheath transition in an anodic arc for synthesis of nanomaterials
NASA Astrophysics Data System (ADS)
Nemchinsky, V. A.; Raitses, Y.
2016-06-01
The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.
NASA Astrophysics Data System (ADS)
Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong
2015-12-01
Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.
Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong
2015-12-01
Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.
Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun
2015-01-01
Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm−1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm−2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm−2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode. PMID:26648509
NASA Astrophysics Data System (ADS)
Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun
2015-12-01
Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm-1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm-2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm-2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.
Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun
2015-12-09
Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm(-1) in 5% H2 and peak power densities of 1.72 and 0.54 W cm(-2) using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm(-2). To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.
NASA Technical Reports Server (NTRS)
Michell, R. G.; Samara, M.; Grubbs, G., II; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.
2016-01-01
We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm x 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm x 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.
Meng, Xianhui; Lee, Tae-Young; Chen, Huiyu; Shin, Dong-Wook; Kwon, Kee-Won; Kwon, Sang Jik; Yoo, Ji-Beom
2010-07-01
Large area of self-organized, free standing anodic titanium oxide (ATO) nanotube membranes with clean surfaces were facilely prepared to desired lengths via electrochemical anodization of highly pure Ti sheets in an ethylene glycol electrolyte, with a small amount of NH4F and H2O at 50 V, followed by self-detachment of the ATO membrane from the Ti substrate using recycling processes. In the first anodization step, the nanowire oxide layer existed over the well-arranged ATO nanotube. After sufficiently rinsing with water, the whole ATO layer was removed from the Ti sheet by high pressure N2 gas, and a well-patterned dimple layer with a thickness of about 30 nm existed on the Ti substrate. By using these naturally formed nano-scale pits as templates, in the second and third anodization process, highly ordered, vertically aligned, and free standing ATO membranes with the anodic aluminum oxide (AAO)-like clean surface were obtained. The inter-pore distance and diameter was 154 +/- 2 nm and 91+/- 2 nm, the tube arrays lengths for 25 and 46 hours were 44 and 70 microm, respectively. The present study demonstrates a simple approach to producing high quality, length controllable, large area TiO2 membrane.
Microstructural and Optical Properties of Porous Alumina Elaborated on Glass Substrate
NASA Astrophysics Data System (ADS)
Zaghdoudi, W.; Gaidi, M.; Chtourou, R.
2013-03-01
A transparent porous anodized aluminum oxide (AAO) nanostructure was formed on a glass substrate using the anodization of a highly pure evaporated aluminum layer. A parametric study was carried out in order to achieve a fine control of the microstructural and optical properties of the elaborated films. The microstructural and surface morphologies of the porous alumina films were characterized by x-ray diffraction and atomic force microscopy. Pore diameter, inter-pore separation, and the porous structure as a function of anodization conditions were investigated. It was then found that the pores density decreases with increasing the anodization time. Regular cylindrical porous AAO films with a flat bottom structure were formed by chemical etching and anodization. A high transmittance in the 300-900 nm range is reported, indicating a fulfilled growth of the transparent sample (alumina) from the aluminum metal. The data showed typical interference oscillations as a result of the transparent characteristics of the film throughout the visible spectral range. The thickness and the optical constants ( n and k) of the porous anodic alumina films, as a function of anodizing time, were obtained using spectroscopic ellipsometry in the ultraviolet-visible-near infrared (UV-vis-NIR) regions.
NASA Astrophysics Data System (ADS)
Saffari, Hamid; Sohrabi, Beheshteh; Noori, Mohammad Reza; Bahrami, Hamid Reza Talesh
2018-03-01
A single step anodizing process is used to produce micro-nano structures on Aluminum (1050) substrates with sulfuric acid as electrolyte. Therefore, surface energy of the anodized layer is reduced using stearic acid modification. Undoubtedly, effects of different parameters including anodizing time, electrical current, and type and concentration of electrolyte on the final contact angle are systemically studied and optimized. Results show that anodizing current of 0.41 A, electrolyte (sulfuric acid) concentration of 15 wt.% and anodizing time of 90 min are optimal conditions which give contact angle as high as 159.2° and sliding angle lower than 5°. Moreover, the study reveals that adding oxalic acid to the sulfuric acid cannot enhance superhydrophobicity of the samples. Also, scanning electron microscopy images of samples show that irregular (bird's nest) structures present on the surface instead of high-ordered honeycomb structures expecting from normal anodizing process. Additionally, X-ray diffraction analysis of the samples shows that only amorphous structures present on the surface. The Brunauer-Emmett-Teller (BET) specific surface area of the anodized layer is 2.55 m2 g-1 in optimal condition. Ultimately, the surface keeps its hydrophobicity in air and deionized water (DIW) after one week and 12 weeks, respectively.
Chen, Yanan; Li, Yiju; Wang, Yanbin; Fu, Kun; Danner, Valencia A; Dai, Jiaqi; Lacey, Steven D; Yao, Yonggang; Hu, Liangbing
2016-09-14
High capacity battery electrodes require nanosized components to avoid pulverization associated with volume changes during the charge-discharge process. Additionally, these nanosized electrodes need an electronically conductive matrix to facilitate electron transport. Here, for the first time, we report a rapid thermal shock process using high-temperature radiative heating to fabricate a conductive reduced graphene oxide (RGO) composite with silicon nanoparticles. Silicon (Si) particles on the order of a few micrometers are initially embedded in the RGO host and in situ transformed into 10-15 nm nanoparticles in less than a minute through radiative heating. The as-prepared composites of ultrafine Si nanoparticles embedded in a RGO matrix show great performance as a Li-ion battery (LIB) anode. The in situ nanoparticle synthesis method can also be adopted for other high capacity battery anode materials including tin (Sn) and aluminum (Al). This method for synthesizing high capacity anodes in a RGO matrix can be envisioned for roll-to-roll nanomanufacturing due to the ease and scalability of this high-temperature radiative heating process.
Current collection by high voltage anodes in near ionospheric conditions
NASA Technical Reports Server (NTRS)
Antoniades, John A.; Greaves, Rod G.; Boyd, D. A.; Ellis, R.
1990-01-01
The authors experimentally identified three distinct regimes with large differences in current collection in the presence of neutrals and weak magnetic fields. In magnetic field/anode voltage space the three regions are separated by very sharp transition boundaries. The authors performed a series of laboratory experiments to study the dependence of the region boundaries on several parameters, such as the ambient neutral density, plasma density, magnetic field strength, applied anode voltage, voltage pulsewidth, chamber material, chamber size and anode radius. The three observed regimes are: classical magnetic field limited collection; stable medium current toroidal discharge; and large scale, high current space glow discharge. There is as much as several orders of magnitude of difference in the amount of collected current upon any boundary crossing, particularly if one enters the space glow regime. They measured some of the properties of the plasma generated by the breakdown that is present in regimes II and III in the vicinity of the anode including the sheath modified electrostatic potential, I-V characteristics at high voltage as well as the local plasma density.
High pressure xenon ionization detector
Markey, J.K.
1989-11-14
A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.
High pressure xenon ionization detector
Markey, John K.
1989-01-01
A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.
NASA Astrophysics Data System (ADS)
Long, Y.; Li, D. G.; Chen, D. R.
2017-12-01
Two types of square wave anodization (type 1 and type 2) were employed in this work to form a passive film on Ti in a 0.5 M H2SO4 solution. The influences of the anodization potential and duration on the electronic properties and structures of the passive films were studied by Mott-Schottky plots, auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). The results showed that the donor density, ND, of the passive film decreased and the flat band potential, EFB, shifted to the positive direction with the increase of the anodization duration and high anodization potential irrespective of whether type 1 or type 2 was used. Moreover, the passive film that formed on Ti using type 1 had a lower donor density and a more positive flat band potential than that on Ti using type 2 at one fixed anodization duration (only exchanging the anodization order of 1 V and the high potential). XPS analysis revealed that the outmost passive film was only composed of TiO2, the inner passive film was mainly composed of TiO2 with some amount of TiO and Ti2O3, and the TiO2 concentration in the outermost passive film increased with the increase of the anodization duration and the high potential in the case of using type 1 or type 2, implying an increased degree of crystallinity. The AES results showed that the O/Ti atomic ratio of the passive film obviously increased with the increasing anodization duration and high potential, demonstrating the increased homogeneous characteristic of the passive film; this was in agreement with the Mott-Schottky and XPS results.
NASA Astrophysics Data System (ADS)
Lou, Shuaifeng; Cheng, Xinqun; Wang, Long; Gao, Jinlong; Li, Qin; Ma, Yulin; Gao, Yunzhi; Zuo, Pengjian; Du, Chunyu; Yin, Geping
2017-09-01
Orthorhombic Niobium oxide (T-Nb2O5) has been regarded as a promising anode material for high-rate lithium ion batteries (LIBs) due to its potential to operate at high rates with improved safety and high theoretical capacity of 200 mA h g-1. Herein, three-dimensionally ordered macroporous (3DOM) T-Nb2O5, with mesoporous hierarchical structure, was firstly prepared by a simple approach employing self-assembly polystyrene (PS) microspheres as hard templates. The obtained T-Nb2O5 anode material presents obvious and highly-efficiency pseudocapacitive Li+ intercalation behaviour, which plays a dominant role in the kinetics of electrode process. As a result, rapid Li+ intercalation/de-intercalation are achieved, leading to excellent rate capability and long cycle life. The 3DOM T-Nb2O5 shows a remarkable high capacity of 106 and 77 mA h g-1 at the rate of 20C and 50C. The work presented herein holds great promise for future design of material structure, and demonstrates the great potential of T-Nb2O5 as a practical high-rate anode material for LIBs.
Effects of various applied voltages on physical properties of TiO2 nanotubes by anodization method
NASA Astrophysics Data System (ADS)
Hoseinzadeh, T.; Ghorannevis, Z.; Ghoranneviss, M.; Sari, A. H.; Salem, M. K.
2017-09-01
Three steps anodization process is used to synthesize highly ordered and uniform multilayered titanium oxide (TiO2) nanotubes and effect of different anodization voltages are studied on their physical properties such as structural, morphological and optical. The crystalized structure of the synthesized tubes is investigated by X-ray diffractometer analysis. To study the morphology of the tubes, field emission scanning electron microscopy is used, which showed that the wall thicknesses and the diameters of the tubes are affected by the different anodization voltages. Moreover, optical studies performed by diffuse reflection spectra suggested that band gap of the TiO2 nanotubes are also changed by applying different anodization voltages. In this study using physical investigations, an optimum anodization voltage is obtained to synthesize the uniform crystalized TiO2 nanotubes with suitable diameter, wall thickness and optical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyunchul; Park, Gwi Ok; Kim, Yunok
2014-11-25
Tin oxide-based materials, operating via irreversible conversion and reversible alloying reaction, are promising lithium storage materials due to their higher capacity. Recent studies reported that nanostructured SnO2 anode provides higher capacity beyond theoretical capacity based on the alloying reaction mechanism; however, their exact mechanism remains still unclear. Here, we report the detailed lithium storage mechanism of an ordered mesoporous SnO2 electrode material. Synchrotron X-ray diffraction and absorption spectroscopy reveal that some portion of Li2O decomposes upon delithiation and the resulting oxygen reacts with Sn to form the SnOx phase along with dealloying of LixSn, which are the main reasons formore » unexpected high capacity of an ordered mesoporous SnO2 material. This finding will not only be helpful in a more complete understanding of the reaction mechanism of Sn-based oxide anode materials but also will offer valuable guidance for developing new anode materials with abnormal high capacity for next generation rechargeable batteries« less
NASA Astrophysics Data System (ADS)
Chamanzadeh, Z.; Noormohammadi, M.; Zahedifar, M.
2018-05-01
Large diameter and ordered TiO2 nanotubes (NTs) were fast fabricated in an electrolyte containing lactic acid and ethylene glycol with different amount of NH4F at various high anodization voltages up to 220 V. In this work, we could optimize F‑ ionic concentration in the electrolyte at each anodization voltage and the uniform films without any oxide breakdown were successfully achieved. The optimum NH4F concentration at which NTs can be formed homogeneously, decreases with the increment of anodization voltage. As a result, the fastest mean growth rate of 2.45 μm min‑1 was attained in 0.075 M NH4F at 150 V. Growth rate of TiO2 nanotubes is explained taking into account the role of F‑ ions and their limited diffusion through TiO2 nanotubes from bulk electrolyte. The interpore distance of the nanotubes is increased with enhanced anodization voltage.
An innovative approach to synthesize highly-ordered TiO2 nanotubes.
Isimjan, Tayirjan T; Yang, D Q; Rohani, Sohrab; Ray, Ajay K
2011-02-01
An innovative route to prepare highly-ordered and dimensionally controlled TiO2 nanotubes has been proposed using a mild sonication method. The nanotube arrays were prepared by the anodization of titanium in an electrolyte containing 3% NH4F and 5% H2O in glycerol. It is demonstrated that the TiO2 nanostructures has two layers: the top layer is TiO2 nanowire and underneath is well-ordered TiO2 nanotubes. The top layer can easily fall off and form nanowires bundles by implementing a mild sonication after a short annealing time. We found that the dimensions of the TiO2 nanotubes were only dependent on the anodizing condition. The proposed technique may be extended to fabricate reproducible well-ordered TiO2 nanotubes with large area on other metals.
NASA Astrophysics Data System (ADS)
Liu, Junyi; Wang, Shuo; Qie, Yu; Zhang, Cunzhi; Sun, Qiang
2018-02-01
It has been a great challenge to develop a high-rate anode material with high-capacity, fast Li-ions diffusion and long cycling life going beyond the commercially used graphite in Li-ion battery. Here for the first time we propose a strategy combined high-pressure synthesis method with the global structure search to find a topological semimetal porous carbon as the desired anode. Our crystal-structure searching shows that we can obtain the ground state of an orthorhombic phase Li C6 with regular pores at 30 GPa, and when the Li atoms are removed, the resulting carbon structure is the recently predicted interlocked graphene network (IGN) that is a topological semimetal with an intrinsic high electronic conductivity. Based on the state-of-the-art first-principles calculations, we further find that the Li-ion migration energy barrier in the IGN is extremely low and the estimated diffusion coefficient can reach a magnitude of 10-4c m2/s at both low and high Li concentrations, which is three orders of magnitude larger than that of graphite anode. Moreover, the volume changes during the Li insertion and deinsertion are smaller than 3.2 % , while the theoretical specific capacity is the same as that of graphite anode. Our studies not only suggest a practical way of synthesizing the topological semimetal carbon but also propose a new anode material for Li-ion battery.
The Weinstein conjecture with multiplicities on spherizations
NASA Astrophysics Data System (ADS)
Hertzberg, Benjamin J.
2011-07-01
Si-based anodes have recently received considerable attention for use in Li-ion batteries, due to their extremely high specific capacity---an order of magnitude beyond that offered by conventional graphite anode materials. However, during the lithiation process, Si-based anodes undergo extreme increases in volume, potentially by more than 300 %. The stresses produced within the electrode by these volume changes can damage the electrode binder, the active Si particles and the solid electrolyte interphase (SEI), causing the electrode to rapidly fail and lose capacity. These problems can be overcome by producing new anode materials incorporating both Si and C, which may offer a favorable combination of the best properties of both materials, and which can be designed with internal porosity, thereby buffering the high strains produced during battery charge and discharge with minimal overall volume changes. However, in order to develop useful anode materials, we must gain a thorough understanding of the structural, microstructural and chemical changes occurring within the electrode during the lithiation and delithiation process, and we must develop new processes for synthesizing composite anode particles which can survive the extreme strains produced during lithium intercalation of Si and exhibit no volume changes in spite of the volume changes in Si. In this work we have developed several novel synthesis processes for producing internally porous Si-C nanocomposite anode materials for Li-ion batteries. These nanocomposites possess excellent specific capacity, Coulombic efficiency, cycle lifetime, and rate capability. We have also investigated the influence of a range of different parameters on the electrochemical performance of these materials, including pore size and shape, carbon and silicon film thickness and microstructure, and binder chemistry.
Smith, York R.; Ray, Rupashree S.; Carlson, Krista; Sarma, Biplab; Misra, Mano
2013-01-01
Metal oxide nanotubes have become a widely investigated material, more specifically, self-organized titania nanotube arrays synthesized by electrochemical anodization. As a highly investigated material with a wide gamut of applications, the majority of published literature focuses on the solar-based applications of this material. The scope of this review summarizes some of the recent advances made using metal oxide nanotube arrays formed via anodization in solar-based applications. A general methodology for theoretical modeling of titania surfaces in solar applications is also presented. PMID:28811415
NASA Astrophysics Data System (ADS)
Wu, Gaoming; Bao, Han; Xia, Zheng; Yang, Bin; Lei, Lecheng; Li, Zhongjian; Liu, Chunxian
2018-04-01
Anode materials, as the core component of microbial fuel cells (MFCs), have huge impacts on power generation performance and overall cost. Stainless-steel sponge (SS) can be a promising material for MFC anodes, due to its open continuous three-dimensional structure, high conductivity and low cost. However, poor biocompatibility limits its application. In this paper, a polypyrrole/sargassum activated carbon modified SS anode (Ppy/SAC/SS) is developed by electrochemical polymerization of pyrrole on the SS with the SAC as a dopant. The maximum power density achieved with the Ppy/SAC/SS anode is 45.2 W/m3, which is increased by 2 orders of magnitude and 2.9 times compared with an unmodified SS anode and a solely Ppy modified SS anode (Ppy/SS), respectively. In addition, the Ppy/SAC layer effectively eliminates electrochemical corrosion of the SS substrate. Electrochemical impedance spectroscopy reveals that Ppy/SAC modification decreases electron transfer resistance between the bacteria and the electrode. Furthermore, in vivo fluorescence imaging indicates that a more uniform biofilm is formed on the Ppy/SAC/SS compared to the unmodified SS and Ppy/SS. Due to the low cost of the materials, easy fabrication process and relatively high performance, our developed Ppy/SAC/SS can be a cost efficient anode material for MFCs in practical applications.
Wang, Liying; Du, Xiaohui; Wang, Lingyun; Xu, Zhanhao; Zhang, Chenying; Gu, Dandan
2017-03-16
In order to achieve and maintain a high quality factor (high-Q) for the micro resonant pressure sensor, this paper presents a new wafer level package by adopting cross-layer anodic bonding technique of the glass/silicon/silica (GSS) stackable structure and integrated Ti getter. A double-layer structure similar to a silicon-on-insulator (SOI) wafer is formed after the resonant layer and the pressure-sensitive layer are bonded by silicon direct bonding (SDB). In order to form good bonding quality between the pressure-sensitive layer and the glass cap layer, the cross-layer anodic bonding technique is proposed for vacuum package by sputtering Aluminum (Al) on the combination wafer of the pressure-sensitive layer and the resonant layer to achieve electrical interconnection. The model and the bonding effect of this technique are discussed. In addition, in order to enhance the performance of titanium (Ti) getter, the prepared and activation parameters of Ti getter under different sputtering conditions are optimized and discussed. Based on the optimized results, the Ti getter (thickness of 300 nm to 500 nm) is also deposited on the inside of the glass groove by magnetron sputtering to maintain stable quality factor (Q). The Q test of the built testing system shows that the number of resonators with a Q value of more than 10,000 accounts for more than 73% of the total. With an interval of 1.5 years, the Q value of the samples remains almost constant. It proves the proposed cross-layer anodic bonding and getter technique can realize high-Q resonant structure for long-term stable operation.
Yuan, Tao; Ruan, Jiafeng; Zhang, Weimin; Tan, Zhuopeng; Yang, Junhe; Ma, Zi-Feng; Zheng, Shiyou
2016-12-28
Flexible polypyrrole (PPy) films with highly ordered structures were fabricated by a novel vapor phase polymerization (VPP) process and used as the anode material in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The PPy films demonstrate excellent rate performance and cycling stability. At a charge/discharge rate of 1 C, the reversible capacities of the PPy film anode reach 284.9 and 177.4 mAh g -1 in LIBs and SIBs, respectively. Even at a charge/discharge rate of 20 C, the reversible capacity of the PPy film anode retains 54.0% and 52.9% of the capacity of 1 C in LIBs and SIBs, respectively. After 1000 electrochemical cycles at a rate of 10 C, there is no obvious capacity fading. The molecular structure and electrochemical behaviors of Li- and Na-ion doping and dedoping in the PPy films are investigated by XPS and ex situ XRD. It is believed that the PPy film electrodes in the overoxidized state can be reversibly charged and discharged through the doping and dedoping of lithium or sodium ions. Because of the self-adaptation of the doped ions, the ordered pyrrolic chain structure can realize a fast charge/discharge process. This result may substantially contribute to the progress of research into flexible polymer electrodes in various types of batteries.
Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys
NASA Astrophysics Data System (ADS)
Anawati, Asoh, Hidetaka; Ono, Sachiko
2016-04-01
Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.
NASA Astrophysics Data System (ADS)
Nyein, Nyein; Lockman, Zainovia; Matsuda, Astunori; Kawamura, Go; Tan, Wai Kian; Oo, Than Zaw
2016-07-01
In this study, highly ordered TiO2 nanotube arrays were prepared by anodic oxidation of titanium foil in fluoride -EG electrolyte containing a small amount of potassium hydroxide, KOH at 60 V for 30 min. This electrolyte resulted in the formation of long nanotubes with an average length of 10 µm and diameter of 170 nm. For comparison, TiO2 nanotubes anodized in H2O added EG electrolyte which produces short nanotubes with an average tube length of 5 µm and diameter of 170 nm. It appears that the addition of KOH into the fluoride EG electrolyte accelerated the formation of the TiO2 nanotubes as it is believed that the chemical dissolution at the tips of the nanotubes is suppressed. Highly ordered TiO2 nanotubes anodized in KOH added EG electrolyte exhibited the photocurrent density of 2 mA/cm2, which is significantly higher than H2O added sample (1.5 mA/cm2).
Self-ordered, controlled structure nanoporous membranes using constant current anodization.
Lee, Kwan; Tang, Yun; Ouyang, Min
2008-12-01
We report a constant current (CC) based anodization technique to fabricate and control structure of mechanically stable anodic aluminum oxide (AAO) membranes with a long-range ordered hexagonal nanopore pattern. For the first time we show that interpore distance (Dint) of a self-ordered nanopore feature can be continuously tuned over a broad range with CC anodization and is uniquely defined by the conductivity of sulfuric acid as electrolyte. We further demonstrate that this technique can offer new degrees of freedom for engineering planar nanopore structures by fine tailoring the CC based anodization process. Our results not only facilitate further understanding of self-ordering mechanism of alumina membranes but also provide a fast, simple (without requirement of prepatterning or preoxide layer), and flexible methodology for controlling complex nanoporous structures, thus offering promising practical applications in nanotechnology.
Vengatesh, Panneerselvam; Kulandainathan, Manickam Anbu
2015-01-28
Herein, we report a facile method for the fabrication of self-lubricating superhydrophobic hierarchical anodic aluminum oxide (AAO) surfaces with improved corrosion protection, which is greatly anticipated to have a high impact in catalysis, aerospace, and the shipping industries. This method involves chemical grafting of as-formed AAO using low surface free energy molecules like long chain saturated fatty acids, perfluorinated fatty acid (perfluorooctadecanoic acid, PFODA), and perfluorosulfonicacid-polytetrafluoroethylene copolymer. The pre and post treatment processes in the anodization of aluminum (Al) play a vital role in the grafting of fatty acids. Wettability and surface free energy were analyzed using a contact angle meter and achieved 161.5° for PFODA grafted anodized aluminum (PFODA-Al). This study was also aimed at evaluating the surface for corrosion resistance by Tafel polarization and self-lubricating properties by tribological studies using a pin-on-disc tribometer. The collective results showed that chemically grafted AAO nanostructures exhibit high corrosion resistance toward seawater and low frictional coefficient due to low surface energy and self-lubricating property of fatty acids covalently linked to anodized Al surfaces.
Effect of processing on structural features of anodic aluminum oxides
NASA Astrophysics Data System (ADS)
Erdogan, Pembe; Birol, Yucel
2012-09-01
Morphological features of the anodic aluminum oxide (AAO) templates fabricated by electrochemical oxidation under different processing conditions were investigated. The selection of the polishing parameters does not appear to be critical as long as the aluminum substrate is polished adequately prior to the anodization process. AAO layers with a highly ordered pore distribution are obtained after anodizing in 0.6 M oxalic acid at 20 °C under 40 V for 5 minutes suggesting that the desired pore features are attained once an oxide layer develops on the surface. While the pore features are not affected much, the thickness of the AAO template increases with increasing anodization treatment time. Pore features are better and the AAO growth rate is higher at 20 °C than at 5 °C; higher under 45 V than under 40 V; higher with 0.6 M than with 0.3 M oxalic acid.
NASA Astrophysics Data System (ADS)
Rahimi, M. H.; Saramad, S.; Tabaian, S. H.; Marashi, S. P.; Zolfaghari, A.; Mohammadalinezhad, M.
2009-10-01
Two-step anodic oxidation of aluminum is generally employed to produce the ordered porous anodized alumina (PAA). Dissolving away (striping) the oxide film after the first anodizing step plays a key role in the final arrangement of nano-pores. In this work, different striping durations between 1 and 6 h were applied to the sample that was initially anodized at a constant voltage of 40 V at 17 °C for 15 h. The striping duration of 3 h was realized as the optimum time for achieving the best ordering degree for the pores. Scanning electron microscopy (SEM) was used during and at the end of the process to examine the cross section and finishing surface of the specimens. Linear-angular fast Fourier transform (LA-FFT), an in-house technique based on MATLAB software, was employed to assess the ordering degree of the anodized samples.
NASA Astrophysics Data System (ADS)
Guan, Wei; Peng, Nianhua; Jeynes, Christopher; Ghatak, Jay; Peng, Yong; Ross, Ian M.; Bhatta, Umananda M.; Inkson, Beverley J.; Möbus, Günter
2013-07-01
Lateral ordered Co, Pt and Co/Pt nanostructures were fabricated in SiO2 and Si3N4 substrates by high fluence metal ion implantation through periodic nanochannel membrane masks based on anodic aluminium oxides (AAO). The quality of nanopatterning transfer defined by various AAO masks in different substrates was examined by transmission electron microscopy (TEM) in both imaging and spectroscopy modes.
NASA Astrophysics Data System (ADS)
Arthur, N. A.; Foster, J. E.; Barnat, E. V.
2018-05-01
Two-dimensional electron density measurements are made in a magnetic ring cusp discharge using laser collisional induced fluorescence. The magnet rings are isolated from the anode structure such that they can be biased independently in order to modulate electron flows through the magnetic cusps. Electron density images are captured as a function of bias voltage in order to assess the effects of current flow through the cusp on the spatial extent of the cusp. We anticipated that for a fixed current density being funneled through the magnetic cusp, the leak width would necessarily increase. Unexpectedly, the leak width, as measured by LCIF images, does not increase. This suggests that the current density is not constant, and that possibly either electrons are being heated or additional ionization events are occurring within the cusp. Spatially resolving electron temperature would be needed to determine if electrons are being heated within the cusp. We also observe breakdown of the anode magnetosheath and formation of anode spots at high bias voltage.
Nishinaga, Osamu; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.
2013-01-01
Anodic porous alumina has been widely investigated and used as a nanostructure template in various nanoapplications. The porous structure consists of numerous hexagonal cells perpendicular to the aluminum substrate and each cell has several tens or hundreds of nanoscale pores at its center. Because the nanomorphology of anodic porous alumina is limited by the electrolyte during anodizing, the discovery of additional electrolytes would expand the applicability of porous alumina. In this study, we report a new self-ordered nanoporous alumina formed by selenic acid (H2SeO4) anodizing. By optimizing the anodizing conditions, anodic alumina possessing 10-nm-scale pores was rapidly assembled (within 1 h) during selenic acid anodizing without any special electrochemical equipment. Novel sub-10-nm-scale spacing can also be achieved by selenic acid anodizing and metal sputter deposition. Our new nanoporous alumina can be used as a nanotemplate for various nanostructures in 10-/sub-10-nm-scale manufacturing. PMID:24067318
Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development.
Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek
2011-02-25
The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.
Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development
Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek
2011-01-01
The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering. PMID:28880002
Quasi-perpetual discharge behaviour in p-type Ge-air batteries.
Ocon, Joey D; Kim, Jin Won; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung
2014-11-07
Metal-air batteries continue to become attractive energy storage and conversion systems due to their high energy and power densities, safer chemistries, and economic viability. Semiconductor-air batteries - a term we first define here as metal-air batteries that use semiconductor anodes such as silicon (Si) and germanium (Ge) - have been introduced in recent years as new high-energy battery chemistries. In this paper, we describe the excellent doping-dependent discharge kinetics of p-type Ge anodes in a semiconductor-air cell employing a gelled KOH electrolyte. Owing to its Fermi level, n-type Ge is expected to have lower redox potential and better electronic conductivity, which could potentially lead to a higher operating voltage and better discharge kinetics. Nonetheless, discharge measurements demonstrated that this prediction is only valid at the low current regime and breaks down at the high current density region. The p-type Ge behaves extremely better at elevated currents, evident from the higher voltage, more power available, and larger practical energy density from a very long discharge time, possibly arising from the high overpotential for surface passivation. A primary semiconductor-air battery, powered by a flat p-type Ge as a multi-electron anode, exhibited an unprecedented full discharge capacity of 1302.5 mA h gGe(-1) (88% anode utilization efficiency), the highest among semiconductor-air cells, notably better than new metal-air cells with three-dimensional and nanostructured anodes, and at least two folds higher than commercial Zn-air and Al-air cells. We therefore suggest that this study be extended to doped-Si anodes, in order to pave the way for a deeper understanding on the discharge phenomena in alkaline metal-air conversion cells with semiconductor anodes for specific niche applications in the future.
Copper Antimonide Nanowire Array Lithium Ion Anodes Stabilized by Electrolyte Additives.
Jackson, Everett D; Prieto, Amy L
2016-11-09
Nanowires of electrochemically active electrode materials for lithium ion batteries represent a unique system that allows for intensive investigations of surface phenomena. In particular, highly ordered nanowire arrays produced by electrodeposition into anodic aluminum oxide templates can lead to new insights into a material's electrochemical performance by providing a high-surface-area electrode with negligible volume expansion induced pulverization. Here we show that for the Li-Cu x Sb ternary system, stabilizing the surface chemistry is the most critical factor for promoting long electrode life. The resulting solid electrolyte interphase is analyzed using a mix of electron microscopy, X-ray photoelectron spectroscopy, and lithium ion battery half-cell testing to provide a better understanding of the importance of electrolyte composition on this multicomponent alloy anode material.
Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang
2011-01-01
Lithium ion battery (LIB) is potentially one of the most attractive energy storage devices. To meet the demands of future high-power and high-energy density requirements in both thin-film microbatteries and conventional batteries, it is challenging to explore novel nanostructured anode materials instead of conventional graphite. Compared to traditional electrodes based on nanostructure powder paste, directly grown ordered nanostructure array electrodes not only simplify the electrode processing, but also offer remarkable advantages such as fast electron transport/collection and ion diffusion, sufficient electrochemical reaction of individual nanostructures, enhanced material-electrolyte contact area and facile accommodation of the strains caused by lithium intercalation and de-intercalation. This article provides a brief overview of the present status in the area of LIB anodes based on one-dimensional nanostructure arrays growing directly on conductive inert metal substrates, with particular attention to metal oxides synthesized by an anodized alumina membrane (AAM)-free solution-based or hydrothermal methods. Both the scientific developments and the techniques and challenges are critically analyzed.
NASA Astrophysics Data System (ADS)
Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang
2011-01-01
Lithium ion battery (LIB) is potentially one of the most attractive energy storage devices. To meet the demands of future high-power and high-energy density requirements in both thin-film microbatteries and conventional batteries, it is challenging to explore novel nanostructured anode materials instead of conventional graphite. Compared to traditional electrodes based on nanostructure powder paste, directly grown ordered nanostructure array electrodes not only simplify the electrode processing, but also offer remarkable advantages such as fast electron transport/collection and ion diffusion, sufficient electrochemical reaction of individual nanostructures, enhanced material-electrolyte contact area and facile accommodation of the strains caused by lithium intercalation and de-intercalation. This article provides a brief overview of the present status in the area of LIB anodes based on one-dimensional nanostructure arrays growing directly on conductive inert metal substrates, with particular attention to metal oxides synthesized by an anodized aluminamembrane (AAM)-free solution-based or hydrothermal methods. Both the scientific developments and the techniques and challenges are critically analyzed.
Fabrication of Titania Nanotubes for Gas Sensing Applications
NASA Astrophysics Data System (ADS)
Dzilal, A. A.; Muti, M. N.; John, O. D.
2010-03-01
Detection of hydrogen is needed for industrial process control and medical applications where presence of hydrogen indicates different type of health problems. Titanium dioxide nanotube structure is chosen as an active component in the gas sensor because of its highly sensitive electrical resistance to hydrogen over a wide range of concentrations. The objective of the work is to fabricate good quality titania nanotubes suitable for hydrogen sensing applications. The fabrication method used is anodizing method. The anodizing parameters namely the voltage, time duration, concentration of hydrofluoric acid in water, separation between the electrodes and the ambient temperature are varied accordingly to find the optimum anodizing conditions for production of good quality titania nanotubes. The highly ordered porous titania nanotubes produced by this method are in tabular shape and have good uniformity and alignment over large areas. From the investigation done, certain set of anodizing parameters have been found to produce good quality titania nanotubes with diameter ranges from 47 nm to 94 nm.
Madian, Mahmoud; Ummethala, Raghunandan; Abo El Naga, Ahmed Osama; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars
2017-01-01
TiO2 nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability. PMID:28773032
Madian, Mahmoud; Ummethala, Raghunandan; Naga, Ahmed Osama Abo El; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars
2017-06-20
TiO₂ nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li⁺ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO₂/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO₂/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO₂ and TiO₂/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li⁺ ion diffusivity, promoting a strongly favored lithium insertion into the TiO₂/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability.
NASA Astrophysics Data System (ADS)
Guo, Yang; Zhang, Li; Han, Mangui; Wang, Xin; Xie, Jianliang; Deng, Longjiang
2018-03-01
The influence of the addition of ethylene glycol (EG) on the pore self-ordering process in anodic aluminium oxide (AAO) membranes prepared by hard anodization (HA) was investigated. It was illustrated that EG has a substantial effect on the pore arrangement of AAO, and it was found that a smaller pore size can be obtained with an EG concentration reaching 20 wt% in aqueous electrolyte. The number of estimated defects of AAO increases significantly with an increase in EG concentration to 50 wt%. Excellent ordering of pores was realized when the samples were anodized in the 30 wt%-EG-containing aqueous electrolyte.
Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays
NASA Astrophysics Data System (ADS)
Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian
2012-07-01
The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm2) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.
Degradation of thiamethoxam by the synergetic effect between anodic oxidation and Fenton reactions.
Meijide, J; Gómez, J; Pazos, M; Sanromán, M A
2016-12-05
In this work, a comparative study using anodic oxidation, Fenton and electro-Fenton treatments was performed in order to determine the synergic effect for the removal of thiamethoxan. The results determined that electro-Fenton process showed high efficiency in comparison with Fenton or anodic oxidation. After that, this hybrid process was optimized and the influence of iron catalyst concentration and applied current intensity on the degradation and mineralization were evaluated. Degradation profiles were monitored by high performance liquid chromatography (HPLC) being satisfactorily described by pseudo-first order kinetic model. At the optimal experimental conditions (300mA and 0.2mM Fe(+2)), the complete degradation of thiamethoxam was achieved after 10min. On the other hand, mineralization of thiamethoxam was monitored by total organic carbon (TOC) decay reaching more than 92% of TOC removal after 8h. Furthermore, a plausible mineralization pathway for the thiamethoxam degradation was proposed based on the identification of by-products such as aromatic intermediates, carboxylic acids and inorganic ions released throughout electro-Fenton process. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Chuanju; Wang, Guiqiang; Yang, Rui; Sun, Xiangyu; Ma, Hui; Sun, Shuqing
2017-01-17
Arrays of ordered nanorods are of special interest in many fields. However, it remains challenging to obtain such arrays on conducting substrates in a facile manner. In this article, we report the fabrication of highly ordered and vertically standing nanorod arrays of both metals and semiconductors on Au films and indium tin oxide glass substrates without an additional layering. In this approach, following the simple hydrophilic treatment of an anodic aluminum oxide (AAO) membrane and conducting substrates, the AAO membrane was transferred onto the modified substrates with excellent adhesion. Subsequently, nanorod arrays of various materials were electrodeposited on the conducting substrates directly. This method avoids any expensive and tedious lithographic and ion milling process, which provides a simple yet robust route to the fabrication of arrays of 1D materials with high aspect ratio on conducting substrates, which shall pave the way for many practical applications in a range of fields.
NASA Astrophysics Data System (ADS)
Hourdakis, E.; Koutsoureli, M.; Papaioannou, G.; Nassiopoulou, A. G.
2018-06-01
Barrier-type anodic alumina thin films are interesting for use in high capacitance density metal-insulator-metal capacitors due to their excellent dielectric properties at small thickness. This thickness is easily controlled by the anodization voltage. In previous papers we studied the main parameters of interest of the Al/barrier-type anodic alumina/Al structure for use in RF applications and showed the great potential of barrier-type anodic alumina in this respect. In this paper, we investigated in detail charging/discharging processes and leakage current of the above dielectric material. Two different sets of metal-insulator-metal capacitors were studied, namely, with the top Al electrode being either e-gun deposited or sputtered. The dielectric constant of the barrier-type anodic alumina was found at 9.3. Low leakage current was observed in all samples studied. Furthermore, depending on the film thickness, field emission following the Fowler-Nordheim mechanism was observed above an applied electric field. Charging of the anodic dielectric was observed, occurring in the bulk of the anodic layer. The stored charge was of the order of few μC/cm2 and the calculated trap density ˜2 × 1018 states/cm3, the most probable origin of charge traps being, in our opinion, positive electrolyte ions trapped in the dielectric during anodization. We do not think that oxygen vacancies play an important role, since their existence would have a more important impact on the leakage current characteristics, such as resistive memory effects or significant changes during annealing, which were not observed. Finally, discharging characteristic times as high as 5 × 109 s were measured.
Investigation of different anode materials for aluminium rechargeable batteries
NASA Astrophysics Data System (ADS)
Muñoz-Torrero, David; Leung, Puiki; García-Quismondo, Enrique; Ventosa, Edgar; Anderson, Marc; Palma, Jesús; Marcilla, Rebeca
2018-01-01
In order to shed some light into the importance of the anodic reaction in reversible aluminium batteries, we investigate here the electrodeposition of aluminium in an ionic liquid electrolyte (BMImCl-AlCl3) using different substrates. We explore the influence of the type of anodic material (aluminium, stainless steel and carbon) and its 3D geometry on the reversibility of the anodic reaction by cyclic voltammetry (CV) and galvanostatic charge-discharge. The shape of the CVs confirms that electrodeposition of aluminium was feasible in the three materials but the highest peak currents and smallest peak separation in the CV of the aluminium anode suggested that this material was the most promising. Interestingly, carbon-based substrates appeared as an interesting alternative due to the high peak currents in CV, moderate overpotentials and dual role as anode and cathode. 3D substrates such as fiber-based carbon paper and aluminium mesh showed significantly smaller overpotentials and higher efficiencies for Al reaction suggesting that the use of 3D substrates in full batteries might result in enhanced power. This is corroborated by polarization testing of full Al-batteries.
A Facile Method for Loading CeO2 Nanoparticles on Anodic TiO2 Nanotube Arrays.
Liao, Yulong; Yuan, Botao; Zhang, Dainan; Wang, Xiaoyi; Li, Yuanxun; Wen, Qiye; Zhang, Huaiwu; Zhong, Zhiyong
2018-04-03
In this paper, a facile method was proposed to load CeO 2 nanoparticles (NPs) on anodic TiO 2 nanotube (NT) arrays, which leads to a formation of CeO 2 /TiO 2 heterojunctions. Highly ordered anatase phase TiO 2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO 2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO 3 ) 3 solutions. The loaded anodic TiO 2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO 3 ) 3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO 3 ) 3 , cubic crystal CeO 2 NPs were obtained and successfully loaded into the anodic TiO 2 NT arrays. The prepared CeO 2 /TiO 2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO 2 /TiO 2 films, which could be very useful for environmental and energy-related areas.
Structure of anodized Al-Zr sputter deposited coatings and effect on optical appearance
NASA Astrophysics Data System (ADS)
Gudla, Visweswara Chakravarthy; Canulescu, Stela; Shabadi, Rajashekhara; Rechendorff, Kristian; Dirscherl, Kai; Ambat, Rajan
2014-10-01
The mechanism of interaction of light with the microstructure of anodized layer giving specific optical appearance is investigated using Al-Zr sputter deposited coating as a model system on an AA6060 substrate. Differences in the oxidative nature of various microstructural components result in the evolution of typical features in the anodized layer, which are investigated as a function of microstructure and correlated with its optical appearance. The Zr concentration in the coating was varied from 6 wt.% to 23 wt.%. Heat treatment of the coated samples was carried out at 550 °C for 4 h in order to evolve Al-Zr based second phase precipitates in the microstructure. Anodizing was performed using 20 wt.% sulphuric acid at 18 °C with an intention to study the effect of anodizing on the Al-Zr based precipitates in the coating. Detailed microstructural characterization of the coating and anodized layer was carried out using high resolution scanning and transmission electron microscopy, grazing incidence X-ray diffraction analysis, glow discharge optical emission spectroscopy, and optical appearance using spectrophotometry. The evolution of microstructure in the anodized layer as a function of anodizing parameters and their influence on the interaction of light is investigated and the results in general are applicable to discolouration of anodized layer on recycled aluminium alloys due to intermetallics.
Effect of the local electric field on the formation of an ordered structure in porous anodic alumina
NASA Astrophysics Data System (ADS)
Lazarouk, S. K.; Katsuba, P. S.; Leshok, A. A.; Vysotskii, V. B.
2015-09-01
Experimental data and a model are presented, and the electric field that appears in porous alumina during electrochemical anodic oxidation of aluminum in electrolytes based on an aqueous solution of oxalic acid at a voltage of 90-250 V is calculated. It is found that the electric field in the layers with a porosity of 1-10% in growing alumina reaches 109-1010 V/m, which exceeds the electric strength of the material and causes microplasma patterns emitting visible light at the pore bottom, the self-organization of the structure of porous alumina, and the anisotropy of local porous anodizing. Moreover, other new effects are to be expected during aluminum anodizing under the conditions that ensure a high electric field inside the barrier layer of porous oxide.
NASA Technical Reports Server (NTRS)
Henry, Francois
2015-01-01
For this Phase II project, Superior Graphite Co., in collaboration with the Georgia Institute of Technology and Streamline Nanotechnologies, Inc., developed, explored the properties of, and demonstrated the enhanced capabilities of novel nanostructured SiLix-C anodes. These anodes can retain high capacity at a rapid 2-hour discharge rate and at 0 C when used in Li-ion batteries. In Phase I, these advanced anode materials had specific capacity in excess of 1,000 mAh/g, minimal irreversible capacity losses, and stable performance for 20 cycles at C/1. The goals in Phase II were to develop and apply a variety of novel nanomaterials, fine-tune the properties of composite particles at the nanoscale, optimize the composition of the anodes, and select appropriate binder and electrolytes. In order to achieve a breakthrough in power characteristics of Li-ion batteries, the team developed new nanostructured SiLix-C anode materials to offer up to 1,200 mAh/g at C/2 at 0 C.
NASA Astrophysics Data System (ADS)
Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.
2017-05-01
Anodizing of aluminum in an arsenic acid solution is reported for the fabrication of anodic porous alumina. The highest potential difference (voltage) without oxide burning increased as the temperature and the concentration of the arsenic acid solution decreased, and a high anodizing potential difference of 340 V was achieved. An ordered porous alumina with several tens of cells was formed in 0.1-0.5 M arsenic acid solutions at 310-340 V for 20 h. However, the regularity of the porous alumina was not improved via anodizing for 72 h. No pore sealing behavior of the porous alumina was observed upon immersion in boiling distilled water, and it may be due to the formation of an insoluble complex on the oxide surface. The porous alumina consisted of two different layers: a hexagonal alumina layer that contained arsenic from the electrolyte and a pure alumina honeycomb skeleton. The porous alumina exhibited a white photoluminescence emission at approximately 515 nm under UV irradiation at 254 nm.
Study of a new type anode of OLED by MIC poly-Si
NASA Astrophysics Data System (ADS)
Li, Yang; Meng, Zhiguo; Wu, Chunya; Man, Wong; Hoi, Kwok Sing; Xiong, Shaozhen
2007-11-01
In this paper, a boron-doped poly-Si crystallized by solution-based metal induced (S-MIC) as the anode of organic light emitting diode (OLED) was studied. The semi-transparent and semi-reflective anode of OLED systemized with the high reflectivity of Al cathode could form a micro-cavity structure with a low Q to improve the efficiency. The maximum luminance efficiency of red OLED made by Alq3: DCJTB (1.5wt %)( 30nm) with the poly-Si anode is 2.66cd/A, higher than that of the OLED with the ITO anodes by 30%. In order to improve the device performance, some key to optimize the character of MIC poly-Si thin film are analyzed theoretically. A new kind of TFT/OLED coupling structure in AMOLED was proposed, in which the pixel electrode of OLED was made by the same poly-Si thin film with its driver TFT's drain electrode. So that this coupling structure will simplify the AMOLED processes flow.
Guo, Yang; Zhang, Li; Han, Mangui; Wang, Xin; Xie, Jianliang; Deng, Longjiang
2018-03-01
The influence of the addition of ethylene glycol (EG) on the pore self-ordering process in anodic aluminium oxide (AAO) membranes prepared by hard anodization (HA) was investigated. It was illustrated that EG has a substantial effect on the pore arrangement of AAO, and it was found that a smaller pore size can be obtained with an EG concentration reaching 20 wt% in aqueous electrolyte. The number of estimated defects of AAO increases significantly with an increase in EG concentration to 50 wt%. Excellent ordering of pores was realized when the samples were anodized in the 30 wt%-EG-containing aqueous electrolyte.
Zhang, Li; Han, Mangui; Wang, Xin; Xie, Jianliang; Deng, Longjiang
2018-01-01
The influence of the addition of ethylene glycol (EG) on the pore self-ordering process in anodic aluminium oxide (AAO) membranes prepared by hard anodization (HA) was investigated. It was illustrated that EG has a substantial effect on the pore arrangement of AAO, and it was found that a smaller pore size can be obtained with an EG concentration reaching 20 wt% in aqueous electrolyte. The number of estimated defects of AAO increases significantly with an increase in EG concentration to 50 wt%. Excellent ordering of pores was realized when the samples were anodized in the 30 wt%-EG-containing aqueous electrolyte. PMID:29657754
Ltaïef, Aziza Hadj; Sabatino, Simona; Proietto, Federica; Ammar, Salah; Gadri, Abdellatif; Galia, Alessandro; Scialdone, Onofrio
2018-07-01
The treatment of toxic organic pollutants by electro-Fenton (EF) presents some drawbacks such as the necessity to work at low pH and the low solubility of oxygen in water contacted with air or oxygen at room pressure that results often in slow and relatively low abatements. Here, the coupled adoption of natural heterogeneous catalysts and of relatively high pressure was proposed in order to improve the performances of EF for the treatment of organic pollutants. Caffeic acid (CA) and 3-chlorophenol were used as model resistant organic pollutants. EF process was performed using both conventional homogeneous FeSO 4 and natural heterogeneous catalysts (pyrite, chalcopyrite, Fe 2 O 3 and Fe 3 O 4 ) as iron catalysts and oxygen at various pressures in the absence or in the presence of BDD anode. The effect of the nature of the catalyst, the oxygen pressure, the current density and the catalyst load was widely investigated in order to optimize the process. It was shown that the coupled utilization of a natural heterogeneous catalyst such as chalcopyrite and a relatively high pressure allows to obtain the total removal of CA and a high removal of the TOC (about 75%) in short times (2 h) with relatively high current efficiencies using an Iridium based anode. In the case of 3-chlorophenol, the utilization of a BDD anode was necessary to achieve a high removal of the pollutant and the TOC. It was shown that the removal of 3-chlorophenol can be effectively performed in different water bodies and with different initial concentrations of 3-chlorophenol. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kumeria, Tushar; Santos, Abel; Losic, Dusan
2014-01-01
Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices. PMID:25004150
NASA Astrophysics Data System (ADS)
Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut
2016-03-01
Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.
Li, Wenwen; Zhang, Sanpei; Wang, Bangrun; Gu, Sui; Xu, Dong; Wang, Jianing; Chen, Chunhua; Wen, Zhaoyin
2018-06-19
Solid polymer electrolytes (SPEs) have shown extraordinary promise for all-solid-state lithium metal batteries with high energy density and flexibility but are mainly limited by the low ionic conductivity and their poor stability with lithium metal anode. In this work, we propose a highly ordered porous electrolyte additive derived from SSZ-13 for high-rate all-solid-state lithium metal batteries. The nanoporous adsorption effect provided by the highly ordered porous nanoparticles in the poly (ethylene oxide) (PEO) electrolyte are found to significantly improve the Li + conductivity (1.91×10 -3 S cm -1 at 60°C, 4.43×10 -5 S cm -1 at 20°C) and widen the electrochemical stability window to 4.7 V vs Li + /Li. Meanwhile, the designed PEO-based electrolyte demonstrates enhanced stability with the lithium metal anode. Through systematically increasing Li + diffusion, widening the electrochemical stability window and enhancing the stability of the SSZ-CPE electrolyte, the LiFePO4/SSZ-CPE/Li cell is optimized to deliver high-rate capability and stable cycling performance, which demonstrates great potential for all-solid-state energy storage application.
Lithium storage in structurally tunable carbon anode derived from sustainable source
Lim, Daw Gen; Kim, Kyungho; Razdan, Mayuri; ...
2017-09-01
Here, a meticulous solid state chemistry approach has been developed for the synthesis of carbon anode from a sustainable source. The reaction mechanism of carbon formation during pyrolysis of sustainable feed-stock was studied in situ by employing Raman microspectroscopy. No Raman spectral changes observed below 160°C (thermally stable precursor) followed by color change, however above 280°C characteristic D and G bands of graphitic carbon are recorded. Derived carbon particles exhibited high specific surface area with low structural ordering (active carbons) to low specific surface area with high graphitic ordering as a function of increasing reaction temperature. Carbons synthesized at 600°Cmore » demonstrated enhanced reversible lithiation capacity (390 mAh g -1), high charge-discharge rate capability, and stable cycle life. On the contrary, carbons synthesized at higher temperatures (>1200°C) produced more graphite-like structure yielding longer specific capacity retention with lower reversible capacity.« less
NASA Astrophysics Data System (ADS)
Ou, Shih-Fu; Chou, Hsin-Hua; Lin, Chao-Sung; Shih, Ching-Jui; Wang, Kuang-Kuo; Pan, Yung-Ning
2012-06-01
Anodic oxidation followed by hydrothermal treatment has been widely applied for surface modification of titanium alloys to precipitate a crystalline hydroxyapatite (HA) layer in order to achieve improved osteoconduction. A majority of the studies in the literature imposed relatively high powers to enhance Ca and P in the anodic oxide film (AOF). However, high powers have been found to cause deterioration of the adhesive strength in one of the author's previous study. In this study, a new electrolyte comprising calcium acetate monohydrate (CA), β-glycerophosphate disodium pentahydrate (β-GP) and HA powder was developed, and the Ti-30Nb-1Fe-1Hf alloy was anodized in this HA-containing electrolyte to a relatively low voltage. Results show that the AOF anodized in the HA-containing electrolyte exhibits a better HA forming ability during hydrothermal treatment, attributing to the presence of HA powder in the electrolyte that effectively enhances both the Ca content and Ca/P ratio in the AOF. On the other hand, the adhesive strength was little affected due to the decrease in size of the craters residing in the AOF. With respect to the biological responses, not much difference in biocompatibility of the treated and untreated Ti-Nb surfaces was obtained. However, the anodized and hydrothermally treated surface promotes the attachment of cells.
Chen, Shih-Yung; Chang, Hsuan-Hao; Lai, Ming-Yu; Liu, Chih-Yi; Wang, Yuh-Lin
2011-09-07
Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.
NASA Astrophysics Data System (ADS)
Chen, Shih-Yung; Chang, Hsuan-Hao; Lai, Ming-Yu; Liu, Chih-Yi; Wang, Yuh-Lin
2011-09-01
Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.
NASA Astrophysics Data System (ADS)
Morgenstern, R.; Scharf, I.; Lampke, T.
2018-06-01
The age-hardenable aluminium alloy EN AW-7075 exhibits outstanding specific mechanical properties and therefore offers a high potential for lightweight construction. Anodising in aqueous oxalic acid solutions is suitable to produce a protective oxide ceramic conversion layer on this alloy. This study examines the influence of the precipitation state of the substrate alloy on microstructure and properties of anodic oxide layers. Therefore, EN AW-7075 sheets in the heat treatment conditions T4, T6 and T73 were anodized in 0.8 M oxalic acid solution at constant voltage. The current efficiency was determined on the basis of the electrical charge quantity, coating thickness and coating mass. Instrumented indentation tests were applied in order to evaluate the coating hardness. The microstructure of the anodic oxide layer was illustrated using field emission electron microscopy. It was shown that the current efficiency strongly depends on the heat treatment condition.
NASA Astrophysics Data System (ADS)
Zaraska, Leszek; Stępniowski, Wojciech J.; Sulka, Grzegorz D.; Ciepiela, Eryk; Jaskuła, Marian
2014-02-01
Anodic porous alumina layers were fabricated by a two-step self-organized anodization in 0.3 M oxalic acid under various anodizing potentials ranging from 30 to 60 V at two different temperatures (10 and 17 ∘C). The effect of anodizing conditions on structural features and pore arrangement of AAO was investigated in detail by using the dedicated executable publication combined with ImageJ software. With increasing anodizing potential, a linear increase of the average pore diameter, interpore distance, wall thickness and barrier layer thickness, as well as a decrease of the pore density, were observed. In addition, the higher pore diameter and porosity values were obtained for samples anodized at the elevated temperature, independently of the anodizing potential. A degree of pore order was investigated on the basis of Delaunay triangulations (defect maps) and calculation of pair distribution or angle distribution functions (PDF or ADF), respectively. All methods confirmed that in order to obtain nanoporous alumina with the best, hexagonal pore arrangement, the potential of 40 V should be applied during anodization. It was confirmed that the dedicated executable publication can be used to a fast and complex analysis of nanopore arrangement and structural features of nanoporous oxide layers.
High Performance Arcjet Engines
NASA Technical Reports Server (NTRS)
Kennel, Elliot B.; Ivanov, Alexey Nikolayevich; Nikolayev, Yuri Vyacheslavovich
1994-01-01
This effort sought to exploit advanced single crystal tungsten-tantalum alloy material for fabrication of a high strength, high temperature arcjet anode. The use of this material is expected to result in improved strength, temperature resistance, and lifetime compared to state of the art polycrystalline alloys. In addition, the use of high electrical and thermal conductivity carbon-carbon composites was considered, and is believed to be a feasible approach. Highly conductive carbon-carbon composite anode capability represents enabling technology for rotating-arc designs derived from the Russian Scientific Research Institute of Thermal Processes (NIITP) because of high heat fluxes at the anode surface. However, for US designs the anode heat flux is much smaller, and thus the benefits are not as great as in the case of NIITP-derived designs. Still, it does appear that the tensile properties of carbon-carbon can be even better than those of single crystal tungsten alloys, especially when nearly-single-crystal fibers such as vapor grown carbon fiber (VGCF) are used. Composites fabricated from such materials must be coated with a refractory carbide coating in order to ensure compatibility with high temperature hydrogen. Fabrication of tungsten alloy single crystals in the sizes required for fabrication of an arcjet anode has been shown to be feasible. Test data indicate that the material can be expected to be at least the equal of W-Re-HfC polycrystalline alloy in terms of its tensile properties, and possibly superior. We are also informed by our colleagues at Scientific Production Association Luch (NP0 Luch) that it is possible to use Russian technology to fabricate polycrystalline W-Re-HfC or other high strength alloys if desired. This is important because existing engines must rely on previously accumulated stocks of these materials, and a fabrication capability for future requirements is not assured.
High performance arcjet engines
NASA Astrophysics Data System (ADS)
Kennel, Elliot B.; Ivanov, Alexey Nikolayevich; Nikolayev, Yuri Vyacheslavovich
1994-10-01
This effort sought to exploit advanced single crystal tungsten-tantalum alloy material for fabrication of a high strength, high temperature arcjet anode. The use of this material is expected to result in improved strength, temperature resistance, and lifetime compared to state of the art polycrystalline alloys. In addition, the use of high electrical and thermal conductivity carbon-carbon composites was considered, and is believed to be a feasible approach. Highly conductive carbon-carbon composite anode capability represents enabling technology for rotating-arc designs derived from the Russian Scientific Research Institute of Thermal Processes (NIITP) because of high heat fluxes at the anode surface. However, for US designs the anode heat flux is much smaller, and thus the benefits are not as great as in the case of NIITP-derived designs. Still, it does appear that the tensile properties of carbon-carbon can be even better than those of single crystal tungsten alloys, especially when nearly-single-crystal fibers such as vapor grown carbon fiber (VGCF) are used. Composites fabricated from such materials must be coated with a refractory carbide coating in order to ensure compatibility with high temperature hydrogen. Fabrication of tungsten alloy single crystals in the sizes required for fabrication of an arcjet anode has been shown to be feasible. Test data indicate that the material can be expected to be at least the equal of W-Re-HfC polycrystalline alloy in terms of its tensile properties, and possibly superior. We are also informed by our colleagues at Scientific Production Association Luch (NP0 Luch) that it is possible to use Russian technology to fabricate polycrystalline W-Re-HfC or other high strength alloys if desired. This is important because existing engines must rely on previously accumulated stocks of these materials, and a fabrication capability for future requirements is not assured.
NASA Astrophysics Data System (ADS)
Song, Ju-Seok; Cho, Gyu-Bong; Ahn, Jou-Hyeon; Cho, Kwon-Koo
2017-09-01
Tin (Sn) based anode materials are the most promising anode materials for lithium-ion batteries due to their high theoretical capacity corresponding to the formation of Li4.4Sn composition (Li4.4Sn, 994 mAh/g). However, the applications of tin based anodes to lithium-ion battery system are generally limited by a large volume change (>260%) during lithiation and delithiation cycle, which causes pulverize and poor cycling stability. In order to overcome this shortcoming, we fabricate a Sn/C nanoparticle with a yolk-shell structure (Sn/void/C) by using pulsed wire evaporation process and oxidation/reduction heat treatment. Sn nanoparticles are encapsulated by a conductive carbon layer with structural buffer that leaves enough room for expansion and contraction during lithium insertion/desertion. We expect that the yolk-shell structure has the ability to accommodate the volume changes of tin and leading to an improved cycle performance. The Sn/Void/C anode with yolk-shell structure shows a high specific capacity of 760 mAh/g after 50 cycles.
NASA Astrophysics Data System (ADS)
Leite, Marina S.; Gong, Chen; Ruzmetov, Dmitry; Talin, A. Alec
There is still a pressing need to understand how the solid-interfaces in Li-ion all-solid-batteries form, including their chemical composition and electrical characteristics. In order to resolve the origin of the degradation mechanism in Al anodes, we combine in situ scanning electron microscopy in ultra-high vacuum with electrochemical cycling, in addition to ex situ characterization of the morphological, chemical, and electrical changes of the Al anodes upon lithiation. An AlLi alloy capped by a stable Al-Li-O is formed on the top surface of the anode, trapping Li, which results in the capacity fade, from 48.0 to 41.5 μ.Ah/cm2 in two cycles. The addition of a Cu capping layer is insufficient to prevent the device degradation because of the fast Li diffusion within Al. Yet, Si present extremely stable cycling: >92% of capacity retention after 100 cycles, with average Coulombic efficiency of 98%. Our in situ measurements represent a new platform for probing the real-time degradation of electrodes in all-solid-state batteries for energy storage devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaway, Sarang M.; Tangvijitsakul, Pattarasai; Lee, Jeongwoo
2015-09-16
Micelle-templated ordered mesoporous nickel–cobalt carbonates and oxides are fabricated using a metal nitrate–citric acid strategy, which avoids the hydrolysis and aging requirements associated with sol–gel chemistry. A series of mesoporous Ni xCo (3-x)(CO 3) y and Ni xCo (3-x)O 4 films with varying Ni–Co compositions and 14 ± 4 nm mesopores are fabricated with the same block copolymer template. AFM and GISAXS analysis indicates that the mesostructure is maintained through the formation of the carbonate and oxide, while GIXD profiles confirm formation of pure spinel phases of semi-crystalline Ni xCo (3-x)O 4. The micelle templated mesopores are interconnected and providemore » transport paths for the electrolyte to minimize the solid-state diffusion requirements associated with battery electrodes. These materials exhibit good performance as sodium ion battery anodes even at high current densities of 4 A g -1. Amongst the mixed-metal oxides, Ni 2CoO 4 exhibits the highest specific capacity of 239 mA h g -1 after galvanostatic cycling at a current density of 1 A g -1 for 10 cycles. We attribute the superior performance of Ni 2CoO 4 at high rates to the high surface area and short ion-diffusion paths of the nanoporous anode architecture, while the higher nickel content in the mixed metal oxide provides enhanced stability during oxide formation along with enhanced electronic conductivity, leading to improved cycling stability of the anode. This micelle template metal nitrate–citric acid method enables new possibilities for fabricating variety of ordered mesoporous mixed-metal carbonates and oxides that could be used in a wide range of applications.« less
Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina
Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga
2014-01-01
Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247
NASA Astrophysics Data System (ADS)
Liu, Q. L.; Fu, C. J.; Chan, S. H.; Pasciak, G.
2011-06-01
In this study, a co-tape casting and co-sintering process has been developed to prepare yttria-stabilized zirconia (YSZ) electrolyte films supported on Ni-YSZ anode substrates in order to substantially reduce the fabrication cost of solid oxide fuel cells (SOFC). Through proper control of the process, the anode/electrolyte bilayer structures with a size of 7.8cm × 7.8cm were achieved with good flatness. Scanning electron microscopy (SEM) observation indicated that the YSZ electrolyte film was about 16 μm in thickness, highly dense, crack free and well-bonded to the anode support. The electrochemical properties of the prepared anode-supported electrolyte film was evaluated in a button cell mode incorporating a (LaSr)MnO3-YSZ composite cathode. With humidified hydrogen as the fuel and stationary air as the oxidant, the cell demonstrated an open-circuit voltage of 1.081 V and a maximum power density of 1.01 W/cm2 at 800°C. The obtained results represent the important progress in the development of anode-supported intermediate temperature SOFC with reduced fabrication cost.
Contribution of the backstreaming ions to the Self-Magnetic pinch (SMP) diode current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, Michael G.; Cuneo, Michael E.; Fournier, Sean D.
2016-08-08
Summary form only given. The results presented here were obtained with an SMP diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulses of six 1.3 MV inductively insulated cavities. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target to the diode beam current, and second to try to evaluate the energy of those ions and hence the actual Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage addermore » (IVA) utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the anode-cathode (A-K) gap is problematic. The accelerating voltage quoted in the literature is from estimates based on measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high Z metals in order to produce copious and energetic flash x-rays. The backstreaming currents are a strong fraction of the anode materials and their stage of cleanness and gas adsorption. We have measured the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatments, such as heating to very high temperatures with DC and pulsed current, with RF plasma cleaning and with both plasma cleaning and heating. Finally, we have also evaluated the A-K gap voltage by ion filtering techniques.« less
Wang, Wei; Favors, Zachary; Li, Changling; Liu, Chueh; Ye, Rachel; Fu, Chengyin; Bozhilov, Krassimir; Guo, Juchen; Ozkan, Mihrimah; Ozkan, Cengiz S.
2017-01-01
Herein, facile synthesis of monodisperse silicon and carbon nanocomposite spheres (MSNSs) is achieved via a simple and scalable surface-protected magnesiothermic reduction with subsequent chemical vapor deposition (CVD) process. Li-ion batteries (LIBs) were fabricated to test the utility of MSNSs as an anode material. LIB anodes based on MSNSs demonstrate a high reversible capacity of 3207 mAh g−1, superior rate performance, and excellent cycling stability. Furthermore, the performance of full cell LIBs was evaluated by using MSNS anode and a LiCoO2 cathode with practical electrode loadings. The MSNS/LiCoO2 full cell demonstrates high gravimetric energy density in the order of 850 Wh L−1 with excellent cycling stability. This work shows a proof of concept of the use of monodisperse Si and C nanocomposite spheres toward practical lithium-ion battery applications. PMID:28322285
The correlation of blue shift of photoluminescence and morphology of silicon nanoporous
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Jumaili, Batool E. B., E-mail: batooleneaze@gmail.com; Department of Physics, Anbar University; Talib, Zainal A.
Porous silicon with diameters ranging from 6.41 to 7.12 nm were synthesized via electrochemical etching by varied anodization current density in ethanoic solutions containing aqueous hydrofluoric acid up to 65 mA/cm{sup 2}.The luminescence properties of the nanoporous at room temperature were analyzed via photoluminescence spectroscopy. Photoluminescence PL spectra exhibit a broad emission band in the range of 360-700 nm photon energy. The PL spectrum has a blue shift in varied anodization current density; the blue shift incremented as the existing of anodization although the intensity decreased. The current blue shift is owning to alteration of silicon nanocrystal structure at themore » superficies. The superficial morphology of the PS layers consists of unified and orderly distribution of nanocrystalline Si structures, have high porosity around (93.75%) and high thickness 39.52 µm.« less
NASA Astrophysics Data System (ADS)
Jacob, Susan
Electronics system miniaturization is a major driver for high-k materials. High-k materials in capacitors allow for high capacitance, enabling system miniaturization. Ta2O5 (k˜24) has been the dominant high-k material in the electronic industry for decoupling capacitors, filter capacitors, etc. In order to facilitate further system miniaturization, this project has investigated thin film integrated capacitors with Nb2O5 dielectric. Nb2O 5 has k˜41 and is a potential candidate for replacing Ta2O5. But, the presence of suboxides (NbO2 and NbO) in the dielectric deteriorates the electrical properties (leakage current, thermal instability of capacitance, etc.). Also, the high oxygen solubility of niobium results in oxygen diffusion from the dielectric to niobium metal, if any is present. The major purpose of this project was to check the ability of NbN as a diffusion barrier and fabricate thermally stable niobium capacitors. As a first step to produce niobium capacitors, the material characterizations of reactively sputtered Nb2O5 and NbN were done. Thickness and film composition, and crystal structures of the sputtered films were obtained and the deposition parameters for the desired stoichiometry were found. Also, anodized Nb2O5 was characterized for its stoichiometry and thickness. To study the effect of nitrides on capacitance and thermal stability, Ta2O5 capacitors were initially fabricated with and without TaN. The results showed that the nitride does not affect the capacitance, and that capacitors with TaN are stable up to 150°C. In the next step, niobium capacitors were first fabricated with anodized dielectric and the oxygen diffusion issues associated with capacitor processing were studied. Reactively sputtered Nb2O5 was anodized to form complete Nb2O5 (with few oxygen vacancies) and NbN was used to sandwich the dielectric. The capacitor fabrication was not successful due to the difficulties in anodizing the sputtered dielectric. Another method, anodizing reactively sputtered Nb2O5 and a thin layer of sputtered niobium metal yielded high yield (99%) capacitors. Capacitors were fabricated with and without NbN and the results showed 93% decrease in leakage for a capacitor with ˜2000 A dielectric when NbN was present in the structure. These capacitors could withstand 20 V and showed 2.7 muA leakage current at 5 V. These results were obtained after thermal storage at 100°C and 150°C in air for 168 hours at each temperature. Two set of experiments were performed using Ta2O5 dielectric: one to determine the effect of anodization end point on the thickness (capacitance) and the second to determine the effect of boiling the dielectric on functional yield. The anodization end point experiment showed that the final current of anodization along with the anodizing voltage determines the anodic oxide thickness. The lower the current, the thicker the films produced by anodization. Therefore, it was important to specify the final current along with the anodization voltage for oxide growth rate. The capacitors formed with boiled wafers showed better functional yield 3 out of 5 times compared with the unboiled wafer. Niobium anodization was studied for the Nb--->Nb 2O5 conversion ratio and the effect of anodization bath temperature on the oxide film; a color chart was prepared for thicknesses ranging from 1900 A - 5000 A. The niobium metal to oxide conversion ratio was found to change with temperature.
Anodic oxidation of benzoquinone using diamond anode.
Panizza, Marco
2014-01-01
The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature.
NASA Astrophysics Data System (ADS)
Lu, Xuekun; Taiwo, Oluwadamilola O.; Bertei, Antonio; Li, Tao; Li, Kang; Brett, Dan J. L.; Shearing, Paul R.
2017-11-01
Effective microstructural properties are critical in determining the electrochemical performance of solid oxide fuel cells (SOFCs), particularly when operating at high current densities. A novel tubular SOFC anode with a hierarchical microstructure, composed of self-organized micro-channels and sponge-like regions, has been fabricated by a phase inversion technique to mitigate concentration losses. However, since pore sizes span over two orders of magnitude, the determination of the effective transport parameters using image-based techniques remains challenging. Pioneering steps are made in this study to characterize and optimize the microstructure by coupling multi-length scale 3D tomography and modeling. The results conclusively show that embedding finger-like micro-channels into the tubular anode can improve the mass transport by 250% and the permeability by 2-3 orders of magnitude. Our parametric study shows that increasing the porosity in the spongy layer beyond 10% enhances the effective transport parameters of the spongy layer at an exponential rate, but linearly for the full anode. For the first time, local and global mass transport properties are correlated to the microstructure, which is of wide interest for rationalizing the design optimization of SOFC electrodes and more generally for hierarchical materials in batteries and membranes.
NASA Astrophysics Data System (ADS)
Suchitra, S. M.; Udayashankar, N. K.
2018-01-01
Porous anodic aluminium oxide (AAO) membranes with a highly ordered pore arrangement are typically used as ideal templates for the synthesis of numerous nanostructured materials. Highly ordered templates gained significant attraction due to the fact that they are readily fabricated through self-organised simple anodization process. In this paper, the effect of different pore-widening treatments on the quality of the pores of the AAO templates prepared with different electrolytes were inspected. Results confirmed that, without altering the interpore distance different pore dimensions and diameters of the AAO templates can be easily achieved by chemical pore widening process at room temperature. Also, graphitic carbon nitride nanorods of different dimension have been fabricated from AAO template after porewidening process. These nanostructures are widely used in case of metal free visible light driven photo catalysis, photo degradation of organic pollutants, photo electric conversion and water splitting applications.
Alternative Anodes for the Electrolytic Reduction of Uranium Dioxide
NASA Astrophysics Data System (ADS)
Merwin, Augustus
Reprocessing of spent nuclear fuel is an essential step in closing the nuclear fuel cycle. In order to consume current stockpiles, ceramic uranium dioxide spent nuclear fuel will be subjected to an electrolytic reduction process. The current reduction process employs a platinum anode and a stainless steel alloy 316 cathode in a molten salt bath consisting of LiCl-2wt% Li 2O and occurs at 700°C. A major shortcoming of the existing process is the degradation of the platinum anode under the severely oxidizing conditions encountered during electrolytic reduction. This work investigates alternative anode materials for the electrolytic reduction of uranium oxide. The high temperature and extreme oxidizing conditions encountered in these studies necessitated a unique set of design constraints on the system. Thus, a customized experimental apparatus was designed and constructed. The electrochemical experiments were performed in an electrochemical reactor placed inside a furnace. This entire setup was housed inside a glove box, in order to maintain an inert atmosphere. This study investigates alternative anode materials through accelerated corrosion testing. Surface morphology was studied using scanning electron microscopy. Surface chemistry was characterized using energy dispersive spectroscopy and Raman spectroscopy. Electrochemical behavior of candidate materials was evaluated using potentiodynamic polarization characteristics. After narrowing the number of candidate electrode materials, ferrous stainless steel alloy 316, nickel based Inconel 718 and elemental tungsten were chosen for further investigation. Of these materials only tungsten was found to be sufficiently stable at the anodic potential required for electrolysis of uranium dioxide in molten salt. The tungsten anode and stainless steel alloy 316 cathode electrode system was studied at the required reduction potential for UO2 with varying lithium oxide concentrations. Electrochemical impedance spectroscopy showed mixed (kinetic and diffusion) control and an overall low impedance due to extreme corrosion. It was observed that tungsten is sufficiently stable in LiCl - 2wt% Li 2O at 700°C at the required anodic potential for the reduction of uranium oxide. This study identifies tungsten to be a superior anode material to platinum for the electrolytic reduction of uranium oxide, both in terms of superior corrosion behavior and reduced cost, and thus recommends that tungsten be further investigated as an alternative anode for the electrolytic reduction of uranium dioxide.
A 200 W Hall thruster with hollow indented anode
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Sun, Hezhi; Wei, Liqiu; Li, Peng; Su, Hongbo; Peng, Wuji; Yu, Daren
2017-10-01
A hollow indented anode is proposed for increasing the neutral gas density in a discharge channel, in order to improve the performance of the thruster. The experimental results show that a hollow indented anode structure can effectively improve the performance, compared to a hollow straight anode under similar operating conditions, in terms of thrust, propellant utilization, ionization rate, and anode efficiency. Furthermore, simulations show that the indented anode can effectively increase the neutral gas density in a discharge channel and on the centerline of the channel, compared to a hollow straight anode. In addition, it can increase the ionization rate in the channel and the pre-ionization in the anode. Therefore, the hollow indented anode could be considered as an important design idea for improving thruster performance.
Morphology of the porous silicon obtained by electrochemical anodization method
NASA Astrophysics Data System (ADS)
Bertel H, S. D.; Dussán C, A.; Diaz P, J. M.
2018-04-01
In this report, the dependence of porous silicon with the synthesis parameters and their correlation with the optical and morphological properties is studied. The P-type silicon-crystalline samples and orientation <1 0 0> were prepared by electrochemical anodization and were characterized using SEM in order to know the evolution of the pore morphology. It was observed that the porosity and thickness of the samples increased with the increase of the concentration in the solution and a high pore density (70%) with a pore size between 40nm and 1.5μm.
NASA Technical Reports Server (NTRS)
Smart, M. C.; Hossain, S.; Ratnakumar, B. V.; Loutfy, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.; Narayanan, S. R.
2004-01-01
NASA has interest in secondary energy storage batteries that display high specific energy, high energy density, long life characteristics, and perform well over a wide range of temperatures, in order to enable a number of future applications.
Review on recent progress of nanostructured anode materials for Li-ion batteries
NASA Astrophysics Data System (ADS)
Goriparti, Subrahmanyam; Miele, Ermanno; De Angelis, Francesco; Di Fabrizio, Enzo; Proietti Zaccaria, Remo; Capiglia, Claudio
2014-07-01
This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.
Laser-Ultrasonic Measurement of Elastic Properties of Anodized Aluminum Coatings
NASA Astrophysics Data System (ADS)
Singer, F.
Anodized aluminum oxide plays a great role in many industrial applications, e.g. in order to achieve greater wear resistance. Since the hardness of the anodized films strongly depends on its processing parameters, it is important to characterize the influence of the processing parameters on the film properties. In this work the elastic material parameters of anodized aluminum were investigated using a laser-based ultrasound system. The anodized films were characterized analyzing the dispersion of Rayleigh waves with a one-layer model. It was shown that anodizing time and temperature strongly influence Rayleigh wave propagation.
An, Honglin; Fleming, Simon
2005-05-02
The spatial distribution of second-order nonlinearity in thermally poled optical fibers was characterized by second-harmonic microscopy. The second-order nonlinearity was found to be confined to a thin layer close to the anode surface and progressed further into the silica as the poling time increased. Position uncertainty of the anode metal wire was observed to have an effect, as the nonlinear layers were found not always symmetrically located around the nearest points between the anode and cathode. Optical microscopy results were obtained on etched poled fiber cross-sections and compared with those from second-harmonic microscopy.
NASA Astrophysics Data System (ADS)
Karstedt, Jörg; Ogrzewalla, Jürgen; Severin, Christopher; Pischinger, Stefan
In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented. A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system. Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors. Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.
Analysis of magnetically immersed electron guns with non-adiabatic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, Alexander; Alessi, James G.; Beebe, Edward N.
Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less
Analysis of magnetically immersed electron guns with non-adiabatic fields
Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; ...
2016-11-08
Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less
Analysis of magnetically immersed electron guns with non-adiabatic fields.
Pikin, Alexander; Alessi, James G; Beebe, Edward N; Raparia, Deepak; Ritter, John
2016-11-01
Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams with high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map, different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. The tests' results of a non-adiabatic electron gun with modified magnetic field are presented.
Lei, Danni; Lee, Dong-Chan; Magasinski, Alexandre; Zhao, Enbo; Steingart, Daniel; Yushin, Gleb
2016-01-27
We report for the first time a solution-based synthesis of strongly coupled nanoFe/multiwalled carbon nanotube (MWCNT) and nanoNiO/MWCNT nanocomposite materials for use as anodes and cathodes in rechargeable alkaline Ni-Fe batteries. The produced aqueous batteries demonstrate very high discharge capacities (800 mAh gFe(-1) at 200 mA g(-1) current density), which exceed that of commercial Ni-Fe cells by nearly 1 order of magnitude at comparable current densities. These cells also showed the lack of any "activation", typical in commercial batteries, where low initial capacity slowly increases during the initial 20-50 cycles. The use of a highly conductive MWCNT network allows for high-capacity utilization because of rapid and efficient electron transport to active metal nanoparticles in oxidized [such as Fe(OH)2 or Fe3O4] states. The flexible nature of MWCNTs accommodates significant volume changes taking place during phase transformation accompanying reduction-oxidation reactions in metal electrodes. At the same time, we report and discuss that high surface areas of active nanoparticles lead to multiple side reactions. Dissolution of Fe anodes leads to reprecipitation of significantly larger anode particles. Dissolution of Ni cathodes leads to precipitation of Ni metal on the anode, thus blocking transport of OH(-) anions. The electrolyte molarity and composition have a significant impact on the capacity utilization and cycling stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Jiafeng; Yuan, Tao; Pang, Yuepeng
Red phosphorus (P) is considered to be one of the most attractive anodic materials for lithium-ion batteries (LIBs) due to its high theoretical capacity of 2596 mAh g–1. However, intrinsic characteristics such as the poor electronic conductivity and large volume expansion at lithiation impede the development of red P. Here, we design a new strategy to embed red P particles into a cross-link-structural carbon film (P–C film), in order to improve the electronic conductivity and accommodate the volume expansion. The red P/carbon film is synthesized via vapor phase polymerization (VPP) followed by the pyrolysis process, working as a flexible binder-freemore » anode for LIBs. High cycle stability and good rate capability are achieved by the P–C film anode. With 21% P content in the film, it displays a capacity of 903 mAh g–1 after 640 cycles at a current density of 100 mA g–1 and a capacity of 460 mAh g–1 after 1000 cycles at 2.0 A g–1. Additionally, the Coulombic efficiency reaches almost 100% for each cycle. The superior properties of the P–C films together with their facile fabrication make this material attractive for further flexible and high energy density LIB applications.« less
Large area organic light emitting diodes with multilayered graphene anodes
NASA Astrophysics Data System (ADS)
Moon, Jaehyun; Hwang, Joohyun; Choi, Hong Kyw; Kim, Taek Yong; Choi, Sung-Yool; Joo, Chul Woong; Han, Jun-Han; Shin, Jin-Wook; Lee, Bong Joon; Cho, Doo-Hee; Huh, Jin Woo; Park, Seung Koo; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik
2012-09-01
In this work, we demonstrate fully uniform blue fluorescence graphene anode OLEDs, which have an emission area of 10×7 mm2. Catalytically grown multilayered graphene films have been used as the anode material. In order to compensate the current drop, which is due to the graphene's electrical resistance, we have furnished metal bus lines on the support. Processing and optical issues involved in graphene anode OLED fabrications are presented. The fabricated OLEDs with graphene anode showed comparable performances to that of ITO anode OLEDs. Our works shows that metal bus furnished graphene anode can be extended into large area OLED lighting applications in which flexibility and transparency is required.
The anode mechanism of a thermal argon arc
NASA Technical Reports Server (NTRS)
Busz-Peuckert, G.; Finkelnburg, W.
1984-01-01
In order to clarify the anode mechanism in freely burning argon arcs, the anode drop was determined by probe measurements in the current intensity range of 10 to 200 A and arc lengths between 2 and 10 mm. Simultaneously, the power input at the anode was determined by measuring the temperature increase in the cooling water, using a thermoelement, and compared to the electrical output at the arc and in the anodic drop area. An anodic contraction was observed in the arc, at low current intensities. The results can be explained in terms of the effects of a cathodic plasma current, and in the contracted arc, in terms of an additional anodic plasma current.
Muthalib, Makii; Besson, Pierre; Rothwell, John; Ward, Tomas; Perrey, Stephane
2016-01-01
Transcranial direct current stimulation (tDCS) is a non-invasive electrical brain stimulation technique that can modulate cortical neuronal excitability and activity. This study utilized functional near infrared spectroscopy (fNIRS) neuroimaging to determine the effects of anodal high-definition (HD)-tDCS on bilateral sensorimotor cortex (SMC) activation. Before (Pre), during (Online), and after (Offline) anodal HD-tDCS (2 mA, 20 min) targeting the left SMC, eight healthy subjects performed a simple finger sequence (SFS) task with their right or left hand in an alternating blocked design (30-s rest and 30-s SFS task, repeated five times). In order to determine the level of bilateral SMC activation during the SFS task, an Oxymon MkIII fNIRS system was used to measure from the left and right SMC, changes in oxygenated (O2Hb) and deoxygenated (HHb) haemoglobin concentration values. The fNIRS data suggests a finding that compared to the Pre condition both the "Online" and "Offline" anodal HD-tDCS conditions induced a significant reduction in bilateral SMC activation (i.e., smaller decrease in HHb) for a similar motor output (i.e., SFS tap rate). These findings could be related to anodal HD-tDCS inducing a greater efficiency of neuronal transmission in the bilateral SMC to perform the same SFS task.
Jeong, Chanyoung; Choi, Chang-Hwan
2012-02-01
Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.
Contribution of the backstreaming ions to the self-magnetic pinch (SMP) diode current
NASA Astrophysics Data System (ADS)
Mazarakis, Michael G.; Bennett, Nichelle; Cuneo, Michael E.; Fournier, Sean D.; Johnston, Mark D.; Kiefer, Mark L.; Leckbee, Joshua J.; Nielsen, Dan S.; Oliver, Bryan V.; Sceiford, Matthew E.; Simpson, Sean C.; Renk, Timothy J.; Ruiz, Carlos L.; Webb, Timothy J.; Ziska, Derek; Droemer, Darryl W.; Gignac, Raymond E.; Obregon, Robert J.; Wilkins, Frank L.; Welch, Dale R.
2018-04-01
The results presented here were obtained with a self-magnetic pinch (SMP) diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulse of six 1.3 MV inductively insulated cavities. The RITS driver together with the SMP diode has produced x-ray spots of the order of 1 mm in diameter and doses adequate for the radiographic imaging of high area density objects. Although, through the years, a number of different types of radiographic electron diodes have been utilized with SABER, HERMES III and RITS accelerators, the SMP diode appears to be the most successful and simplest diode for the radiographic investigation of various objects. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target and second to try to evaluate the energy of those ions and hence the Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage adder utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the A-K gap is problematic. This is even more difficult in an SMP diode where the A-K gap is very small (˜1 cm) and the diode region very hostile. The accelerating voltage quoted in the literature is from estimates based on the measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus, it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high-Z metals in order to produce copious and energetic flash x-rays. It was established experimentally that the back-streaming ion currents are a strong function of the anode materials and their stage of cleanness. We have measured the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatment: namely, heating at very high temperatures with DC and pulsed current, with RF plasma cleaning, and with both plasma cleaning and heating. We have also evaluated the A-K gap voltage by energy filtering technique. Experimental results in comparison with LSP simulations are presented.
Novel Bonding Technology for Hermetically Sealed Silicon Micropackage
NASA Astrophysics Data System (ADS)
Lee, Duck-Jung; Ju, Byeong-Kwon; Choi, Woo-Beom; Jeong, Jee-Won; Lee, Yun-Hi; Jang, Jin; Lee, Kwang-Bae; Oh, Myung-Hwan
1999-01-01
We performed glass-to-silicon bonding and fabricated a hermetically sealed silicon wafer using silicon direct bonding followed by anodic bonding (SDAB). The hydrophilized glass and silicon wafers in solution were dried and initially bonded in atmosphere as in the silicon direct bonding (SDB) process, but annealing at high temperature was not performed. Anodic bonding was subsequently carried out for the initially bonded specimens. Then the wafer pairs bonded by the SDAB method were different from those bonded by the anodic bonding process only. The effects of the bonding process on the bonded area and tensile strength were investigated as functions of bonding temperature and voltage. Using scanning electron microscopy (SEM), the cross-sectional view of the bonded interface region was observed. In order to investigate the migration of the sodium ions in the bonding process, the concentration of the bonded glass was compared with that of standard glass. The specimen bonded using the SDAB process had higher efficiency than that using the anodic bonding process only.
Recycled tire crumb rubber anodes for sustainable power production in microbial fuel cells
NASA Astrophysics Data System (ADS)
Wang, Heming; Davidson, Matthew; Zuo, Yi; Ren, Zhiyong
One of the greatest challenges facing microbial fuel cells (MFCs) in large scale applications is the high cost of electrode material. We demonstrate here that recycled tire crumb rubber coated with graphite paint can be used instead of fine carbon materials as the MFC anode. The tire particles showed satisfactory conductivity after 2-4 layers of coating. The specific surface area of the coated rubber was over an order of magnitude greater than similar sized graphite granules. Power production in single chamber tire-anode air-cathode MFCs reached a maximum power density of 421 mW m -2, with a coulombic efficiency (CE) of 25.1%. The control graphite granule MFC achieved higher power density (528 mW m -2) but lower CE (15.6%). The light weight of tire particle could reduce clogging and maintenance cost but posts challenges in conductive connection. The use of recycled material as the MFC anodes brings a new perspective to MFC design and application and carries significant economic and environmental benefit potentials.
Scanning electron microscopy of heat treated TiO2 nanotubes arrays obtained by anodic oxidation
NASA Astrophysics Data System (ADS)
Naranjo, D. I.; García-Vergara, S. J.; Blanco, S.
2017-12-01
Scanning electron microscopy was used to investigate the anatase-rutile transformation of self-organized TiO2 nanotubes obtained on titanium foil by anodizing and subsequent heat treatment. The anodizing was carried out at 20V in an 1% v/v HF acid and ethylene glycol:water (50:50) electrolyte at room temperature. The anodized samples were initially pre-heat treated at 450°C for 4 hours to modify the amorphous structure of TiO2 nanotubes into anatase structure. Then, the samples were heated between 600 to 800°C for different times, in order to promote the transformation to rutile structure. The formation of TiO2 nanotubes is evident by SEM images. Notably, when the samples are treated at high temperature, the formation of rutile crystals starts to become evident at the nanotubes located on the originally grain boundaries of the titanium. Thus, the anatase - rutile transformation has a close relationship with the microstructure of the titanium, more exactly with grain boundaries.
Surawathanawises, Krissada; Cheng, Xuanhong
2014-01-01
Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886
NASA Astrophysics Data System (ADS)
Pawlik, Anna; Hnida, Katarzyna; Socha, Robert P.; Wiercigroch, Ewelina; Małek, Kamilla; Sulka, Grzegorz D.
2017-12-01
Anodic iron oxide layers were formed by anodization of the iron foil in an ethylene glycol-based electrolyte containing 0.2 M NH4F and 0.5 M H2O at 40 V for 1 h. The anodizing conditions such as electrolyte composition and applied potential were optimized. In order to examine the influence of electrolyte stirring and applied magnetic field, the anodic samples were prepared under the dynamic and static conditions in the presence or absence of magnetic field. It was shown that ordered iron oxide nanopore arrays could be obtained at lower anodizing temperatures (10 and 20 °C) at the static conditions without the magnetic field or at the dynamic conditions with the applied magnetic field. Since the as-prepared anodic layers are amorphous in nature, the samples were annealed in air at different temperatures (200-500 °C) for a fixed duration of time (1 h). The morphology and crystal phases developed after anodization and subsequent annealing were characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The results proved that the annealing process transforms the amorphous layer into magnetite and hematite phases. In addition, the heat treatment results in a substantial decrease in the fluorine content and increase in the oxygen content.
2017-01-01
Nanoporous anodic aluminum oxide (AAO) membranes are being used for an increasing number of applications. However, the original two-step anodization method in which the first anodization is sacrificial to pre-pattern the second is still widely used to produce them. This method provides relatively low throughput and material utilization as half of the films are discarded. An alternative scheme that relies on alternating anodization and cathodic delamination is demonstrated that allows for the fabrication of several AAO films with only one sacrificial layer thus greatly improving total aluminum to alumina yield. The thickness for which the cathodic delamination performs best to yield full, unbroken AAO sheets is around 85 μm. Additionally, an image analysis method is used to quantify the degree of long-range ordering of the unit cells in the AAO films which was found to increase with each successive iteration of the fabrication cycle. PMID:28630684
Choudhary, Eric; Szalai, Veronika
2016-01-01
Nanoporous anodic aluminum oxide (AAO) membranes are being used for an increasing number of applications. However, the original two-step anodization method in which the first anodization is sacrificial to pre-pattern the second is still widely used to produce them. This method provides relatively low throughput and material utilization as half of the films are discarded. An alternative scheme that relies on alternating anodization and cathodic delamination is demonstrated that allows for the fabrication of several AAO films with only one sacrificial layer thus greatly improving total aluminum to alumina yield. The thickness for which the cathodic delamination performs best to yield full, unbroken AAO sheets is around 85 μm. Additionally, an image analysis method is used to quantify the degree of long-range ordering of the unit cells in the AAO films which was found to increase with each successive iteration of the fabrication cycle.
Thermal Interference Fit Anode Assembly for Cathodic Protection
2018-02-22
than an inside diameter of the cylindrical anode, is subject to the low temperature for a minimum of six hours and preferably twenty- four hours to...degrees Fahrenheit after a minimum of six hours and preferably twenty-four hours. The anode 10 is immediately fused to the mounting bolt 20 by hand...degrees Fahrenheit after a minimum of six hours and preferably twenty-four hours. The anode is then hand pressed onto the mounting bolt to bottom out on the non-anodized face in order to form a single fused assembly.
Tao, Jie; Wu, Tao; Gao, Peng
2012-03-01
Oriented highly ordered long TiO2 nanotube array films with nanopore structure and high photoelectrochemical property were fabricated on flexible stainless steel substrate (50 microm) by anodization treatment of titanium thin films in a short time. The samples were characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and photoelectrochemical methods, respectively. The results showed that Ti films deposited at the condition of 0.7 Pa Ar pressure and 96 W sputtering power at room temperature was uniform and dense with good homogeneity and high crystallinity. The voltage and the anodization time both played significant roles in the formation of TiO2 nanopore-nanotube array film. The optimal voltage was 60 V and the anodization time is less than 30 min by anodizing Ti films in ethylene glycerol containing 0.5% (w) NH4F and 3% (w) H2O. The growth rate of TiO2 nanotube array was as high as 340 nm/min. Moreover, the photocurrent-potential curves, photocurrent response curves and electrochemical impedance spectra results indicated that the TiO2 nanotube array film with the nanoporous structure exhibited a better photo-response ability and photoelectrochemical performance than the ordinary TiO2 nanotube array film. The reason is that the nanoporous structure on the surface of the nanotube array can separate the photo electron-hole pairs more efficiently and completely than the tubular structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flesch, K.; Kremeyer, T.; Schmitz, O.
Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. In order to study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. There are three different anode geometries that we have studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least onemore » order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less
Flesch, K.; Kremeyer, T.; Schmitz, O.; ...
2016-08-18
Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. In order to study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. There are three different anode geometries that we have studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least onemore » order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less
High-absorptance high-emittance anodic coating
NASA Technical Reports Server (NTRS)
Le, Huong Giang (Inventor); Chesterfield, John L. (Inventor)
1998-01-01
A colored anodic coating for use on surfaces of substrates, e.g. aluminum substrates in which it is desirable to maintain a high solar absorptance (a) and a high infrared emittance (e), particularly in low earth orbit space environments. This anodic coating is preferably a dark colored coating, and even more preferably a black coating. This coating allows a touch temperature within an acceptable design range to preclude burning of an astronaut in case of contact, but also allows a solar radiation absorption in an amount such that an a/e ratio of unity is achieved. The coating of the invention comprises a first layer in the form of an acid anodized colored anodic layer for achieving a high solar absorptance and a second or high emittance layer in the form of a clear acid anodized layer for achieving a high emittance. The entire coating is quite thin, e.g. 1-2 mils and is quite stable in a hostile space environment of the type encountered in a low earth orbit. The coating is obtained by first creating the high emittance clear anodized coating on the metal surface followed by anodizing using a colored anodizing process.
High-absorptance high-emittance anodic coating
NASA Technical Reports Server (NTRS)
Le, Huong Giang (Inventor); Chesterfield, John L. (Inventor)
1999-01-01
A colored anodic coating for use on surfaces of substrates, e.g. aluminum substrates in which it is desirable to maintain a high solar absorptance (.alpha.) and a high infrared emittance (.epsilon.), particularly in low earth orbit space environments. This anodic coating is preferably a dark colored coating, and even more preferably a black coating. This coating allows a touch temperature within an acceptable design range to preclude burning of an astronaut in case of contact, but also allows a solar radiation absorption in an amount such that an .alpha./.epsilon. ratio of unity is achieved. The coating of the invention comprises a first layer in the form of an acid anodized colored anodic layer for achieving a high solar absorptance and a second or high emittance layer in the form of a clear acid anodized layer for achieving a high emittance. The entire coating is quite thin, e.g. 1-2 mils and is quite stable in a hostile space environment of the type encountered in a low earth orbit. The coating is obtained by first creating the high emittance clear anodized coating on the metal surface followed by anodizing using a colored anodizing process.
High-aspect-ratio and highly ordered 15-nm porous alumina templates.
Martín, Jaime; Manzano, Cristina V; Caballero-Calero, Olga; Martín-González, Marisol
2013-01-01
Ordered anodic aluminum oxide (AAO) templates with pores <15 nm in diameter and an aspect ratio (length-to-diameter ratio) above 3 × 10(3) have been fabricated using a nonlithographic approach; specifically, by anodizing aluminum in an ethylene-glycol-containing sulfuric acid electrolyte. The pores are the smallest in diameter reported for a self-ordered AAO without pore aspect-ratio limitations and good ordering, which opens up the possibility of obtaining nanowire arrays in the quantum confinement regime that is of interest for efficient thermoelectric generators. The effect of the ethylene glycol addition on both the pore diameter and the ordering is evaluated and discussed. Moreover, 15-nm-diameter Bi(2)Te(3) and poly(3-hexyl thiophene) (P3HT) nanowires have been prepared using these AAO templates. As known, Bi(2)Te(3) is currently the most efficient thermoelectric bulk material for room-temperature operations and, according with theory, its Seebeck coefficient should be increased when it is confined to nanowires with diameters close to 10 nm. On the other hand, P3HT is one of the main candidates for integrating organic photovoltaic and thermoelectric devices, and its properties are also proposed to increase when it is confined to nanoscale structures, mainly due to molecular orientation effects.
NASA Astrophysics Data System (ADS)
Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.
2014-12-01
Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.
Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.
2014-01-01
Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices. PMID:25491282
An Insoluble Titanium-Lead Anode for Sulfate Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferdman, Alla
2005-05-11
The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead compositemore » material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no measurable anode weight loss during this time period. Quantitative chemical analysis of the anode surface showed that the lead content after testing remained at its initial level. No lead dissolution or transfer from the anode to the product occurred.A key benefit of the titanium-lead anode design is that cobalt additions to copper electrolyte should be eliminated. Cobalt is added to the electrolyte to help stabilize the lead oxide surface of conventional lead anodes. The presence of the titanium intimately mixed with the lead should eliminate the need for cobalt stabilization of the lead surface. The anode should last twice as long as the conventional lead anode. Energy savings should be achieved due to minimizing and stabilizing the anode-cathode distance in the electrowinning cells. The anode is easily substitutable into existing tankhouses without a rectifier change.The copper electrowinning test data indicate that the titanium-lead anode is a good candidate for further testing as a possible replacement for a conventional lead anode. A key consideration is the cost. Titanium costs have increased. One of the ways to get the anode cost down is manufacturing the anodes with fewer cylinders. Additional prototypes having different number of cylinders were constructed for a long-term commercial testing in a circuit without cobalt. The objective of the testing is to evaluate the need for cobalt, investigate the effect of decreasing the number of cylinders on the anode performance, and to optimize further the anode design in order to meet the operating requirements, minimize the voltage, maximize the life of the anode, and to balance this against a reasonable cost for the anode. It is anticipated that after testing of the additional prototypes, a whole cell commercial test will be conducted to complete evaluation of the titanium-lead anode costs/benefits.« less
Reactivity at the Lithium–Metal Anode Surface of Lithium–Sulfur Batteries
Camacho-Forero, Luis E.; Smith, Taylor W.; Bertolini, Samuel; ...
2015-11-11
Due to their high energy density and reduced cost, lithium–sulfur batteries are promising alternatives for applications such as electrical vehicles. However, a number of technical challenges need to be overcome in order to make them feasible for commercial uses. These challenges arise from the battery highly interconnected chemistry, which besides the electrochemical reactions includes side reactions at both electrodes and migration of soluble polysulfide (PS) species produced at the cathode to the anode side. The presence of such PS species alters the already complex reactivity of the Li anode. In this paper, interfacial reactions occurring at the surface of Limore » metal anodes due to electrochemical instability of the electrolyte components and PS species are investigated with density functional theory and ab initio molecular dynamics methods. It is found that the bis(trifluoromethane)sulfonimide lithium salt reacts very fast when in contact with the Li surface, and anion decomposition precedes salt dissociation. The anion decomposition mechanisms are fully elucidated. Two of the typical solvents used in Li–S technology, 1,3-dioxolane and 1,2-dimethoxyethane, are found stable during the entire simulation length, in contrast with the case of ethylene carbonate that is rapidly decomposed by sequential 2- or 4-electron mechanisms. Finally, on the other hand, the fast reactivity of the soluble PS species alters the side reactions because the PS totally decomposes before any of the electrolyte components forming Li 2S on the anode surface.« less
Fabrication of Highly Ordered and Well-Aligned PbTiO 3/TiN Core–Shell Nanotube Arrays
Yoon, Jaesung; Kim, Sangjoon; Kim, Dongjin; ...
2015-04-30
Highly ordered and well-aligned PbTiO 3/TiN core–shell nanotubes are fabricated in this paper via an anodic aluminum oxide templating route followed by TiN and TiO 2 atomic layer deposition deposition and a subsequent PbO vapor reaction. Finally, PbTiO 3/TiN nanotubes keep their original shape after the vapor phase reaction, and they display well-defined piezoresponse hysteresis curves with remnant piezoresponse of 38 pm V -1.
Germanium and Tin Based Anode Materials for Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Ji, Dongsheng
The discovery of safe anode materials with high energy density for lithium-ion batteries has always been a significant topic. Group IV elements have been under intensive study for their high capability of alloying with lithium. Batteries with graphite and tin based anode material have already been applied in cell phones and vehicles. In order to apply group IV elements, their dramatic volume change during lithiation and delithiation processes is the key point to work on. Reducing the particle size is the most common method to buffer the volume expansion. This strategy has been applied on both germanium and tin based materials. Germanium based anode material has been made by two different synthesis methods. The amorphous Ge-C-Ti composite material was made by ball milling method and performed much better than other germanium alloy including Ge-Mg, Ge-Fe and Ge-Fe.Germanium sphere nano particles with diameter of around 50 nm have been made by solution method. After ball milled with graphite, the resulted product performed stable capacity over 500 mAh˙g-1 for more than 20 cycles. Ball milled graphite in the composite plays an important role of buffering volume change and stabilizing germanium. Sn-Fe alloy is one of the feasible solutions to stabilize tin. Sn 2Fe-C composite has been made by ball milling method. After optimizations of the ratio of precursors, reaction time, milling balls and electrolyte additives, the electrochemistry performance was improved. The anode performed 420 mAh˙ -1 at 1.0 mA/cm2 and maintained its structure after cycling at 2.0 mA/cm2. At 0.3 mA/cm2 cycling rate, the anode performed 978 mAh/cm3 after 500 cycles, which still exceeds the theoretical capacity of graphite.
Fabrication of Ordered Blue Nanostructure by Anodization of an Aluminum Plate
NASA Astrophysics Data System (ADS)
Kurashima, Yuichi; Yokota, Yoshihiko; Miyamoto, Iwao; Itatani, Taro
2007-03-01
Colors in organisms are created by chemical interactions of molecular pigments and by optical interactions of incident light with biological nanostructures. The latter classes are called structural colors and form an important component of the phenotypes of many animals and even some plants. In this paper, we report on the fabrication of an ordered blue nanostructure by the anodization of an Al plate. In the fabrication of such an ordered nanostructure by the anodization of an Al plate, ordered nanostructures with a pitch and an alumina thickness of approximately 100 nm were produced on the Al plate. The ordered nanostructures on the Al plate showed no colors. However, an ordered nanostructure deposited with a Pt thin film with a thickness of approximately 10 nm showed a blue reflection with a peak reflectivity of approximately 370 nm. We conclude that this blue nanostructure on the Al plate is caused by an interference between the Al surface and the Pt surface.
Zeng, Lingxing; Liu, Renpin; Han, Lei; Luo, Fenqiang; Chen, Xi; Wang, Jianbiao; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng
2018-04-03
In this work, an Si/SiO 2 -ordered-mesoporous carbon (Si/SiO 2 -OMC) nanocomposite was initially fabricated through a magnesiothermic reduction strategy by using a two-dimensional bicontinuous mesochannel of SiO 2 -OMC as a precursor, combined with an NaOH etching process, in which crystal Si/amorphous SiO 2 nanoparticles were encapsulated into the OMC matrix. Not only can such unique porous crystal Si/amorphous SiO 2 nanoparticles uniformly dispersed in the OMC matrix mitigate the volume change of active materials during the cycling process, but they can also improve electrical conductivity of Si/SiO 2 and facilitate the Li + /Na + diffusion. When applied as an anode for lithium-ion batteries (LIBs), the Si/SiO 2 -OMC composite displayed superior reversible capacity (958 mA h g -1 at 0.2 A g -1 after 100 cycles) and good cycling life (retaining a capacity of 459 mA h g -1 at 2 A g -1 after 1000 cycles). For sodium-ion batteries (SIBs), the composite maintained a high capacity of 423 mA h g -1 after 100 cycles at 0.05 A g -1 and an extremely stable reversible capacity of 190 mA h g -1 was retained even after 500 cycles at 1 A g -1 . This performance is one of the best long-term cycling properties of Si-based SIB anode materials. The Si/SiO 2 -OMC composites exhibited great potential as an alternative material for both lithium- and sodium-ion battery anodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polymer nanoimprinting using an anodized aluminum mold for structural coloration
NASA Astrophysics Data System (ADS)
Kikuchi, Tatsuya; Nishinaga, Osamu; Natsui, Shungo; Suzuki, Ryosuke O.
2015-06-01
Polymer nanoimprinting of submicrometer-scale dimple arrays with structural coloration was demonstrated. Highly ordered aluminum dimple arrays measuring 530-670 nm in diameter were formed on an aluminum substrate via etidronic acid anodizing at 210-270 V and subsequent anodic oxide dissolution. The nanostructured aluminum surface led to bright structural coloration with a rainbow spectrum, and the reflected wavelength strongly depends on the angle of the specimen and the period of the dimple array. The reflection peak shifts gradually with the dimple diameter toward longer wavelength, reaching 800 nm in wavelength at 670 nm in diameter. The shape of the aluminum dimple arrays were successfully transferred to a mercapto-ester ultra-violet curable polymer via self-assembled monolayer coating and polymer replications using a nanoimprinting technique. The nanostructured polymer surfaces with positively and negatively shaped dimple arrays also exhibited structural coloration based on the periodic nanostructure, and reflected light mostly in the visible region, 400-800 nm. This nanostructuring with structural coloration can be easily realized by simple techniques such as anodizing, SAM coating, and nanoimprinting.
Kinetic models of controllable pore growth of anodic aluminum oxide membrane
NASA Astrophysics Data System (ADS)
Huang, Yan; Zeng, Hong-yan; Zhao, Ce; Qu, Ye-qing; Zhang, Pin
2012-06-01
An anodized Al2O3 (AAO) membrane with apertures about 72 nm in diameter was prepared by two-step anodic oxidation. The appearance and pore arrangement of the AAO membrane were characterized by energy dispersive x-ray spectroscopy and scanning electron microscopy. It was confirmed that the pores with high pore aspect ratio were parallel, well-ordered, and uniform. The kinetics of pores growth in the AAO membrane was derived, and the kinetic models showed that pores stopped developing when the pressure ( σ) trended to equal the surface tension at the end of anodic oxidation. During pore expansion, the effects of the oxalic acid concentration and expansion time on the pore size were investigated, and the kinetic behaviors were explained with two kinetic models derived in this study. They showed that the pore size increased with extended time ( r= G· t+ G'), but decreased with increased concentration ( r = - K·ln c- K') through the derived mathematic formula. Also, the values of G, G', K, and K' were derived from our experimental data.
NASA Astrophysics Data System (ADS)
Sakai, Joe; Luais, Erwann; Wolfman, Jérôme; Tillocher, Thomas; Dussart, Rémi; Tran-Van, Francois; Ghamouss, Fouad
2017-10-01
Micro- or nano-structuring is essential in order to use Si as an anode material for lithium ion batteries. In the present study, we attempted to use Si wafers with a spiky microstructure (SMS), the so-called black-Si, prepared by a cryogenic reactive ion etching process with an SF6/O2 gas mixture, for Li half-cells. The SMS with various sizes of spikes from 2.0 μm (height) × 0.2 μm (width) to 21 μm × 1.0 μm was etched by varying the SF6/O2 gas flow ratio. An anode of SMS of 11 μm-height in average showed stable charge/discharge capacity and Coulombic efficiency higher than 99% for more than 300 cycles, causing no destruction to any part of the Si wafer. The spiky structure turned columnar after cycles, suggesting graded lithiation levels along the length. The present results suggest a strategy to utilize a wafer-based Si material for an anode of a lithium ion battery durable against repetitive lithiation/delithiation cycles.
Photocatalytic effect of anodic titanium oxide nanotubes on various cell culture media
NASA Astrophysics Data System (ADS)
Yu, Chun-Kang; Hu, Kan-Hung; Wang, Shing-Hoa; Hsu, Todd; Tsai, Huei-Ting; Chen, Chien-Chon; Liu, Shiu-Mei; Lin, Tai-Yuan; Chen, Chin-Hsing
2011-02-01
The use of titanium dioxide (TiO2) in photodynamic therapy for the treatment of cancer cells has been proposed following studies of cultured cancer cells. In this work, an ordered channel array of anodic titanium oxide (ATO) was fabricated by anodizing titanium foil. The ATO layer of nanotubes with diameters of 100 nm was made in NH4F electrolyte by anodization. The photocatalytic effect of ATO was examined on various culture media by ultraviolet A (UV-A) (366 nm) irradiation. After UV-A irradiation of the ATO layer, redox potential of Tris-HCl buffer (pH 7.5) and dilute acrylamide solution increased instantaneously. The redox potential of the serum-containing RPMI1640 medium also increased dramatically, while that of serum-containing MEM and DMEM media increased slightly. The UVA-induced high redox potential was correlated with the greater ability to break down plasmid DNA strands. These phenomena suggest that a culture medium, such as RPMI1640, with a greater ability to produce free radical may be associated with a stronger photocatalytic effect of ATO on cultured cancer cells reported previously.
Sanabria Arenas, Beatriz Eugenia; Schiavi, Luca; Russo, Valeria; Pedeferri, MariaPia
2018-01-01
The availability of immobilized nanostructured photocatalysts is of great importance in the purification of both polluted air and liquids (e.g., industrial wastewaters). Metal-supported titanium dioxide films with nanotubular morphology and good photocatalytic efficiency in both environments can be produced by anodic oxidation, which avoids release of nanoscale materials in the environment. Here we evaluate the effect of different anodizing procedures on the photocatalytic activity of TiO2 nanostructures in gas and liquid phases, in order to identify the most efficient and robust technique for the production of TiO2 layers with different morphologies and high photocatalytic activity in both phases. Rhodamine B and toluene were used as model pollutants in the two media, respectively. It was found that the role of the anodizing electrolyte is particularly crucial, as it provides substantial differences in the oxide specific surface area: nanotubular structures show remarkably different activities, especially in gas phase degradation reactions, and within nanotubular structures, those produced by organic electrolytes lead to better photocatalytic activity in both conditions tested. PMID:29587360
X-ray emission scaling law from a plasma focus with different anode tip materials (Cu, Mo, and W)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharif, M.; Ahmad, S.; Zakaullah, M.
X-ray emission from a 2.3-5.3 kJ Mather-type plasma focus [Phys. Fluids 7, 5 (1964)] employing copper, molybdenum, and tungsten anode tip is studied. Argon is used as a working gas. Characteristic Cu K{alpha} and Mo K-series emission and their ratio to the continuous x-rays are determined. From the variation of the x-ray yield data with filling pressure at different charging voltages, scaling laws are obtained. X-ray pinhole images demonstrate that a significant amount of x-ray emission is from the anode tip. The comparison of the ratio of characteristic to continuum radiation for copper anode with typical x-ray tube data revealsmore » that the contribution of very high energy electron beam from the focus region for x-ray generation through thick target bremsstrahlung mechanism is not significant. Rather, electrons with energy of the order of, or even less than, the charging voltage are responsible for bulk of the x-ray emission.« less
NASA Astrophysics Data System (ADS)
Abbou, S.; Dillet, J.; Maranzana, G.; Didierjean, S.; Lottin, O.
2017-02-01
Proton exchange membrane (PEM) fuel cells operate with dead-ended anode in order to reduce system cost and complexity when compared with hydrogen re-circulation systems. In the first part of this work, we showed that localized fuel starvation events may occur, because of water and nitrogen accumulation in the anode side, which could be particularly damaging to the cell performance. To prevent these degradations, the anode compartment must be purged which may lead to an overall system efficiency decrease because of significant hydrogen waste. In the second part, we present several purge strategies in order to minimize both hydrogen waste and membrane-electrode assembly degradations during dead-ended anode operation. A linear segmented cell with reference electrodes was used to monitor simultaneously the current density distribution along the gas channel and the time evolution of local anode and cathode potentials. To asses MEA damages, Platinum ElectroChemical Surface Area (ECSA) and cell performance were periodically measured. The results showed that dead-end mode operation with an anode plate maintained at a temperature 5 °C hotter than the cathode plate limits water accumulation in the anode side, reducing significantly purge frequency (and thus hydrogen losses) as well as MEA damages. As nitrogen contribution to hydrogen starvation is predominant in this thermal configuration, we also tested a microleakage solution to discharge continuously most the nitrogen accumulating in the anode side while ensuring low hydrogen losses and minimum ECSA losses provided the right microleakage flow rate is chosen.
Bracken, John A.; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.
2008-01-01
In order to improve the safety and efficacy of percutaneous aortic valve replacement procedures, a closed bore hybrid x-ray∕MRI (CBXMR) system is proposed in which an x-ray C-arm will be positioned with its isocenter ≈1 m from the entrance of a clinical MRI scanner. This system will harness the complementary strengths of both modalities to improve clinical outcome. A key component of the CBXMR system will be a rotating anode x-ray tube to produce high-quality x-ray images. There are challenges in positioning an x-ray tube in the magnetic fringe field of the MRI magnet. Here, the effects of an external magnetic field on x-ray tube induction motors of radiography x-ray tubes and the corresponding reduction of x-ray tube heat loadability are investigated. Anode rotation frequency fanode was unaffected when the external magnetic field Bb was parallel to the axis of rotation of the anode but decreased when Bb was perpendicular to the axis of rotation. The experimental fanode values agreed with predicted values to within ±3% over a Bb range of 0–30 mT. The MRI fringe field at the proposed location of the x-ray tube mounted on the C-arm (≈4 mT) reduced fanode by only 1%, so x-ray tube heat loadability will not be compromised when using CBXMR systems for percutaneous aortic valve replacement procedures. Eddy current heating power in the rotor due to an MRI fringe field was found to be two orders of magnitude weaker than the heating power produced on the anode due to a fluoroscopic exposure, so eddy current heating had no effect on x-ray tube heat loadability. PMID:18841857
Variation of nanopore diameter along porous anodic alumina channels by multi-step anodization.
Lee, Kwang Hong; Lim, Xin Yuan; Wai, Kah Wing; Romanato, Filippo; Wong, Chee Cheong
2011-02-01
In order to form tapered nanocapillaries, we investigated a method to vary the nanopore diameter along the porous anodic alumina (PAA) channels using multi-step anodization. By anodizing the aluminum in either single acid (H3PO4) or multi-acid (H2SO4, oxalic acid and H3PO4) with increasing or decreasing voltage, the diameter of the nanopore along the PAA channel can be varied systematically corresponding to the applied voltages. The pore size along the channel can be enlarged or shrunken in the range of 20 nm to 200 nm. Structural engineering of the template along the film growth direction can be achieved by deliberately designing a suitable voltage and electrolyte together with anodization time.
NASA Astrophysics Data System (ADS)
Qin, Xiufang; Zhang, Jinqiong; Meng, Xiaojuan; Deng, Chenhua; Zhang, Lifang; Ding, Guqiao; Zeng, Hao; Xu, Xiaohong
2015-02-01
Nanoporous anodic aluminum oxides are often used as templates for preparation of nanostructures such as nanodot, nanowire and nanotube arrays. The interpore distance of anodic aluminum oxide is the most important parameter in controlling the periodicity of these nanostructures. Herein we demonstrate a simple and yet powerful method to fabricate ordered anodic aluminum oxides with continuously tunable interpore distances. By using mixed solution of citric and oxalic acids with different molar ratio, the range of anodizing voltages within which self-ordered films can be formed were extended to between 40 and 300 V, resulting in the interpore distances change from 100 to 750 nm. Our work realized very broad range of interpore distances in a continuously tunable fashion and the experiment processes are easily controllable and reproducible. The dependence of the interpore distances on acid ratios in mixed solutions was discussed through analysis of anodizing current and it was found that the effective dissociation constant of the mixed acids is of great importance. The interpore distances achieved are comparable to wavelengths ranging from UV to near IR, and may have potential applications in optical meta-materials for photovoltaics and optical sensing.
Nguyen, Nhat Truong; Altomare, Marco; Yoo, JeongEun; Schmuki, Patrik
2015-05-27
Anodic self-organized TiO2 nanostumps are formed and exploited for self-ordering dewetting of Au-Ag sputtered films. This forms ordered particle configurations at the tube top (crown position) or bottom (ground position). By dealloying from a minimal amount of noble metal, porous Au nanoparticles are then formed, which, when in the crown position, allow for a drastically improved photocatalytic H2 production compared with nanoparticles produced by conventional dewetting processes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of nanopatterning on mechanical properties of Lithium anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Colin; Lee, Yong Min; Cho, Kuk Young
One of the challenges in developing Lithium anodes for Lithium ion batteries (LIB) is controlling the formation of Li dendrites during cycling of the battery. Nanostructuring and nanopatterning of electrodes shows a promising way to suppress the growth of Li dendrites. However, in order to control this behavior, a fundamental understanding of the effect of nanopatterning on the electromechanical properties of Li metal is necessary. In this paper, we have investigated the mechanical and wear properties of Li metal using Atomic Force Microscopy (AFM) in an airtight cell. By using different load regimes, we determined the mechanical properties of Limore » metal. Here, we show that as a result of nanopatterning, Li metal surface underwent work hardening due to residual compressive stress. The presence of such stresses can help to improve cycle lifetime of LIBs with Li anodes and obtain very high energy densities.« less
Yeo, Jin-Ho; Lee, Sung-Gap; Jo, Ye-Won; Jung, Hye-Rin
2015-11-01
We fabricated electrolyte-dielectric-metal (EDM) device incorporating a high-k Al2O3 sensing membrane from a porous anodic aluminum oxide (AAO) using a two step anodizing process for pH sensors. In order to change the properties of the AAO template, the crystallizing temperature was varied from 400 degrees C to 700 degrees C over 2 hours. The structural properties were observed by field emission scanning electron microscopy (FE-SEM). The pH sensitivity increased with an increase in the crystallizing temperature from 400 degrees C to 600 degrees C. However at 700 degrees C, deformation occurred. The porous AAO sensor with a crystallizing temperature of 600 degrees C displayed the good sensitivity and long-term stability and the values were 55.7 mV/pH and 0.16 mV/h, respectively.
Particle-In-Cell Simulations of a Thermionic Converter
NASA Astrophysics Data System (ADS)
Clark, S. E.
2017-12-01
Simulations of thermionic converters are presented where cesium is used as a work function reducing agent in a nano-fabricated triode configuration. The cathode and anode are spaced on the order of 100 μm, and the grid structure has features on the micron scale near the anode. The hot side is operated near 1600 K, the cold side near 600 K, and the converter has the potential to convert heat to DC electrical current upwards of 20% efficiency. Affordable and robust thermionic converters have the potential to displace century old mechanical engines and turbines as a primary means of electrical power generation in the near future. High efficiency converters that operate at a small scale could be used to generate power locally and alleviate the need for large scale power transmission systems. Electron and negative cesium ion back emission from the anode are considered, as well as device longevity and fabrication feasibility.
Effect of nanopatterning on mechanical properties of Lithium anode
Campbell, Colin; Lee, Yong Min; Cho, Kuk Young; ...
2018-02-06
One of the challenges in developing Lithium anodes for Lithium ion batteries (LIB) is controlling the formation of Li dendrites during cycling of the battery. Nanostructuring and nanopatterning of electrodes shows a promising way to suppress the growth of Li dendrites. However, in order to control this behavior, a fundamental understanding of the effect of nanopatterning on the electromechanical properties of Li metal is necessary. In this paper, we have investigated the mechanical and wear properties of Li metal using Atomic Force Microscopy (AFM) in an airtight cell. By using different load regimes, we determined the mechanical properties of Limore » metal. Here, we show that as a result of nanopatterning, Li metal surface underwent work hardening due to residual compressive stress. The presence of such stresses can help to improve cycle lifetime of LIBs with Li anodes and obtain very high energy densities.« less
Origin of high Coulombic loss during sodiation in Na-Sn battery
NASA Astrophysics Data System (ADS)
Byeon, Young-Woon; Choi, Yong-Seok; Ahn, Jae-Pyoung; Lee, Jae-Chul
2017-03-01
Electrochemical sodiation is performed in crystalline Sn foil using in situ scanning electron microscopy (SEM) to simultaneously measure the changes in the electrical resistivity and volume of the Sn anode in a Na-Sn battery. We observe that sodiation causes an increase in the Sn anode resistivity by six orders of magnitude. Ab initio molecular dynamics simulations of the Na-Sn alloy system demonstrate that the increased resistivity of the anode is caused by the formation of an electrically resistive amorphous NaSn phase (a-NaSn) with a pseudogap. It is also observed that the formation of a-NaSn is always accompanied by a large volume expansion of ∼200%, causing the development of residual tensile stress. The residual stress in turn alters the electronic structure of the a-NaSn phase, further increasing the resistivity of a-NaSn and thus decreasing the energy efficiency of the Na-Sn battery.
Particle-In-Cell Simulations of a Thermionic Converter
NASA Astrophysics Data System (ADS)
Clark, Stephen
2017-10-01
Simulations of thermionic converters are presented where cesium is used as a work function reducing agent in a nano-fabricated triode configuration. The cathode and anode are spaced on the order of 100 μm, and the grid structure has features on the micron scale near the anode. The hot side is operated near 1600 K, the cold side near 600 K, and the converter has the potential to convert heat to DC electrical current upwards of 20% efficiency. Affordable and robust thermionic converters have the potential to displace century old mechanical engines and turbines as a primary means of electrical power generation in the near future. High efficiency converters that operate at a small scale could be used to generate power locally and alleviate the need for large scale power transmission systems. Electron and negative cesium ion back emission from the anode are considered, as well as device longevity and fabrication feasibility.
Stoll, Zachary A; Ma, Zhaokun; Trivedi, Christopher B; Spear, John R; Xu, Pei
2016-10-01
Microbial fuel cells (MFCs) are a promising energy-positive wastewater treatment technology, however, the system's cost-effectiveness has been overlooked. In this study, two new anode materials - hard felt (HF) and carbon foam (CF) - were evaluated against the standard graphite brush (GB) to determine if using inexpensive materials with less than ideal properties can achieve more cost-effective treatment than high-cost, high-performing materials. Using domestic wastewater as the substrate, power densities for the GB, HF and CF-MFCs were 393, 339 and 291 mW m(-2) normalized by cathodic surface area, respectively. Higher power densities correlated with larger anodic surface areas and anodic current densities but not with electrical conductivity. Cyclic voltammetry revealed that redox systems used for extracellular electron transport in the GB, HF and CF-MFCs were similar (-0.143 ± 0.046, -0.158 ± 0.004 and -0.100 ± 0.014 V vs. Ag/AgCl) and that the electrochemical kinetics of the MFCs showed no correlation with their respective electrical conductivity. 16S rRNA sequencing showed the GB, HF and CF microbial community compositions were not statistically different while organic removal rates were nearly identical for all MFCs. The HF-MFC generated a power output to electrode cost (W $(-1)) 1.9 times greater than the GB-MFC, despite producing 14% less power and 15% less anodic current, while having 2.6 times less anodic surface area, 2.1 times larger charge transfer resistance and an electrical conductivity three orders of magnitude lower. The results demonstrate that inexpensive materials are capable of achieving more cost-effective treatment than high-performing materials despite generating lower power when treating real wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pan, Ke-Ji; Hussain, A. Mohammed; Wachsman, Eric D.
2017-04-01
Variants of SNNV (Sr0.2Na0.8Nb1-xVxO3, X = 0.1-0.3) ceramic oxides were synthesized via wet chemical method. SNNVs show high electronic conductivity of >100 S/cm when reduced in hydrogen at a relatively low temperature of 650 °C. In particular, 30% V-doped SNNV exhibited the highest conductivity of 300 S/cm at 450 °C. In order to investigate the fuel cell performance, Gd0.1Ce0.9O2-δ (GDC) based electrolyte-supported fuel cells were prepared to study the anode characteristics. Sr0.2Na0.8Nb0.9V0.1O3 (SNNV10)-GDC composite was used as an anode and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)-GDC as a cathode. Both electrodes were porous and sintered at 1050 °C for 2 h in air. The anode side of the fuel cell was infiltrated with 10 wt% GDC/Ni-GDC precursor to activate the anode for fuel oxidation. I-V characteristics were determined in gas conditions such as dry/humidified hydrogen and methane at 650 °C. With the infiltration Ni-GDC, peak power density (PPD) of 280 mW/cm2 and 220 mW/cm2 in dry H2 and CH4, respectively, were obtained at 650 °C, which is higher than GDC alone as infiltrate. The high resistances in the humidified conditions are attributed to the lower conductivity of SNNV10 in high PO2 atmospheres.
Internal passivation of Al-based microchannel devices by electrochemical anodization
NASA Astrophysics Data System (ADS)
Hymel, Paul J.; Guan, D. S.; Mu, Yang; Meng, W. J.; Meng, Andrew C.
2015-02-01
Metal-based microchannel devices have wide-ranging applications. We report here a method to electrochemically anodize the internal surfaces of Al microchannels, with the purpose of forming a uniform and dense anodic aluminum oxide (AAO) layer on microchannel internal surfaces for chemical passivation and corrosion resistance. A pulsed electrolyte flow was utilized to emulate conventional anodization processes while replenishing depleted ionic species within Al microtubes and microchannels. After anodization, the AAO film was sealed in hot water to close the nanopores. Focused ion beam (FIB) sectioning, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were utilized to characterize the AAO morphology and composition. Potentiodynamic polarization corrosion testing of anodized Al microtube half-sections in a NaCl solution showed an order of magnitude decrease in anodic corrosion current when compared to an unanodized tube. The surface passivation process was repeated for Al-based microchannel heat exchangers. A corrosion testing method based on the anodization process showed higher resistance to ion transport through the anodized specimens than unanodized specimens, thus verifying the internal anodization and sealing process as a viable method for surface passivation of Al microchannel devices.
Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid
2012-01-01
The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing. PMID:23272786
NASA Astrophysics Data System (ADS)
Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.
2014-12-01
The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.
NASA Astrophysics Data System (ADS)
Ye, Yun-Sheng; Xie, Xiao-Lin; Rick, John; Chang, Feng-Chih; Hwang, Bing-Joe
2014-02-01
Si, when compared to conventional graphite, offers an order-of-magnitude improvement as a high capacity anode material for Li-ion batteries. Despite significant advances in nanostructured Si-based anodes, the formation of stable Si anodes remains a challenge, due to the significant volume changes that occur during lithiation and delithiation. Si/graphene composites, with graphene sheets and Si nanoparticles bound in a dispersion obtained by a self-assembly technique using non-covalent electrostatic attraction (following thermal processing to remove residual organic material) are used to prepare Si-based anodes for use in Li-ion batteries. A mesoporous structure, obtained by further thermal processing is able to accommodate large Si nanoparticle volume changes during cycling, thereby facilitating Li-ion diffusion within the electrode. Morphological analysis showed that Si nanoparticles are homogeneously distributed on the graphene sheets, which is thought to account for the excellent electrochemical performance of the resulting Si/graphene composite. A composite containing Si 67.3 wt% exhibits a greatly improved capacity and cycling stability in comparison with bare Si in combination with the thermal reduction of a simple mixture of graphene oxide and Si nanoparticles without electrostatic attraction (Si content = 64.6 wt%; capacity of 512 mAh g-1 in 40th cycle).
Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge
Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E.; ...
2017-06-08
Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. In order to sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of similar to 100 A/cm 2, is above the boron meltingmore » point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. We achieved a stable and reliable arc operation and arc synthesis with the boronrich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. Our results also show evidence of root-growth of BNNTs produced in the arc discharge.« less
Performance of a passive direct ethanol fuel cell
NASA Astrophysics Data System (ADS)
Pereira, J. P.; Falcão, D. S.; Oliveira, V. B.; Pinto, A. M. F. R.
2014-06-01
Ethanol emerges as an attractive fuel since it is less toxic and has higher energy density than methanol and can be produced from biomass. Direct ethanol fuel cells (DEFCs) appear as a good choice for producing sustainable energy for portable applications. However, they are still far from attaining acceptable levels of power output, since their performance is affected by the slow electrochemical ethanol oxidation and water and ethanol crossover. In the present work, an experimental study on the performance of a passive DEFC is described. Tailored MEAs (membrane electrode assembly) with different catalyst loadings, anode diffusion layers and membranes were tested in order to select optimal working conditions at high ethanol concentrations and low ethanol crossover. The performance increased with an increase of membrane and anode diffusion layer thicknesses and anode catalyst loading. A maximum power density of 1.33 mW cm-2, was obtained using a Nafion 117 membrane, 4 mg cm-2 of Pt-Ru and 2 mg cm-2 of Pt on the anode and cathode catalyst layers, ELAT as anode diffusion layer, carbon cloth as cathode diffusion layer and an ethanol concentration of 2 M. As far as the authors are aware this is the first work reporting an experimental optimization of passive DEFCs.
Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E.
Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. In order to sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of similar to 100 A/cm 2, is above the boron meltingmore » point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. We achieved a stable and reliable arc operation and arc synthesis with the boronrich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. Our results also show evidence of root-growth of BNNTs produced in the arc discharge.« less
NASA Astrophysics Data System (ADS)
Noh, Kunbae
2011-12-01
Self-ordered arrangements observed in various materials systems such as anodic aluminum oxide, polystyrene nanoparticles, and block copolymer are of great interest in terms of providing new opportunities in nanofabrication field where lithographic techniques are broadly used in general. Investigations on self-assembled nano arrays to understand how to obtain periodic nano arrays in an efficient yet inexpensive way, and how to realize advanced material and device systems thereof, can lead to significant impacts on science and technology for many forefront device applications. In this thesis, various aspects of periodic nano-arrays have been discussed including novel preparations, properties and applications of anodized aluminum oxide (AAO) and PS-b-P4VP (S4VP) di-block copolymer self-assembly. First, long-range ordered AAO arrays have been demonstrated. Nanoimprint lithography (NIL) process allowed a faithful pattern transfer of the imprint mold pattern onto Al thin film, and interesting self-healing and pattern tripling phenomena were observed, which could be applicable towards fabrication of the NIL master mold having highly dense pattern over large area, useful for fabrication of a large-area substrate for predictable positioning of arrayed devices. Second, S4VP diblock copolymer self-assembly and S4VP directed AAO self-assembly have been demonstrated in the Al thin film on Si substrate. Such a novel combination of two dissimilar self-assembly techniques demonstrated a potential as a versatile tool for nanopatterning formation on a Si substrate, capable of being integrated into Si process technology. As exemplary applications, vertically aligned Ni nanowires have been synthesized into an S4VP-guided AAO membrane on a Si substrate in addition to anti-dot structured [Co/Pd]n magnetic multilayer using S4VP self assembly. Third, a highly hexagonally ordered, vertically parallel aluminum oxide nanotube array was successfully fabricated via hard anodization technique. The Al2O3 nanotube arrays so fabricated exhibit a uniform and reproducible dimension, and a quite high aspect ratio of greater than ˜1,000. Such high-aspect-ratio, mechanically robust, large-surface-area nanotube array structure can be useful for many technical applications. As a potential application in biomedical research, drug storage/controlled drug release from such AAO nanotubes was investigated, and the advantageous potential of using AAO nanotubes for biological implant surface coatings alternative to TiO2 nanotubes has been discussed.
Circuit for high resolution decoding of multi-anode microchannel array detectors
NASA Technical Reports Server (NTRS)
Kasle, David B. (Inventor)
1995-01-01
A circuit for high resolution decoding of multi-anode microchannel array detectors consisting of input registers accepting transient inputs from the anode array; anode encoding logic circuits connected to the input registers; midpoint pipeline registers connected to the anode encoding logic circuits; and pixel decoding logic circuits connected to the midpoint pipeline registers is described. A high resolution algorithm circuit operates in parallel with the pixel decoding logic circuit and computes a high resolution least significant bit to enhance the multianode microchannel array detector's spatial resolution by halving the pixel size and doubling the number of pixels in each axis of the anode array. A multiplexer is connected to the pixel decoding logic circuit and allows a user selectable pixel address output according to the actual multi-anode microchannel array detector anode array size. An output register concatenates the high resolution least significant bit onto the standard ten bit pixel address location to provide an eleven bit pixel address, and also stores the full eleven bit pixel address. A timing and control state machine is connected to the input registers, the anode encoding logic circuits, and the output register for managing the overall operation of the circuit.
NASA Astrophysics Data System (ADS)
Hansen, Sandra; Quiroga-González, Enrique; Carstensen, Jürgen; Adelung, Rainer; Föll, Helmut
2017-05-01
Perfectly aligned silicon microwire arrays show exceptionally high cycling stability with record setting (high) areal capacities of 4.25 mAh cm-2. Those wires have a special, modified length and thickness in order to perform this good. Geometry and sizes are the most important parameters of an anode to obtain batteries with high cycling stability without irreversible losses. The wires are prepared with a unique etching fabrication method, which allows to fabricate wires of very precise sizes. In order to investigate how good randomly oriented silicon wires perform in contrast to the perfect order of the array, the wires are embedded in a paste. This study reveals the fundamental correlation between geometry, mechanics and charge transfer kinetics of silicon electrodes. Using a suitable RC equivalent circuit allows to evaluate data from cyclic voltammetry and simultaneous FFT-Impedance Spectroscopy (FFT-IS), yielding in time-resolved resistances, time constants, and their direct correlation to the phase transformations. The change of the resistances during lithiation and delithiation correlates to kinetics and charge transfer mechanisms. This study demonstrates how the mechanical and physiochemical interactions at the silicon/paste interface inside the paste electrodes lead to void formation around silicon and with it to material loss and capacity fading.
MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries.
Zeng, Lingxing; Zheng, Cheng; Deng, Cuilin; Ding, Xiaokun; Wei, Mingdeng
2013-03-01
In the present work, the nanocomposite of MoO2-ordered mesoporous carbon (MoO2-OMC) was synthesized for the first time using a carbon thermal reduction route and the mesoporous carbon as the nanoreactor. The synthesized nanocomposite was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), N2 adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) measurements. Furthermore, this nanocomposite was used as an anode material for Li-ion intercalation and exhibited large reversible capacity, high rate performance, and good cycling stability. For instance, a high reversible capacity of 689 mAh g(-1) can remain after 50 cycles at a current density of 50 mA g(-1). It is worth mentioning that the MoO2-OMC nanocomposite electrode can attain a high reversible capacity of 401 mAh g(-1) at a current density as high as 2 A g(-1). These results might be due to the intrinsic characteristics of nanocomposite, which offered a better accommodation of the strain and volume changes and a shorter path for Li-ion and electron transport, leading to the improved capacity and enhanced rate capability.
Fuel cell electrode interconnect contact material encapsulation and method
Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.
2016-05-31
A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.
Sun, Yujiao; Zuo, Jiane; Cui, Longtao; Deng, Qian; Dang, Yan
2010-02-01
Single-chamber microbial fuel cells (MFCs), inoculated with anaerobic sludge and continuously run with two kinds of organic wastewater influents, were systemically investigated. The diversity of microbes, determined by 16S rDNA analysis, was analyzed on three anodes under different conditions. One anode was in a closed circuit in synthetic wastewater containing glucose. The other two anodes, in open or closed circuits, were fed effluent from an anaerobic reactor treating starch wastewater. The chemical oxygen demand (COD) removal efficiency was about 70%, and the exported voltages were about 450 mV. The 16S rDNA molecular clones of microbes on anode surfaces showed significant changes in Eubacterial structure under different conditions. gamma-Proteobacteria and the high G+C gram-positive groups were predominant in the synthetic wastewater, while epsilon-Proteobacteria predominated in the anaerobic reactor effluent. Known exoelectrogenic bacterial species composition also changed greatly depending on substrate. On the artificial substrate, 28% of the bacterial sequences were affiliated with Aeromonas, Pseudomonas, Geobacter, and Desulfobulbus. On the anaerobic effluent, only 6% were affiliated with Geobacter or Clostridium. Because only a few exoelectrogenic bacteria from MFCs have been directly isolated and studied, we compared the community structures of two bacterial anodes, in open and closed circuits, under the same substrate of anaerobic effluent in order to identify additional exoelectrogenic bacterial strains. Alcaligenes monasteriensis, Comamonas denitrificans, and Dechloromonas sp. were found to be potential exoelectrogenic bacteria worthy of further research.
A Model of Anode Sheath Potential Evolution in a Transverse Magnetic Field
NASA Astrophysics Data System (ADS)
Foster, John E.; Gallimore, Alec D.
1996-11-01
It has been conjectured that the growth in the magnitude of the anode fall voltage with changing transverse magnetic field is a function of the ratio of available transverse current to the discharge current. It has been postulated that at small values of this ratio, the anode fall voltage and thus the near-anode electric field increases in order to assure that the prescribed discharge is maintained.footnote H. Hugel, IEEE Tran. Plas. Sci., PS-8,4, 1980 In this present work, a model is presented which predicts the behavior of the anode fall voltage as a function of transverse magnetic field. The model attempts to explain why the anode fall voltage depends so strongly on this ratio. In addition, it is further shown that because of the current ratio's strong dependence on local electron number density, ultimately it is the changes in near-anode ionization processes with varying transverse magnetic field that control the anode fall voltage.
NASA Technical Reports Server (NTRS)
Kendall, B. R. F.; Weeks, J. O.
1974-01-01
Results of measurements of the outgassing rates of samples of materials and surface finishes used on the outer skins of rocket-borne experiment packages in simulated rocket ascents. The results showed outgassing rates for anodized aluminum in the second minute of flight which are two to three orders of magnitude higher than those given in typical tables of outgassing rates. The measured rates for aluminum with chromate conversion surface coatings were also abnormally high. These abnormally high initial rates fell quickly after about five to ten minutes to values comparable with those in the published literature. It is concluded that anodized and chromate conversion coatings on the aluminum outer surfaces of a sounding rocket experiment package will cause gross distortion of the true water vapor environment.
Gao, Zhi-Da; Han, Yuyao; Wang, Yongmei; Xu, Jingwen; Song, Yan-Yan
2013-01-01
A highly ordered nanoporous NiTi oxide layers were fabricated on Ti alloys with high Ni contents (50.6 at.%) by a combination of self-organizing anodization at 0°C and subsequent selective etching in H2O2. The key for successful formation of such layers is to sufficiently suppress the dissolve of NiO by applying lower temperature during anodization. The resulting nanoporous structure is connected and well-adhered, which exhibits a much higher electrochemical cycling stability in 0.1 M NaOH. Without further surface modification or the use of polymer binders, the layers can be behave as a low-cost, stable and sensitive platform in non-enzymatic glucose sensing. PMID:24270125
NASA Astrophysics Data System (ADS)
Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.
2015-11-01
The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The density of the anodic alumina nanofibers decreased as the applied voltage increased in the 10-75 V range. However, active electrochemical dissolution of the aluminum substrate occurred at a higher voltage of 90 V. Low temperature anodizing at 273 K resulted in the formation of long alumina nanofibers measuring several micrometers in length, even though a long processing time was required due to the low current density during the low temperature anodizing. In contrast, high temperature anodizing easily resulted in the formation and chemical dissolution of alumina nanofibers. The structural nanofeatures of the anodic alumina nanofibers were controlled by choosing of the appropriate electrochemical conditions, and numerous high-aspect-ratio alumina nanofibers (>100) can be successfully fabricated. The anodic alumina nanofibers consisted of a pure amorphous aluminum oxide without anions from the employed electrolyte.
Development of a Nanomaterial Anode for a Low-Voltage Proportional Counter for Neutron Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craps, Matthew Greg
NanoTechLabs (NTL) in collaboration with the Savannah River National Laboratory (SRNL) and Clemson University have continued development of a next generation proportional counter (PC) for neutron detection utilizing robust, inexpensive nanostructured anodes while maximizing neutron capture. Neutron detectors are vital to national security as they can be used to detect illicit trafficking of radioactive materials, which could mean the presence of or planning of a dirty bomb attack. Typical PCs operate with high bias potentials that create electronic noise. Incorporating nanomaterials into the anode of PCs can theoretically operate at low voltages (eg. 10-300V) due to an increase in themore » electric field associated with a smaller diameter nano-scale anode. In addition to the lower operating voltage, typical high PC voltages (500-1200V) could be used to generate a larger electric field resulting in more electrons being collected, thus increasing the sensitivity of the PC. Other advantages of nano-PC include reduced platform size, weight, cost, and improved ruggedness. Clemson modeled the electric field around the CNT array tips. NTL grew many ordered CNT arrays as well as control samples and densified the arrays to improve the performance. The primary objective for this work is to provide evidence of a commercially viable technique for reducing the voltage of a parallel plate proportional counter using nanosized anodes. The parallel plate geometry has advantages over the typical cylindrical design based on more feasible placement of solid neutron absorbers and more geometrically practical windows for radiation capture and directional detection.« less
Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis
NASA Technical Reports Server (NTRS)
Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.
2010-01-01
Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600?C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form? process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.
Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis
NASA Technical Reports Server (NTRS)
Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.
2010-01-01
Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600 C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.
Ab initio structure prediction of silicon and germanium sulfides for lithium-ion battery materials
NASA Astrophysics Data System (ADS)
Hsueh, Connie; Mayo, Martin; Morris, Andrew J.
Conventional experimental-based approaches to materials discovery, which can rely heavily on trial and error, are time-intensive and costly. We discuss approaches to coupling experimental and computational techniques in order to systematize, automate, and accelerate the process of materials discovery, which is of particular relevance to developing new battery materials. We use the ab initio random structure searching (AIRSS) method to conduct a systematic investigation of Si-S and Ge-S binary compounds in order to search for novel materials for lithium-ion battery (LIB) anodes. AIRSS is a high-throughput, density functional theory-based approach to structure prediction which has been successful at predicting the structures of LIBs containing sulfur and silicon and germanium. We propose a lithiation mechanism for Li-GeS2 anodes as well as report new, theoretically stable, layered and porous structures in the Si-S and Ge-S systems that pique experimental interest.
Solid oxide fuel cell having monolithic core
Ackerman, J.P.; Young, J.E.
1983-10-12
A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick.
Binders and Hosts for High-Capacity Lithium-ion Battery Anodes
NASA Astrophysics Data System (ADS)
Dufficy, Martin Kyle
Lithium-ion batteries (LIBs) are universal electrochemical energy storage devices that have revolutionized our mobile society. Nonetheless, societal and technological advances drive consumer demand for LIBs with enhanced electrochemical performance, such as higher charge capacity and longer life, compared to conventional LIBs. One method to enhance LIB performance is to replace graphite, the industry standard anode since commercialization of LIBs in 1991, with high-charge capacity materials. Implementing high-capacity anode materials such as tin, silicon, and manganese vanadates, to LIBs presents challenges; Li-insertion is destructive to anode framework, and increasing capacity increases structural strains that pulverize anode materials and results in a short-cycle life. This thesis reports on various methods to extended the cycle life of high-capacity materials. Most of the work is conducted on nano-sized anode materials to reduce Li and electron transport pathway length (facilitating charge-transfer) and reduce strains from volume expansions (preserving anode structure). The first method involves encapsulating tin particles into a graphene-containing carbon nanofiber (CNF) matrix. The composite-CNF matrix houses tin particles to assume strains from tin-volume expansions and produces favorable surface-electrolyte chemistries for stable charge-discharge cycling. Before tin addition, graphene-containing CNFs are produced and assessed as anode materials for LIBs. Graphene addition to CNFs improves electronic and mechanical properties of CNFs. Furthermore, the 2-D nature of graphene provides Li-binding sites to enhance composite-CNF both first-cycle and high-rate capacities > 150% when compared to CNFs in the absence of graphene. With addition of Sn, we vary loadings and thermal production temperature to elucidate structure-composition relationships of tin and graphene-containing CNF electrodes that lead to increased capacity retention. Of note, electrodes containing ≤ 20 wt% tin result in small tin (metallic and tin oxide) particles (≤ 15 nm) within the composite-CNF matrix, which yield long cycle-lives; large reversible capacities of ˜ 600 mAh g-1 are observed at 0.2-C rates, while capacities of ˜ 400 mAh g-1 (double the capacity of CNFs) are observed after hundreds of cycles at 2-C rates. The second method comprises an approach to enhance the cycle life of silicon anodes. Many researchers believe that Si is the future anode material of LIBs, and Si is capable of providing a much needed boost in overall cell performance. Silicon has the highest known charge capacity at ˜ 3579 mAh g-1, nearly an order of magnitude larger than graphite (372 mAh g-1). In attempt to realize the entire capacity of Si anodes, we use binding agents to prolong cycle life. Binding agents enhance capacity retention via favorable interactions with cell components such as active materials and electrolytes. In this study, we introduce galactomannans (specifically, guar) as viable, inexpensive, biopolymer binders for Si electrodes. In attempt to elucidate the role of the binder in Si electrodes, we study guar-electrode and -electrolyte interactions that lead to electrochemical performance enhancements. We recognize that there are deficiencies in guar-silicon systems, which we address in our following approach. Notably, we develop a guar-derived binder to increase the strength and conductivity of Si-based electrodes by crosslinking guar and carbon black dispersions. The crosslinked binders, in effect, enhance electrode adhesion and hinder electrode cracking by self-healing. This study monitors gelation via rheological methods and assesses effects of crosslinking density on physical and electrochemical properties. Lastly, we consider a vacancy-induced manganese vanadate as high-capacity, high-power anodes for LIBs. Rather than assessing nanoparticles, we tailored molecular structure to enhance electrochemical performances. X-ray diffraction studies enable us to suggest a Li-insertion mechanism, where Li travels through large channels created by defects in the crystal structure. The ensuing manganese vanadate structure produces a stable framework that results in stable cycling of hundreds of cycles.
NASA Astrophysics Data System (ADS)
Mitchell, Sarah L.; Ortiz, Michael
2016-09-01
This study utilizes computational topology optimization methods for the systematic design of optimal multifunctional silicon anode structures for lithium-ion batteries. In order to develop next generation high performance lithium-ion batteries, key design challenges relating to the silicon anode structure must be addressed, namely the lithiation-induced mechanical degradation and the low intrinsic electrical conductivity of silicon. As such this work considers two design objectives, the first being minimum compliance under design dependent volume expansion, and the second maximum electrical conduction through the structure, both of which are subject to a constraint on material volume. Density-based topology optimization methods are employed in conjunction with regularization techniques, a continuation scheme, and mathematical programming methods. The objectives are first considered individually, during which the influence of the minimum structural feature size and prescribed volume fraction are investigated. The methodology is subsequently extended to a bi-objective formulation to simultaneously address both the structural and conduction design criteria. The weighted sum method is used to derive the Pareto fronts, which demonstrate a clear trade-off between the competing design objectives. A rigid frame structure was found to be an excellent compromise between the structural and conduction design criteria, providing both the required structural rigidity and direct conduction pathways. The developments and results presented in this work provide a foundation for the informed design and development of silicon anode structures for high performance lithium-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, Yong X., E-mail: yong.gan@utoledo.edu; Gan, Bo J.; Clark, Evan
2012-09-15
Highlights: ► A photoelectrochemical fuel cell has been made from TiO{sub 2} nanotubes. ► The fuel cell decomposes environmentally hazardous materials to produce electricity. ► Doping the anode with a transition metal oxide increases the visible light sensitivity. ► Loading the anode with a conducting polymer enhances the visible light absorption. -- Abstract: In this work, a novel photoelectrochemical fuel cell consisting of a titanium dioxide nanotube array photosensitive anode and a platinum cathode was made for decomposing environmentally hazardous materials to produce electricity and clean fuel. Titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of puremore » Ti in an ammonium fluoride and glycerol-containing solution. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were determined. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as proven by the decomposition tests on urea, ammonia, sodium sulfide and automobile engine coolant under ultraviolet (UV) radiation. To improve the efficiency of the fuel cell, doping the TiO{sub 2} NTs with a transition metal oxide, NiO, was performed and the photosensitivity of the doped anode was tested under visible light irradiation. It is found that the NiO-doped anode is sensitive to visible light. Also found is that polyaniline-doped photosensitive anode can harvest photon energy in the visible light spectrum range much more efficiently than the NiO-doped one. It is concluded that the nanostructured photoelectrochemical fuel cell can generate electricity and clean fuel by decomposing hazardous materials under sunlight.« less
Ye, Bo; Luo, Haiping; Lu, Yaobin; Liu, Guangli; Zhang, Renduo; Li, Xiao
2017-11-01
The aim of this study was to improve performance of the microbial electrolysis desalination and chemical-production cell (MEDCC) using enlarged anode and high applied voltages. MEDCCs with anode lengths of 9 and 48cm (i.e., the 9cm-anode MEDCC and 48cm-anode MEDCC, respectively) were tested under different voltages (1.2-3.0V). Our results demonstrated for the first time that the MEDCC could maintain high performance even under the applied voltage higher than that for water dissociation (i.e., 1.8V). Under the applied voltage of 2.5V, the maximum current density in the 48cm-anode MEDCC reached 32.8±2.6A/m 2 , which is one of the highest current densities reported so far in the bioelectrochemical system (BES). The relative abundance of Geobacter was changed along the anode length. Our results show the great potential of the BES with enlarged anode and high applied voltages. Copyright © 2017 Elsevier Ltd. All rights reserved.
Finite Element Analysis of Silicon Thin Films on Soft Substrates as Anodes for Lithium Ion Batteries
NASA Astrophysics Data System (ADS)
Shaffer, Joseph
2011-12-01
The wide-scale use of green technologies such as electric vehicles has been slowed due to insufficient means of storing enough portable energy. Therefore it is critical that efficient storage mediums be developed in order to transform abundant renewable energy into an on-demand source of power. Lithium (Li) ion batteries are seeing a stream of improvements as they are introduced into many consumer electronics, electric vehicles and aircraft, and medical devices. Li-ion batteries are well suited for portable applications because of their high energy-to-weight ratios, high energy densities, and reasonable life cycles. Current research into Li-ion batteries is focused on enhancing its energy density, and by changing the electrode materials, greater energy capacities can be realized. Silicon (Si) is a very attractive option because it has the highest known theoretical charge capacity. Current Si anodes, however, suffer from early capacity fading caused by pulverization from the stresses induced by large volumetric changes that occur during charging and discharging. An innovative system aimed at resolving this issue is being developed. This system incorporates a thin Si film bonded to an elastomeric substrate which is intended to provide the desired stress relief. Non-linear finite element simulations have shown that a significant amount of deformation can be accommodated until a critical threshold of Li concentration is reached; beyond which buckling is induced and a wavy structure appears. When compared to a similar system using rigid substrates where no buckling occurs, the stress is reduced by an order of magnitude, significantly prolonging the life of the Si anode. Thus the stress can be released at high Li-ion diffusion induced strains by buckling the Si thin film. Several aspects of this anode system have been analyzed including studying the effects of charge rate and thin film plasticity, and the results are compared with preliminary empirical measurements to show great promise. This study serves as the basis for a radical resolution to one of the few remaining barriers left in the development of high performing Si based electrodes for Li-ion batteries.
Li, Juan; Li, Congshan; Chen, Cheng; Hao, Qingli; Wang, Zhijia; Zhu, Jie; Gao, Xuefeng
2012-10-24
We report a facile nanofabrication method, one-step hard anodizing and etching peeling (OS-HA-EP) of aluminum foils followed by multistep mild anodizing and etching pore-widening (MS-MA-EW), for the controllable tailoring of hexagonally packed three-dimensional alumina taper-nanopores. Their profiles can be precisely tailored by the synergistic control of anodizing time, etching time and cyclic times at the MS-MA-EW stage, exemplified by linear cones, whorl-embedded cones, funnels, pencils, parabolas, and trumpets. Meantime, their periods can also be modulated in the range of 70-370 nm by choosing matched anodizing electrolytes (e.g., H(2)C(2)O(4), H(2)SO(4), H(2)C(2)O(4)-H(2)SO(4), and H(2)C(2)O(4)-C(2)H(5)OH mixture) and anodizing voltages at the OS-HA-EP stage. We also demonstrated that the long-range ordering of nanopits and the peak voltage of stable self-ordered HA, which are unachievable in a single H(2)C(2)O(4) electrolyte system, can be effectively tuned by simply adding tiny quantity of H(2)SO(4) and C(2)H(5)OH to keep an appropriate HA current density, respectively. This method of using the combination of simple pure chemical nanofabrication technologies is very facile and efficient in realizing the controllable tailoring of large-area alumina membranes containing self-ordered taper-nanopores. Our work opens a door for exploring the novel physical and chemical properties of different materials of nanotaper arrays.
Improving carbon dioxide yields and cell efficiencies for ethanol oxidation by potential scanning
NASA Astrophysics Data System (ADS)
Majidi, Pasha; Pickup, Peter G.
2014-12-01
An ethanol electrolysis cell with aqueous ethanol supplied to the anode and nitrogen at the cathode has been operated under potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At ambient temperature, faradaic yields of CO2 as high as 26% have been achieved, while only transient CO2 production was observed at constant potential. Yields increased substantially at higher temperatures, with maximum values at Pt anodes reaching 45% at constant potential and 65% under potential cycling conditions. Use of a PtRu anode increased the cell efficiency by decreasing the anode potential, but this was offset by decreased CO2 yields. Nonetheless, cycling increased the efficiency relative to constant potential. The maximum yields at PtRu and 80 °C were 13% at constant potential and 32% under potential cycling. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO, which occurs at lower potentials on PtRu than on Pt. These results will be important in the optimization of operating conditions for direct ethanol fuel cells and for the electrolysis of ethanol to produce clean hydrogen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Asta, V.; Tealdi, C.; Resmini, A.
Zinc oxide nanoarchitectures may be employed as binder-free, high specific capacity anodes for lithium batteries. By means of simple and low-impact wet chemistry approaches, we synthesized 1D (nanorods), 2D (single- and multi-layered nanosheets), and 3D (nanobrushes) ZnO arrays. These nanoarchitectures were compared as far as concerns their electrochemical properties and the structural modifications upon lithiation/delithiation. The best results were offered by 2D nanosheets, which showed reversible capacity of the order of 400 mAhg{sup −1} after 100 cycles at 1 Ag{sup −1}. This was due to: i) small nanoparticles, with average diameter of about 10 nm, which maximize the array specificmore » surface area and favor the formation of the LiZn alloy; ii) the presence of a mesoporous texture, which allows larger space for accommodating the volume changes upon lithiation/delithiation. However, also these 2D structures showed large irreversible capacity losses. Our work highlights the need for more efficient buffering solutions in ZnO binder-free nanostructured anodes. - Graphical abstract: ZnO nanosheets as anode materials for lithium batteries.« less
NASA Astrophysics Data System (ADS)
Shintani, Haruhiko; Kojima, Yuya; Kakinuma, Katsuyoshi; Watanabe, Masahiro; Uchida, Makoto
2015-10-01
We propose a new strategy for alleviating the reverse current phenomenon using a unique ;atmospheric resistive switching mechanism; (ARSM) of a metal oxide semiconductor support, such that the electrical resistivity changes depending on the gas atmosphere. The membrane-electrode assembly (MEA) using Ta-doped TiO2-supported platinum (Pt/Ta-TiO2) as the anode catalyst showed approximately one order of magnitude greater resistance in air than in hydrogen. The overpotential of the hydrogen oxidation reaction was negligible up to at least 1.5 A cm-2. The losses of electrochemically active surface area and carbon corrosion of the cathode catalyst during air/air startup cycling were significantly suppressed by the use of the Pt/Ta-TiO2 anode. The decrease in the degradation is attributed to a reduction of the reverse current due to a low oxygen reduction reaction rate at the anode, which showed high resistivity in air. These results demonstrate the effectiveness of the ARSM in mitigating cathode catalyst degradation during air/air startup cycling.
Nb-doped rutile TiO₂: a potential anode material for Na-ion battery.
Usui, Hiroyuki; Yoshioka, Sho; Wasada, Kuniaki; Shimizu, Masahiro; Sakaguchi, Hiroki
2015-04-01
The electrochemical properties of the rutile-type TiO2 and Nb-doped TiO2 were investigated for the first time as Na-ion battery anodes. Ti(1-x)Nb(x)O2 thick-film electrodes without a binder and a conductive additive were prepared using a sol-gel method followed by a gas-deposition method. The TiO2 electrode showed reversible reactions of Na insertion/extraction accompanied by expansion/contraction of the TiO2 lattice. Among the Ti(1-x)Nb(x)O2 electrodes with x = 0-0.18, the Ti(0.94)Nb(0.06)O2 electrode exhibited the best cycling performance, with a reversible capacity of 160 mA h g(-1) at the 50th cycle. As the Li-ion battery anode, this electrode also attained an excellent rate capability, with a capacity of 120 mA h g(-1) even at the high current density of 16.75 A g(-1) (50C). The improvements in the performances are attributed to a 3 orders of magnitude higher electronic conductivity of Ti(0.94)Nb(0.06)O2 compared to that of TiO2. This offers the possibility of Nb-doped rutile TiO2 as a Na-ion battery anode as well as a Li-ion battery anode.
Liu, Yihang; Zhang, Anyi; Shen, Chenfei; Liu, Qingzhou; Cao, Xuan; Ma, Yuqiang; Chen, Liang; Lau, Christian; Chen, Tian-Chi; Wei, Fei; Zhou, Chongwu
2017-06-27
Sodium-ion batteries offer an attractive option for potential low cost and large scale energy storage due to the earth abundance of sodium. Red phosphorus is considered as a high capacity anode for sodium-ion batteries with a theoretical capacity of 2596 mAh/g. However, similar to silicon in lithium-ion batteries, several limitations, such as large volume expansion upon sodiation/desodiation and low electronic conductance, have severely limited the performance of red phosphorus anodes. In order to address the above challenges, we have developed a method to deposit red phosphorus nanodots densely and uniformly onto reduced graphene oxide sheets (P@RGO) to minimize the sodium ion diffusion length and the sodiation/desodiation stresses, and the RGO network also serves as electron pathway and creates free space to accommodate the volume variation of phosphorus particles. The resulted P@RGO flexible anode achieved 1165.4, 510.6, and 135.3 mAh/g specific charge capacity at 159.4, 31878.9, and 47818.3 mA/g charge/discharge current density in rate capability test, and a 914 mAh/g capacity after 300 deep cycles in cycling stability test at 1593.9 mA/g current density, which marks a significant performance improvement for red phosphorus anodes for sodium-ion chemistry and flexible power sources for wearable electronics.
Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes.
Shen, Zhemin; Chen, Xuejun; Jia, Jinping; Qu, Liya; Wang, Wenhua
2007-11-01
During the cation exchange membrane (CEM) enhanced electrokinetic (EK) soil remediation, the nearer to the anode, the higher are the H+ concentrations and the redox potentials. As both low pH and high redox potential are helpful to speed-up Cd electro-migration, soils near the anode can be quickly remedied. Usually EK process is operated with one fixed anode (FA). A novel CEM enhanced EK method with approaching anodes (AAs) is proposed to accelerate electro-migration effect. Several mesh Ti/Ru anodes were inserted as AAs in the treated soil. They were switched in turn from the anode towards the cathode. Thus high H+ ions concentrations and high redox potentials quickly migrate to the cathode. Consequently, soil remediation is accelerated and nearly 44% of energy and 40% of time can be saved. The mechanism of Cd electro-migration behavior in soils during CEM enhanced EK is described as the elution in an electrokinetically driven chromatogram.
Silicon drift detectors with on-chip electronics for x-ray spectroscopy.
Fiorini, C; Longoni, A; Hartmann, R; Lechner, P; Strüder, L
1997-01-01
The silicon drift detector (SDD) is a semiconductor device based on high resistivity silicon fully depleted through junctions implanted on both sides of the semiconductor wafer. The electrons generated by the ionizing radiation are driven by means of a suitable electric field from the point of interaction toward a collecting anode of small capacitance, independent of the active area of the detector. A suitably designed front-end JFET has been directly integrated on the detector chip close to the anode region, in order to obtain a nearly ideal capacitive matching between detector and transistor and to minimize the stray capacitances of the connections. This feature allows it to reach high energy resolution also at high count rates and near room temperature. The present work describes the structure and the performance of SDDs specially designed for high resolution spectroscopy with soft x rays at high detection rate. Experimental results of SDDs used in spectroscopy applications are also reported.
Thermal investigation of an electrical high-current arc with porous gas-cooled anode
NASA Technical Reports Server (NTRS)
Eckert, E. R. G.; Schoeck, P. A.; Winter, E. R. F.
1984-01-01
The following guantities were measured on a high-intensity electric arc with tungsten cathode and transpiration-cooled graphite anode burning in argon: electric current and voltage, cooling gas flow rate (argon), surface temperature of the anode and of the anode holder, and temperature profile in three cross-sections of the arc are column. The last mentioned values were obtained from spectroscopic photographs. From the measured quantities, the following values were calculated: the heat flux into the anode surface, the heat loss of the anode by radiation and conduction, and the heat which was regeneratively transported by the cooling gas back into the arc space. Heat balances for the anode were also obtained. The anode losses (which are approximately 80% of the total arc power for free burning arcs) were reduced by transpiration cooling to 20%. The physical processes of the energy transfer from the arc to the anode are discussed qualitatively.
Applications of Tunable TiO2 Nanotubes as Nanotemplate and Photovoltaic Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongdong; Chang, Pai-Chun; Chien, Chung-Jen
2010-10-26
Highly ordered anodic titanium oxide (ATO) TiO{sub 2} nanotube film has been synthesized via a typical two-step anodization method. Following a reductive doping approach, metallic materials (copper and nickel) can be efficiently electrodeposited into the nanotubes. This versatile process yields reproducible tubular structures in ATO membranes, because of the conductive nature of crystallized TiO{sub 2}, yielding promising potential for nanotemplate applications. In this paper, we present a dye-sensitized solar cell constructed by employing such ATO films. It is observed that the reductive doping treatment can also enhance the solar cell’s short current density and fill factor, resulting in an improvedmore » energy conversion efficiency.« less
Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template.
Zhang, Zhang; Liu, Lifeng; Shimizu, Tomohiro; Senz, Stephan; Gösele, Ulrich
2010-02-05
Silicon nanotubes (SiNTs) are compatible with Si-based semiconductor technology. In particular, the small diameters and controllable structure of such nanotubes are remaining challenges. Here we describe a method to fabricate SiNTs intrinsically connected with cobalt silicide ends based on highly ordered anodic aluminum oxide (AAO) templates. Size and growth direction of the SiNTs can be well controlled via the templates. The growth of SiNTs is catalyzed by the Co nanoparticles reduced on the pore walls of the AAO after annealing, with a controllable thickness at a given growth temperature and time. Simultaneously, cobalt silicide forms on the bottom side of the SiNTs.
Process for High-Rate Fabrication of Alumina Nanotemplates
NASA Technical Reports Server (NTRS)
Myung, Nosang; Fleurial, Jean-Pierre; Yun, Minhee; West, William; Choi, Daniel
2007-01-01
An anodizing process, at an early stage of development at the time of reporting the information for this article, has shown promise as a means of fabricating alumina nanotemplates integrated with silicon wafers. Alumina nanotemplates are basically layers of alumina, typically several microns thick, in which are formed approximately regular hexagonal arrays of holes having typical diameters of the order of 10 to 100 nm. Interest in alumina nanotemplates has grown in recent years because they have been found to be useful as templates in the fabrication of nanoscale magnetic, electronic, optoelectronic, and other devices. The present anodizing process is attractive for the fabrication of alumina nanotemplates integrated with silicon wafers in two respects: (1) the process involves self-ordering of the holes; that is, the holes as formed by the process are spontaneously arranged in approximately regular hexagonal arrays; and (2) the rates of growth (that is, elongation) of the holes are high enough to make the process compatible with other processes used in the mass production of integrated circuits. In preparation for fabrication of alumina nanotemplates in this process, one first uses electron-beam evaporation to deposit thin films of titanium, followed by thin films of aluminum, on silicon wafers. Then the alumina nanotemplates are formed by anodizing the aluminum layers, as described below. In experiments in which the process was partially developed, the titanium films were 200 A thick and the aluminum films were 5 m thick. The aluminum films were oxidized to alumina, and the arrays of holes were formed by anodizing the aluminum in aqueous solutions of sulfuric and/or oxalic acid at room temperature (see figure). The diameters, spacings, and rates of growth of the holes were found to depend, variously, on the composition of the anodizing solution, the applied current, or the applied potential, as follows: In galvanostatically controlled anodizing, regardless of the chemical composition of the solution, relatively high current densities (50 to 100 mA/cm2) resulted in arrays of holes that were more nearly regular than were those formed at lower current densities. . The rates of elongation of the holes were found to depend linearly on the applied current density: the observed factor of proportionality was 1.2 (m/h)/(mA/cm2). For a given fixed current density and room temperature, the hole diameters were found to depend mainly on the chemical compositions of the anodizing solutions. The holes produced in sulfuric acid solutions were smaller than those produced in oxalic acid solutions. The arrays of holes produced in sulfuric acid were more ordered than were those produced in oxalic acid. . The breakdown voltage was found to decrease logarithmically with increasing concentration of sulfuric acid. The breakdown voltage was also found to decrease with temperature and to be accompanied by a decrease in hole diameter. The hole diameter was found to vary linearly with applied potential, with a slope of 2.1 nm/V. This slope differs from slopes (2.2 and 2.77 nm/V) reported for similar prior measurements on nanotemplates made from bulk aluminum. The differences among these slopes may be attributable to differences among impurities and defects in bulk and electron-beam-evaporated aluminum specimens.
Anode initiated surface flashover switch
Brainard, John P.; Koss, Robert J.
2003-04-29
A high voltage surface flashover switch has a pair of electrodes spaced by an insulator. A high voltage is applied to an anode, which is smaller than the opposing, grounded, cathode. When a controllable source of electrons near the cathode is energized, the electrons are attracted to the anode where they reflect to the insulator and initiate anode to cathode breakdown.
Recycled tetrahedron-like CuCl from waste Cu scraps for lithium ion battery anode.
Hou, Hongying; Yao, Yuan; Liu, Song; Duan, Jixiang; Liao, Qishu; Yu, Chengyi; Li, Dongdong; Dai, Zhipeng
2017-07-01
The wide applications of metal Cu inevitably resulted in a large quantity of waste Cu materials. In order to recover the useful Cu under the mild conditions and reduce the environmental emission, waste Cu scraps were recycled in the form of CuCl powders with high economic value added (EVA) via the facile hydrothermal route. The recycled CuCl powders were characterized in terms of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results suggested that the recycled CuCl powders consisted of many regular tetrahedron-like micro-particles. Furthermore, in order to reduce the cost of lithium ion battery (LIB) anode and build the connection of waste Cu scraps and LIB, the recycled CuCl powders were evaluated as the anode active material of LIB. As expected, the reversible discharge capacity was about 171.8mAh/g at 2.0C even after 50 cycles, implying the satisfactory cycle stability. Clearly, the satisfactory results may open a new avenue to develop the circular economy and the sustainable energy industry, which would be very important in terms of both the resource recovery and the environmental protection. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Köse, Hilal; Karaal, Şeyma; Aydın, Ali Osman; Akbulut, Hatem
2015-11-01
Free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials are prepared by a sol gel technique giving a new high capacity anode material for lithium ion batteries. Free-standing ZnO/MWCNT nanocomposite anodes with two different chelating agent additives, triethanolamine (TEA) and glycerin (GLY), yield different electrochemical performances. Field emission gun scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectrometer (EDS), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) analyses reveal the produced anode electrodes exhibit a unique structure of ZnO coating on the MWCNT surfaces. Li-ion cell assembly using a ZnO/MWCNT/GLY free-standing anode and Li metal cathode possesses the best discharge capacity, remaining as high as 460 mAh g-1 after 100 cycles. This core-shell structured anode can offer increased energy storage and performance over conventional anodes in Li-ion batteries.
Porous carbon-free SnSb anodes for high-performance Na-ion batteries
NASA Astrophysics Data System (ADS)
Choi, Jeong-Hee; Ha, Choong-Wan; Choi, Hae-Young; Seong, Jae-Wook; Park, Cheol-Min; Lee, Sang-Min
2018-05-01
A simple melt-spinning/chemical-etching process is developed to create porous carbon-free SnSb anodes. Sodium ion batteries (SIBs) incorporating these anodes exhibit excellent electrochemical performances by accomodating large volume changes during repeated cycling. The porous carbon-free SnSb anode produced by the melt-spinning/chemical-etching process shows a high reversible capacity of 481 mAh g-1, high ICE of 80%, stable cyclability with a high capacity retention of 99% after 100 cycles, and a fast rate capability of 327 mAh g-1 at 4C-rate. Ex-situ X-ray diffraction and high resolution-transmission electron microscopy analyses demonstrate that the synthesized porous carbon-free SnSb anodes involve the highly reversible reaction with sodium through the conversion and recombination reactions during sodiation/desodiation process. The novel and simple melt-spinning/chemical-etching synthetic process represents a technological breakthrough in the commercialization of Na alloy-able anodes for SIBs.
Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting
NASA Astrophysics Data System (ADS)
Mohapatra, Susanta K.; Mahajan, Vishal K.; Misra, Mano
2007-11-01
A sonoelectrochemical anodization method is proposed to synthesize TiO2 nanotubular arrays on both sides of a titanium foil (TiO2/Ti/TiO2). Highly ordered TiO2 nanotubular arrays of 16 cm2 area with uniform surface distribution can be obtained using this anodization procedure. These double-sided TiO2/Ti/TiO2 materials are used as both photoanode (carbon-doped titania nanotubes) and cathode (Pt nanoparticles dispersed on TiO2 nanotubes; PtTiO2/Ti/PtTiO2) in a specially designed photoelectrochemical cell to generate hydrogen by water splitting at a rate of 38 ml h-1. The nanomaterials are characterized by FESEM, HRTEM, STEM, EDS, FFT, SAED and XPS techniques. The present approach can be used for large-scale hydrogen generation using renewable energy sources.
Diode-rectified multiphase AC arc for the improvement of electrode erosion characteristics
NASA Astrophysics Data System (ADS)
Tanaka, Manabu; Hashizume, Taro; Saga, Koki; Matsuura, Tsugio; Watanabe, Takayuki
2017-11-01
An innovative multiphase AC arc (MPA) system was developed on the basis of a diode-rectification technique to improve electrode erosion characteristics. Conventionally, electrode erosion in AC arc is severer than that in DC arc. This originated from the fact that the required properties for the cathode and anode are different, although an AC electrode works as the cathode and the anode periodically. To solve this problem, a separation of AC electrodes into pairs of thoriated tungsten cathode and copper anode by diode-rectification was attempted. A diode-rectified multiphase AC arc (DRMPA) system was then successfully established, resulting in a drastic improvement of the erosion characteristics. The electrode erosion rate in the DRMPA was less than one-third of that in the conventional MPA without the diode rectification. In order to clarify its erosion mechanism, electrode phenomena during discharge were visualized by a high-speed camera system with appropriate band-pass filters. Fluctuation characteristics of the electrode temperature in the DRMPA were revealed.
Internal reforming of methane in solid oxide fuel cell systems
NASA Astrophysics Data System (ADS)
Peters, R.; Dahl, R.; Klüttgen, U.; Palm, C.; Stolten, D.
Internal reforming is an attractive option offering a significant cost reduction, higher efficiencies and faster load response of a solid oxide fuel cell (SOFC) power plant. However, complete internal reforming may lead to several problems which can be avoided with partial pre-reforming of natural gas. In order to achieve high total plant efficiency associated with low energy consumption and low investment costs, a process concept has been developed based on all the components of the SOFC system. In the case of anode gas recycling an internal steam circuit exists. This has the advantage that there is no need for an external steam generator and the steam concentration in the anode gas is reduced. However, anode gas recycling has to be proven by experiments in a pre-reformer and for internal reforming. The addition of carbon dioxide clearly shows a decrease in catalyst activity, while for temperatures higher than 1000 K hydrogen leads to an increase of the measured methane conversion rates.
Solid oxide fuel cell having monolithic core
Ackerman, John P.; Young, John E.
1984-01-01
A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.
Stein, Nienke E; Hamelers, Hubertus V M; Buisman, Cees N J
2010-04-01
A MFC-based biosensor can act as online toxicity sensor. Electrical current is a direct linear measure for metabolic activity of electrochemically active microorganisms. Microorganisms gain energy from anodic overpotential and current strongly depends on anodic overpotential. Therefore control of anodic overpotential is necessary to detect toxic events and prevent false positive alarms. Anodic overpotential and thus current is influenced by anode potential, pH, substrate and bicarbonate concentrations. In terms of overpotential all factor showed a comparable effect, anode potential 1.2% change in current density per mV, pH 0.43%/mV, bicarbonate 0.75%/mV and acetate 0.8%/mV. At acetate saturation the maximum acetate conversion rate is reached and with that a constant bicarbonate concentration. Control of acetate and bicarbonate concentration can be less strict than control of anode potential and pH. Current density changes due to changing anode potential and pH are in the same order of magnitude as changes due to toxicity. Strict control of pH and anode potential in a small range is required. The importance of anodic overpotential control for detection of toxic compounds is shown. To reach a stable baseline current under nontoxic conditions a MFC-based biosensor should be operated at controlled anode potential, controlled pH and saturated substrate concentrations. 2009 Elsevier B.V. All rights reserved.
Performance and stability of a liquid anode high-temperature metal-air battery
NASA Astrophysics Data System (ADS)
Otaegui, L.; Rodriguez-Martinez, L. M.; Wang, L.; Laresgoiti, A.; Tsukamoto, H.; Han, M. H.; Tsai, C.-L.; Laresgoiti, I.; López, C. M.; Rojo, T.
2014-02-01
A High-Temperature Metal-Air Battery (HTMAB) that operates based on a simple redox reaction between molten metal and atmospheric oxygen at 600-1000 °C is presented. This innovative HTMAB concept combines the technology of conventional metal-air batteries with that of solid oxide fuel cells to provide a high energy density system for many applications. Electrochemical reversibility is demonstrated with 95% coulomb efficiency. Cell sealing has been identified as a key issue in order to determine the end-of-charge voltage, enhance coulomb efficiency and ensure long term stability. In this work, molten Sn is selected as anode material. Low utilization of the stored material due to precipitation of the SnO2 on the electrochemically active area limits the expected capacity, which should theoretically approach 903 mAh g-1. Nevertheless, more than 1000 charge/discharge cycles are performed during more than 1000 h at 800 °C, showing highly promising results of stability, reversibility and cyclability.
Study and optimization of negative polarity rod pinch diode as flash radiography source at 4.5 MV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etchessahar, Bertrand; Bicrel, Beatrice; Cassany, Bruno
2012-09-15
The negative polarity rod pinch diode (NPRPD) is a potential millimeter spot size radiography source for high voltage generators (4 to 8 MV) [Cooperstein et al., 'Considerations of rod-pinch diode operation in negative polarity for radiography,' in Proceedings of the 14th IEEE Pulsed Power Conference, 2003, pp. 975-978]. The NPRPD consists of a small diameter (few mm) cylindrical anode extending from the front end of the vacuum cell through a thin annular cathode, held by a central conductor. The polarity has been inverted when compared to the original rod pinch diode [Cooperstein et al., 'Theoretical modeling and experimental characterization ofmore » a rod-pinch diode,' Phys. Plasmas 8(10), 4618-4636 (2001)] in order to take advantage from the maximal x-ray emission toward the anode holder at such a voltage [Swanekamp et al., 'Evaluation of self-magnetically pinched diodes up to 10 MV as high resolution flash X-ray sources,' IEEE Trans. Plasma Sci. 32(5), 2004-2016 (2004). We have studied this diode at 4.5 MV, driven by the ASTERIX generator [Raboisson et al., 'ASTERIX, a high intensity X-ray generator,' in Proceedings of the 7th IEEE Pulsed Power Conference, 1989, pp. 567-570.]. This generator, made up of a capacitor bank and a Blumlein line, was initially designed to test the behavior of electronic devices under irradiation. In our experiments, the vacuum diode has been modified in order to set up flash a radiographic diode [Etchessahar et al., 'Negative polarity rod pinch diode experiments on the ASTERIX generator,' in Conference Records-Abstracts, 37th IEEE International Conference on Plasma Science, 2010]. The experiments and numerical simulations presented here allowed the observation and analysis of various physical phenomena associated with the diode operation. Also, the influence of several experimental parameters, such as cathode and anode diameters, materials and surface states, was examined. In order to achieve the most comprehensive characterization of the diode, both optical and x-ray diagnostics were used, including high speed multi-image ICCD (intensified CCD) cameras, streak camera, dosimeters, spot size measurements, and pinhole cameras. A set of new results have been obtained through this study. The plasma emission from the anode and cathode surfaces and its expansion appear to be critical for the diode functioning. Also, for the first time, potential sources of diode instability were identified. Finally, an optimal and stable diode configuration was found with the following parameters: 52 rad at 1 m (in Al) and 2.2 mm spot size.« less
Structural and characteristic variation of anodic oxide on pure Ti with anodization duration
NASA Astrophysics Data System (ADS)
Mizukoshi, Yoshiteru; Ohtsu, Naofhumi; Masahashi, Naoya
2013-10-01
Change in the structural and characteristic of the anodic oxide on pure Ti with the duration of anodization time was investigated. With the progress of the anodization, the phase of the formed TiO2 successively changed from anatase phase to rutile phase. In the transition process, peak intensities of rutile TiO2 1 0 1, 1 1 1 and 2 1 1 planes of X-ray diffraction characteristically increased. The contact angles of water droplets on the anodize TiO2 were monotonously decreased with the progress of the anodization except on the characteristically oriented rutile surface. In the evaluations of acetaldehyde photocatalysis under UV illumination, the anatase TiO2 anodized for short period exhibited high activities. On the other hand, when illuminated with visible light (>422 nm), rutile-structured TiO2 formed by anodization with a long duration exhibited superior photocatalytic activities probably due to high rutile fraction and sulfur incorporation from the electrolyte.
NASA Astrophysics Data System (ADS)
Connolly, Adam; Robson, Matthew D.; Schneider, Jürgen; Burton, Rebecca; Plank, Gernot; Bishop, Martin J.
2017-09-01
Novel low-energy defibrillation therapies are thought to be driven by virtual-electrodes (VEs), due to the interaction of applied monophasic electric shocks with fine-scale anatomical structures within the heart. Significant inter-species differences in the cardiac (micro)-anatomy exist, however, particularly with respect to the degree of endocardial trabeculations, which may underlie important differences in response to low-energy defibrillation protocols. Understanding the interaction of monophasic electric fields with the specific human micro-anatomy is therefore imperative in facilitating the translation and optimisation of these promising experimental therapies to the clinic. In this study, we sought to investigate how electric fields from implanted devices interact with the highly trabeculated human endocardial surface to better understand shock success in order to help optimise future clinical protocols. A bi-ventricular human computational model was constructed from high resolution (350 μm) ex-vivo MR data, including anatomically accurate endocardial structures. Monophasic shocks were applied between a basal right ventricular catheter and an exterior ground. Shocks of varying strengths were applied with both anodal [positive right ventricle (RV) electrode] and cathodal (negative RV electrode) polarities at different states of tissue refractoriness and during induced arrhythmias. Anodal shocks induced isolated positive VEs at the distal side of "detached" trabeculations, which rapidly spread into hyperpolarised tissue on the surrounding endocardial surfaces following the shock. Anodal shocks thus depolarised more tissue 10 ms after the shock than cathodal shocks where the propagation of activation from VEs induced on the proximal side of "detached" trabeculations was prevented due to refractory endocardium. Anodal shocks increased arrhythmia complexity more than cathodal shocks during failed anti-arrhythmia shocks. In conclusion, multiple detached trabeculations in the human ventricle interact with anodal stimuli to induce multiple secondary sources from VEs, facilitating more rapid shock-induced ventricular excitation compared to cathodal shocks. Such a mechanism may help explain inter-species differences in response to shocks and help to develop novel defibrillation strategies.
McNulty, David; Geaney, Hugh; O’Dwyer, Colm
2017-01-01
We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li2O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications. PMID:28186183
Back-streaming ion beam measurements in a Self Magnetic Insulated (SMP) electron diode
NASA Astrophysics Data System (ADS)
Mazarakis, Michael; Johnston, Mark; Kiefer, Mark; Leckbee, Josh; Webb, Timothy; Bennett, Nichelle; Droemer, Darryl; Welch, Dale; Nielsen, Dan; Ziska, Derek; Wilkins, Frank; Advance radiography department Team
2014-10-01
A self-magnetic pinch diode (SMP) is presently the electron diode of choice for high energy flash x-ray radiography utilizing pulsed power drivers. The Sandia National Laboratories RITS accelerator is presently fit with an SMP diode that generates very small electron beam spots. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulse of six 1.3 MV inductively insulated cavities. The diode's anode is made of high Z metal in order to produce copious and energetic flash x-rays for radiographic imaging of high areal density objects. In any high voltage inductive voltage adder (IVA) utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the anode-cathode (A-K) gap is problematic. This is even more difficult in an SMP diode where the A-K gap is very small (~1 cm) and the diode region very hostile. We are currently measuring the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip. We then are evaluating the A-K gap voltage by ion time of flight measurements supplemented with filtered Rogowski coils. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE- AC04-94AL850.
McNulty, David; Geaney, Hugh; O'Dwyer, Colm
2017-02-10
We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li 2 O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications.
Photonic crystal scintillators and methods of manufacture
Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose
2015-08-11
Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.
Extremely efficient flexible organic light-emitting diodes with modified graphene anode
NASA Astrophysics Data System (ADS)
Han, Tae-Hee; Lee, Youngbin; Choi, Mi-Ri; Woo, Seong-Hoon; Bae, Sang-Hoon; Hong, Byung Hee; Ahn, Jong-Hyun; Lee, Tae-Woo
2012-02-01
Although graphene films have a strong potential to replace indium tin oxide anodes in organic light-emitting diodes (OLEDs), to date, the luminous efficiency of OLEDs with graphene anodes has been limited by a lack of efficient methods to improve the low work function and reduce the sheet resistance of graphene films to the levels required for electrodes. Here, we fabricate flexible OLEDs by modifying the graphene anode to have a high work function and low sheet resistance, and thus achieve extremely high luminous efficiencies (37.2 lm W-1 in fluorescent OLEDs, 102.7 lm W-1 in phosphorescent OLEDs), which are significantly higher than those of optimized devices with an indium tin oxide anode (24.1 lm W-1 in fluorescent OLEDs, 85.6 lm W-1 in phosphorescent OLEDs). We also fabricate flexible white OLED lighting devices using the graphene anode. These results demonstrate the great potential of graphene anodes for use in a wide variety of high-performance flexible organic optoelectronics.
Sub-100-nm ordered silicon hole arrays by metal-assisted chemical etching
2013-01-01
Sub-100-nm silicon nanohole arrays were fabricated by a combination of the site-selective electroless deposition of noble metals through anodic porous alumina and the subsequent metal-assisted chemical etching. Under optimum conditions, the formation of deep straight holes with an ordered periodicity (e.g., 100 nm interval, 40 nm diameter, and high aspect ratio of 50) was successfully achieved. By using the present method, the fabrication of silicon nanohole arrays with 60-nm periodicity was also achieved. PMID:24090268
Characterization of Bending Magnetostriction in Iron-Gallium Alloys for Nanowire Sensor Applications
2008-01-01
presence of an applied voltage. The pores that self assemble in a typical commercial batch of anodized alu- minum oxide ( AAO ) have only short range order...Moskovits. Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size. J. Appl. Phys., 70:4421–4425, 1991. [96...The process begins by anodizing aluminum [92, 82] to produce porous tem- plates into which the nanowires can be grown. There are many recipes for the
Hollow Nanostructured Anode Materials for Li-Ion Batteries
2010-01-01
Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at the electrode surface. In this article, we review recent research activities on hollow nanostructured anode materials for Li-ion batteries, including carbon materials, metals, metal oxides, and their hybrid materials. The major goal of this review is to highlight some recent progresses in using these hollow nanomaterials as anode materials to develop Li-ion batteries with high capacity, high rate capability, and excellent cycling stability. PMID:21076674
Supported plasma sputtering apparatus for high deposition rate over large area
Moss, Ronald W.; McClanahan, Jr., Edwin D.; Laegreid, Nils
1977-01-01
A supported plasma sputtering apparatus is described having shaped electrical fields in the electron discharge region between the cathode and anode and the sputter region between the target and substrate while such regions are free of any externally applied magnetic field to provide a high deposition rate which is substantially uniform over a wide area. Plasma shaping electrodes separate from the anode and target shape the electrical fields in the electron discharge region and the sputter region to provide a high density plasma. The anode surrounds the target to cause substantially uniform sputtering over a large target area. In one embodiment the anode is in the form of an annular ring surrounding a flat target surface, such anode being provided with a ribbed upper surface which shields portions of the anode from exposure to sputtered material to maintain the electron discharge for a long stable operation. Several other embodiments accomplish the same result by using different anodes which either shield the anode from sputtered material, remove the sputtered coating on the anode by heating, or simultaneously mix sputtered metal from the auxiliary target with sputtered insulator from the main target so the resultant coating is conductive. A radio frequency potential alone or together with a D.C. potential, may be applied to the target for a greater sputtering rate.
NASA Astrophysics Data System (ADS)
Boutaghane, A.; Bouhadef, K.; Valensi, F.; Pellerin, S.; Benkedda, Y.
2011-04-01
This paper presents results of theoretical and experimental investigation of the welding arc in Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW) processes. A theoretical model consisting in simultaneous resolution of the set of conservation equations for mass, momentum, energy and current, Ohm's law and Maxwell equation is used to predict temperatures and current density distribution in argon welding arcs. A current density profile had to be assumed over the surface of the cathode as a boundary condition in order to make the theoretical calculations possible. In stationary GTAW process, this assumption leads to fair agreement with experimental results reported in literature with maximum arc temperatures of ~21 000 K. In contrast to the GTAW process, in GMAW process, the electrode is consumable and non-thermionic, and a realistic boundary condition of the current density is lacking. For establishing this crucial boundary condition which is the current density in the anode melting electrode, an original method is setup to enable the current density to be determined experimentally. High-speed camera (3000 images/s) is used to get geometrical dimensions of the welding wire used as anode. The total area of the melting anode covered by the arc plasma being determined, the current density at the anode surface can be calculated. For a 330 A arc, the current density at the melting anode surface is found to be of 5 × 107 A m-2 for a 1.2 mm diameter welding electrode.
Electron transfer from a carbon nanotube into vacuum under high electric fields
NASA Astrophysics Data System (ADS)
Filip, L. D.; Smith, R. C.; Carey, J. D.; Silva, S. R. P.
2009-05-01
The transfer of an electron from a carbon nanotube (CNT) tip into vacuum under a high electric field is considered beyond the usual one-dimensional semi-classical approach. A model of the potential energy outside the CNT cap is proposed in order to show the importance of the intrinsic CNT parameters such as radius, length and vacuum barrier height. This model also takes into account set-up parameters such as the shape of the anode and the anode-to-cathode distance, which are generically portable to any modelling study of electron emission from a tip emitter. Results obtained within our model compare well to experimental data. Moreover, in contrast to the usual one-dimensional Wentzel-Kramers-Brillouin description, our model retains the ability to explain non-standard features of the process of electron field emission from CNTs that arise as a result of the quantum behaviour of electrons on the surface of the CNT.
NASA Astrophysics Data System (ADS)
Peighambardoust, Naeimeh-Sadat; Khameneh-Asl, Shahin; Azimi, Hamid
2017-05-01
With rising demand for using solar cell systems for energy and environmental applications, considerable interest in anode materials of these cells has dramatically emerged. In this work, TiO2 nanotubular electrodes of varying thicknesses as anode were fabricated using effective process in a short time by sonoelectrochemical anodizing of Ti using an organic electrolyte, containing Na2[H2EDTA]. Long TiO2 nanotubes about 30-40 μm thick containing ordered hexagonal TiO2 were achieved through manipulating anodization parameters. Dye-sensitized solar cells (DSSCs) with different TiO2 electrode morphologies of varying thicknesses were compared to DSSCs based on TiO2 Nanoparticle electrodes. The effect of controlling parameters of the sonoelectrochemical process including surface preparation and anodizing time was investigated. This report brings to attention the desirable properties of the structurally oriented TiO2 for dye-sensitized solar cell applications. It found that the best cell performance was achieved about 3.14% in the case of using TiO2 NT layers that were treated by TiCl4 treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaway, Sarang M.; Qiang, Zhe; Xia, Yanfeng
Emergent lithium-ion (Li +) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li +, but in many cases these nanostructures evolve during electrochemical charging–discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporousmore » NiCo 2O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge–discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Anodes with larger ordered mesopores (17–28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. Furthermore, this preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; but, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge–discharge cycles leads to capacity decay in battery performance. We translate these multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge–discharge cycles.« less
Bhaway, Sarang M.; Qiang, Zhe; Xia, Yanfeng; ...
2017-02-07
Emergent lithium-ion (Li +) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li +, but in many cases these nanostructures evolve during electrochemical charging–discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporousmore » NiCo 2O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge–discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Anodes with larger ordered mesopores (17–28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. Furthermore, this preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; but, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge–discharge cycles leads to capacity decay in battery performance. We translate these multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge–discharge cycles.« less
Bhaway, Sarang M; Qiang, Zhe; Xia, Yanfeng; Xia, Xuhui; Lee, Byeongdu; Yager, Kevin G; Zhang, Lihua; Kisslinger, Kim; Chen, Yu-Ming; Liu, Kewei; Zhu, Yu; Vogt, Bryan D
2017-02-28
Emergent lithium-ion (Li + ) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li + , but in many cases these nanostructures evolve during electrochemical charging-discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporous NiCo 2 O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge-discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Conversely, anodes with larger ordered mesopores (17-28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. This preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; however, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge-discharge cycles leads to capacity decay in battery performance. These multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) are translated to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge-discharge cycles.
Treatment of Ni-EDTA containing wastewater by electrocoagulation using iron scraps packed-bed anode.
Ye, Xiaokun; Zhang, Junya; Zhang, Yan; Lv, Yuancai; Dou, Rongni; Wen, Shulong; Li, Lianghao; Chen, Yuancai; Hu, YongYou
2016-12-01
The unique electrocoagulator proposed in this study is highly efficient at removing Ni-EDTA, providing a potential remediation option for wastewater containing lower concentrations of Ni-EDTA (Ni ≤ 10 mg L -1 ). In the electrocoagulation (EC) system, cylindrical graphite was used as a cathode, and a packed-bed formed from iron scraps was used as an anode. The results showed that the removal of Ni-EDTA increased with the application of current and favoured acidic conditions. We also found that the iron scrap packed-bed anode was superior in its treatment ability and specific energy consumption (SECS) compared with the iron rod anode. In addition, the packed density and temperature had a large influence on the energy consumption (ECS). Over 94.3% of Ni and 95.8% of TOC were removed when conducting the EC treatment at an applied current of 0.5 A, initial pH of 3, air-purged rate 0.2 L min -1 , anode packed density of 400 kg m -3 temperature of 313 K and time of 30 min. SEM analysis of the iron scraps indicated that the specific area of the anode increased after the EC. The XRD analysis of flocs produced during EC revealed that hematite (α-Fe 2 O 3 ) and magnetite (Fe 3 O 4 ) were the main by-products under aerobic and anoxic conditions, respectively. A kinetic study demonstrated that the removal of Ni-EDTA followed a first-order model with the current parameters. Moreover, the removal efficiency of real wastewater was essentially consistent with that of synthetic wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Heat Transfer Affected by Transverse Magnetic Field using 3D Modeling of Arc Plasma
NASA Astrophysics Data System (ADS)
Maeda, Yoshifumi; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru
2016-10-01
Gas shielded metal arc welding is used to join the various metal because this is the high quality joining technology. Thus, this welding is used for a welding of large buildings such as bridges and LNG tanks. However, the welding defect caused by the heat transfer decrement may occur with increasing the wind velocity. This is because that the convection loss increases because the arc deflects to leeward side with increasing the wind velocity. In order to prevent from the arc deflection, it is used that the transverse magnetic field is applied to the arc. However, the arc deflection occurs with increasing the transverse magnetic field excessively. The energy balance of the arc is changed with increasing the convection loss caused by the arc deflection, and the heat transfer to the anode decreases. Therefore, the analysis including the arc and anode is necessary to elucidate the heat transfer to the anode. In this paper, the heat transfer affected by the transverse magnetic field using 3D modeling of the arc plasma is elucidated. The heat transfer to the anode is calculated by using the EMTF(electromagnetic thermal fluid) simulation with increasing the transverse magnetic field. As a result, the heat transfer decreased with increasing the transverse magnetic field.
Dominguez, Carmen M; Oturan, Nihal; Romero, Arturo; Santos, Aurora; Oturan, Mehmet A
2018-05-15
This study focuses on the effect of electrode materials on abatement of lindane (an organochlorine pesticide) by electrooxidation process. Comparative performances of different anodic (platinum (Pt), dimensionally stable anode (DSA) and boron-doped diamond (BDD)) and cathodic (carbon sponge (CS), carbon felt (CF) and stainless steel (SS)) materials on lindane electrooxidation and mineralization were investigated. Special attention was paid to determine the role of chlorine active species during the electrooxidation process. The results showed that better performances were obtained when using a BDD anode and CF cathode cell. The influence of the current density was assessed to optimize the oxidation of lindane and the mineralization of its aqueous solution. A quick (10 min) and complete oxidation of 10 mg L -1 lindane solution and relatively high mineralization degree (80% TOC removal) at 4 h electrolysis were achieved at 8.33 mA cm -2 current density. Lindane was quickly oxidized by in-situ generated hydroxyl radicals, (M( • OH)), formed from oxidation of water on the anode (M) surface following pseudo first-order reaction kinetics. Formation of chlorinated and hydroxylated intermediates and carboxylic acids during the treatment were identified and a plausible mineralization pathway of lindane by hydroxyl radicals was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, R. F.; Chang, W. H.; Jiang, L. F.; Qu, B.; Zhang, S. F.; Qiao, L. P.; Xiang, J. H.
2016-04-01
Micro-arc oxidation (MAO) is an effective method to produce ceramic coatings on magnesium alloys and can considerably improve their corrosion resistance. The coating properties are closely related with microcracks, which are always inevitably developed on the coating surface. In order to find out the formation and development regularity of microcracks, anodic coatings developed on two-phase AZ91HP after different anodizing times were fabricated in a solution containing environmentally friendly organic electrolyte phytic acid. The results show that anodic film is initially developed on the α phase. At 50 s, anodic coatings begin to develop on the β phase, evidencing the formation of a rough area. Due to the coating successive development, the microcracks initially appear at the boundary between the initially formed coating on the α phase and the subsequently developed coating on the β phase. With the prolonging treatment time, the microcracks near the β phase become evident. After treating for 3 min, the originally rough area on the β phase disappears and the coatings become almost uniform with microcracks randomly distributed on the sample surface. Inorganic phosphates are found in MAO coatings, suggesting that phytate salts are decomposed due to the high instantaneous temperature on the sample surface resulted from spark discharge.
Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes.
Wu, Tangqin; Chen, Haodong; Wang, Qingsong; Sun, Jinhua
2018-02-15
The thermal stability evaluation of materials in a soft-pack commercial cell is tested using C80 calorimeter, including anode, cathode, separator and full cell (mixing of the three materials including additional electrolyte). Thermal runaway characteristic of the commercial cell is tested on the accelerating rate calorimeter (ARC) with two heating modes, including internal heating mode and external heating mode. The results show that the thermal stability of internal material for tested cell follows the below order: anode
Polat, B D; Keleş, O
2014-05-01
We investigate the anode performance of non ordered and ordered nanostructured Cu-Sn thin films deposited via electron beam deposition technique. The ordered nanostructured Cu-Sn thin film having nano-porosities was fabricated using an oblique (co)deposition technique. Our results showed that the nano structured Cu-Sn thin film containing Cu-Sn nanorods had higher initial anodic capacity (790 mA h g(-)) than that of the non ordered thin film (330 mA h g(-)). But the capacity of the ordered nanostructured Cu-Sn thin film diminished after the first cycle and a steady state capacity value around 300 mA h g(-) is sustainable in following up to 80th cycle, which is attributed to the composition and morphology of the thin film. The presence of copper containing Sn nanorods leading to form nano-porosities as interstitial spaces among them, enhanced lithium ions movement within thin film and increased the thin film tolerance against the stress generated because of the drastic volume change occurred during lithiation-delithiation processes; hence, homogenously distributed porosities increased the cycle life of the thin film.
Advanced morphological analysis of patterns of thin anodic porous alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toccafondi, C.; Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163; Stępniowski, W.J.
2014-08-15
Different conditions of fabrication of thin anodic porous alumina on glass substrates have been explored, obtaining two sets of samples with varying pore density and porosity, respectively. The patterns of pores have been imaged by high resolution scanning electron microscopy and analyzed by innovative methods. The regularity ratio has been extracted from radial profiles of the fast Fourier transforms of the images. Additionally, the Minkowski measures have been calculated. It was first observed that the regularity ratio averaged across all directions is properly corrected by the coefficient previously determined in the literature. Furthermore, the angularly averaged regularity ratio for themore » thin porous alumina made during short single-step anodizations is lower than that of hexagonal patterns of pores as for thick porous alumina from aluminum electropolishing and two-step anodization. Therefore, the regularity ratio represents a reliable measure of pattern order. At the same time, the lower angular spread of the regularity ratio shows that disordered porous alumina is more isotropic. Within each set, when changing either pore density or porosity, both regularity and isotropy remain rather constant, showing consistent fabrication quality of the experimental patterns. Minor deviations are tentatively discussed with the aid of the Minkowski measures, and the slight decrease in both regularity and isotropy for the final data-points of the porosity set is ascribed to excess pore opening and consequent pore merging. - Highlights: • Thin porous alumina is partly self-ordered and pattern analysis is required. • Regularity ratio is often misused: we fix the averaging and consider its spread. • We also apply the mathematical tool of Minkowski measures, new in this field. • Regularity ratio shows pattern isotropy and Minkowski helps in assessment. • General agreement with perfect artificial patterns confirms the good manufacturing.« less
Chennell, Philip; Feschet-Chassot, Emmanuelle; Sautou, Valérie; Mailhot-Jensen, Bénédicte
2018-05-01
Thermoplastic polyurethanes are widely used in medical devices. In order to limit some of their shortfalls, like microbial attachment, surfaces modifications can be required. In this work, a two-step replication method was used to create ordered macroporous and mesoporous thermoplastic polyurethane surfaces using anodic aluminum oxide as master template. The intermediate mould materials that were tested were polystyrene and a polyacrylate resin with inorganic filler. All obtained surfaces were characterized by scanning electron microscopy. The initial anodic aluminum oxide surfaces possessed macro or mesopores, function of anodization conditions. The intermediate mould structure correctly replicated the pattern, but the polystyrene surface structures (pillars) were less resistant than the polyacrylate resin ones. The thermoplastic polyurethane pattern possessed macropores or mesopores of about 130 nm or 46 nm diameter and of about 300 nm or 99 nm interpore distances, respectively, in accordance with the initial pattern. Thermoplastic polyurethanes pore depth was however less than initial anodic aluminum oxide pore depth, linked to an incomplete replication during intermediate mould preparation (60 to 90% depth replication). The correct replication of the original pattern confirms that this novel fabrication method is a promising route for surface patterning of thermoplastic polyurethanes that could be used for medical applications.
Cohn, Gil; Eichel, Rüdiger A; Ein-Eli, Yair
2013-03-07
The mechanism of discharge termination in silicon-air batteries, employing a silicon wafer anode, a room-temperature fluorohydrogenate ionic liquid electrolyte and an air cathode membrane, is investigated using a wide range of tools. EIS studies indicate that the interfacial impedance between the electrolyte and the silicon wafer increases upon continuous discharge. In addition, it is shown that the impedance of the air cathode-electrolyte interface is several orders of magnitude lower than that of the anode. Equivalent circuit fitting parameters indicate the difference in the anode-electrolyte interface characteristics for different types of silicon wafers. Evolution of porous silicon surfaces at the anode and their properties, by means of estimated circuit parameters, is also presented. Moreover, it is found that the silicon anode potential has the highest negative impact on the battery discharge voltage, while the air cathode potential is actually stable and invariable along the whole discharge period. The discharge capacity of the battery can be increased significantly by mechanically replacing the silicon anode.
Surface treatments for aluminium alloys
NASA Astrophysics Data System (ADS)
Ardelean, M.; Lascău, S.; Ardelean, E.; Josan, A.
2018-01-01
Typically, in contact with the atmosphere, the aluminium surface is covered with an aluminium oxide layer, with a thickness of less than 1-2μm. Due to its low thickness, high porosity and low mechanical strength, this layer does not protect the metal from corrosion. Anodizing for protective and decorative purposes is the most common method of superficial oxidation processes and is carried out through anodic oxidation. The oxide films, resulted from anodizing, are porous, have a thickness of 20-50μm, and are heat-resistant, stable to water vapour and other corrosion agents. Hard anodizing complies with the same obtains principles as well as decorative and protective anodization. The difference is in that hard anodizing is achieved at low temperatures and high intensity of electric current. In the paper are presented the results of decorative and hard anodization for specimens made from several aluminium alloys in terms of the appearance of the specimens and of the thickness of the anodized.
Highly Ordered TiO2 Microcones with High Rate Performance for Enhanced Lithium-Ion Storage.
Rhee, Oonhee; Lee, Gibaek; Choi, Jinsub
2016-06-15
The perpendicularly oriented anatase TiO2 microcones for Li-ion battery application were synthesized via anodization of a Ti foil in aqueous HF + H3PO4 solution. The TiO2 microcones exhibited a high active surface area with a hollow core depending on applied voltage and reaction time, confirmed by SEM, XRD and TEM with EDS mapping. Li insertion/desertion into TiO2 microcones was evaluated for the first time in half-cell configuration in terms of various current density and long-term cyclability. The electrochemical experiments demonstrated that the as-prepared TiO2 microcones as anode material exhibited 3 times higher capacity as compared with TiO2 nanotubular structures, excellent rate performance (0.054 mAhcm(-2) even at 50 C) and reliable capacity retention during 500 cycles, which was attributed to facile diffusion of Li-ions induced in hollow anatase TiO2 microcones structure with multilayered nanofragment.
Li, Xing; Zheng, Jianming; Engelhard, Mark H; Mei, Donghai; Li, Qiuyan; Jiao, Shuhong; Liu, Ning; Zhao, Wengao; Zhang, Ji-Guang; Xu, Wu
2018-01-24
The effects of lithium imide and lithium orthoborate dual-salt electrolytes of different salt chemistries in carbonate solvents on the cycling stability of lithium (Li) metal batteries are systematically and comparatively investigated. Two imide salts (LiTFSI and LiFSI) and two orthoborate salts (LiBOB and LiDFOB) are chosen for this study and compared with the conventional LiPF 6 salt. Density functional theory calculations indicate that the chemical and electrochemical stabilities rank in the following order: LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB > LiFSI-LiBOB. The experimental cycling stability of the Li metal batteries with the electrolytes ranks in the following order: LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB > LiPF 6 > LiFSI-LiBOB, which is in well accordance with the calculation results. The LiTFSI-LiBOB can effectively protect the Al substrate and form a more robust surface film on Li metal anode, while the LiFSI-LiBOB results in serious corrosion to the stainless steel cell case and a thicker and looser surface film on Li anode. The key findings of this work emphasize that the salt chemistry is critically important for enhancing the interfacial stability of Li metal anode and should be carefully manipulated in the development of high-performance Li metal batteries.
Yolk-shell structured Sb@C anodes for high energy Na-ion batteries
Song, Junhua; Yan, Pengfei; Luo, Langli; ...
2017-09-04
Despite great advances in sodium-ion battery developments, the search for high energy and stable anode materials remains a challenge. Alloy or conversion-typed anode materials are attractive candidates of high specific capacity and low voltage potential, yet their applications are hampered by the large volume expansion and hence poor electrochemical reversibility and fast capacity fade. Here in this paper, we use antimony (Sb) as an example to demonstrate the use of yolk-shell structured anodes for high energy Na-ion batteries. The Sb@C yolk-shell structure prepared by controlled reduction and selective removal of Sb 2O 3 from carbon coated Sb 2O 3 nanoparticlesmore » can accommodate the Sb swelling upon sodiation and improve the structural/electrical integrity against pulverization. It delivers a high specific capacity of ~ 554 mAh g -1, good rate capability (315 mhA g-1 at 10 C rate) and long cyclability (92% capacity retention over 200 cycles). Full-cells of O3-Na 0.9[Cu0.22Fe 0.30Mn 0.48]O 2 cathodes and Sb@C-hard carbon composite anodes demonstrate a high specific energy of ~ 130 Wh kg-1 (based on the total mass of cathode and anode) in the voltage range of 2.0–4.0 V, ~ 1.5 times energy of full-cells with similar design using hard carbon anodes.« less
Yolk-shell structured Sb@C anodes for high energy Na-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Junhua; Yan, Pengfei; Luo, Langli
Despite great advances in sodium-ion battery developments, the search for high energy and stable anode materials remains a challenge. Alloy or conversion-typed anode materials are attractive candidates of high specific capacity and low voltage potential, yet their applications are hampered by the large volume expansion and hence poor electrochemical reversibility and fast capacity fade. Here, we use antimony (Sb) as an example to demonstrate the use of yolk-shell structured anodes for high energy Na-ion batteries. The Sb@C yolk-shell structure prepared by controlled reduction and selective removal of Sb2O3 from carbon coated Sb2O3 nanoparticles can accommodate the Sb swelling upon sodiationmore » and improve the structural/electrical integrity against pulverization. It delivers a high specific capacity of ~554 mAh•g-1, good rate capability (315 mhA•g-1 at 10C rate) and long cyclability (92% capacity retention over 200 cycles). Full-cells of O3-Na0.9[Cu0.22Fe0.30Mn0.48]O2 cathodes and Sb@C-hard carbon composite anodes demonstrate a high specific energy of ~130 Wh•kg-1 (based on the total mass of cathode and anode) in the voltage range of 2.0-4.0 V, ~1.5 times energy of full-cells with similar design using hard carbon anodes.« less
Yolk-shell structured Sb@C anodes for high energy Na-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Junhua; Yan, Pengfei; Luo, Langli
Despite great advances in sodium-ion battery developments, the search for high energy and stable anode materials remains a challenge. Alloy or conversion-typed anode materials are attractive candidates of high specific capacity and low voltage potential, yet their applications are hampered by the large volume expansion and hence poor electrochemical reversibility and fast capacity fade. Here in this paper, we use antimony (Sb) as an example to demonstrate the use of yolk-shell structured anodes for high energy Na-ion batteries. The Sb@C yolk-shell structure prepared by controlled reduction and selective removal of Sb 2O 3 from carbon coated Sb 2O 3 nanoparticlesmore » can accommodate the Sb swelling upon sodiation and improve the structural/electrical integrity against pulverization. It delivers a high specific capacity of ~ 554 mAh g -1, good rate capability (315 mhA g-1 at 10 C rate) and long cyclability (92% capacity retention over 200 cycles). Full-cells of O3-Na 0.9[Cu0.22Fe 0.30Mn 0.48]O 2 cathodes and Sb@C-hard carbon composite anodes demonstrate a high specific energy of ~ 130 Wh kg-1 (based on the total mass of cathode and anode) in the voltage range of 2.0–4.0 V, ~ 1.5 times energy of full-cells with similar design using hard carbon anodes.« less
NASA Astrophysics Data System (ADS)
Fattah-Alhosseini, Arash; Khan, Hamid Yazdani
2017-06-01
This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.
Bae, Kiho; Jang, Dong Young; Choi, Hyung Jong; Kim, Donghwan; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won; Shim, Joon Hyung
2017-02-23
In reducing the high operating temperatures (≥800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (≤600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.
High Biofilm Conductivity Maintained Despite Anode Potential Changes in a Geobacter-Enriched Biofilm
This study systematically assessed intracellular electron transfer (IET) and extracellular electron transfer (EET) kinetics with respect to anode potential (Eanode) in a mixed-culture biofilm anode enriched with Geobacter spp. High biofilm conductivity (0.96–1.24 mScm^-1) was mai...
Facile synthesis of a SiOx/asphalt membrane for high performance lithium-ion battery anodes.
Xu, Quan; Sun, Jian-Kun; Li, Ge; Li, Jin-Yi; Yin, Ya-Xia; Guo, Yu-Guo
2017-11-07
Herein, a novel SiO x /asphalt membrane was facilely synthesized via demulsification of porous SiO x microspheres. After high temperature pyrolysis, SiO x /carbon composites not only could function as binder-free anodes, but could also exhibit excellent cycling stability and high initial Coulombic efficiency as anodes for practical application.
Halogen effect for improving high temperature oxidation resistance of Ti-50Al by anodization
NASA Astrophysics Data System (ADS)
Mo, Min-Hua; Wu, Lian-Kui; Cao, Hua-Zhen; Lin, Jun-Pin; Zheng, Guo-Qu
2017-06-01
The high temperature oxidation resistance of Ti-50Al was significantly improved via halogen effect which was achieved by anodizing in an ethylene glycol solution containing with fluorine ion. The anodized Ti-50Al with holes and micro-cracks could be self-repaired during oxidation at 1000 °C. The thickness of the oxide scale increases with the prolonging of oxidation time. On the basis of halogen effect for improving the high temperature oxidation resistance of Ti-50Al by anodization, only fluorine addition into the electrolyte can effectively improve the high temperature oxidation resistance of Ti-50Al.
Superhydrophilicity of novel anodic alumina nanofibers films and their formation mechanism
NASA Astrophysics Data System (ADS)
Peng, Rong; Yang, Wulin; Fu, Licai; Zhu, Jiajun; Li, Deyi; Zhou, Lingping
2017-06-01
A novel anodic alumina nanofibers structure, which is different from the traditional porous anodic structure, has been quickly fabricated via anodizing in a new electrolyte, pyrophosphoric acid. The effects of the solution concentration and the anodizing time on the formation of the anodic alumina nanofibers were analyzed. The results show that the nanostructure of anodic alumina can change to the nanofiber oxide from the porous oxide by increasing the solution concentration. Prolonging the anodizing time is beneficial to obtain alumina nanofibers at high solution concentration. Growth behavior of the alumina nanofibers was also discussed by scanning electron microscopy observations. Owing to the unique hexagonal structure of anodic alumina as well as the preferential chemical dissolution between the porous anodic alumina and the anodic alumina nanotips, the slightly soluble anodic alumina nanotips could form novel alumina nanofibers during anodizing. The results show that the nanofibers-covered aluminum surface exhibits superhydrophilic property, with a near-zero water contact angle. Such alumina nanofibers with superhydrophilic property could be used for various potential applications.
Process for producing a high emittance coating and resulting article
NASA Technical Reports Server (NTRS)
Le, Huong G. (Inventor); O'Brien, Dudley L. (Inventor)
1993-01-01
Process for anodizing aluminum or its alloys to obtain a surface particularly having high infrared emittance by anodizing an aluminum or aluminum alloy substrate surface in an aqueous sulfuric acid solution at elevated temperature and by a step-wise current density procedure, followed by sealing the resulting anodized surface. In a preferred embodiment the aluminum or aluminum alloy substrate is first alkaline cleaned and then chemically brightened in an acid bath The resulting cleaned substrate is anodized in a 15% by weight sulfuric acid bath maintained at a temperature of 30.degree. C. Anodizing is carried out by a step-wise current density procedure at 19 amperes per square ft. (ASF) for 20 minutes, 15 ASF for 20 minutes and 10 ASF for 20 minutes. After anodizing the sample is sealed by immersion in water at 200.degree. F. and then air dried. The resulting coating has a high infrared emissivity of about 0.92 and a solar absorptivity of about 0.2, for a 5657 aluminum alloy, and a relatively thick anodic coating of about 1 mil.
Development of 10×10 Matrix-anode MCP-PMT
NASA Astrophysics Data System (ADS)
Yang, Jie; Li, Yongbin; Xu, Pengxiao; Zhao, Wenjin
2018-02-01
10×10 matrix-anode is developed by high-temperature co-fired ceramics (HTCC) technology. Based on the new matrix-anode, a new kind of photon counting imaging detector - 10×10 matrix-anode MCP-PMT is developed, and its performance parameters are tested. HTCC technology is suitable for the MCP-PMT's air impermeability and its baking process. Its response uniformity is better than the metal-ceramic or metal-glass sealing anode, and it is also a promising method to realize a higher density matrix-anode.
Development of Ni-Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Miyazaki, Kazunari; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi
2017-10-01
In this study, the availability of Ni-Ba(Zr,Y)O3-δ (BZY) cermet for the anode of direct ammonia-fueled solid oxide fuel cells (SOFCs) is evaluated. In this device, the anodes need to be active for the catalytic ammonia decomposition as well as the electrochemical hydrogen oxidation. In the catalytic activity test, ammonia decomposes completely over Ni-BZY at ca. 600 °C, while higher temperature is required to accomplish the complete decomposition over the conventional SOFC anode of Ni-yttria-stabilized zirconia cermet. The high activity of Ni-BZY is attributed to the high basicity of BZY and the high resistance to hydrogen poisoning effect. The electrochemical property of Ni-BZY anode is also evaluated with the anode-supported cell of Ni-BZY|BZY|Pt at 600-700 °C with feeding ammonia or hydrogen as a fuel. Since the residence time of ammonia fuel in the thick Ni-BZY anode is long, the difference in the cell performance between two fuels is relatively small. Furthermore, it is proved that the steam concentration in the fuel strongly affects the cell performance. We find that this factor is important to satisfy the above mentioned requirements for the anode of direct ammonia-fueled SOFCs. Throughout this study, it is concluded that Ni-BZY cermet will be a promising anode.
NASA Astrophysics Data System (ADS)
Hekmat, F.; Sohrabi, B.; Rahmanifar, M. S.; Jalali, A.
2015-06-01
Multi-wall carbon nanotubes (MW-CNTs) have been arranged in nanochannels of anodic aluminum oxide template (AAO) by electrophoretic deposition (EPD) to make a vertically-aligned carbon nanotube (VA-CNT) based electrode. Well ordered AAO templates were prepared by a two-step anodizing process by applying a constant voltage of 45 V in oxalic acid solution. The stabilized CNTs in a water-soluble room temperature ionic liquid (1-methyl-3-octadecylimidazolium bromide), were deposited in the pores of AAO templates which were conductive by deposition of Ni nanoparticles in the bottom of pores. In order to obtain ideal results, different EPD parameters, such as concentration of MWCNTs and ionic liquid on stability of MWCNT suspensions, deposition time and voltage which are applied in EPD process and also optimal conditions for anodizing of template were investigated. The capacitive performance of prepared electrodes was analyzed by measuring the specific capacitance from cyclic voltammograms and the charge-discharge curves. A maximum value of 50 Fg-1 at the scan rate of 20 mV s-1was achieved for the specific capacitance.
Wang, Jianbing; Zhi, Dan; Zhou, Hao; He, Xuwen; Zhang, Dayi
2018-06-15
Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti 4 O 7 anode prepared by plasma spraying. Morphological data and composition analysis indicated a compact coating layer on the anode, which had the characteristic peaks of Ti 4 O 7 as active constituent. The TC electrochemical oxidation on the Ti/Ti 4 O 7 anode followed a pseudo-first-order kinetics, and the TC removal efficiency reached 95.8% in 40 min. The influential factors on TC decay kinetics included current density, anode-cathode distance and initial TC concentration. This anode also had high durability and the TC removal efficiency was maintained over 95% after five times reuse. For the first time, we unraveled the complete pathway of the TC electrochemical oxidation using high-performance liquid chromatograph (HPLC) and gas chromatograph (GC) coupled with mass spectrometer (MS). ·OH radicals produced from electrochemical oxidation attack the double bond, phenolic group and amine group of TC, forming a primary intermediate (m/z = 461), secondary intermediates (m/z = 432, 477 and 509) and tertiary intermediates (m/z = 480, 448 and 525). The latter were further oxidized to the key downstream intermediate (m/z = 496), followed by further downstream intermediates (m/z = 451, 412, 396, 367, 351, 298 and 253) and eventually short-chain carboxylic acids. We also evaluated the toxicity change during the electrochemical oxidation process with bioluminescent bacteria. The bioluminescence inhibition ratio peaked at 10 min (55.41%), likely owing to the high toxicity of intermediates with m/z = 461, 432 and 477 as obtained from quantitative structure activity relationship (QSAR) analysis. The bioluminescence inhibition ratio eventually decreased to 16.78% in 40 min due to further transformation of TC and intermediates. By comprehensively analyzing the influential factors and complete degradation pathway of TC electrochemical oxidation on the Ti/Ti 4 O 7 anode, our research provides deeper insights into the risk assessment of intermediates and their toxicity, assigning new perspectives for practical electrochemical oxidation to effectively eliminate the amount and toxicity of TC and other antibiotics in wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.
Enhanced ablation of small anodes in a carbon nanotube arc discharge
NASA Astrophysics Data System (ADS)
Raitses, Yevgeny; Fetterman, Abraham; Keidar, Michael
2008-11-01
An atmospheric pressure helium arc discharge is used for carbon nanotube synthesis. The arc discharge operates in an anodic mode with the ablating anode made from a graphite material. For such conditions, models predict the electron-repelling (negative) anode sheath. In the present experiments, the anode ablation rate is investigated as a function of the anode diameter. It is found that anomalously high ablation occurs for small anode diameters (< 0.4 cm). This result is explained by the formation of an electron-attracting (positive) anode sheath leading to increased power losses on small anodes as compared to larger anodes [1]. The suggested mechanism for the positive anode sheath formation is plasma convergence. The increased ablation rate due to this positive sheath could imply a greater yield of carbon nanotube production. [1] A. J. Fetterman, Y. Raitses and M. Keidar, Carbon (2008).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Donghai; Yi, Ran; Chen, Shuru
Embodiments provide a hybrid supercapacitor exhibiting high energy and power densities enabled by a high-performance lithium-alloy anode coupled with a porous carbon cathode in an electrolyte containing lithium salt. Embodiments include a size reduced silicon oxide anode, a boron-doped silicon oxide anode, and/or a carbon coated silicon oxide anode, which may improve cycling stability and rate performance. Further embodiments include a hybrid supercapacitor system using a Li-active anode in an electrolyte including LiPF6 in a mixture of ethylene carbonate, diethyl carbonate, and dimethyl carbonate (EC:DEC:DMC, 2:1:2 by vol.) and 10 wt % fluoroethylene carbonate (FEC), which may reduce the self-dischargemore » rate.« less
NASA Astrophysics Data System (ADS)
Shin, Kang Sik; Jang, Eunseok; Cho, Jun-Sik; Yoo, Jinsu; Park, Joo Hyung; Byungsung, O.
2015-09-01
In recent decades, researchers have improved the efficiency of amorphous silicon solar cells in many ways. One of the easiest and most practical methods to improve solar-cell efficiency is adopting a back surface reflector (BSR) as the bottom layer or as the substrate. The BSR reflects the incident light back to the absorber layer in a solar cell, thus elongating the light path and causing the so-called "light trapping effect". The elongation of the light path in certain wavelength ranges can be enhanced with the proper scale of BSR surface structure or morphology. An aluminum substrate with a surface modified by aluminum anodizing is used to improve the optical properties for applications in amorphous silicon solar cells as a BSR in this research due to the high reflectivity and the low material cost. The solar cells with a BSR were formed and analyzed by using the following procedures: First, the surface of the aluminum substrate was degreased by using acetone, ethanol and distilled water, and it was chemically polished in a dilute alkali solution. After the cleaning process, the aluminum surface's morphology was modified by using a controlled anodization in a dilute acid solution to form oxide on the surface. The oxidized film was etched off by using an alkali solution to leave an aluminum surface with randomly-ordered dimple-patterns of approximately one micrometer in size. The anodizing conditions and the anodized aluminum surfaces after the oxide layer had been removed were systematically investigated according to the applied voltage. Finally, amorphous silicon solar cells were deposited on a modified aluminum plate by using dc magnetron sputtering. The surfaces of the anodized aluminum were observed by using field-emission scanning electron microscopy. The total and the diffuse reflectances of the surface-modified aluminum sheets were measured by using UV spectroscopy. We observed that the diffuse reflectances increased with increasing anodizing voltage. The properties of the solar cells on anodized aluminum substrates were analyzed by using a solar simulator.
Formation of self-ordered porous anodized alumina template for growing tungsten trioxide nanowires
NASA Astrophysics Data System (ADS)
Hussain, Tajamal; Shah, Asma Tufail; Shehzad, Khurram; Mujahid, Adnan; Farooqi, Zahoor Hussain; Raza, Muhammad Hamid; Ahmed, Mirza Nadeem; Nisa, Zaib Un
2015-12-01
Uniform porous anodized aluminum oxide (AAO) membrane has been synthesized by two-step anodization for fabricating tungsten trioxide (WO3) nanowires. Under assayed conditions, uniform porous structure of alumina (Al2O3) membrane with long range ordered hexagonal arrangements of nanopores was achieved. The self-assembled template possesses pores of internal diameter of 50 nm and interpore distance ( d int) of 80 nm with a thickness of about 80 µm, i.e., used for fabrication of nanostructures. WO3 nanowires have been fabricated by simple electroless deposition method inside Al2O3 nanopores. SEM images show tungsten trioxide nanowire with internal diameter of about 50 nm, similar to porous diameter of AAO template. XRD results showed that nanowires exist in cubic crystalline state with minor proportion of monoclinic phase.
Electrolyte for high voltage Li/LiMn 1.9Co 0.1O 4 cells
NASA Astrophysics Data System (ADS)
Hayashi, Katsuya; Nemoto, Yasue; Tobishima, Shin-ichi; Yamaki, Jun-ichi
An electrolyte for high voltage lithium metal anode cells must simultaneously satisfy at least the following requirements; (i) high cycling efficiency on the lithium metal anode; (ii) higher oxidation potential than the charging voltage, and (iii) high specific conductivity. We have examined various electrolytes for lithium metal anode cells using a high voltage cathode, LiMn 1.9Co 0.1O 4. Of the electrolytes resistant to high voltage that we used, a system containing 60 to 90 vol.% of dimethyl carbonate (DMC) mixed with ethylene carbonate (EC) and 1.0 M lithium hexafluorophosphate (LiPF 6) provided the best cycling efficiency on a lithium metal anode, as well as a high specific conductivity around 10 mS cm -1 at 20 °C.
Silicon oxide based high capacity anode materials for lithium ion batteries
Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet
2017-03-21
Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.
NASA Astrophysics Data System (ADS)
Takami, Norio; Harada, Yasuhiro; Iwasaki, Takuya; Hoshina, Keigo; Yoshida, Yorikazu
2015-01-01
Electrochemical properties of micro-size spherical TiO2(B) secondary particles have been investigated in order to develop TiO2(B) anodes for lithium-ion batteries with high-power and long-life performance. The spherical TiO2(B) electrodes with a small amount of a carbon conductor additive had a high electrode density of 2.2 g cm-3 and a volumetric reversible capacity of 475 mAh cm-3 comparable to that of graphite electrodes. Compared with nano-size needle-like TiO2(B) electrodes, the spherical TiO2(B) electrodes exhibited higher-rate discharge capability and longer-cycle life performance. The impedance of the TiO2(B)/electrolyte interface model indicated that the charge transfer resistance Rc and the passivating film resistance Rf of the spherical TiO2(B) were much smaller than those of the needle-like one. The high-rate discharge and the long-cycle performance of the spherical TiO2(B) electrode are attributed to the superior electronic connective property and Rc and Rf values smaller than those of the needle-like one. Lithium-ion cells using the spherical TiO2(B) anodes and LiNi0.8Co0.1Mn0.1O2 cathode with a capacity of 2.8 Ah exhibited a high energy density of 100 Wh kg-1, a high output power density of 1800 W kg-1 for 10 s pulse, and a long cycle life of more than 3000 cycles.
NASA Astrophysics Data System (ADS)
Dall'Asta, V.; Tealdi, C.; Resmini, A.; Anselmi Tamburini, U.; Mustarelli, P.; Quartarone, E.
2017-03-01
Zinc oxide nanoarchitectures may be employed as binder-free, high specific capacity anodes for lithium batteries. By means of simple and low-impact wet chemistry approaches, we synthesized 1D (nanorods), 2D (single- and multi-layered nanosheets), and 3D (nanobrushes) ZnO arrays. These nanoarchitectures were compared as far as concerns their electrochemical properties and the structural modifications upon lithiation/delithiation. The best results were offered by 2D nanosheets, which showed reversible capacity of the order of 400 mAhg-1 after 100 cycles at 1 Ag-1. This was due to: i) small nanoparticles, with average diameter of about 10 nm, which maximize the array specific surface area and favor the formation of the LiZn alloy; ii) the presence of a mesoporous texture, which allows larger space for accommodating the volume changes upon lithiation/delithiation. However, also these 2D structures showed large irreversible capacity losses. Our work highlights the need for more efficient buffering solutions in ZnO binder-free nanostructured anodes.
Block copolymer lithography of rhodium nanoparticles for high temperature electrocatalysis.
Boyd, David A; Hao, Yong; Li, Changyi; Goodwin, David G; Haile, Sossina M
2013-06-25
We present a method for forming ordered rhodium nanostructures on a solid support. The approach makes use of a block copolymer to create and assemble rhodium chloride nanoparticles from solution onto a surface; subsequent plasma and thermal processing are employed to remove the polymer and fully convert the nanostructures to metallic rhodium. Films cast from a solution of the triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) dissolved in toluene with rhodium(III) chloride hydrate were capable of producing a monolayer of rhodium nanoparticles of uniform size and interparticle spacing. The nanostructures were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The electrocatalytic performance of the nanoparticles was investigated with AC impedance spectroscopy. We observed that the addition of the particles to a model solid oxide fuel cell anode provided up to a 14-fold improvement in the anode activity as evidenced by a decrease in the AC impedance resistance. Examination of the anode after electrochemical measurement revealed that the basic morphology and distribution of the particles were preserved.
A new structure design and the basic radiation characteristics test of the intense current tube
NASA Astrophysics Data System (ADS)
Li, Zhiyuan; Ai, Xianyun; Fu, Li; Cui, Hui
2018-02-01
As a kind of special G-M counter, the intense current tube (ICT) is characterized by small ratio of cathode to anode radius, high working current or count rate, and can be used as the detection units of ultra-high range radiation instruments. In this paper, a new design of ICT structure is introduced, not only does it have a minimum ratio of cathode to anode but it also has a cathode which directly sticks out from the sensitive gas. Using COMSOL Multiphysics, we simulated the electric field between the anode and cathode and finalized the optimal structure. The results of processes and experiments show that the structure has better properties, with plateau slope reaching up to 7.4% within 100V, and it also has a wider range of dose rate. The linear data between the bottom limit of 0.2mGy/h and the upper limit of 1Gy/h is quite accurate but it becomes less reliable beyond 1Gy/h. By using Paralyzable model, we deduce that the dead time of the said ICT is less than 13.4 µs, and we will further optimize the readout circuit in order to reduce the resolution time of the circuit in the near future.
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Tian, Wenya; Li, Junhui; Zhu, Wenhui
2018-04-01
In order to study the electromigration (EM) behavior of solder joints in electronics packaging, especially under high-current and high-temperature working conditions, line-type Cu/solder/Cu butting samples were prepared to observe the microstructural evolution under 1.0 × 104 A/cm2 current stressing. A prominent polarity effect was found such that the Cu6Sn5 intermetallic compound (IMC) layer at the anode side, which thickened linearly with time, was much thicker than that at the cathode side. Compared to the samples subjected to thermal aging at the same temperature of 180°C, EM enhanced the Cu3Sn growth at both the anode and the cathode. Two distinct types of damage were observed after extended duration of current stressing. Back-flow of Cu into Cu3Sn was found at the Cu3Sn/Cu6Sn5 interface of the anode side, causing large voids, while strip cracks developed at the cathode solder/Cu6Sn5 interface, causing a significant increase of joint electrical resistance. With the mass transport characteristics that determine the IMC growth and vacancy accumulation analyzed in detail at each interface, formation mechanisms of the two types of damages are discussed.
NASA Astrophysics Data System (ADS)
Zeng, Weizhi; Wang, Shijie; Free, Michael L.
2016-10-01
Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.
Anodized aluminum pressure sensitive paint for unsteady aerodynamic applications
NASA Astrophysics Data System (ADS)
Sakaue, Hirotaka
2003-06-01
A comprehensive study of anodized aluminum pressure sensitive paint (AA-PSP) is documented. The study consisted of the development of AA-PSP and its application to unsteady aerodynamic fields at atmospheric conditions. Luminophore application mechanism and two-component application on anodized aluminum was studied for the development. Two-component application includes hydrophobic-coated AA-PSP and bi-luminophore system. It was found that the polarity of solvents and the surface charge of anodized aluminum determine the optimized luminophore application. As a result, a wide variation of luminophore can be applied on anodized aluminum. To apply both components on anodized aluminum, optimum solvent polarities for each component should match. AA-PSP performances, such as pressure sensitivity, temperature dependency, signal level, and aging were improved by the luminophore application mechanism and two-component application. AA-PSPs demonstrate the capability of measuring surface pressures on unsteady aerodynamic fields. For an application to the Purdue Mach 4 Quiet Flow Ludwieg Tube, surface pressures on the order of a hundred Pascals were measured for approximately 200ms. The measurement uncertainty of the pressure was on the order of 5%. The main uncertainty source comes from fitting the adsorption control model to calibration points. The results compared qualitatively well to CFD calculations. A miniature fluidic oscillator was used to demonstrate the capability of measuring oscillating unsteady aerodynamic fields with 6.4kHz primary frequency. Flow oscillation images as well as pressure maps of various phases were captured by AA-PSP with PtTFPP as a luminophore (AA-PSPPtTFPP ). Main uncertainty source comes from fitting the adsorption control model to calibration points and from the pulse width of illumination. The measurement uncertainty of the pressure was 4.68%. AA-PSPPtTFPP was applied to a high-amplified acoustic fielding in a standing wave tube. The maximum pressure change created was 171dB (1.04psi). Sinusoidal pressure wave images inside a standing wave tube were captured at various phases. From these images, the integrated pressure map was obtained. In this case, measurement uncertainty was 3.64% and was due mainly to the pulse width and from fitting of the adsorption controlled model. Comparison with theoretical model is necessary to validate the integrated map as a streaming pattern.
Varoli, Erica; Pisoni, Alberto; Mattavelli, Giulia C.; Vergallito, Alessandra; Gallucci, Alessia; Mauro, Lilia D.; Rosanova, Mario; Bolognini, Nadia; Vallar, Giuseppe; Romero Lauro, Leonor J.
2018-01-01
Transcranial direct current stimulation (tDCS) is increasingly used in both research and therapeutic settings, but its precise mechanisms remain largely unknown. At a neuronal level, tDCS modulates cortical excitability by shifting the resting membrane potential in a polarity-dependent way: anodal stimulation increases the spontaneous firing rate, while cathodal decreases it. However, the neurophysiological underpinnings of anodal/cathodal tDCS seem to be different, as well as their behavioral effect, in particular when high order areas are involved, compared to when motor or sensory brain areas are targeted. Previously, we investigated the effect of anodal tDCS on cortical excitability, by means of a combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG). Results showed a diffuse rise of cortical excitability in a bilateral fronto-parietal network. In the present study, we tested, with the same paradigm, the effect of cathodal tDCS. Single pulse TMS was delivered over the left posterior parietal cortex (PPC), before, during, and after 10 min of cathodal or sham tDCS over the right PPC, while recording HD-EEG. Indexes of global and local cortical excitability were obtained both at sensors and cortical sources level. At sensors, global and local mean field power (GMFP and LMFP) were computed for three temporal windows (0–50, 50–100, and 100–150 ms), on all channels (GMFP), and in four different clusters of electrodes (LMFP, left and right, in frontal and parietal regions). After source reconstruction, Significant Current Density was computed at the global level, and for four Broadmann's areas (left/right BA 6 and 7). Both sensors and cortical sources results converge in showing no differences during and after cathodal tDCS compared to pre-stimulation sessions, both at global and local level. The same holds for sham tDCS. These data highlight an asymmetric impact of anodal and cathodal stimulation on cortical excitability, with a diffuse effect of anodal and no effect of cathodal tDCS over the parietal cortex. These results are consistent with the current literature: while anodal-excitatory and cathodal-inhibitory effects are well-established in the sensory and motor domains, both at physiological and behavioral levels, results for cathodal stimulation are more controversial for modulation of exitability of higher order areas. PMID:29867330
van Steenburgh, J Jason; Varvaris, Mark; Schretlen, David J; Vannorsdall, Tracy D; Gordon, Barry
2017-01-01
Working memory (WM) often is impaired in autism spectrum disorder (ASD). Such impairment may underlie core deficits in cognition and social functioning. Transcranial direct current stimulation (tDCS) has been shown to enhance WM in both healthy adults and clinical populations, but its efficacy in ASD is unknown. We predicted that bifrontal tDCS would improve WM performances of adults with high-functioning autism during active stimulation compared to sham stimulation and that such enhancement would generalize to an untrained task. Twelve adults with high-functioning ASD engaged in a battery of WM tasks that included backward spatial span, backward digit span, spatial n -back and letter n -back. While engaged, 40 min of 1.5 mA bifrontal stimulation was applied over the left and the right dorsolateral prefrontal cortices (DLPFC). Using a single-blind crossover design, each participant received left anodal/right cathodal stimulation, right anodal/left cathodal stimulation, or sham stimulation, in randomized counterbalanced order on three separate days. Following tDCS, participants again engaged in letter and spatial n -back tasks before taking the Brief Test of Attention (BTA). We used repeated-measures ANOVA to compare overall performance on the WM battery as measured by a composite of z -scores for all five measures. Post hoc ANOVAs, t tests, Friedman's tests, and Wilcoxon signed-rank tests were used to measure the online and offline effects of tDCS and to assess performances on individual measures. Compared to sham stimulation, both left DLPFC anodal stimulation ( t 11 = 5.4, p = 0.0002) and right DLPFC anodal stimulation ( t 11 = 3.57, p = 0.004) improved overall WM performance. Left anodal stimulation ( t 11 = 3.9, p = 0.003) and right anodal stimulation ( t 11 = 2.7, p = 0.019) enhanced performances during stimulation. Enhancement transferred to an untrained task 50 min after right anodal stimulation (z 11 = 2.263, p = 0.024). The tasks that showed the largest effects of active stimulation were spatial span backward ( z 11 = 2.39, p = 0.017) and BTA ( z 11 = 2.263, p = 0.024). In adults with high-functioning ASD, active bifrontal tDCS given during WM tasks appears to improve performance. TDCS benefits also transferred to an untrained task completed shortly after stimulation. These results suggest that tDCS can improve WM task performance and could reduce some core deficits of autism. NCT01602263.
Design of a 500-kJ Mather-type plasma focus device
NASA Astrophysics Data System (ADS)
Heidarnia, A.; Sadighzadeh, A.; Zaeem, A. A.; Damideh, V.
2016-12-01
In this article, design of a 500-kJ Mather-type plasma focus device to achieve 1011 neutrons/shot is reported. One of its important characteristics is the triple-part anode design. The anode is surrounded by an alumina insulator. The second part of the anode is changeable in order to locate cylindrical, conical, or other shapes of pieces mounted on it. This geometry leads to the easier investigation of the neutron and X-ray emissions of the device. The third part of the anode is for changing the materials exposed to different kinds of radiations. The design parameters are considered by semiempirical and empirical formulas and are sketched by Solidworks software. Also, the peak current and neutron yield are estimated.
Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries.
Edison, Eldho; Sreejith, Sivaramapanicker; Madhavi, Srinivasan
2017-11-15
Owing to the high theoretical sodiation capacities, intermetallic alloy anodes have attracted considerable interest as electrodes for next-generation sodium-ion batteries (SIBs). Here, we demonstrate the fabrication of intermetallic Fe-Sb alloy anode for SIBs via a high-throughput and industrially viable melt-spinning process. The earth-abundant and low-cost Fe-Sb-based alloy anode exhibits excellent cycling stability with nearly 466 mAh g -1 sodiation capacity at a specific current of 50 mA g -1 with 95% capacity retention after 80 cycles. Moreover, the alloy anode displayed outstanding rate performance with ∼300 mAh g -1 sodiation capacity at 1 A g -1 . The crystalline features of the melt-spun fibers aid in the exceptional electrochemical performance of the alloy anode. Further, the feasibility of the alloy anode for real-life applications was demonstrated in a sodium-ion full-cell configuration which could deliver a sodiation capacity of over 300 mAh g -1 (based on anode) at 50 mA g -1 with more than 99% Coulombic efficiency. The results further exhort the prospects of melt-spun alloy anodes to realize fully functional sodium-ion batteries.
Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes
NASA Astrophysics Data System (ADS)
Zhao, Jie; Zhou, Guangmin; Yan, Kai; Xie, Jin; Li, Yuzhang; Liao, Lei; Jin, Yang; Liu, Kai; Hsu, Po-Chun; Wang, Jiangyan; Cheng, Hui-Ming; Cui, Yi
2017-10-01
Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed LixM (M = Si, Sn, or Al) nanoparticles encapsulated by large graphene sheets. With the protection of graphene sheets, the large and freestanding LixM/graphene foils are stable in different air conditions. With fully expanded LixSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). This foil is also paired with high-capacity Li-free V2O5 and sulfur cathodes to achieve stable full-cell cycling.
Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes
Zhao, Jie; Zhou, Guangmin; Yan, Kai; ...
2017-07-10
Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed Li xM (M = Si, Sn, or Al) nanoparticles encapsulated by largemore » graphene sheets. With the protection of graphene sheets, the large and freestanding Li xM/graphene foils are stable in different air conditions. With fully expanded Li xSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). As a result, this foil is also paired with high-capacity Li-free V 2O 5 and sulfur cathodes to achieve stable full-cell cycling.« less
Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jie; Zhou, Guangmin; Yan, Kai
Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed Li xM (M = Si, Sn, or Al) nanoparticles encapsulated by largemore » graphene sheets. With the protection of graphene sheets, the large and freestanding Li xM/graphene foils are stable in different air conditions. With fully expanded Li xSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). As a result, this foil is also paired with high-capacity Li-free V 2O 5 and sulfur cathodes to achieve stable full-cell cycling.« less
Wu, Songhao; Fu, Gaoliang; Lv, Weiqiang; Wei, Jiake; Chen, Wenjin; Yi, Huqiang; Gu, Meng; Bai, Xuedong; Zhu, Liang; Tan, Chao; Liang, Yachun; Zhu, Gaolong; He, Jiarui; Wang, Xinqiang; Zhang, Kelvin H L; Xiong, Jie; He, Weidong
2018-02-01
As anodes of Li-ion batteries, copper oxides (CuO) have a high theoretical specific capacity (674 mA h g -1 ) but own poor cyclic stability owing to the large volume expansion and low conductivity in charges/discharges. Incorporating reduced graphene oxide (rGO) into CuO anodes with conventional methods fails to build robust interaction between rGO and CuO to efficiently improve the overall anode performance. Here, Cu 2 O/CuO/reduced graphene oxides (Cu 2 O/CuO/rGO) with a 3D hierarchical nanostructure are synthesized with a facile, single-step hydrothermal method. The Cu 2 O/CuO/rGO anode exhibits remarkable cyclic and high-rate performances, and particularly the anode with 25 wt% rGO owns the best performance among all samples, delivering a record capacity of 550 mA h g -1 at 0.5 C after 100 cycles. The pronounced performances are attributed to the highly efficient charge transfer in CuO nanosheets encapsulated in rGO network and the mitigated volume expansion of the anode owing to its robust 3D hierarchical nanostructure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ohmic resistance affects microbial community and ...
Multi-anode microbial electrochemical cells (MXCs) are considered as one of the most promising configurations for scale-up of MXCs, but fundamental understanding of anode kinetics governing current density is limited in the MXCs. In this study we first assessed microbial community and electrochemical kinetic parameters for biofilms on individual anodes in a multi-anode MXC to better comprehend anode fundamentals. Microbial community analysis using 16S rRNA illumine sequencing showed that Geobactor genus, one of the most kinetically efficient anode-respiring bacteria (ARB), was abundant (87%) only on the biofilm anode closest to a reference electrode in which current density was the highest among four anodes. In comparison, Geobacter populations were less than 11% for other three anodes more distant from the reference electrode, generating small current density. Half-saturation anode potential (EKA) was the lowest at -0.251 to -0.242 V (vs. standard hydrogen electrode) for the closest anode, while EKA was as high as -0.134 V for the farthest anode. Our study clearly proves that ohmic resistance changes anode potential which mainly causes different biofilm communities on individual anodes and consequently influences anode kinetics. This study explored the use of multiple anodes in microelectrochemical cells and the microbial community on these anodes, as a function of the efficiency in producing hydrogen peroxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flesch, K., E-mail: kbflesch@wisc.edu; Kremeyer, T.; Schmitz, O.
Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D{sub 2} molecules and the He ash which will be produced by deuterium-tritium fusion. To study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. Three different anode geometries have been studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude abovemore » the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less
2013-01-01
Anode aluminum oxide-supported thin-film fuel cells having a sub-500-nm-thick bilayered electrolyte comprising a gadolinium-doped ceria (GDC) layer and an yttria-stabilized zirconia (YSZ) layer were fabricated and electrochemically characterized in order to investigate the effect of the YSZ protective layer. The highly dense and thin YSZ layer acted as a blockage against electron and oxygen permeation between the anode and GDC electrolyte. Dense GDC and YSZ thin films were fabricated using radio frequency sputtering and atomic layer deposition techniques, respectively. The resulting bilayered thin-film fuel cell generated a significantly higher open circuit voltage of approximately 1.07 V compared with a thin-film fuel cell with a single-layered GDC electrolyte (approximately 0.3 V). PMID:23342963
Alkaline direct alcohol fuel cells using an anion exchange membrane
NASA Astrophysics Data System (ADS)
Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi
Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800 mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323 K, which was about 100-200 mV higher than that for a DMFC using Nafion ®. The maximum power densities were in the order of ethylene glycol > glycerol > methanol > erythritol > xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode.
NASA Astrophysics Data System (ADS)
Metcalfe, C.; Harris, J.; Kuhn, J.; Marr, M.; Kesler, O.
2013-06-01
A composite NiO-Y0.15Zr0.85O1.925 (YSZ) agglomerated feedstock having nanoscale NiO and YSZ primary particles was used to fabricate anodes having sub-micrometer structure. These anodes were incorporated into two different metal-supported SOFC architectures, which differ in the order of electrode deposition. The composition of the composite Ni-YSZ anodes is controllable by selection of the agglomerate size fraction and standoff distance, while the porosity is controllable by selection of agglomerate size fraction and addition of a sacrificial pore-forming material. A bi-layer anode was fabricated having a total porosity of 33% for the diffusion layer and 23% porosity for the functional layer. A power density of 630 mW/cm2 was obtained at 750 °C in humidified H2 with cells having the bi-layer anode deposited on the metal support. Cells having the cathode deposited on the metal support showed poor performance due to a significant number of vertical cracks through the electrolyte, allowing excessive gas cross-over between the anode and the cathode compartments.
Efficient suppression of nanograss during porous anodic TiO2 nanotubes growth
NASA Astrophysics Data System (ADS)
Gui, Qunfang; Yu, Dongliang; Li, Dongdong; Song, Ye; Zhu, Xufei; Cao, Liu; Zhang, Shaoyu; Ma, Weihua; You, Shiyu
2014-09-01
When Ti foil was anodized in fluoride-containing electrolyte for a long time, undesired etching-induced "nanograss" would inevitably generate on the top of porous anodic TiO2 nanotubes (PATNTs). The nanograss will hinder the ions transport and in turn yield depressed (photo) electrochemical performance. In order to obtain nanograss-free nanotubes, a modified three-step anodization and two-layer nanostructure of PATNTs were designed to avoid the nanograss. The first layer (L1) nanotubes were obtained by the conventional two-step anodization. After washing and drying processes, the third-step anodization was carried out with the presence of L1 nanotubes. The L1 nanotubes, serving as a sacrificed layer, was etched and transformed into nanograss, while the ultralong nanotubes (L2) were maintained underneath the L1. The bi-layer nanostructure of the nanograss/nanotubes (L1/L2) was then ultrasonically rinsed in deionized water to remove the nanograss (L1 layer). Then much longer nanotubes (L2 layer) with intact nanotube mouths could be obtained. Using this novel approach, the ultralong nanotubes without nanograss can be rationally controlled by adjusting the anodizing times of two layers.
Possibility of High Phosphorus Pig Iron as Sacrificial Anode
NASA Astrophysics Data System (ADS)
Prasad, Nisheeth Kr.; Pathak, A. S.; Kundu, S.; Mondal, K.
2018-05-01
Cathodic protection is an effective method to control the corrosion of underground pipelines and submerged structures. In the present work, high phosphorus containing pig iron was utilized as sacrificial anode for cathodic protection of underground mild steel plates and the results were compared with that of a commercially pure magnesium sacrificial anode. Driving potential and current between the galvanically coupled sacrificial anodes and mild steel plates were continuously monitored in real time for one month. Microstructure and morphology of the corrosion products formed on the surface of pig iron, magnesium sacrificial anodes and mild steel plates were observed with the help of optical microscope and scanning electron microscopy, and phase identification were performed using x-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. The distribution of phosphorus in the pig iron matrix and soluble rust formation on the surface of pig iron under buried condition were critical from the point of sacrificial effect, indicating the possible scientific reasons for high phosphorous pig iron to be used as sacrificial anode.
Carbon-Coated, Diatomite-Derived Nanosilicon as a High Rate Capable Li-ion Battery Anode.
Campbell, Brennan; Ionescu, Robert; Tolchin, Maxwell; Ahmed, Kazi; Favors, Zachary; Bozhilov, Krassimir N; Ozkan, Cengiz S; Ozkan, Mihrimah
2016-10-07
Silicon is produced in a variety of ways as an ultra-high capacity lithium-ion battery (LIB) anode material. The traditional carbothermic reduction process required is expensive and energy-intensive; in this work, we use an efficient magnesiothermic reduction to convert the silica-based frustules within diatomaceous earth (diatomite, DE) to nanosilicon (nanoSi) for use as LIB anodes. Polyacrylic acid (PAA) was used as a binder for the DE-based nanoSi anodes for the first time, being attributed for the high silicon utilization under high current densities (up to 4C). The resulting nanoSi exhibited a high BET specific surface area of 162.6 cm 2 g -1 , compared to a value of 7.3 cm 2 g -1 for the original DE. DE contains SiO 2 architectures that make ideal bio-derived templates for nanoscaled silicon. The DE-based nanoSi anodes exhibit good cyclability, with a specific discharge capacity of 1102.1 mAh g -1 after 50 cycles at a C-rate of C/5 (0.7 A g Si -1 ) and high areal loading (2 mg cm -2 ). This work also demonstrates the fist rate capability testing for a DE-based Si anode; C-rates of C/30 - 4C were tested. At 4C (14.3 A g Si -1 ), the anode maintained a specific capacity of 654.3 mAh g -1 - nearly 2x higher than graphite's theoretical value (372 mAh g -1 ).
Structure that encapsulates lithium metal for high energy density battery anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Yi; Yan, Kai; Chu, Steven
A battery includes 1) an anode, 2) a cathode, and 3) an electrolyte disposed between the anode and the cathode. The anode includes a current collector and an interfacial layer disposed over the current collector, and the interfacial layer includes an array of interconnected, protruding regions that define spaces.
Chen, Qin; Pu, Wenhong; Hou, Huijie; Hu, Jingping; Liu, Bingchuan; Li, Jianfeng; Cheng, Kai; Huang, Long; Yuan, Xiqing; Yang, Changzhu; Yang, Jiakuan
2018-02-01
Microbial fuel cells (MFCs) are promising biotechnologies tool to harvest electricity by decomposing organic matter in waste water, and the anode material is a critical factor in determining the performance of MFCs. In this study, chestnut shell is proposed as a novel anode material with mesoporous and microporous structure prepared via a simple carbonization procedure followed by an activation process. The chemical activation process successfully modified the macroporous structure, created more mesoporous and microporous structure and decreased the O-content and pyridinic/pyrrolic N groups on the biomass anode, which were beneficial for improving charge transfer efficiency between the anode surface and microbial biofilm. The MFC with activated biomass anode achieved a maximum power density (23.6 W m -3 ) 2.3 times higher than carbon cloth anode (10.4 W m -3 ). This study introduces a promising and feasible strategy for the fabrication of high performance anodes for MFCs derived from cost-effective, sustainable natural materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stimulated emission from aluminium anode oxide films doped with rhodamine 6G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrayev, N Kh; Zeinidenov, A K; Aimukhanov, A K
The spectral and luminescent properties of the rhodamine 6G dye in a porous matrix of aluminium anode oxide are studied. The films with a highly-ordered porous structure are produced using the method of two-stage anodic oxidation. By means of raster electron microscopy it is found that the diameter of the pores amounts to nearly 50 nm and the separation between the adjacent channels is almost 105 nm. The thickness of the films is equal to 55 μm, and the specific surface area measured using the method of nitrogen capillary condensation is 15.3 m{sup 2} g{sup -1}. Fluorescence and absorption spectramore » of rhodamine 6G molecules injected into the pores of the aluminium anode oxide are measured. It is found that under the excitation of samples with the surface dye concentration 0.3 × 10{sup 14} molecules m{sup -2} by the second harmonic of the Nd : YAG laser in the longitudinal scheme with the pumping intensity 0.4 MW cm{sup -2}, a narrow band of stimulated emission with the intensity maximum at the wavelength 572 nm appears against the background of the laser-induced fluorescence spectrum. A further increase in the pumping radiation intensity leads to the narrowing of the stimulated emission band and an increase in its intensity. The obtained results demonstrate the potential possibility of using the porous films of aluminium anode oxide, doped with laser dyes, in developing active elements for quantum electronics. (laser applications and other topics in quantum electronics)« less
Hierarchical polypyrrole based composites for high performance asymmetric supercapacitors
NASA Astrophysics Data System (ADS)
Chen, Gao-Feng; Liu, Zhao-Qing; Lin, Jia-Ming; Li, Nan; Su, Yu-Zhi
2015-06-01
An advanced asymmetric supercapacitor with high energy density, exploiting hierarchical polypyrrole (PPy) based composites as both the anode [three dimensional (3D) chuzzle-like Ni@PPy@MnO2] and (3D cochleate-like Ni@MnO2@PPy) cathode, has been developed. The ultrathin PPy and flower-like MnO2 orderly coating on the high-conductivity 3D-Ni enhance charge storage while the unique 3D chuzzle-like and 3D cochleate-like structures provide storage chambers and fast ion transport pathways for benefiting the transport of electrolyte ions. The 3D cochleate-like Ni@MnO2@PPy possesses excellent pseudocapacitance with a relatively negative voltage window while preserved EDLC and free transmission channels conducive to hold the high power, providing an ideal cathode for the asymmetric supercapacitor. It is the first report of assembling hierarchical PPy based composites as both the anode and cathode for asymmetric supercapacitor, which exhibits wide operation voltage of 1.3-1.5 V with maximum energy and power densities of 59.8 Wh kg-1 and 7500 W kg-1.
Size dependent polaronic conduction in hematite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Monika; Banday, Azeem; Murugavel, Sevi
2016-05-23
Lithium Ion Batteries have been attracted as the major renewable energy source for all portable electronic devices because of its advantages like superior energy density, high theoretical capacity, high specific energy, stable cycling and less memory effects. Recently, α-Fe{sub 2}O{sub 3} has been considered as a potential anode material due to high specific capacity, low cost, high abundance and environmental benignity. We have synthesized α-Fe{sub 2}O{sub 3} with various sizes by using the ball milling and sol-gel procedure. Here, we report the dc conductivity measurement for the crystallite size ranging from 15 nm to 50 nm. It has been observedmore » that the enhancement in the polaronic conductivity nearly two orders in magnitude while reducing the crystallite size from bulk into nano scale level. The enhancement in the conductivity is due to the augmented to compressive strain developed in the material which leads to pronounced decrease in the hopping length of polarons. Thus, nanocrystaline α-Fe{sub 2}O{sub 3} may be a better alternative anode material for lithium ion batteries than earlier reported systems.« less
Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.
Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T
2016-02-01
The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Growth behavior of anodic porous alumina formed in malic acid solution
NASA Astrophysics Data System (ADS)
Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Suzuki, Ryosuke O.
2013-11-01
The growth behavior of anodic porous alumina formed on aluminum by anodizing in malic acid solutions was investigated. High-purity aluminum plates were electropolished in CH3COOH/HClO4 solutions and then anodized in 0.5 M malic acid solutions at 293 K and constant cell voltages of 200-350 V. The anodic porous alumina grew on the aluminum substrate at voltages of 200-250 V, and a black, burned oxide film was formed at higher voltages. The nanopores of the anodic oxide were only formed at grain boundaries of the aluminum substrate during the initial stage of anodizing, and then the growth region extended to the entire aluminum surface as the anodizing time increased. The anodic porous alumina with several defects was formed by anodizing in malic acid solution at 250 V, and oxide cells were approximately 300-800 nm in diameter.
Processing Ti-25Ta-5Zr Bioalloy via Anodic Oxidation Procedure at High Voltage
NASA Astrophysics Data System (ADS)
Ionita, Daniela; Grecu, Mihaela; Dilea, Mirela; Cojocaru, Vasile Danut; Demetrescu, Ioana
2011-12-01
The current paper reports the processing of Ti-25Ta-5Zr bioalloy via anodic oxidation in NH4BF4 solution under constant potentiostatic conditions at high voltage to obtain more suitable properties for biomedical application. The maximum efficiency of the procedure is reached at highest applied voltage, when the corrosion rate in Hank's solution is decreased approxomately six times. The topography of the anodic layer has been studied using atomic force microscopy (AFM), and the results indicated that the anodic oxidation process increases the surface roughness. The AFM images indicated a different porosity for the anodized surfaces as well. After anodizing, the hydrophilic character of Ti-25Ta-5Zr samples has increased. A good correlation between corrosion rate obtained from potentiodynamic curves and corrosion rate from ions release analysis was obtained.
NASA Astrophysics Data System (ADS)
Yaqub, Asim; Isa, Mohamed Hasnain; Ajab, Huma; Kutty, S. R. M.; Ezechi, Ezerie H.; Farooq, Robina
2018-04-01
In this study IrO2 (Iridium oxide) was coated onto a titanium plate anode from a dilute (50 mg/10 ml) IrCl3×H2O salt solution. Coating was done at high temperature (550∘C) using thermal decomposition. Surface morphology and characteristics of coated surface of Ti/IrO2 anode were examined by FESEM and XRD. The coated anode was applied for electrochemical removal of organic pollutants from synthetic water samples in 100 mL compartment of batch electrochemical cell. About 50% COD removal was obtained at anode prepared with low Ir content solution while 72% COD removal was obtained with anode prepared at high Ir content. Maximum COD removal was obtained at 10 mA/cm2 current density.
NASA Astrophysics Data System (ADS)
Khakpour, A.; Methling, R.; Uhrlandt, D.; Franke, St.; Gortschakow, S.; Popov, S.; Batrakov, A.; Weltmann, K. D.
2017-05-01
This paper presents time and space resolved results of spectroscopic measurements during the formation of an anode plume in the late current pulse phase of a high-current vacuum arc. The formation of the anode plume is investigated systematically based on the occurrence of high-current anode spots, depending on gap distance and current for AC 100 Hz and CuCr7525 butt contacts with a diameter of 10 mm. The anode plume is observed after the extinction of anode spot type 2 in which both the anode and cathode are active. It is concluded from the spatial profiles of the atomic and ionic radiation, parallel and perpendicular to anode surface, that the inner part of the plume is dominated by Cu I radiation, whereas a halo of light emitted by Cu II covers the plume. The radiation intensity of Cu III lines is quite low across the whole anode plume. Upper level excited state densities corresponding to Cu I lines at 510.55, 515.32, 521.82, 578.21 nm are determined. The temporal evolution of the resulting excitation temperature in the centre of the plume varies from 8500 K to 6000 K at 500 µs to 100 µs before current zero, respectively. The density calculated for Cu I at position in the plume is in the range of 1-5 × 1019 m-3.
Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes.
Chang, Wei-Chung; Tseng, Kuan-Wei; Tuan, Hsing-Yu
2017-02-08
Red phosphorus (RP) is a promising anode material for lithium-ion batteries due to its earth abundance and a high theoretical capacity of 2596 mA h g -1 . Although RP-based anodes for lithium-ion batteries have been reported, they were all in the form of carbon-P composites, including P-graphene, P-graphite, P-carbon nanotubes (CNTs), and P-carbon black, to improve P's extremely low conductivity and large volume change during cycling process. Here, we report the large-scale synthesis of red phosphorus nanoparticles (RPNPs) with sizes ranging from 100 to 200 nm by reacting PI 3 with ethylene glycol in the presence of cetyltrimethylammonium bromide (CTAB) in ambient environment. Unlike the insulator behavior of commercial RP (conductivity of <10 -12 S m -1 ), the conductivity of RPNPs is between 2.62 × 10 -3 and 1.81 × 10 -2 S m -1 , which is close to that of semiconductor germanium (1.02 × 10 -2 S m -1 ), and 2 orders of magnitude higher than silicon (5.35 × 10 -4 S m -1 ). Around 3-5 wt % of iodine-doping was found in RPNPs, which was speculated as the key to significantly improve the conductivity of RPNPs. The significantly improved conductivity of RPNPs and their uniform colloidal nanostructures enable them to be used solely as active materials for LIBs anodes. The RPNPs electrodes exhibit a high specific capacity of 1700 mA h g -1 (0.2 C after 100 cycles, 1 C = 2000 mA g -1 ), long cycling life (∼900 mA h g -1 after 500 cycles at 1 C), and outstanding rate capability (175 mA h g -1 at the charge current density of 120 A g -1 , 60 C). Moreover, as a proof-of-concept example, pouch-type full cells using RPNPs anodes and Li(Ni 0.5 Co 0.3 Mn 0.2 )O 2 (NCM-532) cathodes were assembled to show their practical uses.
Effects of discharge parameters on the micro-hollow cathode sustained glow discharge
NASA Astrophysics Data System (ADS)
Shoujie, HE; Peng, WANG; Jing, HA; Baoming, ZHANG; Zhao, ZHANG; Qing, LI
2018-05-01
The effects of parameters such as pressure, first anode radius, and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pure argon. The results indicate that the three parameters influence the discharge in the regions inside and outside of the cavity. Under a fixed voltage on each electrode, a larger volume of high density plasma can be produced in the region between the first and the second anodes by selecting the appropriate pressure, the higher first anode, and the appropriate cavity diameter. As the pressure increases, the electron density inside the hollow cathode, the high density plasma volume between the first anode and second anodes, and the radial electric field in the cathode cavity initially increase and subsequently decrease. As the cavity diameter increases, the high-density plasma volume between the first and second anodes initially increases and subsequently decreases; whereas the electron density inside the hollow cathode decreases. As the first anode radius increases, the electron density increases both inside and outside of the cavity. Moreover, the increase of the electron density is more obvious in the microcathode sustained region than in the micro cavity region. The results reveal that the discharge inside the cavity interacts with that outside the cavity. The strong hollow cathode effect and the high-density plasma inside the cavity favor the formation of a sustained discharge between the first anode and the second anodes. Results also show that the radial boundary conditions exert a considerably weaker influence on the discharge except for a little change in the region close to the radial boundary.
Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution
NASA Astrophysics Data System (ADS)
Dhahri, S.; Fazio, E.; Barreca, F.; Neri, F.; Ezzaouia, H.
2016-08-01
Anodizing of aluminum is used for producing porous insulating films suitable for different applications in electronics and microelectronics. Porous-type aluminum films are most simply realized by galvanostatic anodizing in aqueous acidic solutions. The improvement in application of anodizing technique is associated with a substantial reduction of the anodizing voltage at appropriate current densities as well as to the possibility to carry out the synthesis process at room temperature in order to obtain a self-planarizing dielectric material incorporated in array of super-narrow metal lines. In this work, the anodizing of aluminum to obtain porous oxide was carried out, at room temperature, on three different substrates (glass, stainless steel and aluminum), using an oxalic acid-based electrolyte with the addition of a relatively low amount of 0.4 % of HF. Different surface morphologies, from nearly spherical to larger porous nanostructures with smooth edges, were observed by means of scanning electron microscopy. These evidences are explained by considering the formation, transport and adsorption of the fluorine species which react with the Al3+ ions. The behavior is also influenced by the nature of the original substrate.
Ultrasonic Welding of Thin Alumina and Aluminum Using Inserts
NASA Astrophysics Data System (ADS)
Ishikuro, Tomoaki; Matsuoka, Shin-Ichi
This paper describes an experimental study of ultrasonic welding of thin ceramics and metals using inserts. Ultrasonic welding has enable the joining of various thick ceramics, such as Al2O3 and ZrO2, to aluminum at room temperature quickly and easily as compared to other welding methods. However, for thin ceramics, which are brittle, welding is difficult to perform without causing damage. In this study, aluminum anodized oxide with different anodizing time was used as thin alumina ceramic. Vapor deposition of aluminum alloys was used to create an effective binder layer for welding at a low pressure and within a short duration in order to prevent damage to the anodic oxide film formed with a short anodizing time. For example, ultrasonic welding of thin Al2O3/Al was accomplished under the following conditions: ultrasonic horn tip amplitude of 30µm, welding pressure of 5MPa, and required duration of 0.1s. However, since the vapor deposition film tends to exfoliate as observed in the anodic oxide film formed with a long anodizing time, welding was difficult.
NASA Astrophysics Data System (ADS)
Cao, Liyun; He, Juju; Li, Jiayin; Yan, Jingwen; Huang, Jianfeng; Qi, Ying; Feng, Liangliang
2018-07-01
In order to improve the rate performance of MoO3, a novel MoO3 nanobelt with tiny grains on surface (named as d-MoO3) is fabricated via one-step facile hydrothermal method with citric acid adding, in which citric acid (CA) serves as a weak reductant as well as surface modification agent. When tested as an anode in LIBs, d-MoO3 displays an improved discharge capacity of 787 mAh·g-1 at 0.1 A g-1 over 100 cycles with capacity retention of ∼91% while MoO3 decays to 50 mAh·g-1 in the 100th cycle. Notably, d-MoO3 delivers enhanced rate capability (536 and 370 mAh·g-1 at high rates of 5 and 10 A g-1 respectively). We consider these excellent electrochemical properties of d-MoO3 electrode are associated with the tiny grains on MoO3 surface, which effectively maintains the electrode's structural integrity. Even though d-MoO3 nanobelt suffers from a degree of in-situ pulverization after several cycles, these pulverized active particles can still maintain stable electrochemical contact and are highly exposed to electrolyte, realizing ultrahigh e-/Li+ diffusion kinetics. In addition, part extrinsic pseudocapacitance contribution to the Li+ storage also explains the high-rate performance. Combining all these merits, d-MoO3 is potentially a high-energy, high-power and well-stable anode material for Li ion batteries (LIBs).
Yeo, Jun-Seok; Yun, Jin-Mun; Kim, Dong-Yu; Park, Sungjun; Kim, Seok-Soon; Yoon, Myung-Han; Kim, Tae-Wook; Na, Seok-In
2012-05-01
In the present study, a novel polar-solvent vapor annealing (PSVA) was used to induce a significant structural rearrangement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films in order to improve their electrical conductivity and work function. The effects of polar-solvent vapor annealing on PEDOT:PSS were systematically compared with those of a conventional solvent additive method (SAM) and investigated in detail by analyzing the changes in conductivity, morphology, top and bottom surface composition, conformational PEDOT chains, and work function. The results confirmed that PSVA induces significant phase separation between excess PSS and PEDOT chains and a spontaneous formation of a highly enriched PSS layer on the top surface of the PEDOT:PSS polymer blend, which in turn leads to better 3-dimensional connections between the conducting PEDOT chains and higher work function. The resultant PSVA-treated PEDOT:PSS anode films exhibited a significantly enhanced conductivity of up to 1057 S cm(-1) and a tunable high work function of up to 5.35 eV. The PSVA-treated PEDOT:PSS films were employed as transparent anodes in polymer light-emitting diodes (PLEDs) and polymer solar cells (PSCs). The cell performances of organic optoelectronic devices with the PSVA-treated PEDOT:PSS anodes were further improved due to the significant vertical phase separation and the self-organized PSS top surface in PSVA-treated PEDOT:PSS films, which can increase the anode conductivity and work function and allow the direct formation of a functional buffer layer between the active layer and the polymeric electrode. The results of the present study will allow better use and understanding of polymeric-blend materials and will further advance the realization of high-performance indium tin oxide (ITO)-free organic electronics.
Corrosion Prevention of Steel Reinforcement in 7.5% NaCl Solution using Pure Magnesium Anode
NASA Astrophysics Data System (ADS)
Iyer Murthy, Yogesh; Gandhi, Sumit; Kumar, Abhishek
2018-03-01
The current work investigates the performance of pure Magnesium on corrosion prevention of steel reinforcements by way of sacrificial anoding. Two set of six steel reinforcements were tested for half-cell potential, weight loss, anode efficiency and tensile strength for each of the sacrificial anodes in a high chloride atmosphere of 7.5% NaCl in tap water. Significant reduction in weight of anode was observed during the initial 12 days. The reduction in weight of steel reinforcements tied with anodes was found to be negligible, while that of reinforcements without anodes was significantly higher. Five distinct zones of corrosion were observed during the test. The tensile strength of steel cathodically protected by Mg alloy anodes was found less affected. It could be concluded that pure Mg anode provides an effective way of corrosion mitigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James W. Evans
2012-04-11
The work addressed the greenhouse gas emission and electrical energy consumption of the aluminum industry. The objective was to provide a means for reducing both through the application of wireless instrumentation, coupled to mathematical modeling. Worldwide the aluminum industry consumes more electrical energy than all activities in many major countries (e.g. the UK) and emits more greenhouse gasses (e.g. than France). Most of these excesses are in the 'primary production' of aluminum; that is the conversion of aluminum oxide to metal in large electrolytic cells operating at hundreds of thousands of amps. An industry-specific GHG emission has been the focusmore » of the work. The electrolytic cells periodically, but at irregular intervals, experience an upset condition known as an 'anode effect'. During such anode effects the cells emit fluorinated hydrocarbons (PFCs, which have a high global warming potential) at a rate far greater than in normal operation. Therefore curbing anode effects will reduce GHG emissions. Prior work had indicated that the distribution of electrical current within the cell experiences significant shifts in the minutes before an anode effect. The thrust of the present work was to develop technology that could detect and report this early warning of an anode effect so that the control computer could minimize GHG emissions. A system was developed to achieve this goal and, in collaboration with Alcoa, was tested on two cells at an Alcoa plant in Malaga, Washington. The project has also pointed to the possibility of additional improvements that could result from the work. Notable among these is an improvement in efficiency that could result in an increase in cell output at little extra operating cost. Prospects for commercialization have emerged in the form of purchase orders for further installations. The work has demonstrated that a system for monitoring the current of individual anodes in an aluminum cell is practical. Furthermore the system has been installed twice on a smelter in the US without exposing workers to hazards usually associated with running signal wires in aluminum plants. The results display the early warning of an anode effect that potentially can be used to minimize such anode effects with their excessive GHG emissions. They also point to a possible, but substantial, economic benefit that could result in improved current efficiency by anode adjustment based on individual anode current measurements.« less
Improvement in Direct Methanol Fuel Cell Performance by Treating the Anode at High Anodic Potential
2014-01-01
stripping voltammetryReorganization of Na? on ionomer Prabhuram Joghee, Svitlana Pylypenko, Kevin Wood , April Corpuz, Guido Bender, Huyen N. Dinh...methanol fuel cell performance by treating the anode at high anodic potential Prabhuram Joghee a,*, Svitlana Pylypenko a,b, Kevin Wood a, April Corpuz c...References [1] B. McNicol, D.A.J. Rand, K.R. Williams, J. Power Sources 83 (1999) 15e31. [2] K. Scot , W.M. Taama, J. Power Sources 79 (1999) 43e59. [3] P
Structural micro-porous carbon anode for rechargeable lithium-ion batteries
Delnick, Frank M.; Even, Jr., William R.; Sylwester, Alan P.; Wang, James C. F.; Zifer, Thomas
1995-01-01
A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.
Feng, Ling; Oturan, Nihal; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A
2014-01-01
The electrochemical degradation of the nonsteroidal anti-inflammatory drug ketoprofen in tap water has been studied using electro-Fenton (EF) and anodic oxidation (AO) processes with platinium (Pt) and boron-doped diamond (BDD) anodes and carbon felt cathode. Fast degradation of the parent drug molecule and its degradation intermediates leading to complete mineralization was achieved by BDD/carbon felt, Pt/carbon felt, and AO with BDD anode. The obtained results showed that oxidative degradation rate of ketoprofen and mineralization of its aqueous solution increased by increasing applied current. Degradation kinetics fitted well to a pseudo-first-order reaction. Absolute rate constant of the oxidation of ketoprofen by electrochemically generated hydroxyl radicals was determined to be (2.8 ± 0.1) × 10(9) M(-1) s(-1) by using competition kinetic method. Several reaction intermediates such as 3-hydroxybenzoic acid, pyrogallol, catechol, benzophenone, benzoic acid, and hydroquinone were identified by high-performance liquid chromatography (HPLC) analyses. The formation, identification, and evolution of short-chain aliphatic carboxylic acids like formic, acetic, oxalic, glycolic, and glyoxylic acids were monitored with ion exclusion chromatography. Based on the identified aromatic/cyclic intermediates and carboxylic acids as end products before mineralization, a plausible mineralization pathway was proposed. The evolution of the toxicity during treatments was also monitored using Microtox method, showing a faster detoxification with higher applied current values.
Effects of nanoporous anodic titanium oxide on human adipose derived stem cells.
Malec, Katarzyna; Góralska, Joanna; Hubalewska-Mazgaj, Magdalena; Głowacz, Paulina; Jarosz, Magdalena; Brzewski, Pawel; Sulka, Grzegorz D; Jaskuła, Marian; Wybrańska, Iwona
The aim of current bone biomaterials research is to design implants that induce controlled, guided, successful, and rapid healing. Titanium implants are widely used in dental, orthopedic, and reconstructive surgery. A series of studies has indicated that cells can respond not only to the chemical properties of the biomaterial, but also, in particular, to the changes in surface topography. Nanoporous materials remain in focus of scientific queries due to their exclusive properties and broad applications. One such material is nanostructured titanium oxide with highly ordered, mutually perpendicular nanopores. Nanoporous anodic titanium dioxide (TiO 2 ) films were fabricated by a three-step anodization process in propan-1,2,3-triol-based electrolyte containing fluoride ions. Adipose-derived stem cells offer many interesting opportunities for regenerative medicine. The important goal of tissue engineering is to direct stem cell differentiation into a desired cell lineage. The influence of nanoporous TiO 2 with pore diameters of 80 and 108 nm on cell response, growth, viability, and ability to differentiate into osteoblastic lineage of human adipose-derived progenitors was explored. Cells were harvested from the subcutaneous abdominal fat tissue by a simple, minimally invasive, and inexpensive method. Our results indicate that anodic nanostructured TiO 2 is a safe and nontoxic biomaterial. In vitro studies demonstrated that the nanotopography induced and enhanced osteodifferentiation of human adipose-derived stem cells from the abdominal subcutaneous fat tissue.
Bai, Anqi; Cheng, Buwen; Wang, Xiaofeng; Xue, Chunlai; Zuo, Yuhua; Wang, Qiming
2010-11-01
A convenient fabrication technology for large-area, highly-ordered nanoelectrode arrays on silicon substrate has been described here, using porous anodic alumina (PAA) as a template. The ultrathin PAA membranes were anodic oxidized utilizing a two-step anodization method, from Al film evaporated on substrate. The purposes for the use of two-step anodization were, first, improving the regularity of the porous structures, and second reducing the thickness of the membranes to 100-200 nm we desired. Then the nanoelectrode arrays were obtained by electroless depositing Ni-W alloy into the through pores of PAA membranes, making the alloy isolated by the insulating pore walls and contacting with the silicon substrates at the bottoms of pores. The Ni-W alloy was also electroless deposited at the back surface of silicon to form back electrode. Then ohmic contact properties between silicon and Ni-W alloy were investigated after rapid thermal annealing. Scanning electron microscopy (SEM) observations showed the structure characteristics, and the influence factors of fabrication effect were discussed. The current-voltage (I-V) curves revealed the contact properties. After annealing in N2 at 700 degrees C, good linear property was shown with contact resistance of 33 omega, which confirmed ohmic contacts between silicon and electrodes. These results presented significant application potential of this technology in nanosize current-injection devices in optoelectronics, microelectronics and bio-medical fields.
Brillas, Enric; Garcia-Segura, Sergi; Skoumal, Marcel; Arias, Conchita
2010-04-01
The degradation of diclofenac, a common non-steroidal anti-inflammatory drug, in aqueous medium has been studied by anodic oxidation (AO) using an undivided cell with a Pt or boron-doped diamond (BDD) anode. Operating without pH regulation, AO with Pt acidifies the solution with precipitation of its protonated form, whereas using BDD, the solution becomes alkaline and only attains partial mineralization. Total incineration of low contents of the drug is feasible by AO with BDD in a neutral buffer medium of pH 6.5. Comparative treatment with Pt gives poor decontamination. The diclofenac decay always follows a pseudo first-order reaction. The increase in current for AO with BDD accelerates the degradative process, but decreases its efficiency. 2-Hydroxyphenylacetic acid, 2,5-dihydroxyphenylacetic acid, 2,6-dichloroaniline and 2,6-dichlorohydroquinone have been identified as aromatic intermediates. For AO with Pt, high amounts of malic, succinic, tartaric and oxalic acids are accumulated in the bulk and the N-derivatives produced are rapidly destroyed with loss of NH4+. When BDD is employed, some carboxylic acids are also accumulated in small extent, with a larger persistence of oxalic and oxamic acids. The process involves the formation of different N-derivatives that slowly release NH4+ and NO3(-) ions. Chloride ion is lost in all cases. 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.
2018-05-01
We demonstrate mirror-finished superhydrophobic aluminum surfaces fabricated via the formation of anodic alumina nanofibers and subsequent modification with self-assembled monolayers (SAMs). High-density anodic alumina nanofibers were formed on the aluminum surface via anodizing in a pyrophosphoric acid solution. The alumina nanofibers became tangled and bundled by further anodizing at low temperature because of their own weight, and the aluminum surface was completely covered by the long falling nanofibers. The nanofiber-covered aluminum surface exhibited superhydrophilic behavior, with a contact angle measuring less than 10°. As the nanofiber-covered aluminum surface was modified with n-alkylphosphonic acid SAMs, the water contact angle drastically shifted to superhydrophobicity, measuring more than 150°. The contact angle increased with the applied voltage during pyrophosphoric acid anodizing, the anodizing time, and the number of carbon atoms contained in the SAM molecules modified on the alumina nanofibers. By optimizing the anodizing and SAM-modification conditions, superhydrophobic behavior could be achieved with only a brief pyrophosphoric acid anodizing period of 3 min and subsequent simple immersion in SAM solutions. The superhydrophobic aluminum surface exhibited a high reflectance, measuring approximately 99% across most of the visible spectrum, similar to that of an electropolished aluminum surface. Therefore, our mirror-finished superhydrophobic aluminum surface based on anodic alumina nanofibers and SAMs can be used as a reflective mirror in various optical applications such as concentrated solar power systems.
Serially connected solid oxide fuel cells having monolithic cores
Herceg, Joseph E.
1987-01-01
A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick. Between 2 and 50 cell segments may be connected in series.
Zhao, Hui; Du, Allen; Ling, Min; ...
2016-05-10
The state-of-the-art graphite anode containing a small portion of silicon represents a promising way of applying high-capacity alloy anode in the next generation high energy density lithium-ion batteries. The conductive polymeric binders developed for Si anodes proved to be an effective binder for this graphite/nanoSi composite electrode. Without any acetylene black conductive additives in the electrode, a high areal capacity of above 2.5 mAh/cm 2 is achieved during long-term cycling over 100 cycles. Finally, this conductive polymer-enabled graphite/nanoSi composite electrode exhibits high specific capacity and high 1 st cycle efficiency, which is a significant progress toward commercial application of Simore » anodes.« less
Razavi, Razieh; Abrishamifar, Seyyed Milad; Rajaei, Gholamreza Ebrahimzadeh; Kahkha, Mohammad Reza Rezaei; Najafi, Meysam
2018-02-21
The applicability of C 44 , B 22 N 22 , Ge 44 , and Al 22 P 22 nanocages, as well as variants of those nanocages with an adsorbed halogen atom, as high-performance anode materials in Li-ion, Na-ion, and K-ion batteries was investigated theoretically via density functional theory. The results obtained indicate that, among the nanocages with no adsorbed halogen atom, Al 22 P 22 would be the best candidate for a novel anode material for use in metal-ion batteries. Calculations also suggest that K-ion batteries which utilize these nanocages as anode materials would give better performance and would yield higher cell voltages than the corresponding Li-ion and Na-ion batteries with nanocage-based anodes. Also, the results for the nanocages with an adsorbed halogen atom imply that employing them as anode materials would lead to higher cell voltages and better metal-ion battery performance than if the nanocages with no adsorbed halogen atom were to be used as anode materials instead. Results further implied that nanocages with an adsorbed F atom would give higher cell voltages and better battery performance than nanocages with an adsorbed Cl or Br atom. We were ultimately able to conclude that a K-ion battery that utilized Al 21 P 22 with an adsorbed F atom as its anode material would afford the best metal-ion battery performance; we therefore propose this as a novel highly efficient metal-ion battery. Graphical abstract The results of a theoretical investigation indicated that Al 22 P 22 is a better candidate for a high-performance anode material in metal-ion batteries than Ge 44 is. Calculations also showed that K-ion batteries with nanocage-based anodes would produce higher cell voltages and perform better than the equivalent Li-ion and Na-ion batteries with nanocage-based anodes, and that anodes based on nanocages with an adsorbed F atom would perform better than anodes based on nanocages with an adsorbed Cl or Br atom.
2015-03-16
AFRL-OSR-VA-TR-2015-0088 Theoretical Study of Novel Nanostructured Materials for Lithium - Ion Batteries Mario Sanchez-Vazquez CENTRO DE INVESTIGACION...SiGeLi Clusters for Design of Novel Nanostructured Materials to Be Utilized as Anodes for Lithium - ion Batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER...utilized as anodes for Lithium - ion batteries Final Report Nancy Perez-Peralta and Mario Sanchez-Vazquez Abstract In order to find out if
2015-03-16
AFRL-OSR-VA-TR-2015-0088 Theoretical Study of Novel Nanostructured Materials for Lithium - Ion Batteries Mario Sanchez-Vazquez CENTRO DE INVESTIGACION...of Novel Nanostructured Materials to Be Utilized as Anodes for Lithium - ion Batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0175 5c...as anodes for Lithium - ion batteries Final Report Nancy Perez-Peralta and Mario Sanchez-Vazquez Abstract In order to find out if silicon
Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong
2015-11-01
Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness.
Vasudevan, Subramanyan; Lakshmi, Jothinathan; Jayaraj, Jeganathan; Sozhan, Ganapathy
2009-05-30
The present study provides an electrocoagulation process for the remediation of phosphate-contaminated water using aluminium, aluminium alloy and mild steel as the anodes and stainless steel as the cathode. The various parameters like effect of anode materials, effect of pH, concentration of phosphate, current density, temperature and co-existing ions, and so forth, and the adsorption capacity was evaluated using both Freundlich and Langmuir isotherm models. The adsorption of phosphate preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. The results showed that the maximum removal efficiency of 99% was achieved with aluminium alloy anode at a current density of 0.2 A dm(-2), at a pH of 7.0. The adsorption process follows second-order kinetics.
Design of a 500-kJ Mather-type plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidarnia, A., E-mail: a-heidarnia@yahoo.com; Sadighzadeh, A.; Zaeem, A. A.
In this article, design of a 500-kJ Mather-type plasma focus device to achieve 10{sup 11} neutrons/shot is reported. One of its important characteristics is the triple-part anode design. The anode is surrounded by an alumina insulator. The second part of the anode is changeable in order to locate cylindrical, conical, or other shapes of pieces mounted on it. This geometry leads to the easier investigation of the neutron and X-ray emissions of the device. The third part of the anode is for changing the materials exposed to different kinds of radiations. The design parameters are considered by semiempirical and empiricalmore » formulas and are sketched by Solidworks software. Also, the peak current and neutron yield are estimated.« less
Gao, Changfei; Liu, Lifen; Yang, Fenglin
2018-02-01
A novel bio-electrochemical system (BES) was developed by integrating micro-electrolysis/electro-flocculation from attaching a sacrificing Al anode to the bio-anode, it effectively treated high load wastewater with energy recovery (maximum power density of 365.1 mW/m 3 and a maximum cell voltage of 0.97 V), and achieving high removals of COD (>99.4%), NH 4 + -N (>98.7%) and TP (>98.6%). The anode chamber contains microbes, activated carbon (AC)/graphite granules and Al anode. It was separated from the cathode chamber containing bifunctional catalytic and filtration membrane cathode (loaded with Fe/Mn/C/F/O catalyst) by a multi-medium chamber (MMC) filled with manganese sand and activated carbon granules, which replaced expensive PEM and reduced cost. An air contact oxidation bed for aeration was still adopted before liquid entering the cathode chamber. micro-electrolysis/electro-flocculation helps in achieving high removal efficiencies and contributes to membrane fouling migration. The increase of activated carbon in the separator MMC increased power generation and reduced system electric resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Na-Ion Battery Anodes: Materials and Electrochemistry.
Luo, Wei; Shen, Fei; Bommier, Clement; Zhu, Hongli; Ji, Xiulei; Hu, Liangbing
2016-02-16
The intermittent nature of renewable energy sources, such as solar and wind, calls for sustainable electrical energy storage (EES) technologies for stationary applications. Li will be simply too rare for Li-ion batteries (LIBs) to be used for large-scale storage purposes. In contrast, Na-ion batteries (NIBs) are highly promising to meet the demand of grid-level storage because Na is truly earth abundant and ubiquitous around the globe. Furthermore, NIBs share a similar rocking-chair operation mechanism with LIBs, which potentially provides high reversibility and long cycling life. It would be most efficient to transfer knowledge learned on LIBs during the last three decades to the development of NIBs. Following this logic, rapid progress has been made in NIB cathode materials, where layered metal oxides and polyanionic compounds exhibit encouraging results. On the anode side, pure graphite as the standard anode for LIBs can only form NaC64 in NIBs if solvent co-intercalation does not occur due to the unfavorable thermodynamics. In fact, it was the utilization of a carbon anode in LIBs that enabled the commercial successes. Anodes of metal-ion batteries determine key characteristics, such as safety and cycling life; thus, it is indispensable to identify suitable anode materials for NIBs. In this Account, we review recent development on anode materials for NIBs. Due to the limited space, we will mainly discuss carbon-based and alloy-based anodes and highlight progress made in our groups in this field. We first present what is known about the failure mechanism of graphite anode in NIBs. We then go on to discuss studies on hard carbon anodes, alloy-type anodes, and organic anodes. Especially, the multiple functions of natural cellulose that is used as a low-cost carbon precursor for mass production and as a soft substrate for tin anodes are highlighted. The strategies of minimizing the surface area of carbon anodes for improving the first-cycle Coulombic efficiency are also outlined, where graphene oxide was employed as dehydration agent and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) was used to unzip wood fiber. Furthermore, surface modification by atomic layer deposition technology is introduced, where we discover that a thin layer of Al2O3 can function to encapsulate Sn nanoparticles, leading to a much enhanced cycling performance. We also highlight recent work about the phosphorene/graphene anode, which outperformed other anodes in terms of capacity. The aromatic organic anode is also studied as anode with very high initial sodiation capacity. Furthermore, electrochemical intercalation of Na ions into reduced graphene oxide is applied for fabricating transparent conductors, demonstrating the great feasibility of Na ion intercalation for optical applications.
Carbon and Carbon Hybrid Materials as Anodes for Sodium-Ion Batteries.
Zhong, Xiongwu; Wu, Ying; Zeng, Sifan; Yu, Yan
2018-02-12
Sodium-ion batteries (SIBs) have attracted much attention for application in large-scale grid energy storage owing to the abundance and low cost of sodium sources. However, low energy density and poor cycling life hinder practical application of SIBs. Recently, substantial efforts have been made to develop electrode materials to push forward large-scale practical applications. Carbon materials can be directly used as anode materials, and they show excellent sodium storage performance. Additionally, designing and constructing carbon hybrid materials is an effective strategy to obtain high-performance anodes for SIBs. In this review, we summarize recent research progress on carbon and carbon hybrid materials as anodes for SIBs. Nanostructural design to enhance the sodium storage performance of anode materials is discussed, and we offer some insight into the potential directions of and future high-performance anode materials for SIBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbon-Coated, Diatomite-Derived Nanosilicon as a High Rate Capable Li-ion Battery Anode
Campbell, Brennan; Ionescu, Robert; Tolchin, Maxwell; Ahmed, Kazi; Favors, Zachary; Bozhilov, Krassimir N.; Ozkan, Cengiz S.; Ozkan, Mihrimah
2016-01-01
Silicon is produced in a variety of ways as an ultra-high capacity lithium-ion battery (LIB) anode material. The traditional carbothermic reduction process required is expensive and energy-intensive; in this work, we use an efficient magnesiothermic reduction to convert the silica-based frustules within diatomaceous earth (diatomite, DE) to nanosilicon (nanoSi) for use as LIB anodes. Polyacrylic acid (PAA) was used as a binder for the DE-based nanoSi anodes for the first time, being attributed for the high silicon utilization under high current densities (up to 4C). The resulting nanoSi exhibited a high BET specific surface area of 162.6 cm2 g−1, compared to a value of 7.3 cm2 g−1 for the original DE. DE contains SiO2 architectures that make ideal bio-derived templates for nanoscaled silicon. The DE-based nanoSi anodes exhibit good cyclability, with a specific discharge capacity of 1102.1 mAh g−1 after 50 cycles at a C-rate of C/5 (0.7 A gSi−1) and high areal loading (2 mg cm−2). This work also demonstrates the fist rate capability testing for a DE-based Si anode; C-rates of C/30 - 4C were tested. At 4C (14.3 A gSi−1), the anode maintained a specific capacity of 654.3 mAh g−1 – nearly 2x higher than graphite’s theoretical value (372 mAh g−1). PMID:27713474
Carbon-Coated, Diatomite-Derived Nanosilicon as a High Rate Capable Li-ion Battery Anode
NASA Astrophysics Data System (ADS)
Campbell, Brennan; Ionescu, Robert; Tolchin, Maxwell; Ahmed, Kazi; Favors, Zachary; Bozhilov, Krassimir N.; Ozkan, Cengiz S.; Ozkan, Mihrimah
2016-10-01
Silicon is produced in a variety of ways as an ultra-high capacity lithium-ion battery (LIB) anode material. The traditional carbothermic reduction process required is expensive and energy-intensive; in this work, we use an efficient magnesiothermic reduction to convert the silica-based frustules within diatomaceous earth (diatomite, DE) to nanosilicon (nanoSi) for use as LIB anodes. Polyacrylic acid (PAA) was used as a binder for the DE-based nanoSi anodes for the first time, being attributed for the high silicon utilization under high current densities (up to 4C). The resulting nanoSi exhibited a high BET specific surface area of 162.6 cm2 g-1, compared to a value of 7.3 cm2 g-1 for the original DE. DE contains SiO2 architectures that make ideal bio-derived templates for nanoscaled silicon. The DE-based nanoSi anodes exhibit good cyclability, with a specific discharge capacity of 1102.1 mAh g-1 after 50 cycles at a C-rate of C/5 (0.7 A gSi-1) and high areal loading (2 mg cm-2). This work also demonstrates the fist rate capability testing for a DE-based Si anode; C-rates of C/30 - 4C were tested. At 4C (14.3 A gSi-1), the anode maintained a specific capacity of 654.3 mAh g-1 - nearly 2x higher than graphite’s theoretical value (372 mAh g-1).
Mechanisms of anode power deposition in a low pressure free burning arc
NASA Technical Reports Server (NTRS)
Soulas, George C.; Myers, Roger M.
1994-01-01
Anode power deposition is a dominant power loss mechanism for arc jets and MPD thrusters. In this study, a free burning arc experiment was operated at pressures and current densities similar to those in arc jets and MPD thrusters in an attempt to identify the physics controlling this loss mechanism. Use of a free burning arc allowed for the isolation of independent variables controlling anode power deposition and provided a convenient and flexible way to cover a broad range of currents, anode surface pressures, and applied magnetic field strengths and orientations using an argon gas. Test results showed that anode power deposition decreased with increasing anode surface pressure up to 6.7 Pa (0.05 torr) and then became insensitive to pressure. Anode power increased with increasing arc current while the electron number density near the anode surface increased linearity. Anode power also increased with increasing applied magnetic field strength due to an increasing anode fall voltage. Applied magnetic field orientation had an effect only at high currents and low anode surface pressures, where anode power decreased when applied field lines intercepted the anode surface. The results demonstrated that anode power deposition was dominated by the current carrying electrons and that the anode fall voltage was the largest contributor. Furthermore, the results showed that anode power deposition can be reduced by operating at increased anode pressures, reduced arc currents, and applied magnetic field strengths and with magnetic field lines intercepting the anode.
Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility
Zhao, Jie; Lee, Hyun-Wook; Sun, Jie; Yan, Kai; Liu, Yayuan; Liu, Wei; Lu, Zhenda; Lin, Dingchang; Zhou, Guangmin; Cui, Yi
2016-01-01
A common issue plaguing battery anodes is the large consumption of lithium in the initial cycle as a result of the formation of a solid electrolyte interphase followed by gradual loss in subsequent cycles. It presents a need for prelithiation to compensate for the loss. However, anode prelithiation faces the challenge of high chemical reactivity because of the low anode potential. Previous efforts have produced prelithiated Si nanoparticles with dry air stability, which cannot be stabilized under ambient air. Here, we developed a one-pot metallurgical process to synthesize LixSi/Li2O composites by using low-cost SiO or SiO2 as the starting material. The resulting composites consist of homogeneously dispersed LixSi nanodomains embedded in a highly crystalline Li2O matrix, providing the composite excellent stability even in ambient air with 40% relative humidity. The composites are readily mixed with various anode materials to achieve high first cycle Coulombic efficiency (CE) of >100% or serve as an excellent anode material by itself with stable cyclability and consistently high CEs (99.81% at the seventh cycle and ∼99.87% for subsequent cycles). Therefore, LixSi/Li2O composites achieved balanced reactivity and stability, promising a significant boost to lithium ion batteries. PMID:27313206
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xing; Zheng, Jianming; Engelhard, Mark H.
The effects of lithium imide and lithium orthoborate dual-salt electrolytes of different salt chemistries in carbonate solvents on the cycling stability of lithium (Li) metal batteries are systematically and comparatively investigated. Two imide salts (LiTFSI and LiFSI) and two orthoborate salts (LiBOB and LiDFOB) are chosen for this study and compared with the conventional LiPF6 salt. Density functional theory calculations indicate that the chemical and electrochemical stabilities follow the order of LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB > LiFSI-LiBOB. The experimental cycling stability of the Li metal batteries with the electrolytes follows the order as LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB >more » LiPF6 > LiFSI-LiBOB, which is in well accordance with the calculation results. The LiTFSI-LiBOB can effectively protect the Al substrate and form a more robust surface film on Li metal anode, while the LiFSI-LiBOB results in serious corrosion to the stainless steel cell case and a thicker and looser surface film on Li anode. In conclusion, the key findings of this work emphasize that the salt chemistry is critically important for enhancing the interfacial stability of Li metal anode and should be carefully manipulated in the development of high performance Li metal batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xing; Zheng, Jianming; Engelhard, Mark H.
The effects of lithium imide and lithium orthoborate dual-salt electrolytes of different salt chemistries in carbonate solvents on the cycling stability of Li metal batteries were systematically and comparatively investigated. Two imide salts (LiTFSI and LiFSI) and two orthoborate salts (LiBOB and LiDFOB) were chosen for this study and compared with the conventional LiPF6 salt. The cycling stability of the Li metal cells with the electrolytes follows the order from good to poor as LiTFSI-LiBOB > LiTFSI-LiDFOB > LiPF6 > LiFSI-LiBOB > LiFSI-LiDFOB, indicating that LiTFSI behaves better than LiFSI and LiBOB over LiDFOB in these four dual-salt mixtures. Themore » LiTFSI-LiBOB can effectively protect the Al substrate and form a more robust surface film on Li metal anode, while the LiFSI-LiBOB results in serious corrosion to the stainless steel cell case and a thicker and looser surface film on Li anode. Computational calculations indicate that the chemical and electrochemical stabilities also follow the order of LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiBOB > LiFSI-LiDFOB. The key findings of this work emphasize that the salt chemistry is critically important for enhancing the interfacial stability of Li metal anode and should be carefully manipulated in the development of high performance Li metal batteries.« less
Li, Xing; Zheng, Jianming; Engelhard, Mark H.; ...
2017-12-27
The effects of lithium imide and lithium orthoborate dual-salt electrolytes of different salt chemistries in carbonate solvents on the cycling stability of lithium (Li) metal batteries are systematically and comparatively investigated. Two imide salts (LiTFSI and LiFSI) and two orthoborate salts (LiBOB and LiDFOB) are chosen for this study and compared with the conventional LiPF6 salt. Density functional theory calculations indicate that the chemical and electrochemical stabilities follow the order of LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB > LiFSI-LiBOB. The experimental cycling stability of the Li metal batteries with the electrolytes follows the order as LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB >more » LiPF6 > LiFSI-LiBOB, which is in well accordance with the calculation results. The LiTFSI-LiBOB can effectively protect the Al substrate and form a more robust surface film on Li metal anode, while the LiFSI-LiBOB results in serious corrosion to the stainless steel cell case and a thicker and looser surface film on Li anode. In conclusion, the key findings of this work emphasize that the salt chemistry is critically important for enhancing the interfacial stability of Li metal anode and should be carefully manipulated in the development of high performance Li metal batteries.« less
High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Kuber; Zheng, Jianming; Patel, Rajankumar
A low temperature (210°C) aluminothermic reduction reaction process has been developed to synthesis porous silicon (Si) as an anode for Li ion battery applications. An eutectic mixture of AlCl3 and ZnCl2 is used as the mediator to reduce the reaction temperature. With carbon pre-coated on the porous SiO2 precursor, porous Si@C core shell structured anodes could be obtained with structure and morphology similar to that of the porous precursor. In addition, carbon coated porous Si also exhibits superior cyclic stability, higher rate performance, and higher coulombic efficiency. The porous Si anode demonstrates a high specific capacity of ~2100 mAh/g atmore » the current density of 1.2 A/g and has a good cycling stability with ~76% capacity retention over 250 cycles. Therefore, it will be a good candidate for anode used in high energy density Li-ion batteries.« less
Porous Anodic Aluminum Oxide with Serrated Nanochannels
NASA Astrophysics Data System (ADS)
Li, Dongdong; Zhao, Liang; Lu, Jia G.
2010-03-01
Self-assembled nanoporous anodic aluminum oxide (AAO) membrane with straight channels has long been an important tool in synthesizing highly ordered and vertically aligned quasi-1D nanostructures for various applications. Recently shape-selective nanomaterials have been achieved using AAO as a template. It is envisioned that nanowires with multi-branches will significantly increase the active functional sites for applications as sensors, catalysts, chemical cells, etc. Here AAO membranes with serrated nanochannels have been successfully fabricated via a two-step annodization method. The serrated channels with periodic intervals are aligned at an angle of ˜25^circ along the stem channels. The formation of the serrated channels is attributed to the evolution of oxygen gas bubbles and the resulted plastic deformation in oxide membrane. In order to reveal the inside channel structure, Platinum are electrodeposited into the AAO template. The as-synthesized serrated Pt nanowires demonstrate a superior electrocatalytic activity. This is attributed to the enhanced electric field strength around serrated tips as shown in the electric field simulation by COMOSL. Moreover, hierarchical serrated/straight hybrid structures can be constructed using this simple and novel self assembly technique.
Structural micro-porous carbon anode for rechargeable lithium-ion batteries
Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.
1995-06-20
A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.
A type of cylindrical Hall thruster with a magnetically insulated anode
NASA Astrophysics Data System (ADS)
Yongjie, Ding; Yu, Xu; Wuji, Peng; Liqiu, Wei; Hongbo, Su; Hezhi, Sun; Peng, Li; Hong, Li; Daren, Yu
2017-04-01
In this paper, a type of magnetically insulated anode structure is proposed for the design of a low-power cylindrical Hall thruster. The magnetic field distribution in the channel is guided by the magnetically insulated anode, altering the intersection status of the magnetic field line passing through the anode and wall. Experimental and simulation results show that a high potential is formed near the wall by the magnetically insulated anode. As the ionization moves towards the outlet, the energy and flux of the ions bombarding the channel wall can be reduced effectively. Due to the reduction in the bombardment of the wall from high-energy ions, the thrust and specific impulse greatly increase compared with those of the non-magnetically insulated anode. For anode mass flow rates of 0.3 and 0.35 mg s-1 and discharge voltages in the 100-200 V range, the thrust can be increased by more than 33% and the anode efficiency can be improved by more than 7%. Meanwhile, the length of the sputtering area is clearly reduced. The starting position of the sputtering area is in front of the magnetic pole, which can effectively prolong the service life of the thruster.
Yamamoto, Kazuhiro; Qiu, Nan; Ohara, Satoshi
2015-01-01
A core–shell anode consisting of nickel–gadolinium-doped-ceria (Ni–GDC) nanocubes was directly fabricated by a chemical process in a solution containing a nickel source and GDC nanocubes covered with highly reactive {001} facets. The cermet anode effectively generated a Ni metal framework even at 500 °C with the growth of the Ni spheres. Anode fabrication at such a low temperature without any sintering could insert a finely nanostructured layer close to the interface between the electrolyte and the anode. The maximum power density of the attractive anode was 97 mW cm–2, which is higher than that of a conventional NiO–GDC anode prepared by an aerosol process at 55 mW cm–2 and 600 °C, followed by sintering at 1300 °C. Furthermore, the macro- and microstructure of the Ni–GDC-nanocube anode were preserved before and after the power-generation test at 700 °C. Especially, the reactive {001} facets were stabled even after generation test, which served to reduce the activation energy for fuel oxidation successfully. PMID:26615816
Speranza, Valentina; Trotta, Francesco; Drioli, Enrico; Gugliuzza, Annarosa
2010-02-01
The fabrication of well-defined interfaces is in high demand in many fields of biotechnologies. Here, high-definition membrane-like arrays are developed through the self-assembly of water droplets, which work as natural building blocks for the construction of ordered channels. Solution viscosity together with the dynamics of the water droplets can decide the final formation of three-dimensional well-ordered patterns resembling anodic structures, especially because solvents denser than water are used. Particularly, the polymer solution viscosity is demonstrated to be a powerful tool for control of the mobility of submerged droplets during the microfabrication process. The polymeric patterns are structured at very high levels of organization and exhibit well-established transport-surface property relationships, considered basics for any types of advanced biotechnologies.
de Araújo, Brenda R S; Linares León, José J
2018-05-15
This study presents the results of the electrochemical degradation of the emulsifier cetrimonium chloride (CTAC) on a boron-doped diamond (BDD) anode under different current densities and flow rates. Higher values of these parameters result in a more rapid removal. Nevertheless, operation at low current reduces the required applied charge and increases the chemical oxygen demand (COD) removal efficiency, as there is less development of ineffective parasitic reactions. On the other hand, high flow rates reduce the required volumetric applied charge and increase the COD removal current efficiency. In order to assist and enrich the study, an economic analysis has been performed. For short expected plant lifespans, operation at low current is advantageous due to the lower investment required, whereas for longer expected lifespans, the operational costs make the lower current densities less costly. High flow rates are always advantageous from a financial point of view. Copyright © 2018 Elsevier Ltd. All rights reserved.
A method for achieving ignition of a low voltage gas discharge device
Kovarik, Vincent J.; Hershcovitch, Ady; Prelec, Krsto
1988-01-01
An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a larger number of gas atoms, thus reducing the voltage necesary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.
Low-voltage gas-discharge device
Kovarik, V.J.; Hershcovitch, A.; Prelec, K.
1982-06-08
An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region is described. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a large number of gas atoms, thus reducing the voltage necessary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.
Report on Carbon Nano Material Workshop: Challenges and Opportunities
2013-01-22
trolyte fuel cells ( PEMFCs ) utilize the ability of the catalysts to initiate and maintain the oxygen reduction reaction on the cathode and the fuel...oxidation reaction on the anode. In order to increase the efficiency of the PEMFC catalysts, high-surface-area mesoporous carbons, carbon blacks, carbon...mechanical and thermal properties derived from a three-dimensional intercon- nected nanonetwork structure. The exceptional properties of CAs for PEMFC
NASA Astrophysics Data System (ADS)
Bachand, Gabrielle
In the foreseeable future, global energy demand is expected to rapidly increase as a result of the swelling population and higher standards of living. Current energy generation and transportation methods predominantly involve the combustion of non-renewable fossil fuels, and greenhouse gas emissions from these processes have been shown to contribute to global climate change and to be detrimental to human and environmental health. To satisfy future energy needs and to reduce greenhouse gas emissions, the advancement of renewable energy generation and electric vehicles is important. The proliferation of intermittent renewable energy sources (such as solar and wind) and electric vehicles depends upon reliable, high-capacity energy storage to serve the practical needs of society. The present-day lithium-ion battery offers excellent qualities for this purpose; however, improvements in the capacity and cost-effectiveness of these batteries are needed for further growth. As an anode material, silicon has exceptionally high theoretical capacity and is an earth-abundant, low-cost option. However, silicon also suffers from poor conductivity and long-term stability, prompting many studies to investigate the use of additive materials to mitigate these issues. This thesis focuses on the improvement of silicon anode performance by using a nanoparticulate copper additive to increase material conductivity and an inexpensive, industry-compatible anode fabrication process. Three main fabrication processes were explored using differing materials and heat treatment techniques for comparison. Anodes were tested using CR2032 type coin cells. The final anodes with the most-improved characteristics were fabricated using a high-temperature heating step for the anode material, and an additional batch was formed to test the viability of the copper additive functioning as a full substitute for carbon black, which is the traditional choice of conductive additive for electrode materials. Anodes materials were characterized using a variety of techniques including scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), inductively coupled plasma optical emission spectrometry (ICP-OES), Raman spectroscopy, and X-ray diffraction (XRD) to evaluate surface qualities and material content. Electrochemical techniques including electrochemical impedance spectroscopy (EIS) and charge/discharge cycling were also used to determine the conductivity and functional behavior of the anode materials. Anodes from the final experimental study achieved initial capacities of 309 mA/g and 957 mA/g for the silicon-only control and silicon with copper additive anodes, respectively, demonstrating an over 300% increase in specific capacity. Si-Cu (NC) anodes also showed superior performance over control anodes with an initial capacity of 775 mA/g. For all three anodes, high efficiencies of over 96% were achieved for the testing duration of 100 cycles and reached near or over 99% in final cycles. Results also show a significant decrease in the resistance of anodes with copper additive, contributing to the improved performance of these anodes.
Bone Cell–materials Interactions and Ni Ion Release of Anodized Equiatomic NiTi Alloy
Bernard, Sheldon A.; Balla, Vamsi Krishna; Davies, Neal M.; Bose, Susmita; Bandyopadhyay, Amit
2011-01-01
Laser processed NiTi alloy was anodized for different durations in H2SO4 electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-materials interactions. The anodized surfaces were assessed for their in vitro cell-materials interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that the anodization creates a surface with nano/micro roughness depending on anodization conditions. The hydrophilicity of NiTi surface was found to improve after anodization due to lower contact angles in cell media, which dropped from 32° to < 5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy comparable to that of cp Ti. Relatively high surface energy, especially polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268 ± 11 to 136 ± 15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improve bone cell-materials interactions and reduce Ni ion release in vitro. PMID:21232641
Ying, Hangjun; Han, Wei-Qiang
2017-11-01
With the fast-growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn-based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium-ion batteries (LIBs) (994 mA h g -1 ) and sodium-ion batteries (847 mA h g -1 ). Though Sony has used Sn-Co-C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn-based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn-based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in-depth understanding of the theoretical works and practical developments of metallic Sn-based anode materials.
NASA Astrophysics Data System (ADS)
Esfandi, F.; Saramad, S.
2015-07-01
In this work, a new generation of scintillator based X-ray imagers based on ZnO nanowires in Anodized Aluminum Oxide (AAO) nanoporous template is characterized. The optical response of ordered ZnO nanowire arrays in porous AAO template under low energy X-ray illumination is simulated by the Geant4 Monte Carlo code and compared with experimental results. The results show that for 10 keV X-ray photons, by considering the light guiding properties of zinc oxide inside the AAO template and suitable selection of detector thickness and pore diameter, the spatial resolution less than one micrometer and the detector detection efficiency of 66% are accessible. This novel nano scintillator detector can have many advantages for medical applications in the future.
Role of anode length in a mather-type plasma focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beg, F.N.; Zakaullah, M.; Nisar, M.
In this paper, neutron emission from a 3 KJ Mather-type plasma focus is studied. Specifically, the behavior of system with the change in anode length is investigated. Anode lengths of high and low fluence anisotropy as well as for high neutron yield are identified. Experiment also suggest the possibility of ion beam generation leading to neutron production via beam-plasma interaction.
Position-sensitive proportional counter with low-resistance metal-wire anode
Kopp, Manfred K.
1980-01-01
A position-sensitive proportional counter circuit is provided which allows the use of a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counter. A pair of specially designed active-capacitance preamplifiers are used to terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, low-noise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates (>10.sup.6 counts/sec).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamba, O.S.; Badola, Richa; Baloda, Suman
The paper describes voltage break down phenomenon and preventive measures in components of 250 KW CW, C band Klystron under development at CEERI Pilani. The Klystron operates at a beam voltage of 50 kV and delivers 250 kW RF power at 5 GHz frequency. The Klystron consists of several key components and regions, which are subject to high electrical stress. The most important regions of electrical breakdown are electron gun, the RF ceramic window and output cavity gap area. In the critical components voltage breakdown considered at design stage by proper gap and other techniques. All these problems discussed, asmore » well as solution to alleviate this problem. The electron gun consists basically of cathode, BFE and anode. The cathode is operated at a voltage of 50 kV. In order to maintain the voltage standoff between cathode and anode a high voltage alumina seal and RF window have been designed developed and successfully used in the tube. (author)« less
Te/C nanocomposites for Li-Te Secondary Batteries
NASA Astrophysics Data System (ADS)
Seo, Jeong-Uk; Seong, Gun-Kyu; Park, Cheol-Min
2015-01-01
New battery systems having high energy density are actively being researched in order to satisfy the rapidly developing market for longer-lasting mobile electronics and hybrid electric vehicles. Here, we report a new Li-Te secondary battery system with a redox potential of ~1.7 V (vs. Li+/Li) adapted on a Li metal anode and an advanced Te/C nanocomposite cathode. Using a simple concept of transforming TeO2 into nanocrystalline Te by mechanical reduction, we designed an advanced, mechanically reduced Te/C nanocomposite electrode material with high energy density (initial discharge/charge: 1088/740 mA h cm-3), excellent cyclability (ca. 705 mA h cm-3 over 100 cycles), and fast rate capability (ca. 550 mA h cm-3 at 5C rate). The mechanically reduced Te/C nanocomposite electrodes were found to be suitable for use as either the cathode in Li-Te secondary batteries or a high-potential anode in rechargeable Li-ion batteries. We firmly believe that the mechanically reduced Te/C nanocomposite constitutes a breakthrough for the realization and mass production of excellent energy storage systems.
NASA Astrophysics Data System (ADS)
Abbou, S.; Dillet, J.; Maranzana, G.; Didierjean, S.; Lottin, O.
2017-02-01
Operating a PEMFC with a dead-ended anode may lead to local fuel-starvation because of water and possibly nitrogen accumulation in the anode compartment. In previous works, we used a segmented linear cell with reference electrodes to monitor simultaneously the local potentials and current densities during dead-ended anode operation. The results indicated that water transport as well as nitrogen crossover through the membrane were most probably the two key factors governing fuel starvation. In this first from a set of two papers, we evaluated with more details the contributions of nitrogen crossover and water transport to hydrogen starvation. To assess nitrogen contribution, the fuel cell cathode compartment was first supplied with pure oxygen instead of air. The results showed that in the absence of nitrogen (in the cathode side) the fuel starvation was much slower than with air, suggesting that nitrogen contribution cannot be neglected. On the other hand, the contribution of water flooding to hydrogen starvation was investigated by using different cooling temperature on the cathode and anode sides in order to drive water toward the colder plate. The results showed that with a colder anode side, fuel starvation was faster. In the opposite case of a hotter anode plate, water accumulation in the anode compartment was limited, nitrogen crossover through the membrane was the main reason for hydrogen starvation in this case. To fully assess the impact of the thermal configurations on membrane-electrode assembly (MEA) degradation, aging protocols with a dead-ended anode and a fixed closing time were also performed. The results showed that operation with a hotter anode could help to limit significantly cathode ElectroChemical Surface Area (ECSA) losses along the cell area and performance degradation induced by hydrogen starvation.
Mussel-Inspired Conductive Polymer Binder for Si-Alloy Anode in Lithium-Ion Batteries
Zhao, Hui; Wei, Yang; Wang, Cheng; ...
2018-01-15
The excessive volume changes during cell cycling of Si-based anode in lithium ion batteries impeded its application. One major reason for the cell failure is particle isolation during volume shrinkage in delithiation process, which makes strong adhesion between polymer binder and anode active material particles a highly desirable property. Here, a biomimetic side-chain conductive polymer incorporating catechol, a key adhesive component of the mussel holdfast protein, was synthesized. Atomic force microscopy-based single-molecule force measurements of mussel-inspired conductive polymer binder contacting a silica surface revealed a similar adhesion toward substrate when compared with an effective Si anode binder, homo-poly(acrylic acid), withmore » the added benefit of being electronically conductive. Electrochemical experiments showed a very stable cycling of Si-alloy anodes realized via this biomimetic conducting polymer binder, leading to a high loading Si anode with a good rate performance. We attribute the ability of the Si-based anode to tolerate the volume changes during cycling to the excellent mechanical integrity afforded by the strong interfacial adhesion of the biomimetic conducting polymer.« less
Laser pumping of thyristors for fast high current rise-times
Glidden, Steven C.; Sanders, Howard D.
2013-06-11
An optically triggered semiconductor switch includes an anode metallization layer; a cathode metallization layer; a semiconductor between the anode metallization layer and the cathode metallization layer and a photon source. The semiconductor includes at least four layers of alternating doping in the form P-N-P-N, in which an outer layer adjacent to the anode metallization layer forms an anode and an outer layer adjacent the cathode metallization layer forms a cathode and in which the anode metallization layer has a window pattern of optically transparent material exposing the anode layer to light. The photon source emits light having a wavelength, with the light from the photon source being configured to match the window pattern of the anode metallization layer.
CdZnTe Image Detectors for Hard-X-Ray Telescopes
NASA Technical Reports Server (NTRS)
Chen, C. M. Hubert; Cook, Walter R.; Harrison, Fiona A.; Lin, Jiao Y. Y.; Mao, Peter H.; Schindler, Stephen M.
2005-01-01
Arrays of CdZnTe photodetectors and associated electronic circuitry have been built and tested in a continuing effort to develop focal-plane image sensor systems for hard-x-ray telescopes. Each array contains 24 by 44 pixels at a pitch of 498 m. The detector designs are optimized to obtain low power demand with high spectral resolution in the photon- energy range of 5 to 100 keV. More precisely, each detector array is a hybrid of a CdZnTe photodetector array and an application-specific integrated circuit (ASIC) containing an array of amplifiers in the same pixel pattern as that of the detectors. The array is fabricated on a single crystal of CdZnTe having dimensions of 23.6 by 12.9 by 2 mm. The detector-array cathode is a monolithic platinum contact. On the anode plane, the contact metal is patterned into the aforementioned pixel array, surrounded by a guard ring that is 1 mm wide on three sides and is 0.1 mm wide on the fourth side so that two such detector arrays can be placed side-by-side to form a roughly square sensor area with minimal dead area between them. Figure 1 shows two anode patterns. One pattern features larger pixel anode contacts, with a 30-m gap between them. The other pattern features smaller pixel anode contacts plus a contact for a shaping electrode in the form of a grid that separates all the pixels. In operation, the grid is held at a potential intermediate between the cathode and anode potentials to steer electric charges toward the anode in order to reduce the loss of charges in the inter-anode gaps. The CdZnTe photodetector array is mechanically and electrically connected to the ASIC (see Figure 2), either by use of indium bump bonds or by use of conductive epoxy bumps on the CdZnTe array joined to gold bumps on the ASIC. Hence, the output of each pixel detector is fed to its own amplifier chain.
Farsinezhad, Samira; Mohammadpour, Arash; Dalrymple, Ashley N; Geisinger, Jared; Kar, Piyush; Brett, Michael J; Shankar, Karthik
2013-04-01
Exploitation of anodically formed self-organized TiO2 nanotube arrays in mass-manufactured, disposable biosensors, rollable electrochromic displays and flexible large-area solar cells would greatly benefit from integration with transparent and flexible polymeric substrates. Such integration requires the vacuum deposition of a thin film of titanium on the desired substrate, which is then anodized in suitable media to generate TiO2 nanotube arrays. However the challenges associated with control of Ti film morphology, nanotube array synthesis conditions, and film adhesion and transparency, have necessitated the use of substrate heating during deposition to temperatures of at least 300 degrees C and as high as 500 degrees C to generate highly ordered open-pore nanotube arrays, thus preventing the use of polymeric substrates. We report on a film growth technique that exploits atomic peening to achieve high quality transparent TiO2 nanotube arrays with lengths up to 5.1 microm at room temperature on polyimide substrates without the need for substrate heating or substrate biasing or a Kauffman ion source. The superior optical quality and uniformity of the nanotube arrays was evidenced by the high specular reflectivity and the smooth pattern of periodic interferometric fringes in the transmission spectra of the nanotube arrays, from which the wavelength-dependent effective refractive index was extracted for the air-TiO2 composite medium. A fluorescent immunoassay biosensor constructed using 5.1 microm-long transparent titania nanotube arrays (TTNAs) grown on Kapton substrates detected human cardiac troponin I at a concentration of 0.1 microg ml(-1).
High-Capacity and Long-Cycle Life Aqueous Rechargeable Lithium-Ion Battery with the FePO4 Anode.
Wang, Yuesheng; Yang, Shi-Ze; You, Ya; Feng, Zimin; Zhu, Wen; Gariépy, Vincent; Xia, Jiexiang; Commarieu, Basile; Darwiche, Ali; Guerfi, Abdelbast; Zaghib, Karim
2018-02-28
Aqueous lithium-ion batteries are emerging as strong candidates for a great variety of energy storage applications because of their low cost, high-rate capability, and high safety. Exciting progress has been made in the search for anode materials with high capacity, low toxicity, and high conductivity; yet, most of the anode materials, because of their low equilibrium voltages, facilitate hydrogen evolution. Here, we show the application of olivine FePO 4 and amorphous FePO 4 ·2H 2 O as anode materials for aqueous lithium-ion batteries. Their capacities reached 163 and 82 mA h/g at a current rate of 0.2 C, respectively. The full cell with an amorphous FePO 4 ·2H 2 O anode maintained 92% capacity after 500 cycles at a current rate of 0.2 C. The acidic aqueous electrolyte in the full cells prevented cathodic oxygen evolution, while the higher equilibrium voltage of FePO 4 avoided hydrogen evolution as well, making them highly stable. A combination of in situ X-ray diffraction analyses and computational studies revealed that olivine FePO 4 still has the biphase reaction in the aqueous electrolyte and that the intercalation pathways in FePO 4 ·2H 2 O form a 2-D mesh. The low cost, high safety, and outstanding electrochemical performance make the full cells with olivine or amorphous hydrated FePO 4 anodes commercially viable configurations for aqueous lithium-ion batteries.
Retention of Sputtered Molybdenum on Ion Engine Discharge Chamber Surfaces
NASA Technical Reports Server (NTRS)
Sovey, James S.; Dever, Joyce A.; Power, John L.
2001-01-01
Grit-blasted anode surfaces are commonly used in ion engines to ensure adherence of sputtered coatings. Next generation ion engines will require higher power levels, longer operating times, and thus there will likely be thicker sputtered coatings on their anode surfaces than observed to date on 2.3 kW-class xenon ion engines. The thickness of coatings on the anode of a 10 kW, 40-centimeter diameter thruster, for example, may be 22 micrometers or more after extended operation. Grit-blasted wire mesh, titanium, and aluminum coupons were coated with molybdenum at accelerated rates to establish coating stability after the deposition process and after thermal cycling tests. These accelerated deposition rates are roughly three orders of magnitude more rapid than the rates at which the screen grid is sputtered in a 2.3 kW-class, 30-centimeter diameter ion engine. Using both RF and DC sputtering processes, the molybdenum coating thicknesses ranged from 8 to 130 micrometers, and deposition rates from 1.8 micrometers per hour to 5.1 micrometers per hour. In all cases, the molybdenum coatings were stable after the deposition process, and there was no evidence of spalling of the coatings after 20 cycles from about -60 to +320 C. The stable, 130 micrometer molybdenum coating on wire mesh is 26 times thicker than the thickest coating found on the anode of a 2.3 kW, xenon ion engine that was tested for 8200 hr. Additionally, this coating on wire mesh coupon is estimated to be a factor of greater than 4 thicker than one would expect to obtain on the anode of the next generation ion engine which may have xenon throughputs as high as 550 kg.
NASA Astrophysics Data System (ADS)
Dhungana, Pramod
Microbial fuel cell (MFC) technology has attracted great attention in the scientific community as it offers the possibility of extraction of electricity from wide range of soluble and dissolved organic waste or renewable biomass, including sludge, waste water and cellulosic biomass. Microbial fuel cells are devices that utilize microbial metabolic processes to convert chemical energy via the oxidation of organic substances to produce electric current. MFCs consist of two chambers, an anode and cathode, separated by ion-permeable materials. The efficiency of producing electricity using the MFC depends on several factors such as immobilization of microorganisms on anode, mode of electron transfer, types of substrate/fuel and effectiveness of cathode materials for oxygen reduction reaction (ORR). In this work, in order to immobilize the microorganisms on anode materials, we have investigated the surface modification of gold electrode (anode) using alkyl dithiol and aryl thiol with glucose. The modification processes were characterized by using contact angle measurements and proton nuclear magnetic resonance (NMR). In order to study the effectiveness of cathode materials for ORR, we have synthesized hollow Mn3O 4 nanoparticles which are electrically very poor. Therefore, the hollow nanoparticles were mixed with electrically conductive multi-walled carbon nanotube as support and optimized the mixing process. This composite material shows enhanced ORR activity in all types of pH conditions. In future, we will focus to integrate anode and cathode in MFC to check its efficiency to produce electricity.
NASA Astrophysics Data System (ADS)
Riegraf, Matthias; Zekri, Atef; Knipper, Martin; Costa, Rémi; Schiller, Günter; Friedrich, K. Andreas
2018-03-01
This work presents an analysis of the long-term behavior of nickel/gadolinium-doped ceria (CGO) anode-based solid oxide fuel cells (SOFC) under sulfur poisoning conditions. A parameter study of sulfur-induced irreversible long-term degradation of commercial, high-performance single cells was carried out at 900 °C for different H2/N2/H2S fuel gas atmospheres, current densities and Ni/CGO anodes. The poisoning periods of the cells varied from 200 to 1500 h. The possibility of stable long-term Ni/CGO anode operation under sulfur exposure is established and the critical operating regime is outlined. Depending on the operating conditions, two degradation phenomena can be observed. Small degradation of the ohmic resistance was witnessed for sulfur exposure times of approximately 1000 h. Moreover, degradation of the anode charge transfer resistance was observed to be triggered by the combination of a small anodic potential step and high sulfur coverage on Ni. The microstructural evolution of altered Ni/CGO anodes was examined post-mortem by means of SEM and FIB/SEM, and is correlated to the anode performance degradation under critical operating conditions, establishing Ni depletion, porosity increase and a tripe phase boundary density decrease in the anode functional layer. It is shown that short-term sulfur poisoning behavior can be used to assess long-term stability.
NASA Astrophysics Data System (ADS)
Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart; Thomas, Sobi; Andreasen, Søren Juhl; Kær, Søren Knudsen
2017-08-01
This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells. The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%.
Solid state thin film battery having a high temperature lithium alloy anode
Hobson, David O.
1998-01-01
An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.
Effectiveness of sacrificial anodes in high-resistivity shotcrete repairs.
DOT National Transportation Integrated Search
2005-01-01
This study investigated the use of discrete sacrificial anodes to improve the durability and extend the life of a shotcrete patch repair in a column. Three columns were used in the investigation. In two columns, anodes were placed around the perimete...
Preparation and Evaluation of Multi-Layer Anodes of Solid Oxide Fuel Cell
NASA Technical Reports Server (NTRS)
Santiago, Diana; Farmer, Serene C.; Setlock, John A.
2012-01-01
The development of an energy device with abundant energy generation, ultra-high specific power density, high stability and long life is critical for enabling longer missions and for reducing mission costs. Of all different types of fuel cells, the solid oxide fuel cells (SOFC) is a promising high temperature device that can generate electricity as a byproduct of a chemical reaction in a clean way and produce high quality heat that can be used for other purposes. For aerospace applications, a power-to-weight of (is) greater than 1.0 kW/kg is required. NASA has a patented fuel cell technology under development, capable of achieving the 1.0 kW/kg figure of merit. The first step toward achieving these goals is increasing anode durability. The catalyst plays an important role in the fuel cells for power generation, stability, efficiency and long life. Not only the anode composition, but its preparation and reduction are key to achieving better cell performance. In this research, multi-layer anodes were prepared varying the chemistry of each layer to optimize the performance of the cells. Microstructure analyses were done to the new anodes before and after fuel cell operation. The cells' durability and performance were evaluated in 200 hrs life tests in hydrogen at 850 C. The chemistry of the standard nickel anode was modified successfully reducing the anode degradation from 40% to 8.4% in 1000 hrs and retaining its microstructure.
NASA Astrophysics Data System (ADS)
Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.
2016-01-01
High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.
NASA Astrophysics Data System (ADS)
Lee, Min-Jin; Shin, Jae-Hwa; Ji, Mi-Jung; Hwang, Hae-Jin
2018-01-01
In this work, nickel and gadolinium-doped ceria (GDC)-infiltrated lanthanum strontium titanate (LST) anodes are fabricated, and their electrode performances under a hydrogen atmosphere is investigated in terms of the Ni:GDC ratios and cell operating temperature. The Ni/GDC-infiltrated LST anode exhibits excellent electrode performance in comparison with the Ni- or GDC-infiltrated anodes, which is attributed to the synergistic effect of an extended triple-phase boundary length by GDC and good catalytic activity for hydrogen oxidation because of the Ni particles. The polarization resistances (Rp) of Ni/GDC-infiltrated LST are 0.07, 0.08, and 0.12 Ω cm2 at 800, 750, and 700 °C, respectively, which are approximately three orders of magnitude lower than that of the LST anode (68.5 Ω cm2 at 700 °C). The effect of Ni and GDC on the electrochemical performance of LST was also investigated by using electrochemical impedance spectroscopy (EIS). The anode polarization resistance (Rp) is confirmed to be dependent on the content and dispersion state (microstructure) of the Ni and GDC nanoparticles.
Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries.
Yan, Chao; Liu, Qianru; Gao, Jianzhi; Yang, Zhibo; He, Deyan
2017-01-01
Heavy-phosphorus-doped silicon anodes were fabricated on CuO nanorods for application in high power lithium-ion batteries. Since the conductivity of lithiated CuO is significantly better than that of CuO, after the first discharge, the voltage cut-off window was then set to the range covering only the discharge-charge range of Si. Thus, the CuO core was in situ lithiated and acts merely as the electronic conductor in the following cycles. The Si anode presented herein exhibited a capacity of 990 mAh/g at the rate of 9 A/g after 100 cycles. The anode also presented a stable rate performance even at a current density as high as 20 A/g.
Composite Li metal anode with vertical graphene host for high performance Li-S batteries
NASA Astrophysics Data System (ADS)
Zhang, Y. J.; Liu, S. F.; Wang, X. L.; Zhong, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.
2018-01-01
Efficient and stable operation of a lithium metal anode has become the enabling factor for next-generation high energy density storage system. Here, vertical graphene (VG) arrays are used as the scaffold structure for high performance Li metal batteries. The melt infusion method is employed to encapsulate Li inside the VG scaffold structure, and the lithiophilic Si layer is coated onto the array surface by magnetron sputtering to assist this melt-infusion process. The porous scaffold structure can control the volume expansion and inhibit the formation of dendritic lithium significantly, leading to the excellent electrochemical performance of the Li composite anode. In addition, the Li-S full batteries with the composite anode display enhanced cycling reversibility.
MHD generator electrode development. Summary report, July 1, 1981-September 30, 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossing, B.R.; Buckman, R.W. Jr.; Pouchot, W.D.
Emphasis on this program was the development of and understanding wastage mechanism(s) of metallic electrodes which may be suitable alternatives to platinum anode material for use in long-term open cycle, coal-fired MHD generator operations. The laboratory tests simulate both modes of material wastage observed in MHD electrode operation; i.e., arc erosion (melting/vaporization) and electrochemical corrosion. Based on experimental results from the electrochemical tests at 1473/sup 0/K, the rank order listing of the materials tested for anode applications were platinum, E-Brite 26-1 modified with a five percent addition of platinum, chromium, IN 601, E-Brite 26-1, and 330 stainless steel ranked inmore » decreasing order. The rank order listing based on the arc erosion test was platinum, chromium, E-Brite 26-1, 330 stainless steel, and IN 601. The relative arc erosion resistance of materials based on the AVCO Mark VII generator test results gave a rank order of platinum, 330 stainless steel, IN 601, and E-Brite 26-1. Engineering tests under simulated open-cycle coal-fired MHD operating conditions were performed in the 500 kW Westinghouse Electrode System Test Facility (WESTF). Tests were conducted on candidate metallic anode materials (cold wall) and ceramic anode (hot wall) materials. A ten-hour duration cold wall slagging test was conducted on platinum, E-Brite 26-1, 330 stainless steel and IN 601 and the results were similar to those obtained for those materials in the AVCO Mark VII generator tests. Non-slagging, super hot (>1700/sup 0/C) wall hafnia-rare earth oxide electrodes were tested in a sulfurous, western coal-fired MHD environment. All four ceramic electrode pairs were destroyed. 20 references.« less
Hidalgo, D; Sacco, A; Hernández, S; Tommasi, T
2015-11-01
A mixed microbial population naturally presents in seawater was used as active anodic biofilm of two Microbial Fuel Cells (MFCs), employing either a 2D commercial carbon felt or 3D carbon-coated Berl saddles as anode electrodes, with the aim to compare their electrochemical behavior under continuous operation. After an initial increase of the maximum power density, the felt-based cell reduced its performance at 5 months (from 7 to 4 μW cm(-2)), while the saddle-based MFC exceeds 9 μW cm(-2) (after 2 months) and maintained such performance for all the tests. Electrochemical impedance spectroscopy was used to identify the MFCs controlling losses and indicates that the mass-transport limitations at the biofilm-electrolyte interface have the main contribution (>95%) to their internal resistance. The activation resistance was one order of magnitude lower with the Berl saddles than with carbon felt, suggesting an enhanced charge-transfer in the high surface-area 3D electrode, due to an increase in bacteria population growth. Copyright © 2015 Elsevier Ltd. All rights reserved.
Preliminary Development of Electrodes for an Electric-Arc Wind Tunnel
NASA Technical Reports Server (NTRS)
Shepard, Charles E.; Boldman, Donald R.
1959-01-01
Two electrode configurations were tested in an electric-arc wind tunnel at the NASA Lewis Research Center. The results indicated approximately the same heat-loss rate per unit of arc power input for each of the configurations. Measured heat-loss rates were on the order of 40 percent of the arc power input. Nearly all this loss occurred at the anode. The power input and arc current limitations of the electrodes appear to be the critical design factors. Up to now, the maximum power to the stream has been 115 kilowatts with a cooled tungsten cathode and a cooled cylindrical anode incorporating a magnetic field. The maximum power input to this anode could not be established with the cooled tungsten cathode because cathode failures occurred at a gross power level of approximately 175 kilowatts. It was necessary to use a graphite cathode to seek the limitation of the anode. The results indicated that the anode limitation was primarily a function of arc current rather than power input. The anode was successfully operated at a power of 340 kilowatts at 1730 amperes; however, the anode failed with a power input of 324 kilowatts and a current of 2140 amperes. The magnetic flux density at the time of failure was 0.32 weber per square meter, or 3200 gauss. The graphite cathode was used only to establish the anode limitation; further investigation of graphite cathodes was discontinued because of the large amount of stream contamination associated with this type of electrode.
Electrochemical Hydrogen Peroxide Generator
NASA Technical Reports Server (NTRS)
Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.
2010-01-01
Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials needed are water and oxygen or air. 2. The product is pure and can therefore be used in disinfection applications directly or after proper dilution with water. 3. Oxygen generated in the anode compartment is used in the electrochemical reduction process; in addition, external oxygen is used to establish a high flow rate in the cathode compartment to remove the desired product efficiently. Exiting oxygen can be recycled after separation of liquid hydrogen peroxide product, if so desired. 4. The process can be designed for peroxide generation under microgravity conditions. 5. High concentrations of the order of 6-7 wt% can be generated by this method. This method at the time of this reporting is superior to what other researchers have reported. 6. The cell design allows for stacking of cells to increase the hydrogen peroxide production. 7. The catalyst mix containing a diquaternary ammonium compound enabled not only higher concentration of hydrogen peroxide but also higher current efficiency, improved energy efficiency, and catalyst stability. 8. The activity of the catalyst is maintained even after repeated periods of system shutdown. 9. The catalyst system can be extended for fuel-cell cathodes with suitable modifications.
Anodizing of High Electrically Stressed Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores, P.; Henderson, D. J.; Good, D. E.
2013-06-01
Anodizing creates an aluminum oxide coating that penetrates into the surface as well as builds above the surface of aluminum creating a very hard ceramic-type coating with good dielectric properties. Over time and use, the electrical carrying components (or spools in this case) experience electrical breakdown, yielding undesirable x-ray dosages or failure. The spool is located in the high vacuum region of a rod pinch diode section of an x-ray producing machine. Machine operators have recorded decreases in x-ray dosages over numerous shots using the reusable spool component, and re-anodizing the interior surface of the spool does not provide themore » expected improvement. A machine operation subject matter expert coated the anodized surface with diffusion pump oil to eliminate electrical breakdown as a temporary fix. It is known that an anodized surface is very porous, and it is because of this porosity that the surface may trap air that becomes a catalyst for electrical breakdown. In this paper we present a solution of mitigating electrical breakdown by oiling. We will also present results of surface anodizing improvements achieved by surface finish preparation and surface sealing. We conclude that oiling the anodized surface and using anodized hot dip sealing processes will have similar results.« less
Methods for determining the degree of baking in anodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, C.P.
Anode baking temperature is recognized as a critical factor in determining anode quality and performance. It is difficult and costly to measure directly and an indirect method, the coke L{sub c} technique, is often used. In this technique, baking temperature is estimated from the average crystallite size in the c direction (L{sub c}) of a coke sample placed in the anode stubhole. The paper details the results of a large statistically designed experimental program in which coke L{sub c} results were compared to anode properties routinely measured by smelters. Anode thermal conductivity and air and carboxy reactivity were found tomore » correlate well with baking temperature. A direct anode L{sub c} measurement technique was also strongly associated with temperature, particularly at high baking temperatures. Recommendations are given on the usefulness and simplicity of traditional anode property measurements for assessing baking temperatures as alternatives to the coke L{sub c} method.« less
NASA Astrophysics Data System (ADS)
Rooney-Varga, J. N.; Dunaj, S. J.; Vallino, J. J.; Hines, M. E.; Gay, M.; Kobyljanec, C.
2011-12-01
Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful, natural, and renewable resource: soil organic carbon. In the current study, we analyzed microbial community structure, MFC performance, and soil characteristics in different microhabitats (bulk soil, anode, and cathode) within MFCs constructed from agricultural or forest soils in order to determine how soil type and microbial dynamics influence MFC performance. MFCs were constructed with soils from agricultural and hardwood forest sites at Harvard Forest (Petersham, MA). The bulk soil characteristics were analyzed, including polyphenols, short chain fatty acids, total organic C and N, abiotic macronutrients, N and P mineralization rates, CO2 respiration rates, and MFC power output. Microbial community structure of the anodes, cathodes, and bulk soils was determined with molecular fingerprinting methods, which included terminal restriction length polymorphism (T-RFLP) analysis and 16S rRNA gene sequencing analysis. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs, suggesting that active agricultural MFC microbial communities were supported by higher quality organic carbon. Microbial community profile data indicate that the microbial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and, to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These data suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic microbial communities, while the quality of available organic matter may have played a significant role in supporting high performing microbial communities.
Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy.
Bernard, Sheldon A; Balla, Vamsi Krishna; Davies, Neal M; Bose, Susmita; Bandyopadhyay, Amit
2011-04-01
A laser processed NiTi alloy was anodized for different times in H(2)SO(4) electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-material interactions. The anodized surfaces were assessed for their in vitro cell-material interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with the surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that anodization creates a surface with nano/micro-roughness depending on the anodization conditions. The hydrophilicity of the NiTi surface was found to improve after anodization, as shown by the lower contact angles in cell medium, which dropped from 32° to <5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy, comparable with that of commercially pure Ti. Relatively high surface energies, especially the polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268±11 to 136±15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of a NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improves bone cell-material interactions and reduces Ni ion release in vitro. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Anode power deposition in a MPD thruster with a magnetically annulled Hall parameter anode
NASA Technical Reports Server (NTRS)
Gallimore, Alec D.; Kelly, Arnold J.; Jahn, Robert G.
1992-01-01
Results from previous studies indicate that the anode fall increases monotonically with the electron Hall parameter. In an attempt to reduce the anode fall by decreasing the local electron Hall parameter, a proof-of-concept test was performed in which an array of 36 permanent magnets were imbedded within the anode of a high power quasi-steady MPD thruster to decrease the local azimuthal component of the induced magnetic field. The modified thruster was operated at power levels between 150 kW and 4 MW with Ar and He propellants. Terminal voltage, triple probe, floating probe, and magnetic probe measurements were made to characterize the performance of the thruster with new anode. Incorporation of the modified anode resulted in a reduction of the anode fall by up to 15 V with Ar and 20 V with He, which corresponded to decreased anode power fractions of 40 and 45 percent with Ar and He, respectively.
Solid state thin film battery having a high temperature lithium alloy anode
Hobson, D.O.
1998-01-06
An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hui; Wei, Yang; Wang, Cheng
The excessive volume changes during cell cycling of Si-based anode in lithium ion batteries impeded its application. One major reason for the cell failure is particle isolation during volume shrinkage in delithiation process, which makes strong adhesion between polymer binder and anode active material particles a highly desirable property. Here, a biomimetic side-chain conductive polymer incorporating catechol, a key adhesive component of the mussel holdfast protein, was synthesized. Atomic force microscopy-based single-molecule force measurements of mussel-inspired conductive polymer binder contacting a silica surface revealed a similar adhesion toward substrate when compared with an effective Si anode binder, homo-poly(acrylic acid), withmore » the added benefit of being electronically conductive. Electrochemical experiments showed a very stable cycling of Si-alloy anodes realized via this biomimetic conducting polymer binder, leading to a high loading Si anode with a good rate performance. We attribute the ability of the Si-based anode to tolerate the volume changes during cycling to the excellent mechanical integrity afforded by the strong interfacial adhesion of the biomimetic conducting polymer.« less
Lee, Seung-Jun; Kim, Seong-Kweon; Jeong, Jae-Yong; Kim, Seong-Jong
2014-12-01
Al alloy is a highly active metal but forms a protective oxide film having high corrosion resistance in atmosphere environment. However, the oxide film is not suitable for practical use, since the thickness of the film is not uniform and it is severly altered with formation conditions. This study focused on developing an aluminum anodizing layer having hardness, corrosion resistance and abrasion resistance equivalent to a commercial grade protective layer. Aluminum anodizing layer was produced by two-step aluminum anodizing oxide (AAO) process with different sulfuric acid concentrations, and the cavitation characteristics of the anodized coating layer was investigated. In hardness measurement, the anodized coating layer produced with 15 vol.% of sulfuric acid condition had the highest value of hardness but exhibited poor cavitation resistance due to being more brittle than those with other conditions. The 10 vol.% of sulfuric acid condition was thus considered to be the optimum condition as it had the lowest weight loss and damage depth.
Zhang, Dongdong; Li, Zhiling; Zhang, Chunfang; Zhou, Xue; Xiao, Zhixing; Awata, Takanori; Katayama, Arata
2017-03-01
A microbial fuel cell (MFC), with graphite electrodes as both the anode and cathode, was operated with a soil-free anaerobic consortium for phenol degradation. This phenol-degrading MFC showed high efficiency with a current density of 120 mA/m 2 and a coulombic efficiency of 22.7%, despite the lack of a platinum catalyst cathode and inoculation of sediment/soil. Removal of planktonic bacteria by renewing the anaerobic medium did not decrease the performance, suggesting that the phenol-degrading MFC was not maintained by the planktonic bacteria but by the microorganisms in the anode biofilm. Cyclic voltammetry analysis of the anode biofilm showed distinct oxidation and reduction peaks. Analysis of the microbial community structure of the anode biofilm and the planktonic bacteria based on 16S rRNA gene sequences suggested that Geobacter sp. was the phenol degrader in the anode biofilm and was responsible for current generation. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
An Analysis of Mechanical Properties of Anodized Aluminum Film at High Stress
NASA Astrophysics Data System (ADS)
Zhao, Xixi; Wei, Guoying; Yu, Yundan; Guo, Yuemei; Zhang, Ao
2015-10-01
In this paper, a new environmental-friendly electrolyte containing sulfuric acid and tartaric acid has been used as the substitute of chromic acid for anodization. The work discussed the influence of anodizing voltages on the fatigue life of anodized Al 2024-T3 by performing fatigue tests with 0.1 stress ratio (R) at 320 MPa. Meanwhile the fatigue cycles to failure, yield strength, tensile strength and fracture surface of anodic films at different conditions were investigated. The results showed that the fatigue life of anodized and sealed specimens reduced a lot compared to aluminum alloy, which can be attributed to the crack sites initiated at the oxide layer. The fracture surface analyses also revealed that the number of crack initiation sites enlarged with the increase of anodizing voltage.
Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY
2011-11-22
The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.
NASA Astrophysics Data System (ADS)
Li, Dongdong; Ye, Chao; Chen, Xinzhi; Wang, Suqing; Wang, Haihui
2018-04-01
The sodium ion hybrid capacitor (SHC) has been attracting much attention. However, the SHC's power density is significantly confined to a low level due to the sluggish ion diffusion in the anode. Herein, we propose to use an electrode with a high double layer capacitance as the anode in the SHC instead of insertion anodes. To this aim, nitrogen doped hollow carbon nanowires (N-HCNWs) with a high specific surface area are prepared, and the high capacitive contribution during the sodium ion storage process is confirmed by a series of electrochemical measurements. A new SHC consisting of a N-HCNW anode and a commercial active carbon (AC) cathode is fabricated for the first time. Due to the hybrid charge storage mechanism combining ion insertion and capacitive process, the as-fabricated SHC strikes a balance between the energy density and power density, a energy density of 108 Wh kg-1 and a power density of 9 kW kg-1 can be achieved, which overwhelms the electrochemical performances of most reported AC-based SHCs.
Unstable behavior of anodic arc discharge for synthesis of nanomaterials
Gershman, Sophia; Raitses, Yevgeny
2016-07-27
A short carbon arc operating with a high ablation rate of the graphite anode exhibits a combined motion of the arc and the arc attachment to the anode. A characteristic time scale of this motion is in a 10 -3 sec range. The arc exhibits a negative differential resistance before the arc motion occurs. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. It is also hypothesized that the arc motion could potentially cause mixing of the various nanoparticles synthesized in the arc in the high ablationmore » regime.« less
Unstable behavior of anodic arc discharge for synthesis of nanomaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gershman, Sophia; Raitses, Yevgeny
A short carbon arc operating with a high ablation rate of the graphite anode exhibits a combined motion of the arc and the arc attachment to the anode. A characteristic time scale of this motion is in a 10 -3 sec range. The arc exhibits a negative differential resistance before the arc motion occurs. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. It is also hypothesized that the arc motion could potentially cause mixing of the various nanoparticles synthesized in the arc in the high ablationmore » regime.« less
Wang, Huan; Wang, Chuanlong; Matios, Edward; Li, Weiyang
2018-06-25
Sodium metal is an attractive anode for next-generation energy storage systems owing to its high specific capacity, low cost, and high abundance. Nevertheless, uncontrolled Na dendrite growth caused by the formation of unstable solid electrolyte interphase (SEI) leads to poor cycling performance and severe safety concerns. Sodium polysulfide (Na 2 S 6 ) alone is revealed to serve as a positive additive or pre-passivation agent in ether electrolyte to improve the long-term stability and reversibility of the Na anode, while Na 2 S 6 -NaNO 3 as co-additive has an adverse effect, contrary to the prior findings in the lithium anode system. A superior cycling behavior of Na anode is first demonstrated at a current density up to 10 mA cm -2 and a capacity up to 5 mAh cm -2 over 100 cycles. As a proof of concept, a high-capacity Na-S battery was prepared by pre-passivating the Na anode with Na 2 S 6 . This study gives insights into understanding the differences between Li and Na systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dendrite-Free Sodium-Metal Anodes for High-Energy Sodium-Metal Batteries.
Sun, Bing; Li, Peng; Zhang, Jinqiang; Wang, Dan; Munroe, Paul; Wang, Chengyin; Notten, Peter H L; Wang, Guoxiu
2018-05-31
Sodium (Na) metal is one of the most promising electrode materials for next-generation low-cost rechargeable batteries. However, the challenges caused by dendrite growth on Na metal anodes restrict practical applications of rechargeable Na metal batteries. Herein, a nitrogen and sulfur co-doped carbon nanotube (NSCNT) paper is used as the interlayer to control Na nucleation behavior and suppress the Na dendrite growth. The N- and S-containing functional groups on the carbon nanotubes induce the NSCNTs to be highly "sodiophilic," which can guide the initial Na nucleation and direct Na to distribute uniformly on the NSCNT paper. As a result, the Na-metal-based anode (Na/NSCNT anode) exhibits a dendrite-free morphology during repeated Na plating and striping and excellent cycling stability. As a proof of concept, it is also demonstrated that the electrochemical performance of sodium-oxygen (Na-O 2 ) batteries using the Na/NSCNT anodes show significantly improved cycling performances compared with Na-O 2 batteries with bare Na metal anodes. This work opens a new avenue for the development of next-generation high-energy-density sodium-metal batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun
2017-02-01
Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg-1 and 84.6 Wh kg-1 at power densities of 731.25 W kg-1 and 24375 W kg-1, respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode.
Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun
2017-02-03
Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg -1 and 84.6 Wh kg -1 at power densities of 731.25 W kg -1 and 24375 W kg -1 , respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode.
Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun
2017-01-01
Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg−1 and 84.6 Wh kg−1 at power densities of 731.25 W kg−1 and 24375 W kg−1, respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode. PMID:28155853
Chen, Renjie; Zhao, Teng; Wu, Weiping; Wu, Feng; Li, Li; Qian, Ji; Xu, Rui; Wu, Huiming; Albishri, Hassan M; Al-Bogami, A S; El-Hady, Deia Abd; Lu, Jun; Amine, Khalil
2014-10-08
Transition metal dichalcogenides (TMD), analogue of graphene, could form various dimensionalities. Similar to carbon, one-dimensional (1D) nanotube of TMD materials has wide application in hydrogen storage, Li-ion batteries, and supercapacitors due to their unique structure and properties. Here we demonstrate the feasibility of tungsten disulfide nanotubes (WS2-NTs)/graphene (GS) sandwich-type architecture as anode for lithium-ion batteries for the first time. The graphene-based hierarchical architecture plays vital roles in achieving fast electron/ion transfer, thus leading to good electrochemical performance. When evaluated as anode, WS2-NTs/GS hybrid could maintain a capacity of 318.6 mA/g over 500 cycles at a current density of 1A/g. Besides, the hybrid anode does not require any additional polymetric binder, conductive additives, or a separate metal current-collector. The relatively high density of this hybrid is beneficial for high capacity per unit volume. Those characteristics make it a potential anode material for light and high-performance lithium-ion batteries.
BiVO4 Fern Architectures: A Competitive Anode for Lithium-Ion Batteries.
Dubal, Deepak P; Patil, Deepak R; Patil, Santosh S; Munirathnam, N R; Gomez-Romero, Pedro
2017-09-21
The development of high-performance anode materials for lithium-ion batteries (LIBs) is currently subject to much interest. In this study, BiVO 4 fern architectures are introduced as a new anode material for LIBs. The BiVO 4 fern shows an excellent reversible capacity of 769 mAh g -1 (ultrahigh volumetric capacity of 3984 mAh cm -3 ) at 0.12 A g -1 with large capacity retention. A LIB full cell is then assembled with a BiVO 4 fern anode and LiFePO 4 (LFP, commercial) as cathode material. The device can achieve a capacity of 140 mAh g -1 at 1C rate, that is, 81 % of the capacity of the cathode and maintained to 104 mAh g -1 at a high rate of 8C, which makes BiVO 4 a promising candidate as a high-energy anode material for LIBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Contrast-to-noise ratio in magnification mammography: a Monte Carlo study
NASA Astrophysics Data System (ADS)
Koutalonis, M.; Delis, H.; Spyrou, G.; Costaridou, L.; Tzanakos, G.; Panayiotakis, G.
2007-06-01
Magnification views are a common way to perform a secondary examination when suspicious abnormalities are found in a screening mammogram. The visibility of microcalcifications and breast lesions is restricted by the compromise between the image quality and the absorbed dose. In this study, image quality characteristics in magnification mammography were evaluated based on Monte Carlo techniques. A breast phantom was utilized, simulating a homogeneous mixture of adipose and glandular tissue in various percentages of glandularity, containing inhomogeneities of various sizes and compositions. The effect of the magnification degree, breast glandularity, tube voltage and anode/filter material combination on image quality characteristics was investigated in terms of a contrast-to-noise ratio (CNR). A performance index PIν was introduced in order to study the overall performance of various anode/filter combinations under different exposure parameters. Results demonstrate that CNR is improved with the degree of magnification and degraded as the breast glandularity is increased. Degree of magnification 1.3 offers the best overall performance for most of the anode/filter combinations utilized. Under magnification conditions, the role of dose is demoted against the image quality, as magnification views are secondary, diagnostic examinations and not screening procedures oriented to non-symptomatic women. For decreased image quality weighting, some anode/filter combinations different from Mo/0.030mmMo can be utilized as they offer a similar performance index. However, if the desired weighting for the image quality is high, the Mo/0.030mmMo combination has the best overall performance.
Pulsed plasma thruster by applied a high current hollow cathode discharge
NASA Astrophysics Data System (ADS)
Watanabe, Masayuki; N. Nogera Team; T. Kamada Team
2013-09-01
The pulsed plasma thruster applied by a high current hollow cathode discharge has been investigated. In this research, the pseudo-spark discharge (PSD), which is a one of a pulsed high current hollow cathode discharge, is applied to the plasma thruster. In PSD, the opposite surfaces of the anode and cathode have a small circular hole and the cathode has a cylindrical cavity behind the circular hole. To generate the high speed plasma flow, the diameter of the anode hole is enlarged as compared with that of the cathode hole. As a result, the plasma is accelerated by a combination of an electro-magnetic force and a thermo-dynamic force inside a cathode cavity. For the improvement of the plasma jet characteristic, the magnetic field is also applied to the plasma jet. To magnetize the plasma jet, the external magnetic field is directly induced nearby the electrode holes. Consequently, the plasma jet is accelerated with the self-azimuthal magnetic field. With the magnetic field, the temperature and the density of the plasma jet were around 5 eV and in the order of 10 19 m-3. The density increased several times as compared with that without the magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Jie; Shu Ting; Wang Hui
2012-07-15
The influence of fibrous velvet cathodes on the electrical stability of a planar high-power diode powered by a {approx}230 kV, {approx}110 ns pulse has been investigated. The current density was on the order of {approx}123 A/cm{sup 2}. A combination of time-resolved electrical and optical diagnostics has been employed to study the basic phenomenology of the temporal and spatial evolution of the diode plasmas. Additionally, an impedance model was used to extract information about this plasma from voltage and current profiles. The results from the two diagnostics were compared. By comparison with commercial polymer velvet cathode, the dense carbon fiber velvetmore » cathode showed superior long-term electrical stability as judged by the change in cathode turn-on field, ignition delays, diode impedance, and surface plasma characteristics during the voltage flattop, a promising result for applications where reliable operation at high power is required. Finally, it was shown that the interaction of the electron beam with the stainless steel anode did not lead to the formation of anode plasma. These results may be of interest to the high power microwave systems with cold cathodes.« less
Interferometric nanoporous anodic alumina photonic coatings for optical sensing
NASA Astrophysics Data System (ADS)
Chen, Yuting; Santos, Abel; Wang, Ye; Kumeria, Tushar; Wang, Changhai; Li, Junsheng; Losic, Dusan
2015-04-01
Herein, we present a systematic study on the development, optical optimization and sensing applicability of colored photonic coatings based on nanoporous anodic alumina films grown on aluminum substrates. These optical nanostructures, so-called distributed Bragg reflectors (NAA-DBRs), are fabricated by galvanostatic pulse anodization process, in which the current density is altered in a periodic manner in order to engineer the effective medium of the resulting photonic coatings. As-prepared NAA-DBR photonic coatings present brilliant interference colors on the surface of aluminum, which can be tuned at will within the UV-visible spectrum by means of the anodization profile. A broad library of NAA-DBR colors is produced by means of different anodization profiles. Then, the effective medium of these NAA-DBR photonic coatings is systematically assessed in terms of optical sensitivity, low limit of detection and linearity by reflectometric interference spectroscopy (RIfS) in order to optimize their nanoporous structure toward optical sensors with enhanced sensing performance. Finally, we demonstrate the applicability of these photonic nanostructures as optical platforms by selectively detecting gold(iii) ions in aqueous solutions. The obtained results reveal that optimized NAA-DBR photonic coatings can achieve an outstanding sensing performance for gold(iii) ions, with a sensitivity of 22.16 nm μM-1, a low limit of detection of 0.156 μM (i.e. 30.7 ppb) and excellent linearity within the working range (0.9983).Herein, we present a systematic study on the development, optical optimization and sensing applicability of colored photonic coatings based on nanoporous anodic alumina films grown on aluminum substrates. These optical nanostructures, so-called distributed Bragg reflectors (NAA-DBRs), are fabricated by galvanostatic pulse anodization process, in which the current density is altered in a periodic manner in order to engineer the effective medium of the resulting photonic coatings. As-prepared NAA-DBR photonic coatings present brilliant interference colors on the surface of aluminum, which can be tuned at will within the UV-visible spectrum by means of the anodization profile. A broad library of NAA-DBR colors is produced by means of different anodization profiles. Then, the effective medium of these NAA-DBR photonic coatings is systematically assessed in terms of optical sensitivity, low limit of detection and linearity by reflectometric interference spectroscopy (RIfS) in order to optimize their nanoporous structure toward optical sensors with enhanced sensing performance. Finally, we demonstrate the applicability of these photonic nanostructures as optical platforms by selectively detecting gold(iii) ions in aqueous solutions. The obtained results reveal that optimized NAA-DBR photonic coatings can achieve an outstanding sensing performance for gold(iii) ions, with a sensitivity of 22.16 nm μM-1, a low limit of detection of 0.156 μM (i.e. 30.7 ppb) and excellent linearity within the working range (0.9983). Electronic supplementary information (ESI) available: The Supporting Information file provides further information about real-time monitoring of ΔOTeff with changes in the refractive index of the medium filling the nanopores, demonstration of visual red shift in a NAA-DBR sample after infiltration with isopropanol and calculations of linearity (R2) for each NAA-DBR coating. See DOI: 10.1039/c5nr00369e
Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material.
Tang, Wei; Liu, Lili; Tian, Shu; Li, Lei; Yue, Yunbo; Wu, Yuping; Zhu, Kai
2011-09-28
MoO(3) nanoplates were prepared as anode material for aqueous supercapacitors. They can deliver a high energy density of 45 W h kg(-1) at 450 W kg(-1) and even maintain 29 W h kg(-1) at 2 kW kg(-1) in 0.5 M Li(2)SO(4) aqueous electrolyte. These results present a new direction to explore non-carbon anode materials.
Development of Nanosized/Nanostructured Silicon as Advanced Anodes for Lithium-Ion Cells
NASA Technical Reports Server (NTRS)
Wu, James J.
2015-01-01
NASA is developing high energy and high capacity Li-ion cell and battery designs for future exploration missions under the NASA Advanced Space Power System (ASPS) Program. The specific energy goal is 265 Wh/kg at 10 C. center dot Part of effort for NASA advanced Li-ion cells ? Anode: Silicon (Si) as an advanced anode. ? Electrolyte: advanced electrolyte with flame-retardant additives for enhanced performance and safety (NASA JPL).
Effect of Anode Change on Heat Transfer and Magneto-hydrodynamic Flow in Aluminum Reduction Cell
NASA Astrophysics Data System (ADS)
Wang, Qiang; Li, Baokuan; Fafard, Mario
2016-02-01
In order to explore the impact of anode replacement on heat transfer and magneto-hydrodynamic flow in aluminum smelting cells, a transient three-dimensional coupled mathematical model has been developed. With a steady state magnetic field, an electrical potential approach was used to obtain electromagnetic fields. Joule heating and Lorentz force, which were the source terms in the energy and momentum equations, were updated at each iteration. The phase change of molten electrolyte (bath) was modeled by an enthalpy-based technique in which the mushy zone was treated as a porous medium with porosity equal to the liquid fraction. A reasonable agreement between the test data and simulated results was achieved. Under normal conditions, the bath at the middle of the cell is hotter, while becoming colder at the four corners. Due to the heat extracted from the bath, the temperature of the new cold anode increases over time. The temperature of the bath under the new cold anode therefore quickly drops, resulting in a decrease of the electrical conductivity. More Joule effect is created. In addition, the bath under the new cold anode gradually freezes and flows more slowly. The temperature of the new anode located at the middle of the cell rises faster because of the warmer bath. It is easier to eliminate the effect of anode change when it occurs in the middle of the cell.
High Areal Capacity Si/LiCoO 2 Batteries from Electrospun Composite Fiber Mats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Self, Ethan C.; Naguib, Michael; Ruther, Rose E.
Here, freestanding nanofiber mat Li-ion battery anodes containing Si nanoparticles, carbon black, and poly(acrylic acid) (Si/C/PAA) are prepared using electrospinning. The mats are compacted to a high fiber volume fraction (~0.85), and interfiber contacts are welded by exposing the mat to methanol vapor. A compacted+welded fiber mat anode containing 40 wt % Si exhibits high capacities of 1,484 mA h g -1 (3,500 mA h gmore » $$-1\\atop{Si}$$) at 0.1 C and 489 mAh g -1 at 1 C and good cycling stability (e.g., 73% capacity retention over 50 cycles). Post-mortem analysis of the fiber mats shows that the overall electrode structure is preserved during cycling. Whereas many nanostructured Si anodes are hindered by their low active material loadings and densities, thick, densely packed Si/C/PAA fiber mat anodes reported here have high areal and volumetric capacities (e.g., 4.5 mA h cm -2 and 750 mA h cm -3, respectively). A full cell containing an electrospun Si/C/PAA anode and electrospun LiCoO 2-based cathode has a high specific energy density of 270 Wh kg -1. The excellent performance of the electrospun Si/C/PAA fiber mat anodes is attributed to the: (i) PAA binder which interacts with the SiO x surface of Si nanoparticles and (ii) high material loading, high fiber volume fraction, and welded interfiber contacts of the electrospun mats« less
High Areal Capacity Si/LiCoO 2 Batteries from Electrospun Composite Fiber Mats
Self, Ethan C.; Naguib, Michael; Ruther, Rose E.; ...
2017-03-24
Here, freestanding nanofiber mat Li-ion battery anodes containing Si nanoparticles, carbon black, and poly(acrylic acid) (Si/C/PAA) are prepared using electrospinning. The mats are compacted to a high fiber volume fraction (~0.85), and interfiber contacts are welded by exposing the mat to methanol vapor. A compacted+welded fiber mat anode containing 40 wt % Si exhibits high capacities of 1,484 mA h g -1 (3,500 mA h gmore » $$-1\\atop{Si}$$) at 0.1 C and 489 mAh g -1 at 1 C and good cycling stability (e.g., 73% capacity retention over 50 cycles). Post-mortem analysis of the fiber mats shows that the overall electrode structure is preserved during cycling. Whereas many nanostructured Si anodes are hindered by their low active material loadings and densities, thick, densely packed Si/C/PAA fiber mat anodes reported here have high areal and volumetric capacities (e.g., 4.5 mA h cm -2 and 750 mA h cm -3, respectively). A full cell containing an electrospun Si/C/PAA anode and electrospun LiCoO 2-based cathode has a high specific energy density of 270 Wh kg -1. The excellent performance of the electrospun Si/C/PAA fiber mat anodes is attributed to the: (i) PAA binder which interacts with the SiO x surface of Si nanoparticles and (ii) high material loading, high fiber volume fraction, and welded interfiber contacts of the electrospun mats« less
Fabrication of titanium dioxide nanotube arrays using organic electrolytes
NASA Astrophysics Data System (ADS)
Yoriya, Sorachon
This dissertation focuses on fabrication and improvement of morphological features of TiO2 nanotube arrays in the selected organic electrolytes including dimethyl sulfoxide (DMSO; see Chapter 4) and diethylene glycol (DEG; see Chapter 5). Using a polar dimethyl sulfoxide containing hydrofluoric acid, the vertically oriented TiO2 nanotube arrays with well controlled morphologies, i.e. tube lengths ranging from few microns up to 101 microm, pore diameters from 100 nm to 150 nm, and wall thicknesses from 15 nm to 50 nm were achieved. Various anodization variables including fluoride ion concentration, voltage, anodization time, water content, and reuse of the anodized electrolyte could be manipulated under proper conditions to control the nanotube array morphology. Anodization current behaviors associated with evolution of nanotube length were analyzed in order to clarify and better understand the formation mechanism of nanotubes grown in the organic electrolytes. Typically observed for DMSO electrolyte, the behavior that anodization current density gradually decreases with time is a reflection of a constant growth rate of nanotube arrays. Large fluctuation of anodization current was significantly observed probably due to the large change in electrolyte properties during anodization, when anodizing in high conductivity electrolytes such as using high HF concentration and reusing the anodized electrolyte as a second time. It is believed that the electrolyte properties such as conductivity and polarity play important role in affecting ion solvation and interactions in the solution consequently determining the formation of oxide film. Fabrication of the TiO2 nanotube array films was extended to study in the more viscous diethylene glycol (DEG) electrolyte. The arrayed nanotubes achieved from DEG electrolytes containing either HF or NH4 F are fully separated, freely self-standing structure with open pores and a wide variation of tube-to-tube spacing ranging from < 100 nm to ~2 microm. In comparison to DMSO electrolyte, the electrochemical anodization rates are relatively slower in DEG electrolyte; as a result, the nanotube length is typically less than 10 microm. Pore size of nanotubes grown in DEG has been extended from 150 nm up to approximately 400 nm. The approach to pore widening could be achieved by using a specific condition of low HF concentration and prolonged anodization time. The study of evolution of nanotubes grown in DEG electrolytes showed that a fibrous layer was formed in the early growth stages and then was chemically and gradually removed after a long duration, leaving behind the nanotubes with large pore size. In DEG electrolyte, the closer spacing between Ti and Pt electrodes resulted in the larger nanotube morphological parameters due to the enhanced electrode kinetics facilitating the electrode reactions. Furthermore, this dissertation showed possibilities to crystallize the titania nanotube array films at room temperature via anodization in either DMSO or DEG electrolytes. The partially crystallized films could be achieved specifically in the optimum slow growth process conditions. Due to partial crystallization of the as-anodized samples, the high temperature annealing study revealed that the temperatures of phase transformation are 260 ºC and 430°C for respectively amorphous to anatase and anatase to rutile, which are accounted as the lowest phase transformation temperatures reported to date (2010). Finally, the photoelectrochemical properties of the DMSO fabricated nanotubes were investigated. The maximum photocurrent density of ~ 11 mA cm--2 was achieved by using the 46-microm long nanotube array sample with completely open pores, and photoconversion efficiencies of 5.425 % (+/- 0.087) (under UV light) and 0.197 % (+/- 0.001) (under solar spectrum AM 1.5) have been demonstrated. Biomedical applications of the DEG fabricated nanotube arrays films such as blood clotting, hemocompatibility, and drug delivery were investigated. The titania nanotube arrays showed a significant platelet adhesion and activation, a higher viability, and a greater capability in blood clotting compared to a smooth Ti surface. In drug delivery application, the drug elution kinetics, behavior and diffusion of drug molecules were most profoundly affected by the nanotube architectures such as the pore packing density and the gap or separation between the tubes, the nanotube length, and especially the nanotube pore diameter. (Abstract shortened by UMI.)
Effect of nitro substituent on electrochemical oxidation of phenols at boron-doped diamond anodes.
Jiang, Yi; Zhu, Xiuping; Li, Hongna; Ni, Jinren
2010-02-01
In order to investigate nitro-substitutent's effect on degradation of phenols at boron-doped diamond (BDD) anodes, cyclic voltammetries of three nitrophenol isomers: 2-nitrophenol (2NP), 3-nitrophenol (3NP) and 4-nitrophenol (4NP) were studied, and their bulk electrolysis results were compared with phenol's (Ph) under alkaline condition. The voltammetric study showed nitrophenols could be attacked by hydroxyl radicals and nitro-group was released from the aromatic ring. Results of bulk electrolysis showed degradation of all phenols were fit to a pseudo first-order equation and followed in this order: 2NP>4NP>3NP>Ph. Molecular structures, especially carbon atom charge, significantly influenced the electrochemical oxidation of these isomers. Intermediates were analyzed during the electrolysis process, and were mainly catechol, resorcinol, hydroquinone, and carboxylic acids, such as acetic acid and oxalic acid. A simple degradation pathway was proposed. Moreover, a linear increasing relationship between degradation rates and Hammett constants of the studied phenols was observed, which demonstrated that electrochemical oxidation of these phenols was mainly initiated by electrophilic attack of hydroxyl radicals at BDD anodes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Research progress in formation mechanism of anodizing aluminum oxide
NASA Astrophysics Data System (ADS)
Lv, Yudong
2017-12-01
The self-ordering porous anodizing aluminum oxide (AAO) has attracted much attention because of its potential value of application. Valve metals (Al, Ti, Zr etc.) anodic studies have been conducted for more than 80 years, but the mechanism of the formation of hexagonal prismatic cell structure has so far been different. In this paper, the research results of AAO film formation mechanism are reviewed, and the growth models of several AAO films are summarized, including the field-assisted dissolution (FAD), the viscous flow model, the critical current density effect model, the bulk expansion stress model and the steady-state pore growth model and so on. It analyzed the principle of each model and its rationality. This paper will be of great help to reveal the nature of pore formation and self-ordering, and with the hope that through the study of AAO film formation mechanism, the specific effects of various oxidation parameters on AAO film morphology can be obtained.
Serially connected solid oxide fuel cells having monolithic cores
Herceg, J.E.
1985-05-20
Disclosed is a solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output. The cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick. Between 2 and 50 cell segments may be connected in series.
NASA Astrophysics Data System (ADS)
Huang, Qinglan
The primary goals of this dissertation were to understand the physical and chemical aspects of organic light-emitting diode (OLED) fundamentals, develop new materials as well as device structures, and enhance OLED electroluminescent (EL) response. Accordingly, this dissertation analyzes the relative effects of indium tin oxide (ITO) anode-hole transporting layer (HTL) contact vs. the intrinsic HTL material properties on OLED EL response. Two siloxane-based HTL materials, 4,4'-bis[(4″ -trichlorosilylpropyl-1″-naphthylphenylamino)biphenyl (NPB-Si2) and 4,4'-bis[(p-trichlorosilylpropylphenyl)phenylamino]biphenyl (TPD-Si2) have thereby been designed, synthesized and covalently bound to ITO surface. They afford a 250% increase in luminance and ˜50% reduction in turn-on voltage vs. comparable 4,4'-bis(1-naphthylphenylamino)biphenyl (NPB) HTL-based devices. These results suggest new strategies for developing OLED HTL structures, with focus on the anode-HTL contact. Furthermore, archetypical OLED device structures have been refined by simultaneously incorporating the TPD-Si2 layer and a hole- and exciton-blocking/electron transport layer (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) in tris(8-hydroxyquinolato)aluminum(III) and tetrakis(2-methyl-8-hydroxyquinolinato)borate-based OLEDs. The refined device structures lead to high performance OLEDs such as green-emitting OLEDs with maximum luminance (Lmax) ˜ 85,000 cd/m2, power and forward external quantum efficiencies (eta p and etaext) as high as 15.2 lm/W and 4.4 +/- 0.5%, respectively, and blue-emitting OLEDs with Lmax 30,000 cd/m 2, and ˜5.0 lm/W and 1.6 +/- 0.2% etap and eta ext, respectively. The high performance is attributed to synergistically enhanced hole/electron injection and recombination efficiency. In addition, molecule-scale structure effects at ITO anode-HTL interfaces have been systematically probed via a self-assembly approach. A series of silyltriarylamine precursors differing in aryl group and linker density have been designed and synthesized for this purpose. These precursors form conformal and largely pin-hole free self-assembled monolayers (SAMs) on the anode surface with A-level thickness control. Followed by deposition of a HTL on top of the SAMs, the probe molecules are placed precisely at the anode-HTL interface, resulting in varied hole injection magnitude and OLED response. The large interfacial molecular structure effects afford an approach to tuning OLED hole injection flux over one to two orders of magnitude, resulting in up to 3 fold variation in OLED brightness at identical bias and up to a 2 V driving voltage modulation at identical brightness.
Anodized Steel Electrodes for Supercapacitors.
Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan
2016-03-09
Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.
Torres, César I; Marcus, Andrew Kato; Parameswaran, Prathap; Rittmann, Bruce E
2008-09-01
Anode-respiring bacteria (ARB) are able to transfer electrons from reduced substrates to a solid electrode. Previously, we developed a biofilm model based on the Nernst-Monod equation to describe the anode potential losses of ARB that transfer electrons through a solid conductive matrix. In this work, we develop an experimental setup to demonstrate how well the Nernst-Monod equation is able to represent anode potential losses in an ARB biofilm. We performed low-scan cyclic voltammetry (LSCV) throughout the growth phase of an ARB biofilm on a graphite electrode growing on acetate in continuous mode. The (j)V response of 9 LSCVs corresponded well to the Nernst-Monod equation, and the half-saturation potential (E(KA)) was -0.425 +/- 0.002 V vs Ag/AgCl at 30 degrees C (-0.155 +/- 0.002 V vs SHE). Anode-potential losses from the potential of acetate reached approximately 0.225 V at current density saturation, and this loss was determined by our microbial community's E(KA) value. The LSCVs at high current densities showed no significant deviation from the Nernst-Monod ideal shape, indicating that the conductivity of the biofilm matrix (kappa(bio)) was high enough (> or = 0.5 mS/cm) that potential loss did not affect the performance of the biofilm anode. Our results confirm the applicability of the Nernst-Monod equation for a conductive biofilm anode and give insights of the processes that dominate anode potential losses in microbial fuel cells.
Investigation of Metal Oxide/Carbon Nano Material as Anode for High Capacity Lithium-ion Cells
NASA Technical Reports Server (NTRS)
Wu, James Jianjun; Hong, Haiping
2014-01-01
NASA is developing high specific energy and high specific capacity lithium-ion battery (LIB) technology for future NASA missions. Current state-of-art LIBs have issues in terms of safety and thermal stability, and are reaching limits in specific energy capability based on the electrochemical materials selected. For example, the graphite anode has a limited capability to store Li since the theoretical capacity of graphite is 372 mAh/g. To achieve higher specific capacity and energy density, and to improve safety for current LIBs, alternative advanced anode, cathode, and electrolyte materials are pursued under the NASA Advanced Space Power System Project. In this study, the nanostructed metal oxide, such as Fe2O3 on carbon nanotubes (CNT) composite as an LIB anode has been investigated.
Silicon based nano-architectures for high power lithium-ion battery anodes
NASA Astrophysics Data System (ADS)
Krishnan, Rahul
Lithium-ion batteries have now become an inseparable part of modern day society as the power source for several portable electronics like cell phones, digital cameras and laptops. Their high energy density compared with other electrochemical battery systems has been their most attractive feature. This has lead to a great interest in developing lithium-ion batteries for hybrid and all-electric vehicles. Eventually such vehicles will help drastically reduce the carbon footprint making the environment cleaner and healthier. In spite of their high energy density, Li-ion batteries are known to have poor power densities. This forms a major limitation in their deployment as a power source on vehicles. Electric vehicles need power sources that can provide both high energy and power densities. This requires the development of anode, cathode and electrolyte materials that would transform the capabilities of existing Li-ion batteries. Among anode materials silicon has received great attention because of its very large theoretical capacity of ˜4200 mAh/g based on the alloy Li22Si5. It should be noted that storage of charge in the anode occurs through the alloying of Li with the host anode material. However, the large specific capacity of silicon also results in a ˜400% volume expansion which could lead to pulverization and delamination reducing the cycle life of the electrode. These failure processes are exacerbated at high rates making it extremely difficult to use silicon for high-power Li-ion battery anodes. The major research thrust supporting this Ph.D. thesis involved exploring silicon based nano-architectures that would provide high energy and power densities over a long cycle life. The key technique used to design different nano-architectures was DC Magnetron sputtering with oblique angle deposition. The main development of this research was a functionally strain graded Carbon-Aluminum-Silicon nanoscoop architecture for high-power Li-ion battery anodes. This consisted of Carbon nanorods with an intermediate Aluminum layer finally capped by a nanoscoop of Silicon. The strain gradation arises from the fact that each of these materials has differential volumetric expansions due to different extents of Li uptake. Such a strain gradation from Carbon towards Silicon would provide for a less abrupt transition across the material interfaces thereby reducing interfacial mismatch and improving the tolerance to delamination at very high rates. This nano-architecture provided average capacities of ˜412 mAh/g with a power output of ˜100 kW/kg electrode continuously over 100 cycles. Even when the power output was as high as ˜250 kW/kgelectrode, the average capacity over 100 cycles is still ˜90 mAh/g. Furthermore, scanning electron microscopy and X-ray photoelectron spectroscopy investigations revealed that the functionally strain graded nanostructures were being partially lithiated in the bulk even at high rates. The fact that charge storage was not merely a surface phenomenon supported the high energy densities obtained at high charge/discharge rates. In an attempt to improve the mass loading density of Silicon based nano-architectures, a nano-compliant layer (NCL) supported thin film architecture was also explored. This consisted of an array of oblique nanorods (the nano-compliant layer) sandwiched between the substrate and the thin film. The NCL layer was used to improve the stress tolerance of the thin film thereby allowing the use of bulk thin films as opposed to nanostructures. This would directly improve the mass loading density. Silicon films with Carbon NCLs and Carbon films with Silicon NCLs were both deposited and tested. It was found that Li+ diffusivity is higher in carbon than in silicon by at least two orders of magnitude. This was calculated from cyclic voltammetry tests using the Randles-Sevcik equation. This difference in Li+ diffusivity within the two materials was found to be the C-rate limiting factor for a given nano-architecture design.
Weszl, Miklós; Tóth, Krisztián László; Kientzl, Imre; Nagy, Péter; Pammer, Dávid; Pelyhe, Liza; Vrana, Nihal E; Scharnweber, Dieter; Wolf-Brandstetter, Cornelia; Joób F, Árpád; Bognár, Eszter
2017-09-01
The objective of this study was to investigate the reproducibility, mechanical integrity, surface characteristics and corrosion behavior of nanotubular (NT) titanium oxide arrays in comparison with a novel nano-pitted (NP) anodic film. Surface treatment processes were developed to grow homogenous NT and NP anodic films on the surface of grade 2 titanium discs and dental implants. The effect of process parameters on the surface characteristics and reproducibility of the anodic films was investigated and optimized. The mechanical integrity of the NT and NP anodic films were investigated by scanning electron microscopy, surface roughness measurement, scratch resistance and screwing tests, while the chemical and physicochemical properties were investigated in corrosion tests, contact angle measurement and X-ray photoelectron spectroscopy (XPS). The growth of NT anodic films was highly affected by process parameters, especially by temperature, and they were apt to corrosion and exfoliation. In contrast, the anodic growth of NP film showed high reproducibility even on the surface of 3-dimensional screw dental implants and they did not show signs of corrosion and exfoliation. The underlying reason of the difference in the tendency for exfoliation of the NT and NP anodic films is unclear; however the XPS analysis revealed fluorine dopants in a magnitude larger concentration on NT anodic film than on NP surface, which was identified as a possible causative. Concerning other surface characteristics that are supposed to affect the biological behavior of titanium implants, surface roughness values were found to be similar, whereas considerable differences were revealed in the wettability of the NT and NP anodic films. Our findings suggest that the applicability of NT anodic films on the surface of titanium bone implants may be limited because of mechanical considerations. In contrast, it is worth to consider the applicability of nano-pitted anodic films over nanotubular arrays for the enhancement of the biological properties of titanium implants. Copyright © 2017 Elsevier B.V. All rights reserved.
Double-walled structure of anodic TiO2 nanotubes in H3PO4/NH4F mixed electrolyte
NASA Astrophysics Data System (ADS)
Chen, Siyu; Chen, Ying; Li, Chengyuan; Ouyang, Huijun; Qin, Shuai; Song, Ye
2018-04-01
Normally, the well-ordered anodic TiO2 nanotubes (ATNTs) are obtained in NH4F electrolyte, after annealing, the double-walled structure of nanotubes will appear. Here, after adding H3PO4 into NHF4 electrolyte, we got the double-walled structure of nanotubes by anodizing without annealing, which means the direct existence of anion-contaminated layer in ATNTs. Influence of H3PO4 content on anodizing voltage and morphology of ATNTs were compared in detail. The XRD pattern illustrated that the crystallinity decreases with increasing H3PO4 concentration, and the anion-contaminated layer thickens with the increase of H3PO4 concentration. Meanwhile, the existence of the anion-contaminated layer also proved the limitations of the filed-assisted dissolution theory, while the double-walled structure can be explained by oxygen bubble model and plastic flow model.
NASA Astrophysics Data System (ADS)
Zou, Jianping; Pu, Lin; Bao, Ximao; Feng, Duan
2002-02-01
Branchy alumina nanotubes (bANTs) have been shown to exist in aluminum oxide. Electron-beam evaporated 400 nm Al film on Si substrate is stepwise anodized in dilute sulfuric acid under the constant dc voltage 40 V at 10.0 °C. This electrochemical-anodizing route resulted in the formation of individual bANTs. Transmission electron microscopy showed that the length of the bANTs was around 450 nm, and the inner diameter was around 10-20 nm. We deduced that the bANTs, the completely detached multibranchy cells of anodic porous alumina (APA) film, should be evolved from the stagnant cells of the APA mother film. The bANTs may be used as templates in fabrication of individual branchy nanoscale cables, jacks, and heterojunctions. The proposed formation mechanisms of the bANTs and the stagnant cells should give some insights into the long-standing problem of APA film, i.e., the self-ordering mechanism of the cells arrangement in porous anodization of aluminum.
NASA Astrophysics Data System (ADS)
Ok, Seon-Yeong; Cho, Kwon-Koo; Kim, Ki-Won; Ryu, Kwang-Sun
2010-05-01
Well-ordered TiO2 nanotube arrays were fabricated by the potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as an electrolyte with the small addition of NH4F and H2O. The influence of anodization temperature and time on the morphology and formation of TiO2 nanotube arrays was examined. The TiO2 nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO2 nanotube arrays show a similar value, whereas the length increases with decreasing reaction temperature. The conversion efficiency is very low, which is due to a morphology breaking of the TiO2 nanotube arrays in the manufacturing process of a photoelectrode.
Solutions for discharge chamber sputtering and anode deposit spalling in small mercury ion thrusters
NASA Technical Reports Server (NTRS)
Power, J. L.; Hiznay, D. J.
1975-01-01
Proposed solutions to the problems of sputter erosion and sputtered material spalling in the discharge chamber of small mercury ion thrusters are presented. The accelerated life test evaluated three such proposed solutions: (1) the use of tantalum as a single low sputter yield material for the exposed surfaces of the discharge chamber components subject to sputtering, (2) the use of a severely roughened anode surface to improve the adhesion of the sputter-deposited coating, and (3) the use of a wire cloth anode surface in order to limit the size of any coating flakes which might spall from it. Because of the promising results obtained in the accelerated life test with anode surfaces roughened by grit-blasting, experiments were carried out to optimize the grit-blasting procedure. The experimental results and an optimal grit-blasting procedure are presented.
Cylindrical electron beam diode
Bolduc, Paul E.
1976-01-01
A diode discharge device may include a tubular anode concentrically encircled by and spaced from a tubular cathode electrode with ends intermediate the ends of said anode electrode, and a metal conductive housing having a tubular wall disposed around the cathode electrode with end walls connected to the anode electrode. High energy electron current coupling is through an opening in the housing tubular wall to a portion of the cathode electrode intermediate its ends. Suitable utilization means may be within the anode electrode at positions to be irradiated by electrons emitted from the cathode electrode and transmitted through the anode walls.
Three-dimensional simulation of triode-type MIG for 1 MW, 120 GHz gyrotron for ECRH applications
NASA Astrophysics Data System (ADS)
Singh, Udaybir; Kumar, Nitin; Kumar, Narendra; Kumar, Anil; Sinha, A. K.
2012-01-01
In this paper, the three-dimensional simulation of triode-type magnetron injection gun (MIG) for 120 GHz, 1 MW gyrotron is presented. The operating voltages of the modulating anode and the accelerating anode are 57 kV and 80 kV respectively. The high order TE 22,6 mode is selected as the operating mode and the electron beam is launched at the first radial maxima for the fundamental beam-mode operation. The initial design is obtained by using the in-house developed code MIGSYN. The numerical simulation is performed by using the commercially available code CST-Particle Studio (PS). The simulated results of MIG obtained by using CST-PS are validated with other simulation codes EGUN and TRAK, respectively. The results on the design output parameters obtained by using these three codes are found to be in close agreement.
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Greenbaum, S.; Surampudi, S.
2000-01-01
Quarternary lithium-ion battery electrolyte solutions containing ester co-solvents in mixtures of carbonates have been demonstrated to have high conductivity at low temperatures (< -20C). However, in some cases the presence of such co-solvents does not directly translate into improved low temperature cell performance, presumably due to the formation of ionically resistive surface films on carbonaceous anodes. In order to understand this behavior, a number of lithium-graphite cells have been studied containing electrolytes with various ester co-solvents, including methyl acetate (MA), ethyl acetate (EA), ethyl propionate (EP), and ethyl butyrate (EB). The charge/discharge characterization of these cells indicates that the higher molecular weight esters result in electrolytes which possess superior low temperature performance in contrast to the lower molecular weight ester-containing solutions, even though these solutions display lower conductivity values.
Irradiation of orderly multiline spectra from linear plasma formed by vacuum discharge capillary
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Hayasi, Yasuomi; Germer, Rudolf; Ojima, Hidenori; Takayama, Kazuyoshi; Ido, Hideaki
2005-03-01
The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments are primarily performed in order to generate intense soft x rays. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbomolecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -11.5 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 μm aluminum filter were less than 30 μs. In the spectrum measurement, we observed orderly multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. The line number decreased with corresponding decreases in the capillary length.
Berger, Nele; Es-Souni, Mohammed
2016-07-12
Large-area ordered nanorod (NR) arrays of various functional materials can be easily and cost-effectively processed using on-substrate anodized porous aluminum oxide (PAO) films as templates. However, reproducibility in the processing of PAO films is still an issue because they are prone to delamination, and control of fabrication parameters such as electrolyte type and concentration and anodizing time is critical for making robust templates and subsequently mechanically reliable NR arrays. In the present work, we systematically investigate the effects of the fabrication parameters on pore base morphology, devise a method to avoid delamination, and control void formation under the barrier layer of PAO films on gold underlayers. Via systematic control of the anodization parameters, particularly the anodization current density and time, we follow the different stages of void development and discuss their formation mechanisms. The practical aspect of this work demonstrates how void size can be controlled and how void formation can be utilized to control the shape of NR bases for improving the mechanical stability of the NRs.
Advancing Lithium Metal Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bin; Zhang, Ji-Guang; Xu, Wu
Considering the unsatisfied energy density of traditional graphite anode-based lithium (Li)-ion batteries, any alterative high capacity anodes will be highly expected to be practically applied in future high energy battery systems. Li metal is regarded as one of the most promising anodes due to its ultrahigh capacity (3860 mAh g-1), the lowest standard negative electrochemical potential (-3.040 V) and the very low gravimetric density (0.534 g cm-3). However, dendrite growth and high reactivity of Li metal result in low cycling efficiency and severe safety concerns. The revival of research and development on Li metal anode in recent years has broughtmore » new in-depth understandings and key experimental achievements regarding Li metal protection and enhanced performances of Li-metal batteries. In this perspective article, we first concisely review the recent discoveries and then offer possible research directions for further development of Li metal batteries.« less
Effects of highly ordered TiO2 nanotube substrates on the nucleation of Cu electrodeposits.
Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang
2010-05-01
We investigated the effects of TiO2 nanotube substrates on the nucleation density of Cu during electrodeposition in a solution of CuSO4 and H2SO4 at 50 degrees C compared with those of pure Ti and micro-porous TiO2 substrates. During electrodeposition, the density of Cu nuclei on the TiO2 nanotube substrate increased and the average size of Cu nuclei decreased with increasing anodizing voltage and time for the synthesis of the substrate. In addition, the nucleation density of Cu electrodeposits on the highly ordered TiO2 nanotube substrate was much higher than that on pure Ti and micro-porous TiO2 substrates.
High rate and stable cycling of lithium metal anode
Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; ...
2015-02-20
Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycledmore » at high rates (10 mA cm -2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.« less
Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui
2015-09-15
Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting. Copyright © 2015 Elsevier B.V. All rights reserved.
(abstract) Effect of Electrolyte Composition on Carbon Electrode Performance
NASA Technical Reports Server (NTRS)
Huang, C-K.; Surampudi, S.; Shen, D. H.; Halpert, G.
1993-01-01
Rechargeable lithium cells containing lithium foil anodes are reported to have limited cycle life (at 100% DOD) performance and safety problems. These limitations are understood to be due to the high reactivity of elemental Li with the electrolyte and the formation of high surface area Li during cycling. To mitigate these problems, several lithium alloys and lithium intercalation compounds are being investigated as alternate lithium anode materials. Li(sub x)C has been identified as a promising lithium anode material due to its low equivalent weight, low voltage vs. Li, and improved stability towards various electrolytes. In this paper, we report the results of our studies on the electrolyte evaluation for the Li(sub x)C anode.
Nanostructured Anodic Multilayer Dielectric Stacked Metal-Insulator-Metal Capacitors.
Karthik, R; Kannadassan, D; Baghini, Maryam Shojaei; Mallick, P S
2015-12-01
This paper presents the fabrication of Al2O3/TiO2/Al2O3 metal-insulator-metal (MIM) capacitor using anodization technique. High capacitance density of > 3.5 fF/μm2, low quadratic voltage coefficient of capacitance of < 115 ppm/V2 and a low leakage current density of 4.457 x 10(-11) A/cm2 at 3 V are achieved which are suitable for analog and mixed signal applications. We found that the anodization voltage played a major role in electrical and structural properties of the thin film. This work suggests that the anodization method can offer crystalline multilayer dielectric stack required for high performance MIM capacitor.
Fuel cells with doped lanthanum gallate electrolyte
NASA Astrophysics Data System (ADS)
Feng, Man; Goodenough, John B.; Huang, Keqin; Milliken, Christopher
Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800°C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800°C was achieved. our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum galiate and achieve higher power density at 800°C from solid oxide fuel cells.
NASA Astrophysics Data System (ADS)
Verma, Naveen; Jindal, Jitender; Singh, Krishan Chander; Mari, Bernabe
2016-04-01
The micro structural properties of nanoporous anodic oxide film formed in H3PO4 were highly influenced by addition of a low concentration of KMnO4 (0.0005 M) in 1 M H3PO4 solution. The KMnO4 as additive enhanced the growth rate of oxide film formation as well as thickness of pore walls. Furthermore the growth rate was found increased with increase in applied current density. The increase in temperature and lack of stirring during anodization causes the thinness of pore wall which leads to increase in pore volume. With the decrease in concentration of H3PO4 in anodizing electrolyte from 1M to 0.3 M, keeping all other conditions constant, the decrease in porosity was observed. This might be due to the dissolution of aluminium oxide film in highly concentrated acidic solution.
Multianode cylindrical proportional counter for high count rates
Hanson, J.A.; Kopp, M.K.
1980-05-23
A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (< 60 keV) at count rates of greater than 10/sup 5/ counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.
Multianode cylindrical proportional counter for high count rates
Hanson, James A.; Kopp, Manfred K.
1981-01-01
A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (<60 keV) at count rates of greater than 10.sup.5 counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.
Effects of Anode Arc Root Fluctuation on Coating Quality During Plasma Spraying
NASA Astrophysics Data System (ADS)
An, Lian-Tong; Gao, Yang; Sun, Chengqi
2011-06-01
To obtain a coating of high quality, a new type of plasma torch was designed and constructed to increase the stability of the plasma arc and reduce the air entrainment into the plasma jet. The torch, called bi-anode torch, generates an elongated arc with comparatively high arc voltage and low arc fluctuation. Spraying experiments were carried out to compare the quality of coatings deposited by a conventional torch and a bi-anode torch. Alumina coatings and tungsten carbide coatings were prepared to appraise the heating of the sprayed particles in the plasma jets and the entrainment of the surrounding air into the plasma jets, respectively. The results show that anode arc root fluctuation has only a small effect on the melting rate of alumina particles. On the other hand, reduced air entrainment into the plasma jet of the bi-anode torch will drastically reduce the decarbonization of tungsten carbide coatings.
Li+-Permeable Film on Lithium Anode for Lithium Sulfur Battery.
Yang, Yan-Bo; Liu, Yun-Xia; Song, Zhiping; Zhou, Yun-Hong; Zhan, Hui
2017-11-08
Lithium-sulfur (Li-S) battery is an important candidate for next-generation energy storage. However, the reaction between polysulfide and lithium (Li) anode brings poor cycling stability, low Coulombic efficiency, and Li corrosion. Herein, we report a Li protection technology. Li metal was treated in crown ether containing electrolyte, and thus, treated Li was further used as the anode in Li-S cell. Due to the coordination between Li + and crown ether, a Li + -permeable film can be formed on Li, and the film is proved to be able to block the detrimental reaction between Li anode and polysulfide. By using the Li anode pretreated in 2 wt % B15C5-containing electrolyte, Li-S cell exhibits significantly improved cycling stability, such as∼900 mAh g -1 after 100 cycles, and high Coulombic efficiency of>93%. In addition, such effect is also notable when high S loading condition is applied.
Qiu, M C; Yang, L W; Qi, X; Li, Jun; Zhong, J X
2010-12-01
Highly ordered NiO coated Si nanowire array films are fabricated as electrodes for a high performance lithium ion battery via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The structures and morphologies of as-prepared films are characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. When the potential window versus lithium was controlled, the coated NiO can be selected to be electrochemically active to store and release Li+ ions, while highly conductive crystalline Si cores function as nothing more than a stable mechanical support and an efficient electrical conducting pathway. The hybrid nanowire array films exhibit superior cyclic stability and reversible capacity compared to that of NiO nanostructured films. Owing to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowire array films will be promising anode materials for high performance lithium-ion batteries.
Methane-free biogas for direct feeding of solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Leone, P.; Lanzini, A.; Santarelli, M.; Calì, M.; Sagnelli, F.; Boulanger, A.; Scaletta, A.; Zitella, P.
This paper deals with the experimental analysis of the performance and degradation issues of a Ni-based anode-supported solid oxide fuel cell fed by a methane-free biogas from dark-anaerobic digestion of wastes by pastry and fruit shops. The biogas is produced by means of an innovative process where the biomass is fermented with a pre-treated bacteria inoculum (Clostridia) able to completely inhibit the methanization step during the fermentation process and to produce a H 2/CO 2 mixture instead of conventional CH 4/CO 2 anaerobic digested gas (bio-methane). The proposed biogas production route leads to a biogas composition which avoids the need of introducing a reformer agent into or before the SOFC anode in order to reformate it. In order to analyse the complete behaviour of a SOFC with the bio-hydrogen fuel, an experimental session with several H 2/CO 2 synthetic mixtures was performed on an anode-supported solid oxide fuel cell with a Ni-based anode. It was found that side reactions occur with such mixtures in the typical thermodynamic conditions of SOFCs (650-800 °C), which have an effect especially at high currents, due to the shift to a mixture consisting of hydrogen, carbon monoxide, carbon dioxide and water. However, cells operated with acceptable performance and carbon deposits (typical of a traditional hydrocarbon-containing biogas) were avoided after 50 h of cell operation even at 650 °C. Experiments were also performed with traditional bio-methane from anaerobic digestion with 60/40 vol% of composition. It was found that the cell performance dropped after few hours of operation due to the formation of carbon deposits. A short-term test with the real as-produced biogas was also successfully performed. The cell showed an acceptable power output (at 800 °C, 0.35 W cm -2 with biogas, versus 0.55 W cm -2 with H 2) although a huge quantity of sulphur was present in the feeding fuel (hydrogen sulphide at 103 ppm and mercaptans up to 10 ppm). Therefore, it was demonstrated the interest relying on a sustainable biomass processing which produces a biogas which can be directly fed to SOFC using traditional anode materials and avoiding the reformer component since the methane-free mixture is already safe for carbon deposition.
Chung, C K; Zhou, R X; Liu, T Y; Chang, W T
2009-02-04
Most porous anodic alumina (PAA) or anodic aluminum oxide (AAO) films are fabricated using the potentiostatic method from high-purity (99.999%) aluminum films at a low temperature of approximately 0-10 degrees C to avoid dissolution effects at room temperature (RT). In this study, we have demonstrated the fabrication of PAA film from commercial purity (99%) aluminum at RT using a hybrid pulse technique which combines pulse reverse and pulse voltages for the two-step anodization. The reaction mechanism is investigated by the real-time monitoring of current. A possible mechanism of hybrid pulse anodization is proposed for the formation of pronounced nanoporous film at RT. The structure and morphology of the anodic films were greatly influenced by the duration of anodization and the type of voltage. The best result was obtained by first applying pulse reverse voltage and then pulse voltage. The first pulse reverse anodization step was used to form new small cells and pre-texture concave aluminum as a self-assembled mask while the second pulse anodization step was for the resulting PAA film. The diameter of the nanopores in the arrays could reach 30-60 nm.
Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes
NASA Astrophysics Data System (ADS)
Miller, Elizabeth C.
This dissertation presents research on the development of novel materials and fabrication procedures for solid oxide fuel cell (SOFC) anodes. The work discussed here is divided into three main categories: all-oxide anodes, catalyst exsolution oxide anodes, and Ni-infiltrated anodes. The all-oxide and catalyst exsolution anodes presented here are further classi?ed as Ni-free anodes operating at the standard 700-800°C SOFC temperature while the Ni-infiltrated anodes operate at intermediate temperatures (≤650°C). Compared with the current state-of-the-art Ni-based cermets, all-oxide, Ni-free SOFC anodes offer fewer coking issues in carbon-containing fuels, reduced degradation due to fuel contaminants, and improved stability during redox cycling. However, electrochemical performance has proven inferior to Ni-based anodes. The perovskite oxide Fe-substituted strontium titanate (STF) has shown potential as an anode material both as a single phase electrode and when combined with Gd-doped ceria (GDC) in a composite electrode. In this work, STF is synthesized using a modified Pechini processes with the aim of reducing STF particle size and increasing the electrochemically active area in the anode. The Pechini method produced particles ? 750 nm in diameter, which is signi°Cantly smaller than the typically micron-sized solid state reaction powder. In the first iteration of anode fabrication with the Pechini powder, issues with over-sintering of the small STF particles limited gas di?usion in the anode. However, after modifying the anode firing temperature, the Pechini cells produced power density comparable to solid state reaction based cells from previous work by Cho et al. Catalyst exsolution anodes, in which metal cations exsolve out of the lattice under reducing conditions and form nanoparticles on the oxide surface, are another Ni-free option for standard operating temperature SOFCs. Little information is known about the onset of nanoparticle formation, which presents opportunities for the new kinds of ex situ and in situ experiments performed in this thesis. Ex situ experiments involved reducing powder samples at SOFC operating temperatures under hydrogen gas and characterizing them via electron microscopy and X-ray diffraction (XRD). For the in situ experiments, powders were heated, then reduced at temperature, and catalyst exsolution was observed in real-time. Pechini-synthesized cerium oxide substituted with 2-5 mol% Pd was studied using in situ X-ray heating experiments at Argonne National Laboratory's Advanced Photon Source. In these experiments, the powder was subjected to several cycles of reduction and oxidation at 800°C, and Pd metal formation was confirmed through the appearance of Pd peaks in the X-ray spectra. Next, Fe- and Ru-substituted lanthanum strontium chromite (LSCrFeRu14) synthesized by solid state reaction was characterized with ex situ and in situ microscopy. Transmission electron microscopy (TEM) in situ heating experiments were conducted to observe Ru nanoparticle evolution under the reducing conditions of the TEM vacuum chamber. LSCrFeRu14 was heated to 750°C and observed over ˜ 90 min at temperature during which time nanoparticle formation, coarsening, and di?usion were observed. Experiments on both materials sought to understand the conditions and timing of nanoparticle formation in the anode, which is not necessarily apparent from electrochemical data. Reducing the operating temperature of SOFCs from the current state-of-the-art range of 700-800°C to ≤ 650°C has many advantages, among them increased long-term stability, reduced balance of plant costs, fewer interconnect/seal material issues, and decreased start-up times. In order to maintain good performance at reduced temperature, these intermediate temperature SOFCs require new materials including highly active alternatives to micron-scale Ni-YSZ composite anodes. The present work focuses on the development of IT-SOFCs with Sr0.8La 0.2TiO3 (SLT) anode supports, thin La1--xSr x Ga0.8Mg0.2O3 (x = 0.1, 0.2) dense electrolytes, and porous LSGM anode functional layers. The SLT support and the LSGM functional layer are infiltrated with nanoscale Ni, creating extensive electrochemically active triple phase boundary area. The scope of the work presented here encompasses every step of cell development including powder synthesis, optimization of firing conditions, and long-term stability testing. Using an optimized fabrication process, cells with power density > 1.2 W cm-2 were fabricated. Dry pressing and colloidal de-position were used to make the first generation of these cells, and once suitable times and temperatures were determined, the process was shifted to tape casting to make larger batches of uniform cells. After obtaining initial results of low anode polarization resistance and high power density, the long-term stability of the Ni-infiltrated anodes was examined. A coarsening model was developed using the data from accelerated degradation tests to predict cell performance over a typical device lifetime. This thesis encompasses a broad range of novel SOFC anode materials, each of which has its own strengths and weaknesses. Presenting several possible avenues for SOFC development provides a complete picture of the ?eld and its current focuses. The wide scope of this work offers multiple solutions for the SOFC community and demonstrates that SOFCs are a strong candidate for meeting the United States' need for energy conversion and storage.
Zeng, Lizhen; Zhang, Wenguang; Xia, Pan; Tu, Wenqiang; Ye, Changchun; He, Miao
2018-04-15
A novel bi-component composite of porous self-assembled micro-/nanostructured Ni 0.1 Mn 0.9 O 1.45 microellipsoids as high-performance anode electrocatalyst for microbial fuel cells (MFCs) is successfully synthesized via a simple coprecipitation reaction in microemulsion and calcination method in air atmosphere. The morphology and structural characterization indicate that the as-fabricated Ni 0.1 Mn 0.9 O 1.45 product is consist of Mn 2 O 3 and NiMn 2 O 4 (n(Mn 2 O 3) : n(NiMn 2 O 4 ) = 0.35: 0.1) and has a porous microellipsoidal morphology. The microellipsoids are compose of numerous layered micro-/nanostructured blocks and the special porous microellipsoids structure of Ni 0.1 Mn 0.9 O 1.45 offers a large specific surface area for bacteria adhesion. The porous Ni 0.1 Mn 0.9 O 1.45 microellipsoids as anode electrocatalyst for MFCs exhibits excellent electrocatalytic activity to promote the extracellular electron transfer (EET) between the anode and bacteria, hence improves the performance of MFC. The MFC equipped with Ni 0.1 Mn 0.9 O 1.45 /CF anode achieves a maximum power density of 1.39 ± 0.02Wm -2 , is significantly higher than that of commercial carbon felt anode. This work proposes a new method for the synthesis of high-performance and environmentally friendly anode electrocatalyst for MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Meng; Hua, Bin; Luo, Jing-Li; Jiang, San Ping; Pu, Jian; Chi, Bo; Li, Jian
2016-04-27
Conventional anode materials for solid oxide fuel cells (SOFCs) are Ni-based cermets, which are highly susceptible to deactivation by contaminants in hydrocarbon fuels. Hydrogen sulfide is one of the commonly existed contaminants in readily available natural gas and gasification product gases of pyrolysis of biomasses. Development of sulfur tolerant anode materials is thus one of the critical challenges for commercial viability and practical application of SOFC technologies. Here we report a viable approach to enhance substantially the sulfur poisoning resistance of a Ni-gadolinia-doped ceria (Ni-GDC) anode through impregnation of proton conducting perovskite BaCe0.9Yb0.1O3-δ (BCYb). The impregnation of BCYb nanoparticles improves the electrochemical performance of the Ni-GDC anode in both H2 and H2S containing fuels. Moreover, more importantly, the enhanced stability is observed in 500 ppm of H2S/H2. The SEM and XPS analysis indicate that the infiltrated BCYb fine particles inhibit the adsorption of sulfur and facilitate sulfur removal from active sites, thus preventing the detrimental interaction between sulfur and Ni-GDC and the formation of cerium sulfide. The preliminary results of the cell with the BCYb+Ni-GDC anode in methane fuel containing 5000 ppm of H2S show the promising potential of the BCYb infiltration approach in the development of highly active and stable Ni-GDC-based anodes fed with hydrocarbon fuels containing a high concentration of sulfur compounds.
Electrolytic production of high purity aluminum using inert anodes
Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.
2001-01-01
A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.
Wen, Qing; Wu, Ying; Zhao, Li-xin; Sun, Qian; Kong, Fan-ying
2010-02-01
A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investigate the performance of brewery wastewater treatment in conjugation with electricity generation. Carbon fiber was used as anode and plain carbon felt with biofilm as cathode. When hydraulic retention time (HRT) was 14.7 h, a relatively high chemical oxygen demand (COD) removal efficiency of 91.7%-95.7% was achieved under long-term stable operation. The MFC displayed an open circuit voltage of 0.434 V and a maximum power density of 830 mW/m(3) at an external resistance of 300 Omega. To estimate the electrochemical performance of the MFC, electrochemical measurements were carried out and showed that polarization resistance of anode was the major limiting factor in the MFC. Since a high COD removal efficiency was achieved, we conclude that the sequential anode-cathode MFC constructed with bio-cathode in this experiment could provide a new approach for brewery wastewater treatment.
NASA Astrophysics Data System (ADS)
Jiang, Hongmei; Yang, Lu; Deng, Wenfang; Tan, Yueming; Xie, Qingji
2017-09-01
Herein, a macroporous graphitic carbon foam (MGCF) electrode decorated with polydopamine (PDA) is used as a high-performance anode for microbial fuel cell (MFC) applications. The MGCF is facilely prepared by pyrolysis of a powder mixture comprising maltose, nickel nitrate, and ammonia chloride, without using solid porous template. The MGCF is coated with PDA by self-polymerization of dopamine in a basic solution. The MGCF can provide a large surface area for bacterial attachment, and PDA coated on the MGCF electrode can further promote bacterial adhesion resulting from the improved hydrophility, so the MGCF-PDA electrode as an anode in a MFC can show ultrahigh bacterial loading capacity. Moreover, the electrochemical oxidation of flavins at the MGCF-PDA electrode is greatly accelerated, so the extracellular electron transfer mediated by flavins is improved. As a result, the MFC equipped with a MGCF-PDA anode can show a maximum power density of 1735 mW cm-2, which is 6.7 times that of a MFC equipped with a commercial carbon felt anode, indicating a promising anode for MFC applications.
Song, Rong-Bin; Zhao, Cui-E; Gai, Pan-Pan; Guo, Dan; Jiang, Li-Ping; Zhang, Qichun; Zhang, Jian-Rong; Zhu, Jun-Jie
2017-02-01
The enhancement of microbial activity and electrocatalysis through the design of new anode materials is essential to develop microbial fuel cells (MFCs) with longer lifetimes and higher output. In this research, a novel anode material, graphene/Fe 3 O 4 (G/Fe 3 O 4 ) composite, has been designed for Shewanella-inoculated MFCs. Because the Shewanella species could bind to Fe 3 O 4 with high affinity and their growth could be supported by Fe 3 O 4 , the bacterial cells attached quickly onto the anode surface and their long-term activity improved. As a result, MFCs with reduced startup time and improved stability were obtained. Additionally, the introduction of graphene not only provided a large surface area for bacterial attachment, but also offered high electrical conductivity to facilitate extracellular electron transfer (EET). The results showed that the current and power densities of a G/Fe 3 O 4 anode were much higher than those of each individual component as an anode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single-Wall Carbon Nanotube Production by the Arc Process: A Parametric Study
NASA Technical Reports Server (NTRS)
Scott, Carl D.; Gorelik, Olga; Proft, William J.
2000-01-01
Single wall carbon nanotubes are produced using the arc discharge process. Graphite anodes are filled with a mixture of nickel and yttrium metallic powders, then vaporized by creating a high current arc. By varying the current, gap distance, and ambient pressure it is shown that the best yield of single wall carbon nanotubes is obtained within a narrow range of conditions. The relative yield and purity of the product are indicated semi-quantitatively from scanning electric microscopy (SEM) and thermogravimetric analysis (TGA). Two types of anodes have been investigated. The first is hollow and filled with a powder mixture of graphite, nickel and yttrium. The second is filled with a paste made of a mixture of metal nitrates, graphite powder and carbon adhesive, then reduced in an argon atmosphere at high temperature. Product purity and yield will be compared for the two types of anodes. The graphite in the anodes may have hydrogen attached in the pores. To remove this impurity anodes have been baked up to 1400 - 1500 C. The effect of baking the anodes on impurities in the product will be given.
Cheng, Ying; Mallavarapu, Megharaj; Naidu, Ravi; Chen, Zuliang
2018-02-01
Improving the anode configuration to enhance biocompatibility and accelerate electron shuttling is critical for efficient energy recovery in microbial fuel cells (MFCs). In this paper, green reduced graphene nanocomposite was successfully coated using layer-by-layer assembly technique onto carbon brush anode. The modified anode achieved a 3.2-fold higher power density of 33.7 W m -3 at a current density of 69.4 A m -3 with a 75% shorter start period. As revealed in the characterization, the green synthesized nanocomposite film affords larger surface roughness for microbial colonization. Besides, gold nanoparticles, which anchored on graphene sheets, promise the relatively high electroactive sites and facilitate electron transfer from electricigens to the anode. The reduction-oxidation peaks in cyclic voltammograms indicated the mechanism of surface cytochromes facilitated current generation while the electrochemical impedance spectroscopy confirmed the enhanced electron transfer from surface cytochrome to electrode. The green synthesis process has the potential to generate a high performing anode in further applications of MFCs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Amorphous mesoporous GeO x anode for Na-ion batteries with high capacity and long lifespan.
Shen, Kangze; Lin, Ning; Xu, Tianjun; Han, Ying; Qian, Yitai
2018-01-01
It is recently demonstrated that amorphous Ge anode shows higher reversible Na-ion storage capacity (590 mA h g -1 ) than crystallized Ge anode (369 mA h g -1 ). Here, amorphous GeO x anode is prepared by a simple wet-chemistry reduction route at room temperature. The obtained amorphous GeO x shows a porous hierarchical architecture, accompanied with a Brunauer-Emmett-Teller surface area of 159 m 2 g -1 and an average pore diameter of 14 nm. This unique structure enables the GeO x anode to enhance the Na-ion/electron diffusion rate, and buffer the volume change. As anode for Na-ion battery, high reversible capacity over 400 mA h g -1 , fine rate capability with a capacity of 200 mA h g -1 maintained at 3.0 A g -1 and long-term cycling stability with 270 mA h g -1 even over 1000 cycles at 1.0 A g -1 are obtained.
Zn-Ge-Sb glass composite mixed with Ba2+ ions: a high capacity anode material for Na-ion batteries
NASA Astrophysics Data System (ADS)
Ravuri, Balaji Rao; Gandi, Suman; Chinta, Srinivasa Rao
2018-06-01
(100-x)(0.7[0.625ZnO-0.375GeO2]-0.3Sb2O3)-xBaO (x = 0, 2, 4 and 6 mol%, labeled as ZGSB x ) glass anode samples are synthesized using a high-energy ball-milling method and employed as anode material for Na-ion batteries. The results on microstructures (XRD, SEM) and electrochemical properties (constant current charge/discharge tests, CV and EIS) indicated that the optimum concentration of Ba2+ ions in the Zn-Ge-Sb glass anode network exhibits the pillaring effect, which would lead to increased electrical conductivity, minimize the volume changes, cracks and voids to boost up electrochemical performance. The ZGSB4 glass anode sample exhibits good capacity retention even after 20 cycles with 95% coulombic efficiency, which is a significant trend for a successful anode network. Electrochemical performance is considerably enhanced by reducing the cut-off voltage from 2 to 1.25 V due to the disassembly of amorphous intermediate domains, optimum volume changes and increased electrical conductivity in this ZGSB x glass network.
Fast ion transport at solid-solid interfaces in hybrid battery anodes
NASA Astrophysics Data System (ADS)
Tu, Zhengyuan; Choudhury, Snehashis; Zachman, Michael J.; Wei, Shuya; Zhang, Kaihang; Kourkoutis, Lena F.; Archer, Lynden A.
2018-04-01
Carefully designed solid-electrolyte interphases are required for stable, reversible and efficient electrochemical energy storage in batteries. We report that hybrid battery anodes created by depositing an electrochemically active metal (for example, Sn, In or Si) on a reactive alkali metal electrode by a facile ion-exchange chemistry lead to very high exchange currents and stable long-term performance of electrochemical cells based on Li and Na electrodes. By means of direct visualization and ex situ electrodeposition studies, Sn-Li anodes are shown to be stable at 3 mA cm-2 and 3 mAh cm-2. Prototype full cells in which the hybrid anodes are paired with high-loading LiNi0.8Co0.15Al0.05O2(NCA) cathodes are also reported. As a second demonstration, we create and study Sn-Na hybrid anodes and show that they can be cycled stably for more than 1,700 hours with minimal voltage divergence. Charge storage at the hybrid anodes is reported to involve a combination of alloying and electrodeposition reactions.
Wen, Qing; Wu, Ying; Zhao, Li-xin; Sun, Qian; Kong, Fan-ying
2010-01-01
A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investigate the performance of brewery wastewater treatment in conjugation with electricity generation. Carbon fiber was used as anode and plain carbon felt with biofilm as cathode. When hydraulic retention time (HRT) was 14.7 h, a relatively high chemical oxygen demand (COD) removal efficiency of 91.7%–95.7% was achieved under long-term stable operation. The MFC displayed an open circuit voltage of 0.434 V and a maximum power density of 830 mW/m3 at an external resistance of 300 Ω. To estimate the electrochemical performance of the MFC, electrochemical measurements were carried out and showed that polarization resistance of anode was the major limiting factor in the MFC. Since a high COD removal efficiency was achieved, we conclude that the sequential anode-cathode MFC constructed with bio-cathode in this experiment could provide a new approach for brewery wastewater treatment. PMID:20104642
Jiang, Yinzhu; Yuan, Tianzhi; Sun, Wenping; Yan, Mi
2012-11-01
Porous SnO₂/graphene composite thin films are prepared as anodes for lithium ion batteries by the electrostatic spray deposition technique. Reticular-structured SnO₂ is formed on both the nickel foam substrate and the surface of graphene sheets according to the scanning electron microscopy (SEM) results. Such an assembly mode of graphene and SnO₂ is highly beneficial to the electrochemical performance improvement by increasing the electrical conductivity and releasing the volume change of the anode. The novel engineered anode possesses 2134.3 mA h g⁻¹ of initial discharge capacity and good capacity retention of 551.0 mA h g⁻¹ up to the 100th cycle at a current density of 200 mA g⁻¹. This anode also exhibits excellent rate capability, with a reversible capacity of 507.7 mA h g⁻¹ after 100 cycles at a current density of 800 mA g⁻¹. The results demonstrate that such a film-type hybrid anode shows great potential for application in high-energy lithium-ion batteries.
Park, A Reum; Kim, Jung Sub; Kim, Kwang Su; Zhang, Kan; Park, Juhyun; Park, Jong Hyeok; Lee, Joong Kee; Yoo, Pil J
2014-02-12
Although Si is a promising high-capacity anode material for Li-ion batteries (LIB), it suffers from capacity fading due to excessively large volumetric changes upon Li insertion. Nanocarbon materials have been used to enhance the cyclic stability of LIB anodes, but they have an inherently low specific capacity. To address these issues, we present a novel ternary nanocomposite of Si, Mn, and reduced graphene oxide (rGO) for LIB anodes, in which the Si-Mn alloy offers high capacity characteristics and embedded rGO nanosheets confer structural stability. Si-Mn/rGO ternary nanocomposites were synthesized by mechanical complexation and subsequent thermal reduction of mixtures of Si nanoparticles, MnO2 nanorods, and rGO nanosheets. Resulting ternary nanocomposite anodes displayed a specific capacity of 600 mAh/g with ∼90% capacity retention after 50 cycles at a current density of 100 mA/g. The enhanced performance is attributed to facilitated Li-ion reactions with the MnSi alloy phase and the formation of a structurally reinforced electroconductive matrix of rGO nanosheets. The ternary nanocomposite design paradigm presented in this study can be exploited for the development of high-capacity and long-life anode materials for versatile LIB applications.
Shin, Hyun-Seop; Jung, Kyu-Nam; Jo, Yong Nam; Park, Min-Sik; Kim, Hansung; Lee, Jong-Won
2016-01-01
There is a great deal of current interest in the development of rechargeable sodium (Na)-ion batteries (SIBs) for low-cost, large-scale stationary energy storage systems. For the commercial success of this technology, significant progress should be made in developing robust anode (negative electrode) materials with high capacity and long cycle life. Sn-P compounds are considered promising anode materials that have considerable potential to meet the required performance of SIBs, and they have been typically prepared by high-energy mechanical milling. Here, we report Sn-P-based anodes synthesised through solvothermal transformation of Sn metal and their electrochemical Na storage properties. The temperature and time period used for solvothermal treatment play a crucial role in determining the phase, microstructure, and composition of the Sn-P compound and thus its electrochemical performance. The Sn-P compound prepared under an optimised solvothermal condition shows excellent electrochemical performance as an SIB anode, as evidenced by a high reversible capacity of ~560 mAh g−1 at a current density of 100 mA g−1 and cycling stability for 100 cycles. The solvothermal route provides an effective approach to synthesising Sn-P anodes with controlled phases and compositions, thus tailoring their Na storage behaviour. PMID:27189834
NASA Astrophysics Data System (ADS)
Garcia-Garcia, F. J.; Beltrán, A. M.; Yubero, F.; González-Elipe, A. R.; Lambert, R. M.
2017-09-01
Magnetron sputtering under oblique angle deposition was used to produce Ni-containing ultra thin film anodes comprising alternating layers of gadolinium doped ceria (GDC) and yttria stabilized zirconia (YSZ) of either 200 nm or 1000 nm thickness. The evolution of film structure from initial deposition, through calcination and final reduction was examined by XRD, SEM, TEM and TOF-SIMS. After subsequent fuel cell usage, the porous columnar architecture of the two-component layered thin film anodes was maintained and their resistance to delamination from the underlying YSZ electrolyte was superior to that of corresponding single component Ni-YSZ and Ni-GDC thin films. Moreover, the fuel cell performance of the 200 nm layered anodes compared favorably with conventional commercially available thick anodes. The observed dependence of fuel cell performance on individual layer thicknesses prompted study of equivalent but more easily fabricated hybrid anodes consisting of simultaneously deposited Ni-GDC and Ni-YSZ, which procedure resulted in exceptionally intimate mixing and interaction of the components. The hybrids exhibited very unusual and favorable Isbnd V characteristics, along with exceptionally high power densities at high currents. Their discovery is the principal contribution of the present work.
Zhang, Fan; Tang, Yongbing; Liu, Hui; Ji, Hongyi; Jiang, Chunlei; Zhang, Jing; Zhang, Xiaolong; Lee, Chun-Sing
2016-02-01
Hybrid supercapacitors (HSCs) with lithium-ion battery-type anodes and electric double layer capacitor-type cathodes are attracting extensive attention and under wide investigation because of their combined merits of both high power and energy density. However, the performance of most HSCs is limited by low kinetics of the battery-type anode which cannot match the fast kinetics of the capacitor-type cathode. In this study, we have synthesized a three-dimensional (3D) porous composite with uniformly incorporated MoS2 flocculent nanostructure onto 3D graphene via a facile solution-processed method as an anode for high-performance HSCs. This composite shows significantly enhanced electrochemical performance due to the synergistic effects of the conductive graphene sheets and the interconnected porous structure, which exhibits a high rate capability of 688 mAh/g even at a high current density of 8 A/g and a stable cycling performance (997 mAh/g after 700 cycles at 2 A/g). Furthermore, by using this composite as the anode for HSCs, the HSC shows a high energy density of 156 Wh/kg at 197 W/kg, which also remains at 97 Wh/kg even at a high power density of 8314 W/kg with a stable cycling life, among the best results of the reported HSCs thus far.
Zeng, Yinxiang; Lin, Ziqi; Wang, Zifan; Wu, Mingmei; Tong, Yexiang; Lu, Xihong
2018-05-01
To achieve high-energy and stable aqueous rechargeable batteries, state-of-the art of anode materials are needed. Bismuth (Bi) has recently emerged as an attractive anode material due to its highly reversible redox reaction and suitable negative operating working window. However, the capacity and durability of currently reported Bi anodes are still far from satisfactory. Here, an in situ activation strategy is reported to prepare a 3D porous high-density Bi nanoparticles/carbon architecture (P-Bi-C) as an efficient anode for nickel-bismuth batteries. Taking advantages of the fast channels for charge transfer and ion diffusion, enhanced wettability, and accessible surface area, the highly loaded P-Bi-C electrode delivers a remarkable capacity of 2.11 mA h cm -2 as well as high rate capability (1.19 mA h cm -2 at 120 mA cm -2 ). To highlight, a robust aqueous rechargeable Ni//Bi battery based on the P-Bi-C anode is first constructed, achieving decent capacity (141 mA h g -1 ), impressive durability (94% capacity retention after 5000 cycles), and admirable energy density (16.9 mW h cm -3 ). This work paves the way for designing superfast nickel-bismuth batteries with high energy and long-life and may inspire new development for aqueous rechargeable batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.
2016-12-01
A superhydrophilic aluminum surface covered by numerous alumina nanofibers was fabricated via pyrophosphoric acid anodizing. High-density anodic alumina nanofibers grow on the bottom of a honeycomb oxide via anodizing in concentrated pyrophosphoric acid. The water contact angle on the nanofiber-covered aluminum surface decreased with time after a 4 μL droplet was placed on the surface, and a superhydrophilic behavior with a contact angle measuring 2.2° was observed within 2 s; this contact angle is considerably lower than those observed for electropolished and porous alumina-covered aluminum surfaces. There was no dependence of the superhydrophilicity on the density of alumina nanofibers fabricated via different constant voltage anodizing conditions. The superhydrophilic property of the surface covered by anodic alumina nanofibers was maintained during an exposure test for 359 h. The quick-drying and snow-sliding behaviors of the superhydrophilic aluminum covered with anodic alumina nanofibers were demonstrated.
Fundamental Investigation of Si Anode in Li-Ion Cells
NASA Technical Reports Server (NTRS)
Wu, James J.; Bennett, William R.
2012-01-01
Silicon is a promising and attractive anode material to replace graphite for high capacity lithium ion cells since its theoretical capacity is approximately 10 times of graphite and it is an abundant element on earth. However, there are challenges associated with using silicon as Li-ion anode due to the significant first cycle irreversible capacity loss and subsequent rapid capacity fade during cycling. In this paper, cyclic voltammetry and electrochemical impedance spectroscopy are used to build a fundamental understanding of silicon anodes. The results show that it is difficult to form the SEI film on the surface of Si anode during the first cycle, the lithium ion insertion and de-insertion kinetics for Si are sluggish, and the cell internal resistance changes with the state of lithiation after electrochemical cycling. These results are compared with those for extensively studied graphite anodes. The understanding gained from this study will help to design better Si anodes.
NASA Astrophysics Data System (ADS)
Lim, Jong-Wook; Jun Kang, Seong; Lee, Sunghun; Kim, Jang-Joo; Kim, Han-Ki
2012-07-01
We report on transparent Ti-In-Sn-O (TITO) multicomponent anodes prepared by co-sputtering anatase TiO2-x and ITO targets to produce highly efficient phosphorescent organic light emitting diodes (OLEDs). In spite of the incorporation of low cost TiO2, the crystalline TITO electrode annealed at temperature of 600 °C showed a sheet resistance of 18.06 Ω/sq, an optical transmittance of 87.96% at a wavelength of 550 nm, and a work function of 4.71 eV comparable to conventional ITO electrode. Both the quantum (21.69%) and power efficiencies (90.92 lm/W) of the phosphorescent OLED fabricated on the TITO anode were higher than those of the OLED with the reference ITO anode due to the high transparency of the TITO electrodes. This indicates that the TITO electrode is a promising indium-saving electrode that can replace high-cost ITO electrodes in the manufacture of low-cost, highly efficient phosphorescent OLEDs.
Conductive Polymeric Binder for Lithium-Ion Battery Anode
NASA Astrophysics Data System (ADS)
Gao, Tianxiang
Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle is performed under current of 0.1 C.
Zeng, Lingxing; Huang, Xiaoxia; Chen, Xi; Zheng, Cheng; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng
2016-01-13
Germanium-based nanostructures are receiving intense interest in lithium-ion batteries because they have ultrahigh lithium ion storage ability. However, the Germanium-based anodes undergo the considerably large volume change during the charge/discharge processes, leading to a fast capacity fade. In the present work, a Ge/GeO2-ordered mesoporous carbon (Ge/GeO2-OMC) nanocomposite was successfully fabricated via a facile nanocasting route by using mesoporous carbon as a nanoreactor, and was then used as an anode for lithium-ion batteries. Benefited from its unique three-dimensional "meso-nano" structure, the Ge/GeO2-OMC nanocomposite exhibited large reversible capacity, excellent long-time cycling stability and high rate performance. For instance, a large reversible capacity of 1018 mA h g(-1) was obtained after 100 cycles at a current density of 0.1 A g(-1), which might be attributed to the unique structure of the Ge/GeO2-OMC nanocomposite. In addition, a reversible capacity of 492 mA h g(-1) can be retained when cycled to 500 cycles at a current density of 1 A g(-1).
Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao
2016-03-24
In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.
Nanostructured Si(₁-x)Gex for tunable thin film lithium-ion battery anodes.
Abel, Paul R; Chockla, Aaron M; Lin, Yong-Mao; Holmberg, Vincent C; Harris, Justin T; Korgel, Brian A; Heller, Adam; Mullins, C Buddie
2013-03-26
Both silicon and germanium are leading candidates to replace the carbon anode of lithium ions batteries. Silicon is attractive because of its high lithium storage capacity while germanium, a superior electronic and ionic conductor, can support much higher charge/discharge rates. Here we investigate the electronic, electrochemical and optical properties of Si(1-x)Gex thin films with x = 0, 0.25, 0.5, 0.75, and 1. Glancing angle deposition provided amorphous films of reproducible nanostructure and porosity. The film's composition and physical properties were investigated by X-ray photoelectron spectroscopy, four-point probe conductivity, Raman, and UV-vis absorption spectroscopy. The films were assembled into coin cells to test their electrochemical properties as a lithium-ion battery anode material. The cells were cycled at various C-rates to determine the upper limits for high rate performance. Adjusting the composition in the Si(1-x)Gex system demonstrates a trade-off between rate capability and specific capacity. We show that high-capacity silicon anodes and high-rate germanium anodes are merely the two extremes; the composition of Si(1-x)Gex alloys provides a new parameter to use in electrode optimization.
A novel strategy to prepare Ge@C/rGO hybrids as high-rate anode materials for lithium ion batteries
NASA Astrophysics Data System (ADS)
Wang, Bangrun; Wen, Zhaoyin; Jin, Jun; Hong, Xiaoheng; Zhang, Sanpei; Rui, Kun
2017-02-01
Germanium is considered as a promising anode material for lithium ion batteries (LIBs) due to its high-capacity. However, owing to the huge volume variation during cycling, the batteries based on germanium anodes usually show poor cyclability and inferior rate capability. Herein, we demonstrated a novel strategy to uniformly anchor the core-shell structured germanium@carbon (Ge@C) on the reduced graphene oxide (rGO) nanosheets by the strong adhesion of dopamine. In the resulting Ge@C/rGO hybrid, the amorphous carbon layer and rGO nanosheets can effectively reduce the agglomeration of germanium and provide buffer matrix for the volume change in electrochemical lithium reactions. When used as anode materials for LIBs, Ge@C/rGO hybrids deliver a reversible capacity of 1074.4 mA h g-1 at 2C after 600 cycles (with capacity retention of 96.5%) and high rate capability of 436 mA h g-1 at 20C after 200 cycles. The encouraging electrochemical performance clearly demonstrates that Ge@C/rGO hybrids could be a potential anode material with high capacity, excellent rate capability, and good cycling stability for LIBs.
Vertical Graphene Growth on SiO Microparticles for Stable Lithium Ion Battery Anodes.
Shi, Liurong; Pang, Chunlei; Chen, Shulin; Wang, Mingzhan; Wang, Kexin; Tan, Zhenjun; Gao, Peng; Ren, Jianguo; Huang, Youyuan; Peng, Hailin; Liu, Zhongfan
2017-06-14
Silicon-based materials are considered as strong candidates to next-generation lithium ion battery anodes because of their ultrahigh specific capacities. However, the pulverization and delamination of electrochemical active materials originated from the huge volume expansion (>300%) of silicon during the lithiation process results in rapid capacity fade, especially in high mass loading electrodes. Here we demonstrate that direct chemical vapor deposition (CVD) growth of vertical graphene nanosheets on commercial SiO microparticles can provide a stable conducting network via interconnected vertical graphene encapsulation during lithiation, thus remarkably improving the cycling stability in high mass loading SiO anodes. The vertical graphene encapsulated SiO (d-SiO@vG) anode exhibits a high capacity of 1600 mA h/g and a retention up to 93% after 100 cycles at a high areal mass loading of 1.5 mg/cm 2 . Furthermore, 5 wt % d-SiO@vG as additives increased the energy density of traditional graphite/NCA 18650 cell by ∼15%. We believe that the results strongly imply the important role of CVD-grown vertical graphene encapsulation in promoting the commercial application of silicon-based anodes.
Molecular Diagnostics for the Study of Hypersonic Flows
2000-04-01
between the at the F4 high-enthalpy wind tunnel [21]. Figure 5 electrodes. The fast electrons exit the anode disk shows the image acquired 90 ms after...Discharge Figure 5 Typical F4 run, flow at 90 ms , Grounded Electrode convection imaged 5 jis after beam emission. Figure 4 Schematic diagram of the...accounts for the classical phenomena like absorption and Figure 6 Velocity profile at 90 ms for run of refraction. X(2) is the second-order
Anode for a secondary, high-temperature electrochemical cell
Vissers, Donald R.; Tani, Benjamin S.
1976-01-01
A high-temperature, secondary electrochemical cell includes an anode containing lithium, an electrolyte containing lithium ions and a cathode containing a chalcogen material such as sulfur or a metallic sulfide. The anode includes a porous substrate formed of, for instance, a compacted mass of entangled metallic fibers providing interstitial crevices for receiving molten lithium metal. The surfaces of the interstitial crevices are provided with a coating of cobalt metal to enhance the retention of the molten lithium metal within the substrate.
Seo, Hong-Kyu; Kim, Hobeom; Lee, Jaeho; Park, Min-Ho; Jeong, Su-Hun; Kim, Young-Hoon; Kwon, Sung-Joo; Han, Tae-Hee; Yoo, Seunghyup; Lee, Tae-Woo
2017-03-01
Highly efficient organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) based on graphene anode are developed for the first time. Chemically inert graphene avoids quenching of excitons by diffused metal atom species from indium tin oxide. The flexible PeLEDs with graphene anode on plastic substrate show good bending stability; they provide an alternative and reliable flexible electrode for highly efficient flexible PeLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unique Three-Dimensional InP Nanopore Arrays for Improved Photoelectrochemical Hydrogen Production.
Li, Qiang; Zheng, Maojun; Ma, Liguo; Zhong, Miao; Zhu, Changqing; Zhang, Bin; Wang, Faze; Song, Jingnan; Ma, Li; Shen, Wenzhong
2016-08-31
Ordered three-dimensional (3D) nanostructure arrays hold promise for high-performance energy harvesting and storage devices. Here, we report the fabrication of InP nanopore arrays (NPs) in unique 3D architectures with excellent light trapping characteristic and large surface areas for use as highly active photoelectrodes in photoelectrochemical (PEC) hydrogen evolution devices. The ordered 3D NPs were scalably synthesized by a facile two-step etching process of (1) anodic etching of InP in neutral 3 M NaCl electrolytes to realize nanoporous structures and (2) wet chemical etching in HCl/H3PO4 (volume ratio of 1:3) solutions for removing the remaining top irregular layer. Importantly, we demonstrated that the use of neutral electrolyte of NaCl instead of other solutions, such as HCl, in anodic etching of InP can significantly passivate the surface states of 3D NPs. As a result, the maximum photoconversion efficiency obtained with ∼15.7 μm thick 3D NPs was 0.95%, which was 7.3 and 1.4 times higher than that of planar and 2D NPs. Electrochemical impedance spectroscopy and photoluminescence analyses further clarified that the improved PEC performance was attributed to the enhanced charge transfer across 3D NPs/electrolyte interfaces, the improved charge separation at 3D NPs/electrolyte junction, and the increased PEC active surface areas with our unique 3D NP arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X. P.; Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024; Zhang, Z. C.
High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, takingmore » into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chidambaram, Dev; Misra, Mano; Heske, Clemens
2014-12-21
The objectives included: Develop high efficiency metal oxide nanotubular array photo-anodes for generating hydrogen by water splitting; Develop density functional theory to understand the effect of the morphology of the nanotubes on the photo-electrochemical (PEC) properties of the photo-anodes; Develop kinetics and formation mechanism of the metal oxide nanotubes under different synthesis conditions; Develop combinatorial approach to prepare hybrid photo-anodes having multiple hetero-atoms incorporation in a single photo anode; Improve the durability of the material; and Scale up the laboratory demonstration to production unit.
Optimizing membrane electrode assembly of direct methanol fuel cells for portable power
NASA Astrophysics Data System (ADS)
Liu, Fuqiang
Direct methanol fuel cells (DMFCs) for portable power applications require high power density, high-energy conversion efficiency and compactness. These requirements translate to fundamental properties of high methanol oxidation and oxygen reduction kinetics, as well as low methanol and water crossover. In this thesis a novel membrane electrode assembly (MEA) for direct methanol fuel cells has been developed, aiming to improve these fundamental properties. Firstly, methanol oxidation kinetics has been enhanced and methanol crossover has been minimized by proper control of ionomer crystallinity and its swelling in the anode catalyst layer through heat-treatment. Heat-treatment has a major impact on anode characteristics. The short-cured anode has low ionomer crystallinity, and thus swells easily when in contact with methanol solution to create a much denser anode structure, giving rise to higher methanol transport resistance than the long-cured anode. Variations in interfacial properties in the anode catalyst layer (CL) during cell conditioning were also characterized, and enhanced kinetics of methanol oxidation and severe limiting current phenomenon were found to be caused by a combination of interfacial property variations and swelling of ionomer over time. Secondly, much effort has been expended to develop a cathode CL suitable for operation under low air stoichiometry. The effects of fabrication procedure, ionomer content, and porosity distribution on the microstructure and cathode performance under low air stoichiometry are investigated using electrochemical and surface morphology characterizations to reveal the correlation between microstructure and electrochemical behavior. At the same time, computational fluid dynamics (CFD) models of DMFC cathodes have been developed to theoretically interpret the experimental results, to investigate two-phase transport, and to elucidate mechanism of cathode mixed potential due to methanol crossover. Thirdly, a MEA with low water crossover has been developed by employing a highly-hydrophobic microporous layer (MPL) to build up hydraulic pressure at the cathode, promoting product water permeation from the cathode to anode to offset water dragged by electro-osmosis. Water crossover through the MEA is further reduced by an anode hydrophobic MPL through facilitating water back diffusion. Under different current densities, the MEA with hydrophobic MPL has consistently low alpha, several times smaller than those with hydrophilic or without MPL. A simulation study of anode water transport by a two-phase model shows that anode MPL wettability strongly determines liquid saturation in the anode, and thus is identified as playing a crucial role in promoting water back diffusion. Finally, direct feed of highly-concentrated methanol using the optimized MEA has been successfully demonstrated by a face-feed anode plate, which minimizes methanol crossover by controlling the fuel delivery rate. Using 10 M methanol, a steady-state power density of ˜67mW/cm2 is reached at 60°C and 175mA/cm2, which is almost identical to that with 2M methanol.
Rapidly Synthesized, Few-Layered Pseudocapacitive SnS2 Anode for High-Power Sodium Ion Batteries.
Thangavel, Ranjith; Samuthira Pandian, Amaresh; Ramasamy, Hari Vignesh; Lee, Yun-Sung
2017-11-22
The abundance of sodium resources has recently motivated the investigation of sodium ion batteries (SIBs) as an alternative to commercial lithium ion batteries. However, the low power and low capacity of conventional sodium anodes hinder their practical realization. Although most research has concentrated on the development of high-capacity sodium anodes, anodes with a combination of high power and high capacity have not been widely realized. Herein, we present a simple microwave irradiation technique for obtaining few-layered, ultrathin two-dimensional SnS 2 over graphene sheets in a few minutes. SnS 2 possesses a large number of active surface sites and exhibits high-capacity, rapid sodium ion storage kinetics induced by quick, nondestructive pseudocapacitance. Enhanced sodium ion storage at a high current density (12 A g -1 ), accompanied by high reversibility and high stability, was demonstrated. Additionally, a rationally designed sodium ion full cell coupled with SnS 2 //Na 3 V 2 (PO 4 ) 3 exhibited exceptional performance with high initial Coulombic efficiency (99%), high capacity, high stability, and a retention of ∼53% of the initial capacity even after the current density was increased by a factor of 140. In addition, a high specific energy of ∼140 Wh kg -1 and an ultrahigh specific power of ∼8.3 kW kg -1 (based on the mass of both the anode and cathode) were observed. Because of its outstanding performance and rapid synthesis, few-layered SnS 2 could be a promising candidate for practical realization of high-power SIBs.
Yuan, Haoran; Dong, Ge; Li, Denian; Deng, Lifang; Cheng, Peng; Chen, Yong
2018-09-15
Anode design is highly significant for microbial fuel cells, since it simultaneously serves as the scaffold for electroactive microorganisms and as a medium for electron migration. In this study, a stiff 3D carbon foam with surface anchored nitrogen-containing carbon nanoparticles was facilely constructed via in-situ polyaniline coating of carbonized steamed cake prior to the carbonization process. The resultant product was determined to be an excellent freestanding anode that enabled the microbial fuel cell to deliver a maximum power density of up to 1307 mW/m 2 , which significantly outperformed its non-coated counterpart, the widely used commercial carbon felt. Further investigations revealed that the overall performance enhancement was associated with the open porosity, enlarged electroactive surface, increased biocompatibility, and decreased electric resistance of the anode scaffold. This promising anode material would offer a green and economical option for fabricating high-performance microbial fuel cell-based devices towards various ends. Copyright © 2018 Elsevier B.V. All rights reserved.
Yuan, Shuang; Zhu, Yun-Hai; Li, Wang; Wang, Sai; Xu, Dan; Li, Lin; Zhang, Yu; Zhang, Xin-Bo
2017-01-01
SnSe with 3D hierarchical nanostructure composed of interconnected single-crystal SnSe nanosheets is synthesized via a fast and effective strategy. Unexpectedly, when used as the anode material for Na-ion batteries (NIBs), the SnSe exhibits a high capacity (738 mA h g -1 ), superior rate capability (40 A g -1 ), and high energy density in a full cell. These results provide the possibility of SnSe use as NIBs anodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yoo, Jung-Keun; Jeon, Jaebeom; Kang, Kisuk; Jung, Yeon Sik
2017-03-01
Recently, investigation of Si-based anode materials for rechargeable battery applications garnered much interest due to its exceptionally high capacity. High-capacity Si anode ( 4,200 mAhg-1) is highly desirable for the replacement of conventional graphite anode (< 400 mAhg-1) for large-scale energy-storage applications such as in electric vehicles (EVs) and energy storage systems (ESSs) for renewable energy sources. However, Si-based anodes suffer from poor cycling stability due to their large volumetric changes during repeated Li insertion. Therefore, development of highly efficient binder materials that can suppress the volume change of Si is one of the most essential parts of improving the performance of batteries. We herein demonstrate highly cross-linked polymeric binder (glyoxalated polyacrylamide) with an enhanced mechanical property by applying wet-strengthening chemistry used in paper industry. We found that the degree of cross-linking can be systematically adjusted by controlling the acidity of the slurry and has a profound effect on the cell performance using Si anode. The enhanced cycle performance of Si nanoparticles obtained by treating the binder at pH 4 can be explained by its strong interaction between the binder and Si surface and current collector, and also rigidity of binder by cross-linking.
Su, Chao; Chen, Yubo; Wang, Wei; Ran, Ran; Shao, Zongping; Diniz da Costa, João C; Liu, Shaomin
2014-06-17
In this study, we propose and experimentally verified that methane and formic acid mixed fuel can be employed to sustain solid oxide fuel cells (SOFCs) to deliver high power outputs at intermediate temperatures and simultaneously reduce the coke formation over the anode catalyst. In this SOFC system, methane itself was one part of the fuel, but it also played as the carrier gas to deliver the formic acid to reach the anode chamber. On the other hand, the products from the thermal decomposition of formic acid helped to reduce the carbon deposition from methane cracking. In order to clarify the reaction pathways for carbon formation and elimination occurring in the anode chamber during the SOFC operation, O2-TPO and SEM analysis were carried out together with the theoretical calculation. Electrochemical tests demonstrated that stable and high power output at an intermediate temperature range was well-maintained with a peak power density of 1061 mW cm(-2) at 750 °C. With the synergic functions provided by the mixed fuel, the SOFC was running for 3 days without any sign of cell performance decay. In sharp contrast, fuelled by pure methane and tested at similar conditions, the SOFC immediately failed after running for only 30 min due to significant carbon deposition. This work opens a new way for SOFC to conquer the annoying problem of carbon deposition just by properly selecting the fuel components to realize their synergic effects.
Ye, Jing; Li, Yi-xuan; Zhang, Li; Zhang, Xue-ping; Han, Min; He, Ping; Zhou, Hao-shen
2016-01-13
The cathode materials of Li-ion batteries for electric vehicles require not only a large gravimetric capacity but also a high volumetric capacity. A new Li-rich layered oxide cathode with superior capacity, Li[Li0.20Ni0.16Co0.10Mn0.54]O2 (denoted as LNCM), is synthesized from precursor, a coprecipitated spherical metal hydroxide. The preparation technology of precursor such as stirring speed, concentration of metal solution, and reaction time are regulated elaborately. The final product LNCM shows a well-ordered, hexagonal-layer structure, as confirmed by Rietveld refinement of X-ray diffraction pattern. The particle size of the final product has an average diameter of about 10 μm, and the corresponding tap density is about 2.25 g cm(-3). Electrochemical measurements indicate that as-prepared LNCM has great initial columbic efficiency, reversible capacity, and cycling stability, with specific discharge capacities of 278 and 201 mAh g(-1) at 0.03 and 0.5 C rates, respectively. Cycling at 0.1 C, LNCM delivers a discharge capacity of 226 mAh g(-1) with 95% retention capacity after 50 cycles. Si/LNCM cell is fabricated using Si submicroparticle as anode against LNCM. The cell can exhibit a specific energy of 590 Wh kg(-1) based on the total weight of cathode and anode materials.
Ying, Hangjun
2017-01-01
Abstract With the fast‐growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn‐based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium‐ion batteries (LIBs) (994 mA h g−1) and sodium‐ion batteries (847 mA h g−1). Though Sony has used Sn–Co–C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn‐based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn‐based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in‐depth understanding of the theoretical works and practical developments of metallic Sn‐based anode materials. PMID:29201624
DOE Office of Scientific and Technical Information (OSTI.GOV)
DE GERONIMO,G.; CHEN, W.; FRIED, J.
We present an application specific integrated circuit (ASIC) for high-resolution x-ray spectrometers. The ASIC is designed to read out signals from a pixelated silicon drift detector (SDD). Each hexagonal pixel has an area of 15 mmz and an anode capacitance of less than 100 fF. There is no integrated Field Effect transistor (FET) in the pixel, rather, the readout is done by wirebonding the anodes to the inputs of the ASIC. The ASIC provides 14 channels of low-noise charge amplification, high-order shaping with baseline stabilization, and peak detection with analog memory. The readout is sparse and based on low voltagemore » differential signaling. An interposer provides all the interconnections required to bias and operate the system. The channel dissipates 1.6 mW. The complete 14-pixel unit covers an area of 210 mm{sup 2}, dissipates 12 mW cm{sup -2}, and can be tiled to cover an arbitrarily large detection area. We measured a preliminary resolution of 172 eV at -35 C on the 6 keV peak of a {sup 55}Fe source.« less
NASA Astrophysics Data System (ADS)
Baji, Dona Susan; Jadhav, Harsharaj S.; Nair, Shantikumar V.; Rai, Alok Kumar
2018-06-01
Pyro synthesis is a method to coat nanoparticles by uniform layer of carbon without using any conventional carbon source. The resultant carbon coating can be evaporated in the form of CO or CO2 at high temperature with the creation of large number of nanopores on the sample surface. Hence, a porous MnCo2O4 is successfully synthesized here with the same above strategy. It is believed that the electrolyte can easily permeate through these nanopores into the bulk of the sample and allow rapid access of Li+ ions during charge/discharge cycling. In order to compare the superiority of the porous sample synthesized by pyro synthesis method, MnCo2O4 nanoparticles are also synthesized by sol-gel synthesis method at the same parameters. When tested as anode materials for lithium ion battery application, porous MnCo2O4 electrode shows high capacity with long lifespan at all the investigated current rates in comparison to MnCo2O4 nanoparticles electrode.
NASA Astrophysics Data System (ADS)
Cojocari, O.; Mottet, B.; Rodriguez-Girones, M.; Biber, S.; Marchand, L.; Schmidt, L.-P.; Hartnagel, H. L.
2004-03-01
This paper presents the evaluation of a Schottky contact technology based on electrochemical metal deposition. The results of a long-term systematic investigation and optimization of the anode formation process to improve the yield and performance of Schottky-based GaAs mixer diodes are detailed. Surface preparation prior to the Schottky-metal deposition and anode metallization as previously optimized for whisker-contacted diodes are successfully transferred to the fabrication of planar structures. This uses an auxiliary honeycomb array of anode-like structures called 'dummy anodes', which are processed simultaneously with the real anodes and then removed in the later technological processes. Consequently, the scattering of planar diodes electrical parameters is significantly reduced and the yield of the fabrication process increases from about 5% up to about 50%. Very good dc characteristics such as series resistance (Rs) below 8 OHgr, ideality factor (eegr) below 1.2 and saturation current (Isat) of the order of 10-17A are achieved for the anode diameter as small as 1 µm. An excellent IF-noise figure of 250 K at 4.8 GHz up to 280 K at 2.1 GHz with current bias up to 3 mA is obtained for non-cooled THz mixer planar diodes. The use of this technological approach has enabled the extraction of statistically significant data which have been used to characterize the criticality of each step of the fabrication process on the device performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbaszadeh, D.; Wetzelaer, G. A. H.; Dutch Polymer Institute, P.O. Box 902, 5600 AX, Eindhoven
The quenching of excitons at the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) anode in blue polyalkoxyspirobifluorene-arylamine polymer light-emitting diodes is investigated. Due to the combination of a higher electron mobility and the presence of electron traps, the recombination zone shifts from the cathode to the anode with increasing voltage. The exciton quenching at the anode at higher voltages leads to an efficiency roll-off. The voltage dependence of the luminous efficiency is reproduced by a drift-diffusion model under the condition that quenching of excitons at the PEDOT:PSS anode and metallic cathode is of equal strength. Experimentally, the efficiency roll-off at high voltages due tomore » anode quenching is eliminated by the use of an electron-blocking layer between the anode and the light-emitting polymer.« less
Solid oxide fuel cell power plant with an anode recycle loop turbocharger
Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.
2015-07-14
An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).
Solid oxide fuel cell power plant with an anode recycle loop turbocharger
Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.
2016-09-27
An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).
Xu, Gui-Liang; Chen, Zonghai; Zhong, Gui-Ming; Liu, Yuzi; Yang, Yong; Ma, Tianyuan; Ren, Yang; Zuo, Xiaobing; Wu, Xue-Hang; Zhang, Xiaoyi; Amine, Khalil
2016-06-08
Sodium-ion batteries are promising alternatives to lithium-ion batteries for large-scale applications. However, the low capacity and poor rate capability of existing anodes for sodium-ion batteries are bottlenecks for future developments. Here, we report a high performance nanostructured anode material for sodium-ion batteries that is fabricated by high energy ball milling to form black phosphorus/Ketjenblack-multiwalled carbon nanotubes (BPC) composite. With this strategy, the BPC composite with a high phosphorus content (70 wt %) could deliver a very high initial Coulombic efficiency (>90%) and high specific capacity with excellent cyclability at high rate of charge/discharge (∼1700 mAh g(-1) after 100 cycles at 1.3 A g(-1) based on the mass of P). In situ electrochemical impedance spectroscopy, synchrotron high energy X-ray diffraction, ex situ small/wide-angle X-ray scattering, high resolution transmission electronic microscopy, and nuclear magnetic resonance were further used to unravel its superior sodium storage performance. The scientific findings gained in this work are expected to serve as a guide for future design on high performance anode material for sodium-ion batteries.
Development of the Los Alamos continuous high average-power microsecond pulser ion accelerator
NASA Astrophysics Data System (ADS)
Bitteker, L. J.; Wood, B. P.; Davis, H. A.; Waganaar, W. J.; Boyd, I. D.; Lovberg, R. H.
2000-10-01
The continuous high average-power microsecond pulser (CHAMP) ion accelerator is being constructed at Los Alamos National Laboratory. Progress on the testing of the CHAMP diode is discussed. A direct simulation Monte Carlo computer code is used to investigate the puffed gas fill of the CHAMP anode. High plenum pressures and low plenum volumes are found to be desirable for effective gas puffs. The typical gas fill time is 150-180 μs from initiation of valve operation to end of fill. Results of anode plasma production at three stages of development are discussed. Plasma properties are monitored with electric and magnetic field probes. From this data, the near coil plasma density under nominal conditions is found to be on the order of 1×1016 cm-3. Large error is associated with this calculation due to inconsistencies between tests and the limitations of the instrumentation used. The diode insulating magnetic field is observed to result in lower density plasma with a more diffuse structure than for the cases when the insulating field is not applied. The importance of these differences in plasma quality on the beam production is yet to be determined.
Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.; Steinbach, Daniela
1999-01-01
A high resolution gamma ray imaging device includes an aluminum housing, a lead screen collimator at an opened end of the housing, a crystal scintillator array mounted behind the lead screen collimator, a foam layer between the lead screen collimator and the crystal scintillator array, a photomultiplier window coupled to the crystal with optical coupling grease, a photomultiplier having a dynode chain body and a base voltage divider with anodes, anode wire amplifiers each connected to four anodes and a multi pin connector having pin connections to each anode wire amplifier. In one embodiment the crystal scintillator array includes a yttrium aluminum perovskite (YAP) crystal array. In an alternate embodiment, the crystal scintillator array includes a gadolinium oxyorthosilicate (GSO) crystal array.
Nanostructured bilayer anodic TiO2/Al2O3 metal-insulator-metal capacitor.
Karthik, R; Kannadassan, D; Baghini, Maryam Shojaei; Mallick, P S
2013-10-01
This paper presents the fabrication of high performance bilayer TiO2/Al2O3 Metal-Insulator-Metal capacitor using anodization technique. A high capacitance density of 7 fF/microm2, low quadratic voltage coefficient of capacitance of 150 ppm/V2 and a low leakage current density of 9.1 nA/cm2 at 3 V are achieved which are suitable for Analog and Mixed signal applications. The influence of anodization voltage on structural and electrical properties of dielectric stack is studied in detail. At higher anodization voltages, we have observed the transformation of amorphous to crystalline state of TiO2/Al2O3 and improvement of electrical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul
Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly hasmore » been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.« less
Electrolytic production of high purity aluminum using ceramic inert anodes
Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.; DiMilia, Robert A.; Dynys, Joseph M.; Phelps, Frankie E.; LaCamera, Alfred F.
2002-01-01
A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.
NASA Astrophysics Data System (ADS)
Cho, Hyoup Je; Choi, Gyeong Man
A Ni-YSZ (Y 2O 3-stabilized ZrO 2) composite is commonly used as a solid oxide fuel cell anode. The composite powders are usually synthesized by mixing NiO and YSZ powders. The particle size and distribution of the two phases generally determine the performance of the anode. Two different milling methods are used to prepare the composite anode powders, namely, high-energy milling and ball-milling that reduce the particle size. The particle size and the Ni distribution of the two composite powders are examined. The effects of milling on the performance are evaluated by using both an electrolyte-supported, symmetric Ni-YSZ/YSZ/Ni-YSZ cell and an anode-supported, asymmetric cell. The performance is examined at 800 °C by impedance analysis and current-voltage measurements. Pellets made by using high-energy milled NiO-YSZ powders have much smaller particle sizes and a more uniform distribution of Ni particles than pellets made from ball-milled powder, and thus the polarization resistance of the electrode is also smaller. The maximum power density of the anode-supported cell prepared by using the high-energy milled powder is ∼850 mW cm -2 at 800 °C compared with ∼500 mW cm -2 for the cell with ball-milled powder. Thus, high-energy milling is found to be more effective in reducing particle size and obtaining a uniform distribution of Ni particles.
Li, Sijie; Tang, Honghu; Ge, Peng; Jiang, Feng; Zhou, Jiahui; Zhang, Chenyang; Hou, Hongshuai; Sun, Wei; Ji, Xiaobo
2018-02-21
Considering serious pollution from the traditional chemical synthesis process, the resource-rich, clean, and first-hand electrode materials are greatly desired. Natural ore molybdenite (MoS 2 ), as the low-cost, high-yield, and environmental-friendly natural source, is investigated as a first-hand anode material for lithium-ion batteries (LIBs). Compared with chemosynthetic pure MoS 2 , natural molybdenite provides an ordered ion diffusion channel more effectively owing to its excellent characteristics, containing well-crystalline, large lattice distance, and trance dopants. Even at a large current density of 2.0 A g -1 , a natural molybdenite electrode employing a carboxymethyl cellulose binder displays an initial charge capacity of 1199 mA h g -1 with a capacity retention of 72% after 1000 cycles, much higher than those of the electrodes utilizing a poly(vinylidene fluoride) binder. These types of binders play a crucial role in stabilizing a microstructure demonstrated by ex situ scanning electron microscopy and in affecting pseudocapacitive contributions quantitatively determined by a series of kinetic exploration. Briefly, this work might open up a new avenue toward the use of natural molybdenite as a first-hand LIB anode in scalable applications and deepen our understanding on the fundamental effect of binders in the metal-sulfide.
NASA Astrophysics Data System (ADS)
Li, Shou-Yi; Wang, Jian; Li, Yan
2017-06-01
Highly ordered anodic aluminum oxide (AAO) membranes are fabricated electrochemically in an electrolyte mixture with various concentrations of C2H2O4 or NH4F. Photoluminescence (PL) properties of AAO membranes have been investigated before and after annealing in the range from 300°C to 650°C. X-ray diffraction reveals the amorphous nature of AAO membranes. Energy dispersive spectroscopy indicates the presence of fluorine species incorporated in oxide membranes during the anodizing. PL measurements show a strong PL band in the wavelength range of 350 to 550 nm. With the increase of the concentration of the NH4F or C2H2O4 in the electrolyte mixture, the peak positions of the PL bands have a blueshift or redshift and the intensities have a maximum value. As indicated by the PL excitation spectra, there are two excitation peaks of 285 and 330 nm, which can account for the PL emission band. We have proposed that the PL originates from optical transitions in two kinds of centers that are related to oxygen vacancies, F+ (285 nm) and F (330 nm). This work is not only beneficial to further understanding of the light-emitting property of AAO membranes but also enlarges the application scope.
Du, Yangyang; Cai, Hongkun; Wen, Hongbin; Wu, Yuxiang; Huang, Like; Ni, Jian; Li, Juan; Zhang, Jianjun
2016-05-25
In this work, a facile and low temperature processed anodic oxidation approach is proposed for fabricating compact and homogeneous titanium dioxide film (AO-TiO2). In order to realize morphology and thickness control of AO-TiO2, the theory concerning anodic oxidation (AO) is unveiled and the influence of relevant parameters during the process of AO such as electrolyte ingredient and oxidation voltage on AO-TiO2 formation is observed as well. Meanwhile, we demonstrate that the planar perovskite solar cells (p-PSCs) fabricated in ambient air and utilizing optimized AO-TiO2 as electron transport layer (ETL) can deliver repeatable power conversion efficiency (PCE) over 13%, which possess superior open-circuit voltage (Voc) and higher fill factor (FF) compared to its counterpart utilizing conventional high temperature processed compact TiO2 (c-TiO2) as ETL. Through a further comparative study, it is indicated that the improvement of device performance should be attributed to more effective electron collection from perovskite layer to AO-TiO2 and the decrease of device series resistance. Furthermore, hysteresis effect about current density-voltage (J-V) curves in TiO2-based p-PSCs is also unveiled.
2017-01-01
Graphitic carbon anodes have long been used in Li ion batteries due to their combination of attractive properties, such as low cost, high gravimetric energy density, and good rate capability. However, one significant challenge is controlling, and optimizing, the nature and formation of the solid electrolyte interphase (SEI). Here it is demonstrated that carbon coating via chemical vapor deposition (CVD) facilitates high electrochemical performance of carbon anodes. We examine and characterize the substrate/vertical graphene interface (multilayer graphene nanowalls coated onto carbon paper via plasma enhanced CVD), revealing that these low-tortuosity and high-selection graphene nanowalls act as fast Li ion transport channels. Moreover, we determine that the hitherto neglected parallel layer acts as a protective surface at the interface, enhancing the anode performance. In summary, these findings not only clarify the synergistic role of the parallel functional interface when combined with vertical graphene nanowalls but also have facilitated the development of design principles for future high rate, high performance batteries. PMID:29392179