Sample records for highly ordered organic

  1. Solvent-free directed patterning of a highly ordered liquid crystalline organic semiconductor via template-assisted self-assembly for organic transistors.

    PubMed

    Kim, Aryeon; Jang, Kwang-Suk; Kim, Jinsoo; Won, Jong Chan; Yi, Mi Hye; Kim, Hanim; Yoon, Dong Ki; Shin, Tae Joo; Lee, Myong-Hoon; Ka, Jae-Won; Kim, Yun Ho

    2013-11-20

    Highly ordered organic semiconductor micropatterns of the liquid-crystalline small molecule 2,7-didecylbenzothienobenzothiophene (C10 -BTBT) are fabricated using a simple method based on template-assisted self-assembly (TASA). The liquid crystallinity of C10 -BTBT allows solvent-free fabrication of high-performance printed organic field-effect transistors (OFETs). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Application of organic compounds for high-order harmonic generation of ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Ganeev, R. A.

    2016-02-01

    The studies of the high-order nonlinear optical properties of a few organic compounds (polyvinyl alcohol, polyethylene, sugar, coffee, and leaf) are reported. Harmonic generation in the laser-produced plasmas containing the molecules and large particles of above materials is demonstrated. These studies showed that the harmonic distributions and harmonic cutoffs from organic compound plasmas were similar to those from the graphite ablation. The characteristic feature of observed harmonic spectra was the presence of bluesided lobes near the lower-order harmonics.

  3. New Materials Directions for the Realization of Ultra-High Performance 3rd Order Non-Linear Optical Organics

    DTIC Science & Technology

    2015-03-13

    Nowacki, H.S. Oh, C. Zanlorenzi, H.S. Jee, A. Baev, P.N. Prasad, and L. Akcelrud, "Design and synthesis of polymers for chiral photonics ...rationally design and create organic materials with high nonlinear refractive index and low single· and two- photon absorption at wavelengths relevant to...can also enhance 3rd-order NLO response through microscopic cascading of 2nd-order nonlinearity. Chiral control of nonlinearity bas also been

  4. cyclostratigraphy, sequence stratigraphy and organic matter accumulation mechanism

    NASA Astrophysics Data System (ADS)

    Cong, F.; Li, J.

    2016-12-01

    The first member of Maokou Formation of Sichuan basin is composed of well preserved carbonate ramp couplets of limestone and marlstone/shale. It acts as one of the potential shale gas source rock, and is suitable for time-series analysis. We conducted time-series analysis to identify high-frequency sequences, reconstruct high-resolution sedimentation rate, estimate detailed primary productivity for the first time in the study intervals and discuss organic matter accumulation mechanism of source rock under sequence stratigraphic framework.Using the theory of cyclostratigraphy and sequence stratigraphy, the high-frequency sequences of one outcrop profile and one drilling well are identified. Two third-order sequences and eight fourth-order sequences are distinguished on outcrop profile based on the cycle stacking patterns. For drilling well, sequence boundary and four system tracts is distinguished by "integrated prediction error filter analysis" (INPEFA) of Gamma-ray logging data, and eight fourth-order sequences is identified by 405ka long eccentricity curve in depth domain which is quantified and filtered by integrated analysis of MTM spectral analysis, evolutive harmonic analysis (EHA), evolutive average spectral misfit (eASM) and band-pass filtering. It suggests that high-frequency sequences correlate well with Milankovitch orbital signals recorded in sediments, and it is applicable to use cyclostratigraphy theory in dividing high-frequency(4-6 orders) sequence stratigraphy.High-resolution sedimentation rate is reconstructed through the study interval by tracking the highly statistically significant short eccentricity component (123ka) revealed by EHA. Based on sedimentation rate, measured TOC and density data, the burial flux, delivery flux and primary productivity of organic carbon was estimated. By integrating redox proxies, we can discuss the controls on organic matter accumulation by primary production and preservation under the high-resolution sequence stratigraphic framework. Results show that high average organic carbon contents in the study interval are mainly attributed to high primary production. The results also show a good correlation between high organic carbon accumulation and intervals of transgression.

  5. Probing Carrier Transport and Structure-Property Relationship of Highly Ordered Organic Semiconductors at the Two-Dimensional Limit.

    PubMed

    Zhang, Yuhan; Qiao, Jingsi; Gao, Si; Hu, Fengrui; He, Daowei; Wu, Bing; Yang, Ziyi; Xu, Bingchen; Li, Yun; Shi, Yi; Ji, Wei; Wang, Peng; Wang, Xiaoyong; Xiao, Min; Xu, Hangxun; Xu, Jian-Bin; Wang, Xinran

    2016-01-08

    One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ∼3  nm. Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.

  6. Probing Carrier Transport and Structure-Property Relationship of Highly Ordered Organic Semiconductors at the Two-Dimensional Limit

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhan; Qiao, Jingsi; Gao, Si; Hu, Fengrui; He, Daowei; Wu, Bing; Yang, Ziyi; Xu, Bingchen; Li, Yun; Shi, Yi; Ji, Wei; Wang, Peng; Wang, Xiaoyong; Xiao, Min; Xu, Hangxun; Xu, Jian-Bin; Wang, Xinran

    2016-01-01

    One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ˜3 nm . Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.

  7. 3 CFR 13568 - Executive Order 13568 of March 8, 2011. Extending Provisions of the International Organizations...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Provisions of the International Organizations Immunities Act to the Office of the High Representative in... International Organizations Immunities Act to the Office of the High Representative in Bosnia and Herzegovina... Organizations Immunities Act (59 Stat. 669, 22 U.S.C. 288), and the Extending Immunities to the Office of the...

  8. The growth, characterization, and application of highly ordered small molecule semiconducting thin films

    NASA Astrophysics Data System (ADS)

    Lunt, Richard Royal, III

    Organic semiconductors have gained tremendous attention recently as their use in field effect transistors, sensors, solar cells, lasers, and organic light emitting diodes have been demonstrated, offering the potential for low-cost alternatives. Since renewable energy remains one the greatest challenges of the 21st century, the possibility for low-cost and flexible organic photovoltaics is particularly exciting. In the first part of this thesis, we demonstrate a route to the controlled growth of oriented crystalline films through organic vapor-phase deposition (OVPD), in conjunction with organic-inorganic, and organic-organic quasi-epitaxy. This method for producing highly ordered crystalline thin-film heterostructures combines the control of film growth with the electronic properties expected to approach that of organic single crystals, making them potentially useful for high efficiency organic thin-film devices and solar cells. We further demonstrate OVPD as a method for the deposition of large-scale organic electronics with low material waste, a key ability in fulfilling the promise of low-cost organic devices. The second part of this thesis is focused on understanding factors that govern energy (i.e. exciton) transport. The two single most important and fundamental properties of organic semiconductors are the transport of charge and energy. While charge mobility has been extensively studied and convincingly linked to the degree of crystalline order and orientation, the principles governing energy transport, i.e. exciton migration, in this class of materials and the subsequent connection to crystalline properties still remain ambiguous. Therefore, we aim to understand key aspects governing exciton motion in organic materials to better engineer materials, film morphologies, and film architectures for organic electronics with improved performance. To this end, we have developed a new method for measuring exciton diffusion and characterize a range of archetypal organic compounds. We then derive a simple theoretical model that provides insight into the control of exciton migration in organic systems through changes in both crystal orientation (anisotropy) and degree of crystalline order, which is crucial for the management of energy transport in a wide range of important organic electronic devices.

  9. Higher order chromatin structure: bridging physics and biology

    PubMed Central

    Fudenberg, Geoffrey; Mirny, Leonid A.

    2012-01-01

    Recent advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental data, and examine the success and limitations of various polymer models of high-order interphase chromatin organization. By taking into account topological constraints acting on the chromatin fiber, recently-developed polymer models of interphase chromatin can reproduce the observed scaling of distances between genomic loci, chromosomal territories, and probabilities of contacts between loci measured by chromosome conformation capture methods. Polymer models provide a framework for the interpretation of experimental data as ensembles of conformations rather than collections of loops, and will be crucial for untangling functional implications of chromosomal organization. PMID:22360992

  10. Organic field effect transistor with ultra high amplification

    NASA Astrophysics Data System (ADS)

    Torricelli, Fabrizio

    2016-09-01

    High-gain transistors are essential for the large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show organic transistors fabricated on plastic foils enabling unipolar amplifiers with ultra-gain. The proposed approach is general and opens up new opportunities for ultra-large signal amplification in organic circuits and sensors.

  11. Study of organic-inorganic hetero-interfaces and electrical transport in semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Wagner, Sean Robert

    As the electronics industry continues to evolve and move towards functional electronic devices with increasing complexity and functionality, it becomes important to explore materials outside the regime of conventional semiconductors. Organic semiconducting small molecules have received a large amount of attention due to their high degree of flexibility, the option to perform molecular synthesis to modify their electronic and magnetic properties, and their ability to organize into highly-ordered functionalized nanostructures and thin films. Being able to form complex nanostructures and thin films with molecular precision, while maintaining the ability to tune properties through modifications in the molecular chemistry could result in vast improvements in conventional device architectures. However, before this is realized, there still remains a significant lack of understanding regarding how these molecules interact with various substrate surfaces as well as their intermolecular interactions. The interplay between these interactions can produce drastic changes in the molecular orientation and ordering at the hetero-interface, which can affect the transport properties of the molecular thin film and ultimately modify the performance of the organic electronic device. This study first focuses on the growth dynamics, molecular ordering, and molecular orientation of metal phthalocyanine (MPc) molecules, particularly on Si, a substrate which is notoriously difficult to form an organized organic thin film on due to the surface dangling bonds. By deactivating these bonds, the formation of a highly ordered organic molecular thin film becomes possible. Combining scanning tunneling microscopy, scanning tunneling spectroscopy, low-energy electron diffraction, and density functional theory calculations, the growth evolution of MPc molecules ( M = Zn, Cu, Co) from the single molecule level to multilayered films on the deactivated Si(111)-B surface is investigated. Initial tests are centered around thermally evaporated ZnPc. These molecules display a highly-ordered, close-packed, tilted configuration which differs from any known bulk packing motif. The ZnPc molecules are able to diffuse rapidly on the Si surface and preferentially nucleate at Si step-edges. This is followed by the formation of highly-ordered anisotropic stripe structures which grow across the Si terraces, i.e. anisotropic step-flow growth. The step-flow growth mode further impacts the growth by reducing the allowed symmetry of the molecular domains such that thin films with an exclusive in-plane molecular ordering are formed. Additionally, the ZnPc tilted packing motif stabilizes the molecular film, allowing it to maintain this packing for multilayered films, despite the decreasing substrate influence. The strength of the MPc-substrate interaction can be modified by changing the central transition-metal ion within the molecule. Through selective p-d orbital coupling between MPc molecules and the substrate, the degree of orbital coupling can induce modifications in the molecular ordering and orientation of MPc molecules at the interface. The secondary focus of this study is to initiate preliminary experimentation towards understanding how ordered organic molecular thin films can be applied to silicon-based devices that could have a significant impact on the electronics market. Si nanomembrane is a flexible, low-dimensional nanomaterial with electronic properties that are highly sensitive to the interface condition. By merging the knowledge of MPc thin film growth on Si with Si nanomembrane technology, possibilities towards modifying the transport properties of nanomaterials through engineering the organic-inorganic hetero-interface can be explored.

  12. [Characteristics of organic pollutants in the sediments from a typical electronics industrial zone].

    PubMed

    Liu, Jin; Deng, Dai-Yong; Xu, Mei-Ying; Sun, Guo-Ping

    2013-03-01

    In order to investigate the contamination status of organic pollutants in a river of a typical electrical equipment industrial area, Ronggui, Foshan, the sediments were sampled for the composition, concentration and occurrence analysis of organic pollutants. The polar and non-polar fractionation methods were employed for the fingerprint establishment of organic pollutants. One hundred and seventy-one of organic chemicals including ten categories of alkanes, alkenes, polycyclic aromatic hydrocarbons, benzene, heterocyclic compounds, phthalate esters, aldehydes, ketones, polar compounds, silicon-containing material as well as alkyl esters were examined. The number of different categories of the detected organic pollutants in a descending order was: alkanes > polar compounds > polycyclic aromatic hydrocarbons > aldehydes and ketones > heterocyclic compounds > benzene homologues, phthalate ester > alkyl esters > silicon material > olefins. The abundance of detected organic pollutants in a descending order was: alkanes > polar compounds > alkyl esters > olefins > polycyclic aromatic hydrocarbons > phthalates > silicon material > aldehydes and ketones > heterocyclic compounds > benzene homologues. Among the 51 kinds of alkanes detected, nonadecane accounted for 14.83%, and the persistent organic pollutants accounted for 2.33% of the total organic matter. Compared to similar studies, there were 51 kinds of alkanes and they accounted for 55.5% of the total organic chemicals, showing high diversity and abundance. In addition, some electronics industry-related organic pollutants such as silicone materials were also detected in high frequency.

  13. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Xu, Yanhong; Jin, Shangbin; Chen, Long; Kaji, Toshihiko; Honsho, Yoshihito; Addicoat, Matthew A.; Kim, Jangbae; Saeki, Akinori; Ihee, Hyotcherl; Seki, Shu; Irle, Stephan; Hiramoto, Masahiro; Gao, Jia; Jiang, Donglin

    2013-11-01

    Covalent organic frameworks are a class of crystalline organic porous materials that can utilize π-π-stacking interactions as a driving force for the crystallization of polygonal sheets to form layered frameworks and ordered pores. However, typical examples are chemically unstable and lack intrasheet π-conjugation, thereby significantly limiting their applications. Here we report a chemically stable, electronically conjugated organic framework with topologically designed wire frameworks and open nanochannels, in which the π conjugation-spans the two-dimensional sheets. Our framework permits inborn periodic ordering of conjugated chains in all three dimensions and exhibits a striking combination of properties: chemical stability, extended π-delocalization, ability to host guest molecules and hole mobility. We show that the π-conjugated organic framework is useful for high on-off ratio photoswitches and photovoltaic cells. Therefore, this strategy may constitute a step towards realizing ordered semiconducting porous materials for innovations based on two-dimensionally extended π systems.

  14. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Frazier, Donald 0; Penn, Benjamin G.; Smith, David; Witherow, William K.; Paley, M. S.; Abdeldayem, Hossin A.

    1998-01-01

    In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organic which allow flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials such as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films, such as Langmuir-Blodgett (LB) and self-assembly techniques, vapor deposition, growth from sheared solution or melt, and melt growth between glass plates. Organics have many features that make Abstract: them desirable for use in optical devices such as high second- and third-order nonlinearities, flexibility of molecular design, and damage resistance to optical radiation. However, their use in devices has been hindered by processing difficulties for crystals and thin films. In this chapter, we discuss photonic and optoelectronic applications of a few organic materials and the potential role of microgravity on processing these materials. It is of interest to note how materials with second- and third-order nonlinear optical behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials. We focus our discussion on third-order materials for all-optical switching, and second-order materials for all-optical switching, and second-order materials for frequency conversion and electrooptics.

  15. Phenanthrene sorption with heterogeneous organic matter in a landfill aquifer material

    USGS Publications Warehouse

    Karapanagioti, H.K.; Sabatini, D.A.; Kleineidam, S.; Grathwohl, P.; Ligouis, B.

    1999-01-01

    Phenanthrene was used as a model chemical to study the sorption properties of Canadian River Alluvium aquifer material. Both equilibrium and kinetic sorption processes were evaluated through batch studies. The bulk sample was divided into subsamples with varying properties such as particle size, organic content, equilibration time, etc. in order to determine the effect of these properties on resulting sorption parameters. The data have been interpreted and the effect of experimental variables was quantified using the Freundlich isotherm model and a numerical solution of Fick's 2nd law in porous media. Microscopic organic matter characterization proved to be a valuable tool for explaining the results. Different organic matter properties and sorption mechanisms were observed for each soil subsample. Samples containing coal particles presented high Koc values. Samples with organic matter dominated by organic coatings on quartz grains presented low Koc values and contained a high percentage of fast sorption sites. The numerical solution of Fick's 2ndlaw requires the addition of two terms (fast and slow) in order to fit the kinetics of these heterogeneous samples properly. These results thus demonstrate the need for soil organic matter characterization in order to predict and explain the sorption properties of a soil sample containing heterogeneous organic matter and also the difficulty and complexity of modeling sorption in such samples.

  16. Thermodynamic perspectives on genetic instructions, the laws of biology and diseased states.

    PubMed

    Trevors, Jack T; Saier, Milton H

    2011-01-01

    This article examines in a broad perspective entropy and some examples of its relationship to evolution, genetic instructions and how we view diseases. Living organisms are programmed by functional genetic instructions (FGI), through cellular communication pathways, to grow and reproduce by maintaining a variety of hemistable, ordered structures (low entropy). Living organisms are far from equilibrium with their surrounding environmental systems, which tends towards increasing disorder (increasing entropy). Organisms free themselves from high entropy (high disorder) to maintain their cellular structures for a period of time sufficient to allow reproduction and the resultant offspring to reach reproductive ages. This time interval varies for different species. Bacteria, for example need no sexual parents; dividing cells are nearly identical to the previous generation of cells, and can begin a new cell cycle without delay under appropriate conditions. By contrast, human infants require years of care before they can reproduce. Living organisms maintain order in spite of their changing surrounding environment that decreases order according to the second law of thermodynamics. These events actually work together since living organisms create ordered biological structures by increasing local entropy. From a disease perspective, viruses and other disease agents interrupt the normal functioning of cells. The pressure for survival may result in mechanisms that allow organisms to resist attacks by viruses, other pathogens, destructive chemicals and physical agents such as radiation. However, when the attack is successful, the organism can be damaged until the cell, tissue, organ or entire organism is no longer functional and entropy increases. Copyright © 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  17. Steady-state photoconductivity and multi-particle interactions in high-mobility organic semiconductors.

    PubMed

    Irkhin, P; Najafov, H; Podzorov, V

    2015-10-19

    Fundamental understanding of photocarrier generation, transport and recombination under a steady-state photoexcitation has been an important goal of organic electronics and photonics, since these processes govern such electronic properties of organic semiconductors as, for instance, photoconductivity. Here, we discovered that photoconductivity of a highly ordered organic semiconductor rubrene exhibits several distinct regimes, in which photocurrent as a function of cw (continuous wave) excitation intensity is described by a power law with exponents sequentially taking values 1, 1/3 and ¼. We show that in pristine crystals this photocurrent is generated at the very surface of the crystals, while the bulk photocurrent is drastically smaller and follows a different sequence of exponents, 1 and ½. We describe a simple experimental procedure, based on an application of "gauge effect" in high vacuum, that allows to disentangle the surface and bulk contributions to photoconductivity. A model based on singlet exciton fission, triplet fusion and triplet-charge quenching that can describe these non-trivial effects in photoconductivity of highly ordered organic semiconductors is proposed. Observation of these effects in photoconductivity and modeling of the underlying microscopic mechanisms described in this work represent a significant step forward in our understanding of electronic properties of organic semiconductors.

  18. Titanium-based Organic Frameworks for Chemical Transformations

    EPA Science Inventory

    Metal–organic frameworks (MOFs) based on organic bridging ligands are a promising class of highly ordered porous materials1 with potential applications in catalysis, gas storage and photoelectric devices. The availability of external surface of the solid-state catalysts plays an ...

  19. Mechanical Properties of Organized Microcomposites Fabricated by Interference Lithography

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srikanth; Chang, Sehoon; Jang, Ji-Hyun; Davis, Whitney; Thomas, Edwin; Tsukruk, Vladimir

    2009-03-01

    We demonstrate that organized, porous, polymer microstructures with continuous open nanoscale pores and sub-micron spacings obtained via interference lithography can be successfully utilized in a highly non-traditional field of ordered microcomposites. Organized microcomposite structures are fabricated by employing two independent strategies, namely, capillary infiltration and in situ polymerization of the rubbery component into the porous glassy microframes. The mechanical properties and ultimate fracture behavior of the single and bicomponent microframes are investigated at different length scales. The ordered single and bi-component microstructures with high degree of control over the microscopic organization of the polymeric phases result in excellent mechanical properties. Combining hard and soft polymer components provides multifunctional materials and coatings with synergetic properties and is frequently utilized for design of advanced polymeric composites.

  20. Organ donation in the ICU: A document analysis of institutional policies, protocols, and order sets.

    PubMed

    Oczkowski, Simon J W; Centofanti, John E; Durepos, Pamela; Arseneau, Erika; Kelecevic, Julija; Cook, Deborah J; Meade, Maureen O

    2018-04-01

    To better understand how local policies influence organ donation rates. We conducted a document analysis of our ICU organ donation policies, protocols and order sets. We used a systematic search of our institution's policy library to identify documents related to organ donation. We used Mindnode software to create a publication timeline, basic statistics to describe document characteristics, and qualitative content analysis to extract document themes. Documents were retrieved from Hamilton Health Sciences, an academic hospital system with a high volume of organ donation, from database inception to October 2015. We retrieved 12 active organ donation documents, including six protocols, two policies, two order sets, and two unclassified documents, a majority (75%) after the introduction of donation after circulatory death in 2006. Four major themes emerged: organ donation process, quality of care, patient and family-centred care, and the role of the institution. These themes indicate areas where documented institutional standards may be beneficial. Further research is necessary to determine the relationship of local policies, protocols, and order sets to actual organ donation practices, and to identify barriers and facilitators to improving donation rates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [Employees in high-reliability organizations: systematic selection of personnel as a final criterion].

    PubMed

    Oubaid, V; Anheuser, P

    2014-05-01

    Employees represent an important safety factor in high-reliability organizations. The combination of clear organizational structures, a nonpunitive safety culture, and psychological personnel selection guarantee a high level of safety. The cockpit personnel selection process of a major German airline is presented in order to demonstrate a possible transferability into medicine and urology.

  2. Effects of egg order on organic and inorganic element concentrations and egg characteristics in tree swallows, tachycineta bicolor

    USGS Publications Warehouse

    Custer, Christine M.; Gray, B.R.; Custer, T.W.

    2010-01-01

    The laying order of tree swallow eggs was identified from the Housatonic River, Berkshire County, Massachusetts, USA, and eggs were chemically analyzed individually to document possible effects of laying order on organic contaminant and inorganic element concentrations. Effects of laying order on other parameters such as egg weight, size, and lipid and moisture content also were assessed. Some effects of egg order on total polychlorinated biphenyls (PCBs) were detected, but the effect was not uniform across individual females or between years. In 2004, clutches with higher total PCBs tended to have concentrations decline across egg order, whereas clutches with lower concentrations of PCBs tended to increase across egg order. In contrast, in 2005, there was a tendency for concentrations to increase across egg order. Polychlorinated biphenyl concentrations were highly variable within and among clutches in both years. The directionality of egg order associations (i.e., slopes) for trace elements was element dependent, was positive for Mn and Zn, was negative for B, and had no slope for Cr. Whole egg weight increased across egg order. Percentage lipid was variable within a clutch, with no pattern common across all females. Percentage lipid was also correlated with organic contaminant concentration. In highly contaminated environments, higher lipid content could have the unanticipated corollary of having higher concentrations of lipophilic contaminants such as PCBs. To reduce the effect of high variation within a clutch when assessing contamination exposure, it is recommended that two eggs per clutch be collected and pooled for chemical analysis. We further recommend that, as long as the two eggs are randomly collected, the additional effort needed to identify and collect specific eggs is not warranted. ?? 2009 SETAC.

  3. 76 FR 9065 - Self-Regulatory Organizations; NYSE Arca, Inc.; Order Approving a Proposed Rule Change To List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ...-Regulatory Organizations; NYSE Arca, Inc.; Order Approving a Proposed Rule Change To List and Trade Shares of...,\\2\\ a proposed rule change to list and trade shares (``Shares'') of the SPDR Nuveen S&P High Yield... shares (``Shares'') under NYSE Arca Equities Rule 5.2(j)(3), Commentary .02, which governs the listing...

  4. Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview.

    PubMed

    Vavilin, V A; Fernandez, B; Palatsi, J; Flotats, X

    2008-01-01

    The applicability of different kinetics to the hydrolysis of particulate organic material in anaerobic digestion is discussed. Hydrolysis has traditionally been modelled according to the first-order kinetics. For complex substrate, the first-order kinetics should be modified in order to take into account hardly degradable material. It has been shown that models in which hydrolysis is coupled to the growth of hydrolytic bacteria work well at high or at fluctuant organic loading. In particular, the surface-related two-phase and the Contois models showed good fits to experimental data from a wide range of organic waste. Both models tend to the first-order kinetics at a high biomass-to-waste ratio and, for this reason, they can be considered as more general models. Examples on different inhibition processes that might affect the degradation of solid waste are reported. Acetogenesis or methanogenesis might be the rate-limiting stages in complex waste. In such cases, stimulation of hydrolysis (mechanically, chemically or biologically) may lead to a further inhibition of these stages, which ultimately affects hydrolysis as well. Since the hydrolysis process is characterized by surface and transport phenomena, new developments in spatially distributed models are considered fundamental to provide new insights in this complex process.

  5. Ultra-efficient all-printed organic photodetectors

    NASA Astrophysics Data System (ADS)

    Kielar, Marcin; Dhez, Olivier; Hirsch, Lionel

    2016-09-01

    Organic photodetectors are able to transform plastic into intelligent surfaces making our daily life easier, smarter and more productive. The key element for a sensor is to reduce the dark current density in order to boost the limit of detection. The energetic requirements in order to select materials for ultra-high performance organic photodetectors are presented with the following experimental results: a detectivity of 3.36 × 1013 Jones has been achieved with an extremely low dark current density of 0.32 nA cm-2 and a responsivity as high as 0.34 A W-1. Flexible devices are all made at lowtemperature and with solution-processed materials. Their stability under operation is also presented.

  6. Thermodynamic perspectives on genetic instructions, the laws of biology, diseased states and human population control

    PubMed Central

    Saier, M. H.

    2014-01-01

    This article examines in a broad perspective entropy and some examples of its relationship to evolution, genetic instructions and how we view diseases. Many knowledge gaps abound, hence our understanding is still fragmented and incomplete. Living organisms are programmed by functional genetic instructions (FGI), through cellular communication pathways, to grow and reproduce by maintaining a variety of hemistable, ordered structures (low entropy). Living organisms are far from equilibrium with their surrounding environmental systems, which tends towards increasing disorder (increasing entropy). Organisms must free themselves from high entropy (high disorder) to maintain their cellular structures for a period of time sufficient enough to allow reproduction and the resultant offspring to reach reproductive ages. This time interval varies for different species. Bacteria, for example need no sexual parents; dividing cells are nearly identical to the previous generation of cells, and can begin a new cell cycle without delay under appropriate conditions. By contrast, human infants require years of care before they can reproduce. Living organisms maintain order in spite of their changing surrounding environment, that decreases order according to the second law of thermodynamics. These events actually work together since living organisms create ordered biological structures by increasing local entropy. From a disease perspective, viruses and other disease agents interrupt the normal functioning of cells. The pressure for survival may result in mechanisms that allow organisms to resist attacks by viruses, other pathogens, destructive chemicals and physical agents such as radiation. However, when the attack is successful, the organism can be damaged until the cell, tissue, organ or entire organism is no longer functional and entropy increases. PMID:21262480

  7. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds

    PubMed Central

    Guo, Jia; Xu, Yanhong; Jin, Shangbin; Chen, Long; Kaji, Toshihiko; Honsho, Yoshihito; Addicoat, Matthew A.; Kim, Jangbae; Saeki, Akinori; Ihee, Hyotcherl; Seki, Shu; Irle, Stephan; Hiramoto, Masahiro; Gao, Jia; Jiang, Donglin

    2013-01-01

    Covalent organic frameworks are a class of crystalline organic porous materials that can utilize π–π-stacking interactions as a driving force for the crystallization of polygonal sheets to form layered frameworks and ordered pores. However, typical examples are chemically unstable and lack intrasheet π-conjugation, thereby significantly limiting their applications. Here we report a chemically stable, electronically conjugated organic framework with topologically designed wire frameworks and open nanochannels, in which the π conjugation-spans the two-dimensional sheets. Our framework permits inborn periodic ordering of conjugated chains in all three dimensions and exhibits a striking combination of properties: chemical stability, extended π-delocalization, ability to host guest molecules and hole mobility. We show that the π-conjugated organic framework is useful for high on-off ratio photoswitches and photovoltaic cells. Therefore, this strategy may constitute a step towards realizing ordered semiconducting porous materials for innovations based on two-dimensionally extended π systems. PMID:24220603

  8. Preparing highly ordered glasses of discotic liquid crystalline systems by vapor deposition

    NASA Astrophysics Data System (ADS)

    Gujral, Ankit; Gomez, Jaritza; Bishop, Camille E.; Toney, Michael F.; Ediger, M. D.

    Anisotropic molecular packing, particularly in highly ordered liquid-crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized out-of-equilibrium (glassy) solids of discotic liquid-crystalline (LC) systems. Using grazing incidence x-ray scattering, we compare 3 systems: a rectangular columnar LC, a hexagonal columnar LC and a non-liquid crystal former. The packing motifs accessible by vapor deposition are highly organized and vary from face-on to edge-on columnar arrangements depending upon substrate temperature. A subset of these structures cannot be accessed under equilibrium conditions. The structures formed at a given substrate temperature can be understood as the result of the system partially equilibrating toward the structure of the free surface of the equilibrium liquid crystal. Consistent with this view, the structures formed are independent of the substrate material.

  9. Antarctic snow: metals bound to high molecular weight dissolved organic matter.

    PubMed

    Calace, Nicoletta; Nardi, Elisa; Pietroletti, Marco; Bartolucci, Eugenia; Pietrantonio, Massimiliana; Cremisini, Carlo

    2017-05-01

    In this paper we studied some heavy metals (Cu, Zn, Cd, Pb, As, U) probably associated to high molecular weight organic compounds present in the Antarctic snow. Snow-pit samples were collected and analysed for high molecular weight fraction and heavy metals bound to them by means of ultrafiltration treatment. High molecular weight dissolved organic matter (HMW-DOM) recovered by ultrafiltration showed a dissolved organic carbon concentration (HMW-DOC) of about 18-83% of the total dissolved organic carbon measured in Antarctic snow. The characterisation of HMW-DOM fraction evidenced an ageing of organic compounds going from surface layers to the deepest ones with a shift from aliphatic compounds and proteins/amino sugars to more high unsaturated character and less nitrogen content. The heavy metals associated to HMW-DOM fraction follows the order: Zn > Cu > Pb > Cd ∼ As ∼ U. The percentage fraction of metals bound to HMW-DOM respect to total metal content follows the order: Cu > Pb > Zn, Cd in agreement with humic substance binding ability (Irwing-William series). Going down to depth of trench, all metals except arsenic, showed a high concentration peak corresponding to 2.0-2.5 m layer. This result was attributed to particular structural characteristic of organic matter able to form different type of complexes (1:1, 1:2, 1:n) with metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Differential Effect of Plant Lipids on Membrane Organization

    PubMed Central

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-01-01

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains. PMID:25575593

  11. Spin and charge ordering in organic conductors investigated by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Tokumoto, Takahisa D.

    This dissertation presents systematic studies on ordered states of organic conductors investigated mainly by Electron Spin Resonance (ESR). First, we describe an introduction to organic conductors. Organic conductors are based on conducting layers of highly planar donor molecules, separated by insulating layers of acceptors. The donor arrangements in the conducting layers determine the three simple parameters, transfer integral t between the donor molecules, onsite Coulomb interaction U and next neighboring Coulomb interaction V. Depending on the values of the above three parameters, a variety of ground states is realized and hence the organic conductors has become a main stream of condensed matter physics. Among many ground states, the main focus is on magnetic orders in this dissertation. Therefore we have employed ESR to probe local magnetic structures. And we cover a basic theory of ESR in paramagnetic/antiferromagnetically ordered states and the experimental realizations. Next, after an introduction to a system with an exchange interaction between d magnetic moments embedded at acceptor sites and pi spins at donor molecules is given, we discuss the effectiveness of systematic studies on isostructural magnetic and non-magnetic acceptor based organic conductors. Then, we go over one of the "exchange coupled" materials, beta-(BDA-TTP)2MCl 4 (M=Fe3+,Ga3+). We examine the origins of the Metal-Insulator transition and the long range antiferromangetic order in the magnetic acceptor based material, where we found the critical importance of the quantum fluctuations of pi spins. Finally, we delineate the magnetic order of alternating easy axes of a class of an organic conductor, tau-(P-(S,S)-DMEDT)2(AuBr2) 1+y, at low temperature/field by ESR. We briefly discuss the origin of this unprecedented magnetic structure in terms of the unstoichiometric ratio of donors to acceptors and the tetragonal symmetry of the unit cell. Then, we report the results of the ultra high field ESR to probe the magnetic structure changes around a hysteretic field induced metal insulator transition.

  12. Steady-state photoconductivity and multi-particle interactions in high-mobility organic semiconductors

    PubMed Central

    Irkhin, P.; Najafov, H.; Podzorov, V.

    2015-01-01

    Fundamental understanding of photocarrier generation, transport and recombination under a steady-state photoexcitation has been an important goal of organic electronics and photonics, since these processes govern such electronic properties of organic semiconductors as, for instance, photoconductivity. Here, we discovered that photoconductivity of a highly ordered organic semiconductor rubrene exhibits several distinct regimes, in which photocurrent as a function of cw (continuous wave) excitation intensity is described by a power law with exponents sequentially taking values 1, 1/3 and ¼. We show that in pristine crystals this photocurrent is generated at the very surface of the crystals, while the bulk photocurrent is drastically smaller and follows a different sequence of exponents, 1 and ½. We describe a simple experimental procedure, based on an application of “gauge effect” in high vacuum, that allows to disentangle the surface and bulk contributions to photoconductivity. A model based on singlet exciton fission, triplet fusion and triplet-charge quenching that can describe these non-trivial effects in photoconductivity of highly ordered organic semiconductors is proposed. Observation of these effects in photoconductivity and modeling of the underlying microscopic mechanisms described in this work represent a significant step forward in our understanding of electronic properties of organic semiconductors. PMID:26478121

  13. Forest products research and development organizations : organization, governance, and measures of performance in a worldwide setting

    Treesearch

    Paul V. Ellefson; M.A. Kilgore; Kenneth E. Skog; Christopher D. Risbrudt

    2007-01-01

    The ability of forest products research and development organizations to contribute to a nation’s well-being requires that they be well organized, effectively managed, and held to high standards of performance. In order to obtain a better understanding of how such organizations are structured and administered, and how they judge organizational performance, a review of...

  14. Highly crystalline covalent organic frameworks from flexible building blocks.

    PubMed

    Xu, Liqian; Ding, San-Yuan; Liu, Junmin; Sun, Junliang; Wang, Wei; Zheng, Qi-Yu

    2016-03-28

    Two novel 2D covalent organic frameworks (TPT-COF-1 and TPT-COF-2) were synthesized from the flexible 2,4,6-triaryloxy-1,3,5-triazine building blocks on a gram scale, which show high crystallinity and large surface area. The controllable formation of highly ordered frameworks is mainly attributed to the self-assembly Piedfort unit of 2,4,6-triaryloxy-1,3,5-triazine.

  15. Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols.

    PubMed

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-02-27

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order

    DOE PAGES

    Gujral, Ankit; Gomez, Jaritza; Ruan, Shigang; ...

    2017-10-04

    Anisotropic molecular packing, particularly in highly ordered liquid crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized glassy solids of discotic liquid crystalline systems. Using grazing incidence X-ray scattering, atomic force microscopy, and UV–vis spectroscopy, we compare three systems: a rectangular columnar liquid crystal, a hexagonal columnar liquid crystal, and a nonmesogen. The packing motifs accessible by vapor deposition are highly organized for the liquid crystalline systems with columns propagating either in-plane or out-of-plane depending upon the substrate temperature during deposition.more » As a result, the structures formed at a given substrate temperature can be understood as resulting from partial equilibration toward the structure of the equilibrium liquid crystal surface during the deposition process.« less

  17. Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gujral, Ankit; Gomez, Jaritza; Ruan, Shigang

    Anisotropic molecular packing, particularly in highly ordered liquid crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized glassy solids of discotic liquid crystalline systems. Using grazing incidence X-ray scattering, atomic force microscopy, and UV–vis spectroscopy, we compare three systems: a rectangular columnar liquid crystal, a hexagonal columnar liquid crystal, and a nonmesogen. The packing motifs accessible by vapor deposition are highly organized for the liquid crystalline systems with columns propagating either in-plane or out-of-plane depending upon the substrate temperature during deposition.more » As a result, the structures formed at a given substrate temperature can be understood as resulting from partial equilibration toward the structure of the equilibrium liquid crystal surface during the deposition process.« less

  18. Self-ordering of InAs nanostructures on (631)A/B GaAs substrates

    NASA Astrophysics Data System (ADS)

    Eugenio-López, Eric; Alejandro Mercado-Ornelas, Christian; Kisan Patil, Pallavi; Cortes-Mestizo, Irving Eduardo; Ángel Espinoza-Figueroa, José; Gorbatchev, Andrei Yu; Shimomura, Satoshi; Ithsmel Espinosa-Vega, Leticia; Méndez-García, Víctor Hugo

    2018-02-01

    The high order self-organization of quantum dots is demonstrated in the growth of InAs on a GaAs(631)-oriented crystallographic plane. The unidimensional ordering of the quantum dots (QDs) strongly depends on the As flux beam equivalent pressure (P As) and the cation/anion terminated surface, i.e., A- or B-type GaAs(631). The self-organization of QDs occurs for both surface types along [\\bar{1}13], while the QD shape and size distribution were found to be different for the self-assembly on the A- and B-type surfaces. In addition, the experiments showed that any misorientation from the (631) plane, which results from the buffer layer waviness, does not allow a high order of unidimensional arrangements of QDs. The optical properties were studied by photoluminescence spectroscopy, where good correspondence was obtained between the energy transitions and the size of the QDs.

  19. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies

    NASA Astrophysics Data System (ADS)

    Kotadiya, Naresh B.; Lu, Hao; Mondal, Anirban; Ie, Yutaka; Andrienko, Denis; Blom, Paul W. M.; Wetzelaer, Gert-Jan A. H.

    2018-02-01

    Barrier-free (Ohmic) contacts are a key requirement for efficient organic optoelectronic devices, such as organic light-emitting diodes, solar cells, and field-effect transistors. Here, we propose a simple and robust way of forming an Ohmic hole contact on organic semiconductors with a high ionization energy (IE). The injected hole current from high-work-function metal-oxide electrodes is improved by more than an order of magnitude by using an interlayer for which the sole requirement is that it has a higher IE than the organic semiconductor. Insertion of the interlayer results in electrostatic decoupling of the electrode from the semiconductor and realignment of the Fermi level with the IE of the organic semiconductor. The Ohmic-contact formation is illustrated for a number of material combinations and solves the problem of hole injection into organic semiconductors with a high IE of up to 6 eV.

  20. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies.

    PubMed

    Kotadiya, Naresh B; Lu, Hao; Mondal, Anirban; Ie, Yutaka; Andrienko, Denis; Blom, Paul W M; Wetzelaer, Gert-Jan A H

    2018-04-01

    Barrier-free (Ohmic) contacts are a key requirement for efficient organic optoelectronic devices, such as organic light-emitting diodes, solar cells, and field-effect transistors. Here, we propose a simple and robust way of forming an Ohmic hole contact on organic semiconductors with a high ionization energy (IE). The injected hole current from high-work-function metal-oxide electrodes is improved by more than an order of magnitude by using an interlayer for which the sole requirement is that it has a higher IE than the organic semiconductor. Insertion of the interlayer results in electrostatic decoupling of the electrode from the semiconductor and realignment of the Fermi level with the IE of the organic semiconductor. The Ohmic-contact formation is illustrated for a number of material combinations and solves the problem of hole injection into organic semiconductors with a high IE of up to 6 eV.

  1. Highly Non-Linear Optical (NLO) organic crystals

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    This research project involves the synthesis and characterization of organic materials having powerful nonlinear optical (NLO) properties and the growth of highly ordered crystals and monomolecular films of these materials. Research in four areas is discussed: theoretical design of new materials, characterization of NLO materials, synthesis of new materials and development of coupling procedures for forming layered films, and improvement of the techniques for vapor phase and solution phase growth of high quality organic crystals. Knowledge gained from these experiments will form the basis for experiments in the growth of these crystals.

  2. A highly ordered mesostructured material containing regularly distributed phenols: preparation and characterization at a molecular level through ultra-fast magic angle spinning proton NMR spectroscopy.

    PubMed

    Roussey, Arthur; Gajan, David; Maishal, Tarun K; Mukerjee, Anhurada; Veyre, Laurent; Lesage, Anne; Emsley, Lyndon; Copéret, Christophe; Thieuleux, Chloé

    2011-03-14

    Highly ordered organic-inorganic mesostructured material containing regularly distributed phenols is synthesized by combining a direct synthesis of the functional material and a protection-deprotection strategy and characterized at a molecular level through ultra-fast magic angle spinning proton NMR spectroscopy.

  3. Bioinspired Synthesis of Well-Ordered Layered Organic-Inorganic Nanohybrids: Mimicking the Natural Processing of Nacre by Mineralization of Block Copolymer Templates.

    PubMed

    Voet, Vincent S D; Kumar, Kamlesh; ten Brinke, Gerrit; Loos, Katja

    2015-10-01

    The unique mechanical performance of nacre, the pearly internal layer of shells, is highly dependent on its complex morphology. Inspired by the structure of nacre, the fabrication of well-ordered layered inorganic-organic nanohybrids is presented herein. This biomimetic approach includes the use of a block copolymer template, consisting of hydrophobic poly(vinylidene fluoride) (PVDF) lamellae covered with hydrophilic poly(methacrylic acid) (PMAA), to direct silica (SiO2 ) mineralization. The resulting PVDF/PMAA/SiO2 nanohybrid material resembles biogenic nacre with respect to its well-ordered and layered nanostructure, alternating organic-inorganic phases, macromolecular template, and mild processing conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Bi-Modal Organization: Balancing Autopoiesis and Fluid Social Networks for Sustainability

    ERIC Educational Resources Information Center

    Smith, Peter A. C.; Sharicz, Carol Ann

    2013-01-01

    Purpose: The purpose of this paper is to assist an organization to restructure as a bi-modal organization in order to achieve sustainability in today's highly complex business world. Design/methodology/approach: The paper is conceptual and is based on relevant literature and the authors' research and practice. Findings: Although fluid…

  5. Vapor deposition and characterization of supramolecular assemblies for integrated nonlinear optics

    NASA Astrophysics Data System (ADS)

    Esembeson, Bweh

    Very recently, some organic molecules have been developed that are very compact and have exceptionally high molecular polarizabilities which approach the fundamental quantum limit. Supramolecular assemblies created from such highly nonlinear molecules could find applications in integrated nonlinear optics such as all-optical signal processing, electro-optic modulators and frequency conversion. In this work, we have constructed a versatile vacuum deposition system for the creation of organic thin films from these molecules that can be sublimated without decomposition. We have used deposition temperatures of the order of 100--200°C in a high vacuum of 10-6--10 -7 Torrs. While some molecules showed a tendency to form polycrystalline films, others led to very high optical quality films, with a roughness of less than 10 nm over tens of micrometers and no grains detected down to a size of 2 nm, as seen in Atomic Force and Scanning Electron Microscopy studies. The best material we developed has a linear refractive index of 1.8 +/- 0.1 at 1.5 mum and an off-resonant third order susceptibility, chi (3), measured through Degenerate Four Wave Mixing, of 2 +/- 1 x 10-19 m2V-2 at 1.5 mum, a value three orders of magnitude larger than fused silica. This vapor deposited thin film may represent one of the best materials demonstrated to date whereby a large third order susceptibility, high optical quality, and simplicity of fabrication and integration are in perfect harmony for integrated nonlinear optical applications. We have used this novel organic material to create a hybrid organic/silicon-on-insulator waveguide that showed a record high nonlinearity coefficient of 10 5 W-1m-1 and has been used as an all-optical switch for demultiplexing a 120 Gbit/s data stream to 10 Gbit/s on a 6 mm long device.

  6. Ordered macro-microporous metal-organic framework single crystals

    NASA Astrophysics Data System (ADS)

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional–ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent–induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  7. Crystal structure of a small heat-shock protein from Xylella fastidiosa reveals a distinct high-order structure.

    PubMed

    Fonseca, Emanuella Maria Barreto; Scorsato, Valéria; Dos Santos, Marcelo Leite; Júnior, Atilio Tomazini; Tada, Susely Ferraz Siqueira; Dos Santos, Clelton Aparecido; de Toledo, Marcelo Augusto Szymanski; de Souza, Anete Pereira; Polikarpov, Igor; Aparicio, Ricardo

    2017-04-01

    Citrus variegated chlorosis is a disease that attacks economically important citrus plantations and is caused by the plant-pathogenic bacterium Xylella fastidiosa. In this work, the structure of a small heat-shock protein from X. fastidiosa (XfsHSP17.9) is reported. The high-order structures of small heat-shock proteins from other organisms are arranged in the forms of double-disc, hollow-sphere or spherical assemblies. Unexpectedly, the structure reported here reveals a high-order architecture forming a nearly square cavity.

  8. Higher-order chromatin structure: bridging physics and biology.

    PubMed

    Fudenberg, Geoffrey; Mirny, Leonid A

    2012-04-01

    Advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental data, and examine the success and limitations of various polymer models of higher-order interphase chromatin organization. By taking into account topological constraints acting on the chromatin fiber, recently developed polymer models of interphase chromatin can reproduce the observed scaling of distances between genomic loci, chromosomal territories, and probabilities of contacts between loci measured by chromosome conformation capture methods. Polymer models provide a framework for the interpretation of experimental data as ensembles of conformations rather than collections of loops, and will be crucial for untangling functional implications of chromosomal organization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Peptide π-Electron Conjugates: Organic Electronics for Biology?

    PubMed

    Ardoña, Herdeline Ann M; Tovar, John D

    2015-12-16

    Highly ordered arrays of π-conjugated molecules are often viewed as a prerequisite for effective charge-transporting materials. Studies involving these materials have traditionally focused on organic electronic devices, with more recent emphasis on biological systems. In order to facilitate the transition to biological environments, biomolecules that can promote hierarchical ordering and water solubility are often covalently appended to the π-electron unit. This review highlights recent work on π-conjugated systems bound to peptide moieties that exhibit self-assembly and aims to provide an overview on the development and emerging applications of peptide-based supramolecular π-electron systems.

  10. 3D Dewetting for Crystal Patterning: Toward Regular Single-Crystalline Belt Arrays and Their Functionality.

    PubMed

    Wu, Yuchen; Feng, Jiangang; Su, Bin; Jiang, Lei

    2016-03-16

    Arrays of unidirectional dewetting behaviors can be generated by using 3D-wettability-difference micropillars, yielding highly ordered organic single-crystalline belt arrays. These patterned organic belts show an improved mobility record and can be used as flexible pressure sensors with high sensitivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Furan-Thiophene-Based Quinoidal Compound: A New Class of Solution-Processable High-Performance n-Type Organic Semiconductor.

    PubMed

    Xiong, Yu; Tao, Jingwei; Wang, Ruihao; Qiao, Xiaolan; Yang, Xiaodi; Wang, Deliang; Wu, Hongzhuo; Li, Hongxiang

    2016-07-01

    The furan-thiophene-based quinoidal organic semiconductor, TFT-CN, is designed and synthesized. TFT-CN displays a high electron mobility of 7.7 cm(2) V(-1) s(-1) , two orders of magnitude higher than the corresponding thiophene-based derivative. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Characteristics of DO, organic matter, and ammonium profile for practical-scale DHS reactor under various organic load and temperature conditions.

    PubMed

    Nomoto, Naoki; Ali, Muntjeer; Jayaswal, Komal; Iguchi, Akinori; Hatamoto, Masashi; Okubo, Tsutomu; Takahashi, Masanobu; Kubota, Kengo; Tagawa, Tadashi; Uemura, Shigeki; Yamaguchi, Takashi; Harada, Hideki

    2018-04-01

    Profile analysis of the down-flow hanging sponge (DHS) reactor was conducted under various temperature and organic load conditions to understand the organic removal and nitrification process for sewage treatment. Under high organic load conditions (3.21-7.89 kg-COD m -3  day -1 ), dissolved oxygen (DO) on the upper layer of the reactor was affected by organic matter concentration and water temperature, and sometimes reaches around zero. Almost half of the COD Cr was removed by the first layer, which could be attributed to the adsorption of organic matter on sponge media. After the first layer, organic removal proceeded along the first-order reaction equation from the second to the fourth layers. The ammoniacal nitrogen removal ratio decreased under high organic matter concentration (above 100 mg L -1 ) and low DO (less than 1 mg L -1 ) condition. Ammoniacal nitrogen removal proceeded via a zero-order reaction equation along the reactor height. In addition, the profile results of DO, COD Cr , and NH 3 -N were different in the horizontal direction. Thus, it is thought the concentration of these items and microbial activities were not in a uniform state even in the same sponge layer of the DHS reactor.

  13. Fabrication of sophisticated two-dimensional organic nanoarchitectures thought hydrogen bond mediated molecular self assembly

    NASA Astrophysics Data System (ADS)

    Silly, Fabien

    2012-02-01

    Complex supramolecular two-dimensional (2D) networks are attracting considerable interest as highly ordered functional materials for applications in nanotechnology. The challenge consists in tailoring the ordering of one or more molecular species into specific architectures over an extended length scale with molecular precision. Highly organized supramolecular arrays can be obtained through self-assembly of complementary molecules which can interlock via intermolecular interactions. Molecules forming hydrogen bonds (H-bonds) are especially interesting building blocks for creating sophisticated organic architectures due to high selectivity and directionality of these bindings. We used scanning tunnelling microscopy to investigate at the atomic scale the formation of H-bonded 2D organic nanoarchitectures on surfaces. We mixed perylene derivatives having rectangular shape with melamine and DNA base having triangular and non symmetric shape respectively. We observe that molecule substituents play a key role in formation of the multicomponent H-bonded architectures. We show that the 2D self-assembly of these molecules can be tailored by adjusting the temperature and molecular ratio. We used these stimuli to successfully create numerous close-packed and porous 2D multicomponent structures.

  14. Two-dimensional self-organization of an ordered Au silicide nanowire network on a Si(110)-16 x 2 surface.

    PubMed

    Hong, Ie-Hong; Yen, Shang-Chieh; Lin, Fu-Shiang

    2009-08-17

    A well-ordered two-dimensional (2D) network consisting of two crossed Au silicide nanowire (NW) arrays is self-organized on a Si(110)-16 x 2 surface by the direct-current heating of approximately 1.5 monolayers of Au on the surface at 1100 K. Such a highly regular crossbar nanomesh exhibits both a perfect long-range spatial order and a high integration density over a mesoscopic area, and these two self-ordering crossed arrays of parallel-aligned NWs have distinctly different sizes and conductivities. NWs are fabricated with widths and pitches as small as approximately 2 and approximately 5 nm, respectively. The difference in the conductivities of two crossed-NW arrays opens up the possibility for their utilization in nanodevices of crossbar architecture. Scanning tunneling microscopy/spectroscopy studies show that the 2D self-organization of this perfect Au silicide nanomesh can be achieved through two different directional electromigrations of Au silicide NWs along different orientations of two nonorthogonal 16 x 2 domains, which are driven by the electrical field of direct-current heating. Prospects for this Au silicide nanomesh are also discussed.

  15. Ultra-high gain diffusion-driven organic transistor.

    PubMed

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-02-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal-semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics.

  16. Ultra-high gain diffusion-driven organic transistor

    NASA Astrophysics Data System (ADS)

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-02-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal-semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics.

  17. Distribution of POPs, pesticides and antibiotic residues in organic honeys from different production areas.

    PubMed

    Chiesa, Luca Maria; Panseri, Sara; Nobile, Maria; Ceriani, Federica; Arioli, Francesco

    2018-06-22

    Demand for honey is increasing, especially if it is organic and if its nutritional properties are linked to untreated environments in order to guarantee quality for health. Sources of contamination of honey can be divided into environmental and apicultural. Therefore, the distribution of persistent organic pollutants, pesticides and antibiotic residues from geographical areas with different contamination sources (high anthropic impact, intensive farming, husbandry and low anthropic impact) was investigated in order to confirm the potential transfer of xenobiotics into the supply chain and to give beekeepers tools for the selection of areas dedicated to organic production. The presence of polychlorinated biphenyls, polybrominated diphenyl ether and polycyclic aromatic hydrocarbons was confirmed, not only in proximity to highly urbanised centres, where the concentrations were higher, but in all environment contexts, confirming their ubiquity. No antibiotics or neonicotinoids were detected in 95 organic honeys, demonstrating the absence of apicultural treatments and consequently the good quality of honey of different areas. These results are important due to the undefined regulatory European situation on honey antibiotic limits.[Figure: see text].

  18. Designing high efficiency organic photovoltaics by controlling the ordering at the donor-acceptor interface

    NASA Astrophysics Data System (ADS)

    Mohite, Aditya; Nie, Wanyi; Gupta, Gautam; Crone, Brian; Kuo, Chenyu; Tsai, Hsinhan; Smith, Darryl; Ruden, Paul; Liu, Feilong; Wang, Hsing-Lin; Tretiak, Sergei

    2014-03-01

    The overall power conversion efficiency in an organic solar cell depends on the balance between the rates of exciton dissociation, recombination and separation at the donor acceptor interface. Inability to design, control and engineer these interfaces remains a key bottleneck in their widespread use for the next generation organic electronic devices. Here, we show that we can control the ordering at the P3HT/C60 interface in bilayer device geometry by inserting a monolayer of oligothiophenes, which leads to a complete suppression in the exciplex (or charge transfer state) recombination. We observe that the photocurrent increases by 500%, which in turn results in an increase in the overall power conversion efficiency by an order of magnitude. Moreover, we find that the oligothiophene with an odd number of rings (ter and penta oligothiophene) exhibit a much higher increase in the photocurrent in comparison to the oligothiophene with an even number of rings (tetra oligothiphene). STM measurements reveal that the oligothiophene with odd and even number of rings differ in their ordering respectively, that has a big effect on the overall device performance. We also find that this ordering is highly dependent on the side functional groups in the oligothiophenes. The mechanism of photocurrent generation will be discussed and a simple transport model will be used to explain the change in the charge transfer and recombination rates and predict current-voltage curves.

  19. 78 FR 65974 - Atlantic Highly Migratory Species; Advisory Panel for Atlantic Highly Migratory Species Southeast...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... HMS stock assessment. In order to ensure that the peer review is unbiased, individuals who... fisheries, related industries, research, teaching, writing, conservation, or management of marine organisms...

  20. Organic emissions from coal pyrolysis: mutagenic effects.

    PubMed Central

    Braun, A G; Wornat, M J; Mitra, A; Sarofim, A F

    1987-01-01

    Four different types of coal have been pyrolyzed in a laminar flow, drop tube furnace in order to establish a relationship between polycyclic aromatic compound (PAC) evolution and mutagenicity. Temperatures of 900K to 1700K and particle residence times up to 0.3 sec were chosen to best simulate conditions of rapid rate pyrolysis in pulverized (44-53 microns) coal combustion. The specific mutagenic activity (i.e., the activity per unit sample weight) of extracts from particulates and volatiles captured on XAD-2 resin varied with coal type according to the order: subbituminous greater than high volatile bituminous greater than lignite greater than anthracite. Total mutagenic activity (the activity per gram of coal pyrolyzed), however, varied with coal type according to the order: high volatile bituminous much greater than subbituminous = lignite much greater than anthracite, due primarily to high organic yield during high volatile bituminous coal pyrolysis. Specific mutagenic activity peaked in a temperature range of 1300K to 1500K and generally appeared at higher temperatures and longer residence times than peak PAC production. PMID:3311724

  1. Transistor and memory devices based on novel organic and biomaterials

    NASA Astrophysics Data System (ADS)

    Tseng, Jia-Hung

    Organic semiconductor devices have aroused considerable interest because of the enormous potential in many technological applications. Organic electroluminescent devices have been extensively applied in display technology. Rapid progress has also been made in transistor and memory devices. This thesis considers aspects of the transistor based on novel organic single crystals and memory devices using hybrid nanocomposites comprising polymeric/inorganic nanoparticles, and biomolecule/quantum dots. Organic single crystals represent highly ordered structures with much less imperfections compared to amorphous thin films for probing the intrinsic charge transport in transistor devices. We demonstrate that free-standing, thin organic single crystals with natural flexing ability can be fabricated as flexible transistors. We study the surface properties of the organic crystals to determine a nearly perfect surface leading to high performance transistors. The flexible transistors can maintain high performance under reversible bending conditions. Because of the high quality crystal technique, we further develop applications on organic complementary circuits and organic single crystal photovoltaics. In the second part, two aspects of memory devices are studied. We examine the charge transfer process between conjugated polymers and metal nanoparticles. This charge transfer process is essential for the conductance switching in nanoseconds to induce the memory effect. Under the reduction condition, the charge transfer process is eliminated as well as the memory effect, raising the importance of coupling between conjugated systems and nanoparticle accepters. The other aspect of memory devices focuses on the interaction of virus biomolecules with quantum dots or metal nanoparticles in the devices. We investigate the impact of memory function on the hybrid bio-inorganic system. We perform an experimental analysis of the charge storage activation energy in tobacco mosaic virus with platinum nanoparticles. It is established that the effective barrier height in the materials systems needs to be further engineered in order to have sufficiently long retention times. Finally other novel architectures such as negative differential resistance devices and high density memory arrays are investigated for their influence on memory technology.

  2. Seamless growth of a supramolecular carpet

    PubMed Central

    Kim, Ju-Hyung; Ribierre, Jean-Charles; Yang, Yu Seok; Adachi, Chihaya; Kawai, Maki; Jung, Jaehoon; Fukushima, Takanori; Kim, Yousoo

    2016-01-01

    Organic/metal interfaces play crucial roles in the formation of intermolecular networks on metal surfaces and the performance of organic devices. Although their purity and uniformity have profound effects on the operation of organic devices, the formation of organic thin films with high interfacial uniformity on metal surfaces has suffered from the intrinsic limitation of molecular ordering imposed by irregular surface structures. Here we demonstrate a supramolecular carpet with widely uniform interfacial structure and high adaptability on a metal surface via a one-step process. The high uniformity is achieved with well-balanced interfacial interactions and site-specific molecular rearrangements, even on a pre-annealed amorphous gold surface. Co-existing electronic structures show selective availability corresponding to the energy region and the local position of the system. These findings provide not only a deeper insight into organic thin films with high structural integrity, but also a new way to tailor interfacial geometric and electronic structures. PMID:26839053

  3. A scanning tunneling microscope study on an ordered mixed monolayer of bis(4,5-dihydronaphtho[1,2-d])-tetrathiafulvalene and n-tetradecane on highly oriented pyrolytic graphite.

    PubMed

    Zhao, Miao; Jiang, Peng; Deng, Ke; Jiang, Chao

    2010-11-01

    Tetrathiafulvalene (TTF) and its derivatives (TTFs) have been successfully used as building blocks to form charge transfer salts and organic semiconductors because of their special structures and rich electron nature. We report the formation of ordered mixed binary-component monolayer consisting of Bis(4,5-dihydronaphtho[1,2-d])tetrathiafulvalene (DH-TTF) and n-tetradecane (n-C14H30) molecules on highly oriented pyrolytic graphite (HOPG) surface. Scanning tunneling microscope (STM) imaging reveals that the two different kinds of molecules can spontaneously form ordered periodic phase separation structures on the substrate, in which ordered DH-TTF double- (or single-) lamella structures are periodically tuned by ordered n-C14H30 double- (or single-) lamella structures. Furthermore, scanning tunneling spectrum (STS) measurements by addressing the individual DH-TTF and n-C14H30 molecules in the ordered monolayer show that the two different kinds of molecules exhibit completely different I(V) characters on the HOPG substrate. The modulated arrangement of the TTF derivative by insulating molecules opens a possible route to construct organic conducting molecule ribbons for potential application in nanodevices.

  4. Out-of-water constitutional self-organization of chitosan-cinnamaldehyde dynagels.

    PubMed

    Marin, Luminita; Moraru, Simona; Popescu, Maria-Cristina; Nicolescu, Alina; Zgardan, Cristina; Simionescu, Bogdan C; Barboiu, Mihail

    2014-04-14

    An investigation of the constitutional adaptive gelation process of chitosan/cinnamaldehyde (C/Cy) dynagels is reported. These gels generate timely variant macroscopic organization across extended scales. In the first stage, imine-bond formation takes place "in-water" and generates low-ordered hydrogels. The progressive formation of imine bonds further induces "out-of-water" increased reactivity within interdigitated hydrophobic self-assembled layers of Cy, with a protecting environmental effect against hydrolysis and that leads to the stabilization of the imine bonds. The hydrophobic swelling due to Cy layers at the interfaces reaches a critical step when lamellar self-organized hybrids are generated (24 hours). This induces an important restructuration of the hydrogels on the micrometric scale, thus resulting in the formation of highly ordered microporous xerogel morphologies of high potential interest for chemical separations, drug delivery, and sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High mobility n-type organic thin-film transistors deposited at room temperature by supersonic molecular beam deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiarella, F., E-mail: fabio.chiarella@spin.cnr.it; Barra, M.; Ciccullo, F.

    In this paper, we report on the fabrication of N,N′-1H,1H-perfluorobutil dicyanoperylenediimide (PDIF-CN{sub 2}) organic thin-film transistors by Supersonic Molecular Beam Deposition. The devices exhibit mobility up to 0.2 cm{sup 2}/V s even if the substrate is kept at room temperature during the organic film growth, exceeding by three orders of magnitude the electrical performance of those grown at the same temperature by conventional Organic Molecular Beam Deposition. The possibility to get high-mobility n-type transistors avoiding thermal treatments during or after the deposition could significantly extend the number of substrates suitable to the fabrication of flexible high-performance complementary circuits by using this compound.

  6. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors.

    PubMed

    Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun; Chung, Hyunjoong; Diao, Ying

    2017-07-01

    Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C 8 -benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This paper further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor-acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun

    Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C8-benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This papermore » further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor–acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall.« less

  8. Ordered Pt 3Co Intermetallic Nanoparticles Derived from Metal–Organic Frameworks for Oxygen Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao Xia; Hwang, Sooyeon; Pan, Yung-Tin

    Highly ordered Pt alloy structures are proved effective to improve their catalytic activity and stability for the oxygen reduction reaction (ORR) for proton exchange membrane fuel cells. Here, we report a new approach to preparing ordered Pt 3Co intermetallic nanoparticles through a facile thermal treatment of Pt nanoparticles supported on Co-doped metal-organic framework (MOF)-derived carbon. In particular, the atomically dispersed Co sites, which are originally embedded into MOF-derived carbon, diffuse into Pt nanocrystals and form ordered Pt 3Co structures. It is very crucial for the formation of the ordered Pt 3Co to carefully control the doping content of Co intomore » the MOFs and the heating temperatures for Co diffusion. The optimal Pt 3Co nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential up to 0.92 V vs. RHE and only losing 12 mV after 30,000 potential cycling between 0.6 and 1.0 V. The highly ordered intermetallic structure was retained after the accelerated stress tests evidenced by atomic-scale elemental mapping. Fuel cell tests further verified the high intrinsic activity of the ordered Pt 3Co catalysts. Unlike the direct use of MOF-derived carbon supports for depositing Pt, we utilized MOF-derived carbon containing atomically dispersed Co sites as Co sources to prepare ordered Pt 3Co intermetallic catalysts. Finally, the new synthesis approach provides an effective strategy to develop active and stable Pt alloy catalysts by leveraging the unique properties of MOFs such as 3D structures, high surface areas, and controlled nitrogen doping.« less

  9. Ordered Pt 3Co Intermetallic Nanoparticles Derived from Metal–Organic Frameworks for Oxygen Reduction

    DOE PAGES

    Wang, Xiao Xia; Hwang, Sooyeon; Pan, Yung-Tin; ...

    2018-06-06

    Highly ordered Pt alloy structures are proved effective to improve their catalytic activity and stability for the oxygen reduction reaction (ORR) for proton exchange membrane fuel cells. Here, we report a new approach to preparing ordered Pt 3Co intermetallic nanoparticles through a facile thermal treatment of Pt nanoparticles supported on Co-doped metal-organic framework (MOF)-derived carbon. In particular, the atomically dispersed Co sites, which are originally embedded into MOF-derived carbon, diffuse into Pt nanocrystals and form ordered Pt 3Co structures. It is very crucial for the formation of the ordered Pt 3Co to carefully control the doping content of Co intomore » the MOFs and the heating temperatures for Co diffusion. The optimal Pt 3Co nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential up to 0.92 V vs. RHE and only losing 12 mV after 30,000 potential cycling between 0.6 and 1.0 V. The highly ordered intermetallic structure was retained after the accelerated stress tests evidenced by atomic-scale elemental mapping. Fuel cell tests further verified the high intrinsic activity of the ordered Pt 3Co catalysts. Unlike the direct use of MOF-derived carbon supports for depositing Pt, we utilized MOF-derived carbon containing atomically dispersed Co sites as Co sources to prepare ordered Pt 3Co intermetallic catalysts. Finally, the new synthesis approach provides an effective strategy to develop active and stable Pt alloy catalysts by leveraging the unique properties of MOFs such as 3D structures, high surface areas, and controlled nitrogen doping.« less

  10. α,ω-dihexyl-sexithiophene thin films for solution-gated organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Schamoni, Hannah; Noever, Simon; Nickel, Bert; Stutzmann, Martin; Garrido, Jose A.

    2016-02-01

    While organic semiconductors are being widely investigated for chemical and biochemical sensing applications, major drawbacks such as the poor device stability and low charge carrier mobility in aqueous electrolytes have not yet been solved to complete satisfaction. In this work, solution-gated organic field-effect transistors (SGOFETs) based on the molecule α,ω-dihexyl-sexithiophene (DH6T) are presented as promising platforms for in-electrolyte sensing. Thin films of DH6T were investigated with regard to the influence of the substrate temperature during deposition on the grain size and structural order. The performance of SGOFETs can be improved by choosing suitable growth parameters that lead to a two-dimensional film morphology and a high degree of structural order. Furthermore, the capability of the SGOFETs to detect changes in the pH or ionic strength of the gate electrolyte is demonstrated and simulated. Finally, excellent transistor stability is confirmed by continuously operating the device over a period of several days, which is a consequence of the low threshold voltage of DH6T-based SGOFETs. Altogether, our results demonstrate the feasibility of high performance and highly stable organic semiconductor devices for chemical or biochemical applications.

  11. Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ)

    PubMed Central

    Mascher, Martin; Muehlbauer, Gary J; Rokhsar, Daniel S; Chapman, Jarrod; Schmutz, Jeremy; Barry, Kerrie; Muñoz-Amatriaín, María; Close, Timothy J; Wise, Roger P; Schulman, Alan H; Himmelbach, Axel; Mayer, Klaus FX; Scholz, Uwe; Poland, Jesse A; Stein, Nils; Waugh, Robbie

    2013-01-01

    Next-generation whole-genome shotgun assemblies of complex genomes are highly useful, but fail to link nearby sequence contigs with each other or provide a linear order of contigs along individual chromosomes. Here, we introduce a strategy based on sequencing progeny of a segregating population that allows de novo production of a genetically anchored linear assembly of the gene space of an organism. We demonstrate the power of the approach by reconstructing the chromosomal organization of the gene space of barley, a large, complex and highly repetitive 5.1 Gb genome. We evaluate the robustness of the new assembly by comparison to a recently released physical and genetic framework of the barley genome, and to various genetically ordered sequence-based genotypic datasets. The method is independent of the need for any prior sequence resources, and will enable rapid and cost-efficient establishment of powerful genomic information for many species. PMID:23998490

  12. Organic semiconductor crystals.

    PubMed

    Wang, Chengliang; Dong, Huanli; Jiang, Lang; Hu, Wenping

    2018-01-22

    Organic semiconductors have attracted a lot of attention since the discovery of highly doped conductive polymers, due to the potential application in field-effect transistors (OFETs), light-emitting diodes (OLEDs) and photovoltaic cells (OPVs). Single crystals of organic semiconductors are particularly intriguing because they are free of grain boundaries and have long-range periodic order as well as minimal traps and defects. Hence, organic semiconductor crystals provide a powerful tool for revealing the intrinsic properties, examining the structure-property relationships, demonstrating the important factors for high performance devices and uncovering fundamental physics in organic semiconductors. This review provides a comprehensive overview of the molecular packing, morphology and charge transport features of organic semiconductor crystals, the control of crystallization for achieving high quality crystals and the device physics in the three main applications. We hope that this comprehensive summary can give a clear picture of the state-of-art status and guide future work in this area.

  13. Higher Education Administrators Roles in Fortification of Information Security Program

    ERIC Educational Resources Information Center

    Eyadat, Mohammad S.

    2015-01-01

    Information systems produce significant benefits to organizations. Therefore, organizations invest tremendous amount of money and time to obtain and manage information in order to maintain a high level of performance and to remain competitive. There are many factors that can impact the organizational information management and performance. One of…

  14. The Impact of American Higher Education on Undergraduate Student Valuing.

    ERIC Educational Resources Information Center

    Flanagan, Dan

    American higher education is a socializing institution and therefore allegedly influences the values of its participants. Colleges and universities are complex organizations that claim to transfer knowledge and skills to students. In order to communicate knowledge and skills, colleges and universities have developed highly organized disciplines.…

  15. New methods for modeling stream temperature using high resolution LiDAR, solar radiation analysis and flow accumulated values

    EPA Science Inventory

    In-stream temperature directly effects a variety of biotic organisms, communities and processes. Changes in stream temperature can render formally suitable habitat unsuitable for aquatic organisms, particularly native cold water species that are not able to adjust. In order to an...

  16. Intrinsic behavior of face-centered-cubic supra-crystals of nanocrystals self-organized on mesoscopic scale

    NASA Astrophysics Data System (ADS)

    Pileni, M. P.

    2005-12-01

    We describe intrinsic behavior due to the high ordering of nanocrystals at the mesoscopic scale. The first example shows well-defined columns in the formation of cobalt nanocrystals when an applied magnetic field is applied during the evaporation process. Collective breathing properties between nanocrystals are demonstrated. In both cases, these features are observed when the nanocrystals are highly ordered in fcc supra-crystals.

  17. Prototypical Organic–Oxide Interface: Intramolecular Resolution of Sexiphenyl on In 2O 3 (111)

    DOE PAGES

    Wagner, Margareta; Hofinger, Jakob; Setvin, Martin; ...

    2018-03-28

    The performance of an organic semiconductor device is critically determined by the geometric alignment, orientation, and ordering of the organic molecules. Although an organic multilayer eventually adopts the crystal structure of the organic material, the alignment and configuration at the interface with the substrate/electrode material are essential for charge injection into the organic layer. This work focuses on the prototypical organic semiconductor para-sexiphenyl (6P) adsorbed on In 2O 3(111), the thermodynamically most stable surface of the material that the most common transparent conducting oxide, indium tin oxide, is based on. The onset of nucleation and formation of the first monolayermore » are followed with atomically resolved scanning tunneling microscopy and noncontact atomic force microscopy (nc-AFM). Annealing to 200 °C provides sufficient thermal energy for the molecules to orient themselves along the high-symmetry directions of the surface, leading to a single adsorption site. The AFM data suggests an essentially planar adsorption geometry. With increasing coverage, the 6P molecules first form a loose network with a poor long-range order. Eventually, the molecules reorient into an ordered monolayer. In conclusion, this first monolayer has a densely packed, well-ordered (2 × 1) structure with one 6P per In 2O 3(111) substrate unit cell, that is, a molecular density of 5.64 × 10 13 cm –2.« less

  18. Prototypical Organic–Oxide Interface: Intramolecular Resolution of Sexiphenyl on In 2O 3 (111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Margareta; Hofinger, Jakob; Setvin, Martin

    The performance of an organic semiconductor device is critically determined by the geometric alignment, orientation, and ordering of the organic molecules. Although an organic multilayer eventually adopts the crystal structure of the organic material, the alignment and configuration at the interface with the substrate/electrode material are essential for charge injection into the organic layer. This work focuses on the prototypical organic semiconductor para-sexiphenyl (6P) adsorbed on In 2O 3(111), the thermodynamically most stable surface of the material that the most common transparent conducting oxide, indium tin oxide, is based on. The onset of nucleation and formation of the first monolayermore » are followed with atomically resolved scanning tunneling microscopy and noncontact atomic force microscopy (nc-AFM). Annealing to 200 °C provides sufficient thermal energy for the molecules to orient themselves along the high-symmetry directions of the surface, leading to a single adsorption site. The AFM data suggests an essentially planar adsorption geometry. With increasing coverage, the 6P molecules first form a loose network with a poor long-range order. Eventually, the molecules reorient into an ordered monolayer. In conclusion, this first monolayer has a densely packed, well-ordered (2 × 1) structure with one 6P per In 2O 3(111) substrate unit cell, that is, a molecular density of 5.64 × 10 13 cm –2.« less

  19. Ultra-high gain diffusion-driven organic transistor

    PubMed Central

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-01-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal–semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics. PMID:26829567

  20. Surface nano-architecture of a metal-organic framework.

    PubMed

    Makiura, Rie; Motoyama, Soichiro; Umemura, Yasushi; Yamanaka, Hiroaki; Sakata, Osami; Kitagawa, Hiroshi

    2010-07-01

    The rational assembly of ultrathin films of metal-organic frameworks (MOFs)--highly ordered microporous materials--with well-controlled growth direction and film thickness is a critical and as yet unrealized issue for enabling the use of MOFs in nanotechnological devices, such as sensors, catalysts and electrodes for fuel cells. Here we report the facile bottom-up fabrication at ambient temperature of such a perfect preferentially oriented MOF nanofilm on a solid surface (NAFS-1), consisting of metalloporphyrin building units. The construction of NAFS-1 was achieved by the unconventional integration in a modular fashion of a layer-by-layer growth technique coupled with the Langmuir-Blodgett method. NAFS-1 is endowed with highly crystalline order both in the out-of-plane and in-plane orientations to the substrate, as demonstrated by synchrotron X-ray surface crystallography. The proposed structural model incorporates metal-coordinated pyridine molecules projected from the two-dimensional sheets that allow each further layer to dock in a highly ordered interdigitated manner in the growth of NAFS-1. We expect that the versatility of the solution-based growth strategy presented here will allow the fabrication of various well-ordered MOF nanofilms, opening the way for their use in a range of important applications.

  1. Simulation Higher Order Language Requirements Study.

    ERIC Educational Resources Information Center

    Goodenough, John B.; Braun, Christine L.

    The definitions provided for high order language (HOL) requirements for programming flight training simulators are based on the analysis of programs written for a variety of simulators. Examples drawn from these programs are used to justify the need for certain HOL capabilities. A description of the general structure and organization of the…

  2. Adding dynamic rules to self-organizing fuzzy systems

    NASA Technical Reports Server (NTRS)

    Buhusi, Catalin V.

    1992-01-01

    This paper develops a Dynamic Self-Organizing Fuzzy System (DSOFS) capable of adding, removing, and/or adapting the fuzzy rules and the fuzzy reference sets. The DSOFS background consists of a self-organizing neural structure with neuron relocation features which will develop a map of the input-output behavior. The relocation algorithm extends the topological ordering concept. Fuzzy rules (neurons) are dynamically added or released while the neural structure learns the pattern. The DSOFS advantages are the automatic synthesis and the possibility of parallel implementation. A high adaptation speed and a reduced number of neurons is needed in order to keep errors under some limits. The computer simulation results are presented in a nonlinear systems modelling application.

  3. Committed to High-Quality Education for All Children: An Interview with Hugh Price.

    ERIC Educational Resources Information Center

    Goldberg, Mark F.

    2000-01-01

    Hugh Price has dedicated his career to achieving racial equality. The president of the National Urban League stresses each child's right to a high-quality preschool education, highly qualified teachers with high expectations, access to challenging courses of study, and organization of communities for learning, not just maintaining order. (MLH)

  4. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.; Penn, Benjamin G.; Smith, David D.; Witherow, William K.; Paley, Mark S.; Abdeldayem, Hossin A.

    1997-01-01

    In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organics which allow flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials such as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films, such as Langmuir-Blodgett (LB) and self-assembly techniques, vapor deposition, growth from sheared solution or melt, and melt growth between glass plates. Organics have many features that make them desirable for use in optical devices such as high second- and third-order nonlinearities, flexibility of molecular design, and damage resistance to optical radiation. However, their use in devices has been hindered by processing difficulties for crystals and thin films. In this chapter, we discuss photonic and optoelectronic applications of a few organic materials and the potential role of microgravity on processing these materials. It is of interest to note how materials with second- and third-order nonlinear optical behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials.

  5. High Productivity Aluminum Manufacturing

    DTIC Science & Technology

    2013-07-01

    D. J. Spinella Alcoa Inc. Alcoa Technical Center 100 Technical Drive Alcoa Center, PA 15069 July 2013 CNST Base Task Order...Myers, Kirit Shah, D. J. Spinella 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Alcoa , Inc...8. PERFORMING ORGANIZATION REPORT NUMBER 100 Technical Drive Alcoa Center, PA 15069 9

  6. New methods for modeling stream temperature using high resolution LiDAR, solar radiation analysis and flow accumulated values to predict stream temperature

    EPA Science Inventory

    In-stream temperature directly effects a variety of biotic organisms, communities and processes. Changes in stream temperature can render formally suitable habitat unsuitable for aquatic organisms, particularly native cold water species that are not able to adjust. In order to...

  7. Charter Management Organizations and the Regulated Environment: Is It Worth the Price?

    ERIC Educational Resources Information Center

    Goodman, Joan F.

    2013-01-01

    Urban minority children are increasingly being educated at public schools run by charter management organizations (CMOs) characterized by a highly rule-ordered and regulated environment. These rules, enforced through continuous streams of reinforcements and penalties, while contributing to a tight focus on academics and a safe culture, have…

  8. Examining Fourth-Grade Mathematics Writing: Features of Organization, Mathematics Vocabulary, and Mathematical Representations

    ERIC Educational Resources Information Center

    Hebert, Michael A.; Powell, Sarah R.

    2016-01-01

    Increasingly, students are expected to write about mathematics. Mathematics writing may be informal (e.g., journals, exit slips) or formal (e.g., writing prompts on high-stakes mathematics assessments). In order to develop an effective mathematics-writing intervention, research needs to be conducted on how students organize mathematics writing and…

  9. Intrinsic frequency biases and profiles across human cortex.

    PubMed

    Mellem, Monika S; Wohltjen, Sophie; Gotts, Stephen J; Ghuman, Avniel Singh; Martin, Alex

    2017-11-01

    Recent findings in monkeys suggest that intrinsic periodic spiking activity in selective cortical areas occurs at timescales that follow a sensory or lower order-to-higher order processing hierarchy (Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD, Cai X, Padoa-Schioppa C, Pasternak T, Seo H, Lee D, Wang XJ. Nat Neurosci 17: 1661-1663, 2014). It has not yet been fully explored if a similar timescale hierarchy is present in humans. Additionally, these measures in the monkey studies have not addressed findings that rhythmic activity within a brain area can occur at multiple frequencies. In this study we investigate in humans if regions may be biased toward particular frequencies of intrinsic activity and if a full cortical mapping still reveals an organization that follows this hierarchy. We examined the spectral power in multiple frequency bands (0.5-150 Hz) from task-independent data using magnetoencephalography (MEG). We compared standardized power across bands to find regional frequency biases. Our results demonstrate a mix of lower and higher frequency biases across sensory and higher order regions. Thus they suggest a more complex cortical organization that does not simply follow this hierarchy. Additionally, some regions do not display a bias for a single band, and a data-driven clustering analysis reveals a regional organization with high standardized power in multiple bands. Specifically, theta and beta are both high in dorsal frontal cortex, whereas delta and gamma are high in ventral frontal cortex and temporal cortex. Occipital and parietal regions are biased more narrowly toward alpha power, and ventral temporal lobe displays specific biases toward gamma. Thus intrinsic rhythmic neural activity displays a regional organization but one that is not necessarily hierarchical. NEW & NOTEWORTHY The organization of rhythmic neural activity is not well understood. Whereas it has been postulated that rhythms are organized in a hierarchical manner across brain regions, our novel analysis allows comparison of full cortical maps across different frequency bands, which demonstrate that the rhythmic organization is more complex. Additionally, data-driven methods show that rhythms of multiple frequencies or timescales occur within a particular region and that this nonhierarchical organization is widespread. Copyright © 2017 the American Physiological Society.

  10. The Artistic Nature of the High School Principal.

    ERIC Educational Resources Information Center

    Ritschel, Robert E.

    The role of high school principals can be compared to that of composers of music. For instance, composers put musical components together into a coherent whole; similarly, principals organize high schools by establishing class schedules, assigning roles to subordinates, and maintaining a safe and orderly learning environment. Second, composers…

  11. 75 FR 48733 - Self-Regulatory Organizations; EDGA Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... competitive pricing structure designed to incent market participants to direct their order flow to the... highly competitive market in which market participants can readily direct order flow to competing venues... to all Members. The Exchange believes the fees and credits remain competitive with those charged by...

  12. 76 FR 47285 - Self-Regulatory Organizations; EDGX Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... competitive pricing structure designed to incent market participants to direct their order flow to the... a highly competitive market in which market participants can readily direct order flow to competing... uniformly to all Members. The Exchange believes the fees and credits remain competitive with those charged...

  13. 77 FR 22008 - Self-Regulatory Organizations; EDGA Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ... reflects a competitive pricing structure designed to incent market participants to direct their order flow... on the flag Q are reasonable when compared to competitive strategies on BATS, the DRT strategy \\12... in a highly-competitive market in which market participants can readily direct order flow to...

  14. 75 FR 39307 - Self-Regulatory Organizations; EDGX Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... rule change reflects a competitive pricing structure designed to incent market participants to direct..., and is similar to existing pricing for this order type on the International Securities Exchange, LLC... that it operates in a highly competitive market in which market participants can readily direct order...

  15. Evaluating nephrotoxicity of high-molecular-weight organic compounds in drinking water from lignite aquifers

    USGS Publications Warehouse

    Bunnell, J.E.; Tatu, C.A.; Lerch, H.E.; Orem, W.H.; Pavlovic, N.

    2007-01-01

    High-molecular-weight organic compounds such as humic acids and/or fulvic acids that are naturally mobilized from lignite beds into untreated drinking-water supplies were suggested as one possible cause of Balkan endemic nephropathy (BEN) and cancer of the renal pelvis. A lab investigation was undertaken in order to assess the nephrotoxic potential of such organic compounds using an in vitro tissue culture model. Because of the infeasibility of exposing kidney tissue to low concentrations of organics for years in the lab, tangential flow ultrafiltration was employed to hyperconcentrate samples suitable for discerning effects in the short time frames necessitated by tissue culture systems. Effects on HK-2 kidney cells were measured using two different cell proliferation assays (MTT and alamarBlue). Results demonstrated that exposure of kidney tissue to high-molecular-weight organics produced excess cell death or proliferation depending on concentration and duration of exposure. Copyright ?? Taylor & Francis Group, LLC.

  16. Mesoscopic self-organization of a self-assembled supramolecular rectangle on highly oriented pyrolytic graphite and Au(111) surfaces.

    PubMed

    Gong, Jian-Ru; Wan, Li-Jun; Yuan, Qun-Hui; Bai, Chun-Li; Jude, Hershel; Stang, Peter J

    2005-01-25

    A self-assembled supramolecular metallacyclic rectangle was investigated with scanning tunneling microscopy on highly oriented pyrolytic graphite and Au(111) surfaces. The rectangles spontaneously adsorb on both surfaces and self-organize into well ordered adlayers. On highly oriented pyrolytic graphite, the long edge of the rectangle stands on the surface, forming a 2D molecular network. In contrast, the face of the rectangle lays flat on the Au(111) surface, forming linear chains. The structures and intramolecular features obtained through high-resolution scanning tunneling microscopy imaging are discussed.

  17. Rotational superstructure in van der Waals heterostructure of self-assembled C 60 monolayer on the WSe 2 surface

    DOE PAGES

    Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.; ...

    2017-08-23

    Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less

  18. Rotational superstructure in van der Waals heterostructure of self-assembled C 60 monolayer on the WSe 2 surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.

    Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less

  19. Efficient Photocatalytic H2 Evolution: Controlled Dewetting-Dealloying to Fabricate Site-Selective High-Activity Nanoporous Au Particles on Highly Ordered TiO2 Nanotube Arrays.

    PubMed

    Nguyen, Nhat Truong; Altomare, Marco; Yoo, JeongEun; Schmuki, Patrik

    2015-05-27

    Anodic self-organized TiO2 nanostumps are formed and exploited for self-ordering dewetting of Au-Ag sputtered films. This forms ordered particle configurations at the tube top (crown position) or bottom (ground position). By dealloying from a minimal amount of noble metal, porous Au nanoparticles are then formed, which, when in the crown position, allow for a drastically improved photocatalytic H2 production compared with nanoparticles produced by conventional dewetting processes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%

    NASA Astrophysics Data System (ADS)

    Gasparini, Nicola; Jiao, Xuechen; Heumueller, Thomas; Baran, Derya; Matt, Gebhard J.; Fladischer, Stefanie; Spiecker, Erdmann; Ade, Harald; Brabec, Christoph J.; Ameri, Tayebeh

    2016-09-01

    In recent years the concept of ternary blend bulk heterojunction (BHJ) solar cells based on organic semiconductors has been widely used to achieve a better match to the solar irradiance spectrum, and power conversion efficiencies beyond 10% have been reported. However, the fill factor of organic solar cells is still limited by the competition between recombination and extraction of free charges. Here, we design advanced material composites leading to a high fill factor of 77% in ternary blends, thus demonstrating how the recombination thresholds can be overcome. Extending beyond the typical sensitization concept, we add a highly ordered polymer that, in addition to enhanced absorption, overcomes limits predicted by classical recombination models. An effective charge transfer from the disordered host system onto the highly ordered sensitizer effectively avoids traps of the host matrix and features an almost ideal recombination behaviour.

  1. Self Assembled Structures by Directional Solidification of Eutectics

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2004-01-01

    Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.

  2. Sharp organic interface of molecular C60 chains and a pentacene derivative SAM on Au(788): A combined STM & DFT study

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Tang, Jian-Ming; Larson, Amanda M.; Miller, Glen P.; Pohl, Karsten

    2013-12-01

    Controlling the molecular structure of the donor-acceptor interface is essential to overcoming the efficiency bottleneck in organic photovoltaics. We present a study of self-assembled fullerene (C60) molecular chains on perfectly ordered 6,13-dichloropentacene (DCP) monolayers forming on a vicinal Au(788) surface using scanning tunneling microscopy in conjunction with density functional theory calculations. DCP is a novel pentacene derivative optimized for photovoltaic applications. The molecules form a brick-wall patterned centered rectangular lattice with the long axis parallel to the monatomic steps that separate the 3.9 nm wide Au(111) terraces. The strong interaction between the C60 molecules and the gold substrate is well screened by the DCP monolayer. At submonolayer C60 coverage, the fullerene molecules form long parallel chains, 1.1 nm apart, with a rectangular arrangement instead of the expected close-packed configuration along the upper step edges. The perfectly ordered DCP structure is unaffected by the C60 chain formation. The controlled sharp highly-ordered organic interface has the potential to improve the conversion efficiency in organic photovoltaics.

  3. Cross Section High Resolution Imaging of Polymer-Based Materials

    NASA Astrophysics Data System (ADS)

    Delaportas, D.; Aden, P.; Muckle, C.; Yeates, S.; Treutlein, R.; Haq, S.; Alexandrou, I.

    This paper describes a methodology for preparing cross sections of organic layers suitable for transmission electron microscopy (TEM) at high resolution. Our principal aim is to prepare samples that are tough enough to allow the slicing into sub-150 nm sections. We also need strong contrast at the organic layer area to make it identifiable during TEM. Our approach is to deposit organic layers on flexible substrates and prepare thin cross sections using ultra-microtomy. We sandwich the organic layer between two metal thin films in order to isolate it and improve contrast. Our methodology is used to study the microstructure of polymer/nanotube composites, allowing us to accurately measure the organic layer thickness, determine nanotube dispersion and assess the effect of nanotube clustering on film structural stability.

  4. Paleo-ocean environments before and after the Ordovician glaciation and the correlation with heterogeneous marine black shale: a stratigraphic case study of Wufeng-Longmaxi formation in Fuling, Sichuan basin, SW China

    NASA Astrophysics Data System (ADS)

    Lu, Yangbo; Hao, Fang; Lu, Yongchao

    2017-04-01

    The discovery of Fuling gas field in the Sichuan basin led China shale gas exploration to an unprecedented boom. The most important shale gas plays are the upper Ordovician Wufeng formation and Lower Silurian Longmaxi formation which demonstrate intriguing characteristics which are comprising of stable regional distribution, high abundance of organic matter, high thermal maturity and high brittle mineral content etc. As the Ordovician-Silurian transition was a critical interval in Earth's history marked by dramatic climatic, oceanic, and biological turnovers; these two advantageous organic rich shale deposited before and after Hirnantian glaciation are showing differences in many aspects. In this study, the stratigraphy and lithofacies within the stratigraphy framework of the upper Ordovician Wufeng formation and Lower Silurian Longmaxi formation in Fuling were quantitatively analyzed based on outcrops, cores, well logs data, and geochemical proxies. A total of three third-order sequences were divided based on the recognition of four third-order boundaries. The Wufeng Formation is equivalent to a third-order sequence and is subdivided into a transgressive system tract (TST) (black shale of lower Wufeng Formation) and a highstand system tract (HST) (Guanyinqiao Member of upper Wufeng Formation). Long-1 Member is equivalent to a third-order sequence and is subdivided into a TST, an early highstand system tract (EHST) and a late highstand system tract (LHST); Long-2 and Long-3 Member are combined to be one third-order sequence and is subdivided into a lowstand system tract (LST), a TST and a HST. Sequence development and sedimentary environment characteristics were analyzed within each system tract unit. TOC% was correlated to V/Cr and EF-Ni respectively within each system tract unit, suggesting paleoproductivity and water redox condition are the main controlling factors of organic enrichment and its preservation. The heterogeneity in shale lithofacies throughout the stratigraphic frame work reflects the vertical evolution of the paleo-climate and paleo-ocean environment across the Ordovician-Silurian transition. We suggest that the high primary productivity of Wufeng formation was due to the boom of diatom triggered by large scale coverage of volcanic ash before Hirnantian glaciation. Marine anoxia may have been a kill mechanism that cause the mass extinction of marine macro-organism during the glacial period. And the up sequence TOC deterioration of Longmaxi formation is likely subjected to influence of ocean bottom flow and slow recovery of marine organism after the glaciation.

  5. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ascherl, Laura; Sick, Torben; Margraf, Johannes

    Covalent organic frameworks (COFs) formed by connecting multidentate organic building blocks through covalent bonds provide a platform for designing multifunctional porous materials with atomic precision. As they are promising materials for applications in optoelectronics, they would benefit from a maximum degree of long-range order within the framework, which has remained a major challenge. We have developed a synthetic concept to allow consecutive COF sheets to lock in position during crystal growth, and thus minimize the occurrence of stacking faults and dislocations. Hereby, the three-dimensional conformation of propeller-shaped molecular building units was used to generate well-defined periodic docking sites, which guidedmore » the attachment of successive building blocks that, in turn, promoted long-range order during COF formation. This approach enables us to achieve a very high crystallinity for a series of COFs that comprise tri- and tetradentate central building blocks. We expect this strategy to be transferable to a broad range of customized COFs.« less

  6. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks

    NASA Astrophysics Data System (ADS)

    Ascherl, Laura; Sick, Torben; Margraf, Johannes T.; Lapidus, Saul H.; Calik, Mona; Hettstedt, Christina; Karaghiosoff, Konstantin; Döblinger, Markus; Clark, Timothy; Chapman, Karena W.; Auras, Florian; Bein, Thomas

    2016-04-01

    Covalent organic frameworks (COFs) formed by connecting multidentate organic building blocks through covalent bonds provide a platform for designing multifunctional porous materials with atomic precision. As they are promising materials for applications in optoelectronics, they would benefit from a maximum degree of long-range order within the framework, which has remained a major challenge. We have developed a synthetic concept to allow consecutive COF sheets to lock in position during crystal growth, and thus minimize the occurrence of stacking faults and dislocations. Hereby, the three-dimensional conformation of propeller-shaped molecular building units was used to generate well-defined periodic docking sites, which guided the attachment of successive building blocks that, in turn, promoted long-range order during COF formation. This approach enables us to achieve a very high crystallinity for a series of COFs that comprise tri- and tetradentate central building blocks. We expect this strategy to be transferable to a broad range of customized COFs.

  7. Hybrid glasses from strong and fragile metal-organic framework liquids.

    PubMed

    Bennett, Thomas D; Tan, Jin-Chong; Yue, Yuanzheng; Baxter, Emma; Ducati, Caterina; Terrill, Nick J; Yeung, Hamish H-M; Zhou, Zhongfu; Chen, Wenlin; Henke, Sebastian; Cheetham, Anthony K; Greaves, G Neville

    2015-08-28

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship between amorphization and melting has so far not been investigated. Here we show how heating MOFs of zeolitic topology first results in a low density 'perfect' glass, similar to those formed in ice, silicon and disaccharides. This order-order transition leads to a super-strong liquid of low fragility that dynamically controls collapse, before a subsequent order-disorder transition, which creates a more fragile high-density liquid. After crystallization to a dense phase, which can be remelted, subsequent quenching results in a bulk glass, virtually identical to the high-density phase. We provide evidence that the wide-ranging melting temperatures of zeolitic MOFs are related to their network topologies and opens up the possibility of 'melt-casting' MOF glasses.

  8. Nitrogen-doped ordered mesoporous carbon with a high surface area, synthesized through organic-inorganic coassembly, and its application in supercapacitors.

    PubMed

    Song, Yanfang; Li, Li; Wang, Yonggang; Wang, Congxiao; Guo, Zaipin; Xia, Yongyao

    2014-07-21

    A new nitrogen-doped ordered mesoporous carbon (N-doped OMC) is synthesized by using an organic-inorganic coassembly method, in which resol is used as the carbon precursor, dicyandiamide as the nitrogen precursor, silicate oligomers as the inorganic precursors, and F127 as the soft template. The N-doped OMC possesses a surface area as high as 1374 m(2)  g(-1) and a large pore size of 7.4 nm. As an electrode material for supercapacitors, the obtained carbon exhibits excellent cycling stability and delivers a reversible specific capacitance as high as 308 F g(-1) in 1 mol L(-1) H(2)SO(4) aqueous electrolyte, of which 58 % of the capacity is due to pseudo-capacitance. The large specific capacitance is attributed to proper pore size distributions, large surface area, and high nitrogen content. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hierarchical self-assembly of a bow-shaped molecule bearing self-complementary hydrogen bonding sites into extended supramolecular assemblies.

    PubMed

    Ikeda, Masato; Nobori, Tadahito; Schmutz, Marc; Lehn, Jean-Marie

    2005-01-07

    The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization.

  10. Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors.

    PubMed

    Ebata, Hideaki; Izawa, Takafumi; Miyazaki, Eigo; Takimiya, Kazuo; Ikeda, Masaaki; Kuwabara, Hirokazu; Yui, Tatsuto

    2007-12-26

    2,7-Dialkyl[1]benzothieno[3,2-b]benzothiophenes were tested as solution-processible molecular semiconductors. Thin films of the organic semiconductors deposited on Si/SiO2 substrates by spin coating have well-ordered structures as confirmed by XRD analysis. Evaluations of the devices under ambient conditions showed typical p-channel FET responses with the field-effect mobility higher than 1.0 cm2 V-1 s-1 and Ion/Ioff of approximately 10(7).

  11. Dichotomous Identification Keys: A Ladder to Higher Order Knowledge about the Human Body

    ERIC Educational Resources Information Center

    Sorgo, Andrej

    2006-01-01

    We tried to enrich teaching human anatomy in high school biology lessons. Students construct dichotomous identification keys to the cells, tissues, organs, or body parts. By doing this, students have achieved higher-order cognitive levels of knowledge because construction of such keys is based on analysis, synthesis, and evaluation. Students found…

  12. Investigation of microcantilever array with ordered nanoporous coatings for selective chemical detection

    NASA Astrophysics Data System (ADS)

    Lee, J.-H.; Houk, R. T. J.; Robinson, A.; Greathouse, J. A.; Thornberg, S. M.; Allendorf, M. D.; Hesketh, P. J.

    2010-04-01

    In this paper we demonstrate the potential for novel nanoporous framework materials (NFM) such as metal-organic frameworks (MOFs) to provide selectivity and sensitivity to a broad range of analytes including explosives, nerve agents, and volatile organic compounds (VOCs). NFM are highly ordered, crystalline materials with considerable synthetic flexibility resulting from the presence of both organic and inorganic components within their structure. Detection of chemical weapons of mass destruction (CWMD), explosives, toxic industrial chemicals (TICs), and volatile organic compounds (VOCs) using micro-electro-mechanical-systems (MEMS) devices, such as microcantilevers and surface acoustic wave sensors, requires the use of recognition layers to impart selectivity. Traditional organic polymers are dense, impeding analyte uptake and slowing sensor response. The nanoporosity and ultrahigh surface areas of NFM enhance transport into and out of the NFM layer, improving response times, and their ordered structure enables structural tuning to impart selectivity. Here we describe experiments and modeling aimed at creating NFM layers tailored to the detection of water vapor, explosives, CWMD, and VOCs, and their integration with the surfaces of MEMS devices. Force field models show that a high degree of chemical selectivity is feasible. For example, using a suite of MOFs it should be possible to select for explosives vs. CWMD, VM vs. GA (nerve agents), and anthracene vs. naphthalene (VOCs). We will also demonstrate the integration of various NFM with the surfaces of MEMS devices and describe new synthetic methods developed to improve the quality of VFM coatings. Finally, MOF-coated MEMS devices show how temperature changes can be tuned to improve response times, selectivity, and sensitivity.

  13. Ultrafast Spectroscopic Studies of Two-Photon States in Third Order Optical Processes of Dye Chromophores.

    NASA Astrophysics Data System (ADS)

    Yu, Yi-Zhong

    1995-01-01

    Conjugated organic and polymeric materials usually have large, nonresonant third order optical nonlinearity due to correlations of their delocalized pi -electrons. Most materials studied so far show positive values of third order nonlinear susceptibility when all frequencies that generate the third order effect are below any optical transition. A new class of organic molecules, namely indole squarylium (ISQ) and anilinium squarylium (BSQ), exhibit negative < gamma(-omega_4;omega_1, omega_2,omega_3)> when all three frequencies, omega_1, omega_2 and omega_3, lie below the first electronic transition. Although quantum many-electron calculations based on multiple-excitation configuration interaction have shown that the negative third order coefficient is essentially due to the contribution from high-lying two-photon states, the field of experimental studies exploring the microscopic origins of the negative squaraines remains uncultivated. The work presented in this thesis involves extensive experimental investigation of squaraines using techniques such as time-resolved transit absorption spectroscopy and saturable absorption. Theoretical simulations studying nonlinear absorption behavior of a simplified two-level system with ultrashort pulses are also presented. Part of the thesis is dedicated to the development, fabrication and characterization of our ultrafast laser system which offers tunable femtosecond pulses at wavelengths from UV to IR and served as a major tool in the experimental measurements. The dynamics of the population inversion between the ground state and the first excited state was also investigated through time-resolved experiments. The experiment results agree well with the theoretical predictions. Strong couplings between the gateway state and high-lying two-photon states were observed in BSQ squarylium molecules, which suggested a complete quantum calculation with multiple energy levels is required to correctly describe the negative third order effect.

  14. Increase in volatilization of organic compounds using air sparging through addition in alcohol in a soil-water system.

    PubMed

    Chao, Huan-Ping; Hsieh, Lin-Han Chiang; Tran, Hai Nguyen

    2018-02-15

    This study developed a novel method to promote the remediation efficiency of air sparging. According to the enhanced-volatilization theory presented in this study, selected alcohols added to groundwater can highly enhance the volatilization amounts of organic compounds with high Henry's law constants. In this study, the target organic compounds consisted of n-hexane, n-heptane, benzene, toluene, 1,1,2-trichloroethane, and tetrachloroethene. n-pentanol, n-hexanol, and n-heptanol were used to examine the changes in the volatilization amounts of organic compounds in the given period. Two types of soils with high and low organic matter were applied to evaluate the transport of organic compounds in the soil-water system. The volatilization amounts of the organic compounds increased with increasing alcohol concentrations. The volatilization amounts of the test organic compounds exhibited a decreasing order: n-heptanol>n-hexanol>n-pentanol. When 10mg/L n-heptanol was added to the system, the maximum volatilization enhancement rate was 18-fold higher than that in distilled water. Samples of soil with high organic matter might reduce the volatilization amounts by a factor of 5-10. In the present study, the optimal removal efficiency for aromatic compounds was approximately 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Potassium dichromate method of coal gasification the study of the typical organic compounds in water

    NASA Astrophysics Data System (ADS)

    Quan, Jiankang; Qu, Guangfei; Dong, Zhanneng; Lu, Pei; Cai, Yingying; Wang, Shibo

    2017-05-01

    The national standard method is adopted in this paper the water - digestion spectrophotometry for determination of the chemical oxygen demand (COD), after ultrasonic processing of coal gasification water for CODCr measurement. Using the control variable method, measured in different solution pH, ultrasonic frequency, ultrasonic power, reaction conditions of different initial solution concentration, the change of coal gasification water CODCr value under the action of ultrasonic, the experimental results shows that appear when measurement is allowed to fluctuate, data, in order to explain the phenomenon we adopt the combination of the high performance liquid chromatography and mass spectrometry before and after ultrasonic coal gasification qualitative analysis on composition of organic matter in water. To raw water sample chromatography - mass spectrometry (GC/MS) analysis, combined with the spectra analysis of each peak stands for material, select coal gasification typical organic substances in water, with the method of single digestion, the equivalent CODCr values measured after digestion. Order to produce, coal gasification water contained high concentration organic wastewater, such as the national standard method is adopted to eliminate the organic material, therefore to measure the CODCr value is lower than actual CODCr value of the emergence of the phenomenon, the experiment of the effect of ultrasound [9-13] is promote the complex organic chain rupture, also explains the actual measurement data fluctuation phenomenon in the experiment.

  16. Some Determinants of Classroom Psychosocial Environment in Australian Catholic High Schools: A Multilevel Analysis

    ERIC Educational Resources Information Center

    Dorman, Jeffrey P.

    2009-01-01

    This research investigated some determinants of classroom environment in Australian Catholic high schools. The Catholic School Classroom Environment Questionnaire (CSCEQ) was used to assess 7 dimensions of the classroom psychosocial environment: student affiliation, interactions, cooperation, task orientation, order and organization,…

  17. Design criteria monograph for high-load high-speed rolling-contact bearings

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Monograph was published which summarizes and systematically orders large body of successful techniques and practices developed for design of liquid rocket engine turbopump bearings. Document was written to organize and present significant experience and knowledge accumulated by NASA in development and operational programs.

  18. Non-Destructive High-Resolution Organic Matter Record on Lake Sediment using Steady-State Solid Phase Fluorescence: Organic Matter Quality and Quantity Assessment.

    NASA Astrophysics Data System (ADS)

    Quiers, M.; Perrette, Y.; Etienne, D.; Develle, A. L.; Jacq, K.

    2017-12-01

    The use of organic proxies increases in paleoenvironmental reconstructions from natural archives. Major advances have been achieved by the development of new highly informative molecular proxies usually linked to specific compounds. While studies focused on targeted compounds, offering a high information degree, advances on bulk organic matter are limited. However, this bulk is the main contributor to carbon cycle and has been shown to be a driver of many mineral or organic compounds transfer and record. Development of target proxies need complementary information on bulk organic matter to understand biases link to controlling factors or analytical methods, and provide a robust interpretation. Fluorescence methods have often been employed to characterize and quantify organic matter. However, these technics are mainly developed for liquid samples, inducing material and resolution loss when working on natural archives (either stalagmite or sediments). High-resolution solid phase fluorescence (SPF) was developed on speleothems. This method allows now to analyse organic matter quality and quantity if procedure to constrain the optical density are adopted. In fact, a calibration method using liquid phase fluorescence (LPF) was developed for speleothem, allowing to quantify organic carbon at high-resolution. We report here an application of such a procedure SPF/LPF measurements on lake sediments. In order to avoid sediment matrix effects on the fluorescence signal, a calibration using LPF measurements was realised. First results using this method provided organic matter quality record of different organic matter compounds (humic-like, protein-like and chlorophylle-like compounds) at high resolution for the sediment core. High resolution organic matter fluxes are obtained in a second time, applying pragmatic chemometrics model (non linear models, partial least square models) on high resolution fluorescence data. SPF method can be considered as a promising tool for high resolution record on organic matter quality and quantity. Potential application of this method will be evocated (lake ecosystem dynamic, changes in trophic levels)

  19. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis.

    PubMed

    Wu, Jing; Hu, Yu-Ying; Wang, Shi-Feng; Cao, Zhi-Ping; Li, Huai-Zhi; Fu, Xin-Mei; Wang, Kai-Jun; Zuo, Jian-E

    2017-04-01

    Anaerobic digestion (AD), which is a process for generating biogas, can be applied to the treatment of organic wastes. Owing to its smaller footprint, lower energy consumption, and less digestate, high solid anaerobic digestion (HSAD) has attracted increasing attention. However, its biogas production is poor. In order to improve biogas production and decrease energy consumption, an improved thermal treatment process was proposed. Raw swine manure (>20% solid content) without any dilution was thermally treated at 70±1°C for different retention times, and then its effect on HSAD was investigated via batch AD experiments at 8.9% solid content. Results showed that the main organic components of swine manure hydrolyzed significantly during the thermal treatment, and HSAD's methane production rate was improved by up to 39.5%. Analysis using two kinetic models confirmed that the treatment could increase biodegradable organics (especially the readily biodegradable organics) in swine manure rather than upgrading its hydrolysis rate. It is worth noting that the superimposed first-order kinetics model was firstly applied in AD, and was a good tool to reveal the AD kinetics mechanism of substrates with complex components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Willingness to communicate organ donation intention.

    PubMed

    McDonald, Deborah Dillon; Ferreri, Ruth; Jin, Carol; Mendez, Anthea; Smail, Julie; Balcom, Patricia; Shoemaker, Sheila; Kamuzora, Paul Lwekaza; Durham, Rebecca; Dibble, Jaqueline

    2007-01-01

    The study tested an intervention exposing people who planned to donate organs to written information about communicating with family their intention to donate organs. A pretest posttest double-blind experiment compared participants given written information about communicating with family and basic organ donation information, with participants given written information about only basic organ donation information. Participants included 109 adults who had not yet communicated their plans with family. Participants first responded to previous experience with organ donation, thoughts about organ donation, willingness to communicate with family about organ donation, and knowledge about organ donation. After reading the respective pamphlet, participants again responded to thoughts about communicating with their family and willingness to communicate with family. Both groups responded with the same high willingness to communicate before the intervention and a small but significant increase in willingness to communicate afterwards. Participants expressed a high degree of willingness to communicate about their organ donation intentions even though they had thus far not communicated their intentions. Factors in addition to willingness to communicate need to be identified in order to encourage better communication about organ donation intentions.

  1. High Order Approximations for Compressible Fluid Dynamics on Unstructured and Cartesian Meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy (Editor); Deconinck, Herman (Editor)

    1999-01-01

    The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining challenges facing the field of computational fluid dynamics. In structural mechanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the computation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order accuracy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence suggests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Center. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18, 1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25, 1998 at the NASA Ames Research Center in the United States. During this special course, lecturers from Europe and the United States gave a series of comprehensive lectures on advanced topics related to the high-order numerical discretization of partial differential equations with primary emphasis given to computational fluid dynamics (CFD). Additional consideration was given to topics in computational physics such as the high-order discretization of the Hamilton-Jacobi, Helmholtz, and elasticity equations. This volume consists of five articles prepared by the special course lecturers. These articles should be of particular relevance to those readers with an interest in numerical discretization techniques which generalize to very high-order accuracy. The articles of Professors Abgrall and Shu consider the mathematical formulation of high-order accurate finite volume schemes utilizing essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) reconstruction together with upwind flux evaluation. These formulations are particularly effective in computing numerical solutions of conservation laws containing solution discontinuities. Careful attention is given by the authors to implementational issues and techniques for improving the overall efficiency of these methods. The article of Professor Cockburn discusses the discontinuous Galerkin finite element method. This method naturally extends to high-order accuracy and has an interpretation as a finite volume method. Cockburn addresses two important issues associated with the discontinuous Galerkin method: controlling spurious extrema near solution discontinuities via "limiting" and the extension to second order advective-diffusive equations (joint work with Shu). The articles of Dr. Henderson and Professor Schwab consider the mathematical formulation and implementation of the h-p finite element methods using hierarchical basis functions and adaptive mesh refinement. These methods are particularly useful in computing high-order accurate solutions containing perturbative layers and corner singularities. Additional flexibility is obtained using a mortar FEM technique whereby nonconforming elements are interfaced together. Numerous examples are given by Henderson applying the h-p FEM method to the simulation of turbulence and turbulence transition.

  2. Controlled evaporative self-assembly of confined microfluids: A route to complex ordered structures

    NASA Astrophysics Data System (ADS)

    Byun, Myunghwan

    The evaporative self-assembly of nonvolatile solutes such as polymers, nanocrystals, and carbon nanotubes has been widely recognized as a non-lithographic means of producing a diverse range of intriguing complex structures. Due to the spatial variation of evaporative flux and possible convection, however, these non-equilibrium dissipative structures (e.g., fingering patterns and polygonal network structures) are often irregularly and stochastically organized. Yet for many applications in microelectronics, data storage devices, and biotechnology, it is highly desirable to achieve surface patterns having a well-controlled spatial arrangement. To date, only a few elegant studies have centered on precise control over the evaporation process to produce ordered structures. In a remarked comparison with conventional lithography techniques, surface patterning by controlled solvent evaporation is simple and cost-effective, offering a lithography- and external field-free means to organize nonvolatile materials into ordered microscopic structures over large surface areas. The ability to engineer an evaporative self-assembly process that yields a wide range of complex, self-organizing structures over large areas offers tremendous potential for applications in electronics, optoelectronics, and bio- or chemical sensors. We developed a facile, robust tool for evaporating polymer, nanoparticle, or DNA solutions in curve-on-flat geometries to create versatile, highly regular microstructures, including hierarchically structured polymer blend rings, conjugated polymer "snake-skins", block copolymer stripes, and punch-hole-like meshes, biomolecular microring arrays, etc. The mechanism of structure formation was elucidated both experimentally and theoretically. Our method further enhances current fabrication approaches to creating highly ordered structures in a simple and cost-effective manner, envisioning the potential to be tailored for use in photonics, optoelectronics, microfluidic devices, nanotechnology and biotechnology, etc.

  3. Industrial applications of high-performance computing for phylogeny reconstruction

    NASA Astrophysics Data System (ADS)

    Bader, David A.; Moret, Bernard M.; Vawter, Lisa

    2001-07-01

    Phylogenies (that is, tree-of-life relationships) derived from gene order data may prove crucial in answering some fundamental open questions in biomolecular evolution. Real-world interest is strong in determining these relationships. For example, pharmaceutical companies may use phylogeny reconstruction in drug discovery for discovering synthetic pathways unique to organisms that they wish to target. Health organizations study the phylogenies of organisms such as HIV in order to understand their epidemiologies and to aid in predicting the behaviors of future outbreaks. And governments are interested in aiding the production of such foodstuffs as rice, wheat and potatoes via genetics through understanding of the phylogenetic distribution of genetic variation in wild populations. Yet few techniques are available for difficult phylogenetic reconstruction problems. Appropriate tools for analysis of such data may aid in resolving some of the phylogenetic problems that have been analyzed without much resolution for decades. With the rapid accumulation of whole genome sequences for a wide diversity of taxa, especially microbial taxa, phylogenetic reconstruction based on changes in gene order and gene content is showing promise, particularly for resolving deep (i.e., ancient) branch splits. However, reconstruction from gene-order data is even more computationally expensive than reconstruction from sequence data, particularly in groups with large numbers of genes and highly-rearranged genomes. We have developed a software suite, GRAPPA, that extends the breakpoint analysis (BPAnalysis) method of Sankoff and Blanchette while running much faster: in a recent analysis of chloroplast genome data for species of Campanulaceae on a 512-processor Linux supercluster with Myrinet, we achieved a one-million-fold speedup over BPAnalysis. GRAPPA can use either breakpoint or inversion distance (computed exactly) for its computation and runs on single-processor machines as well as parallel and high-performance computers.

  4. Nucleation of ordered solid phases of proteins via a disordered high-density state: Phenomenological approach

    NASA Astrophysics Data System (ADS)

    Pan, Weichun; Kolomeisky, Anatoly B.; Vekilov, Peter G.

    2005-05-01

    Nucleation of ordered solid phases of proteins triggers numerous phenomena in laboratory, industry, and in healthy and sick organisms. Recent simulations and experiments with protein crystals suggest that the formation of an ordered crystalline nucleus is preceded by a disordered high-density cluster, akin to a droplet of high-density liquid that has been observed with some proteins; this mechanism allowed a qualitative explanation of recorded complex nucleation kinetics curves. Here, we present a simple phenomenological theory that takes into account intermediate high-density metastable states in the nucleation process. Nucleation rate data at varying temperature and protein concentration are reproduced with high fidelity using literature values of the thermodynamic and kinetic parameters of the system. Our calculations show that the growth rate of the near-critical and supercritical ordered clusters within the dense intermediate is a major factor for the overall nucleation rate. This highlights the role of viscosity within the dense intermediate for the formation of the ordered nucleus. The model provides an understanding of the action of additives that delay or accelerate nucleation and presents a framework within which the nucleation of other ordered protein solid phases, e.g., the sickle cell hemoglobin polymers, can be analyzed.

  5. High School Biology Today: What the Committee of Ten Actually Said

    ERIC Educational Resources Information Center

    Sheppard, Keith; Robbins, Dennis M.

    2007-01-01

    This essay describes how in the 1890s the Committee of Ten arrived at their recommendations about the organization of the high school biological sciences and seeks to correct the frequently held, but erroneous view that the Committee of Ten was the initiator of the Biology-Chemistry-Physics order of teaching sciences prevalent in high schools…

  6. Supramolecular order and structural dynamics: A STM study of 2H-tetraphenylporphycene on Cu(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Michael; Träg, Johannes; Ditze, Stefanie

    2015-03-14

    The adsorption of 2H-tetraphenylporphycene (2HTPPc) on Cu(111) was investigated by scanning tunneling microscopy (STM). At medium coverages, supramolecular ordered islands are observed. The individual 2HTPPc molecules appear as two pairs of intense protrusions which are separated by an elongated depression. In the islands, the molecules are organized in rows oriented along one of the close packed Cu(111) substrate rows; the structure is stabilized by T-type interactions of the phenyl substituents of neighboring molecules. Two types of rows are observed, namely, highly ordered rows in which all molecules exhibit the same orientation, and less ordered rows in which the molecules exhibitmore » two perpendicular orientations. Altogether, three different azimuthal orientations of 2HTPPc are observed within one domain, all of them rotated by 15° ± 1° relative to one closed packed Cu direction. The highly ordered rows are always separated by either one or two less ordered rows, with the latter structure being the thermodynamically more stable one. The situation in the islands is highly dynamic, such that molecules in the less ordered rows occasionally change orientation, also complete highly ordered rows can move. The supramolecular order and structural dynamics are discussed on the basis of the specific molecule-substrate and molecule-molecule interactions.« less

  7. 77 FR 8936 - Self-Regulatory Organizations; the NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... defined as ``the ratio of (A) the total number of liquidity-providing orders entered by a member through... trading sessions. (3) The ratio between shares of liquidity provided through the MPID and total shares..., or pre-market and/or post- market hours; and to maintain a high ratio of liquidity provision to order...

  8. Mapping Patterns of Multiple Deprivation and Well-Being Using Self-Organizing Maps: An Application to Swiss Household Panel Data

    ERIC Educational Resources Information Center

    Lucchini, Mario; Assi, Jenny

    2013-01-01

    The aim of this paper is to propose multidimensional measures of deprivation and wellbeing in contemporary Switzerland, in order to overcome the limitations of standard approaches. More precisely, we have developed self organising maps (SOM) using data drawn from the 2009 Swiss Household Panel wave, in order to identify highly homogeneous clusters…

  9. 76 FR 67012 - Self-Regulatory Organizations; NASDAQ OMX PHLX LLC; Notice of Filing of Proposed Rule Change To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... introduce a new order type--the Minimum Life Order--for use in the NASDAQ OMX PSX (``PSX'') system. PHLX... markets are characterized by high levels of automation and speed, both in the systems employed by... confidence. PSX was developed to provide an alternative to traditional price- time markets that reward market...

  10. Covalent Modification of Highly Ordered Pyrolytic Graphite with a Stable Organic Free Radical by Using Diazonium Chemistry.

    PubMed

    Seber, Gonca; Rudnev, Alexander V; Droghetti, Andrea; Rungger, Ivan; Veciana, Jaume; Mas-Torrent, Marta; Rovira, Concepció; Crivillers, Núria

    2017-01-26

    A novel, persistent, electrochemically active perchlorinated triphenylmethyl (PTM) radical with a diazonium functionality has been covalently attached to highly ordered pyrolytic graphite (HOPG) by electrografting in a single-step process. Electrochemical scanning tunneling microscopy (EC-STM) and Raman spectroscopy measurements revealed that PTM molecules had a higher tendency to covalently react at the HOPG step edges. The cross-section profiles from EC-STM images showed that there was current enhancement at the functionalized areas, which could be explained by redox-mediated electron tunneling through surface-confined redox-active molecules. Cyclic voltammetry clearly demonstrated that the intrinsic properties of the organic radical were preserved upon grafting and DFT calculations also revealed that the magnetic character of the PTM radical was preserved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Toward continuous-wave operation of organic semiconductor lasers

    PubMed Central

    Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-01-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042

  12. Highly organic natural media as permeable reactive barriers: TCE partitioning and anaerobic degradation profile in eucalyptus mulch and compost.

    PubMed

    Öztürk, Zuhal; Tansel, Berrin; Katsenovich, Yelena; Sukop, Michael; Laha, Shonali

    2012-10-01

    Batch and column experiments were conducted with eucalyptus mulch and commercial compost to evaluate suitability of highly organic natural media to support anaerobic decomposition of trichloroethylene (TCE) in groundwater. Experimental data for TCE and its dechlorination byproducts were analyzed with Hydrus-1D model to estimate the partitioning and kinetic parameters for the sequential dechlorination reactions during TCE decomposition. The highly organic natural media allowed development of a bioactive zone capable of decomposing TCE under anaerobic conditions. The first order TCE biodecomposition reaction rates were 0.23 and 1.2d(-1) in eucalyptus mulch and compost media, respectively. The retardation factors in the eucalyptus mulch and compost columns for TCE were 35 and 301, respectively. The results showed that natural organic soil amendments can effectively support the anaerobic bioactive zone for remediation of TCE contaminated groundwater. The natural organic media are effective environmentally sustainable materials for use in permeable reactive barriers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. C4N3H monolayer: A two-dimensional organic Dirac material with high Fermi velocity

    NASA Astrophysics Data System (ADS)

    Pan, Hongzhe; Zhang, Hongyu; Sun, Yuanyuan; Li, Jianfu; Du, Youwei; Tang, Nujiang

    2017-11-01

    Searching for two-dimensional (2D) organic Dirac materials, which have more adaptable practical applications compared with inorganic ones, is of great significance and has been ongoing. However, only two such materials with low Fermi velocity have been discovered so far. Herein, we report the design of an organic monolayer with C4N3H stoichiometry that possesses fascinating structure and good stability in its free-standing state. More importantly, we demonstrate that this monolayer is a semimetal with anisotropic Dirac cones and very high Fermi velocity. This Fermi velocity is roughly one order of magnitude larger than the largest velocity ever reported in 2D organic Dirac materials, and it is comparable to that in graphene. The Dirac states in this monolayer arise from the extended π -electron conjugation system formed by the overlapping 2 pz orbitals of carbon and nitrogen atoms. Our finding paves the way to a search for more 2D organic Dirac materials with high Fermi velocity.

  14. Toward continuous-wave operation of organic semiconductor lasers.

    PubMed

    Sandanayaka, Atula S D; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-04-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi-continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.

  15. High-Throughput Characterization of Vapor-Deposited Organic Glasses

    NASA Astrophysics Data System (ADS)

    Dalal, Shakeel S.

    Glasses are non-equilibrium materials which on short timescales behave like solids, and on long timescales betray their liquid-like structure. The most common way of preparing a glass is to cool the liquid faster than it can structurally rearrange. Until recently, most preparation schemes for a glass were considered to result in materials with undifferentiable structure and properties. This thesis utilizes a particular preparation method, physical vapor deposition, in order to prepare glasses of organic molecules with properties otherwise considered to be unobtainable. The glasses are characterized using spectroscopic ellipsometry, both as a dilatometric technique and as a reporter of molecular packing. The results reported here develop ellipsometry as a dilatometric technique on a pair of model glass formers, alpha,alpha,beta-trisnaphthylbenzene and indomethacin. It is found that the molecular orientation, as measured by birefringence, can be tuned by changing the substrate temperature during the deposition. In order to efficiently characterize the properties of vapor-deposited indomethacin as a function of substrate temperature, a high-throughput method is developed to capture the entire interesting range of substrate temperatures in just a few experiments. This high-throughput method is then leveraged to describe molecular mobility in vapor-deposited indomethacin. It is also used to demonstrate that the behavior of organic semiconducting molecules agrees with indomethacin quantitatively, and this agreement has implications for emerging technologies such as light-emitting diodes, photovoltaics and thin-film transistors made from organic molecules.

  16. Same items, different order: effects of temporal variability on infant categorization.

    PubMed

    Mather, Emily; Plunkett, Kim

    2011-06-01

    How does variability between members of a category influence infants' category learning? We explore the impact of the order in which different items are sampled on category formation. Two groups of 10-months-olds were presented with a series of exemplars to be organized into a single category. In a low distance group, the order of presentation minimized the perceptual distance between consecutive exemplars. In a high distance group, the order of presentation maximized the distance between successive exemplars. At test, only infants in the High Distance condition reliably discriminated between the category prototype and an atypical exemplar. Hence, the order in which infants learnt about the exemplars impacted their categorization performance. Our findings demonstrate the importance of moment-to-moment variations in similarity during infants' category learning. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Bioinformatics analysis of disordered proteins in prokaryotes.

    PubMed

    Pavlović-Lažetić, Gordana M; Mitić, Nenad S; Kovačević, Jovana J; Obradović, Zoran; Malkov, Saša N; Beljanski, Miloš V

    2011-03-02

    A significant number of proteins have been shown to be intrinsically disordered, meaning that they lack a fixed 3 D structure or contain regions that do not posses a well defined 3 D structure. It has also been proven that a protein's disorder content is related to its function. We have performed an exhaustive analysis and comparison of the disorder content of proteins from prokaryotic organisms (i.e., superkingdoms Archaea and Bacteria) with respect to functional categories they belong to, i.e., Clusters of Orthologous Groups of proteins (COGs) and groups of COGs-Cellular processes (Cp), Information storage and processing (Isp), Metabolism (Me) and Poorly characterized (Pc). We also analyzed the disorder content of proteins with respect to various genomic, metabolic and ecological characteristics of the organism they belong to. We used correlations and association rule mining in order to identify the most confident associations between specific modalities of the characteristics considered and disorder content. Bacteria are shown to have a somewhat higher level of protein disorder than archaea, except for proteins in the Me functional group. It is demonstrated that the Isp and Cp functional groups in particular (L-repair function and N-cell motility and secretion COGs of proteins in specific) possess the highest disorder content, while Me proteins, in general, posses the lowest. Disorder fractions have been confirmed to have the lowest level for the so-called order-promoting amino acids and the highest level for the so-called disorder promoters. For each pair of organism characteristics, specific modalities are identified with the maximum disorder proteins in the corresponding organisms, e.g., high genome size-high GC content organisms, facultative anaerobic-low GC content organisms, aerobic-high genome size organisms, etc. Maximum disorder in archaea is observed for high GC content-low genome size organisms, high GC content-facultative anaerobic or aquatic or mesophilic organisms, etc. Maximum disorder in bacteria is observed for high GC content-high genome size organisms, high genome size-aerobic organisms, etc. Some of the most reliable association rules mined establish relationships between high GC content and high protein disorder, medium GC content and both medium and low protein disorder, anaerobic organisms and medium protein disorder, Gammaproteobacteria and low protein disorder, etc. A web site Prokaryote Disorder Database has been designed and implemented at the address http://bioinfo.matf.bg.ac.rs/disorder, which contains complete results of the analysis of protein disorder performed for 296 prokaryotic completely sequenced genomes. Exhaustive disorder analysis has been performed by functional classes of proteins, for a larger dataset of prokaryotic organisms than previously done. Results obtained are well correlated to those previously published, with some extension in the range of disorder level and clear distinction between functional classes of proteins. Wide correlation and association analysis between protein disorder and genomic and ecological characteristics has been performed for the first time. The results obtained give insight into multi-relationships among the characteristics and protein disorder. Such analysis provides for better understanding of the evolutionary process and may be useful for taxon determination. The main drawback of the approach is the fact that the disorder considered has been predicted and not experimentally established.

  18. Effect of molecular mass on supramolecular organisation of poly(4,4''-dioctyl-2,2':5',2''-terthiophene).

    PubMed

    Jaroch, Tomasz; Knor, Marek; Nowakowski, Robert; Zagórska, Małgorzata; Proń, Adam

    2008-10-28

    The effect of the chain length on the type and extent of the 2D supramolecular organization in poly(4,4''-dioctyl-2,2':5',2''-terthiophene) (PDOTT) monomolecular layers deposited on highly oriented pyrolytic graphite (HOPG) is studied by scanning tunneling microscopy (STM) and analyzed in terms of molecular modeling. The strictly monodispersed fractions of increasing molecular mass used in this study were obtained by chromatographic fractionation of the crude product of 4,4''-dioctyl-2,2':5',2''-terthiophene oxidative polymerization. STM investigations of PDOTT layers, deposited on HOPG from poly- and monodispersed fractions, show that polydispersity can be considered as a key factor seriously limiting supramolecular ordering. This is a consequence of significant differences in the type of supramolecular order observed for molecules of different chain length. It has been demonstrated that shorter molecules (consisting of 6 and 9 thiophene units) form well-defined two-dimensional islands, while the interactions between longer molecules (consisting of 12 and 15 thiophene units) become anisotropic. Consequently, for higher molecular mass fractions, the supramolecular organization is one-dimensional and consists of more or less separated rows of ordered macromolecules. In this case an increase of the chain length leads to amplification of the intermolecular interactions proceeding via interdigitation of the alkyl substituents of adjacent molecules. Polydispersed fractions show much less ordered organization because of the incompatibility of the supramolecular structures of molecules of different molecular masses. This finding is of crucial importance for the application of polythiophene derivatives in organic and molecular electronics since ordered supramolecular organization constitutes the condition sine qua non of good electrical transport properties.

  19. Characteristics of individuals with high information potential in government research and development organizations.

    NASA Technical Reports Server (NTRS)

    Holland, W. E.

    1972-01-01

    In order to study focal individuals within informal communications networks, a special variable was constructed: information potential (IP) was defined as the information-source value placed on an individual by his colleagues. Four hypotheses involving IP were tested in three R&D organizations using questionnaires and pencil-and-paper tests. Results indicated that the individual with high IP used more and different sources of technical information, was seen to be a credible information source and to have a strong ability to associate seemingly unrelated ideas, and was as approachable as the other members of his organization. Four tentative conclusions may be drawn from this study concerning the person with high IP. He is (1) an identifiable individual in several different kinds of organizations; (2) a distinctive information transceiver (transmitter and receiver); (3) both a producer and a catalyst in his own organization; and (4) an extender and an amplifier of information search. To affect the efficiency of informal information flow, the research manager's best hope for positively influencing informal networks lies in the identification and motivation of the special communicators in his organization.

  20. Structural Ordering of Semiconducting Polymers and Small-Molecules for Organic Electronics

    NASA Astrophysics Data System (ADS)

    O'Hara, Kathryn Allison

    Semiconducting polymers and small-molecules can be readily incorporated into electronic devices such as organic photovoltaics (OPVs), thermoelectrics (OTEs), organic light emitting diodes (OLEDs), and organic thin film transistors (OTFTs). Organic materials offer the advantage of being processable from solution to form flexible and lightweight thin films. The molecular design, processing, and resulting thin film morphology of semiconducting polymers drastically affect the optical and electronic properties. Charge transport within films of semiconducting polymers relies on the nanoscale organization to ensure electronic coupling through overlap of molecular orbitals and to provide continuous transport pathways. While the angstrom-scale packing details can be studied using X-ray scattering methods, an understanding of the mesoscale, or the length scale over which smaller ordered regions connect, is much harder to achieve. Grain boundaries play an important role in semiconducting polymer thin films where the average grain size is much smaller than the total distance which charges must traverse in order to reach the electrodes in a device. The majority of semiconducting polymers adopt a lamellar packing structure in which the conjugated backbones align in parallel pi-stacks separated by the alkyl side-chains. Only two directions of transport are possible--along the conjugated backbone and in the pi-stacking direction. Currently, the discussion of transport between crystallites is centered around the idea of tie-chains, or "bridging" polymer chains connecting two ordered regions. However, as molecular structures become increasingly complex with the development of new donor-acceptor copolymers, additional forms of connectivity between ordered domains should be considered. High resolution transmission electron microscopy (HRTEM) is a powerful tool for directly imaging the crystalline grain boundaries in polymer and small-molecule thin films. Recently, structures comparable to quadrites were discovered in the semiconducting polymer, PSBTBT, where the angle of chain overlap could be predicted by the geometry of the backbone and alkyl side-chains. Such structures are hypothesized to improve the electronic connectivity and enable 3D transport. Now, it has been determined that another semiconducting polymer, PBDTTPD, forms cross-chain structures in thin films. PBDTTPD is a low band-gap donor-acceptor copolymer used in high efficiency OPVs. The effect of the alkyl side-chains on intercrystallite order is determined by examining three different derivatives of the PBDTTPD polymer with HRTEM. Additionally, the expansion and contraction of films during thermal annealing and slow cooling is monitored through in-situ grazing incidence wide-angle X-ray scattering (GIWAXS) measurements. Results show that minor variations in side-chain structure drive both crystallite orientation and the formation of crossed structures. Overall, these studies suggest design principles to continue to advance the field of organic electronics.

  1. Multi-layered nanocomposite dielectrics for high density organic memory devices

    NASA Astrophysics Data System (ADS)

    Kang, Moonyeong; Chung, Kyungwha; Baeg, Kang-Jun; Kim, Dong Ha; Kim, Choongik

    2015-01-01

    We fabricated organic memory devices with metal-pentacene-insulator-silicon structure which contain double dielectric layers comprising 3D pattern of Au nanoparticles (Au NPs) and block copolymer (PS-b-P2VP). The role of Au NPs is to charge/discharge carriers upon applied voltage, while block copolymer helps to form highly ordered Au NP patterns in the dielectric layer. Double-layered nanocomposite dielectrics enhanced the charge trap density (i.e., trapped charge per unit area) by Au NPs, resulting in increase of the memory window (ΔVth).

  2. Scanning Tunneling Microscopic Characterization of an Engineered Organic Molecule

    DTIC Science & Technology

    2011-08-01

    attachment and wide-band MCT detector , was used. Figure 3 shows the spectra obtained for SAM of PMNBT (top), which was compared to raw crystal PMNBT...averaged in order to reduce random noise , especially in the high bias region. Figure 4d shows the average second-order STM I-V curves of each molecule...done to avoid the low signal-to- noise ratio regime of the STM (18). Our estimated value of go for dDT is about two orders of magnitude smaller than

  3. The organization of perception and action in complex control skills

    NASA Technical Reports Server (NTRS)

    Miller, Richard A.; Jagacinski, Richard J.

    1989-01-01

    An attempt was made to describe the perceptual, cognitive, and action processes that account for highly skilled human performance in complex task environments. In order to study such a performance in a controlled setting, a laboratory task was constructed and three experiments were performed using human subjects. A general framework was developed for describing the organization of perceptual, cognitive, and action process.

  4. High temperature two component explosive

    DOEpatents

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  5. Highly Pristine Organic Matter in a Xenolith Clast in the Zag H Chrondrite

    NASA Technical Reports Server (NTRS)

    Kebukawa, Y.; Ito, M.; Zolensky, M. E.; Nakato, A.; Suga, H.; Takahashi, Y.; Takeichi, Y.; Mase, K.; Chan, Q.; Fries, M.; hide

    2017-01-01

    The Zag meteorite is a halite-bearing H3-6 chondrite [1]. We have been studying a dark Zag clast with abundant organic matter [2,3], which was proposed to be from Ceres [4,5]. Therefore, our systematic research of the Zag clast may provide an important linkage to the recent remote sensing observations obtained by the DAWN mission to Ceres. We prepared a new sub-sample of this clast for coordinated organic analysis by STXM-XANES and NanoSIMS, in order to understand the nature and origin of the organic matter.

  6. Evolution viewed from physics, physiology and medicine.

    PubMed

    Noble, Denis

    2017-10-06

    Stochasticity is harnessed by organisms to generate functionality. Randomness does not, therefore, necessarily imply lack of function or 'blind chance' at higher levels. In this respect, biology must resemble physics in generating order from disorder. This fact is contrary to Schrödinger's idea of biology generating phenotypic order from molecular- level order, which inspired the central dogma of molecular biology. The order originates at higher levels, which constrain the components at lower levels. We now know that this includes the genome, which is controlled by patterns of transcription factors and various epigenetic and reorganization mechanisms. These processes can occur in response to environmental stress, so that the genome becomes 'a highly sensitive organ of the cell' (McClintock). Organisms have evolved to be able to cope with many variations at the molecular level. Organisms also make use of physical processes in evolution and development when it is possible to arrive at functional development without the necessity to store all information in DNA sequences. This view of development and evolution differs radically from that of neo-Darwinism with its emphasis on blind chance as the origin of variation. Blind chance is necessary, but the origin of functional variation is not at the molecular level. These observations derive from and reinforce the principle of biological relativity, which holds that there is no privileged level of causation. They also have important implications for medical science.

  7. Growth of thin films of dicyanovinylanisole on quartz and teflon-coated quartz by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Pearson, Earl F.

    1994-01-01

    Organic compounds offer the possibility of molecular engineering in order to optimize the nonlinearity and minimize damage due to the high-power lasers used in nonlinear optical devices. Recently dicyanovinylanisole (DIVA), ((2-methoxyphenyl) methylenepropanedinitrile) has been shown to have a second order nonlinearity 40 times that of alpha-quartz. Debe et. al. have shown that a high degree of orientational order exists for thin films of phthalocyanine grown by physical vapor transport in microgravity. The microgravity environment eliminates convective flow and was critical to the formation of highly ordered dense continuous films in these samples. This work seeks to discover the parameters necessary for the production of thin continuous films of high optical quality in Earth gravity. These parameters must be known before the experiment can be planned for growing DIVA in a microgravity environment. The microgravity grown films are expected to be denser and of better optical quality than the unit gravity films as was observed in the phthalocyanine films.

  8. High-order synchronization of hair cell bundles

    NASA Astrophysics Data System (ADS)

    Levy, Michael; Molzon, Adrian; Lee, Jae-Hyun; Kim, Ji-Wook; Cheon, Jinwoo; Bozovic, Dolores

    2016-12-01

    Auditory and vestibular hair cell bundles exhibit active mechanical oscillations at natural frequencies that are typically lower than the detection range of the corresponding end organs. We explore how these noisy nonlinear oscillators mode-lock to frequencies higher than their internal clocks. A nanomagnetic technique is used to stimulate the bundles without an imposed mechanical load. The evoked response shows regimes of high-order mode-locking. Exploring a broad range of stimulus frequencies and intensities, we observe regions of high-order synchronization, analogous to Arnold Tongues in dynamical systems literature. Significant areas of overlap occur between synchronization regimes, with the bundle intermittently flickering between different winding numbers. We demonstrate how an ensemble of these noisy spontaneous oscillators could be entrained to efficiently detect signals significantly above the characteristic frequencies of the individual cells.

  9. Chromosome diversity and similarity within the Actinomycetales.

    PubMed

    Kirby, Ralph

    2011-06-01

    Many chromosomes from Actinomycetales, an order within the Actinobacteria, have been sequenced over the last 10 years and the pace is increasing. This group of Gram-positive and high G+C% bacteria is economically and medically important. However, this group of organisms also is just about the only order in the kingdom Bacteria to have a relatively high proportion of linear chromosomes. Chromosome topology varies within the order according to the genera. Streptomyces, Kitasatospora and Rhodococcus, at least as chromosome sequencing stands at present, have a very high proportion of linear chromosomes, whereas most other genera seem to have circular chromosomes. This review examines chromosome topology across the Actinomycetales and how this affects our concepts of chromosome evolution. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. High-order synchronization of hair cell bundles

    PubMed Central

    Levy, Michael; Molzon, Adrian; Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo; Bozovic, Dolores

    2016-01-01

    Auditory and vestibular hair cell bundles exhibit active mechanical oscillations at natural frequencies that are typically lower than the detection range of the corresponding end organs. We explore how these noisy nonlinear oscillators mode-lock to frequencies higher than their internal clocks. A nanomagnetic technique is used to stimulate the bundles without an imposed mechanical load. The evoked response shows regimes of high-order mode-locking. Exploring a broad range of stimulus frequencies and intensities, we observe regions of high-order synchronization, analogous to Arnold Tongues in dynamical systems literature. Significant areas of overlap occur between synchronization regimes, with the bundle intermittently flickering between different winding numbers. We demonstrate how an ensemble of these noisy spontaneous oscillators could be entrained to efficiently detect signals significantly above the characteristic frequencies of the individual cells. PMID:27974743

  11. Precisely cyclic sand: self-organization of periodically sheared frictional grains.

    PubMed

    Royer, John R; Chaikin, Paul M

    2015-01-06

    The disordered static structure and chaotic dynamics of frictional granular matter has occupied scientists for centuries, yet there are few organizational principles or guiding rules for this highly hysteretic, dissipative material. We show that cyclic shear of a granular material leads to dynamic self-organization into several phases with different spatial and temporal order. Using numerical simulations, we present a phase diagram in strain-friction space that shows chaotic dispersion, crystal formation, vortex patterns, and most unusually a disordered phase in which each particle precisely retraces its unique path. However, the system is not reversible. Rather, the trajectory of each particle, and the entire frictional, many-degrees-of-freedom system, organizes itself into a limit cycle absorbing state. Of particular note is that fact that the cyclic states are spatially disordered, whereas the ordered states are chaotic.

  12. Precisely cyclic sand: Self-organization of periodically sheared frictional grains

    PubMed Central

    Royer, John R.; Chaikin, Paul M.

    2015-01-01

    The disordered static structure and chaotic dynamics of frictional granular matter has occupied scientists for centuries, yet there are few organizational principles or guiding rules for this highly hysteretic, dissipative material. We show that cyclic shear of a granular material leads to dynamic self-organization into several phases with different spatial and temporal order. Using numerical simulations, we present a phase diagram in strain–friction space that shows chaotic dispersion, crystal formation, vortex patterns, and most unusually a disordered phase in which each particle precisely retraces its unique path. However, the system is not reversible. Rather, the trajectory of each particle, and the entire frictional, many–degrees-of-freedom system, organizes itself into a limit cycle absorbing state. Of particular note is that fact that the cyclic states are spatially disordered, whereas the ordered states are chaotic. PMID:25538298

  13. Knight Commission to Fight High Salaries and Recruiting Pressures

    ERIC Educational Resources Information Center

    Wolverton, Brad; Lipka, Sara

    2007-01-01

    Last week, commissioners of the Knight Foundation Commission on Intercollegiate Athletics organized a meeting to tackle recruiting problems and gender inequalities in college sports, but another topic--the high pay of football and men's basketball coaches--came up repeatedly. This article reports on what the commission intends to do in order to…

  14. The commensurate-to-incommensurate phase transition of an organic monolayer: A high resolution LEED analysis of the superstructures of NTCDA on Ag(1 1 1)

    NASA Astrophysics Data System (ADS)

    Kilian, L.; Stahl, U.; Kossev, I.; Sokolowski, M.; Fink, R.; Umbach, E.

    2008-07-01

    The structural order of 1,4,9,10-naphthalene-tetracarboxylicacid-dianhydride (NTCDA) monolayers on Ag(1 1 1) has been investigated by spot profile analysis low energy electron diffraction (SPA-LEED). For increasing coverage, we find a sequence of three highly ordered structures: a commensurate structure (α), a uniaxially incommensurate structure (α 2), and an incommensurate structure (β) with coverages of 0.9 ML, 0.95 ML, and 1 (saturated) monolayer (ML), respectively. In the high coverage regime, the structures coexist and a coverage increase causes a change of their relative fractions. The α and β structures were known before [U. Stahl, D. Gador, A. Soukopp, R. Fink, E. Umbach, Surf. Sci. 414 (1998) 423], but the β structure was proposed as commensurate, since its very small misfit with respect to a commensurate structure could not be resolved. This misfit leads to a periodic modulation, causing additional Moiré satellites in the diffraction pattern. This finding demonstrates the importance of high resolution methods for the geometry determination of large organic adsorbates.

  15. Polydiacetylene thin films for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Paley, Mark S.

    1993-01-01

    One very promising class of organic compounds for nonlinear optical (NLO) applications are polydiacetylenes, which are novel in that they are highly conjugated polymers which can also be crystalline. Polydiacetylenes offer several advantages over other organic materials: because of their highly conjugated electronic structures, they are capable of possessing large optical nonlinearities with fast response times; because they are crystalline, they can be highly ordered, which is essential for optimizing their NLO properties; and, last, because they are polymeric, they can be formed as thin films, which are useful for device fabrication. We have actively been carrying out ground-based research on several compounds of interest.

  16. Ordered array of CoPc-vacancies filled with single-molecule rotors

    NASA Astrophysics Data System (ADS)

    Xie, Zheng-Bo; Wang, Ya-Li; Tao, Min-Long; Sun, Kai; Tu, Yu-Bing; Yuan, Hong-Kuan; Wang, Jun-Zhong

    2018-05-01

    We report the highly ordered array of CoPc-vacancies and the single-molecule rotors inside the vacancies. When CoPc molecules are deposited on Cd(0001) at low-temperature, three types of molecular vacancies appeared randomly in the CoPc monolayer. Annealing the sample to higher temperature leads to the spontaneous phase separation and self-organized arrangement of the vacancies. Highly ordered arrays of two-molecule vacancies and single-molecule vacancies have been obtained. In particular, there is a rotating CoPc molecule inside each single-molecule vacancy, which constitutes the array of single-molecule rotors. These results provide a new routine to fabricate the nano-machines on a large scale.

  17. Plasmonic complex fluids of nematiclike and helicoidal self-assemblies of gold nanorods with a negative order parameter.

    PubMed

    Liu, Qingkun; Senyuk, Bohdan; Tang, Jianwei; Lee, Taewoo; Qian, Jun; He, Sailing; Smalyukh, Ivan I

    2012-08-24

    We describe a soft matter system of self-organized oblate micelles and plasmonic gold nanorods that exhibit a negative orientational order parameter. Because of anisotropic surface anchoring interactions, colloidal gold nanorods tend to align perpendicular to the director describing the average orientation of normals to the discoidal micelles. Helicoidal structures of highly concentrated nanorods with a negative order parameter are realized by adding a chiral additive and are further controlled by means of confinement and mechanical stress. Polarization-sensitive absorption, scattering, and two-photon luminescence are used to characterize orientations and spatial distributions of nanorods. Self-alignment and effective-medium optical properties of these hybrid inorganic-organic complex fluids match predictions of a simple model based on anisotropic surface anchoring interactions of nanorods with the structured host medium.

  18. Two-Dimensional Ordering of Solute Nanoclusters at a Close-Packed Stacking Fault: Modeling and Experimental Analysis

    PubMed Central

    Kimizuka, Hajime; Kurokawa, Shu; Yamaguchi, Akihiro; Sakai, Akira; Ogata, Shigenobu

    2014-01-01

    Predicting the equilibrium ordered structures at internal interfaces, especially in the case of nanometer-scale chemical heterogeneities, is an ongoing challenge in materials science. In this study, we established an ab-initio coarse-grained modeling technique for describing the phase-like behavior of a close-packed stacking-fault-type interface containing solute nanoclusters, which undergo a two-dimensional disorder-order transition, depending on the temperature and composition. Notably, this approach can predict the two-dimensional medium-range ordering in the nanocluster arrays realized in Mg-based alloys, in a manner consistent with scanning tunneling microscopy-based measurements. We predicted that the repulsively interacting solute-cluster system undergoes a continuous evolution into a highly ordered densely packed morphology while maintaining a high degree of six-fold orientational order, which is attributable mainly to an entropic effect. The uncovered interaction-dependent ordering properties may be useful for the design of nanostructured materials utilizing the self-organization of two-dimensional nanocluster arrays in the close-packed interfaces. PMID:25471232

  19. High-performance liquid chromatographic separations of stereoisomers of chiral basic agrochemicals with polysaccharide-based chiral columns and polar organic mobile phases.

    PubMed

    Matarashvili, Iza; Shvangiradze, Iamze; Chankvetadze, Lali; Sidamonidze, Shota; Takaishvili, Nino; Farkas, Tivadar; Chankvetadze, Bezhan

    2015-12-01

    The separation of the stereoisomers of 23 chiral basic agrochemicals was studied on six different polysaccharide-based chiral columns in high-performance liquid chromatography with various polar organic mobile phases. Along with the successful separation of analyte stereoisomers, emphasis was placed on the effect of the chiral selector and mobile phase composition on the elution order of stereoisomers. The interesting phenomenon of reversal of enantiomer/stereoisomer elution order function of the polysaccharide backbone (cellulose or amylose), type of derivative (carbamate or benzoate), nature, and position of the substituent(s) in the phenylcarbamate moiety (methyl or chloro) and the nature of the mobile phase was observed. For several of the analytes containing two chiral centers all four stereoisomers were resolved with at least one chiral selector/mobile phase combination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ebeling, Daniel; Zhong, Qigang; Ahles, Sebastian; Chi, Lifeng; Wegner, Hermann A.; Schirmeisen, André

    2017-05-01

    We demonstrate the ability of resolving the chemical structure of single organic molecules using non-contact atomic force microscopy with higher normal eigenmodes of quartz tuning fork sensors. In order to achieve submolecular resolution, CO-functionalized tips at low temperatures are used. The tuning fork sensors are operated in ultrahigh vacuum in the frequency modulation mode by exciting either their first or second eigenmode. Despite the high effective spring constant of the second eigenmode (on the order of several tens of kN/m), the force sensitivity is sufficiently high to achieve atomic resolution above the organic molecules. This is observed for two different tuning fork sensors with different tip geometries (small tip vs. large tip). These results represent an important step towards resolving the chemical structure of single molecules with multifrequency atomic force microscopy techniques where two or more eigenmodes are driven simultaneously.

  1. Electrochemical treatment of aqueous solutions of organic pollutants by electro-Fenton with natural heterogeneous catalysts under pressure using Ti/IrO2-Ta2O5 or BDD anodes.

    PubMed

    Ltaïef, Aziza Hadj; Sabatino, Simona; Proietto, Federica; Ammar, Salah; Gadri, Abdellatif; Galia, Alessandro; Scialdone, Onofrio

    2018-07-01

    The treatment of toxic organic pollutants by electro-Fenton (EF) presents some drawbacks such as the necessity to work at low pH and the low solubility of oxygen in water contacted with air or oxygen at room pressure that results often in slow and relatively low abatements. Here, the coupled adoption of natural heterogeneous catalysts and of relatively high pressure was proposed in order to improve the performances of EF for the treatment of organic pollutants. Caffeic acid (CA) and 3-chlorophenol were used as model resistant organic pollutants. EF process was performed using both conventional homogeneous FeSO 4 and natural heterogeneous catalysts (pyrite, chalcopyrite, Fe 2 O 3 and Fe 3 O 4 ) as iron catalysts and oxygen at various pressures in the absence or in the presence of BDD anode. The effect of the nature of the catalyst, the oxygen pressure, the current density and the catalyst load was widely investigated in order to optimize the process. It was shown that the coupled utilization of a natural heterogeneous catalyst such as chalcopyrite and a relatively high pressure allows to obtain the total removal of CA and a high removal of the TOC (about 75%) in short times (2 h) with relatively high current efficiencies using an Iridium based anode. In the case of 3-chlorophenol, the utilization of a BDD anode was necessary to achieve a high removal of the pollutant and the TOC. It was shown that the removal of 3-chlorophenol can be effectively performed in different water bodies and with different initial concentrations of 3-chlorophenol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Characterization of organic material in ice core samples from North America, Greenland, and Antarctica using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Catanzano, V.; Grannas, A. M.; Sleighter, R. L.; Hatcher, P. G.

    2013-12-01

    Historically, it has been an analytical challenge to detect and identify the organic components present in ice cores, due to the low abundance of organic carbon. In order to detect and characterize the small amounts of organic matter in ice cores, ultra high resolution instrumentation is required. Here we report the use of ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry, coupled with electrospray ionization, to identify the molecular formulas and compound classes of organic matter in both modern and ancient ice core and glacial samples from Wyoming, Greenland, and Antarctica. A suite of 21 samples were analyzed and thousands of distinct molecular species were identified in each sample, providing clues to the nature and sources of organic matter in these regions. Major biochemical classes of compounds were detected such as lignins, tannins, carbohydrates, proteins, lipids, unsaturated hydrocarbons, and condensed aromatic compounds. We will compare the nature of the organic matter present in the samples in order to determine the differences in dominant organic compound classes and in heteroatom (nitrogen and sulfur) abundance. By analyzing these differences, it is possible to investigate the historical patterns of organic matter deposition/source, and begin to investigate the influence of climate change, volcanism, and onset of the industrial revolution on the nature of organic matter preserved in ice cores.

  3. [Effects of low molecular weight organic acids on redox reactions of mercury].

    PubMed

    Zhao, Shi-Bo; Sun, Rong-Guo; Wang, Ding-Yong; Wang, Xiao-Wen; Zhang, Cheng

    2014-06-01

    To study the effects of the main component of vegetation root exudates-low molecular weight organic acids on the redox reactions of mercury, laboratory experiments were conducted to investigate the roles of tartaric, citric, and succinic acid in the redox reactions of mercury, and to analyze their interaction mechanism. The results indicated that tartaric acid significantly stimulated the mercury reduction reaction, while citric acid had inhibitory effect. Succinic acid improved the reduction rate at low concentration, and inhibited the reaction at high concentration. The mercury reduction rate by tartaric acid treatment was second-order with respect to Hg2+ concentration, ranging from 0.0014 L x (ng x min)(-1) to 0.005 6 L x (ng x min)(-1). All three organic acids showed a capacity for oxidating Hg(0) in the early stage, but the oxidized Hg(0) was subsequently reduced. The oxidation capacity of the three organic acids was in the order of citric acid > tartaric acid > succinic acid.

  4. Durum wheat (Triticum turgidum spp. durum, cultivar Senatore Cappelli) production systems effects on grain and flours functional properties under Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Cavoski, Ivana; Turk, Jelena; Chami, Ziad Al

    2015-04-01

    The main goal of organic farming is the "production of high quality products". Integrity and vital quality of products should be preserved along the entire production chain. In order to evaluate the effect of organic vs. conventional production systems on durum wheat phenolic acids and antioxidant activity open field experiment has been carried out. During the whole process chain from field to fork, there are various factors influencing the quality of the end product. Organic production should rely on genotypes with high nitrogen use efficiency, disease and pest resistance, weed competitiveness and tolerance especially under Mediterranean conditions. In this study, production systems differed according to the practices and inputs applied to manage the soil fertility and plant protection. In conventional system, synthetic fertilizers and pesticides were used. Whereas, in the two organic systems, cow manure with fertilizers and temporary intercropping with fava bean (Vicia faba) and fertilizers were used to manage soil fertility. Biopesticides were used for plant protection for organic systems. One treatment without inputs was used as a control in order to evaluate environmental site and cultivar effect. Quantity of free, free and conjugated and bounded phenolic acids were evaluated in relation to overall quality and production systems. In addition, antioxidant capacities of each fraction by different assays were assessed. The organic production method assured higher overall quality in paricular functional properties compared to the conventional one. Therefore, understanding the functional links between production systems variables and physiological responses is essential to improve and standardize the quality of organic durum wheat products. Keywords: organic farming, soil fertility management, phenolic acids, antioxidant activity.

  5. Positioning and joining of organic single-crystalline wires

    PubMed Central

    Wu, Yuchen; Feng, Jiangang; Jiang, Xiangyu; Zhang, Zhen; Wang, Xuedong; Su, Bin; Jiang, Lei

    2015-01-01

    Organic single-crystal, one-dimensional materials can effectively carry charges and/or excitons due to their highly ordered molecule packing, minimized defects and eliminated grain boundaries. Controlling the alignment/position of organic single-crystal one-dimensional architectures would allow on-demand photon/electron transport, which is a prerequisite in waveguides and other optoelectronic applications. Here we report a guided physical vapour transport technique to control the growth, alignment and positioning of organic single-crystal wires with the guidance of pillar-structured substrates. Submicrometre-wide, hundreds of micrometres long, highly aligned, organic single-crystal wire arrays are generated. Furthermore, these organic single-crystal wires can be joined within controlled angles by varying the pillar geometries. Owing to the controllable growth of organic single-crystal one-dimensional architectures, we can present proof-of-principle demonstrations utilizing joined wires to allow optical waveguide through small radii of curvature (internal angles of ~90–120°). Our methodology may open a route to control the growth of organic single-crystal one-dimensional materials with potential applications in optoelectronics. PMID:25814032

  6. Sorption of Cu and Zn in low organic matter-soils as influenced by soil properties and by the degree of soil weathering.

    PubMed

    Antoniadis, V; Golia, E E

    2015-11-01

    Copper and Zn sorption and desorption, among other factors, depend on soil pH, but in soils with different degree of weathering the role of other soil properties (e.g., oxides content and the level of their crystallinity) has not been thoroughly examined. We conducted batch sorption and desorption tests using 21 low-organic C soils that belonged to the soil orders of Entisols, newly developed soils, Inceptisols, and Alfisols, the most weathered soils. Zinc sorption was lower than that of Cu, and its desorption faster, confirming that it is a highly mobile metal. Alfisols had the weaker affinity for metals, due to the lower soil pH typical of this soil order, but also due to the low reactivity colloids they contained. Correlation analyses showed that Fe oxides in Alfisols increased metal release from soils, while they decreased metal desorption from Entisols. We conclude that in low organic matter-content soils, where the protective role of organic colloids is not to be expected, high soil pH alone is not sufficient to protect against metal contamination, but the degree of soil weathering is also important, due to the dominant role of other mineral phases (here, Fe oxides). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces.

    PubMed

    Ölçeroğlu, Emre; McCarthy, Matthew

    2016-03-02

    Superhydrophobic surfaces enhance condensation by inhibiting the formation of an insulating liquid layer. While this produces efficient heat transfer at low supersaturations, superhydrophobicity has been shown to break down at increased supersaturations. As heat transfer increases, the random distribution and high density of nucleation sites produces pinned droplets, which lead to uncontrollable flooding. In this work, engineered variations in wettability are used to promote the self-organization of microscale droplets, which is shown to effectively delay flooding. Virus-templated superhydrophobic surfaces are patterned with an array of superhydrophilic islands designed to minimize surface adhesion while promoting spatial order. By use of optical and electron microscopy, the surfaces are optimized and characterized during condensation. Mixed wettability imparts spatial order not only through preferential nucleation but more importantly through the self-organization of coalescing droplets at high supersaturations. The self-organization of microscale droplets (diameters of <25 μm) is shown to effectively delay flooding and govern the global wetting behavior of larger droplets (diameters of >1 mm) on the surface. As heat transfer increases, the surfaces transition from jumping-mode to shedding-mode removal with no flooding. This demonstrates the ability to engineer surfaces to resist flooding and can act as the basis for developing robust superhydrophobic surfaces for condensation applications.

  8. Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage.

    PubMed

    Xu, Fei; Xu, Hong; Chen, Xiong; Wu, Dingcai; Wu, Yang; Liu, Hao; Gu, Cheng; Fu, Ruowen; Jiang, Donglin

    2015-06-01

    Ordered π-columns and open nanochannels found in covalent organic frameworks (COFs) could render them able to store electric energy. However, the synthetic difficulty in achieving redox-active skeletons has thus far restricted their potential for energy storage. A general strategy is presented for converting a conventional COF into an outstanding platform for energy storage through post-synthetic functionalization with organic radicals. The radical frameworks with openly accessible polyradicals immobilized on the pore walls undergo rapid and reversible redox reactions, leading to capacitive energy storage with high capacitance, high-rate kinetics, and robust cycle stability. The results suggest that channel-wall functional engineering with redox-active species will be a facile and versatile strategy to explore COFs for energy storage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mass spectrometric airborne measurements of submicron aerosol and cloud residual composition in tropic deep convection during ACRIDICON-CHUVA

    NASA Astrophysics Data System (ADS)

    Schulz, Christiane; Schneider, Johannes; Mertes, Stephan; Kästner, Udo; Weinzierl, Bernadett; Sauer, Daniel; Fütterer, Daniel; Walser, Adrian; Borrmann, Stephan

    2015-04-01

    Airborne measurements of submicron aerosol and cloud particles were conducted in the region of Manaus (Amazonas, Brazil) during the ACRIDICON-CHUVA campaign in September 2014. ACRIDICON-CHUVA aimed at the investigation of convective cloud systems in order to get a better understanding and quantification of aerosol-cloud-interactions and radiative effects of convective clouds. For that, data from airborne measurements within convective cloud systems are combined with satellite and ground-based data. We used a C-ToF-AMS (Compact-Time-of-Flight-Aerosol-Mass-Spectrometer) to obtain information on aerosol composition and vertical profiles of different aerosol species, like organics, sulphate, nitrate, ammonium and chloride. The instrument was operated behind two different inlets: The HASI (HALO Aerosol Submicrometer Inlet) samples aerosol particles, whereas the CVI (Counterflow Virtual Impactor) samples cloud droplets and ice particles during in-cloud measurements, such that cloud residual particles can be analyzed. Differences in aerosol composition inside and outside of clouds and cloud properties over forested or deforested region were investigated. Additionally, the in- and outflow of convective clouds was sampled on dedicated cloud missions in order to study the evolution of the clouds and the processing of aerosol particles. First results show high organic aerosol mass concentrations (typically 15 μg/m3 and during one flight up to 25 μg/m3). Although high amounts of organic aerosol in tropic air over rainforest regions were expected, such high mass concentrations were not anticipated. Next to that, high sulphate aerosol mass concentrations (about 4 μg/m3) were measured at low altitudes (up to 5 km). During some flights organic and nitrate aerosol was observed with higher mass concentrations at high altitudes (10-12 km) than at lower altitudes, indicating redistribution of boundary layer particles by convection. The cloud residuals measured during in-cloud sampling through the CVI contained mainly organic material and, to a lesser extent, nitrate.

  10. Biodistribution of doxorubicin and nanostructured ferrocarbon carrier particles in organism during magnetically controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Anatoly A.; Filippov, Victor I.; Nikolskaya, Tatiana A.; Budko, Andrei P.; Kovarskii, Alexander L.; Zontov, Sergei V.; Kogan, Boris Ya.; Kuznetsov, Oleg A.

    2009-05-01

    Biodistribution of doxorubicin and ferrocarbon carrier particles in organism during and after magnetically controlled anti-tumor drug delivery and deposition was studied. Animal tests show high concentration of the cytostatic drug in the target zone, while its concentration is three orders of magnitude lower in bloodstream and other organs. A significant depot of the drug remains on the deposited particles days after the procedure. Macrophages actively phagocytose the ferrocarbon (FeC) particles and remain viable long enough to carry them to the lymph nodes.

  11. Self-organization of colloidal PbS quantum dots into highly ordered superlattices.

    PubMed

    Baranov, Alexander V; Ushakova, Elena V; Golubkov, Valery V; Litvin, Aleksandr P; Parfenov, Peter S; Fedorov, Anatoly V; Berwick, Kevin

    2015-01-13

    X-ray structural analysis, together with steady-state and transient optical spectroscopy, is used for studying the morphology and optical properties of quantum dot superlattices (QDSLs) formed on glass substrates by the self-organization of PbS quantum dots with a variety of surface ligands. The diameter of the PbS QDs varies from 2.8 to 8.9 nm. The QDSL's period is proportional to the dot diameter, increasing slightly with dot size due to the increase in ligand layer thickness. Removal of the ligands has a number of effects on the morphology of QDSLs formed from the dots of different sizes: for small QDs the reduction in the amount of ligands obstructs the self-organization process, impairing the ordering of the QDSLs, while for large QDs the ordering of the superlattice structure is improved, with an interdot distance as low as 0.4 nm allowing rapid charge carrier transport through the QDSLs. QDSL formation does not induce significant changes to the absorption and photoluminescence spectra of the QDs. However, the luminescence decay time is reduced dramatically, due to the appearance of nonradiative relaxation channels.

  12. What is soil organic matter worth?

    PubMed

    Sparling, G P; Wheeler, D; Vesely, E-T; Schipper, L A

    2006-01-01

    The conservation and restoration of soil organic matter are often advocated because of the generally beneficial effects on soil attributes for plant growth and crop production. More recently, organic matter has become important as a terrestrial sink and store for C and N. We have attempted to derive a monetary value of soil organic matter for crop production and storage functions in three contrasting New Zealand soil orders (Gley, Melanic, and Granular Soils). Soil chemical and physical characteristics of real-life examples of three pairs of matched soils with low organic matter contents (after long-term continuous cropping for vegetables or maize) or high organic matter content (continuous pasture) were used as input data for a pasture (grass-clover) production model. The differences in pasture dry matter yields (non-irrigated) were calculated for three climate scenarios (wet, dry, and average years) and the yields converted to an equivalent weight and financial value of milk solids. We also estimated the hypothetical value of the C and N sequestered during the recovery phase of the low organic matter content soils assuming trading with C and N credits. For all three soil orders, and for the three climate scenarios, pasture dry matter yields were decreased in the soils with lower organic matter contents. The extra organic matter in the high C soils was estimated to be worth NZ$27 to NZ$150 ha(-1) yr(-1) in terms of increased milk solids production. The decreased yields from the previously cropped soils were predicted to persist for 36 to 125 yr, but with declining effect as organic matter gradually recovered, giving an accumulated loss in pastoral production worth around NZ$518 to NZ$1239 ha(-1). This was 42 to 73 times lower than the hypothetical value of the organic matter as a sequestering agent for C and N, which varied between NZ$22,963 to NZ$90,849 depending on the soil, region, discount rates, and values used for carbon and nitrogen credits.

  13. Thermal stability and molecular ordering of organic semiconductor monolayers: effect of an anchor group.

    PubMed

    Jones, Andrew O F; Knauer, Philipp; Resel, Roland; Ringk, Andreas; Strohriegl, Peter; Werzer, Oliver; Sferrazza, Michele

    2015-06-08

    The thermal stability and molecular order in monolayers of two organic semiconductors, PBI-PA and PBI-alkyl, based on perylene derivatives with an identical molecular structure except for an anchor group for attachment to the substrate in PBI-PA, are reported. In situ X-ray reflectivity measurements are used to follow the stability of these monolayers in terms of order and thickness as temperature is increased. Films have thicknesses corresponding approximately to the length of one molecule; molecules stand upright on the substrate with a defined structure. PBI-PA monolayers have a high degree of order at room temperature and a stable film exists up to 250 °C, but decomposes rapidly above 300 °C. In contrast, stable physisorbed PBI-alkyl monolayers only exist up to 100 °C. Above the bulk melting point at 200 °C no more order exists. The results encourage using anchor groups in monolayers for various applications as it allows enhanced stability at the interface with the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Intrinsic Charge Transport in Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Podzorov, Vitaly

    2005-03-01

    Organic field-effect transistors (OFETs) are essential components of modern electronics. Despite the rapid progress of organic electronics, understanding of fundamental aspects of the charge transport in organic devices is still lacking. Recently, the OFETs based on highly ordered organic crystals have been fabricated with innovative techniques that preserve the high quality of single-crystal organic surfaces. This technological progress facilitated the study of transport mechanisms in organic semiconductors [1-4]. It has been demonstrated that the intrinsic polaronic transport, not dominated by disorder, with a remarkably high mobility of ``holes'' μ = 20 cm^2/Vs can be achieved in these devices at room temperature [4]. The signatures of the intrinsic polaronic transport are the anisotropy of the carrier mobility and an increase of μ with cooling. These and other aspects of the charge transport in organic single-crystal FETs will be discussed. Co-authors are Etienne Menard, University of Illinois at Urbana Champaign; Valery Kiryukhin, Rutgers University; John Rogers, University of Illinois at Urbana Champaign; Michael Gershenson, Rutgers University. [1] V. Podzorov et al., Appl. Phys. Lett. 82, 1739 (2003); ibid. 83, 3504 (2003). [2] V. C. Sundar et al., Science 303, 1644 (2004). [3] R. W. I. de Boer et al., Phys. Stat. Sol. (a) 201, 1302 (2004). [4] V. Podzorov et al., Phys. Rev. Lett. 93, 086602 (2004).

  15. 75 FR 50019 - Self-Regulatory Organizations; EDGX Exchange, Inc.; Order Approving Proposed Rule Change to Amend...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... was subject to significant competitive pressure to act equitably, fairly, and reasonably in setting the physical port fees, in light of the highly competitive nature of the market for execution and...

  16. Toward tunable doping in graphene FETs by molecular self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Li, Bing; Klekachev, Alexander V.; Cantoro, Mirco; Huyghebaert, Cedric; Stesmans, André; Asselberghs, Inge; de Gendt, Stefan; de Feyter, Steven

    2013-09-01

    In this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices. The doping levels are tunable by varying the OA deposition conditions. Importantly, neither hole nor electron mobilities are decreased by the OA modification. As a benefit from this noncovalent modification strategy, the pristine characteristics of the device are recoverable upon OA removal. From this study, one can envision the possibility to correlate the graphene-based device performance with the molecular structure and supramolecular ordering of the organic dopant.In this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices. The doping levels are tunable by varying the OA deposition conditions. Importantly, neither hole nor electron mobilities are decreased by the OA modification. As a benefit from this noncovalent modification strategy, the pristine characteristics of the device are recoverable upon OA removal. From this study, one can envision the possibility to correlate the graphene-based device performance with the molecular structure and supramolecular ordering of the organic dopant. Electronic supplementary information (ESI) available: AFM images of self-assembled monolayers of OA on HOPG; AFM height image of the graphene surface on a SiC substrate; high resolution STM image of a self-assembled monolayer of OA on HOPG; transfer curves of a graphene FET with and without baking steps; transfer curves of a graphene FET under high vacuum conditions; transfer curves of a graphene FET and its Raman response before and after OA treatment; transfer curves of a graphene FET before and after rinsing with n-hexane. See DOI: 10.1039/c3nr01255g

  17. Investigation of second-order hyperpolarizability of some organic compounds

    NASA Astrophysics Data System (ADS)

    Tajalli, H.; Zirak, P.; Ahmadi, S.

    2003-04-01

    In this work, we have measured the second order hyperpolarizability of some organic materials with (EFISH) method and also calculated the second order hyperpolarizability of 13 organic compound with Mopac6 software and investigated the different factors that affect the amount of second order hyperpolarizability and ways to increase it.

  18. Tuning polarity and improving charge transport in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Oh, Joon Hak; Han, A.-Reum; Yu, Hojeong; Lee, Eun Kwang; Jang, Moon Jeong

    2013-09-01

    Although state-of-the-art ambipolar polymer semiconductors have been extensively reported in recent years, highperformance ambipolar polymers with tunable dominant polarity are still required to realize on-demand, target-specific, high-performance organic circuitry. Herein, dithienyl-diketopyrrolopyrrole (TDPP)-based polymer semiconductors with engineered side-chains have been synthesized, characterized and employed in ambipolar organic field-effect transistors, in order to achieve controllable and improved electrical properties. Thermally removable tert-butoxycarbonyl (t-BOC) groups and hybrid siloxane-solubilizing groups are introduced as the solubilizing groups, and they are found to enable the tunable dominant polarity and the enhanced ambipolar performance, respectively. Such outstanding performance based on our molecular design strategies makes these ambipolar polymer semiconductors highly promising for low-cost, large-area, and flexible electronics.

  19. Fast adsorption kinetics of highly dispersed ultrafine nickel/carbon nanoparticles for organic dye removal

    NASA Astrophysics Data System (ADS)

    Kim, Taek-Seung; Song, Hee Jo; Dar, Mushtaq Ahmad; Lee, Hack-Jun; Kim, Dong-Wan

    2018-05-01

    Magnetic metal/carbon nano-materials are attractive for pollutant adsorption and removal. In this study, ultrafine nickel/carbon nanoparticles are successfully prepared via electrical wire explosion processing in ethanol media for the elimination of pollutant organic dyes such as Rhodamine B and methylene blue in aqueous solutions. High specific surface areas originating from both the nano-sized particles and the existence of carbon on the surface of Ni nanoparticles enhance dye adsorption capacity. In addition to this, the excellent dispersity of Ni/C nanoparticles in aqueous dye solutions leads to superior adsorption rates. The adsorption kinetics for the removal of organic dyes by Ni/C nanoparticles agree with a pseudo-second-order model and follow Freundlich adsorption isotherm behavior.

  20. Bioinformatics analysis of disordered proteins in prokaryotes

    PubMed Central

    2011-01-01

    Background A significant number of proteins have been shown to be intrinsically disordered, meaning that they lack a fixed 3 D structure or contain regions that do not posses a well defined 3 D structure. It has also been proven that a protein's disorder content is related to its function. We have performed an exhaustive analysis and comparison of the disorder content of proteins from prokaryotic organisms (i.e., superkingdoms Archaea and Bacteria) with respect to functional categories they belong to, i.e., Clusters of Orthologous Groups of proteins (COGs) and groups of COGs-Cellular processes (Cp), Information storage and processing (Isp), Metabolism (Me) and Poorly characterized (Pc). We also analyzed the disorder content of proteins with respect to various genomic, metabolic and ecological characteristics of the organism they belong to. We used correlations and association rule mining in order to identify the most confident associations between specific modalities of the characteristics considered and disorder content. Results Bacteria are shown to have a somewhat higher level of protein disorder than archaea, except for proteins in the Me functional group. It is demonstrated that the Isp and Cp functional groups in particular (L-repair function and N-cell motility and secretion COGs of proteins in specific) possess the highest disorder content, while Me proteins, in general, posses the lowest. Disorder fractions have been confirmed to have the lowest level for the so-called order-promoting amino acids and the highest level for the so-called disorder promoters. For each pair of organism characteristics, specific modalities are identified with the maximum disorder proteins in the corresponding organisms, e.g., high genome size-high GC content organisms, facultative anaerobic-low GC content organisms, aerobic-high genome size organisms, etc. Maximum disorder in archaea is observed for high GC content-low genome size organisms, high GC content-facultative anaerobic or aquatic or mesophilic organisms, etc. Maximum disorder in bacteria is observed for high GC content-high genome size organisms, high genome size-aerobic organisms, etc. Some of the most reliable association rules mined establish relationships between high GC content and high protein disorder, medium GC content and both medium and low protein disorder, anaerobic organisms and medium protein disorder, Gammaproteobacteria and low protein disorder, etc. A web site Prokaryote Disorder Database has been designed and implemented at the address http://bioinfo.matf.bg.ac.rs/disorder, which contains complete results of the analysis of protein disorder performed for 296 prokaryotic completely sequenced genomes. Conclusions Exhaustive disorder analysis has been performed by functional classes of proteins, for a larger dataset of prokaryotic organisms than previously done. Results obtained are well correlated to those previously published, with some extension in the range of disorder level and clear distinction between functional classes of proteins. Wide correlation and association analysis between protein disorder and genomic and ecological characteristics has been performed for the first time. The results obtained give insight into multi-relationships among the characteristics and protein disorder. Such analysis provides for better understanding of the evolutionary process and may be useful for taxon determination. The main drawback of the approach is the fact that the disorder considered has been predicted and not experimentally established. PMID:21366926

  1. Competency Mapping of the Employees

    NASA Astrophysics Data System (ADS)

    Anisha, N.

    2012-10-01

    Human resource management is a process of bringing people and organizations together so that the goals of each other are met. Nowadays it is not possible to show a good financial or operating report unless your personnel relations are in order. Over the years, highly skilled and knowledge based jobs are increasing while low skilled jobs are decreasing. Competency Mapping is a process of identifying key competencies for an organization, the jobs and functions within it. Competency mapping, the buzz word in any industry is not complicated as it may appear. At the heart of any successful activity lies a competence or skill. In the recent years, various thought leaders in business strategy have emphasized the need to identify what competencies a business needs, in order to compete in a specific environment. In this article explains the why competencies needed and how is measured competency of employees in the organization.

  2. 75 FR 52558 - Self-Regulatory Organizations; NASDAQ OMX PHLX, Inc.; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ...-Regulatory Organizations; NASDAQ OMX PHLX, Inc.; Notice of Filing and Immediate Effectiveness of Proposed... costs associated with system issues that are attributable to cancelled AON orders. A Professional order... organization in order for a member organization to be assessed the Cancellation Fee (``500 Threshold''). The...

  3. Mercury distribution in fish organs and food regimes: Significant relationships from twelve species collected in French Guiana (Amazonian basin).

    PubMed

    Régine, Maury-Brachet; Gilles, Durrieu; Yannick, Dominique; Alain, Boudou

    2006-09-01

    Within a multidisciplinary research programme set up in French Guiana (Amazonian basin), twelve fish species from six food regimes were collected from the upper part of the Maroni River in order to analyze mercury (Hg) distribution in six organs (gills, liver, kidneys, skeletal muscle, stomach, and intestine) and to look for a relationship between Hg organotropism and food regimes. As many studies have shown, mercury biomagnification leads to extremely marked differences in muscle accumulation levels: the average ratio between extreme concentrations measured in piscivorous and herbivorous species was almost 500. A first principal component analysis on primary Hg concentration variables showed that biomagnification had a marked effect, masking differences between Hg distribution in the organs according to fish species and their food regimes. In order to avoid this, we determined ratios between Hg concentrations measured in the different organs and in the skeletal muscle, considered as the reference tissue for biomagnification effects. A new principal component analysis using these normalized values, in conjunction with a Ward's hierarchical clustering method, revealed that there is a link between Hg organotropism and the food regimes, with comparatively high [Hg]gills/[Hg]muscle ratios for the herbivorous species; high [Hg]intestine-liver-kidneys/[Hg]muscle ratios for the benthivorous and periphytophagous species, and, in contrast, ratios of less than 1 in the different organs for the piscivorous and omnivorous species. Our determinations of methylmercury (MMHg) percentages in the food consumed by the fish (aquatic macrophytes, terrestrial material from the river banks, biofilms, benthic invertebrates, fish muscle tissues), according to the different food regimes (herbivorous, periphytophagous, benthivorous, omnivorous, carnivorous, piscivorous), showed that this criterion can account for the differences in Hg distribution in the fish organs. For instance, the periphytophagous and benthivorous fish species ingest biofilms and small benthic invertebrates with quite low MMHg burdens (18% and 35 to 52% of Hgtotal, respectively). The highest [Hg]organs/[Hg]muscle ratios were observed for the liver and kidneys, the two principal target organs for inorganic Hg in fish. On the other hand, the piscivorous species ingest a large amount of fish of varying size, with high MMHg percentages in their muscle tissue (nearly 80%); Hg organotropism is characterized by high MMHg concentrations in the skeletal muscle and comparatively low [Hg]organs/[Hg]muscle ratios.

  4. Template-directed atomically precise self-organization of perfectly ordered parallel cerium silicide nanowire arrays on Si(110)-16 × 2 surfaces.

    PubMed

    Hong, Ie-Hong; Liao, Yung-Cheng; Tsai, Yung-Feng

    2013-11-05

    The perfectly ordered parallel arrays of periodic Ce silicide nanowires can self-organize with atomic precision on single-domain Si(110)-16 × 2 surfaces. The growth evolution of self-ordered parallel Ce silicide nanowire arrays is investigated over a broad range of Ce coverages on single-domain Si(110)-16 × 2 surfaces by scanning tunneling microscopy (STM). Three different types of well-ordered parallel arrays, consisting of uniformly spaced and atomically identical Ce silicide nanowires, are self-organized through the heteroepitaxial growth of Ce silicides on a long-range grating-like 16 × 2 reconstruction at the deposition of various Ce coverages. Each atomically precise Ce silicide nanowire consists of a bundle of chains and rows with different atomic structures. The atomic-resolution dual-polarity STM images reveal that the interchain coupling leads to the formation of the registry-aligned chain bundles within individual Ce silicide nanowire. The nanowire width and the interchain coupling can be adjusted systematically by varying the Ce coverage on a Si(110) surface. This natural template-directed self-organization of perfectly regular parallel nanowire arrays allows for the precise control of the feature size and positions within ±0.2 nm over a large area. Thus, it is a promising route to produce parallel nanowire arrays in a straightforward, low-cost, high-throughput process.

  5. Template-directed atomically precise self-organization of perfectly ordered parallel cerium silicide nanowire arrays on Si(110)-16 × 2 surfaces

    PubMed Central

    2013-01-01

    The perfectly ordered parallel arrays of periodic Ce silicide nanowires can self-organize with atomic precision on single-domain Si(110)-16 × 2 surfaces. The growth evolution of self-ordered parallel Ce silicide nanowire arrays is investigated over a broad range of Ce coverages on single-domain Si(110)-16 × 2 surfaces by scanning tunneling microscopy (STM). Three different types of well-ordered parallel arrays, consisting of uniformly spaced and atomically identical Ce silicide nanowires, are self-organized through the heteroepitaxial growth of Ce silicides on a long-range grating-like 16 × 2 reconstruction at the deposition of various Ce coverages. Each atomically precise Ce silicide nanowire consists of a bundle of chains and rows with different atomic structures. The atomic-resolution dual-polarity STM images reveal that the interchain coupling leads to the formation of the registry-aligned chain bundles within individual Ce silicide nanowire. The nanowire width and the interchain coupling can be adjusted systematically by varying the Ce coverage on a Si(110) surface. This natural template-directed self-organization of perfectly regular parallel nanowire arrays allows for the precise control of the feature size and positions within ±0.2 nm over a large area. Thus, it is a promising route to produce parallel nanowire arrays in a straightforward, low-cost, high-throughput process. PMID:24188092

  6. 75 FR 50020 - Self-Regulatory Organizations; EDGA Exchange, Inc.; Order Approving Proposed Rule Change To Amend...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... significant competitive pressure to act equitably, fairly, and reasonably in setting the physical port fees, in light of the highly competitive nature of the market for execution and routing services.\\11\\ \\11...

  7. PTR-3-TOF a novel in-situ instrument for studying the lifecycle of reactive organic carbon in the atmosphere

    NASA Astrophysics Data System (ADS)

    Hansel, Armin; Breitenlechner, Martin; Fischer, Lukas; Hainer, Markus

    2017-04-01

    Existing proton transfer reaction time of flight (PTR-TOF) instruments are known to detect volatile organic compounds (VOCs) and could in principle also detect highly oxidized organic compounds such as low volatility organic compounds (LVOC) but PTR-TOF inlets were not optimized to avoid wall losses of such low volatility compounds. In addition PTR-TOF is not sensitive enough to quantify second order and even higher order oxidation products at atmospherically relevant concentrations. To solve this problem, as well as to enable bridging the gap in understanding how atmospherically relevant BVOC form SVOC, LVOC and even ELVOC, we developed the PTR3, a compact and field deployable ultrasensitive instrument based on chemical ionization mass spectrometry. Here we report first results from PTR-3-TOF measurements at Hyytiälä where we measured concentrations and fluxes of precursor gases (BVOC) and their oxidation products: semi and low volatile organic compounds. The recently developed PTR-3-TOF instrument uses a discharge ion source coupled to a contact free inlet system running at high sample flow rates through the novel reaction chamber at 80 mbar. The PTR-3 front part is coupled to TOFWERK's newest Long-TOF mass analyzer. The first prototype has sensitivities of up to 20.000 cps per ppb and a mass resolution of 8.000 m/Δm. The instrument has been successfully tested at CERN for the CLOUD campaign in 2015. During pure α-pinene ozonolysis experiments at low NOx conditions we observed in total several hundred peaks in the mass spectrum, including α-Pinene present in the ppb range, first and higher order oxidation products present in the ppt range and highly oxydized α-pinene monomers and dimers (e.g., C20H30O18H+; m/z = 559.1506 Th) in the low ppq range and even sub-ppq range. The advantage of this new technology based on positive ion chemistry is the capability to measure precursor gases as well as condensing- and even nucleating vapors.

  8. [Quality management is associated with high quality services in health care].

    PubMed

    Nielsen, Tenna Hassert; Riis, Allan; Mainz, Jan; Jensen, Anne-Louise Degn

    2013-12-09

    In these years, quality management has been the focus in order to meet high quality services for the patients in Danish health care. This article provides information on quality management and quality improvement and it evaluates its effectiveness in achieving better organizational structures, processes and results in Danish health-care organizations. Our findings generally support that quality management is associated with high quality services in health care.

  9. Charge Stabilized Crystalline Colloidal Arrays As Templates For Fabrication of Non-Close-Packed Inverted Photonic Crystals

    PubMed Central

    Bohn, Justin J.; Ben-Moshe, Matti; Tikhonov, Alexander; Qu, Dan; Lamont, Daniel N.

    2010-01-01

    We developed a straightforward method to form non close-packed highly ordered fcc direct and inverse opal silica photonic crystals. We utilize an electrostatically self assembled crystalline colloidal array (CCA) template formed by monodisperse, highly charged polystyrene particles. We then polymerize a hydrogel around the CCA (PCCA) and condense the silica to form a highly ordered silica impregnated (siPCCA) photonic crystal. Heating at 450 °C removes the organic polymer leaving a silica inverse opal structure. By altering the colloidal particle concentration we independently control the particle spacing and the wall thickness of the inverse opal photonic crystals. This allows us to control the optical dielectric constant modulation in order to optimize the diffraction; the dielectric constant modulation is controlled independently of the photonic crystal periodicity. These fcc photonic crystals are better ordered than typical close-packed photonic crystals because their self assembly utilizes soft electrostatic repulsive potentials. We show that colloidal particle size and charge polydispersity has modest impact on ordering, in contrast to that for close-packed crystals. PMID:20163800

  10. Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators.

    PubMed

    Wang, Yue; Tsiminis, Georgios; Kanibolotsky, Alexander L; Skabara, Peter J; Samuel, Ifor D W; Turnbull, Graham A

    2013-06-17

    Organic semiconductor lasers were fabricated by UV-nanoimprint lithography with thresholds as low as 57 W/cm(2) under 4 ns pulsed operation. The nanoimprinted lasers employed mixed-order distributed feedback resonators, with second-order gratings surrounded by first-order gratings, combined with a light-emitting conjugated polymer. They were pumped by InGaN LEDs to produce green-emitting lasers, with thresholds of 208 W/cm(2) (102 nJ/pulse). These hybrid lasers incorporate a scalable UV-nanoimprint lithography process, compatible with high-performance LEDs, therefore we have demonstrated a coherent, compact, low-cost light source.

  11. Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach

    DOEpatents

    Gin, D.L.; Fischer, W.M.; Gray, D.H.; Smith, R.C.

    1998-12-15

    A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material. 13 figs.

  12. Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach

    DOEpatents

    Gin, Douglas L.; Fischer, Walter M.; Gray, David H.; Smith, Ryan C.

    1998-01-01

    A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material.

  13. Self-Organization in High-Density Bacterial Colonies: Efficient Crowd Control

    PubMed Central

    Campbell, Kyle; Melke, Pontus; Williams, Joshua W; Jedynak, Bruno; Stevens, Ann M; Groisman, Alex; Levchenko, Andre

    2007-01-01

    Colonies of bacterial cells can display complex collective dynamics, frequently culminating in the formation of biofilms and other ordered super-structures. Recent studies suggest that to cope with local environmental challenges, bacterial cells can actively seek out small chambers or cavities and assemble there, engaging in quorum sensing behavior. By using a novel microfluidic device, we showed that within chambers of distinct shapes and sizes allowing continuous cell escape, bacterial colonies can gradually self-organize. The directions of orientation of cells, their growth, and collective motion are mutually correlated and dictated by the chamber walls and locations of chamber exits. The ultimate highly organized steady state is conducive to a more-organized escape of cells from the chambers and increased access of nutrients into and evacuation of waste out of the colonies. Using a computational model, we suggest that the lengths of the cells might be optimized to maximize self-organization while minimizing the potential for stampede-like exit blockage. The self-organization described here may be crucial for the early stage of the organization of high-density bacterial colonies populating small, physically confined growth niches. It suggests that this phenomenon can play a critical role in bacterial biofilm initiation and development of other complex multicellular bacterial super-structures, including those implicated in infectious diseases. PMID:18044986

  14. Final Report. IUT No. B560420 with UC Berkeley. Organic Chemistry at High Pressures &Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, W; Crowhurst, J C; Zaug, J M

    We have successfully completed the research outlined in our proposal: Organic Chemistry at High Pressures and Temperatures. We have experimentally determined a phase diagram which documents the phases and reaction regimes of cyanuric acid , H{sub 3}C{sub 3}N{sub 3}O{sub 3} (1,3,5-triazine-2,4,6-trione), from 300 - 750 K and 0 - 8.1 GPa. We utilized a comparatively new technique to study thin samples of cyanuric acid in the diamond anvil cell in order to collect ambient temperature, high pressure FTIR and Raman data as well as the high-pressure, high-temperature data used in the phase diagram. These experiments made use of the CMLSmore » High-pressure lab's diamond anvil facilities as well as the FTIR and Raman systems.« less

  15. High transconductance organic electrochemical transistors

    NASA Astrophysics Data System (ADS)

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-07-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications.

  16. High transconductance organic electrochemical transistors

    PubMed Central

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-01-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications. PMID:23851620

  17. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric.

    PubMed

    Fujii, Mami N; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-18

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  18. Biological strategy for the fabrication of highly ordered aragonite helices: the microstructure of the cavolinioidean gastropods

    PubMed Central

    Checa, Antonio G.; Macías-Sánchez, Elena; Ramírez-Rico, Joaquín

    2016-01-01

    The Cavolinioidea are planktonic gastropods which construct their shells with the so-called aragonitic helical fibrous microstructure, consisting of a highly ordered arrangement of helically coiled interlocking continuous crystalline aragonite fibres. Our study reveals that, despite the high and continuous degree of interlocking between fibres, every fibre has a differentiated organic-rich thin external band, which is never invaded by neighbouring fibres. In this way, fibres avoid extinction. These intra-fibre organic-rich bands appear on the growth surface of the shell as minuscule elevations, which have to be secreted differentially by the outer mantle cells. We propose that, as the shell thickens during mineralization, fibre secretion proceeds by a mechanism of contact recognition and displacement of the tips along circular trajectories by the cells of the outer mantle surface. Given the sizes of the tips, this mechanism has to operate at the subcellular level. Accordingly, the fabrication of the helical microstructure is under strict biological control. This mechanism of fibre-by-fibre fabrication by the mantle cells is unlike that any other shell microstructure. PMID:27181457

  19. Self-organizing high-order cognitive functions in artificial agents: implications for possible prefrontal cortex mechanisms.

    PubMed

    Maniadakis, Michail; Trahanias, Panos; Tani, Jun

    2012-09-01

    In our daily life, we often adapt plans and behaviors according to dynamically changing world circumstances, selecting activities that make us feel more confident about the future. In this adaptation, the prefrontal cortex (PFC) is believed to have an important role, applying executive control on other cognitive processes to achieve context switching and confidence monitoring; however, many questions remain open regarding the nature of neural processes supporting executive control. The current work explores possible mechanisms of this high-order cognitive function, transferring executing control in the domain of artificial cognitive systems. In particular, we study the self-organization of artificial neural networks accomplishing a robotic rule-switching task analogous to the Wisconsin Card Sorting Test. The obtained results show that behavioral rules may be encoded in neuro-dynamic attractors, with their geometric arrangements in phase space affecting the shaping of confidence. Analysis of the emergent dynamical structures suggests possible explanations of the interactions of high-level and low-level processes in the real brain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Water-Stable Nanoporous Polymer Films with Excellent Proton Conductivity.

    PubMed

    Wang, Zhengbang; Liang, Cong; Tang, Haolin; Grosjean, Sylvain; Shahnas, Artak; Lahann, Joerg; Bräse, Stefan; Wöll, Christof

    2018-03-01

    Achieving high values for proton conductivity in a material critically depends on providing hopping sites arranged in a regular fashion. Record values reported for regular, molecular crystals cannot yet be reached by technologically relevant systems, and the best values measured for polymer membranes suited for integration into devices are almost two orders of magnitude lower. Here, an alternative polymer membrane synthesis strategy based on the chemical modification of surface-mounted, monolithic, crystalline metal-organic framework thin films is demonstrated. Due to chemical crosslinking and subsequent removal of metal ions, these surface-mounted gels (SURGELs) are found to exhibit high proton conductivity (0.1 S cm -1 at 30 °C and 100% RH (relative humidity). These record values are attributed to the highly ordered polymer network structure containing regularly spaced carboxylic acid side groups. These covalently bound organic frameworks outperform conventional, ion-conductive polymers with regard to ion conductivity and water stability. Pronounced water-induced swelling, which causes severe mechanical instabilities in commercial membranes, is not observed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Asymmetric neighborhood functions accelerate ordering process of self-organizing maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ota, Kaiichiro; Aoki, Takaaki; Kurata, Koji

    2011-02-15

    A self-organizing map (SOM) algorithm can generate a topographic map from a high-dimensional stimulus space to a low-dimensional array of units. Because a topographic map preserves neighborhood relationships between the stimuli, the SOM can be applied to certain types of information processing such as data visualization. During the learning process, however, topological defects frequently emerge in the map. The presence of defects tends to drastically slow down the formation of a globally ordered topographic map. To remove such topological defects, it has been reported that an asymmetric neighborhood function is effective, but only in the simple case of mapping one-dimensionalmore » stimuli to a chain of units. In this paper, we demonstrate that even when high-dimensional stimuli are used, the asymmetric neighborhood function is effective for both artificial and real-world data. Our results suggest that applying the asymmetric neighborhood function to the SOM algorithm improves the reliability of the algorithm. In addition, it enables processing of complicated, high-dimensional data by using this algorithm.« less

  2. [Micro vs. macro: structural-functional organization of avian micro- and macrochromosomes].

    PubMed

    Rodionov, A V

    1996-05-01

    Karyotypes of lower vertebrates mainly consist of microchromosomes. In higher vertebrates, microchromosomes are present in each class of the most primitive orders. Birds have more microchromosomes in their karyotype than other vertebrates. Accumulation of microchromosomes in the avian karyotype probably occurred after separation of birds from reptilians in Triassic, but prior to radiation of ancestors of the modern orders (late Cretaceous-early Jurassic). In this review, the structural, molecular, and functional organization of avian macro- and microchromosomes and their participation in genetic processes are discussed. The average size of an avian microchromosome is about 12.4 Mb, which is ten times less than the size of an average macrochromosome. In contrast to macrochromosomes, medium and small avian chromosomes lack the highest level of chromosomal organization: their chromonemes do not have spiral coiling. Microchromosomal euchromatin largely consists of GC-rich R regions. More than half of the mapped avian genes are located on microchromosomes. Crossing-over frequency in microchromosomes is approximately threefold higher than in macrochromosomes. This may be caused by high GC content and recombination hot spots, which are present on each microchromosome. High recombination frequency in microchromosomes increases the probability of their correct meiotic segregation.

  3. Structure-dependent interactions between alkali feldspars and organic compounds: implications for reactions in geologic carbon sequestration.

    PubMed

    Yang, Yi; Min, Yujia; Jun, Young-Shin

    2013-01-02

    Organic compounds in deep saline aquifers may change supercritical CO(2) (scCO(2))-induced geochemical processes by attacking specific components in a mineral's crystal structure. Here we investigate effects of acetate and oxalate on alkali feldspar-brine interactions in a simulated geologic carbon sequestration (GCS) environment at 100 atm of CO(2) and 90 °C. We show that both organics enhance the net extent of feldspar's dissolution, with oxalate showing a more prominent effect than acetate. Further, we demonstrate that the increased reactivity of Al-O-Si linkages due to the presence of oxalate results in the promotion of both Al and Si release from feldspars. As a consequence, the degree of Al-Si order may affect the effect of oxalate on feldspar dissolution: a promotion of ~500% in terms of cumulative Si concentration was observed after 75 h of dissolution for sanidine (a highly disordered feldspar) owing to oxalate, while the corresponding increase for albite (a highly ordered feldspar) was ~90%. These results provide new insights into the dependence of feldspar dissolution kinetics on the crystallographic properties of the mineral under GCS conditions.

  4. Quantification of fossil organic matter in contaminated sediments from an industrial watershed: validation of the quantitative multimolecular approach by radiocarbon analysis.

    PubMed

    Jeanneau, Laurent; Faure, Pierre

    2010-09-01

    The quantitative multimolecular approach (QMA) based on an exhaustive identification and quantification of molecules from the extractable organic matter (EOM) has been recently developed in order to investigate organic contamination in sediments by a more complete method than the restrictive quantification of target contaminants. Such an approach allows (i) the comparison between natural and anthropogenic inputs, (ii) between modern and fossil organic matter and (iii) the differentiation between several anthropogenic sources. However QMA is based on the quantification of molecules recovered by organic solvent and then analyzed by gas chromatography-mass spectrometry, which represent a small fraction of sedimentary organic matter (SOM). In order to extend the conclusions of QMA to SOM, radiocarbon analyses have been performed on organic extracts and decarbonated sediments. This analysis allows (i) the differentiation between modern biomass (contemporary (14)C) and fossil organic matter ((14)C-free) and (ii) the calculation of the modern carbon percentage (PMC). At the confluence between Fensch and Moselle Rivers, a catchment highly contaminated by both industrial activities and urbanization, PMC values in decarbonated sediments are well correlated with the percentage of natural molecular markers determined by QMA. It highlights that, for this type of contamination by fossil organic matter inputs, the conclusions of QMA can be scaled up to SOM. QMA is an efficient environmental diagnostic tool that leads to a more realistic quantification of fossil organic matter in sediments. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Metal-organic frameworks for thermoelectric energy-conversion applications

    DOE PAGES

    Talin, Albert Alec; Jones, Reese E.; Hopkins, Patrick E.

    2016-11-07

    Motivated by low cost, low toxicity, mechanical flexibility, and conformability over complex shapes, organic semiconductors are currently being actively investigated as thermoelectric (TE) materials to replace the costly, brittle, and non-eco-friendly inorganic TEs for near-ambient-temperature applications. Metal–organic frameworks (MOFs) share many of the attractive features of organic polymers, including solution processability and low thermal conductivity. A potential advantage of MOFs and MOFs with guest molecules (Guest@MOFs) is their synthetic and structural versatility, which allows both the electronic and geometric structure to be tuned through the choice of metal, ligand, and guest molecules. This could solve the long-standing challenge of findingmore » stable, high-TE-performance n-type organic semiconductors, as well as promote high charge mobility via the long-range crystalline order inherent in these materials. In this paper, we review recent advances in the synthesis of MOF and Guest@MOF TEs and discuss how the Seebeck coefficient, electrical conductivity, and thermal conductivity could be tuned to further optimize TE performance.« less

  6. High Performance Work and Learning Systems: Crafting a Worker-Centered Approach. Proceedings of a Conference (Washington, D.C., September 1991).

    ERIC Educational Resources Information Center

    Marschall, Daniel, Ed.

    A consensus that unions must develop coherent and comprehensive policies on new work systems and continuous learning in order to guide local activities, was the central theme of this conference on the interrelated issues of the high performance work organization. These proceedings include the following presentations: "Labor's Stake in High…

  7. Streamflow and nutrient dependence of temperature effects on dissolved oxygen in low-order forest streams

    Treesearch

    April Mason; Y. Jun Xu; Philip Saksa; Adrienne Viosca; Johnny M. Grace; John Beebe; Richard Stich

    2007-01-01

    Low dissolved oxygen (DO) concentrations in streams can be linked to both natural conditions and human activities. In Louisiana, natural stream conditions such as low flow, high temperature and high organic content, often result in DO levels already below current water quality criteria, making it difficult to develop standards for Best Management Practices (BMPs)....

  8. Nonlinear Processes in Time-­Ordered Observations: Self-­Organized Criticality in Daily High School Attendance

    ERIC Educational Resources Information Center

    Koopmans, Matthijs

    2017-01-01

    In the United States, high school attendance and drop-out are important policy concerns receiving extensive coverage in the research literature. Traditionally, the focus in this work is on the summary of dropout rates and mean attendance rates in specific schools, regions or socio-economic groups. However, the question how stable those attendance…

  9. Defense Acquisitions Acronyms and Terms

    DTIC Science & Technology

    2012-12-01

    Computer-Aided Design CADD Computer-Aided Design and Drafting CAE Component Acquisition Executive; Computer-Aided Engineering CAIV Cost As an...Radiation to Ordnance HFE Human Factors Engineering HHA Health Hazard Assessment HNA Host-Nation Approval HNS Host-Nation Support HOL High -Order...Engineering Change Proposal VHSIC Very High Speed Integrated Circuit VLSI Very Large Scale Integration VOC Volatile Organic Compound W WAN Wide

  10. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.

    USGS Publications Warehouse

    Hatch, J.R.; Leventhal, J.S.

    1992-01-01

    Analyses of 21 samples collected from a core of the 52.8-cm-thick Stark Shale Member of the Dennis Limestone in Wabaunsee County, Kansas, demonstrate four cycles with two-orders-of-magnitude variations in contents of Cd, Mo, P, V and Zn, and order-of-magnitude variations in contents of organic carbon, Cr, Ni, Se and U. The observed variability in amounts and/or ratios of many metals and amounts and compositions of the organic matter appear related to the cause and degree of water-column stratification and the resulting absence/presence of dissolved O2 or H2S. High Cd, Mo, U, V, Zn and S contents, a high degree of pyritization (DOP) (0.75-0.88), and high high V (V + Ni) (0.84-0.89) indicate the presence of H2S in a strongly stratified water column. Intermediate contents of metals and S, intermediate DOP (0.67-0.75) and intermediate V (V + Ni) (054-0.82) indicate a less strongly stratified anoxic water column. Whereas, low metal contents and low V (V + Ni) (0.46-0.60) indicate a weakly stratified, dysoxic water column. High P contents at the top of the organic-matter-rich intervals within the Stark Shale Member indicate that phosphate precipitation was enhanced near the boundary between anoxic and dysoxic water compositions. Relatively abundant terrestrial organic matter in intervals deposited from the more strongly stratified H2S-bearing water column indicates a combined halocline-thermocline with the fresher near-surface water the transport mode for the terrestrial organic matter. The predominance of algal organic matter in intervals deposited from a less strongly stratified water column indicates the absence of the halocline and the presence of the more generally established thermocline. Relatively low amounts of degraded, hydrogen-poor organic matter characterize intervals deposited in a weakly stratified, dysoxic water column. The inferred variability in chemistry of the depositional environments may be related to climate variations and/or minor changes in sea level during the general phase of deeper water deposition responsible for this widespread shale member. ?? 1992.

  11. Phase-change memory function of correlated electrons in organic conductors

    NASA Astrophysics Data System (ADS)

    Oike, H.; Kagawa, F.; Ogawa, N.; Ueda, A.; Mori, H.; Kawasaki, M.; Tokura, Y.

    2015-01-01

    Phase-change memory (PCM), a promising candidate for next-generation nonvolatile memories, exploits quenched glassy and thermodynamically stable crystalline states as reversibly switchable state variables. We demonstrate PCM functions emerging from a charge-configuration degree of freedom in strongly correlated electron systems. Nonvolatile reversible switching between a high-resistivity charge-crystalline (or charge-ordered) state and a low-resistivity quenched state, charge glass, is achieved experimentally via heat pulses supplied by optical or electrical means in organic conductors θ -(BEDT-TTF)2X . Switching that is one order of magnitude faster is observed in another isostructural material that requires faster cooling to kinetically avoid charge crystallization, indicating that the material's critical cooling rate can be useful guidelines for pursuing a faster correlated-electron PCM function.

  12. A striking mobility improvement of C60 OFET by inserting diindenoperylene layer between C60 and SiO2 gate insulator

    NASA Astrophysics Data System (ADS)

    Yang, Jin-peng; Yonezawa, Keiichiro; Hinderhofer, Alexander; Bussolotti, Fabio; Kera, Satoshi; Ueno, Nobuo

    2014-09-01

    Gap states in organic semiconductors play a crucial role in determining Energy-Level Alignment and in many cases they act as charge trapping centers to result in serious lowering of charge mobility. Thus origin of gap states has gained increasing attention in order to realize higher mobility organic devises [1-4]. Bussolotti et al. have demonstrated recently that gap states in a pentacene thin film increase even by exposing the film to inert gas and confirmed that the gas exposure mediates structural defects in the film thus gap states [4]. The results have also indicated that preparation of highly-ordered organic thin film is necessary to improve the device performance, namely to decrease trapping states. To improve the ordering of molecule in the film, deposition of a template molecular underlayer is one of the simplest methods to increase the domain size of overlayer film and its crystallinity, and thus we expect improvement of the charge mobility [5]. Hinderhofer et al. reported recently that diindenoperylene (DIP; Figure 1a) could be used as a template layer to grow highly ordered and oriented C60 film with its (111) plane parallel to the SiO2 substrate [6]. Considering the hole mobility of DIP single crystal, which is quite low (~0.005 cm2 V-1S-1 at room temperature [7]), it is expected for the DIP template C60 thin film system that lower drain current would be achieved to improve the on/off ratios based on n type C60 transistor and its electron mobility (especially on the negative Vgs region, compared to PEN modified C60 transistors [8]).

  13. Nonlinear optical properties of organic materials V; Proceedings of the 5th Meeting, San Diego, CA, July 22-24, 1992

    NASA Astrophysics Data System (ADS)

    Williams, David J.

    The present volume on nonlinear optical properties of organic materials discusses organic nonlinear optics, polymers for nonlinear optics, characterization of nonlinear properties, photorefractive and second-order materials, harmonic generation in organic materials, and devices and applications. Particular attention is given to organic semiconductor-doped polymer glasses as novel nonlinear media, heterocyclic nonlinear optical materials, loss measurements in electrooptic polymer waveguides, the phase-matched second-harmonic generation in planar waveguides, electrooptic measurements in poled polymers, transient effects in spatial light modulation by nonlinearity-absorbing molecules, the electrooptic effects in organic single crystals, surface acoustic wave propagation in an organic nonlinear optical crystal, nonlinear optics of astaxanthin thin films; and advanced high-temperature polymers for integrated optical waveguides. (No individual items are abstracted in this volume)

  14. Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices.

    PubMed

    Feng, Dan; Lv, Yingying; Wu, Zhangxiong; Dou, Yuqian; Han, Lu; Sun, Zhenkun; Xia, Yongyao; Zheng, Gengfeng; Zhao, Dongyuan

    2011-09-28

    We report for the first time the synthesis of free-standing mesoporous carbon films with highly ordered pore architecture by a simple coating-etching approach, which have an intact morphology with variable sizes as large as several square centimeters and a controllable thickness of 90 nm to ∼3 μm. The mesoporous carbon films were first synthesized by coating a resol precursors/Pluronic copolymer solution on a preoxidized silicon wafer and forming highly ordered polymeric mesostructures based on organic-organic self-assembly, followed by carbonizing at 600 °C and finally etching of the native oxide layer between the carbon film and the silicon substrate. The mesostructure of this free-standing carbon film is confirmed to be an ordered face-centered orthorhombic Fmmm structure, distorted from the (110) oriented body-centered cubic Im3̅m symmetry. The mesoporosity of the carbon films has been evaluated by nitrogen sorption, which shows a high specific BET surface area of 700 m(2)/g and large uniform mesopores of ∼4.3 nm. Both mesostructures and pore sizes can be tuned by changing the block copolymer templates or the ratio of resol to template. These free-standing mesoporous carbon films with cracking-free uniform morphology can be transferred or bent on different surfaces, especially with the aid of the soft polymer layer transfer technique, thus allowing for a variety of potential applications in electrochemistry and biomolecule separation. As a proof of concept, an electrochemical supercapacitor device directly made by the mesoporous carbon thin films shows a capacitance of 136 F/g at 0.5 A/g. Moreover, a nanofilter based on the carbon films has shown an excellent size-selective filtration of cytochrome c and bovine serum albumin.

  15. Highly Crystalline C8-BTBT Thin-Film Transistors by Lateral Homo-Epitaxial Growth on Printed Templates.

    PubMed

    Janneck, Robby; Pilet, Nicolas; Bommanaboyena, Satya Prakash; Watts, Benjamin; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2017-11-01

    Highly crystalline thin films of organic semiconductors offer great potential for fundamental material studies as well as for realizing high-performance, low-cost flexible electronics. The fabrication of these films directly on inert substrates is typically done by meniscus-guided coating techniques. The resulting layers show morphological defects that hinder charge transport and induce large device-to-device variability. Here, a double-step method for organic semiconductor layers combining a solution-processed templating layer and a lateral homo-epitaxial growth by a thermal evaporation step is reported. The epitaxial regrowth repairs most of the morphological defects inherent to meniscus-guided coatings. The resulting film is highly crystalline and features a mobility increased by a factor of three and a relative spread in device characteristics improved by almost half an order of magnitude. This method is easily adaptable to other coating techniques and offers a route toward the fabrication of high-performance, large-area electronics based on highly crystalline thin films of organic semiconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Comparative study on power generation of dual-cathode microbial fuel cell according to polarization methods.

    PubMed

    Lee, Kang-yu; Ryu, Wyan-seuk; Cho, Sung-il; Lim, Kyeong-ho

    2015-11-01

    Microbial fuel cells (MFCs) exist in various forms depending on the type of pollutant to be removed and the expected performance. Dual-cathode MFCs, with their simple structure, are capable of removing both organic matter and nitrogen. Moreover, various methods are available for the collection of polarization data, which can be used to calculate the maximum power density, an important factor of MFCs. Many researchers prefer the method of varying the external resistance in a single-cycle due to the short measurement time and high accuracy. This study compared power densities of dual-cathode MFCs in a single-cycle with values calculated over multi-cycles to determine the optimal polarization method. External resistance was varied from high to low and vice versa in the single-cycle, to calculate power density. External resistance was organized in descending order with initial start-up at open circuit voltage (OCV), and then it was organized in descending order again after the initial start-up at 1000 Ω. As a result, power density was underestimated at the anoxic cathode when the external resistance was varied from low to high, and overestimated at the aerobic cathode and anoxic cathode when external resistance at OCV was reduced following initial start-up. In calculating the power densities of dual-cathode MFCs, this paper recommends the method of gradually reducing the external resistance after initial start-up with high external resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Nonlinear-optical studies of organic liquids and polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Vigil, Steven Richard

    We present the results of non-resonant optical Kerr effect measurements of the neat organic liquids nitrobenzene, carbon disulfide, carbon tetrachloride, and methyl-methacrylate. We also present the results of one- photon resonant optical Kerr effect measurements of solutions of the organic dyes indole squarylium and silicon-phthalocyanine:methylmethacrylate (separately) in carbon tetrachloride. Fits of the molecular third-order susceptibility theory to the one-photon resonant data indicate the presence of high-lying two-photon states for each of the dye molecules studied. We also present results concerning light coupling in dye- doped dual-core polymer optical fibers. Measurements of the coupling length at low intensity are in agreement with linear coupling length calculations. Intensity- dependent coupling is observed as the intensity launched into the fiber is increased.

  18. Evolution: the dialogue between life and death

    NASA Astrophysics Data System (ADS)

    Holliday, robin

    1997-12-01

    Organisms have the ability to harness energy from the environment to create order and to reproduce. From early error-prone systems natural selection acted to produce present day organisms with high accuracy in the synthesis of macromolecules. The environment imposes strict limits on reproduction, so evolution is always accompanied by the discarding of a large proportion of the less fit cells, or organisms. Sexual reproduction depends on an immortal germline and a soma which may be immortal or mortal. Higher animals living in hazardous environments have evolved aging and death of the soma for the benefit of the ongoing germline.

  19. Self-assembly and hierarchical patterning of aligned organic nanowire arrays by solvent evaporation on substrates with patterned wettability.

    PubMed

    Bao, Rong-Rong; Zhang, Cheng-Yi; Zhang, Xiu-Juan; Ou, Xue-Mei; Lee, Chun-Sing; Jie, Jian-Sheng; Zhang, Xiao-Hong

    2013-06-26

    The controlled growth and alignment of one-dimensional organic nanostructures at well-defined locations considerably hinders the integration of nanostructures for electronic and optoelectronic applications. Here, we demonstrate a simple process to achieve the growth, alignment, and hierarchical patterning of organic nanowires on substrates with controlled patterns of surface wettability. The first-level pattern is confined by the substrate patterns of wettability. Organic nanostructures are preferentially grown on solvent wettable regions. The second-level pattern is the patterning of aligned organic nanowires deposited by controlling the shape and movement of the solution contact lines during evaporation on the wettable regions. This process is controlled by the cover-hat-controlled method or vertical evaportation method. Therefore, various new patterns of organic nanostructures can be obtained by combing these two levels of patterns. This simple method proves to be a general approach that can be applied to other organic nanostructure systems. Using the as-prepared patterned nanowire arrays, an optoelectronic device (photodetector) is easily fabricated. Hence, the proposed simple, large-scale, low-cost method of preparing patterns of highly ordered organic nanostructures has high potential applications in various electronic and optoelectronic devices.

  20. Defect healing at room temperature in pentacene thin films and improved transistor performance

    NASA Astrophysics Data System (ADS)

    Kalb, Wolfgang L.; Meier, Fabian; Mattenberger, Kurt; Batlogg, Bertram

    2007-11-01

    We report on a healing of defects at room temperature in the organic semiconductor pentacene. This peculiar effect is a direct consequence of the weak intermolecular interaction which is characteristic of organic semiconductors. Pentacene thin-film transistors were fabricated and characterized by in situ gated four-terminal measurements. Under high vacuum conditions (base pressure of order 10-8mbar ), the device performance is found to improve with time. The effective field-effect mobility increases by as much as a factor of 2 and mobilities up to 0.45cm2/Vs were achieved. In addition, the contact resistance decreases by more than an order of magnitude and there is a significant reduction in current hysteresis. Oxygen and nitrogen exposure as well as annealing experiments show the improvement of the electronic parameters to be driven by a thermally promoted process and not by chemical doping. In order to extract the spectral density of trap states from the transistor characteristics, we have implemented a powerful scheme which allows for a calculation of the trap densities with high accuracy in a straightforward fashion. We show the performance improvement to be due to a reduction in the density of shallow traps ⩽0.15eV from the valence band edge, while the energetically deeper traps are essentially unaffected. This work contributes to an understanding of the shallow traps in organic semiconductors and identifies structural point defects within the grains of the polycrystalline thin films as a major cause.

  1. Fractionation of persistent organic pollutants in fish oil by high-performance liquid chromatography on a 2-(1-pyrenyl)ethyl silica column.

    PubMed

    Ortiz, X; Martí, R; Montaña, M J; Gasser, M; Margarit, L; Broto, F; Díaz-Ferrero, J

    2010-09-01

    The analysis of persistent organic pollutants in foodstuffs has become necessary for control of their levels in products for human and animal consumption. These analytical procedures usually require a fractionation step in order to separate the different families of pollutants to avoid interferences during the instrumental determination. In this study the separation was carried out on a 2-(1-pyrenyl)ethyl silica column, where analyte fractionation was based on differences in planarity and aromaticity. The fractionation of several types of persistent organic pollutants found in fish oil samples was studied; the pollutants included polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, polybrominated diphenyl ethers, and some organochlorine pesticides. Fractions were analyzed by high-resolution gas chromatography with electron-capture detection and high-resolution gas chromatography-high resolution mass spectroscopy. Finally, the whole method (including the purification, fractionation, and instrumental determination steps) was validated and successfully applied to the analysis of several samples of fish oil.

  2. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates.

    PubMed

    Li, Yeqing; Zhang, Ruihong; Liu, Guangqing; Chen, Chang; He, Yanfeng; Liu, Xiaoying

    2013-12-01

    The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (≥ 15%, on a TS basis) had low first-order rate constant (0.05-0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Identifying Functional Neighborhoods within the Cell Nucleus: Proximity Analysis of Early S-Phase Replicating Chromatin Domains to Sites of Transcription, RNA Polymerase II, HP1γ, Matrin 3 and SAF-A

    PubMed Central

    Malyavantham, Kishore S; Bhattacharya, Sambit; Barbeitos, Marcos; Mukherjee, Lopamudra; Xu, Jinhui; Fackelmayer, Frank O; Berezney, Ronald

    2009-01-01

    Higher order chromatin organization in concert with epigenetic regulation is a key process that determines gene expression at the global level. The organization of dynamic chromatin domains and their associated protein factors is intertwined with nuclear function to create higher levels of functional zones within the cell nucleus. As a step towards elucidating the organization and dynamics of these functional zones, we have investigated the spatial proximities among a constellation of functionally related sites that are found within euchromatic regions of the cell nucleus including: HP1γ, nascent transcript sites (TS), active DNA replicating sites in early S phase (PCNA) and RNA polymerase II sites. We report close associations among these different sites with proximity values specific for each combination. Analysis of matrin 3 and SAF-A sites demonstrates that these nuclear matrix proteins are highly proximal with the functionally related sites as well as to each other and display closely aligned and overlapping regions following application of the minimal spanning tree (MST) algorithm to visualize higher order network-like patterns. Our findings suggest that multiple factors within the nuclear microenvironment collectively form higher order combinatorial arrays of function. We propose a model for the organization of these functional neighborhoods which takes into account the proximity values of the individual sites and their spatial organization within the nuclear architecture. PMID:18618731

  4. Comparative effect of lunar fines and terrestrtrial ash on the growth of a blue-green alga and germinating radish seeds

    NASA Technical Reports Server (NTRS)

    Ridley, E. J.

    1983-01-01

    Although it is understood that photosynthetic organisms will be required as components of a closed ecological life support system (CELSS) for a manned lunar based, a basic problem is to identify organisms best capable of utilizing lunar regolith materials. Also, there is need to determine what nutrient supplements have to be added to lunar soils, and at what levels in order to promote high bio-mass production.

  5. Impacts of Siberian biomass burning on organic aerosols over the North Pacific Ocean and the Arctic: primary and secondary organic tracers.

    PubMed

    Ding, Xiang; Wang, Xinming; Xie, Zhouqing; Zhang, Zhou; Sun, Liguang

    2013-04-02

    During the 2003 Chinese Arctic Research Expedition (CHINARE2003) from the Bohai Sea to the high Arctic (37°N-80°N), filter-based particle samples were collected and analyzed for tracers of primary and secondary organic aerosols (SOA) as well as water-soluble organic carbon (WSOC). Biomass burning (BB) tracer levoglucosan had comparatively much higher summertime average levels (476 ± 367 pg/m(3)) during our cruise due to the influence of intense forest fires then in Siberia. On the basis of 5-day back trajectories, samples with air masses passing through Siberia had organic tracers 1.3-4.4 times of those with air masses transporting only over the oceans, suggesting substantial contribution of continental emissions to organic aerosols in the marine atmosphere. SOA tracers from anthropogenic aromatics were negligible or not detected, while those from biogenic terpenenoids were ubiquitously observed with the sum of SOA tracers from isoprene (623 ± 414 pg/m(3)) 1 order of magnitude higher than that from monoterpenes (63 ± 49 pg/m(3)). 2-Methylglyceric acid as a product of isoprene oxidation under high-NOx conditions was dominant among SOA tracers, implying that these BSOA tracers were not formed over the oceans but mainly transported from the adjacent Siberia where a high-NOx environment could be induced by intense forest fires. The carbon fractions shared by biogenic SOA tracers and levoglucosan in WSOC in our ocean samples were 1-2 orders of magnitude lower than those previously reported in continental samples, BB emissions or chamber simulation samples, largely due to the chemical evolution of organic tracers during transport. As a result of the much faster decline in levels of organic tracers than that of WSOC during transport, the trace-based approach, which could well reconstruct WSOC using biogenic SOA and BB tracers for continental samples, only explained ∼4% of measured WSOC during our expedition if the same tracer-WSOC or tracer-SOC relationships were applied.

  6. Perceptual organization in computer vision - A review and a proposal for a classificatory structure

    NASA Technical Reports Server (NTRS)

    Sarkar, Sudeep; Boyer, Kim L.

    1993-01-01

    The evolution of perceptual organization in biological vision, and its necessity in advanced computer vision systems, arises from the characteristic that perception, the extraction of meaning from sensory input, is an intelligent process. This is particularly so for high order organisms and, analogically, for more sophisticated computational models. The role of perceptual organization in computer vision systems is explored. This is done from four vantage points. First, a brief history of perceptual organization research in both humans and computer vision is offered. Next, a classificatory structure in which to cast perceptual organization research to clarify both the nomenclature and the relationships among the many contributions is proposed. Thirdly, the perceptual organization work in computer vision in the context of this classificatory structure is reviewed. Finally, the array of computational techniques applied to perceptual organization problems in computer vision is surveyed.

  7. Ultrahigh Ionic Conduction in Water-Stable Close-Packed Metal-Carbonate Frameworks.

    PubMed

    Manna, Biplab; Desai, Aamod V; Illathvalappil, Rajith; Gupta, Kriti; Sen, Arunabha; Kurungot, Sreekumar; Ghosh, Sujit K

    2017-08-21

    Utilization of the robust metal-carbonate backbone in a series of water-stable, anionic frameworks has been harnessed for the function of highly efficient solid-state ion-conduction. The compact organization of hydrophilic guest ions facilitates water-assisted ion-conduction in all the compounds. The dense packing of the compounds imparts high ion-conducting ability and minimizes the possibility of fuel crossover, making this approach promising for design and development of compounds as potential components of energy devices. This work presents the first report of evaluating ion-conduction in a purely metal-carbonate framework, which exhibits high ion-conductivity on the order of 10 -2 S cm -1 along with very low activation energy, which is comparable to highly conducting well-known crystalline coordination polymers or commercialized organic polymers like Nafion.

  8. Morphological and crystalline characterization of pulsed laser deposited pentacene thin films for organic transistor applications

    NASA Astrophysics Data System (ADS)

    Pereira, Antonio; Bonhommeau, Sébastien; Sirotkin, Sergey; Desplanche, Sarah; Kaba, Mamadouba; Constantinescu, Catalin; Diallo, Abdou Karim; Talaga, David; Penuelas, Jose; Videlot-Ackermann, Christine; Alloncle, Anne-Patricia; Delaporte, Philippe; Rodriguez, Vincent

    2017-10-01

    We show that high-quality pentacene (P5) thin films of high crystallinity and low surface roughness can be produced by pulsed laser deposition (PLD) without inducing chemical degradation of the molecules. By using Raman spectroscopy and X-ray diffraction measurements, we also demonstrate that the deposition of P5 on Au layers result in highly disordered P5 thin films. While the P5 molecules arrange within the well-documented 1.54-nm thin-film phase on high-purity fused silica substrates, this ordering is indeed destroyed upon introducing an Au interlayer. This observation may be one explanation for the low electrical performances measured in P5-based organic thin film transistors (OTFTs) deposited by laser-induced forward transfer (LIFT).

  9. Centimetre-scale electron diffusion in photoactive organic heterostructures

    NASA Astrophysics Data System (ADS)

    Burlingame, Quinn; Coburn, Caleb; Che, Xiaozhou; Panda, Anurag; Qu, Yue; Forrest, Stephen R.

    2018-02-01

    The unique properties of organic semiconductors, such as flexibility and lightness, are increasingly important for information displays, lighting and energy generation. But organics suffer from both static and dynamic disorder, and this can lead to variable-range carrier hopping, which results in notoriously poor electrical properties, with low electron and hole mobilities and correspondingly short charge-diffusion lengths of less than a micrometre. Here we demonstrate a photoactive (light-responsive) organic heterostructure comprising a thin fullerene channel sandwiched between an electron-blocking layer and a blended donor:C70 fullerene heterojunction that generates charges by dissociating excitons. Centimetre-scale diffusion of electrons is observed in the fullerene channel, and this can be fitted with a simple electron diffusion model. Our experiments enable the direct measurement of charge diffusivity in organic semiconductors, which is as high as 0.83 ± 0.07 square centimetres per second in a C60 channel at room temperature. The high diffusivity of the fullerene combined with the extraordinarily long charge-recombination time yields diffusion lengths of more than 3.5 centimetres, orders of magnitude larger than expected for an organic system.

  10. Tracing the Origins of Nitrogen Bearing Organics Toward Orion KL with Alma

    NASA Astrophysics Data System (ADS)

    Carroll, Brandon; Crockett, Nathan; Wilkins, Olivia H.; Bergin, Edwin; Blake, Geoffrey

    2017-06-01

    A comprehensive analysis of a broadband 1.2 THz wide spectral survey of the Orion Kleinmann-Low nebula (Orion KL) has shown that nitrogen bearing complex organics trace systematically hotter gas than O-bearing organics toward this source. The origin of this O/N dichotomy remains a mystery. If complex molecules originate from grain surfaces, N-bearing species may be more difficult to remove from grain surfaces than O-bearing organics. Theoretical studies, however, have shown that hot (T=300 K) gas phase chemistry can produce high abundances of N-bearing organics while suppressing the formation of O-bearing complex molecules. In order to distinguish these distinct formation pathways we have obtained extremely high angular resolution observations of methyl cyanide (CH_3CN) using the Atacama Large Millimeter/Submillimeter Array (ALMA) toward Orion KL. By simultaneously imaging ^{13}CH_3CN and CH_2DCN we map the temperature structure and D/H ratio of CH_3CN. We will present updated results of these observations and discuss their implications for the formation of N-bearing organics in the interstellar medium.

  11. Tracing the Origins of Nitrogen Bearing Organics Toward Orion KL with Alma

    NASA Astrophysics Data System (ADS)

    Carroll, Brandon; Crockett, Nathan; Bergin, Edwin; Blake, Geoffrey

    2016-06-01

    A comprehensive analysis of a broadband 1.2 THz wide spectral survey of the Orion Kleinmann-Low nebula (Orion KL) from the Herschel Space Telescope has shown that nitrogen bearing complex organics trace systematically hotter gas than O-bearing organics toward this source. The origin of this O/N dichotomy remains a mystery. If complex molecules originate from grain surfaces, N-bearing species may be more difficult to remove from grain surfaces than O-bearing organics. Theoretical studies, however, have shown that hot (T=300 K) gas phase chemistry can produce high abundances of N-bearing organics while suppressing the formation of O-bearing complex molecules. In order to distinguish these distinct formation pathways we have obtained extremely high angular resolution observations of methyl cyanide (CH_3CN) using the Atacama Large Millimeter/Submillimeter Array (ALMA) toward Orion KL. By simultaneously imaging 13CH_3CN and CH_2DCN we map the temperature structure and D/H ratio of CH_3CN. We will present the initial results of these observations and discuss their implications for the formation of N-bearing organics in the interstellar medium.

  12. Chromatin organization and radio resistance in the bacterium Gemmata obscuriglobus.

    PubMed

    Lieber, Arnon; Leis, Andrew; Kushmaro, Ariel; Minsky, Abraham; Medalia, Ohad

    2009-03-01

    The organization of chromatin has a major impact on cellular activities, such as gene expression. For bacteria, it was suggested that the spatial organization of the genetic material correlates with transcriptional levels, implying a specific architecture of the chromosome within the cytoplasm. Accordingly, recent technological advances have emphasized the organization of the genetic material within nucleoid structures. Gemmata obscuriglobus, a member of the phylum Planctomycetes, exhibits a distinctive nucleoid structure in which chromatin is encapsulated within a discrete membrane-bound compartment. Here, we show that this soil and freshwater bacterium tolerates high doses of UV and ionizing radiation. Cryoelectron tomography of frozen hydrated sections and electron microscopy of freeze-substituted cells have indicated a more highly ordered condensed-chromatin organization in actively dividing and stationary-phase G. obscuriglobus cells. These three-dimensional analyses revealed a complex network of double membranes that engulf the condensed DNA. Bioinformatics analysis has revealed the existence of a putative component involved in nonhomologous DNA end joining that presumably plays a role in maintaining chromatin integrity within the bacterium. Thus, our observations further support the notion that packed chromatin organization enhances radiation tolerance.

  13. Complex network analysis of brain functional connectivity under a multi-step cognitive task

    NASA Astrophysics Data System (ADS)

    Cai, Shi-Min; Chen, Wei; Liu, Dong-Bai; Tang, Ming; Chen, Xun

    2017-01-01

    Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a multi-step cognitive task involving consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed based on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to the order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and is obviously restricted to the order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse functional connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.

  14. Airspace Complexity and its Application in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chatterji, Gano; Sheth, Kapil; Edwards, Thomas (Technical Monitor)

    1998-01-01

    The United States Air Traffic Management (ATM) system provides services to enable safe, orderly and efficient aircraft operations within the airspace over the continental United States and over large portions of the Pacific and Atlantic Oceans, and the Gulf of Mexico. It consists of two components, Air Traffic Control (ATC) and Traffic Flow Management (TFM). The ATC function ensures that the aircraft within the airspace are separated at all times while the TFM function organizes the aircraft into a flow pattern to ensure their safe and efficient movement. In order to accomplish the ATC and TFM functions, the airspace over United States is organized into 22 Air Route Traffic Control Centers (ARTCCs). The Center airspace is stratified into low-altitude, high-altitude and super-high altitude groups of Sectors. Each vertical layer is further partitioned into several horizontal Sectors. A typical ARTCC airspace is partitioned into 20 to 80 Sectors. These Sectors are the basic control units within the ATM system.

  15. 3D superstructures with an orthorhombic lattice assembled by colloidal PbS quantum dots.

    PubMed

    Ushakova, Elena V; Cherevkov, Sergei A; Litvin, Aleksandr P; Parfenov, Peter S; Kasatkin, Igor A; Fedorov, Anatoly V; Gun'ko, Yurii K; Baranov, Alexander V

    2018-05-03

    We report a new type of metamaterial comprising a highly ordered 3D network of 3-7 nm lead sulfide quantum dots self-assembled in an organic matrix formed by amphiphilic ligands (oleic acid molecules). The obtained 3D superstructures possess an orthorhombic lattice with the distance between the nanocrystals as large as 10-40 nm. Analysis of self-assembly and destruction of the superstructures in time performed by a SAXS technique shows that their morphology depends on the quantity of amphiphilic ligands and width of the quantum dot size and its distribution. Formation of the superstructures is discussed in terms of a model describing the lyotropic crystal formation by micelles from three-phase mixtures. The results show that the organic molecules possessing surfactant properties and capable of forming micelles with nanoparticles as a micelle core can be utilized as building blocks for the creation of novel metamaterials based on a highly ordered 3D network of semiconductors, metals or magnetic nanoparticles.

  16. Well-ordered structure of methylene blue monolayers on Au(111) surface: electrochemical scanning tunneling microscopy studies.

    PubMed

    Song, Yonghai; Wang, Li

    2009-02-01

    Well-ordered structure of methylene blue (MB) monolayers on Au(111) surface has been successfully obtained by controlling the substrate potential. Electrochemical scanning tunneling microscopy (ECSTM) examined the monolayers of MB on Au(111) in 0.1 M HClO(4) and showed long-range ordered, interweaved arrays of MB with quadratic symmetry on the substrate in the potential range of double-layer charging. High-resolution ECSTM image further revealed the details of the MB monolayers structure of c(5 x 5 radical 3)rect and the flat-lying orientation of ad-molecules. The dependence of molecular organization on the substrate potential and the formation mechanism of well-ordered structure on Au(111) surface were investigated in detail. The obtained well-ordered structure at the interface between a metal and an aqueous electrolyte might possibly be used as high-density device for signal memory and templates for the advanced nanopatterning of surfaces. (c) 2008 Wiley-Liss, Inc.

  17. 7 CFR 1220.107 - Cooperator organization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.107 Cooperator organization. The term Cooperator Organization means the American Soybean Association, or any successor organization...

  18. Infants learn better from left to right: a directional bias in infants' sequence learning.

    PubMed

    Bulf, Hermann; de Hevia, Maria Dolores; Gariboldi, Valeria; Macchi Cassia, Viola

    2017-05-26

    A wealth of studies show that human adults map ordered information onto a directional spatial continuum. We asked whether mapping ordinal information into a directional space constitutes an early predisposition, already functional prior to the acquisition of symbolic knowledge and language. While it is known that preverbal infants represent numerical order along a left-to-right spatial continuum, no studies have investigated yet whether infants, like adults, organize any kind of ordinal information onto a directional space. We investigated whether 7-month-olds' ability to learn high-order rule-like patterns from visual sequences of geometric shapes was affected by the spatial orientation of the sequences (left-to-right vs. right-to-left). Results showed that infants readily learn rule-like patterns when visual sequences were presented from left to right, but not when presented from right to left. This result provides evidence that spatial orientation critically determines preverbal infants' ability to perceive and learn ordered information in visual sequences, opening to the idea that a left-to-right spatially organized mental representation of ordered dimensions might be rooted in biologically-determined constraints on human brain development.

  19. Specifying and Verifying Organizational Security Properties in First-Order Logic

    NASA Astrophysics Data System (ADS)

    Brandt, Christoph; Otten, Jens; Kreitz, Christoph; Bibel, Wolfgang

    In certain critical cases the data flow between business departments in banking organizations has to respect security policies known as Chinese Wall or Bell-La Padula. We show that these policies can be represented by formal requirements and constraints in first-order logic. By additionally providing a formal model for the flow of data between business departments we demonstrate how security policies can be applied to a concrete organizational setting and checked with a first-order theorem prover. Our approach can be applied without requiring a deep formal expertise and it therefore promises a high potential of usability in the business.

  20. Atomized scan strategy for high definition for VR application

    NASA Astrophysics Data System (ADS)

    Huang, Shuping; Ran, Feng; Ji, Yuan; Chen, Wendong

    2017-10-01

    Silicon-based OLED (Organic Light Emitting Display) microdisplay technology begins to attract people's attention in the emerging VR and AR devices. The high display frame refresh rate is an important solution to alleviate the dizziness in VR applications. Traditional display circuit drivers use the analog method or the digital PWM method that follow the serial scan order from the first pixel to the last pixel by using the shift registers. This paper proposes a novel atomized scan strategy based on the digital fractal scan strategy using the pseudo-random scan order. It can be used to realize the high frame refresh rate with the moderate pixel clock frequency in the high definition OLED microdisplay. The linearity of the gray level is also improved compared with the Z fractal scan strategy.

  1. High-definition polymeric membranes: construction of 3D lithographed channel arrays through control of natural building blocks dynamics.

    PubMed

    Speranza, Valentina; Trotta, Francesco; Drioli, Enrico; Gugliuzza, Annarosa

    2010-02-01

    The fabrication of well-defined interfaces is in high demand in many fields of biotechnologies. Here, high-definition membrane-like arrays are developed through the self-assembly of water droplets, which work as natural building blocks for the construction of ordered channels. Solution viscosity together with the dynamics of the water droplets can decide the final formation of three-dimensional well-ordered patterns resembling anodic structures, especially because solvents denser than water are used. Particularly, the polymer solution viscosity is demonstrated to be a powerful tool for control of the mobility of submerged droplets during the microfabrication process. The polymeric patterns are structured at very high levels of organization and exhibit well-established transport-surface property relationships, considered basics for any types of advanced biotechnologies.

  2. An ionic liquid-gated polymer thin film transistor with exceptionally low "on" resistance

    NASA Astrophysics Data System (ADS)

    Algarni, Saud A.; Althagafi, Talal M.; Smith, Patrick J.; Grell, Martin

    2014-05-01

    We report the ionic liquid (IL) gating of a solution processed semiconducting polymer, poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). IL gating relies on the poor solubility of PBTTT, which requires hot chlorinated benzenes for solution processing. PBTTT, thus, resists dissolution even in IL, which otherwise rapidly dissolves semiconducting polymers. The resulting organic thin film transistors (OTFTs) display low threshold, very high carrier mobility (>3 cm2/Vs), and deliver high currents (in the order of 1 mA) at low operational voltages. Such OTFTs are interesting both practically, for the addressing of current-driven devices (e.g., organic LEDs), and for the study of charge transport in semiconducting polymers at very high carrier density.

  3. The influence of different concentrations of bio-organic fertilizer on cucumber Fusarium wilt and soil microflora alterations

    PubMed Central

    Huang, Nan; Wang, Weiwei; Yao, Yanlai; Zhu, Fengxiang; Wang, Weiping; Chang, Xiaojuan

    2017-01-01

    Fusarium wilt is one of the main diseases of cucumber, and bio-organic fertilizer has been used to control Fusarium wilt. In this study, a pot experiment was conducted to evaluate the effects of bio-organic fertilizer applied at four levels on the suppression of Fusarium wilt disease in cucumber, the soil physico-chemical properties and the microbial communities. In comparison with the control (CK), low concentrations of bio-organic fertilizer (BIO2.5 and BIO5) did not effectively reduce the disease incidence and had little effect on soil microorganisms. High concentrations of bio-organic fertilizer (BIO10 and BIO20) significantly reduced the disease incidence by 33.3%-66.7% and the production was significantly improved by 83.8%-100.3%. The soil population of F. oxysporum f. sp. cucumerinum was significantly lower in bio-organic fertilizer treatments, especially in BIO10 and BIO20. The microorganism activity increased with the bio-organic fertilizer concentration. High-throughput sequencing demonstrated that, at the order level, Sphingomonadales, Bacillales, Solibacterales and Xylariales were significantly abundant in BIO10 and BIO20 soils. At the genus level, the abundance and composition of bacterial and fungal communities in BIO10 and BIO20 were similar, illustrating that high concentrations of bio-organic fertilizer activated diverse groups of microorganisms. Redundancy analysis (RDA) showed that Xanthomonadales, Sphingomonadales, Bacillales, Orbiliales, Sordariales, and Mucorales occurred predominantly in the BIO10 and BIO20. These microorganisms were related to the organic matter, available potassium and available phosphorus contents. In conclusion, a high concentration of bio-organic fertilizer application suppressed the Fusarium wilt disease and increased cucumber production after continuous cropping might through improving soil chemical condition and manipulating the composition of soil microbial community. PMID:28166302

  4. High residue levels and the chemical form of mercury in tissues and organs of seabirds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, E.Y.; Murakami, Toru; Saeki, Kazutoshi

    1995-12-31

    Total and organic (methyl) mercury in liver, muscle, kidney and feather of 9 species of seabirds were analyzed to determine the levels and their distribution and to clarify the occurrences of high mercury levels and their detoxification process in seabirds. Total mercury levels in liver showed great variations in intra and interspecies, while organic mercury levels were less variable. As compared with species in relatively low mercury levels, the species which accumulated the high concentration of mercury like black-footed albatross exhibited the different distribution of mercury in the body: in total mercury burden, albatross species contained less than 10% inmore » feather and over 50% in liver, while other species contained over 40% in feather and less than 20% in liver. The order of organic mercury concentrations in tissues were as follows: liver > kidney > muscle in seabirds examined, except oldsquaw. The mean percentage of organic mercury in total was 35%, 66%, and 36% in liver, muscle and kidney, respectively, for all the species. The significant negative correlations were found between organic mercury percentage to total mercury and total mercury concentrations in the liver and muscle of black-footed albatross and in the liver of laysan albatross. Furthermore, in liver, muscle, and kidney of all the species, the percentages of organic mercury had a negative trend with an increase of total mercury concentrations. The results suggest that albatross species may be capable for demethylating organic mercury in the tissues (mainly in liver), and for storing the mercury as immobilizable inorganic form in the liver as substitution for delivering organic mercury to other organs. It is noteworthy that the species with high degree of demethylation showed the lower mercury burdens in feather and slow moulting pattern.« less

  5. The influence of different concentrations of bio-organic fertilizer on cucumber Fusarium wilt and soil microflora alterations.

    PubMed

    Huang, Nan; Wang, Weiwei; Yao, Yanlai; Zhu, Fengxiang; Wang, Weiping; Chang, Xiaojuan

    2017-01-01

    Fusarium wilt is one of the main diseases of cucumber, and bio-organic fertilizer has been used to control Fusarium wilt. In this study, a pot experiment was conducted to evaluate the effects of bio-organic fertilizer applied at four levels on the suppression of Fusarium wilt disease in cucumber, the soil physico-chemical properties and the microbial communities. In comparison with the control (CK), low concentrations of bio-organic fertilizer (BIO2.5 and BIO5) did not effectively reduce the disease incidence and had little effect on soil microorganisms. High concentrations of bio-organic fertilizer (BIO10 and BIO20) significantly reduced the disease incidence by 33.3%-66.7% and the production was significantly improved by 83.8%-100.3%. The soil population of F. oxysporum f. sp. cucumerinum was significantly lower in bio-organic fertilizer treatments, especially in BIO10 and BIO20. The microorganism activity increased with the bio-organic fertilizer concentration. High-throughput sequencing demonstrated that, at the order level, Sphingomonadales, Bacillales, Solibacterales and Xylariales were significantly abundant in BIO10 and BIO20 soils. At the genus level, the abundance and composition of bacterial and fungal communities in BIO10 and BIO20 were similar, illustrating that high concentrations of bio-organic fertilizer activated diverse groups of microorganisms. Redundancy analysis (RDA) showed that Xanthomonadales, Sphingomonadales, Bacillales, Orbiliales, Sordariales, and Mucorales occurred predominantly in the BIO10 and BIO20. These microorganisms were related to the organic matter, available potassium and available phosphorus contents. In conclusion, a high concentration of bio-organic fertilizer application suppressed the Fusarium wilt disease and increased cucumber production after continuous cropping might through improving soil chemical condition and manipulating the composition of soil microbial community.

  6. Electrochemical Control of Peptide Self-Organization on Atomically Flat Solid Surfaces: A Case Study with Graphite.

    PubMed

    Seki, Takakazu; So, Christopher R; Page, Tamon R; Starkebaum, David; Hayamizu, Yuhei; Sarikaya, Mehmet

    2018-02-06

    The nanoscale self-organization of biomolecules, such as proteins and peptides, on solid surfaces under controlled conditions is an important issue in establishing functional bio/solid soft interfaces for bioassays, biosensors, and biofuel cells. Electrostatic interaction between proteins and surfaces is one of the most essential parameters in the adsorption and self-assembly of proteins on solid surfaces. Although the adsorption of proteins has been studied with respect to the electrochemical surface potential, the self-assembly of proteins or peptides forming well-organized nanostructures templated by lattice structure of the solid surfaces has not been studied in the relation to the surface potential. In this work, we utilize graphite-binding peptides (GrBPs) selected by the phage display method to investigate the relationship between the electrochemical potential of the highly ordered pyrolytic graphite (HOPG) and peptide self-organization forming long-range-ordered structures. Under modulated electrical bias, graphite-binding peptides form various ordered structures, such as well-ordered nanowires, dendritic structures, wavy wires, amorphous (disordered) structures, and islands. A systematic investigation of the correlation between peptide sequence and self-organizational characteristics reveals that the presence of the bias-sensitive amino acid modules in the peptide sequence has a significant effect on not only surface coverage but also on the morphological features of self-assembled structures. Our results show a new method to control peptide self-assembly by means of applied electrochemical bias as well as peptide design-rules for the construction of functional soft bio/solid interfaces that could be integrated in a wide range of practical implementations.

  7. The Impact of Effective Scheduling on the Climate and Culture in a Large Comprehensive High School

    ERIC Educational Resources Information Center

    Hayes, Matthew

    2013-01-01

    Scheduling in any school or organization plays a vital role in the effectiveness that stakeholders' needs are met. The administration at a large comprehensive high school in the Charlotte Mecklenburg School District realized that in order for their school to meet the changing needs of its student body, it had to build a culture and climate that…

  8. High-resolution charge carrier mobility mapping of heterogeneous organic semiconductors

    NASA Astrophysics Data System (ADS)

    Button, Steven W.; Mativetsky, Jeffrey M.

    2017-08-01

    Organic electronic device performance is contingent on charge transport across a heterogeneous landscape of structural features. Methods are therefore needed to unravel the effects of local structure on overall electrical performance. Using conductive atomic force microscopy, we construct high-resolution out-of-plane hole mobility maps from arrays of 5000 to 16 000 current-voltage curves. To demonstrate the efficacy of this non-invasive approach for quantifying and mapping local differences in electrical performance due to structural heterogeneities, we investigate two thin film test systems, one bearing a heterogeneous crystal structure [solvent vapor annealed 5,11-Bis(triethylsilylethynyl)anthradithiophene (TES-ADT)—a small molecule organic semiconductor] and one bearing a heterogeneous chemical composition [p-DTS(FBTTh2)2:PC71BM—a high-performance organic photovoltaic active layer]. TES-ADT shows nearly an order of magnitude difference in hole mobility between semicrystalline and crystalline areas, along with a distinct boundary between the two regions, while p-DTS(FBTTh2)2:PC71BM exhibits subtle local variations in hole mobility and a nanoscale domain structure with features below 10 nm in size. We also demonstrate mapping of the built-in potential, which plays a significant role in organic light emitting diode and organic solar cell operation.

  9. Millennial-aged organic carbon subsidies to a modern river food web.

    PubMed

    Caraco, Nina; Bauer, James E; Cole, Jonathan J; Petsch, Steven; Raymond, Peter

    2010-08-01

    Recent studies indicate that highly aged material is a major component of organic matter transported by most rivers. However, few studies have used natural 14C to trace the potential entry of this aged material into modern river food webs. Here we use natural abundance 14C, 13C, and deuterium (2H) to trace the contribution of aged and contemporary organic matter to an important group of consumers, crustacean zooplankton, in a large temperate river (the Hudson River, New York, USA). Zooplankton were highly 14C depleted (mean delta14C = -240 per thousand) compared to modern primary production in the river or its watershed (delta14C = -60 per thousand to +50 per thousand). In order to account for the observed 14C depletion, zooplankton must be subsidized by highly aged particulate organic carbon. IsoSource modeling suggests that the range of the aged dietary subsidy is between approximately 57%, if the aged organic matter source was produced 3400 years ago, and approximately 21%, if the organic carbon used is > or = 50 000 years in age, including fossil material that is millions of years in age. The magnitude of this aged carbon subsidy to river zooplankton suggests that modern river food webs may in some cases be buffered from the limitations set by present-day primary production.

  10. Non-critically phase-matched second harmonic generation and third order nonlinearity in organic crystal glucuronic acid γ-lactone

    NASA Astrophysics Data System (ADS)

    Saripalli, Ravi Kiran; Katturi, Naga Krishnakanth; Soma, Venugopal Rao; Bhat, H. L.; Elizabeth, Suja

    2017-12-01

    The linear, second order, and third order nonlinear optical properties of glucuronic acid γ-lactone single crystals were investigated. The optic axes and principal dielectric axes were identified through optical conoscopy and the principal refractive indices were obtained using the Brewster's angle method. Conic sections were observed which is perceived to be due to spontaneous non-collinear phase matching. The direction of collinear phase matching was determined and the deff evaluated in this direction was 0.71 pm/V. Open and closed aperture Z-scan measurements with femtosecond pulses revealed high third order nonlinearity in the form of self-defocusing, two-photon absorption, as well as saturable absorption.

  11. High Ph, Ammonia Toxicity, and the Search for Life on the Jovian Planets

    NASA Technical Reports Server (NTRS)

    Deal, P. H.; Souza, K. A.; Mack, H. M.

    1975-01-01

    The effects of pH and ammonia concentration were studied separately, where possible, on a variety of organisms, including some isolated from natural environments of high pH and/or ammonia concentration. Escherichia coli and Bacillus subtilis are both extremely sensitive to ammonia. An aerobic organism (growth up to pH 11.4) from an alkaline spring is more resistant, but exhibits a toxic response to ammonia at a pH much lower than its maximum for growth. The greatest ammonia resistance has been found in an unidentified organism growing at near neutral pH. Even in this case, however, urvival at ammonia concentrations reasonably expected on the Jovian planets is measured in hours. This is two to three orders of magnitude longer than for E. coli. Results support the tentative conclusion that contamination of the Jovian planets with terrestrial organisms that can grow is unlikely. However, the range of toxic response noted, coupled with the observation that terrestrial life has not been exposed to high ammonia concentrations for millions of years, suggests that adaptation to greater ammonia tolerance may be possible.

  12. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods

    NASA Technical Reports Server (NTRS)

    Dragoi, D.; Kanik, I.; Bar-Cohen, Y.; Sherrit, S.; Tsapin, A.; Kulleck, J.

    2004-01-01

    In this work we describe an analytical method for determining the presence of organic compounds in rocks, limestone, and other composite materials. Our preliminary laboratory experiments on different rocks/limestone show that the organic component in mineralogical matrices is a minor phase on order of hundreds of ppm and can be better detected using high precision liquid chromatography (HPLC). The matrix, which is the major phase, plays an important role in embedding and protecting the organic molecules from the harsh Martian environment. Some rocks bear significant amounts of amino acids therefore, it is possible to identify these phases using powder x-ray diffraction (XRD) by crystallizing the organic. The method of detection/analysis of organics, in particular amino acids, that have been associated with life will be shown in the next section.

  13. Can ESD Reach the Year 2020?

    ERIC Educational Resources Information Center

    Lenglet, Frans

    2014-01-01

    In order to have long-term impact ESD concepts, practices and policies should move into societal, policy and research arenas with high visibility and traction. In the process of going "transboundary", the ESD label may fade but the practice and organization of social and collaborative learning may gain.

  14. Nutritive and health-promoting value of organic vegetables.

    PubMed

    Sobieralski, Krzysztof; Siwulski, Marek; Sas-Golak, Iwona

    2013-01-01

    In recent years in Poland we may observe a considerable development of organic vegetable production. Increased interest in organic products results from an opinion of the consumers on their high quality and health safety. However, results of research comparing nutritive value and contents of biologically active compounds in vegetables from organic and conventional farms are ambiguous. Most studies confirm higher contents of certain vitamins and antioxidants in organic vegetables, as well as their lower contents of nitrates and pesticide residue in comparison to vegetables grown in the conventional manner. There are also reports which did not confirm such differences or showed opposite trends. Research results at present do not make it possible to formulate a general conclusion on a higher health-promoting value of organic vegetables in comparison to those grown by conventional farming methods. It is necessary to continue research in order to explain the effect of organic raw materials on human health in a more comprehensive manner.

  15. 3 CFR 13524 - Executive Order 13524 of December 16, 2009. Amending Executive Order 12425 Designating Interpol...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Privileges, Exemptions, and Immunities 13524 Order 13524 Presidential Documents Executive Orders Executive... Public International Organization Entitled To Enjoy Certain Privileges, Exemptions, and Immunities By the..., including section 1 of the International Organizations Immunities Act (22 U.S.C. 288), and in order to...

  16. Formation of secondary organic aerosols from gas-phase emissions of heated cooking oils

    NASA Astrophysics Data System (ADS)

    Liu, Tengyu; Li, Zijun; Chan, ManNin; Chan, Chak K.

    2017-06-01

    Cooking emissions can potentially contribute to secondary organic aerosol (SOA) but remain poorly understood. In this study, formation of SOA from gas-phase emissions of five heated vegetable oils (i.e., corn, canola, sunflower, peanut and olive oils) was investigated in a potential aerosol mass (PAM) chamber. Experiments were conducted at 19-20 °C and 65-70 % relative humidity (RH). The characterization instruments included a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS). The efficiency of SOA production, in ascending order, was peanut oil, olive oil, canola oil, corn oil and sunflower oil. The major SOA precursors from heated cooking oils were related to the content of monounsaturated fat and omega-6 fatty acids in cooking oils. The average production rate of SOA, after aging at an OH exposure of 1. 7 × 1011 molecules cm-3 s, was 1. 35 ± 0. 30 µg min-1, 3 orders of magnitude lower compared with emission rates of fine particulate matter (PM2. 5) from heated cooking oils in previous studies. The mass spectra of cooking SOA highly resemble field-derived COA (cooking-related organic aerosol) in ambient air, with R2 ranging from 0.74 to 0.88. The average carbon oxidation state (OSc) of SOA was -1.51 to -0.81, falling in the range between ambient hydrocarbon-like organic aerosol (HOA) and semi-volatile oxygenated organic aerosol (SV-OOA), indicating that SOA in these experiments was lightly oxidized.

  17. Outcome of Transplantation Using Organs From Donors Infected or Colonized With Carbapenem-Resistant Gram-Negative Bacteria.

    PubMed

    Mularoni, A; Bertani, A; Vizzini, G; Gona, F; Campanella, M; Spada, M; Gruttadauria, S; Vitulo, P; Conaldi, P; Luca, A; Gridelli, B; Grossi, P

    2015-10-01

    Donor-derived infections due to multidrug-resistant bacteria are a growing problem in solid organ transplantation, and optimal management options are not clear. In a 2-year period, 30/214 (14%) recipients received an organ from 18/170 (10.5%) deceased donors with infection or colonization caused by a carbapenem-resistant gram-negative bacteria that was unknown at the time of transplantation. Among them, 14/30 recipients (47%) received a transplant from a donor with bacteremia or with infection/colonization of the transplanted organ and were considered at high risk of donor-derived infection transmission. The remaining 16/30 (53%) recipients received an organ from a nonbacteremic donor with colonization of a nontransplanted organ and were considered at low risk of infection transmission. Proven transmission occurred in 4 of the 14 high-risk recipients because donor infection was either not recognized, underestimated, or not communicated. These recipients received late, short or inappropriate posttransplant antibiotic therapy. Transmission did not occur in high-risk recipients who received appropriate and prompt antibiotic therapy for at least 7 days. The safe use of organs from donors with multidrug-resistant bacteria requires intra- and inter-institutional communication to allow appropriate management and prompt treatment of recipients in order to avoid transmission of infection. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  18. Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity

    PubMed Central

    Feng, Xiao; Ding, Xuesong; Chen, Long; Wu, Yang; Liu, Lili; Addicoat, Matthew; Irle, Stephan; Dong, Yuping; Jiang, Donglin

    2016-01-01

    Highly ordered discrete assemblies of chlorophylls that are found in natural light-harvesting antennae are key to photosynthesis, which converts light energy to chemical energy and is the principal producer of organic matter on Earth. Porphyrins and phthalocyanines, which are analogues of chlorophylls, exhibit a strong absorbance of visible and near-infrared light, respectively. A highly ordered porphyrin-co-phthalocyanine antennae would harvest photons over the entire solar spectrum for chemical transformation. However, such a robust antennae has not yet been synthesised. Herein, we report a strategy that merges covalent bonds and noncovalent forces to produce highly ordered two-dimensional porphyrin-co-phthalocyanine antennae. This methodology enables control over the stoichiometry and order of the porphyrin and phthalocyanine units; more importantly, this approach is compatible with various metalloporphyrin and metallophthalocyanine derivatives and thus may lead to the generation of a broad structural diversity of two-dimensional artificial antennae. These ordered porphyrin-co-phthalocyanine two-dimensional antennae exhibit unique optical properties and catalytic functions that are not available with single-component or non-structured materials. These 2D artificial antennae exhibit exceptional light-harvesting capacity over the entire solar spectrum as a result of a synergistic light-absorption effect. In addition, they exhibit outstanding photosensitising activities in using both visible and near-infrared photons for producing singlet oxygen. PMID:27622274

  19. Loss of centrioles causes chromosomal instability in vertebrate somatic cells.

    PubMed

    Sir, Joo-Hee; Pütz, Monika; Daly, Owen; Morrison, Ciaran G; Dunning, Mark; Kilmartin, John V; Gergely, Fanni

    2013-12-09

    Most animal cells contain a centrosome, which comprises a pair of centrioles surrounded by an ordered pericentriolar matrix (PCM). Although the role of this organelle in organizing the mitotic spindle poles is well established, its precise contribution to cell division and cell survival remains a subject of debate. By genetically ablating key components of centriole biogenesis in chicken DT40 B cells, we generated multiple cell lines that lack centrioles. PCM components accumulated in acentriolar microtubule (MT)-organizing centers but failed to adopt a higher-order structure, as shown by three-dimensional structured illumination microscopy. Cells without centrioles exhibited both a delay in bipolar spindle assembly and a high rate of chromosomal instability. Collectively, our results expose a vital role for centrosomes in establishing a mitotic spindle geometry that facilitates correct kinetochore-MT attachments. We propose that centrosomes are essential in organisms in which rapid segregation of a large number of chromosomes needs to be attained with fidelity.

  20. Directional Charge Separation in Isolated Organic Semiconductor Crystalline Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Michael; Labastide, Joelle; Bond-Thompson, Hilary

    2017-03-01

    In the conventional view of organic photovoltaics (OPV), localized electronic excitations (excitons) formed in the active layer are transported by random 3D diffusion to an interface where charge separation and extraction take place. Because radiative de-excitation is usually strongly allowed in organic semiconductors, efficient charge separation requires high exciton mobility, with much of the diffusive motion ‘wasted’ in directions that don’t result in an interface encounter. Our research efforts are focused on ways to enforce a preferred directionality in energy and/or charge transport using ordered crystalline nanowires in which the intermolecular interactions that facilitate transport along, for example, the pi-stackingmore » axis, can be made several orders of magnitude stronger than those in a transverse direction. The results presented in our recent work (Nature Communications) is a first step towards realizing the goal of directional control of both energy transport and charge separation, where excitons shared between adjacent molecules dissociate exclusively along the pi-stacking direction.« less

  1. Deciphering the Minimal Algorithm for Development and Information-genesis

    NASA Astrophysics Data System (ADS)

    Li, Zhiyuan; Tang, Chao; Li, Hao

    During development, cells with identical genomes acquires different fates in a highly organized manner. In order to decipher the principles underlining development, we used C.elegans as the model organism. Based on a large set of microscopy imaging, we first constructed a ``standard worm'' in silico: from the single zygotic cell to about 500 cell stage, the lineage, position, cell-cell contact and gene expression dynamics are quantified for each cell in order to investigate principles underlining these intensive data. Next, we reverse-engineered the possible gene-gene/cell-cell interaction rules that are capable of running a dynamic model recapitulating the early fate decisions during C.elegans development. we further formulized the C.elegans embryogenesis in the language of information genesis. Analysis towards data and model uncovered the global landscape of development in the cell fate space, suggested possible gene regulatory architectures and cell signaling processes, revealed diversity and robustness as the essential trade-offs in development, and demonstrated general strategies in building multicellular organisms.

  2. Derivation of rigorous conditions for high cell-type diversity by algebraic approach.

    PubMed

    Yoshida, Hiroshi; Anai, Hirokazu; Horimoto, Katsuhisa

    2007-01-01

    The development of a multicellular organism is a dynamic process. Starting with one or a few cells, the organism develops into different types of cells with distinct functions. We have constructed a simple model by considering the cell number increase and the cell-type order conservation, and have assessed conditions for cell-type diversity. This model is based on a stochastic Lindenmayer system with cell-to-cell interactions for three types of cells. In the present model, we have successfully derived complex but rigorous algebraic relations between the proliferation and transition rates for cell-type diversity by using a symbolic method: quantifier elimination (QE). Surprisingly, three modes for the proliferation and transition rates have emerged for large ratios of the initial cells to the developed cells. The three modes have revealed that the equality between the development rates for the highest cell-type diversity is reduced during the development process of multicellular organisms. Furthermore, we have found that the highest cell-type diversity originates from order conservation.

  3. Isotope-selective high-order interferometry with large organic molecules in free fall

    NASA Astrophysics Data System (ADS)

    Rodewald, Jonas; Dörre, Nadine; Grimaldi, Andrea; Geyer, Philipp; Felix, Lukas; Mayor, Marcel; Shayeghi, Armin; Arndt, Markus

    2018-03-01

    Interferometry in the time domain has proven valuable for matter-wave based measurements. This concept has recently been generalized to cold molecular clusters using short-pulse standing light waves which realized photo-depletion gratings, arranged in a time-domain Talbot–Lau interferometer (OTIMA). Here we extend this idea further to large organic molecules and demonstrate a new scheme to scan the emerging molecular interferogram in position space. The capability of analyzing different isotopes of the same monomer under identical conditions opens perspectives for studying the interference fringe shift as a function of time in gravitational free fall. The universality of OTIMA interferometry allows one to handle a large variety of particles. In our present work, quasi-continuous laser evaporation allows transferring fragile organic molecules into the gas phase, covering more than an order of magnitude in mass between 614 amu and 6509 amu, i.e. 300% more massive than in previous OTIMA experiments. For all masses, we find about 30% fringe visibility.

  4. Self-organization of a self-assembled supramolecular rectangle, square, and three-dimensional cage on Au111 surfaces.

    PubMed

    Yuan, Qun-Hui; Wan, Li-Jun; Jude, Hershel; Stang, Peter J

    2005-11-23

    The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.

  5. Modeling the Free Carrier Recombination Kinetics in PTB7:PCBM Organic Photovoltaics

    DOE PAGES

    Oosterhout, Stefan D.; Ferguson, Andrew J.; Larson, Bryon W.; ...

    2016-10-03

    Currently the exact recombination mechanism of free carriers in organic photovoltaic (OPV) devices is poorly understood. Often a reduced Langevin model is used to describe the decay behavior of electrons and holes. Here we propose a novel, simple kinetic model that accurately describes the decay behavior of free carriers in the PTB7:PCBM organic photovoltaic blend. In order to accurately describe the recombination behavior of free carriers as measured by time-resolved microwave conductivity (TRMC), this model needs to only take into account free and trapped holes in the polymer, and free electrons in the fullerene. The model is consistent for differentmore » PTB7:PCBM blend ratios and spans a light intensity range of over 3 orders of magnitude. Furthermore, the model demonstrates that dark carriers exist in the polymer and interact with photoinduced charge carriers, and that the trapping and detrapping rates of the holes are of high importance to the overall carrier lifetime.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution.more » Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.« less

  7. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, Timothy J.; Even, Jr., William R.

    2000-01-01

    A novel method for preparing a hydrogenation composition comprising organic polymer molecules having carbon--carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces and particularly from atmospheres within enclosed spaces that contain air, water vapor, oxygen, carbon dioxide or ammonia. The organic polymers molecules containing carbon--carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble noble metal catalyst composition. High molecular weight polymers may be added to the organic polymer/catalyst mixture in order to improve their high temperature performance. The hydrogenation composition is prepared by dispersing the polymers in a suitable solvent, forming thereby a solution suspension, flash-freezing droplets of the solution in a liquid cryogen, freeze-drying the frozen droplets to remove frozen solvent incorporated in the droplets, and recovering the dried powder thus formed.

  8. A knowledge representation view on biomedical structure and function.

    PubMed Central

    Schulz, Stefan; Hahn, Udo

    2002-01-01

    In biomedical ontologies, structural and functional considerations are of outstanding importance, and concepts which belong to these two categories are highly interdependent. At the representational level both axes must be clearly kept separate in order to support disciplined ontology engineering. Furthermore, the biaxial organization of physical structure (both by a taxonomic and partonomic order) entails intricate patterns of inference. We here propose a layered encoding of taxonomic, partonomic and functional aspects of biomedical concepts using description logics. PMID:12463912

  9. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2018-02-06

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  10. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-07-18

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  11. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-06-14

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  12. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-09-05

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  13. High-symmetry organic scintillator systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Patrick L.

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based onmore » the pulse shapes of the output signals.« less

  14. Pharmacokinetic study of arctigenin in rat plasma and organ tissue by RP-HPLC method.

    PubMed

    He, Fan; Dou, De-Qiang; Hou, Qiang; Sun, Yu; Kang, Ting-Guo

    2013-01-01

    A high-performance liquid chromatography (HPLC) technique was developed for the determination of arctigenin in plasma and various organs of rats after the oral administration of 30, 50 and 70 mgkg(-1) of arctigenin to the Sprague-Dawley rats. Results showed that the validated HPLC method was simple, fast, reproducible and suitable to the determination of arctigenin in rat plasma and organ tissue and one-compartmental model with zero-order absorption process can well describe the changes of arctigenin concentration in the plasma. The concentration of compound was highest in the spleen, less in the liver and the least in the lung.

  15. Revolting Developments in Our Understanding of the Organization of the Eukaryotic Genome.

    ERIC Educational Resources Information Center

    Krider, Hallie M.

    1984-01-01

    Various typs of DNA are discussed. Areas considered include highly repetitive and satellite sequences, genes encoding, ribosomal RNA, histone protein genes, and dispersed repeated genes that jump. Regulated genetic misbehavior, structure and use of unique genes, and higher order complexities of chromosomes are also discussed. (JN)

  16. Control of Task Sequences: What Is the Role of Language?

    ERIC Educational Resources Information Center

    Mayr, Ulrich; Kleffner-Canucci, Killian; Kikumoto, Atsushi; Redford, Melissa A.

    2014-01-01

    It is almost a truism that language aids serial-order control through self-cuing of upcoming sequential elements. We measured speech onset latencies as subjects performed hierarchically organized task sequences while "thinking aloud" each task label. Surprisingly, speech onset latencies and response times (RTs) were highly synchronized,…

  17. Fractal and Multifractal Models Applied to Porous Media - Editorial

    USDA-ARS?s Scientific Manuscript database

    Given the current high level of interest in the use of fractal geometry to characterize natural porous media, a special issue of the Vadose Zone Journal was organized in order to expose established fractal analysis techniques and cutting-edge new developments to a wider Earth science audience. The ...

  18. Educational Media Technician: A Suggested Two-Year Post High School Curriculum.

    ERIC Educational Resources Information Center

    State Univ. of New York, Alfred. Agricultural and Technical Coll.

    The first portion of the guidelines discusses the need to train educational technicians for the field of communications (including education, instructions, industrial organizations or agencies), in order to meet changing educational techniques and the increasing number of resources for learning. A detailed curriculum guide is presented for a…

  19. High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires.

    PubMed

    Noori, Mohammed; Sadeghi, Hatef; Lambert, Colin J

    2017-04-20

    If high efficiency organic thermoelectric materials could be identified, then these would open the way to a range of energy harvesting technologies and Peltier coolers using flexible and transparent thin-film materials. We have compared the thermoelectric properties of three zinc porphyrin (ZnP) dimers and a ZnP monomer and found that the "edge-over-edge" dimer formed from stacked ZnP rings possesses a high electrical conductance, negligible phonon thermal conductance and a high Seebeck coefficient of the order of 300 μV K -1 . These combine to yield a predicted room-temperature figure of merit of ZT ≈ 4, which is the highest room-temperature ZT ever reported for a single organic molecule. This high value of ZT is a consequence of the low phonon thermal conductance arising from the stacked nature of the porphyrin rings, which hinders phonon transport through the edge-over-edge molecule and enhances the Seebeck coefficient.

  20. Financial reporting practices: a comprehensive evaluation.

    PubMed

    Godwin, Norman H; Mueller, Jennifer M

    2005-01-01

    A distinguishing characteristic of high performance organizations is a strong internal control structure-controls that ensure patient care, compliance with regulations, internal efficiencies, and financial reporting. It is controls on financial reporting that are receiving a great deal of attention under a new law, the Sarbanes-Oxley Act of 2002. Public companies are now required by law to document controls over financial reporting, in order to fully address exposures and the effectiveness of current controls. Though many healthcare organizations are not directly affected by the law, regulatory agencies could follow suit and require similar compliance. In fact, several states have introduced bills that require nonprofit organizations to adhere to portions of the act. This article provides a guide for organizations desiring to stay ahead of the curve.

  1. On the synthesis and structure of resorcinol-formaldehyde polymeric networks – Precursors to 3D-carbon macroassemblies

    DOE PAGES

    Lewicki, James P.; Fox, Christina A.; Worsley, Marcus A.

    2015-05-15

    With the new impetus towards the development of hierarchical graphene and CNT macro-assemblies for application in fields such as advanced energy storage, catalysis and electronics; there is much renewed interest in organic carbon-based sol–gel processes as a synthetically convenient and versatile means of forming three dimensional, covalently bonded organic/inorganic networks. Such matrices can act as highly effective precursors, scaffolds or molecular ‘glues’ for the assembly of a wide variety of functional carbon macro-assemblies. However, despite the utility and broad use of organic sol–gel processes – such as the ubiquitous resorcinol-formaldehyde (RF) reaction, there are details of the reaction chemistries ofmore » these important sol–gel processes that remain poorly understood at present. It is therefore both timely and necessary to examine these reactions in more detail using modern analytical techniques in order to gain a more rigorous understanding of the mechanisms by which these organic networks form. The goal of such studies is to obtain improved and rational control over the organic network structure, in order to better direct and tailor the architecture of the final inorganic carbon matrix. In this study we have investigated in detail, the mechanism of the organic sol–gel network forming reaction of resorcinol and formaldehyde from a structural and kinetic standpoint, by using a combination of real-time high field solution state nuclear magnetic resonance (NMR), low field NMR relaxometry and differential scanning calorimetry (DSC). These investigations have allowed us to track the network formation processes in real-time, gain both detailed structural information on the mechanisms of the RF sol–gel process and a quantitative assessment of the kinetics of the global network formation process. Here, it has been shown that the mechanism, by which the RF organic network forms, proceeds via an initial exothermic step correlated to the formation of a free aromatic aldehyde. The network growth reaction then proceeds in a statistical manner following a first order Arrhenius type kinetic relationship – characteristic of a typical thermoset network poly-condensation process. Finally, despite the relative complexity and ill-defined nature of the formaldehyde staring material, the final network structure is to a large extent, governed by the substitution pattern of the resorcinol molecule.« less

  2. Nanostructured organic/inorganic semicondutor photovoltaics: Investigation on morphology and optoelectronics performance

    NASA Astrophysics Data System (ADS)

    Wanninayake, Aruna Pushpa Kumara

    Organic solar cell is a promising technology because of the versatility of organic materials in terms of tunability of their electrical and optical properties. In addition, their relative insensitivity to film imperfections potentially allows for very low-cost high-throughput roll-to-roll processing. However, the power conversion efficiency of organic solar cell is still limited and needs to be improved in order to be competitive with grid parity. This work is focused on the design and characterization of a new organic/inorganic hybrid device to enhance the efficiency factors of bilayer organic solar cells such as: light absorption, exciton diffusion, exciton dissociation, charge transportation and charge collection at the electrodes. In a hybrid solar cell operation, external quantum efficiency is determined by these five factors. The external quantum efficiency has linear relationship to the power conversation efficiency via short circuit current density. Bulk heterojunction (BHJ) PSCs benefit from a homogeneous donor-acceptor (D-A) contact interface compared to their inorganic counterpart. A homogenous D-A interface offers a longer free path for charge carriers, resulting in a longer diffusional pathway and a larger coulomb interaction between electrons and holes. This is triggered by the low dielectric constant of organic semiconductors. Among various conventional donor-acceptor structures, poly(3-hexylthiophene)/[6,6]-phenyl-C70-butyric acid methyl ester (P3HT/PCBM) mixture is the most promising and ideal donor-acceptor pair due to their unique properties. In order to take benefits from both organic and inorganic materials, inorganic nanoparticles are incorporated in this donor-acceptor polymer structure. Light trapping enhances light absorption and increases efficiencies with thinner device structure. In this study, copper oxide nanoparticles are used in the P3HT/PC70BM active layer to optimize the optical absorption properties in the blend. In addition, zinc oxide nanoparticles are used for tuning the conjugated polymer films due to their high electron accepting ability and optical absorption properties. In the zinc oxide structure, electrons exhibit higher mobility, which enhances the exciton dissociation efficiency. In addition, metal nanoparticles such as gold are added to the hole transport layer to enhance the overall hole transport ability. The optimum morphology of P3HT/PCBM films is described by two main features: 1) the molecular ordering within the donor or acceptor phase, which affects the photon absorption and carrier mobility; and 2) the scale of phase separation between the donor and the acceptor, which can directly influence the exciton dissociation and charge transport and/or collection processes. Hence, the molecular ordering and the phase separation between the donor and acceptor phases are crucial for solar cells with high efficiency. Optimization of the morphology of the organic/inorganic hybrid layers will be achieved via thermal annealing. The main goal of this work is to fabricate inorganic nanoparticles incorporated polymer PV devices with increased power conversion efficiency (PCE). This goal is achieved through four research objectives which are 1) enhancement of exciton generation and morphology by CuO NPs, 2) enhancement of exciton transportation and carrier diffusion by thermal annealing, 3) Improvement of exciton dissociation and electron mobility using ZnO NPs, and 4) improvement of hole collection ability using Au NPs. The key findings in this research can be applied to fabricate solar cells with higher power conversion efficiencies.

  3. Approaches of Bill & Melinda Gates Foundation-Funded Intermediary Organizations to Structuring and Supporting Small High Schools in New York City

    ERIC Educational Resources Information Center

    Foley, Eileen

    2010-01-01

    In 2003, a few years after the Bill & Melinda Gates Foundation began implementing its small schools reform agenda, the Chancellor of the New York City Department of Education (DOE) announced a plan to replace large failing high schools in New York City with 200 small schools. In short order, the foundation and the Chancellor became partners…

  4. Approaches of Bill & Melinda Gates Foundation-Funded Intermediary Organizations to Structuring and Supporting Small High Schools in New York City. Executive Summary

    ERIC Educational Resources Information Center

    Foley, Eileen

    2010-01-01

    In 2003, a few years after the Bill & Melinda Gates Foundation began implementing its small schools reform agenda, the Chancellor of the New York City Department of Education (DOE) announced a plan to replace large failing high schools in New York City with 200 small schools. In short order, the foundation and the Chancellor became partners with…

  5. Formation of light absorbing organo-nitrogen species from evaporation of droplets containing glyoxal and ammonium sulfate.

    PubMed

    Lee, Alex K Y; Zhao, Ran; Li, Richard; Liggio, John; Li, Shao-Meng; Abbatt, Jonathan P D

    2013-11-19

    In the atmosphere, volatile organic compounds such as glyoxal can partition into aqueous droplets containing significant levels of inorganic salts. Upon droplet evaporation, both the organics and inorganic ions become highly concentrated, accelerating reactions between them. To demonstrate this process, we investigated the formation of organo-nitrogen and light absorbing materials in evaporating droplets containing glyoxal and different ammonium salts including (NH4)2SO4, NH4NO3, and NH4Cl. Our results demonstrate that evaporating glyoxal-(NH4)2SO4 droplets produce light absorbing species on a time scale of seconds, which is orders of magnitude faster than observed in bulk solutions. Using aerosol mass spectrometry, we show that particle-phase organics with high N:C ratios were formed when ammonium salts were used, and that the presence of sulfate ions promoted this chemistry. Since sulfate can also significantly enhance the Henry's law partitioning of glyoxal, our results highlight the atmospheric importance of such inorganic-organic interactions in aqueous phase aerosol chemistry.

  6. Process of pulmonary rehabilitation and program organization.

    PubMed

    Wouters, E F M; Augustin, I M L

    2011-09-01

    Pulmonary rehabilitation programs are highly directed to return patients suffering from chronic lung diseases to a state of self-help. These programs are largely organized as temporary interventions in a highly fragmented delivery care system for patients with chronic respiratory conditions. In an optimal health care organizational structure, pulmonary rehabilitation needs to be considered as an essential part of an individualized, integrated care process, organized from the vantage point of the patient and the patients'health continuum. Pulmonary rehabilitation programs need to become organized as patient-centered care, respectful of and responsive to individual patient preferences, needs and values. Partnering and communication skills are considered as drivers for successful rehabilitation. Assessment is considered as the cornerstone to evaluate the individual needs and problems in order to develop an individualized intervention. Pulmonary rehabilitation programs need to move away from a supply-driven functional organizational structure towards integrated structures, including the full range of medical expertise, technical skills and specialized facilities needed to compete on added value in the management of patients with chronic respiratory diseases.

  7. Characterization of Light Non-Methane Hydrocarbons, Surface Water DOC, and Aerosols over the Nordic Seas

    NASA Astrophysics Data System (ADS)

    Hudson, E. D.; Ariya, P. A.

    2006-12-01

    Whole air, size-fractionated marine aerosols, and surface ocean water DOC were sampled together during June-July 2004 on the Nordic seas, in order to explore factors leading to the formation of volatile organic compounds (VOCs) at the sea surface and their transfer to the atmosphere. High site-to-site variability in 19 non-methane hydrocarbon concentrations suggests highly variable, local sources for these compounds. Acetone, C5 and C6 hydrocarbons, and dimethylsulfide were identified in the seawater samples using solid-phase microextraction/GC-MS. The aerosols were analysed by SEM-EDX and contained primarily inorganic material (sea salt, marine sulfates, and carbonates) and little organic matter. However, a culturable bacterium was isolated from the large (9.9 - 18 μ m) fraction at one site, and identified as Micrococcus luteus. We will discuss the implication of these results on potential exchange processes at the ocean-atmosphere interface and the impact of bioaerosols in transferring marine organic carbon to atmospheric organic carbon.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talin, Albert Alec; Jones, Reese E.; Hopkins, Patrick E.

    Motivated by low cost, low toxicity, mechanical flexibility, and conformability over complex shapes, organic semiconductors are currently being actively investigated as thermoelectric (TE) materials to replace the costly, brittle, and non-eco-friendly inorganic TEs for near-ambient-temperature applications. Metal–organic frameworks (MOFs) share many of the attractive features of organic polymers, including solution processability and low thermal conductivity. A potential advantage of MOFs and MOFs with guest molecules (Guest@MOFs) is their synthetic and structural versatility, which allows both the electronic and geometric structure to be tuned through the choice of metal, ligand, and guest molecules. This could solve the long-standing challenge of findingmore » stable, high-TE-performance n-type organic semiconductors, as well as promote high charge mobility via the long-range crystalline order inherent in these materials. In this paper, we review recent advances in the synthesis of MOF and Guest@MOF TEs and discuss how the Seebeck coefficient, electrical conductivity, and thermal conductivity could be tuned to further optimize TE performance.« less

  9. Mapping Soil Organic Carbon Resources Across Agricultural Land Uses in Highland Lesotho Using High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Knight, J.; Adam, E.

    2015-12-01

    Mapping spatial patterns of soil organic carbon (SOC) using high resolution satellite imagery is especially important in inaccessible or upland areas that have limited field measurements, where land use and land cover (LULC) are changing rapidly, or where the land surface is sensitive to overgrazing and high rates of soil erosion and thus sediment, nutrient and carbon export. Here we outline the methods and results of mapping soil organic carbon in highland areas (~2400 m) of eastern Lesotho, southern Africa, across different land uses. Bedrock summit areas with very thin soils are dominated by xeric alpine grassland; terrace agriculture with strip fields and thicker soils is found within river valleys. Multispectral Worldview 2 imagery was used to map LULC across the region. An overall accuracy of 88% and kappa value of 0.83 were achieved using a support vector machine model. Soils were examined in the field from different LULC areas for properties such as soil depth, maturity and structure. In situ soils in the field were also evaluated using a portable analytical spectral device (ASD) in order to ground truth spectral signatures from Worldview. Soil samples were examined in the lab for chemical properties including organic carbon. Regression modeling was used in order to establish a relationship between soil characteristics and soil spectral reflectance. We were thus able to map SOC across this diverse landscape. Results show that there are notable differences in SOC between upland and agricultural areas which reflect both soil thickness and maturity, and land use practices such as manuring of fields by cattle. Soil erosion and thus carbon (nutrient) export is significant issue in this region, which this project will now be examining.

  10. Evaluating the Adsoptive Capacities of Chemsorb 1000 and Chemsorb 1425

    NASA Technical Reports Server (NTRS)

    Monje, Oscar Alberto; Surma, Jan M.; Johnsey, Marissa N.; Melendez, Orlando

    2014-01-01

    The Air Revitalization Lab at KSC tested Chemsorb 1000 and 1425, two candidate sorbents for use in future air revitalization technologies being evaluated by the ARREM project. Chemsorb 1000 and 1425 are granular coconut-shell activated carbon sorbents produced by Molecular Products, Inc. that may be used in the TCCS. Chemsorb 1000 is a high grade activated carbon for organic vapor adsorption. In contrast, Chemsorb 1425 is a high-grade impregnated activated carbon for adsorption of airborne ammonia and amines. Chemsorb 1000 was challenged with simulated spacecraft gas streams in order to determine its adsorptive capacities for mixtures of volatile organics compounds. Chemsorb 1425 was challenged with various NH3 concentrations to determine its adsorptive capacity.

  11. Evaluating the Adsorptive Capacities of Chemsorb 1000 and Chemsorb 1425

    NASA Technical Reports Server (NTRS)

    Monje, Oscar Alberto Monje; Surma, Jan M.; Johnsey, Marissa N.; Melendez, Orlando

    2014-01-01

    The Air Revitalization Lab at KSC tested Chemsorb 1000 and 1425, two candidate sorbents for use in future air revitalization technologies being evaluated by the ARREM project. Chemsorb 1000 and 1425 are granular coconut-shell activated carbon sorbents produced by Molecular Products, Inc. that may be used in the TCCS. Chemsorb 1000 is a high grade activated carbon for organic vapor adsorption. In contrast, Chemsorb 1425 is a high-grade impregnated activated carbon for adsorption of airborne ammonia and amines. Chemsorb 1000 was challenged with simulated spacecraft gas streams in order to determine its adsorptive capacities for mixtures of volatile organics compounds. Chemsorb 1425 was challenged with various NH3 concentrations to determine its adsorptive capacity.

  12. Transient phases during fast crystallization of organic thin films from solution

    NASA Astrophysics Data System (ADS)

    Wan, Jing; Li, Yang; Ulbrandt, Jeffrey G.; Smilgies, Detlef-M.; Hollin, Jonathan; Whalley, Adam C.; Headrick, Randall L.

    2016-01-01

    We report an in situ microbeam grazing incidence X-ray scattering study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) organic semiconductor thin film deposition by hollow pen writing. Multiple transient phases are observed during the crystallization for substrate temperatures up to ≈93 °C. The layered smectic liquid-crystalline phase of C8-BTBT initially forms and preceedes inter-layer ordering, followed by a transient crystalline phase for temperature >60 °C, and ultimately the stable phase. Based on these results, we demonstrate a method to produce extremely large grain size and high carrier mobility during high-speed processing. For high writing speed (25 mm/s), mobility up to 3.0 cm2/V-s has been observed.

  13. Tolerance of Artemia to static and shock pressure loading

    NASA Astrophysics Data System (ADS)

    Fitzmaurice, B. C.; Appleby-Thomas, G. J.; Painter, J. D.; Ono, F.; McMillan, P. F.; Hazael, R.; Meersman, F.

    2017-10-01

    Hydrostatic and hydrodynamic pressure loading has been applied to unicellular organisms for a number of years due to interest from food technology and extremophile communities. There is also an emerging interest in the response of multicellular organisms to high pressure conditions. Artemia salina is one such organism. Previous experiments have shown a marked difference in the hatching rate of these organisms after exposure to different magnitudes of pressure, with hydrostatic tests showing hatching rates at pressures up to several GPa, compared to dynamic loading that resulted in comparatively low survival rates at lower pressure magnitudes. In order to begin to investigate the origin of this difference, the work presented here has focussed on the response of Artemia salina to (quasi) one-dimensional shock loading. Such experiments were carried out using the plate-impact technique in order to create a planar shock front. Artemia cysts were investigated in this manner along with freshly hatched larvae (nauplii). The nauplii and cysts were observed post-shock using optical microscopy to detect motility or hatching, respectively. Hatching rates of 18% were recorded at pressures reaching 1.5 GPa, as determined with the aid of numerical models. Subjecting Artemia to quasi-one-dimensional shock loading offers a way to more thoroughly explore the shock pressure ranges these organisms can survive.

  14. Structuring of Amide Cross-Linked Non-Bridged and Bridged Alkyl-Based Silsesquioxanes.

    PubMed

    Nunes, S C; de Zea Bermudez, V

    2018-02-06

    The development of sophisticated organized materials exhibiting enhanced properties is a challenging topic of the domain of organic/inorganic hybrid materials. This review, composed of four sections, reports the work we have carried out over the last 10 years on the synthesis of amide cross-linked alkyl/siloxane hybrids by means of sol-gel chemistry and self-directed assembly/self-organization routes relying on weak interactions (hydrophobic interactions and hydrogen bonding). The various as-produced lamellar structures displaying a myriad of morphologies, often closely resembling those found in natural materials, are discussed. The major role played by the synthetic conditions (pH, water content, co-solvent(s) nature/concentration and dopant presence/concentration), the alkyl chains (length and presence of ramification or not) and the number of the amide cross-links present in the precursor, is evidenced. Examples of highly organized hybrids structures incorporating ionic species (alkali and alkaline earth metal salts) and optically-active centers (organic dyes and lanthanide ions) are described. A useful qualitative relationship deduced between the emission quantum yield of the ordered hybrid materials and the degree of order of the hydrogen-bonded network is highlighted. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Superconducting dome in doped quasi-two-dimensional organic Mott insulators: A paradigm for strongly correlated superconductivity

    NASA Astrophysics Data System (ADS)

    Hébert, Charles-David; Sémon, Patrick; Tremblay, A.-M. S.

    2015-11-01

    Layered organic superconductors of the BEDT family are model systems for understanding the interplay of the Mott transition with superconductivity, magnetic order, and frustration, ingredients that are essential to understand superconductivity also in the cuprate high-temperature superconductors. Recent experimental studies on a hole-doped version of the organic compounds reveals an enhancement of superconductivity and a rapid crossover between two different conducting phases above the superconducting dome. One of these phases is a Fermi liquid, the other not. Using plaquette cellular dynamical mean field theory with state-of-the-art continuous-time quantum Monte Carlo calculations, we study this problem with the two-dimensional Hubbard model on the anisotropic triangular lattice. Phase diagrams as a function of temperature T and interaction strength U /t are obtained for anisotropy parameters t'=0.4 t ,t'=0.8 t and for various fillings. As in the case of the cuprates, we find, at finite doping, a first-order transition between two normal-state phases. One of theses phases has a pseudogap while the other does not. At temperatures above the critical point of the first-order transition, there is a Widom line where crossovers occur. The maximum (optimal) superconducting critical temperature Tcm at finite doping is enhanced by about 25% compared with its maximum at half filling and the range of U /t where superconductivity appears is greatly extended. These results are in broad agreement with experiment. Also, increasing frustration (larger t'/t ) significantly reduces magnetic ordering, as expected. This suggests that for compounds with intermediate to high frustration, very light doping should reveal the influence of the first-order transition and associated crossovers. These crossovers could possibly be even visible in the superconducting phase through subtle signatures. We also predict that destroying the superconducting phase by a magnetic field should reveal the first-order transition between metal and pseudogap. Finally, we predict that electron doping should also lead to an increased range of U /t for superconductivity but with a reduced maximum Tc. This work also clearly shows that the superconducting dome in organic superconductors is tied to the Mott transition and its continuation as a transition separating pseudogap phase from correlated metal in doped compounds, as in the cuprates. Contrary to heavy fermions for example, the maximum Tc is definitely not attached to an antiferromagnetic quantum critical point. That can also be verified experimentally.

  16. Agreements in Virtual Organizations

    NASA Astrophysics Data System (ADS)

    Pankowska, Malgorzata

    This chapter is an attempt to explain the important impact that contract theory delivers with respect to the concept of virtual organization. The author believes that not enough research has been conducted in order to transfer theoretical foundations for networking to the phenomena of virtual organizations and open autonomic computing environment to ensure the controllability and management of them. The main research problem of this chapter is to explain the significance of agreements for virtual organizations governance. The first part of this chapter comprises explanations of differences among virtual machines and virtual organizations for further descriptions of the significance of the first ones to the development of the second. Next, the virtual organization development tendencies are presented and problems of IT governance in highly distributed organizational environment are discussed. The last part of this chapter covers analysis of contracts and agreements management for governance in open computing environments.

  17. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors

    PubMed Central

    Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C. P.; Gelinck, Gerwin H.; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2016-01-01

    Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics. PMID:27762321

  18. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors.

    PubMed

    Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C P; Gelinck, Gerwin H; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2016-10-20

    Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics.

  19. 76 FR 78057 - Self-Regulatory Organizations; NASDAQ OMX PHLX LLC; Order Granting Approval of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ...\\ and Rule 19b-4 thereunder,\\2\\ a proposed rule change to introduce the Minimum Life Order as new order... proposes, by amending its rules to add Rule 3301(f)(11), to introduce the Minimum Life Order as a new order...-Regulatory Organizations; NASDAQ OMX PHLX LLC; Order Granting Approval of Proposed Rule Change, as Modified...

  20. Management of high-risk perioperative systems.

    PubMed

    Dain, Steven

    2006-06-01

    The perioperative system is a complex system that requires people, materials, and processes to come together in a highly ordered and timely manner. However, when working in this high-risk system, even well-organized, knowledgeable, vigilant, and well-intentioned individuals will eventually make errors. All systems need to be evaluated on a continual basis to reduce the risk of errors, make errors more easily recognizable, and provide methods for error mitigation. A simple approach to risk management that may be applied in clinical medicine is discussed.

  1. Cyclopentadithiophene-Benzothiadiazole Donor-Acceptor Polymers as Prototypical Semiconductors for High-Performance Field-Effect Transistors.

    PubMed

    Li, Mengmeng; An, Cunbin; Pisula, Wojciech; Müllen, Klaus

    2018-05-15

    Donor-acceptor (D-A) conjugated polymers are of great interest as organic semiconductors, because they offer a rational tailoring of the electronic properties by modification of the donor and acceptor units. Nowadays, D-A polymers exhibit field-effect mobilities on the order of 10 -2 -10 0 cm 2 V -1 s -1 , while several examples showed a mobility over 10 cm 2 V -1 s -1 . The development of cyclopentadithiophene-benzothiadiazole (CDT-BTZ) copolymers one decade ago represents an important step toward high-performance organic semiconductors for field-effect transistors. The significant rise in field-effect mobility of CDT-BTZ in comparison to the existing D-A polymers at that time opened the door to a new research field with a large number of novel D-A systems. From this point, the device performance of CDT-BTZ was gradually improved by a systematic optimization of the synthesis and polymer structure as well as by an efficient solution processing into long-range ordered thin films. The key aspect was a comprehensive understanding of the relation between polymer structure and solid-state organization. Due to their fundamental role for the field of D-A polymers in general, this Account will for the first time explicitly focus on prototypical CDT-BTZ polymers, while other reviews provide an excellent general overview on D-A polymers. The first part of this Account discusses strategies for improving the charge carrier transport, focusing on chemical aspects. Improved synthesis as an essential stage toward high purity, and high molecular weight is a prerequisite for molecular order. The modification of substituents is a further crucial feature to tune the CDT-BTZ packing and self-assembly. Linear alkyl side chains facilitate intermolecular π-stacking interactions, while branched ones increase solubility and alter the polymer packing. Additional control over the supramolecular organization of CDT-BTZ polymers is introduced by alkenyl substituents via their cis-trans isomerization. The last discussed chemical concept is based on heteroatom variation within the CDT unit. The relationships found experimentally for CDT-BTZ between polymer chemical structure, solid-state organization, and charge carrier transport are explained by means of theoretical simulations. Besides the effects of molecular design, the second part of this Account discusses the processing conditions from solution. The film microstructure, defined as a mesoscopic domain organization, is critically affected by solution processing. Suitable processing techniques allow the formation of a long-range order and a uniaxial orientation of the CDT-BTZ chains, thus lowering the trapping density of grain boundaries for charge carriers. For instance, alignment of the CDT-BTZ polymer by dip-coating yields films with a pronounced structural and electrical anisotropy and favors a fast migration of charge carriers along the conjugated backbones in the deposition direction. By using film compression with the assistance of an ionic liquid, one even obtains CDT-BTZ films with a band-like transport and a transistor hole mobility of 10 cm 2 V -1 s -1 . This device performance is attributed to large domains in the compressed films being formed by CDT-BTZ with longer alkyl chains, which establish a fine balance between polymer interactions and growth kinetics during solvent evaporation. On the basis of the prototypical semiconductor CDT-BTZ, this Account provides general guidelines for achieving high-performance polymer transistors by taking into account the subtle balance of synthetic protocol, molecular design, and processing.

  2. Liquid crystal-type assembly of native cellulose-glucuronoxylans extracted from plant cell wall.

    PubMed

    Reis, D; Vian, B; Chanzy, H; Roland, J C

    1991-01-01

    In numerous plant cell walls, the cellulose microfibrils are arranged in a helicoidal pattern which has been considered as an analog to a cholesteric order. Here, we report on the spontaneous helicoidal organization which occurs in acellular conditions from aqueous suspensions of cellulose. The cellulosic mucilage of mature seeds of quince (Cydonia oblonga L) was studied both in situ (pre-release mucilage) and after water extraction and in in vitro re-assembly (prolonged high speed ultracentrifugation, further progressive dehydration and embedding in LR White methacrylate or hydrosoluble melamine resin). The cellulosic component was characterized by the use of cellobiohydrolase (CBH1) bound to colloidal gold, and the glucuronic acid residues of the xylan matrix were characterized by the use of cationised gold. Inside the seeds, the pre-release mucilage is mostly helicoidal, with the occurrence of more or less ordered domains, which indicate a fluid organization relevant to an actual liquid crystal state. Cytochemical tests revealed the tight association between cellulose and glucuronoxylans, the latter constituting a charged coat around each microfibril. Following the hydration of the seed, a cellulosic suspension was extracted in which microfibrils were totally dispersed. The progressive dehydration of the suspension gave rise to concentrated viscous drops. Ultrastructural observations revealed the occurrence of multidomain organization, from non-ordered to cholesteric-like regions, revealing that the mucilage is at the same time crystalline and liquid. This constitutes the first demonstration that liquid crystal type assemblies can arise from crystalline and biological cellulose in aqueous suspension. It strengthens the hypothesis that a transient liquid crystal state must occur during the cellulose ordering. The possible morphogenetic role of the glucuronoxylans in the cholesteric organization of the cellulose is discussed.

  3. Flexible non-volatile memory devices based on organic semiconductors

    NASA Astrophysics Data System (ADS)

    Cosseddu, Piero; Casula, Giulia; Lai, Stefano; Bonfiglio, Annalisa

    2015-09-01

    The possibility of developing fully organic electronic circuits is critically dependent on the ability to realize a full set of electronic functionalities based on organic devices. In order to complete the scene, a fundamental element is still missing, i.e. reliable data storage. Over the past few years, a considerable effort has been spent on the development and optimization of organic polymer based memory elements. Among several possible solutions, transistor-based memories and resistive switching-based memories are attracting a great interest in the scientific community. In this paper, a route for the fabrication of organic semiconductor-based memory devices with performances beyond the state of the art is reported. Both the families of organic memories will be considered. A flexible resistive memory based on a novel combination of materials is presented. In particular, high retention time in ambient conditions are reported. Complementary, a low voltage transistor-based memory is presented. Low voltage operation is allowed by an hybrid, nano-sized dielectric, which is also responsible for the memory effect in the device. Thanks to the possibility of reproducibly fabricating such device on ultra-thin substrates, high mechanical stability is reported.

  4. Substituent Dependence of Third-Order Optical Nonlinearity in Chalcone Derivatives

    NASA Astrophysics Data System (ADS)

    Kiran, Anthony John; Satheesh Rai, Nooji; Chandrasekharan, Keloth; Kalluraya, Balakrishna; Rotermund, Fabian

    2008-08-01

    The third-order nonlinear optical properties of derivatives of dibenzylideneacetone were investigated using the single beam z-scan technique at 532 nm. A strong dependence of third-order optical nonlinearity on electron donor and acceptor type of substituents was observed. An enhancement in χ(3)-value of one order of magnitude was achieved upon the substitution of strong electron donors compared to that of the molecule substituted with an electron acceptor. The magnitude of nonlinear refractive index of these chalcones is as high as of 10-11 esu. Their nonlinear optical coefficients are larger than those of widely used thiophene oligomers and trans-1-[p-(p-dimethylaminobenzyl-azo)-benzyl]-2-(N-methyl-4-pyridinium)-ethene iodide (DABA-PEI) organic compounds.

  5. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production

    NASA Astrophysics Data System (ADS)

    Tian, Jia; Xu, Zi-Yue; Zhang, Dan-Wei; Wang, Hui; Xie, Song-Hai; Xu, Da-Wen; Ren, Yuan-Hang; Wang, Hao; Liu, Yi; Li, Zhan-Ting

    2016-05-01

    Self-assembly has a unique presence when it comes to creating complicated, ordered supramolecular architectures from simple components under mild conditions. Here, we describe a self-assembly strategy for the generation of the first homogeneous supramolecular metal-organic framework (SMOF-1) in water at room temperature from a hexaarmed [Ru(bpy)3]2+-based precursor and cucurbit[8]uril (CB[8]). The solution-phase periodicity of this cubic transition metal-cored supramolecular organic framework (MSOF) is confirmed by small-angle X-ray scattering and diffraction experiments, which, as supported by TEM imaging, is commensurate with the periodicity in the solid state. We further demonstrate that SMOF-1 adsorbs anionic Wells-Dawson-type polyoxometalates (WD-POMs) in a one-cage-one-guest manner to give WD-POM@SMOF-1 hybrid assemblies. Upon visible-light (500 nm) irradiation, such hybrids enable fast multi-electron injection from photosensitive [Ru(bpy)3]2+ units to redox-active WD-POM units, leading to efficient hydrogen production in aqueous media and in organic media. The demonstrated strategy opens the door for the development of new classes of liquid-phase and solid-phase ordered porous materials.

  6. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H 2 production

    DOE PAGES

    Tian, Jia; Xu, Zi-Yue; Zhang, Dan-Wei; ...

    2016-05-10

    Self-assembly has a unique presence when it comes to creating complicated, ordered supramolecular architectures from simple components under mild conditions. Here, we describe a self-assembly strategy for the generation of the first homogeneous supramolecular metal-organic framework (SMOF-1) in water at room temperature from a hexaarmed [Ru(bpy) 3 ] 2+ -based precursor and cucurbit[8] uril (CB[8]). The solution-phase periodicity of this cubic transition metal-cored supramolecular organic framework (MSOF) is confirmed by small-angle X-ray scattering and diffraction experiments, which, as supported by TEM imaging, is commensurate with the periodicity in the solid state. We further demonstrate that SMOF-1 adsorbs anionic Wells-'Dawson-type polyoxometalatesmore » (WD-POMs) in a one-cage-one-guest manner to give WD-POM@SMOF-1 hybrid assemblies. Upon visible-light (500 nm) irradiation, such hybrids enable fast multi-electron injection from photosensitive [Ru(bpy) 3 ] 2+ units to redox-active WD-POM units, leading to efficient hydrogen production in aqueous media and in organic media. The demonstrated strategy opens the door for the development of new classes of liquid-phase and solid-phase ordered porous materials.« less

  7. Two-Dimensional Hermite Filters Simplify the Description of High-Order Statistics of Natural Images.

    PubMed

    Hu, Qin; Victor, Jonathan D

    2016-09-01

    Natural image statistics play a crucial role in shaping biological visual systems, understanding their function and design principles, and designing effective computer-vision algorithms. High-order statistics are critical for conveying local features, but they are challenging to study - largely because their number and variety is large. Here, via the use of two-dimensional Hermite (TDH) functions, we identify a covert symmetry in high-order statistics of natural images that simplifies this task. This emerges from the structure of TDH functions, which are an orthogonal set of functions that are organized into a hierarchy of ranks. Specifically, we find that the shape (skewness and kurtosis) of the distribution of filter coefficients depends only on the projection of the function onto a 1-dimensional subspace specific to each rank. The characterization of natural image statistics provided by TDH filter coefficients reflects both their phase and amplitude structure, and we suggest an intuitive interpretation for the special subspace within each rank.

  8. Combing bacterial turbulence.

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Nishiguchi, Daiki; Aronson, Igor

    Living systems represented by ensembles of motile organisms demonstrate a transition from a chaotic motion to a highly ordered state. Examples of such living systems include suspensions of bacteria, schools of fish, flocks of birds and even crowds of people. In spite of significant differences in interacting mechanisms and motion scales, ordered living systems have many similarities: short-range alignment of organism, turbulent-like motion, emergence of large-scale flows and dynamic vortices. In this work, we rectify a turbulent dynamics in suspensions of swimming bacteria Bacillus subtilis by imposing periodical constraints on bacterial motion. Bacteria, swimming between periodically placed microscopic vertical pillars, may self-organize in a stable lattice of vortices. We demonstrate the emergence of a strong anti-ferromagnetic order of bacterial vortices in a rectangular lattice of pillars. Hydrodynamic interaction between vortices increases the stability of an emerged pattern. The highest stability of vortices in the anti-ferromagnetic lattice and the fastest vortices speed were observed in structures with the periods comparable with a correlation length of bacterial unconstrained motion. A.S and I.A were supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science And Engineering, under contract No. DE AC02-06CH11357 and D.N was supported by ALPS and JSPS Grant No. 26-9915.

  9. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions.

    PubMed

    Gilchrist, Elizabeth S; Nesterenko, Pavel N; Smith, Norman W; Barron, Leon P

    2015-03-20

    There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5-50 mM hydroxide with 0-80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20-45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30-40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Pharmacists' guide to the management of organ donors after brain death.

    PubMed

    Korte, Catherine; Garber, Jennifer L; Descourouez, Jillian L; Richards, Katelyn R; Hardinger, Karen

    2016-11-15

    This article reviews organ donor pathophysiology as it relates to medication use with the goal of maximizing the successful procurement and transplantation of donor organs. The number of patients requiring organ transplantation continues to grow, yet organ donation rates remain flat, making it critical to appropriately manage each organ donor in order to ensure viability of all transplantable organs. The care given to one organ donor is tantamount to the care of several transplant recipients. Aggressive donor management ensures that the largest number of organs can be successfully procured and improves the organs' overall quality. Hospital pharmacists are responsible for processing orders and preparing the medications outlined in donor management algorithms developed by their respective medical systems. It is important that pharmacists understand the details of the medications used in these protocols in order to critically evaluate each medication order and appropriately manage the donor. Typical medications used in organ donors after brain death include medications for blood pressure management and fluid resuscitation, medications necessary for electrolyte management, blood products, vasopressors, hormone replacement therapy, antiinfectives, anticoagulants, paralytics, and organ preservation solutions. It is essential to provide optimal pharmacotherapy for each organ donor to ensure organ recovery and donation. Typical medications used in organ donors include agents for blood pressure management and fluid resuscitation, medications necessary for electrolyte management, blood products, vasopressors, hormone replacement therapy, antiinfectives, anticoagulants, paralytics, and organ preservation solutions. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  11. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Wai Kit, E-mail: kekyeung@ust.hk; Joueet, Justine; Heng, Samuel

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface chargesmore » from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.« less

  12. 77 FR 50741 - Self-Regulatory Organizations; C2 Options Exchange, Incorporated; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... interested persons. \\1\\ 15 U.S.C. 78s(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's... orders'' as ``simple orders''. Investors generally refer to orders as either ``simple'' or ``complex'' and the terminology ``straight, one-sided orders'' is not as commonly-known. Since simple orders are...

  13. Driving the Oxygen Evolution Reaction by Nonlinear Cooperativity in Bimetallic Coordination Catalysts.

    PubMed

    Wurster, Benjamin; Grumelli, Doris; Hötger, Diana; Gutzler, Rico; Kern, Klaus

    2016-03-23

    Developing efficient catalysts for electrolysis, in particular for the oxygen evolution in the anodic half cell reaction, is an important challenge in energy conversion technologies. By taking inspiration from the catalytic properties of single-atom catalysts and metallo-proteins, we exploit the potential of metal-organic networks as electrocatalysts in the oxygen evolution reaction (OER). A dramatic enhancement of the catalytic activity toward the production of oxygen by nearly 2 orders of magnitude is demonstrated for novel heterobimetallic organic catalysts compared to metallo-porphyrins. Using a supramolecular approach we deliberately place single iron and cobalt atoms in either of two different coordination environments and observe a highly nonlinear increase in the catalytic activity depending on the coordination spheres of Fe and Co. Catalysis sets in at about 300 mV overpotential with high turnover frequencies that outperform other metal-organic catalysts like the prototypical hangman porphyrins.

  14. SYNTHESIS of MOLECULE/POLYMER-BASED MAGNETIC MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Joel S.

    2016-02-01

    We have synthesized and characterized several families of organic-based magnets, a new area showing that organic species can exhibit the technologically important property of magnetic ordering. Thin film magnets with ordering temperatures exceeding room temperature have been exceeded. Hence, organic-based magnets represent a new class of materials that exhibit magnetic ordering and do not require energy-intensive metallurgical processing and are based upon Earth-abundant elements.

  15. A parenteral nutrition use survey with gap analysis.

    PubMed

    Boullata, Joseph I; Guenter, Peggi; Mirtallo, Jay M

    2013-03-01

    Parenteral nutrition (PN) is a high-alert medication for which safe practice guidelines are available. Recent adverse events associated with PN have been widely reported. A survey of current practices was indicated as new guidelines are being considered. A web-based survey consisting of 70 items was made available for the month of August 2011. Respondents provided answers to questions that addressed all aspects of the PN use process. There were a total of 895 respondents to the survey, including dietitians, nurses, pharmacists, and physicians. They predominantly represented hospital settings (89%), with 44% from academic institutions. Most organizations use a once-daily PN admixture with 21% outsourcing preparation. Electronic PN order entry is available in one-third of organizations, and the use of standardized order sets prevails. Unfortunately, electronic interfaces between computer systems remain infrequent, meaning that at least one transcription step is required by most in the PN use process. There are a wide variety of methods for ordering PN components, many of which are inconsistent with safe practices. Most organizations dedicate a pharmacist to review the PN orders, many of which require clarifications. Documentation at each step of the PN use process with oversight to identify deviations from best practice recommendations is infrequent. A significant proportion (44%) does not track PN-related medication errors. The survey data are a valuable snapshot of current practices with PN. Poor compliance with some of the safe practice guidelines continues. This will help guide new safety initiatives for the PN use process.

  16. Modeling the Kinetics of Contaminants Oxidation and the Generation of Manganese(III) in the Permanganate/Bisulfite Process.

    PubMed

    Sun, Bo; Dong, Hongyu; He, Di; Rao, Dandan; Guan, Xiaohong

    2016-02-02

    Permanganate can be activated by bisulfite to generate soluble Mn(III) (noncomplexed with ligands other than H2O and OH(-)) which oxidizes organic contaminants at extraordinarily high rates. However, the generation of Mn(III) in the permanganate/bisulfite (PM/BS) process and the reactivity of Mn(III) toward emerging contaminants have never been quantified. In this work, Mn(III) generated in the PM/BS process was shown to absorb at 230-290 nm for the first time and disproportionated more easily at higher pH, and thus, the utilization rate of Mn(III) for decomposing organic contaminant was low under alkaline conditions. A Mn(III) generation and utilization model was developed to get the second-order reaction rate parameters of benzene oxidation by soluble Mn(III), and then, benzene was chosen as the reference probe to build a competition kinetics method, which was employed to obtain the second-order rate constants of organic contaminants oxidation by soluble Mn(III). The results revealed that the second-order rate constants of aniline and bisphenol A oxidation by soluble Mn(III) were in the range of 10(5)-10(6) M(-1) s(-1). With the presence of soluble Mn(III) at micromolar concentration, contaminants could be oxidized with the observed rates several orders of magnitude higher than those by common oxidation processes, implying the great potential application of the PM/BS process in water and wastewater treatment.

  17. Templated dewetting: designing entirely self-organized platforms for photocatalysis.

    PubMed

    Altomare, Marco; Nguyen, Nhat Truong; Schmuki, Patrik

    2016-12-01

    Formation and dispersion of metal nanoparticles on oxide surfaces in site-specific or even arrayed configuration are key in various technological processes such as catalysis, photonics, electrochemistry and for fabricating electrodes, sensors, memory devices, and magnetic, optical, and plasmonic platforms. A crucial aspect towards an efficient performance of many of these metal/metal oxide arrangements is a reliable fabrication approach. Since the early works on graphoepitaxy in the 70s, solid state dewetting of metal films on patterned surfaces has been much explored and regarded as a most effective tool to form defined arrays of ordered metal particles on a desired substrate. While templated dewetting has been studied in detail, particularly from a mechanistic perspective on lithographically patterned Si surfaces, the resulting outstanding potential of its applications on metal oxide semiconductors, such as titania, has received only limited attention. In this perspective we illustrate how dewetting and particularly templated dewetting can be used to fabricate highly efficient metal/TiO 2 photocatalyst assemblies e.g. for green hydrogen evolution. A remarkable advantage is that the synthesis of such photocatalysts is completely based on self-ordering principles: anodic self-organized TiO 2 nanotube arrays that self-align to a highest degree of hexagonal ordering are an ideal topographical substrate for a second self-ordering process, that is, templated-dewetting of sputter-deposited metal thin films. The controllable metal/semiconductor coupling delivers intriguing features and functionalities. We review concepts inherent to dewetting and particularly templated dewetting, and outline a series of effective tools that can be synergistically interlaced to reach fine control with nanoscopic precision over the resulting metal/TiO 2 structures (in terms of e.g. high ordering, size distribution, site specific placement, alloy formation) to maximize their photocatalytic efficiency. These processes are easy to scale up and have a high throughput and great potential to be applied to fabricate not only (photo)catalytic materials but also a large palette of other functional nanostructured elements and devices.

  18. Templated dewetting: designing entirely self-organized platforms for photocatalysis

    PubMed Central

    Altomare, Marco; Nguyen, Nhat Truong

    2016-01-01

    Formation and dispersion of metal nanoparticles on oxide surfaces in site-specific or even arrayed configuration are key in various technological processes such as catalysis, photonics, electrochemistry and for fabricating electrodes, sensors, memory devices, and magnetic, optical, and plasmonic platforms. A crucial aspect towards an efficient performance of many of these metal/metal oxide arrangements is a reliable fabrication approach. Since the early works on graphoepitaxy in the 70s, solid state dewetting of metal films on patterned surfaces has been much explored and regarded as a most effective tool to form defined arrays of ordered metal particles on a desired substrate. While templated dewetting has been studied in detail, particularly from a mechanistic perspective on lithographically patterned Si surfaces, the resulting outstanding potential of its applications on metal oxide semiconductors, such as titania, has received only limited attention. In this perspective we illustrate how dewetting and particularly templated dewetting can be used to fabricate highly efficient metal/TiO2 photocatalyst assemblies e.g. for green hydrogen evolution. A remarkable advantage is that the synthesis of such photocatalysts is completely based on self-ordering principles: anodic self-organized TiO2 nanotube arrays that self-align to a highest degree of hexagonal ordering are an ideal topographical substrate for a second self-ordering process, that is, templated-dewetting of sputter-deposited metal thin films. The controllable metal/semiconductor coupling delivers intriguing features and functionalities. We review concepts inherent to dewetting and particularly templated dewetting, and outline a series of effective tools that can be synergistically interlaced to reach fine control with nanoscopic precision over the resulting metal/TiO2 structures (in terms of e.g. high ordering, size distribution, site specific placement, alloy formation) to maximize their photocatalytic efficiency. These processes are easy to scale up and have a high throughput and great potential to be applied to fabricate not only (photo)catalytic materials but also a large palette of other functional nanostructured elements and devices. PMID:28567258

  19. Ordered organic-organic multilayer growth

    DOEpatents

    Forrest, Stephen R.; Lunt, Richard R.

    2016-04-05

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  20. Ordered organic-organic multilayer growth

    DOEpatents

    Forrest, Stephen R; Lunt, Richard R

    2015-01-13

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  1. Parents' Executive Functioning and Involvement in Their Child's Education: An Integrated Literature Review

    ERIC Educational Resources Information Center

    Wilson, Damali M.; Gross, Deborah

    2018-01-01

    Background: Parents' involvement in their children's education is integral to academic success. Several education-based organizations have identified recommendations for how parents can best support their children's learning. However, executive functioning (EF), a high-ordered cognitive skill set, contributes to the extent to which parents can…

  2. Preparing for Growth: Human Capital Innovations in Charter Public Schools

    ERIC Educational Resources Information Center

    Chadwick, Christi; Kowal, Julie

    2011-01-01

    Charter schools and successful charter management organizations that run them have grown significantly over the past decade but they must dramatically increase their scale in order to meet the demand for high-quality public school options for America's children. The limited supply of effective leaders and teachers is one of the key barriers…

  3. 78 FR 13130 - Self-Regulatory Organizations; ICE Clear Europe Limited; Order Approving Proposed Rule Change, as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... already the case for single-name CDS). Recognizing the highly correlated relationship between long-short...' proprietary positions. ICE Clear Europe does not currently clear CDS positions of customers of its Clearing Members, but it plans to introduce customer clearing for CDS upon receipt of applicable regulatory...

  4. Effects of an Elementary Strategy on Operations of Exclusion.

    ERIC Educational Resources Information Center

    Lawton, Joseph T.

    Effects of an advance organizer lesson (containing high-order science concepts relating to the law of capillary attraction, and an elementary problem-solving strategy for determining causal relations) were evaluated for a sample of 80 urban 6- and 10-year-old children. Significant sequential transfer effects were established from the lesson.…

  5. World Wide Web Server Standards and Guidelines.

    ERIC Educational Resources Information Center

    Stubbs, Keith M.

    This document defines the specific standards and general guidelines which the U.S. Department of Education (ED) will use to make information available on the World Wide Web (WWW). The purpose of providing such guidance is to ensure high quality and consistent content, organization, and presentation of information on ED WWW servers, in order to…

  6. Swimming Between: An Examination of the Inherent Complexity within Social Justice

    ERIC Educational Resources Information Center

    Aguilar, Israel; Nelson, Sarah; Niño, Juan Manuel

    2016-01-01

    Classrooms tend to be absolute spaces, places where fluidity is rejected and nearly everything--from people, to ideas, to practices and policies--is viewed and organized through binary logic. Because binary logic is implicitly accepted as the natural order in schools and the structures resulting from it are highly unmalleable, individuals who…

  7. Development of Silica Fibers and Microstructures with Large and Thermodynamically Stable Second Order Nonlinearity

    DTIC Science & Technology

    2011-06-22

    high degree of symmetry directly leads to a symmetry-enforced selection rule that can produce quantum entanglement [21, 22]. This report is organized...page.) Then, using a Matlab program, we converted the microscope image to a binary bitmap, from which we extract fiber radius at any given location

  8. 76 FR 10073 - Self-Regulatory Organizations; NYSE Arca, Inc.; Order Granting Approval of Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... not invest in non-U.S. equity securities. The Fund intends to invest in Money Market Securities in... investments in derivative instruments. For these purposes, Money Market Securities include: short-term, high..., agencies and instrumentalities; repurchase agreements backed by U.S. government securities; money market...

  9. Comparison of Sewage and Animal Fecal Microbiomes by using Oligotyping Reveals Potential Human Fecal Indicators in Multiple Taxonomic Groups

    EPA Science Inventory

    Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but human and other animal gut microbiota contain an array of other taxonomic groups that might serve as indicators for sources of fecal pollution. High thr...

  10. An integrated approach to exploit linkage disequilibrium for ultra high dimensional genome-wide data

    USDA-ARS?s Scientific Manuscript database

    With the advent of recent DNA sequencing methods (determining molecule order) that quickly produce millions of DNA sequences, variation among sequences in a genome (all the DNA contained in chromosomes of an organism) can be tested for association with traits of economic interest on a relatively lar...

  11. Secretary | Center for Cancer Research

    Cancer.gov

    We are looking for a pleasant, organized, dependable person to serve as a full-time secretary in the Basic Science Program (BSP) at the Frederick National Laboratory for Cancer Research (FNCLR).  The BSP provides procurement and logistical support to the laboratories of the Center for Cancer Research.  Tasks include high volume procurement (blanket orders, purchase requests,

  12. Job Keeping Skills.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum is designed to help teachers teach a course in job keeping skills to high school students in order to instill in them appropriate attitudes for the world of work. The guide introduces the human aspects of working in an organization. "Job Keeping Skills" is divided into 10 instructional units. Each unit contains four or more lessons…

  13. Bullying: An Ecological Approach to Intervention in Schools

    ERIC Educational Resources Information Center

    Hornby, Garry

    2016-01-01

    Bullying is a major concern in education worldwide, particularly in countries such as New Zealand that are reported to have high rates of bullying in schools. In this article it is proposed that, in order to effectively prevent or substantially reduce bullying in schools, a systemic approach needs to be adopted, with interventions organized at…

  14. 77 FR 2335 - Self-Regulatory Organizations; NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... Exchange's Web site at http://www.nasdaq.cchwallstreet.com , at the principal office of the Exchange, and... significant percentage of the orders of institutional investors are executed in dark pools. See Securities... high frequency trading and un- displayed, or ``dark,'' liquidity. See also Mary L. Schapiro...

  15. Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics.

    PubMed

    Park, Byoungchoo; Bae, In-Gon; Huh, Yoon Ho

    2016-01-18

    We herein report on a remarkably simple, fast, and economic way of fabricating homogeneous and well oriented silver nanowires (AgNWs) that exhibit strong in-plane electrical and optical anisotropies. Using a small quantity of AgNW suspension, the horizontal-dip (H-dip) coating method was applied, in which highly oriented AgNWs were deposited unidirectionally along the direction of coating over centimetre-scale lengths very rapidly. In applying the H-dip-coating method, we adjusted the shear strain rate of the capillary flow in the Landau-Levich meniscus of the AgNW suspension, which induced a high degree of uniaxial orientational ordering (0.37-0.43) of the AgNWs, comparable with the ordering seen in archetypal nematic liquid crystal (LC) materials. These AgNWs could be used to fabricate not only transparent electrodes, but also LC-alignment electrodes for LC devices and/or polarising electrodes for organic photovoltaic devices, having the potential to revolutionise the architectures of a number of polarisation-selective opto-electronic devices for use in printed/organic electronics.

  16. Visible light curing of Epon SU-8 based superparamagnetic polymer composites with random and ordered particle configurations.

    PubMed

    Peters, Christian; Ergeneman, Olgaç; Sotiriou, Georgios A; Choi, Hongsoo; Nelson, Bradley J; Hierold, Christofer

    2015-01-14

    The performance of superparamagnetic polymer composite microdevices is highly dependent on the magnetic particle content. While high loading levels are desired for many applications, the UV absorption of these nanoparticles limits the overall thickness of the fabricated microstructures and subsequently their capability of magnetic interaction. The combination of a visible-light-sensitive photoinitiator and particle self-organization is proposed to extend the exposure depth limitation in Epon SU-8 based superparamagnetic polymer composites. While superparamagnetic iron oxide particles strongly absorb i-line radiation required to cross-link the Epon SU-8 polymer matrix, we propose the utilization of H-Nu 470 photoinitiator to expand the photosensitivity of the composite toward the visible spectrum, where the dispersed nanoparticles are more transparent. The novel photoinitiator preserves the composite's superparamagnetic properties as well as a homogeneous particle distribution. As a result, particle load or resist thickness can be more than doubled while maintaining exposure time. The self-organization of ordered magnetic structures allows for an additional increase in exposure depth of up to 40%, resulting in a 2.5-fold saturation magnetization.

  17. Liquid crystals for organic thin-film transistors

    PubMed Central

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-ichi

    2015-01-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V−1 s−1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics. PMID:25857435

  18. Liquid crystals for organic thin-film transistors.

    PubMed

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-ichi

    2015-04-10

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm(2) V(-1) s(-1)) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.

  19. Liquid crystals for organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-Ichi

    2015-04-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V-1 s-1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.

  20. Bulk heterojunction morphology of polymer:fullerene blends revealed by ultrafast spectroscopy

    PubMed Central

    Serbenta, Almis; Kozlov, Oleg V.; Portale, Giuseppe; van Loosdrecht, Paul H. M.; Pshenichnikov, Maxim S.

    2016-01-01

    Morphology of organic photovoltaic bulk heterojunctions (BHJs) – a nanoscale texture of the donor and acceptor phases – is one of the key factors influencing efficiency of organic solar cells. Detailed knowledge of the morphology is hampered by the fact that it is notoriously difficult to investigate by microscopic methods. Here we all-optically track the exciton harvesting dynamics in the fullerene acceptor phase from which subdivision of the fullerene domain sizes into the mixed phase (2–15 nm) and large (>50 nm) domains is readily obtained via the Monte-Carlo simulations. These results were independently confirmed by a combination of X-ray scattering, electron and atomic-force microscopies, and time-resolved photoluminescence spectroscopy. In the large domains, the excitons are lost due to the high energy disorder while in the ordered materials the excitons are harvested with high efficiency even from the domains as large as 100 nm due to the absence of low-energy traps. Therefore, optimizing of blend nanomorphology together with increasing the material order are deemed as winning strategies in the exciton harvesting optimization. PMID:27824085

  1. Review of the partitioning of chemicals into different plastics: Consequences for the risk assessment of marine plastic debris.

    PubMed

    O'Connor, Isabel A; Golsteijn, Laura; Hendriks, A Jan

    2016-12-15

    Marine plastic debris are found worldwide in oceans and coastal areas. They degrade only slowly and contain chemicals added during manufacture or absorbed from the seawater. Therefore, they can pose a long-lasting contaminant source and potentially transfer chemicals to marine organisms when ingested. In order to assess their risk, the contaminant concentration in the plastics needs to be estimated and differences understood. We collected from literature plastic water partition coefficients of various organic chemicals for seven plastic types: polydimethylsiloxane (PDMS), high-density, low-density and ultra-high molecular weight polyethylene (LDPE, HDPE, UHMWPE), polystyrene (PS), polypropylene (PP), and polyvinyl chloride (PVC). Most data was available for PDMS (1060) and LDPE (220), but much less for the remaining plastics (73). Where possible, regression models were developed and the partitioning was compared between the different plastic types. The partitioning of chemicals follows the order of LDPE≈HDPE≥PP>PVC≈PS. Data describing the impact of weathering are urgently needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Peculiarities of solving the problems of modern logistics in high-rise construction and industrial production

    NASA Astrophysics Data System (ADS)

    Rubtsov, Anatoliy E.; Ushakova, Elena V.; Chirkova, Tamara V.

    2018-03-01

    Basing on the analysis of the enterprise (construction organization) structure and infrastructure of the entire logistics system in which this enterprise (construction organization) operates, this article proposes an approach to solve the problems of structural optimization and a set of calculation tasks, based on customer orders as well as on the required levels of insurance stocks, transit stocks and other types of stocks in the distribution network, modes of operation of the in-company transport and storage complex and a number of other factors.

  3. Septin Organization and Functions in Budding Yeast

    PubMed Central

    Glomb, Oliver; Gronemeyer, Thomas

    2016-01-01

    The septins are a conserved family of GTP-binding proteins present in all eukaryotic cells except plants. They were originally discovered in the baker's yeast Saccharomyces cerevisiae that serves until today as an important model organism for septin research. In yeast, the septins assemble into a highly ordered array of filaments at the mother bud neck. The septins are regulators of spatial compartmentalization in yeast and act as key players in cytokinesis. This minireview summarizes the recent findings about structural features and cell biology of the yeast septins. PMID:27857941

  4. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.

    PubMed

    Moriuchi, Toshiyuki; Hirao, Toshikazu

    2010-07-20

    The highly ordered molecular assemblies in proteins can have a variety of functions, as observed in enzymes, receptors, and the like. Synthetic scientists are constructing bioinspired systems by harnessing the self-assembling properties of short peptides. Secondary structures such as alpha-helices, beta-sheets, and beta-turns are important in protein folding, which is mostly directed and stabilized by hydrogen bonding and the hydrophobic interactions of side chains. The design of secondary structure mimics that are composed of short peptides has attracted much attention, both for gaining fundamental insight into the factors affecting protein folding and for developing pharmacologically useful compounds, artificial receptors, asymmetric catalysts, and new materials. Ferrocenes are an organometallic scaffold with a central reverse-turn unit based on the inter-ring spacing of about 3.3 A, which is a suitable distance for hydrogen bonding between attached peptide strands. The conjugation of organometallic compounds with biomolecules such as amino acids, peptides, and DNA should provide novel systems that reflect properties of both the ferrocene and the biologically derived moieties. In this Account, we focus on recent advances in the design of ferrocene-peptide bioconjugates, which help illustrate the peptidomimetic basis for protein folding and the means of constructing highly ordered molecular assemblies. Ferrocene-peptide bioconjugates are constructed to form chirality-organized structures in both solid and solution states. The ferrocene serves as a reliable organometallic scaffold for the construction of protein secondary structures via intramolecular hydrogen bonding: the attached dipeptide strands are constrained within the appropriate dimensions. The introduction of the chiral dipeptide chains into the ferrocene scaffold induces the conformational enantiomerization of the ferrocenyl moiety; the chirality-organized structure results from intramolecular hydrogen bonding. The configuration and sequence of the amino acids are instrumental in the process. Regulation of the directionality and specificity of hydrogen bonding is a key component in the design of various molecular assemblies. Ferrocene-peptide bioconjugates also have a strong tendency to self-assemble through the contributions of available hydrogen-bonding donors in the solid state. Some ferrocene-peptide bioconjugates bearing only one dipeptide chain exhibit a helically ordered molecular assembly through a network of intermolecular (rather than intramolecular) hydrogen bonds. The propensity to form the chiral helicity appears to be controlled by the chirality of the dipeptide chains. Organization of host molecules is a useful strategy for forming artificial receptors. The conformationally regulated ferrocene-peptide bioconjugate provides the chirality-organized binding site for size-selective and chiral recognition of dicarboxylic acids through multipoint hydrogen bonds. Metal ions serve a variety of purposes in proteins, including structural stabilization for biological function. The complexation of ferrocene-peptide bioconjugates with palladium(II) compounds not only stabilizes the chirality conformational regulation but also induces conformational regulation of the dipeptide chain through complexation and intramolecular chirality organization. Construction of the chirality-organized ferrocene-peptide bioconjugates is also achieved by metal-directed assembly. These varied examples amply demonstrate the value of ferrocene-peptide bioconjugates in asserting architectural control over highly ordered molecular assemblies.

  5. A review on palm oil mill biogas plant wastewater treatment using coagulation-ozonation

    NASA Astrophysics Data System (ADS)

    Dexter, Z. D.; Joseph, C. G.; Zahrim, A. Y.

    2016-06-01

    Palm oil mill effluent (POME) generated from the palm oil industry is highly polluted and requires urgent attention for treatment due to its high organic content. Biogas plant containing anaerobic digester is capable to treat the high organic content of the POME while generating valuable biogas at the same time. This green energy from POME is environmental-friendly but the wastewater produced is still highly polluted and blackish in colour. Therefore a novel concept of combining coagulation with ozonation treatment is proposed to treat pollution of this nature. Several parameters should be taken under consideration in order to ensure the effectiveness of the hybrid treatment including ozone dosage, ozone contact time, pH of the water or wastewater, coagulant dosage, and mixing and settling time. This review paper will elucidate the importance of hybrid coagulation-ozonation treatment in producing a clear treated wastewater which is known as the main challenge in palm oil industry

  6. Advances of aqueous rechargeable lithium-ion battery: A review

    NASA Astrophysics Data System (ADS)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  7. Removal of trace organic chemical contaminants by a membrane bioreactor.

    PubMed

    Trinh, T; van den Akker, B; Stuetz, R M; Coleman, H M; Le-Clech, P; Khan, S J

    2012-01-01

    Emerging wastewater treatment processes such as membrane bioreactors (MBRs) have attracted a significant amount of interest internationally due to their ability to produce high quality effluent suitable for water recycling. It is therefore important that their efficiency in removing hazardous trace organic contaminants be assessed. Accordingly, this study investigated the removal of trace organic chemical contaminants through a full-scale, package MBR in New South Wales, Australia. This study was unique in the context of MBR research because it characterised the removal of 48 trace organic chemical contaminants, which included steroidal hormones, xenoestrogens, pesticides, caffeine, pharmaceuticals and personal care products (PPCPs). Results showed that the removal of most trace organic chemical contaminants through the MBR was high (above 90%). However, amitriptyline, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, omeprazole, sulphamethoxazole and trimethoprim were only partially removed through the MBR with the removal efficiencies of 24-68%. These are potential indicators for assessing MBR performance as these chemicals are usually sensitive to changes in the treatment systems. The trace organic chemical contaminants detected in the MBR permeate were 1 to 6 orders of magnitude lower than guideline values reported in the Australian Guidelines for Water Recycling. The outcomes of this study enhanced our understanding of the levels and removal of trace organic contaminants by MBRs.

  8. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems

    NASA Astrophysics Data System (ADS)

    Graly, Joseph A.; Drever, James I.; Humphrey, Neil F.

    2017-04-01

    In order to constrain CO2 fluxes from biogeochemical processes in subglacial environments, we model the evolution of pH and alkalinity over a range of subglacial weathering conditions. We show that subglacial waters reach or exceed atmospheric pCO2 levels when atmospheric gases are able to partially access the subglacial environment. Subsequently, closed system oxidation of sulfides is capable of producing pCO2 levels well in excess of atmosphere levels without any input from the decay of organic matter. We compared this model to published pH and alkalinity measurements from 21 glaciers and ice sheets. Most subglacial waters are near atmospheric pCO2 values. The assumption of an initial period of open system weathering requires substantial organic carbon oxidation in only 4 of the 21 analyzed ice bodies. If the subglacial environment is assumed to be closed from any input of atmospheric gas, large organic carbon inputs are required in nearly all cases. These closed system assumptions imply that order of 10 g m-2 y-1 of organic carbon are removed from a typical subglacial environment—a rate too high to represent soil carbon built up over previous interglacial periods and far in excess of fluxes of surface deposited organic carbon. Partial open system input of atmospheric gases is therefore likely in most subglacial environments. The decay of organic carbon is still important to subglacial inorganic chemistry where substantial reserves of ancient organic carbon are found in bedrock. In glaciers and ice sheets on silicate bedrock, substantial long-term drawdown of atmospheric CO2 occurs.

  9. Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice

    DOE PAGES

    Fan, Quli; Cheng, Kai; Yang, Zhen; ...

    2014-11-06

    In order to promote preclinical and clinical applications of photoacoustic imaging, novel photoacoustic contrast agents are highly desired for molecular imaging of diseases, especially for deep tumor imaging. In this paper, perylene-3,4,9,10-tetracarboxylic diiimide-based near-infrared-absorptive organic nanoparticles are reported as an efficient agent for photoacoustic imaging of deep brain tumors in living mice with enhanced permeability and retention effect

  10. 76 FR 28257 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Order Approving Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ...-Regulatory Organizations; The NASDAQ Stock Market LLC; Order Approving Proposed Rule Change To Modify Chapter... Commission received no comment letters regarding the proposal. This order approves the proposed rule change... for imbalance and indicative data dissemination; (4) clarify when an Order Imbalance Indicator is...

  11. 77 FR 22022 - Self-Regulatory Organizations; C2 Options Exchange, Incorporated; Order Approving a Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ... Organizations; C2 Options Exchange, Incorporated; Order Approving a Proposed Rule Change Relating To Stock-Option Orders April 6, 2012. I. Introduction On February 7, 2012, the C2 Options Exchange, Incorporated...'s procedures for electronically executing stock-option orders. The proposed rule change was...

  12. Loop formation of microtubules during gliding at high density

    NASA Astrophysics Data System (ADS)

    Liu, Lynn; Tüzel, Erkan; Ross, Jennifer L.

    2011-09-01

    The microtubule cytoskeleton, including the associated proteins, forms a complex network essential to multiple cellular processes. Microtubule-associated motor proteins, such as kinesin-1, travel on microtubules to transport membrane bound vesicles across the crowded cell. Other motors, such as cytoplasmic dynein and kinesin-5, are used to organize the cytoskeleton during mitosis. In order to understand the self-organization processes of motors on microtubules, we performed filament-gliding assays with kinesin-1 motors bound to the cover glass with a high density of microtubules on the surface. To observe microtubule organization, 3% of the microtubules were fluorescently labeled to serve as tracers. We find that microtubules in these assays are not confined to two dimensions and can cross one other. This causes microtubules to align locally with a relatively short correlation length. At high density, this local alignment is enough to create 'intersections' of perpendicularly oriented groups of microtubules. These intersections create vortices that cause microtubules to form loops. We characterize the radius of curvature and time duration of the loops. These different behaviors give insight into how crowded conditions, such as those in the cell, might affect motor behavior and cytoskeleton organization.

  13. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas.

    PubMed

    Liu, Ruili; Shi, Yifeng; Wan, Ying; Meng, Yan; Zhang, Fuqiang; Gu, Dong; Chen, Zhenxia; Tu, Bo; Zhao, Dongyuan

    2006-09-06

    Highly ordered mesoporous polymer-silica and carbon-silica nanocomposites with interpenetrating networks have been successfully synthesized by the evaporation-induced triconstituent co-assembly method, wherein soluble resol polymer is used as an organic precursor, prehydrolyzed TEOS is used as an inorganic precursor, and triblock copolymer F127 is used as a template. It is proposed for the first time that ordered mesoporous nanocomposites have "reinforced concrete"-structured frameworks. By adjusting the initial mass ratios of TEOS to resol, we determined the obtained nanocomposites possess continuous composition with the ratios ranging from zero to infinity for the two constituents that are "homogeneously" dispersed inside the pore walls. The presence of silicates in nanocomposites dramatically inhibits framework shrinkage during the calcination, resulting in highly ordered large-pore mesoporous carbon-silica nanocomposites. Combustion in air or etching in HF solution can remove carbon or silica from the carbon-silica nanocomposites and yield ordered mesoporous pure silica or carbon frameworks. The process generates plenty of small pores in carbon or/and silica pore walls. Ordered mesoporous carbons can then be obtained with large pore sizes of approximately 6.7 nm, pore volumes of approximately 2.0 cm(3)/g, and high surface areas of approximately 2470 m(2)/g. The pore structures and textures can be controlled by varying the sizes and polymerization degrees of two constituent precursors. Accordingly, by simply tuning the aging time of TEOS, ordered mesoporous carbons with evident bimodal pores at 2.6 and 5.8 nm can be synthesized.

  14. Origins of cellular geometry

    PubMed Central

    2011-01-01

    Cells are highly complex and orderly machines, with defined shapes and a startling variety of internal organizations. Complex geometry is a feature of both free-living unicellular organisms and cells inside multicellular animals. Where does the geometry of a cell come from? Many of the same questions that arise in developmental biology can also be asked of cells, but in most cases we do not know the answers. How much of cellular organization is dictated by global cell polarity cues as opposed to local interactions between cellular components? Does cellular structure persist across cell generations? What is the relationship between cell geometry and tissue organization? What ensures that intracellular structures are scaled to the overall size of the cell? Cell biology is only now beginning to come to grips with these questions. PMID:21880160

  15. Bringing managed care home to the long-term care population.

    PubMed

    Nadash, Pamela; Ahrens, Joann

    2004-01-01

    Managed care has been proposed as a solution to the problems facing long-term care: its high costs, bias towards nursing homes, lack of coordination with acute and primary care, and inflexible service delivery. Kodner and Kyriacou (2003) argue that home care agencies may have considerable advantages in creating managed care systems for this population over traditional managed care organizations because of the experience home care organizations have in caring for older adults as well as people with disabilities. Although home care agencies are likely to better understand the needs of the long-term care population, they may lack the expertise and organizational resources to develop successful managed care organizations. Addressing these deficiencies will be key in order for home care organizations to successfully operate as managed care providers.

  16. Effects of different grazing intensities of sheep on accumulated particulate organic matter (POM) and organic matter mineralization in low-alpine grassland soils in Norway.

    NASA Astrophysics Data System (ADS)

    Martinsen, V.; Mulder, J.; Austrheim, G.; Mysterud, A.

    2009-04-01

    Summer farming in mountain areas of Norway (e.g. livestock grazing and logging of fire wood) has reduced during the last century; however the number of sheep stayed relatively unchanged implying a translocation of grazing impact. Herbivores may affect both vegetation dynamics and nutrient cycling. Much information exists about the impact of cession of grazing, but little is known about the ecological effect of different grazing intensities. Using a controlled grazing experiment organized as total randomized block design (starting 2001), with three levels of grazing intensities by sheep (high, low and no sheep), effects of different grazing pressure on soil organic matter (SOM) mineralization and amount and quality of POM was studied in a low alpine region of Southern Norway. In a parallel study in situ measurements were conducted to determine biomass production rate and the quality of litter input. Soil samples from the O-horizon were incubated (determining C and N mineralization) and fractionated (free light POM fraction, density <1,8 g cm-3, size 20-2000 µm). It was hypothesized that high levels of grazing would induce (1) higher C and N mineralization rates and (2) less POM, due to physical (trampling) and chemical (input of faeces and urea) impact of sheep in addition to observed changes in vegetation cover. Results indicate that the amount of POM was in the order low>no sheep>high, indicating that low grazing intensity build up a potential larger mineralizable fraction compared with high and no sheep. The C content of POM was in the order no sheep>low>high and the N content of POM in the order low>no sheep>high. The C content of POM at high grazing intensity was significantly lower than at low grazing intensity and no sheep (ns. different). The low C content of POM at high grazing intensities (but not the N content) was the main reason for the observed CN ratios of the POM fraction being lowest at high densities (no sheep>low>high). Initial analysis of C and N mineralization suggest that the amount of CO2 evolved per g soil is highest in soil samples from low grazing pressure; however respiration rates expressed per g POM do not differ between treatments. Ammonium is the dominant form of inorganic N mineralized from SOM. By contrast, there is little or no accumulation of nitrate, suggesting low nitrification potentials in these soils. Differences between treatments in the amount and quality of POM and in mineralization rates indicate that there is a non linear response of grazing activity. Thus, change in management practice may have important consequences for feedback mechanisms controlling above and below ground productivity. At the conference more data on C and N mineralization in addition to a coupled stoichiometri of selected plants and SOM will be presented.

  17. Photonic crystal geometry for organic solar cells.

    PubMed

    Ko, Doo-Hyun; Tumbleston, John R; Zhang, Lei; Williams, Stuart; DeSimone, Joseph M; Lopez, Rene; Samulski, Edward T

    2009-07-01

    We report organic solar cells with a photonic crystal nanostructure embossed in the photoactive bulk heterojunction layer, a topography that exhibits a 3-fold enhancement of the absorption in specific regions of the solar spectrum in part through multiple excitation resonances. The photonic crystal geometry is fabricated using a materials-agnostic process called PRINT wherein highly ordered arrays of nanoscale features are readily made in a single processing step over wide areas (approximately 4 cm(2)) that is scalable. We show efficiency improvements of approximately 70% that result not only from greater absorption, but also from electrical enhancements. The methodology is generally applicable to organic solar cells and the experimental findings reported in our manuscript corroborate theoretical expectations.

  18. The Influence of Chemical Modification on Linker Rotational Dynamics in Metal-Organic Frameworks.

    PubMed

    Damron, Joshua T; Ma, Jialiu; Kurz, Ricardo; Saalwächter, Kay; Matzger, Adam J; Ramamoorthy, Ayyalusamy

    2018-05-21

    The robust synthetic flexibility of metal-organic frameworks (MOFs) offers a promising class of tailorable materials, for which the ability to tune specific physicochemical properties is highly desired. This is achievable only through a thorough description of the consequences for chemical manipulations both in structure and dynamics. Magic angle spinning solid-state NMR spectroscopy offers many modalities in this pursuit, particularly for dynamic studies. Herein, we employ a separated-local-field NMR approach to show how specific intraframework chemical modifications to MOF UiO-66 heavily modulate the dynamic evolution of the organic ring moiety over several orders of magnitude. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Where Does the Ordered Line Come From? Evidence From a Culture of Papua New Guinea.

    PubMed

    Cooperrider, Kensy; Marghetis, Tyler; Núñez, Rafael

    2017-05-01

    Number lines, calendars, and measuring sticks all represent order along some dimension (e.g., magnitude) as position on a line. In high-literacy, industrialized societies, this principle of spatial organization- linear order-is a fixture of visual culture and everyday cognition. But what are the principle's origins, and how did it become such a fixture? Three studies investigated intuitions about linear order in the Yupno, members of a culture of Papua New Guinea that lacks conventional representations involving ordered lines, and in U.S. undergraduates. Presented with cards representing differing sizes and numerosities, both groups arranged them using linear order or sometimes spatial grouping, a competing principle. But whereas the U.S. participants produced ordered lines in all tasks, strongly favoring a left-to-right format, the Yupno produced them less consistently, and with variable orientations. Conventional linear representations are thus not necessary to spark the intuition of linear order-which may have other experiential sources-but they nonetheless regiment when and how the principle is used.

  20. Real-Time Observation of Order-Disorder Transformation of Organic Cations Induced Phase Transition and Anomalous Photoluminescence in Hybrid Perovskites.

    PubMed

    Yang, Bin; Ming, Wenmei; Du, Mao-Hua; Keum, Jong K; Puretzky, Alexander A; Rouleau, Christopher M; Huang, Jinsong; Geohegan, David B; Wang, Xiaoping; Xiao, Kai

    2018-05-01

    A fundamental understanding of the interplay between the microscopic structure and macroscopic optoelectronic properties of organic-inorganic hybrid perovskite materials is essential to design new materials and improve device performance. However, how exactly the organic cations affect the structural phase transition and optoelectronic properties of the materials is not well understood. Here, real-time, in situ temperature-dependent neutron/X-ray diffraction and photoluminescence (PL) measurements reveal a transformation of the organic cation CH 3 NH 3 + from order to disorder with increasing temperature in CH 3 NH 3 PbBr 3 perovskites. The molecular-level order-to-disorder transformation of CH 3 NH 3 + not only leads to an anomalous increase in PL intensity, but also results in a multidomain to single-domain structural transition. This discovery establishes the important role that organic cation ordering has in dictating structural order and anomalous optoelectronic phenomenon in hybrid perovskites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. SBA-15 Mesoporous Silica as Catalytic Support for Hydrodesulfurization Catalysts—Review

    PubMed Central

    Huirache-Acuña, Rafael; Nava, Rufino; Peza-Ledesma, Carmen L.; Lara-Romero, Javier; Alonso-Núñez, Gabriel; Pawelec, Barbara; Rivera-Muñoz, Eric M.

    2013-01-01

    SBA-15 is an interesting mesoporous silica material having highly ordered nanopores and a large surface area, which is widely employed as catalyst supports, absorbents, drug delivery materials, etc. Since it has a lack of functionality, heteroatoms and organic functional groups have been incorporated by direct or post-synthesis methods in order to modify their functionality. The aim of this article is to review the state-of-the-art related to the use of SBA-15-based mesoporous systems as supports for hydrodesulfurization (HDS) catalysts. PMID:28788323

  2. Process to form mesostructured films

    DOEpatents

    Brinker, C. Jeffrey; Anderson, Mark T.; Ganguli, Rahul; Lu, Yunfeng

    1999-01-01

    This invention comprises a method to form a family of supported films film with pore size in the approximate range 0.8-20 nm exhibiting highly ordered microstructures and porosity derived from an ordered micellar or liquid-crystalline organic-inorganic precursor structure that forms during film deposition. Optically transparent, 100-500-nm thick films exhibiting a unique range of microstructures and uni-modal pore sizes are formed in seconds in a continuous coating operation. Applications of these films include sensors, membranes, low dielectric constant interlayers, anti-reflective coatings, and optical hosts.

  3. Process to form mesostructured films

    DOEpatents

    Brinker, C.J.; Anderson, M.T.; Ganguli, R.; Lu, Y.F.

    1999-01-12

    This invention comprises a method to form a family of supported films with pore size in the approximate range 0.8-20 nm exhibiting highly ordered microstructures and porosity derived from an ordered micellar or liquid-crystalline organic-inorganic precursor structure that forms during film deposition. Optically transparent, 100-500-nm thick films exhibiting a unique range of microstructures and uni-modal pore sizes are formed in seconds in a continuous coating operation. Applications of these films include sensors, membranes, low dielectric constant interlayers, anti-reflective coatings, and optical hosts. 12 figs.

  4. 7 CFR 1280.206 - Certification of organizations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE LAMB PROMOTION, RESEARCH, AND INFORMATION ORDER Lamb Promotion, Research, and Information Order Lamb Promotion... substantial quantity of lamb or lamb products; and (2) A primary purpose of the organization is in the...

  5. Multilevel organization in hybrid thin films for optoelectronic applications.

    PubMed

    Vohra, Varun; Bolognesi, Alberto; Calzaferri, Gion; Botta, Chiara

    2009-10-20

    In this work we report two simple approaches to prepare hybrid thin films displaying a high concentration of zeolite crystals that could be used as active layers in optoelectronic devices. In the first approach, in order to organize nanodimensional zeolite crystals of 40 nm diameter in an electroactive environment, we chemically modify their external surface and play on the hydrophilic/hydrophobic forces. We obtain inorganic nanocrystals that self-organize in honeycomb electroluminescent polymer structures obtained by breath figure formation. The different functionalizations of the zeolite surface result in different organizations inside the cavities of the polymeric structure. The second approach involving soft-litography techniques allows one to arrange single dye-loaded zeolite L crystals of 800 nm of length by mechanical loading into the nanocavities of a conjugated polymer. Both techniques result in the formation of thin hybrid films displaying three levels of organization: organization of the dye molecules inside the zeolite nanochannels, organization of the zeolite crystals inside the polymer cavities, and micro- or nanostructuration of the polymer.

  6. The enhancement of photoresponse of an ordered inorganic-organic hybrid architecture by increasing interfacial contacts.

    PubMed

    Zhang, Bin; Chen, Xudong; Ma, Shaohua; Chen, Yujie; Yang, Jin; Zhang, Mingqiu

    2010-02-10

    A modified ZnO quantum dot/polythiophene (ZnO/PTh) inorganic-organic hybrid architecture was fabricated by using ordered mesoporous silica (SBA-15) as the retaining template. First, a two-step strategy was developed to synthesize an ordered organic conducting polymer composite (PTh/SBA-15). Then, ZnO quantum dots were in situ formed on the pore walls of the ordered PTh/SBA-15 composite. Photoresponse of the inorganic-organic hybrid was studied with respect to its incident photon to collected electron conversion efficiency (IPCE) and morphology. The presence of SBA-15 proved to be critical for controlling the interfacial morphology and hence enlarging the interfacial area of the inorganic-organic heterojunction. The proposed approach may act as a key method to open up potential applications in photovoltaic devices.

  7. 77 FR 22372 - Self-Regulatory Organizations; Chicago Mercantile Exchange Inc.; Notice of Filing and Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... Organizations; Chicago Mercantile Exchange Inc.; Notice of Filing and Order Granting Accelerated Approval of... Organizations April 9, 2012. Pursuant to Section 19(b)(1) of the Securities Exchange Act of 1934 (``Act'') \\1...). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of Terms of Substance of the...

  8. 77 FR 23298 - Self-Regulatory Organizations; NYSE Amex LLC; Notice of Filing and Immediate Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... Organizations Report to the Order Audit Trail System Information Barriers Put Into Place by the Member... Amex Equities Rule 5320 to require that member organizations report to the Order Audit Trail System... Amex Equities Rule 5320 provides that if a member organization implements and uses an effective system...

  9. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil.

    PubMed

    Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej

    2016-04-01

    Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic>citric>acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric>oxalic>acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil

    NASA Astrophysics Data System (ADS)

    Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej

    2016-04-01

    Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12 h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic > citric > acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric > oxalic > acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil.

  11. Optimizing operating parameters of a honeycomb zeolite rotor concentrator for processing TFT-LCD volatile organic compounds with competitive adsorption characteristics.

    PubMed

    Lin, Yu-Chih; Chang, Feng-Tang

    2009-05-30

    In this study, we attempted to enhance the removal efficiency of a honeycomb zeolite rotor concentrator (HZRC), operated at optimal parameters, for processing TFT-LCD volatile organic compounds (VOCs) with competitive adsorption characteristics. The results indicated that when the HZRC processed a VOCs stream of mixed compounds, compounds with a high boiling point take precedence in the adsorption process. In addition, existing compounds with a low boiling point adsorbed onto the HZRC were also displaced by the high-boiling-point compounds. In order to achieve optimal operating parameters for high VOCs removal efficiency, results suggested controlling the inlet velocity to <1.5m/s, reducing the concentration ratio to 8 times, increasing the desorption temperature to 200-225 degrees C, and setting the rotation speed to 6.5rpm.

  12. Liquid-liquid phase separation in atmospheric aerosol particles: dependence on organic functionalities and mixture complexity

    NASA Astrophysics Data System (ADS)

    Song, M.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Peter, T.

    2012-04-01

    In the troposphere, aerosol particles undergo phase transitions such as deliquescence and efflorescence during humidity cycles (Marcolli and Krieger, 2006). In addition, interactions between organic and inorganic compounds lead to liquid-liquid phase separation (LLPS) (Ciobanu et al., 2009). Recent studies on a limited number of model systems have shown that oxygen-to-carbon ratios (O:C) of the organic aerosol fraction might be a good predictor for LLPS in mixed organic/ammonium sulfate (AS) particles (Bertram et al., 2011; Song et al., 2011). However, in order to corroborate this hypothesis experiments with an organic fraction that consists of a higher number of components with different O:C ratios and functional groups are needed. In order to determine the influence of O:C ratio, the specific organic functionalities and the mixture complexity on LLPS, we subjected organic/AS particles deposited on a hydrophobically coated substrate to relative humidity (RH) cycles and observed phase changes using optical microscopy and micro-Raman spectroscopy. To determine the influence of mixture complexity, we mixed together up to 10 organic compounds. We also prepared mixtures that were rich in different types of functional groups like polyols, aromatics and dicarboxylic acids which were identified from field measurements. We screened for a miscibility gap by varying the organic-to-inorganic ratio from 2:1 to 1:6. AS in the investigated single particles effloresced at 27 - 50 %RH and deliquesced at 72 - 79 %RH during humidity cycles. The occurrence of LLPS is determined to a high degree by the O:C of the organics: there was no LLPS for mixtures with O:C > 0.8 and there was always LLPS for mixtures with O:C < 0.57. In the range in between, we observed a dependence on the specific functional groups: a high share of aromatic functionalities shifts the range of O:C for which LLPS occurs to lower values. A correlation was also found for the onset RH of LLPS as a function of O:C. We did not find any dependence of LLPS on the complexity of the mixture. Overall, the RH range of coexistence of two liquid phases depends in first place on the O:C ratio of the particles and in second place also on the specific organic functionalities.

  13. 76 FR 38712 - Self-Regulatory Organizations; BATS Exchange, Inc.; Order Approving a Proposed Rule Change To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-64754; File No. SR-BATS-2011-015] Self-Regulatory Organizations; BATS Exchange, Inc.; Order Approving a Proposed Rule Change To Amend BATS Rule 11.9, Entitled ``Orders and Modifiers'' and BATS Rule 11.13, Entitled ``Order Execution'' June 27, 2011. I...

  14. 77 FR 65754 - Self-Regulatory Organizations; C2 Options Exchange, Incorporated; Order Approving Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... Organizations; C2 Options Exchange, Incorporated; Order Approving Proposed Rule Change Relating to the Complex...,\\2\\ a proposed rule change to modify C2 Rule 6.13(c), ``Process for Complex Order RFR Auction,'' to... at the start of a Complex Order Auction (``COA''); and (ii) require responses to an RFR message...

  15. 7 CFR 1216.56 - Exemption for organic peanuts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Exemption for organic peanuts. 1216.56 Section 1216... SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Expenses and...

  16. 7 CFR 1216.19 - Peanut producer organization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Peanut producer organization. 1216.19 Section 1216.19... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.19 Peanut producer...

  17. 7 CFR 1216.19 - Peanut producer organization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Peanut producer organization. 1216.19 Section 1216.19... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.19 Peanut producer...

  18. Prosocial motivation and physicians' work attitudes. Effects of a triple synergy on prosocial orientation in a healthcare organization.

    PubMed

    Kim, Young Shin

    2015-01-01

    Employees work attitudes are key determinants to organizational performance. This article proposes a model integrating servant leadership, prosocial motivation, and corporate social responsibility (CSR) in order to explain a mechanism through which prosocial motivation plays a central role in enhanding physicians' work attitudes. A cross sectional survey from a sample of physicians indicates that (1) prosocial motivation can be shaped from servant leadership when physicians perceive high value fit with their supervisors, (2) prosocial motivation improves physicians' job satisfaction. Its effects is strengthened when physicians perceive high CSR, and (3) job satisfaction improves organizational commitment. The results provide meaningful insights that a triple synergy of prosocial orientation among physicians, supervisors and organization enhances physicians' work attitudes.

  19. The level of organic rice farming technology at farmer group in Ketapang village, Susukan sub-district, Semarang district, Central Java Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Sumarsono; Yafizham; Widjajanto, D. W.

    2018-01-01

    The research was conducted to learn the phenomenon of the level of organic rice cultivation technology in the field at one of organic rice centers in Central Java Province, Indonesia. It was carried out using sample survey of respondents taken at 3 different of Walisongo, Al-Barokah and Dewi Sri farmer groups from organic rice farmer population in the village of Ketapang, Susukan sub-district, Semarang district. Primary data were collected quantitatively by distributing questioner to the respondent. Data were analyzed in order to evaluate the performance of inter-group observation and relationship of behavioral levels of organic rice cultivation. The results showed that the level of organic rice cultivation technology were high category (68.3%), moderate category (31.7%), and none less category, respectively. There was significant regression relationship Y = 7.219 + 0.237 X1 + 0,231 X2 (R = 0.625) between knowledge and attitude toward organic farming cultivation level. There was no significant difference in the application level of organic farming between Dewi Sri and Al-Barokah Farmer Groups (113.3a vs 110.7a), but the application level of organic farming both of Dewi Sri and Al-Barokah farmer groups were significantly (P<0,05) different from Walisongo farmer group (95.5b). It was concluded that the level of organic technology at farmer group was moderate to high category, but still requires further extention to be more equitable among farmer groups

  20. Nanoscale Experimental Characterization and 3D Mechanistic Modeling of Shale with Quantified Heterogeneity

    NASA Astrophysics Data System (ADS)

    Bennett, K. C.; Borja, R. I.

    2014-12-01

    Shale is a fine-grained sedimentary rock consisting primarily of clay and silt, and is of particular interest with respect to hydrocarbon production as both a source and seal rock. The deformation and fracture properties of shale depend on the mechanical properties of its basic constituents, including solid clay particles, inclusions such as silt and organics, and multiscale porosity. This paper presents the results of a combined experimental/numerical investigation into the mechanical behavior of shale at the nanoscale. Large grids of nanoindentation tests, spanning various length scales ranging from 200-20000 nanometers deep, were performed on a sample of Woodford shale in both the bedding plane normal (BPN) and bedding plane parallel (BPP) directions. The nanoindentions were performed in order to determine the mechanical properties of the constituent materials in situ as well as those of the highly heterogeneous composite material at this scale. Focused ion beam (FIB) milling and scanning electron microscopy (SEM) were used in conjunction (FIB-SEM) to obtain 2D and 3D images characterizing the heterogeneity of the shale at this scale. The constituent materials were found to be best described as consisting of near micrometer size clay and silt particles embedded in a mixed organic/clay matrix, with some larger (near 10 micrometers in diameter) pockets of organic material evident. Indented regions were identified through SEM, allowing the 200-1000 nanometer deep indentations to be classified according to the constituent materials which they engaged. We use nonlinear finite element modeling to capture results of low-load (on the order of milliNewtons) and high-load (on the order of a few Newtons) nanoindentation tests. Experimental results are used to develop a 3D mechanistic model that interprets the results of nanoindentation tests on specimens of Woodford shale with quantified heterogeneity.

  1. Nonlinear optics in organic cavity polaritons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singer, Kenneth D.; Liu, Bin; Crescimanno, Michael; Twieg, Robert J.

    2017-02-01

    Coupling between excitons belonging to organic dyes and photons in a microcavities forming cavity polaritons have been receiving attention for their fundamental interest as well as potential applications in coherent light sources. Organic materials are of particular interest as the coupling is particularly strong due to the large oscillator strength of conjugated organic molecules. The resulting coupling in organic materials is routinely in the strong regime. Ultrastrong coupling between photons and excitons in microcavities containing organic dyes and semiconductors has been recently observed in room temperature. We have studied the coupling between cavity pairs in the ultrastrong regime and found that the high order terms in the modified Jaynes-Cummings model result in broken degeneracy between the symmetric and antisymmetric modes. The unusually strong coupling between cavity photons and organic excitons dovetail with the robust nonlinear optical responses of the same materials. This provides a new and promising hybrid material for photonics. We report on measurements of photorefraction in organic cavities containing a derivative of the photorefractive organic glass based on 2-dicyanomethylene-3-cyano-2,5-dihydrofuran (DCDHF).

  2. Benchmarking organic mixed conductors for transistors.

    PubMed

    Inal, Sahika; Malliaras, George G; Rivnay, Jonathan

    2017-11-24

    Organic mixed conductors have garnered significant attention in applications from bioelectronics to energy storage/generation. Their implementation in organic transistors has led to enhanced biosensing, neuromorphic function, and specialized circuits. While a narrow class of conducting polymers continues to excel in these new applications, materials design efforts have accelerated as researchers target new functionality, processability, and improved performance/stability. Materials for organic electrochemical transistors (OECTs) require both efficient electronic transport and facile ion injection in order to sustain high capacity. In this work, we show that the product of the electronic mobility and volumetric charge storage capacity (µC*) is the materials/system figure of merit; we use this framework to benchmark and compare the steady-state OECT performance of ten previously reported materials. This product can be independently verified and decoupled to guide materials design and processing. OECTs can therefore be used as a tool for understanding and designing new organic mixed conductors.

  3. Changes in optical characteristics of surface microlayers in the Peruvian upwelling region hint to photochemically and microbially-mediated DOM turnover

    NASA Astrophysics Data System (ADS)

    Engel, A.; Galgani, L.

    2016-02-01

    The coastal upwelling system off Peru is characterized by high biological activity and associated subsurface oxygen minimum zone, leading to an enhanced emission of atmospheric trace gases. High biological productivity in the water column may promote the establishment of enriched organic surface films, key environments for processes regulating gas fluxes across the water-air interface. During M91 cruise to the Peruvian upwelling, we focused our attention on the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like Chromophoric Dissolved Organic Matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. In order to understand organic matter cycling in surface films, we analyzed SML and underlying water samples in 38 stations determining DOC concentrations, amino acids composition, marine gels, CDOM and bacterial abundance as indicators of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slopes (S) values and Excitation-Emission Matrix fluorescence (EEMs), which allow to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources. Profound changes in spectral slope properties were observed suggesting smaller MW CDOM in the SML compared to underlying water. Microbial and photochemical degradation are likely the main drivers for organic matter cycling in the top layer of the ocean. Consequences on the formation of inorganic and organic species highly relevant for air-sea gas exchange and for climate dynamics will be discussed.

  4. A Big Data-driven Model for the Optimization of Healthcare Processes.

    PubMed

    Koufi, Vassiliki; Malamateniou, Flora; Vassilacopoulos, George

    2015-01-01

    Healthcare organizations increasingly navigate a highly volatile, complex environment in which technological advancements and new healthcare delivery business models are the only constants. In their effort to out-perform in this environment, healthcare organizations need to be agile enough in order to become responsive to these increasingly changing conditions. To act with agility, healthcare organizations need to discover new ways to optimize their operations. To this end, they focus on healthcare processes that guide healthcare delivery and on the technologies that support them. Business process management (BPM) and Service-Oriented Architecture (SOA) can provide a flexible, dynamic, cloud-ready infrastructure where business process analytics can be utilized to extract useful insights from mountains of raw data, and make them work in ways beyond the abilities of human brains, or IT systems from just a year ago. This paper presents a framework which provides healthcare professionals gain better insight within and across your business processes. In particular, it performs real-time analysis on process-related data in order reveal areas of potential process improvement.

  5. Molecular Motor-Induced Instabilities and Cross Linkers Determine Biopolymer Organization

    PubMed Central

    Smith, D.; Ziebert, F.; Humphrey, D.; Duggan, C.; Steinbeck, M.; Zimmermann, W.; Käs, J.

    2007-01-01

    All eukaryotic cells rely on the active self-organization of protein filaments to form a responsive intracellular cytoskeleton. The necessity of motility and reaction to stimuli additionally requires pathways that quickly and reversibly change cytoskeletal organization. While thermally driven order-disorder transitions are, from the viewpoint of physics, the most obvious method for controlling states of organization, the timescales necessary for effective cellular dynamics would require temperatures exceeding the physiologically viable temperature range. We report a mechanism whereby the molecular motor myosin II can cause near-instantaneous order-disorder transitions in reconstituted cytoskeletal actin solutions. When motor-induced filament sliding diminishes, the actin network structure rapidly and reversibly self-organizes into various assemblies. Addition of stable cross linkers was found to alter the architectures of ordered assemblies. These isothermal transitions between dynamic disorder and self-assembled ordered states illustrate that the interplay between passive crosslinking and molecular motor activity plays a substantial role in dynamic cellular organization. PMID:17604319

  6. Adsorptive Removal of Artificial Sweeteners from Water Using Metal-Organic Frameworks Functionalized with Urea or Melamine.

    PubMed

    Seo, Pill Won; Khan, Nazmul Abedin; Hasan, Zubair; Jhung, Sung Hwa

    2016-11-02

    A highly porous metal-organic framework (MOF), MIL-101, was modified to introduce urea or melamine via grafting on open metal sites of the MOF. Adsorptive removal of three artificial sweeteners (ASWs) was studied using the MOFs, with or without modifications (including nitration), and activated carbon (AC). The adsorbed quantities (based on the weight of the adsorbent) of saccharin (SAC) under various conditions decreased in the order urea-MIL-101 > melamine-MIL-101 > MIL-101 > AC > O 2 N-MIL-101; however, the quantities based on unit surface area are in the order melamine-MIL-101 > urea-MIL-101 > MIL-101 > O 2 N-MIL-101. Similar ASWs [acesulfame (ACE) and cyclamate (CYC)] showed the same tendency. The mechanism for very favorable adsorption of SAC, ACE, and CYC over urea- and melamine-MIL-101 could be explained by H-bonding on the basis of the contents of -NH 2 groups on the MOFs and the adsorption results under a wide range of pH values. Moreover, the direction of H-bonding could be clearly defined (H acceptor: ASWs; H donor: MOFs). Urea-MIL-101 and melamine-MIL-101 could be suggested as competitive adsorbents for organic contaminants (such as ASWs) with electronegative atoms, considering their high adsorption capacity (for example, urea-MIL-101 had 2.3 times the SAC adsorption of AC) and ready regeneration.

  7. Recent Topics of Organic Superconductors

    NASA Astrophysics Data System (ADS)

    Ardavan, Arzhang; Brown, Stuart; Kagoshima, Seiichi; Kanoda, Kazushi; Kuroki, Kazuhiko; Mori, Hatsumi; Ogata, Masao; Uji, Shinya; Wosnitza, Jochen

    2012-01-01

    Recent developments in research into superconductivity in organic materials are reviewed. In the epoch-defining quasi-one-dimensional TMTSF superconductors with Tc ˜ 1 K, Tc decreases monotonically with increasing pressure, as do signatures of spin fluctuations in the normal state, providing good evidence for magnetically-mediated pairing. Upper critical fields exceed the Zeeman-limiting field by several times, suggesting triplet pairing or a transition to an inhomogeneous superconducting state at high magnetic fields, while triplet pairing is ruled out at low fields by NMR Knight-shift measurements. Evidence for a spatially inhomogeneous superconducting state, Fulde--Ferrel--Larkin--Ovchinnikov state, which has long been sought in various superconducting systems, is now captured by thermodynamic and transport measurements for clean and highly two-dimensional BEDT-TTF and BETS superconductors. Some of the layered superconductors also serve as model systems for Mott physics on anisotropic triangular lattice. For example, the Nernst effect and the pseudo-gap behavior in NMR relaxation are enhanced near to the Mott transition. In the case of increasing spin frustration, the superconducting transition temperature is depressed, and antiferromagnetic ordering is eliminated altogether in the adjacent Mott insulating phase. There is an increasing number of materials exhibiting superconductivity in competition or cooperation with charge order. Theoretical studies shed light on the role of spin and/or charge fluctuations for superconductivity appearing under conditions close to those of correlation-induced insulating phases in the diversity of organic materials.

  8. 3D Printing of Personalized Organs and Tissues

    NASA Astrophysics Data System (ADS)

    Ye, Kaiming

    2015-03-01

    Authors: Kaiming Ye and Sha Jin, Department of Biomedical Engineering, Watson School of Engineering and Applied Science, Binghamton University, State University of New York, Binghamton, NY 13902-6000 Abstract: Creation of highly organized multicellular constructs, including tissues and organs or organoids, will revolutionize tissue engineering and regenerative medicine. The development of these technologies will enable the production of individualized organs or tissues for patient-tailored organ transplantation or cell-based therapy. For instance, a patient with damaged myocardial tissues due to an ischemic event can receive a myocardial transplant generated using the patient's own induced pluripotent stem cells (iPSCs). Likewise, a type-1 diabetic patient can be treated with lab-generated islets to restore his or her physiological insulin secretion capability. These lab-produced, high order tissues or organs can also serve as disease models for pathophysiological study and drug screening. The remarkable advances in stem cell biology, tissue engineering, microfabrication, and materials science in the last decade suggest the feasibility of generating these tissues and organoids in the laboratory. Nevertheless, major challenges still exist. One of the critical challenges that we still face today is the difficulty in constructing or fabricating multicellular assemblies that recapitulate in vivo microenvironments essential for controlling cell proliferation, migration, differentiation, maturation and assembly into a biologically functional tissue or organoid structure. These challenges can be addressed through developing 3D organ and tissue printing which enables organizing and assembling cells into desired tissue and organ structures. We have shown that human pluripotent stem cells differentiated in 3D environments are mature and possess high degree of biological function necessary for them to function in vivo.

  9. Ultrashort-pulsed laser processing and solution based coating in roll-to-roll manufacturing of organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Hördemann, C.; Hirschfelder, K.; Schaefer, M.; Gillner, A.

    2015-09-01

    The breakthrough of flexible organic electronics and especially organic photovoltaics is highly dependent on cost-efficient production technologies. Roll-2-Roll processes show potential for a promising solution in terms of high throughput and low-cost production of thin film organic components. Solution based material deposition and integrated laser patterning processes offer new possibilities for versatile production lines. The use of flexible polymeric substrates brings along challenges in laser patterning which have to be overcome. One main challenge when patterning transparent conductive layers on polymeric substrates are material bulges at the edges of the ablated area. Bulges can lead to short circuits in the layer system leading to device failure. Therefore following layers have to have a sufficient thickness to cover and smooth the ridge. In order to minimize the bulging height, a study has been carried out on transparent conductive ITO layers on flexible PET substrates. Ablation results using different beam shapes, such as Gaussian beam, Top-Hat beam and Donut-shaped beam, as well as multi-pass scribing and double-pulsed ablation are compared. Furthermore, lab scale methods for cleaning the patterned layer and eliminating bulges are contrasted to the use of additional water based sacrificial layers in order to obtain an alternative procedure suitable for large scale Roll-2-Roll manufacturing. Besides progress in research, ongoing transfer of laser processes into a Roll-2-Roll demonstrator is illustrated. By using fixed optical elements in combination with a galvanometric scanner, scribing, variable patterning and edge deletion can be performed individually.

  10. 7 CFR 1220.109 - Eligible organization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SOYBEAN PROMOTION, RESEARCH, AND CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.109 Eligible organization. The...

  11. The Threat of Convergence of Terror Groups with Transnational Criminal Organizations in Order to Utilize Existing Smuggling Routes and Techniques to Aid in the Covert Entry of Operatives into the United States

    DTIC Science & Technology

    2015-06-12

    money laundering operations that support criminal and terrorist organizations. Transnational organizations transcend the borders and operate globally...Modlin Thesis Title: The Threat of Convergence of Terror Groups with Transnational Criminal Organizations in Order to Utilize Existing Smuggling

  12. Predicting the Plate Dent Test Output in Order to Assess the Performance of Condensed High Explosives

    NASA Astrophysics Data System (ADS)

    Frem, Dany

    2017-01-01

    In the present study, a relationship is proposed that is capable of predicting the output of the plate dent test. It is shown that the initial density ?; condensed phase heat of formation ?; the number of carbon (C), nitrogen (N), oxygen (O); and the composition molecular weight (MW) are the most important parameters needed in order to accurately predict the absolute dent depth ? produced on 1018 cold-rolled steel by a detonating organic explosive. The estimated ? values can be used to predict the detonation pressure (P) of high explosives; furthermore, we show that a correlation exists between ? and the Gurney velocity ? parameter. The new correlation is used to accurately estimate ? for several C-H-N-O explosive compositions.

  13. Continuous Flow in Labour-Intensive Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Pacheco Eng., Jhonny; Carbajal MSc., Eduardo; Stoll-Ing., Cesar, Dr.

    2017-06-01

    A continuous-flow manufacturing represents the peak of standard production, and usually it means high production in a strict line production. Furthermore, low-tech industry demands high labour-intensive, in this context the efficient of the line production is tied at the job shop organization. Labour-intensive manufacturing processes are a common characteristic for developing countries. This research aims to propose a methodology for production planning in order to fulfilment a variable monthly production quota. The main idea is to use a clock as orchestra director in order to synchronize the rate time (takt time) of customer demand with the manufacturing time. In this way, the study is able to propose a stark reduction of stock in process, over-processing, and unnecessary variability.

  14. A HyperSpectral Imaging (HSI) approach for bio-digestate real time monitoring

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Fabbri, Andrea; Serranti, Silvia

    2014-05-01

    One of the key issues in developing Good Agricultural Practices (GAP) is represented by the optimal utilisation of fertilisers and herbicidal to reduce the impact of Nitrates in soils and the environment. In traditional agriculture practises, these substances were provided to the soils through the use of chemical products (inorganic/organic fertilizers, soil improvers/conditioners, etc.), usually associated to several major environmental problems, such as: water pollution and contamination, fertilizer dependency, soil acidification, trace mineral depletion, over-fertilization, high energy consumption, contribution to climate change, impacts on mycorrhizas, lack of long-term sustainability, etc. For this reason, the agricultural market is more and more interested in the utilisation of organic fertilisers and soil improvers. Among organic fertilizers, there is an emerging interest for the digestate, a sub-product resulting from anaerobic digestion (AD) processes. Several studies confirm the high properties of digestate if used as organic fertilizer and soil improver/conditioner. Digestate, in fact, is somehow similar to compost: AD converts a major part of organic nitrogen to ammonia, which is then directly available to plants as nitrogen. In this paper, new analytical tools, based on HyperSpectral Imaging (HSI) sensing devices, and related detection architectures, is presented and discussed in order to define and apply simple to use, reliable, robust and low cost strategies finalised to define and implement innovative smart detection engines for digestate characterization and monitoring. This approach is finalized to utilize this "waste product" as a valuable organic fertilizer and soil conditioner, in a reduced impact and an "ad hoc" soil fertilisation perspective. Furthermore, the possibility to contemporary utilize the HSI approach to realize a real time physicalchemical characterisation of agricultural soils (i.e. nitrogen, phosphorus, etc., detection) could allow to set up "real time" selective fertilization strategies in order to obtain a safer culture production.

  15. Novel forms of colloidal self-organization in temporally and spatially varying external fields: from low-density network-forming fluids to spincoated crystals

    NASA Astrophysics Data System (ADS)

    Yethiraj, Anand

    2010-03-01

    External fields affect self-organization in Brownian colloidal suspensions in many different ways [1]. High-frequency time varying a.c. electric fields can induce effectively quasi-static dipolar inter-particle interactions. While dipolar interactions can provide access to multiple open equilibrium crystal structures [2] whose origin is now reasonably well understood, they can also give rise to competing interactions on short and long length scales that produce unexpected low-density ordered phases [3]. Farther from equilibrium, competing external fields are active in colloid spincoating. Drying colloidal suspensions on a spinning substrate produces a ``perfect polycrystal'' - tiny polycrystalline domains that exhibit long-range inter-domain orientational order [4] with resultant spectacular optical effects that are decoupled from single-crystallinity. High-speed movies of drying crystals yield insights into mechanisms of structure formation. Phenomena arising from multiple spatially- and temporally-varying external fields can give rise to further control of order and disorder, with potential application as patterned (photonic and magnetic) materials. [4pt] [1] A. Yethiraj, Soft Matter 3, 1099 (2007). [2] A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003). [3] A.K. Agarwal, A. Yethiraj, Phys. Rev. Lett ,102, 198301 (2009). [4] C. Arcos, K. Kumar, W. Gonz'alez-Viñas, R. Sirera, K. Poduska, A. Yethiraj, Phys. Rev. E ,77, 050402(R) (2008).

  16. Modeling cooperating micro-organisms in antibiotic environment.

    PubMed

    Book, Gilad; Ingham, Colin; Ariel, Gil

    2017-01-01

    Recent experiments with the bacteria Paenibacillus vortex reveal a remarkable strategy enabling it to cope with antibiotics by cooperating with a different bacterium-Escherichia coli. While P. vortex is a highly effective swarmer, it is sensitive to the antibiotic ampicillin. On the other hand, E. coli can degrade ampicillin but is non-motile when grown on high agar percentages. The two bacterial species form a shared colony in which E. coli is transported by P. vortex and E. coli detoxifies the ampicillin. The paper presents a simplified model, consisting of coupled reaction-diffusion equations, describing the development of ring patterns in the shared colony. Our results demonstrate some of the possible cooperative movement strategies bacteria utilize in order to survive harsh conditions. In addition, we explore the behavior of mixed colonies under new conditions such as antibiotic gradients, synchronization between colonies and possible dynamics of a 3-species system including P. vortex, E. coli and a carbon producing algae that provides nutrients under illuminated, nutrient poor conditions. The derived model was able to simulate an asymmetric relationship between two or three micro-organisms where cooperation is required for survival. Computationally, in order to avoid numerical artifacts due to symmetries within the discretizing grid, the model was solved using a second order Vectorizable Random Lattices method, which is developed as a finite volume scheme on a random grid.

  17. ToF-SIMS and Laser-SNMS Imaging of Heterogeneous Topographically Complex Polymer Systems.

    PubMed

    Pelster, Andreas; Körsgen, Martin; Kurosawa, Takako; Morita, Hiromi; Arlinghaus, Heinrich F

    2016-10-04

    Heterogeneous polymer coatings, such as those used in organic electronics and medical devices, are of increasing industrial importance. In order to advance the development of these types of systems, analytical techniques are required which are able to determine the elemental and molecular spatial distributions, on a nanometer scale, with very high detection efficiency and sensitivity. The goal of this study was to investigate the suitability of laser postionization secondary neutral mass spectrometry (Laser-SNMS) with a 157 nm postionization laser beam to image structured polymer mixtures and compare the results with time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements using Bi 3 + primary ions. The results showed that Laser-SNMS is better suited than ToF-SIMS for unambiguous detection and submicrometer imaging of the wide range of polymers investigated. The data also showed that Laser-SNMS has the advantage of being much more sensitive (in general higher by more than an order of magnitude and peaking at up to 3 orders of magnitude) than ToF-SIMS while also showing superior performance on topographically complex structured insulating surfaces, due to significantly reduced field effects and a higher dynamic range as compared to ToF-SIMS. It is concluded that Laser-SNMS is a powerful complementary technique to ToF-SIMS for the analysis of heterogeneous polymers and other complex structured organic mixtures, providing submicrometer resolution and high sensitivity.

  18. Modeling cooperating micro-organisms in antibiotic environment

    PubMed Central

    Book, Gilad; Ingham, Colin; Ariel, Gil

    2017-01-01

    Recent experiments with the bacteria Paenibacillus vortex reveal a remarkable strategy enabling it to cope with antibiotics by cooperating with a different bacterium—Escherichia coli. While P. vortex is a highly effective swarmer, it is sensitive to the antibiotic ampicillin. On the other hand, E. coli can degrade ampicillin but is non-motile when grown on high agar percentages. The two bacterial species form a shared colony in which E. coli is transported by P. vortex and E. coli detoxifies the ampicillin. The paper presents a simplified model, consisting of coupled reaction-diffusion equations, describing the development of ring patterns in the shared colony. Our results demonstrate some of the possible cooperative movement strategies bacteria utilize in order to survive harsh conditions. In addition, we explore the behavior of mixed colonies under new conditions such as antibiotic gradients, synchronization between colonies and possible dynamics of a 3-species system including P. vortex, E. coli and a carbon producing algae that provides nutrients under illuminated, nutrient poor conditions. The derived model was able to simulate an asymmetric relationship between two or three micro-organisms where cooperation is required for survival. Computationally, in order to avoid numerical artifacts due to symmetries within the discretizing grid, the model was solved using a second order Vectorizable Random Lattices method, which is developed as a finite volume scheme on a random grid. PMID:29284016

  19. Low- and high-index sol-gel films for planar and channel-doped waveguides

    NASA Astrophysics Data System (ADS)

    Canva, Michael; Chaput, Frederic; Lahlil, Khalid; Rachet, Vincent; Goudket, Helene; Boilot, Jean-Pierre; Levy, Yves

    2001-11-01

    In view of realizing integrated optic components based on effects such as electro-optic, chi(2):chi(2) cascading, stimulated emission,... one has to first synthesize materials with the proper functionality; this may be achieved by doping solid state matrices by the appropriate organic chromophores. Second, and as important, these materials have to be properly structured into the final optical guiding structures. We shall report on issues related to the realization of chromophore-doped planar waveguides as well as channel waveguides. These structures were realized by either photo-transformation such as photo- chromism and photo-bleaching or reactive ion etching technique, starting with chromophore doped sol-gel materials at high loading contents for which optical index may be controlled via the local dopant concentration. With these materials and techniques, waveguides and components characterized by propagation losses of the order of a cm-1, measured off the edge of the absorption band of the doping species, were fabricated. In order to be also able to study and use waveguide functionalized with low concentration of chromophore species, we developed new sol-gel materials of high optical index, yet low temperature processed. These new films are under study to evaluate their potential as host for organic doped waveguides devices.

  20. From the chromatin interaction network to the organization of the human genome into replication N/U-domains

    NASA Astrophysics Data System (ADS)

    Boulos, Rasha E.; Julienne, Hanna; Baker, Antoine; Chen, Chun-Long; Petryk, Nataliya; Kahli, Malik; dʼAubenton-Carafa, Yves; Goldar, Arach; Jensen, Pablo; Hyrien, Olivier; Thermes, Claude; Arneodo, Alain; Audit, Benjamin

    2014-11-01

    The three-dimensional (3D) architecture of the mammalian nucleus is now being unraveled thanks to the recent development of chromatin conformation capture (3C) technologies. Here we report the results of a combined multiscale analysis of genome-wide mean replication timing and chromatin conformation data that reveal some intimate relationships between chromatin folding and human DNA replication. We previously described megabase replication N/U-domains as mammalian multiorigin replication units, and showed that their borders are ‘master’ replication initiation zones that likely initiate cascades of origin firing responsible for the stereotypic replication of these domains. Here, we demonstrate that replication N/U-domains correspond to the structural domains of self-interacting chromatin, and that their borders act as insulating regions both in high-throughput 3C (Hi-C) data and high-resolution 3C (4C) experiments. Further analyses of Hi-C data using a graph-theoretical approach reveal that N/U-domain borders are long-distance, interconnected hubs of the chromatin interaction network. Overall, these results and the observation that a well-defined ordering of chromatin states exists from N/U-domain borders to centers suggest that ‘master’ replication initiation zones are at the heart of a high-order, epigenetically controlled 3D organization of the human genome.

  1. Impacts of Ocean Acidification and Temperature Change on Zooxanthellae Density in Coral Stylophora pistillata

    NASA Astrophysics Data System (ADS)

    Pantaleo, G. E.; Martínez Fernández, A.; Paytan, A.

    2016-12-01

    As ocean conditions continue to change, marine ecosystems are significantly impacted. Many calcifying organisms are being affected by the gradual changes in ocean pH and temperature that continue to occur over time. Corals are organisms that engage in a symbiotic relationship with Symbiodinium dinoflagellates (zooxanthellae). Symbiodinium are responsible for photosynthetic activity within oligotrophic waters. Corals depend on high levels of aragonite saturation state of seawater in order to build their skeletal structure. Most corals have a relatively narrow optimal range of temperature and pH in which they thrive. However, it is thought that corals residing in the Gulf of Aqaba (Red Sea) are resilient to the effects of increasing temperature. Stylophora pistillata's response to environmental impacts was tested via a simulation of ocean conditions at a high temperature and high CO2 emission scenario (pH 7.65) and lower CO2 emission scenario (pH 7.85) that are predicted for the end of this century. We present the difference in zooxanthellae density following a short term experiment where corals were placed in seawater tanks at pH 7.65, 7.85 and 8.1 and temperature was increased by 4 degrees C above seawater temperature in order to measure the response of Stylophora pistillata to potential future ocean conditions.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Eddaoudi; Zaworotko, Michael; Space, Brian

    Statement of Objectives: 1. Synthesize viable porous MOFs for high H2 storage at ambient conditions to be assessed by measuring H2 uptake. 2. Develop a better understanding of the operative interactions of the sorbed H2 with the organic and inorganic constituents of the sorbent MOF by means of inelastic neutron scattering (INS, to characterize the H2-MOF interactions) and computational studies (to interpret the data and predict novel materials suitable for high H2 uptake at moderate temperatures and relatively low pressures). 3. Synergistically combine the outcomes of objectives 1 and 2 to construct a made-to-order inexpensive MOF that is suitable formore » super H2 storage and meets the DOE targets - 6% H2 per weight (2kWh/kg) by 2010 and 9% H2 per weight (3kWh/kg) by 2015. The ongoing research is a collaborative experimental and computational effort focused on assessing H2 storage and interactions with pre-selected metal-organic frameworks (MOFs) and zeolite-like MOFs (ZMOFs), with the eventual goal of synthesizing made-to-order high H2 storage materials to achieve the DOE targets for mobile applications. We proposed in this funded research to increase the amount of H2 uptake, as well as tune the interactions (i.e. isosteric heats of adsorption), by targeting readily tunable MOFs:« less

  3. GENOMIC INSTABILITY AND ENHANCED RADIOSENSITIVITY IN HSP70.1- AND HSP70.3-DEFICIENT MICE

    EPA Science Inventory



    Abstract

    Heat shock proteins (HSPs) are highly conserved among all organisms from prokaryotes to eukaryotes. In mice, the HSP genes Hsp70.1 and Hsp70.3 are induced by both endogenous and exogenous stressors, such as heat and toxicants. In order to determine wheth...

  4. Highlights from Faraday Discussion 182: Solid Oxide Electrolysis: Fuels and Feedstocks from Water and Air, York, UK, July 2015.

    PubMed

    Stefan, Elena; Norby, Truls

    2016-01-31

    The rising importance of converting high peak electricity from renewables to fuels has urged field specialists to organize this Faraday Discussion on Solid Oxide Electrolysis. The topic is of essential interest in order to achieve a greater utilization of renewable energy and storage at higher densities.

  5. Study on Providing Professors with Efficient Service Based on Time Management Strategy

    ERIC Educational Resources Information Center

    Li, Chunlin; Liu, Mengchao; Wang, Yining

    2016-01-01

    Time management is the study to use time scientifically by deploying skills, techniques and means, and maximizing time value to help individuals or organizations efficiently complete tasks and achieve goals. University professor as a body is an important force in teaching and research. In order to ensure high-quality teaching, productive research,…

  6. Designing Tailor-Made Academic Paths for University Language Students

    ERIC Educational Resources Information Center

    Beseghi, Micol; Bertolotti, Greta

    2013-01-01

    The Language Centre of the University of Parma is responsible for the organization and administration of foreign language tests to a large number of university students. In order to reduce the high rate of test failures, the Language Centre has recently devised a pilot programme as an alternative to more established modes of language learning,…

  7. 78 FR 26841 - Self-Regulatory Organizations; NASDAQ OMX PHLX LLC; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... Application and Initiation Fees, for a defined period of time, in order that certain market making firms may... Exchange at the request of such traders, unless specifically exempted from such quoting (market-making... on market making firms. The Exchange operates in a highly competitive market, comprised of eleven...

  8. 78 FR 66409 - Self-Regulatory Organizations; NYSE Arca, Inc.; Order Granting Approval of Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... principal and interest paid on the mortgage-backed securities. The Fund will earn or lose money on a... and repurchase, the Fund also earns money on the interest earned on the cash proceeds of the initial.... government securities, high-grade commercial paper, bank obligations, repurchase agreements, money market...

  9. Charting an Alternate Pathway to Reaction Orders and Rate Laws in Introductory Chemistry Courses

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Criswell, Brett A.; McAllister, Nicole D.; Polizzi, Samuel J.; Moore, Lamesha A.; Pierre, Michelle S.

    2014-01-01

    Reaction kinetics is an axiomatic topic in chemistry that is often addressed as early as the high school course and serves as the foundation for more sophisticated conversations in college-level organic, physical, and biological chemistry courses. Despite the fundamental nature of reaction kinetics, students can struggle with transforming their…

  10. Examining Small "C" Creativity in the Science Classroom: Multiple Case Studies of Five High School Teachers

    ERIC Educational Resources Information Center

    Lasky, Dorothea Shawn

    2012-01-01

    As the US continues to strive toward building capacity for a workforce in STEM fields (NSF, 2006), educational organizations and researchers have constructed frameworks that focus on increasing competencies in creativity in order to achieve this goal (ISTE, 2007; Karoly & Panis, 2004; Partnership for 21st Century Skills, 2007). Despite these…

  11. Term Paper Resource Guide to Twentieth-Century United States History.

    ERIC Educational Resources Information Center

    Muccigrosso, Robert; Blazek, Ron; Maggio, Teri

    Geared to the needs of high school and undergraduate students, this guide presents 500 term paper ideas and print and nonprint sources on 20th-century U.S. history. Entries on 100 of the most important topics, issues, and developments in U.S. history, beginning with the Spanish-American War, are organized in chronological order. Each entry…

  12. Assembly of Layered Monetite-Chitosan Nanocomposite and Its Transition to Organized Hydroxyapatite.

    PubMed

    Ruan, Qichao; Liberman, David; Zhang, Yuzheng; Ren, Dongni; Zhang, Yunpeng; Nutt, Steven; Moradian-Oldak, Janet

    2016-06-13

    Bioinspired synthesis of hierarchically structured calcium phosphate (CaP) material is a highly promising strategy for developing improved bone substitute materials. However, synthesis of CaP materials with outstanding mechanical properties still remains an ongoing challenge. Inspired by the formation of lamellar structure in nacre, we designed an organic matrix composed of chitosan and cis-butenediolic acid (maleic acid, MAc) that could assemble into a layered complex and further guide the mineralization of monetite crystals, resulting in the formation of organized and parallel arrays of monetite platelets with a brick-and-mortar structure. Using the layered monetite-chitosan composite as a precursor, we were able to synthesize hydroxyapatite (HAp) with multiscale hierarchically ordered structure via a topotactic phase transformation process. On the nanoscale, needlelike HAp crystallites assembled into organized bundles that aligned to form highly oriented plates on the microscale. On the large-scale level, these plates with different crystal orientations were stacked together to form a layered structure. The organized structures and composite feature yielded CaP materials with improved mechanical properties close to those of bone. Our study introduces a biomimetic approach that may be practical for the design of advanced, mechanically robust materials for biomedical applications.

  13. Compliance and High Reliability in a Complex Healthcare Organization.

    PubMed

    Simon, Maxine dellaBadia

    2018-01-01

    When considering the impact of regulation on healthcare, visualize a spider's web. The spider weaves sections together to create the whole, with each fiber adding to the structure to support its success or lead to its failure. Each section is dependent on the others, and all must be aligned to maintain the structure. Outside forces can cause a shift in the web's fragile equilibrium.The interdependence of the sections of the spider's web is similar to the way hospital departments and services work together. An organization's structure must be shaped to support its mission and vision. At the same time, the business of healthcare requires the development and achievement of operational objectives and financial performance goals. Establishing a culture that is flexible enough to permit creativity, provide resiliency, and manage complexity as the organization grows is fundamental to success. An organization must address each of these factors while maintaining stability, carrying out its mission, and fostering improvement.Nature's order maintains the spider's web. Likewise, regulation can strengthen healthcare organizations by initiating disruptive changes that can support efforts to achieve and sustain high reliability in the delivery of care. To that end, leadership must be willing to provide the necessary vision and resources.

  14. On predicting contamination levels of HALOE optics aboard UARS using direct simulation Monte Carlo

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.; Rault, Didier F. G.

    1993-01-01

    A three-dimensional version of the direct simulation Monte Carlo method is adapted to assess the contamination environment surrounding a highly detailed model of the Upper Atmosphere Research Satellite. Emphasis is placed on simulating a realistic, worst-case set of flowfield and surface conditions and geometric orientations in order to estimate an upper limit for the cumulative level of volatile organic molecular deposits at the aperture of the Halogen Occultation Experiment. Problems resolving species outgassing and vent flux rates that varied over many orders of magnitude were handled using species weighting factors. Results relating to contaminant cloud structure, cloud composition, and statistics of simulated molecules impinging on the target surface are presented, along with data related to code performance. Using procedures developed in standard contamination analyses, the cumulative level of volatile organic deposits on HALOE's aperture over the instrument's 35-month nominal data collection period is estimated to be about 2700A.

  15. Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers.

    PubMed

    Tumbleston, John R; Ko, Doo-Hyun; Samulski, Edward T; Lopez, Rene

    2009-04-27

    We analyze optical absorption enhancements and quasiguided mode properties of organic solar cells with highly ordered nanostructured photoactive layers comprised of the bulk heterojunction blend, poly-3-hexylthiophene/[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) and a low index of refraction conducting material (LICM). This photonic crystal geometry is capable of enhancing spectral absorption by approximately 17% in part due to the excitation of quasiguided modes near the band edge of P3HT:PCBM. A nanostructure thickness between 200 nm and 300 nm is determined to be optimal, while the LICM must have an index of refraction approximately 0.3 lower than P3HT:PCBM to produce absorption enhancements. Quasiguided modes that differ in lifetime by an order of magnitude are also identified and yield absorption that is concentrated in the P3HT:PCBM flash layer.

  16. 77 FR 66196 - Self-Regulatory Organizations; Options Clearing Corporation; Order Approving Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-02

    ... Accounting Principles (``GAAP''). Canadian clearing members that use Form 1 report the same, and in some... Organizations; Options Clearing Corporation; Order Approving Proposed Rule Change Relating to Financial... financial reporting by Canadian clearing members to reflect the Investment Industry Regulatory Organization...

  17. Migration through soil of organic solutes in an oil-shale process water

    USGS Publications Warehouse

    Leenheer, J.A.; Stuber, H.A.

    1981-01-01

    The migration through soil of organic solutes in an oil-shale process water (retort water) was studied by using soil columns and analyzing leachates for various organic constituents. Retort water extracted significant quantities of organic anions leached from ammonium-saturated-soil organic matter, and a distilled-water rinse, which followed retort-water leaching, released additional organic acids from the soil. After being corrected for organic constitutents extracted from soil by retort water, dissolved-organic-carbon fractionation analyses of effluent fractions showed that the order of increasing affinity of six organic compound classes for the soil was as follows: hydrophilic neutrals nearly equal to hydrophilic acids, followed by the sequence of hydrophobic acids, hydrophilic bases, hydrophobic bases, and hydrophobic neutrals. Liquid-chromatographic analysis of the aromatic amines in the hydrophobic- and hydrophilic-base fractions showed that the relative order of the rates of migration through the soil column was the same as the order of migration on a reversed-phase, octadecylsilica liquid-chromatographic column.

  18. Closure of a local public hospital in Korea: focusing on the organizational life cycle

    PubMed Central

    Yeo, Young Hyun; Lee, Keon-Hyung; Kim, Hye Jeong

    2016-01-01

    Just as living organisms have a creation-maintenance-extinction life cycle, organizations also have a life cycle. Private organizations will not survive if they fail to acquire necessary resources through market competition. Public organizations, however, continue to survive because the government has provided financial support in order to enhance public interest. Only a few public organizations in Korea have closed. With the introduction of new public management since the economic crisis in 1997, however, public organizations have had to compete with private organizations. Public hospitals are not free to open or close their business. They are also controlled by the government in terms of their prices, management, budgets, and operations. As they pursue public interest by fulfilling the government’s order such as providing free or lower-priced care to the vulnerable population, they tend to provide a lower quality of care and suffer a financial burden. Employing a case study analysis, this study attempts to understand the external environment that local public hospitals face. The fundamental problem of local public hospitals in Korea is the value conflict between public interest and profitability. Local public hospitals are required to pursue public interest by assignment of a public mission including building a medical safety net for low-income patients and managing nonprofitable medical facilities and emergent health care situations. At the same time, they are required to pursue profitability by achieving high-quality care through competition and the operation of an independent, self-supporting system according to private business logic. Under such paradoxical situations, a political decision may cause an unexpected result. PMID:29355194

  19. Closure of a local public hospital in Korea: focusing on the organizational life cycle.

    PubMed

    Yeo, Young Hyun; Lee, Keon-Hyung; Kim, Hye Jeong

    2016-01-01

    Just as living organisms have a creation-maintenance-extinction life cycle, organizations also have a life cycle. Private organizations will not survive if they fail to acquire necessary resources through market competition. Public organizations, however, continue to survive because the government has provided financial support in order to enhance public interest. Only a few public organizations in Korea have closed. With the introduction of new public management since the economic crisis in 1997, however, public organizations have had to compete with private organizations. Public hospitals are not free to open or close their business. They are also controlled by the government in terms of their prices, management, budgets, and operations. As they pursue public interest by fulfilling the government's order such as providing free or lower-priced care to the vulnerable population, they tend to provide a lower quality of care and suffer a financial burden. Employing a case study analysis, this study attempts to understand the external environment that local public hospitals face. The fundamental problem of local public hospitals in Korea is the value conflict between public interest and profitability. Local public hospitals are required to pursue public interest by assignment of a public mission including building a medical safety net for low-income patients and managing nonprofitable medical facilities and emergent health care situations. At the same time, they are required to pursue profitability by achieving high-quality care through competition and the operation of an independent, self-supporting system according to private business logic. Under such paradoxical situations, a political decision may cause an unexpected result.

  20. ORGANIC-HIGH IONIC STRENGTH AQUEOUS SOLVENT SYSTEMS FOR SPIRAL COUNTER-CURRENT CHROMATOGRAPHY: GRAPHIC OPTIMIZATION OF PARTITION COEFFICIENT

    PubMed Central

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2012-01-01

    A new series of organic-high ionic strength aqueous two-phase solvents systems was designed for separation of highly polar compounds by spiral high-speed counter-current chromatography. A total of 21 solvent systems composed of 1-butanol-ethanol-saturated ammonium sulfate-water at various volume ratios are arranged according to an increasing order of polarity. Selection of the two-phase solvent system for a single compound or a multiple sample mixture can be achieved by two steps of partition coefficient measurements using a graphic method. The capability of the method is demonstrated by optimization of partition coefficient for seven highly polar samples including tartrazine (K=0.77), tryptophan (K=1.00), methyl green (K= 0.93), tyrosine (0.81), metanephrine (K=0.89), tyramine (K=0.98), and normetanephrine (K=0.96). Three sulfonic acid components in D&C Green No. 8 were successfully separated by HSCCC using the graphic selection of the two-phase solvent system. PMID:23467197

  1. High-performance, low-operating voltage, and solution-processable organic field-effect transistor with silk fibroin as the gate dielectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Leilei; Xu, Xinjun, E-mail: xuxj@mater.ustb.edu.cn, E-mail: lidong@mater.ustb.edu.cn; Ma, Mingchao

    2014-01-13

    We report the use of silk fibroin as the gate dielectric material in solution-processed organic field-effect transistors (OFETs) with poly(3-hexylthiophene) (P3HT) as the semiconducting layer. Such OFETs exhibit a low threshold of −0.77 V and a low-operating voltage (0 to −3 V) compatible with the voltage level commonly-used in current electronic industry. The carrier mobility of such OFETs is as high as 0.21 cm{sup 2} V{sup −1} s{sup −1} in the saturation regime, comparable to the best value of P3HT-based OFETs with dielectric layer that is not solution-processed. The high-performance of this kind of OFET is related with the high contentmore » of β strands in fibroin dielectric which leads to an array of fibers in a highly ordered structure, thus reducing the trapping sites at the semiconductor/dielectric interface.« less

  2. Heterogeneous fractionation profiles of meta-analytic coactivation networks.

    PubMed

    Laird, Angela R; Riedel, Michael C; Okoe, Mershack; Jianu, Radu; Ray, Kimberly L; Eickhoff, Simon B; Smith, Stephen M; Fox, Peter T; Sutherland, Matthew T

    2017-04-01

    Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d=20-300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how "parent" functional brain systems decompose into constituent "child" sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Heterogeneous fractionation profiles of meta-analytic coactivation networks

    PubMed Central

    Laird, Angela R.; Riedel, Michael C.; Okoe, Mershack; Jianu, Radu; Ray, Kimberly L.; Eickhoff, Simon B.; Smith, Stephen M.; Fox, Peter T.; Sutherland, Matthew T.

    2017-01-01

    Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d = 20 to 300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how “parent” functional brain systems decompose into constituent “child” sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication. PMID:28222386

  4. Liquid crystalline ordering and charge transport in semiconducting materials.

    PubMed

    Pisula, Wojciech; Zorn, Matthias; Chang, Ji Young; Müllen, Klaus; Zentel, Rudolf

    2009-07-16

    Organic semiconducting materials offer the advantage of solution processability into flexible films. In most cases, their drawback is based on their low charge carrier mobility, which is directly related to the packing of the molecules both on local (amorphous versus crystalline) and on macroscopic (grain boundaries) length scales. Liquid crystalline ordering offers the possibility of circumventing this problem. An advanced concept comprises: i) the application of materials with different liquid crystalline phases, ii) the orientation of a low viscosity high temperature phase, and, iii) the transfer of the macroscopic orientation during cooling to a highly ordered (at best, crystalline-like) phase at room temperature. At the same time, the desired orientation for the application (OLED or field-effect transistor) can be obtained. This review presents the use of molecules with discotic, calamitic and sanidic phases and discusses the sensitivity of the phases with regard to defects depending on the dimensionality of the ordered structure (columns: 1D, smectic layers and sanidic phases: 2D). It presents ways to systematically improve charge carrier mobility by proper variation of the electronic and steric (packing) structure of the constituting molecules and to reach charge carrier mobilities that are close to and comparable to amorphous silicon, with values of 0.1 to 0.7 cm(2)  · V(-1)  · s(-1) . In this context, the significance of cross-linking to stabilize the orientation and liquid crystalline behavior of inorganic/organic hybrids is also discussed. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Organic Glasses with Tunable Liquid-Crystalline Order

    NASA Astrophysics Data System (ADS)

    Teerakapibal, Rattavut; Huang, Chengbin; Gujral, Ankit; Ediger, Mark D.; Yu, Lian

    2018-02-01

    Liquid crystals (LCs) are known to undergo rapid ordering transitions with virtually no hysteresis. We report a remarkable counterexample, itraconazole, where the nematic to smectic transition is avoided at a cooling rate exceeding 20 K /s . The smectic order trapped in a glass is the order reached by the equilibrium liquid before the kinetic arrest of the end-over-end molecular rotation. This is attributed to the fact that smectic ordering requires orientational ordering and suggests a general condition for preparing organic glasses with tunable LC order for electronic applications.

  6. Linking hygroscopicity and the surface microstructure of model inorganic salts, simple and complex carbohydrates, and authentic sea spray aerosol particles.

    PubMed

    Estillore, Armando D; Morris, Holly S; Or, Victor W; Lee, Hansol D; Alves, Michael R; Marciano, Meagan A; Laskina, Olga; Qin, Zhen; Tivanski, Alexei V; Grassian, Vicki H

    2017-08-09

    Individual airborne sea spray aerosol (SSA) particles show diversity in their morphologies and water uptake properties that are highly dependent on the biological, chemical, and physical processes within the sea subsurface and the sea surface microlayer. In this study, hygroscopicity data for model systems of organic compounds of marine origin mixed with NaCl are compared to data for authentic SSA samples collected in an ocean-atmosphere facility providing insights into the SSA particle growth, phase transitions and interactions with water vapor in the atmosphere. In particular, we combine single particle morphology analyses using atomic force microscopy (AFM) with hygroscopic growth measurements in order to provide important insights into particle hygroscopicity and the surface microstructure. For model systems, a range of simple and complex carbohydrates were studied including glucose, maltose, sucrose, laminarin, sodium alginate, and lipopolysaccharides. The measured hygroscopic growth was compared with predictions from the Extended-Aerosol Inorganics Model (E-AIM). It is shown here that the E-AIM model describes well the deliquescence transition and hygroscopic growth at low mass ratios but not as well for high ratios, most likely due to a high organic volume fraction. AFM imaging reveals that the equilibrium morphology of these single-component organic particles is amorphous. When NaCl is mixed with the organics, the particles adopt a core-shell morphology with a cubic NaCl core and the organics forming a shell similar to what is observed for the authentic SSA samples. The observation of such core-shell morphologies is found to be highly dependent on the salt to organic ratio and varies depending on the nature and solubility of the organic component. Additionally, single particle organic volume fraction AFM analysis of NaCl : glucose and NaCl : laminarin mixtures shows that the ratio of salt to organics in solution does not correspond exactly for individual particles - showing diversity within the ensemble of particles produced even for a simple two component system.

  7. 78 FR 49334 - Designation of 5 individual(s) and 2 entity(-ies) Pursuant to Executive Order 13581, “Blocking...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... entity(-ies) Pursuant to Executive Order 13581, ``Blocking Property of Transnational Criminal... July 24, 2011, ``Blocking Property of Transnational Criminal Organizations.'' DATES: The designations... President issued Executive Order 13581, ``Blocking Property of Transnational Criminal Organizations'' (the...

  8. Universal Strategy To Reduce Noise Current for Sensitive Organic Photodetectors.

    PubMed

    Xiong, Sixing; Li, Lingliang; Qin, Fei; Mao, Lin; Luo, Bangwu; Jiang, Youyu; Li, Zaifang; Huang, Jinsong; Zhou, Yinhua

    2017-03-15

    Low noise current is critical for achieving high-detectivity organic photodetectors. Inserting charge-blocking layers is an effective approach to suppress the reverse-biased dark current. However, in solution-processed organic photodetectors, the charge-transport material needs to be dissolved in solvents that do not dissolve the underneath light-absorbing layer, which is not always possible for all kinds of light-absorbing materials developed. Here, we introduce a universal strategy of transfer-printing a conjugated polymer, poly(3-hexylthiophene) (P3HT), as the electron-blocking layer to realize highly sensitive photodetectors. The transfer-printed P3HT layers substantially and universally reduced the reverse-biased dark current by about 3 orders of magnitude for various photodetectors with different active layers. These photodetectors can detect the light signal as weak as several picowatts per square centimeter, and the device detectivity is over 10 12 Jones. The results suggest that the strategy of transfer-printing P3HT films as the electron-blocking layer is universal and effective for the fabrication of sensitive organic photodetectors.

  9. To the problem of ensuring stability of activities of construction companies engaged in high-rise building construction

    NASA Astrophysics Data System (ADS)

    Ivanov, Nikolay; Safe Aldeen, Ahmed

    2018-03-01

    Recently, more and more attention in scientific literature has been drawn to improving the sustainability of organization. The growth in the volume of high-rise construction in Russia makes the task of assessing and ensuring the sustainability of organizations and enterprises leading this type of construction very relevant. The article considers the approach to assessing the sustainability of the organization's activities in the context of functioning of quality management system (QMS). It puts forward the hypothesis that assessment of sustainability of an organization that has a real and efficient functioning quality management system can be based on the results of assessing the effectiveness of the QMS. The article describes in sufficient detail the sequence of actions to form a list of criteria for assessing the effectiveness of the QMS and sustainability of the organization, and to evaluate both characteristics on the basis of these criteria. For a clear interpretation of the results obtained, the authors use so-called petal diagrams. It suggests an original approach to their creation and analysis. Based on the results of the study, the authors conclude that in order to assess the sustainability of enterprises and organizations analysis of the dynamics of changes in the basic sustainability factors is mandatory.

  10. Reduction of the hydraulic retention time at constant high organic loading rate to reach the microbial limits of anaerobic digestion in various reactor systems.

    PubMed

    Ziganshin, Ayrat M; Schmidt, Thomas; Lv, Zuopeng; Liebetrau, Jan; Richnow, Hans Hermann; Kleinsteuber, Sabine; Nikolausz, Marcell

    2016-10-01

    The effects of hydraulic retention time (HRT) reduction at constant high organic loading rate on the activity of hydrogen-producing bacteria and methanogens were investigated in reactors digesting thin stillage. Stable isotope fingerprinting was additionally applied to assess methanogenic pathways. Based on hydA gene transcripts, Clostridiales was the most active hydrogen-producing order in continuous stirred tank reactor (CSTR), fixed-bed reactor (FBR) and anaerobic sequencing batch reactor (ASBR), but shorter HRT stimulated the activity of Spirochaetales. Further decreasing HRT diminished Spirochaetales activity in systems with biomass retention. Based on mcrA gene transcripts, Methanoculleus and Methanosarcina were the predominantly active in CSTR and ASBR, whereas Methanosaeta and Methanospirillum activity was more significant in stably performing FBR. Isotope values indicated the predominance of aceticlastic pathway in FBR. Interestingly, an increased activity of Methanosaeta was observed during shortening HRT in CSTR and ASBR despite high organic acids concentrations, what was supported by stable isotope data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Electrochemical growth of highly oriented organic-inorganic superlattices using solid-supported multilamellar membranes as templates.

    PubMed

    Xing, Li-Li; Li, Da-Peng; Hu, Shu-Xin; Jing, Huai-Yu; Fu, Honglan; Mai, Zhen-Hong; Li, Ming

    2006-02-08

    Controllable depositing of relatively thick inorganic sublayers into organic templates to fabricate organic-inorganic superlattices is of great importance. We report a novel approach to fabricating phospholipid/Ni(OH)(2) superlattices by electrochemical deposition of the inorganic component into solid-supported multilamellar templates. The well-ordered and highly oriented multilamellar templates are produced by spreading small drops of lipid solution on silicon surfaces and letting the solvent evaporate slowly. The templates which are used as working electrodes preserve the lamellar structure in the electrolyte solution. The resulting superlattices are highly oriented. The thickness of the nickel hydroxide is controlled by the concentration of nickel ions in the electrolyte bath. The electron density profiles derived from the X-ray diffraction data reveal that the thickness of the nickel hydroxide sublayers increases from 15 to 27 A as the concentration of nickel nitrate increases from 0.005 mol/L to 0.08 mol/L. We expect that the new method can be extended to depositing a variety of inorganic components including metals, oxides, and semiconductors.

  12. Long-range ordering of composites for organic electronics: TIPS-pentacene single crystals with incorporated nano-fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huanbin; Xue, Guobiao; Wu, Jiake

    Multi-component active materials are widely used for organic electronic devices, with every component contributing complementary and synergistic optoelectronic functions. Mixing these components generally leads to lowered crystallinity and weakened charge transport. Therefore, preparing the active materials without substantially disrupting the crystalline lattice is highly desired. In this paper, we show that crystallization of TIPS-pentacene from solutions in the presence of fluorescent nanofibers of a perylene bisimide derivative (PBI) leads to formation of composites with nanofiber guest incorporated in the crystal host. In spite of the binary composite structure, the TIPS-pentacene maintains the single-crystalline nature. As a result, the incorporation ofmore » the PBI guest introduces additional fluorescence function but does not significantly reduce the charge transport property of the TIPS-pentacene host, exhibiting field-effect mobility as high as 3.34 cm 2 V -1 s -1 even though 26.4% of the channel area is taken over by the guest. Finally, as such, this work provides a facile approach toward high-performance multifunctional organic electronic materials.« less

  13. A lithium superionic conductor.

    PubMed

    Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro; Hirayama, Masaaki; Kanno, Ryoji; Yonemura, Masao; Kamiyama, Takashi; Kato, Yuki; Hama, Shigenori; Kawamoto, Koji; Mitsui, Akio

    2011-07-31

    Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10(-2) S cm(-1)) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).

  14. Long-range ordering of composites for organic electronics: TIPS-pentacene single crystals with incorporated nano-fibers

    DOE PAGES

    Li, Huanbin; Xue, Guobiao; Wu, Jiake; ...

    2017-08-18

    Multi-component active materials are widely used for organic electronic devices, with every component contributing complementary and synergistic optoelectronic functions. Mixing these components generally leads to lowered crystallinity and weakened charge transport. Therefore, preparing the active materials without substantially disrupting the crystalline lattice is highly desired. In this paper, we show that crystallization of TIPS-pentacene from solutions in the presence of fluorescent nanofibers of a perylene bisimide derivative (PBI) leads to formation of composites with nanofiber guest incorporated in the crystal host. In spite of the binary composite structure, the TIPS-pentacene maintains the single-crystalline nature. As a result, the incorporation ofmore » the PBI guest introduces additional fluorescence function but does not significantly reduce the charge transport property of the TIPS-pentacene host, exhibiting field-effect mobility as high as 3.34 cm 2 V -1 s -1 even though 26.4% of the channel area is taken over by the guest. Finally, as such, this work provides a facile approach toward high-performance multifunctional organic electronic materials.« less

  15. The influence of organic production on food quality - research findings, gaps and future challenges.

    PubMed

    Załęcka, Aneta; Bügel, Susanne; Paoletti, Flavio; Kahl, Johannes; Bonanno, Adriana; Dostalova, Anne; Rahmann, Gerold

    2014-10-01

    Although several meta-analysis studies have been published comparing the quality of food derived from organic and non-organic origin, it is still not clear if food from organic production per se can guarantee product-related added value to consumers. This paper aims to summarize the status quo in order to identify research gaps and suggest future research challenges. Organic food is described according to a quality model already published. The influence of organic production on food quality is structured in primary production and processing. Furthermore, organic food authentication is discussed. Organic food seems to contain fewer pesticide residues and statistically more selected health-related compounds such as polyphenols in plant products and polyunsaturated fatty acids in milk and meat products, but the health relevance for consumers is not clear yet. Comparing food from organic origin with so called 'conventional' food seems not to be appropriate, because 'conventional' is not defined. In organic food quality research a system approach is needed from which systemic markers can be selected. Research on the impact of processing technologies on the quality according to organic principles seems of high relevance, since most of the food is processed. © 2014 Society of Chemical Industry.

  16. 77 FR 528 - Self-Regulatory Organizations; The National Securities Clearing Corporation; Order Granting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ...-Regulatory Organizations; The National Securities Clearing Corporation; Order Granting Approval of a Proposed Rule Change To Amend Rules Relating To the Creation of a Service To Provide Post-Trade Information... trading activity of their organizations, their correspondent firms, or both through review of post-trade...

  17. 77 FR 12898 - Self-Regulatory Organizations; Midwest Securities Trust Company; Order Cancelling Clearing Agency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... the event any self-regulatory organization is no longer in existence or has ceased to do business in... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-66461; File No. 600-7] Self-Regulatory Organizations; Midwest Securities Trust Company; Order Cancelling Clearing Agency Registration February 24, 2012...

  18. 77 FR 12897 - Self-Regulatory Organizations; Pacific Securities Depository Trust Company; Order Cancelling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ...(a)(3) of the Act \\14\\ provides that in the event any self-regulatory organization is no longer in... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-66460; File No. 600-10] Self-Regulatory Organizations; Pacific Securities Depository Trust Company; Order Cancelling Clearing Agency Registration...

  19. 78 FR 69168 - Self-Regulatory Organizations; National Securities Clearing Corporation; Order Approving Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... approve a proposed rule change of a self-regulatory organization if it finds that such proposed rule... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-70848; File No. SR-NSCC-2013-10] Self-Regulatory Organizations; National Securities Clearing Corporation; Order Approving Proposed Rule Change To...

  20. 77 FR 12896 - Self-Regulatory Organizations; Midwest Clearing Corporation; Order Cancelling Clearing Agency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Act provides that in the event any self- regulatory organization is no longer in existence or has... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-66458; File No. 600-9] Self-Regulatory Organizations; Midwest Clearing Corporation; Order Cancelling Clearing Agency Registration February 24, 2012. I...

  1. 76 FR 78059 - Self-Regulatory Organizations; Options Clearing Corporation; Order Approving Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-65927; File No. SR-OCC-2011-15] Self-Regulatory Organizations; Options Clearing Corporation; Order Approving Proposed Rule Change Relating to Management of... such as settlement banks and other clearing organizations. See generally Article VIII, Sections 1 and 5...

  2. Highly Sensitive Ammonia Gas Sensor Based on Single-Crystal Poly(3-hexylthiophene) (P3HT) Organic Field Effect Transistor.

    PubMed

    Mun, Seohyun; Park, Yoonkyung; Lee, Yong-Eun Koo; Sung, Myung Mo

    2017-11-28

    A highly sensitive organic field-effect transistor (OFET)-based sensor for ammonia in the range of 0.01 to 25 ppm was developed. The sensor was fabricated by employing an array of single-crystal poly(3-hexylthiophene) (P3HT) nanowires as the organic semiconductor (OSC) layer of an OFET with a top-contact geometry. The electrical characteristics (field-effect mobility, on/off current ratio) of the single-crystal P3HT nanowire OFET were about 2 orders of magnitude larger than those of the P3HT thin film OFET with the same geometry. The P3HT nanowire OFET showed excellent sensitivity to ammonia, about 3 times higher than that of the P3HT thin film OFET at 25 ppm ammonia. The ammonia response of the OFET was reversible and was not affected by changes in relative humidity from 45 to 100%. The high ammonia sensitivity of the P3HT nanowire OFET is believed to result from the single crystal nature and high surface/volume ratio of the P3HT nanowire used in the OSC layer.

  3. High pH ammonia toxicity, and the search for life on the Jovian planets.

    PubMed

    Deal, P H; Souza, K A; Mack, H M

    1975-10-01

    Jovian plants have enviroments apparently suitable for the evolution of life, but nevertheless, present severe challenges to organisms. One such challenge arises from the presence of ammonia. Ammonia is an efficient biocide, its effect being dependent on pH as well as on concentration. The effects of pH and ammonia concentration were studied separately, where possible, on a variety of organisms, including some isolated from natural enviornments of high pH and/or ammonia concentration. Escherichia coli and Bacillus subtilis are both extremely sensitive to ammonia. An aerobic organism (growth up to pH 11.4) from an alkaline spring is more resistant, but exhibits a toxic response to ammonia at a pH much lower than its maximum for growth. The greatest ammonia resistance has been found in an unidentified organism growing at near neutral pH. Even in this case, however, survival at ammonia concentrations reasonably expected on the Jovian planets is measured in hours. This is, nevertheless, two to three orders of magnitude longer than for E. coli. Our data support the tentative conclusion that contamination of the Jovian planets with terrestrial organisms that can grow is unlikely. However, the range of toxic response noted, coupled with the observation that terrestrial life has not been exposed to high ammonia concentrations for millions of years, suggests that adaptation to greater ammonia tolerance may be possible.

  4. Rate measurements of the hydrolysis of complex organic macromolecules in cold aqueous solutions: implications for prebiotic chemistry on the early Earth and Titan.

    PubMed

    Neish, C D; Somogyi, A; Imanaka, H; Lunine, J I; Smith, M A

    2008-04-01

    Organic macromolecules ("complex tholins") were synthesized from a 0.95 N(2)/0.05 CH(4) atmosphere in a high-voltage AC flow discharge reactor. When placed in liquid water, specific water soluble compounds in the macromolecules demonstrated Arrhenius type first order kinetics between 273 and 313 K and produced oxygenated organic species with activation energies in the range of approximately 60+/-10 kJ mol(-1). These reactions displayed half lives between 0.3 and 17 days at 273 K. Oxygen incorporation into such materials--a necessary step toward the formation of biological molecules--is therefore fast compared to processes that occur on geologic timescales, which include the freezing of impact melt pools and possible cryovolcanic sites on Saturn's organic-rich moon Titan.

  5. Interval data clustering using self-organizing maps based on adaptive Mahalanobis distances.

    PubMed

    Hajjar, Chantal; Hamdan, Hani

    2013-10-01

    The self-organizing map is a kind of artificial neural network used to map high dimensional data into a low dimensional space. This paper presents a self-organizing map for interval-valued data based on adaptive Mahalanobis distances in order to do clustering of interval data with topology preservation. Two methods based on the batch training algorithm for the self-organizing maps are proposed. The first method uses a common Mahalanobis distance for all clusters. In the second method, the algorithm starts with a common Mahalanobis distance per cluster and then switches to use a different distance per cluster. This process allows a more adapted clustering for the given data set. The performances of the proposed methods are compared and discussed using artificial and real interval data sets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Rate Measurements of the Hydrolysis of Complex Organic Macromolecules in Cold Aqueous Solutions: Implications for Prebiotic Chemistry on the Early Earth and Titan

    NASA Astrophysics Data System (ADS)

    Neish, C. D.; Somogyi, Á.; Imanaka, H .; Lunine, J. I.; Smith, M. A.

    2008-04-01

    Organic macromolecules (``complex tholins'') were synthesized from a 0.95 N2 / 0.05 CH4 atmosphere in a high-voltage AC flow discharge reactor. When placed in liquid water, specific water soluble compounds in the macromolecules demonstrated Arrhenius type first order kinetics between 273 and 313 K and produced oxygenated organic species with activation energies in the range of ~60 +/- 10 kJ mol-1. These reactions displayed half lives between 0.3 and 17 days at 273 K. Oxygen incorporation into such materials-a necessary step toward the formation of biological molecules-is therefore fast compared to processes that occur on geologic timescales, which include the freezing of impact melt pools and possible cryovolcanic sites on Saturn's organic-rich moon Titan.

  7. Recent Discoveries and Future Challenges in Atmospheric Organic Chemistry.

    PubMed

    Glasius, Marianne; Goldstein, Allen H

    2016-03-15

    Earth's atmosphere contains a multitude of organic compounds, which differ by orders of magnitude regarding fundamental properties such as volatility, reactivity, and propensity to form cloud droplets, affecting their impact on global climate and human health. Despite recent major research efforts and advances, there are still substantial gaps in understanding of atmospheric organic chemistry, hampering efforts to understand, model, and mitigate environmental problems such as aerosol formation in both polluted urban and more pristine regions. The analytical toolbox available for chemists to study atmospheric organic components has expanded considerably during the past decade, opening new windows into speciation, time resolution and detection of reactive and semivolatile compounds at low concentrations. This has provided unprecedented opportunities, but also unveiled new scientific challenges. Specific groundbreaking examples include the role of epoxides in aerosol formation especially from isoprene, the importance of highly oxidized, reactive organics in air-surface processes (whether atmosphere-biosphere exchange or aerosols), as well as the extent of interactions of anthropogenic and biogenic emissions and the resulting impact on atmospheric organic chemistry.

  8. Browsing the Real World using Organic Electronics, Si-Chips, and a Human Touch.

    PubMed

    Berggren, Magnus; Simon, Daniel T; Nilsson, David; Dyreklev, Peter; Norberg, Petronella; Nordlinder, Staffan; Ersman, Peter Andersson; Gustafsson, Göran; Wikner, J Jacob; Hederén, Jan; Hentzell, Hans

    2016-03-09

    Organic electronics have been developed according to an orthodox doctrine advocating "all-printed'', "all-organic'' and "ultra-low-cost'' primarily targeting various e-paper applications. In order to harvest from the great opportunities afforded with organic electronics potentially operating as communication and sensor outposts within existing and future complex communication infrastructures, high-quality computing and communication protocols must be integrated with the organic electronics. Here, we debate and scrutinize the twinning of the signal-processing capability of traditional integrated silicon chips with organic electronics and sensors, and to use our body as a natural local network with our bare hand as the browser of the physical world. The resulting platform provides a body network, i.e., a personalized web, composed of e-label sensors, bioelectronics, and mobile devices that together make it possible to monitor and record both our ambience and health-status parameters, supported by the ubiquitous mobile network and the resources of the "cloud". © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Performance Management in Healthcare Organizations: Concept and Practicum.

    PubMed

    Dimitropoulos, Panagiotis E

    2017-01-01

    Organizational performance can create and sustain competitive advantages for corporations and even improve their sustainability and future prospects. Health care organizations present a sector where performance management is structured by multiple dimensions. The scope of this study is to analyze the issue of performance management in healthcare organizations and specifically the implementation of the Balanced Scorecard (BSC) methodology on organizations providing health services. The study provides a discussion on the BSC development process, the steps that management has to take in order to prepare the implementation of the BSC and finally discusses a practical example of a scorecard with specific strategic goals and performance indicators. Managers of healthcare organizations and specifically those providing services to the elderly and the general population could use the propositions of the study as a roadmap for processing, analyzing, evaluating and implementing the balanced scorecard approach in their organizations' daily operations. BSC methodology can give an advantage in terms of enhanced stakeholder management and preservation within a highly volatile and competitive economic environment.

  10. Electrical in-situ characterisation of interface stabilised organic thin-film transistors

    PubMed Central

    Striedinger, Bernd; Fian, Alexander; Petritz, Andreas; Lassnig, Roman; Winkler, Adolf; Stadlober, Barbara

    2015-01-01

    We report on the electrical in-situ characterisation of organic thin film transistors under high vacuum conditions. Model devices in a bottom-gate/bottom-contact (coplanar) configuration are electrically characterised in-situ, monolayer by monolayer (ML), while the organic semiconductor (OSC) is evaporated by organic molecular beam epitaxy (OMBE). Thermal SiO2 with an optional polymer interface stabilisation layer serves as the gate dielectric and pentacene is chosen as the organic semiconductor. The evolution of transistor parameters is studied on a bi-layer dielectric of a 150 nm of SiO2 and 20 nm of poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) and compared to the behaviour on a pure SiO2 dielectric. The thin layer of PNDPE, which is an intrinsically photo-patternable organic dielectric, shows an excellent stabilisation performance, significantly reducing the calculated interface trap density at the OSC/dielectric interface up to two orders of magnitude, and thus remarkably improving the transistor performance. PMID:26457122

  11. 77 FR 22027 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Order Approving a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ...-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Order Approving a Proposed Rule Change Relating to Stock- Option Orders April 6, 2012. I. Introduction On February 7, 2012, the Chicago Board Options Exchange, Incorporated (``CBOE'' or ``Exchange''), filed with the Securities and Exchange...

  12. 75 FR 5157 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ...-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving Proposed Rule Change... Consolidated FINRA Rulebook January 25, 2010. On December 2, 2009, the Financial Industry Regulatory Authority... later in the rulebook consolidation process. It is therefore ordered, pursuant to Section 19(b)(2) of...

  13. 78 FR 58356 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing and Immediate Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-70425; File No. SR-NYSEArca-2013-90] Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing and Immediate Effectiveness of Proposed Rule... Complex Orders and Complex Order Auction Eligible Orders in Accordance With the Guaranteed Participation...

  14. 76 FR 40758 - Self-Regulatory Organizations; International Securities Exchange, LLC; Order Approving a Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-64805; File No. SR-ISE-2011-30] Self-Regulatory Organizations; International Securities Exchange, LLC; Order Approving a Proposed Rule Change Relating to Complex Orders July 5, 2011. I. Introduction On May 23, 2011, the International Securities Exchange, LLC...

  15. 76 FR 64980 - Self-Regulatory Organizations; International Securities Exchange, LLC; Order Approving a Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-65548; File No. SR-ISE-2011-39] Self-Regulatory Organizations; International Securities Exchange, LLC; Order Approving a Proposed Rule Change Relating to Complex Orders October 13, 2011. I. Introduction On July 1, 2011, the International Securities Exchange...

  16. 39 CFR 762.29 - Endorsement of disbursement postal money orders by payees.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... commercial usage for the negotiation, transfer, or collection of negotiable instruments. (b) Endorsement of disbursement postal money orders by a financial organization under the payee's authorization. When a Disbursement Postal Money Order is credited by a financial organization to the payee's account under his...

  17. Accounting for the dissociating properties of organic chemicals in LCIA: an uncertainty analysis applied to micropollutants in the assessment of freshwater ecotoxicity.

    PubMed

    Morais, Sérgio Alberto; Delerue-Matos, Cristina; Gabarrell, Xavier

    2013-03-15

    In life cycle impact assessment (LCIA) models, the sorption of the ionic fraction of dissociating organic chemicals is not adequately modeled because conventional non-polar partitioning models are applied. Therefore, high uncertainties are expected when modeling the mobility, as well as the bioavailability for uptake by exposed biota and degradation, of dissociating organic chemicals. Alternative regressions that account for the ionized fraction of a molecule to estimate fate parameters were applied to the USEtox model. The most sensitive model parameters in the estimation of ecotoxicological characterization factors (CFs) of micropollutants were evaluated by Monte Carlo analysis in both the default USEtox model and the alternative approach. Negligible differences of CFs values and 95% confidence limits between the two approaches were estimated for direct emissions to the freshwater compartment; however the default USEtox model overestimates CFs and the 95% confidence limits of basic compounds up to three orders and four orders of magnitude, respectively, relatively to the alternative approach for emissions to the agricultural soil compartment. For three emission scenarios, LCIA results show that the default USEtox model overestimates freshwater ecotoxicity impacts for the emission scenarios to agricultural soil by one order of magnitude, and larger confidence limits were estimated, relatively to the alternative approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Control of repulsive force in a virtual environment using an electrorheological haptic master for a surgical robot application

    NASA Astrophysics Data System (ADS)

    Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok

    2014-01-01

    This paper presents control performances of a new type of four-degrees-of-freedom (4-DOF) haptic master that can be used for robot-assisted minimally invasive surgery (RMIS). By adopting a controllable electrorheological (ER) fluid, the function of the proposed master is realized as a haptic feedback as well as remote manipulation. In order to verify the efficacy of the proposed master and method, an experiment is conducted with deformable objects featuring human organs. Since the use of real human organs is difficult for control due to high cost and moral hazard, an excellent alternative method, the virtual reality environment, is used for control in this work. In order to embody a human organ in the virtual space, the experiment adopts a volumetric deformable object represented by a shape-retaining chain linked (S-chain) model which has salient properties such as fast and realistic deformation of elastic objects. In haptic architecture for RMIS, the desired torque/force and desired position originating from the object of the virtual slave and operator of the haptic master are transferred to each other. In order to achieve the desired torque/force trajectories, a sliding mode controller (SMC) which is known to be robust to uncertainties is designed and empirically implemented. Tracking control performances for various torque/force trajectories from the virtual slave are evaluated and presented in the time domain.

  19. Seeking structure in social organization: compensatory control and the psychological advantages of hierarchy.

    PubMed

    Friesen, Justin P; Kay, Aaron C; Eibach, Richard P; Galinsky, Adam D

    2014-04-01

    Hierarchies are a ubiquitous form of human social organization. We hypothesized that 1 reason for the prevalence of hierarchies is that they offer structure and therefore satisfy the core motivational needs for order and control relative to less structured forms of social organization. This hypothesis is rooted in compensatory control theory, which posits that (a) individuals have a basic need to perceive the world as orderly and structured, and (b) personal and external sources of control are capable of satisfying this need because both serve the comforting belief that the world operates in an orderly fashion. Our first 2 studies confirmed that hierarchies were perceived as more structured and orderly relative to egalitarian arrangements (Study 1) and that working in a hierarchical workplace promotes a feeling of self-efficacy (Study 2). We threatened participants' sense of personal control and measured perceptions of and preferences for hierarchy in 5 subsequent experiments. Participants who lacked control perceived more hierarchy occurring in ambiguous social situations (Study 3) and preferred hierarchy more strongly in workplace contexts (Studies 4-5). We also provide evidence that hierarchies are indeed appealing because of their structure: Preference for hierarchy was higher among individuals high in Personal Need for Structure and a control threat increased preference for hierarchy even among participants low in Personal Need for Structure (Study 5). Framing a hierarchy as unstructured reversed the effect of control threat on hierarchy (Study 6). Finally, hierarchy-enhancing jobs were more appealing after control threat, even when they were low in power and status (Study 7). (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  20. Color and chemistry on Triton

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Sagan, Carl

    1990-01-01

    The surface of Triton is very bright but shows subtle yellow to peach hues which probably arise from the production of colored organic compounds from CH4 + N2 and other simple species. In order to investigate possible relationships between chemical processes and the observed surface distribution of chromophores, the surface units are classified according to color/albedo properties, the rates of production of organic chromophores by the action of ultraviolet light and high-energy charged particles is estimated, and rates, spectral properties, and expected seasonal redistribution processes are compared to suggest possible origins of the colors seen on Triton's surface.

  1. Three-dimensional organization of vestibular related eye movements to rotational motion in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Beyer, M.; Hess, B. J.

    2000-01-01

    During rotational motions, compensatory eye movement adjustments must continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined. Rotations about different head axes produced horizontal, vertical, and torsional eye movements, whose component magnitude was dependent upon the cosine of the stimulus axis relative to the animal's visual axis. Thus, the three-dimensional organization of the VOR in pigeons appears to be compensatory for any direction of head rotation. Frequency responses of the horizontal, vertical, and torsional slow phase components exhibited high pass filter properties with dominant time constants of approximately 3 s.

  2. Theoretical study of aromatic-antiaromatic pairs as material in organic solar cells of double light harvesting

    NASA Astrophysics Data System (ADS)

    Martinez, Iván; Schott, Eduardo; Chávez, Ivonne; Manríquez, Juan Manuel; Zarate, Ximena

    2016-08-01

    Molecular light harvesting components of organic solar cells containing antiaromatic and aromatic molecules as organic semiconductors were studied. We found that antiaromatic molecules with indacene core can act as acceptors looking for new options to assemble donor/acceptor interfaces. This is supported by their properties such as molecular orbitals energies, rigid fused core that could promote π-π intermolecular interactions imparting ordered nanostructures, that let high charge mobility thanks to their properly low reorganization energy and the optimum energy offsets of the donor/acceptor interfaces. It was found that pentacene might be an excellent donor and the benzo[g]benz[6,7]indeno[1,2-b]fluorene could act as an acceptor.

  3. Selective Catalytic Combustion Sensors for Reactive Organic Analysis

    NASA Technical Reports Server (NTRS)

    Innes, W. B.

    1971-01-01

    Sensors involving a vanadia-alumina catalyst bed-thermocouple assembly satisfy requirements for simple, reproducible and rapid continuous analysis or reactive organics. Responses generally increase with temperature to 400 C and increase to a maximum with flow rate/catalyst volume. Selectivity decreases with temperature. Response time decreases with flow rate and increases with catalyst volume. At chosen optimum conditions calculated response which is additive and linear agrees better with photochemical reactivity than other methods for various automotive sources, and response to vehicle exhaust is insensitive to flow rate. Application to measurement of total reactive organics in vehicle exhaust as well as for gas chromatography detection illustrate utility. The approach appears generally applicable to high thermal effect reactions involving first order kinetics.

  4. Megahertz organic/polymer diodes

    DOEpatents

    Katz, Howard Edan; Sun, Jia; Pal, Nath Bhola

    2012-12-11

    Featured is an organic/polymer diode having a first layer composed essentially of one of an organic semiconductor material or a polymeric semiconductor material and a second layer formed on the first layer and being electrically coupled to the first layer such that current flows through the layers in one direction when a voltage is applied in one direction. The second layer is essentially composed of a material whose characteristics and properties are such that when formed on the first layer, the diode is capable of high frequency rectifications on the order of megahertz rectifications such as for example rectifications at one of above 100KHz, 500KhZ, IMHz, or 10 MHz. In further embodiments, the layers are arranged so as to be exposed to atmosphere.

  5. N-Type 2D Organic Single Crystals for High-Performance Organic Field-Effect Transistors and Near-Infrared Phototransistors.

    PubMed

    Wang, Cong; Ren, Xiaochen; Xu, Chunhui; Fu, Beibei; Wang, Ruihao; Zhang, Xiaotao; Li, Rongjin; Li, Hongxiang; Dong, Huanli; Zhen, Yonggang; Lei, Shengbin; Jiang, Lang; Hu, Wenping

    2018-04-01

    Organic field-effect transistors and near-infrared (NIR) organic phototransistors (OPTs) have attracted world's attention in many fields in the past decades. In general, the sensitivity, distinguishing the signal from noise, is the key parameter to evaluate the performance of NIR OPTs, which is decided by responsivity and dark current. 2D single crystal films of organic semiconductors (2DCOS) are promising functional materials due to their long-range order in spite of only few molecular layers. Herein, for the first time, air-stable 2DCOS of n-type organic semiconductors (a furan-thiophene quinoidal compound, TFT-CN) with strong absorbance around 830 nm, by the facile drop-casting method on the surface of water are successfully prepared. Almost millimeter-sized TFT-CN 2DCOS are obtained and their thickness is below 5 nm. A competitive field-effect electron mobility (1.36 cm 2 V -1 s -1 ) and high on/off ratio (up to 10 8 ) are obtained in air. Impressively, the ultrasensitive NIR phototransistors operating at the off-state exhibit a very low dark current of ≈0.3 pA and an ultrahigh detectivity (D*) exceeding 6 × 10 14 Jones because the devices can operate in full depletion at the off-state, superior to the majority of the reported organic-based NIR phototransistors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of crude oils

    USGS Publications Warehouse

    Kharaka, Y.K.; Lundegard, P.D.; Ambats, G.; Evans, William C.; Bischoff, J.L.

    1993-01-01

    Two crude oils with relatively high (0.60 wt%) and low (0.18 wt%) oxygen contents were heated in the presence of water in gold-plated reactors at 300??C for 2348 h. The high-oxygen oil was also heated at 200??C for 5711 h. The compositions of aqueous organic acid anions of the oils and of the headspace gases were monitored inn order to investigate the distribution of organic acids that can be generated from liquid petroleum. The oil with higher oxygen content generated about five times as much organic anions as the other oil. The dominant organic anions produced were acetate, propionate and butyrate. Small amounts of formate, succinate, methyl succinate and oxalate were also produced. The dominant oxygen-containing product was CO2, as has been observed in similar studies on the hydrous pyrolysis of kerogen. These results indicate that a significant portion (10-30%) of organic acid anions reported i be generated by thermal alteration of oils in reservoir rocks. The bulk of organic acid anions present in formation waters, however, is most likely generated by thermal alteration of kerogen in source rocks. Kerogen is more abundant than oil in sedimentary basins and the relative yields of organic acid anions reported from the hydrous pyrolysis of kerogen are much higher than the yields obtained for the two oils. ?? 1993.

  7. The impact of alterations in lignin deposition on cellulose organization of the plant cell wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiliang; Kim, Jeong Im; Cusumano, Joanne C.

    Background: Coordination of synthesis and assembly of the polymeric components of cell walls is essential for plant growth and development. Given the degree of co-mingling and cross-linking among cell wall components, cellulose organization must be dependent on the organization of other polymers such as lignin. Here we seek to identify aspects of that codependency by studying the structural organization of cellulose fibrils in stems from Arabidopsis plants harboring mutations in genes encoding enzymes involved in lignin biosynthesis. Plants containing high levels of G-lignin, S-lignin, H-lignin, aldehyde-rich lignin, and ferulic acid-containing lignin, along with plants with very low lignin content weremore » grown and harvested and longitudinal sections of stem were prepared and dried. Scanning X-ray microdiffraction was carried out using a 5-micron beam that moved across the sections in 5-micron steps and complete diffraction patterns were collected at each raster point. Approximately, 16,000 diffraction patterns were analyzed to determine cellulose fibril orientation and order within the tissues making up the stems. Results: Several mutations-most notably those exhibiting (1) down-regulation of cinnamoyl CoA reductase which leads to cell walls deficient in lignin and (2) defect of cinnamic acid 4-hydroxylase which greatly reduces lignin content-exhibited significant decrease in the proportion of oriented cellulose fibrils in the cell wall. Distinctions between tissues were maintained in all variants and even in plants exhibiting dramatic changes in cellulosic order the trends between tissues (where apparent) were generally maintained. The resilience of cellulose to degradative processes was investigated by carrying out the same analysis on samples stored in water for 30 days prior to data collection. This treatment led to significant loss of cellulosic order in plants rich in aldehyde or H-lignin, less change in wild type, and essentially no change in samples with high levels of G-or S-lignin. Conclusions: These studies demonstrate that changes in lignin biosynthesis lead to significant disruption in the orientation and order of cellulose fibrils in all tissues of the stem. These dramatic phenotypic changes, in mutants with lignin rich in aldehyde or H-units, correlate with the impact the mutations have on the enzymatic degradation of the plant cell wall.« less

  8. Organic/Inorganic Hybrid Polymer/Clay Nanocomposites

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Connell, John W.; Smith, Joseph G., Jr.

    2003-01-01

    A novel class of polymer/clay nanocomposites has been invented in an attempt to develop transparent, lightweight, durable materials for a variety of aerospace applications. As their name suggests, polymer/ clay nanocomposites comprise organic/ inorganic hybrid polymer matrices containing platelet-shaped clay particles that have sizes of the order of a few nanometers thick and several hundred nanometers long. Partly because of their high aspect ratios and high surface areas, the clay particles, if properly dispersed in the polymer matrix at a loading level of 1 to 5 weight percent, impart unique combinations of physical and chemical properties that make these nanocomposites attractive for making films and coatings for a variety of industrial applications. Relative to the unmodified polymer, the polymer/ clay nanocomposites may exhibit improvements in strength, modulus, and toughness; tear, radiation, and fire resistance; and lower thermal expansion and permeability to gases while retaining a high degree of optical transparency.

  9. Thermally induced processes in mixtures of aluminum with organic acids after plastic deformations under high pressure

    NASA Astrophysics Data System (ADS)

    Zhorin, V. A.; Kiselev, M. R.; Roldugin, V. I.

    2017-11-01

    DSC is used to measure the thermal effects of processes in mixtures of solid organic dibasic acids with powdered aluminum, subjected to plastic deformation under pressures in the range of 0.5-4.0 GPa using an anvil-type high-pressure setup. Analysis of thermograms obtained for the samples after plastic deformation suggests a correlation between the exothermal peaks observed around the temperatures of degradation of the acids and the thermally induced chemical reactions between products of acid degradation and freshly formed surfaces of aluminum particles. The release of heat in the mixtures begins at 30-40°C. The thermal effects in the mixtures of different acids change according to the order of acid reactivity in solutions. The extreme baric dependences of enthalpies of thermal effects are associated with the rearrangement of the electron subsystem of aluminum upon plastic deformation at high pressures.

  10. Hydroisomerization of n-Hexane Using Acidified Metal-Organic Framework and Platinum Nanoparticles.

    PubMed

    Sabyrov, Kairat; Jiang, Juncong; Yaghi, Omar M; Somorjai, Gabor A

    2017-09-13

    Exceptionally high surface area and ordered nanopores of a metal-organic framework (MOF) are exploited to encapsulate and homogeneously disperse a considerable amount of phosphotungstic acid (PTA). When combined with platinum nanoparticles positioned on the external surface of the MOF, the construct shows a high catalytic activity for hydroisomerization of n-hexane, a reaction requiring hydrogenation/dehydrogenation and moderate to strong Brønsted acid sites. Characterization of the catalytic activity and acidic sites as a function of PTA loading demonstrates that both the concentration and strength of acidic sites are highest for the catalyst with the largest amount of PTA. The MOF construct containing 60% PTA by weight produces isoalkanes with 100% selectivity and 9-fold increased mass activity as compared to a more traditional aluminosilicate catalyst, further demonstrating the capacity of the MOF to contain a high concentration of active sites necessary for the isomerization reaction.

  11. Organic mixed conductors for bioelectronic applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rivnay, Jonathan

    2016-09-01

    Direct measurement and stimulation of electrophysiological activity is a staple of neural and cardiac health monitoring, diagnosis and/or therapy. The ability to sensitively detect these signals can be enhanced by organic electronic materials that show mixed conduction properties (both electronic and ionic transport) in order to bridge the inherent mismatch that is prevalent between biological systems and traditional microelectronic materials/devices. Organic electrochemical transistors (OECTs) are one class of devices that utilize organic mixed conductors as the transistor channel, and have shown considerable promise as amplifying transducers due to their stability in aqueous conditions and high transconductance. These devices are fabricated in flexible, conformable form factors for in vivo recordings of epileptic activity, and for cutaneous EEG and ECG recordings in human subjects. The majority of high performance devices are based on conducting polymers such as poly(3,4-ethylenedioxythiophene) :poly(styrenesulfonate), PEDOT:PSS. By investigating PEDOT-based materials and devices, we are able to construct design rules for new formulations/materials. Introducing glycolated side chains to carefully selected semiconducting polymer backbones has enabled a new class high performance bioelectronic materials that feature high volumetric capacitance, transconductance >10mS (device dimensions ca. 10um), and steep subthreshold switching characteristics. A sub-set of these materials outperform PEDOT:PSS and shows significant promise for low power in vitro and in vivo biosensing applications.

  12. Balancing high gain and bandwidth in multilayer organic photodetectors with tailored carrier blocking layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, William T.; Mudrick, John P.; Xue, Jiangeng, E-mail: jxue@mse.ufl.edu

    2014-12-07

    We present detailed studies of the high photocurrent gain behavior in multilayer organic photodiodes containing tailored carrier blocking layers we reported earlier in a Letter [W. T. Hammond and J. Xue, Appl. Phys. Lett. 97, 073302 (2010)], in which a high photocurrent gain of up to 500 was attributed to the accumulation of photogenerated holes at the anode/organic active layer interface and the subsequent drastic increase in secondary electron injection from the anode. Here, we show that both the hole-blocking layer structure and layer thickness strongly influence the magnitude of the photocurrent gain. Temporal studies revealed that the frequency responsemore » of such devices is limited by three different processes with lifetimes of 10 μs, 202 μs, and 2.72 ms for the removal of confined holes, which limit the 3 dB bandwidth of these devices to 1.4 kHz. Furthermore, the composition in the mixed organic donor-acceptor photoactive layer affects both gain and bandwidth, which is attributed to the varying charge transport characteristics, and the optimal gain-bandwidth product is achieved with approximately 30% donor content. Finally, these devices show a high dynamic range of more than seven orders of magnitude, although the photocurrent shows a sublinear dependence on the incident optical power.« less

  13. Data-Driven High-Throughput Prediction of the 3D Structure of Small Molecules: Review and Progress

    PubMed Central

    Andronico, Alessio; Randall, Arlo; Benz, Ryan W.; Baldi, Pierre

    2011-01-01

    Accurate prediction of the 3D structure of small molecules is essential in order to understand their physical, chemical, and biological properties including how they interact with other molecules. Here we survey the field of high-throughput methods for 3D structure prediction and set up new target specifications for the next generation of methods. We then introduce COSMOS, a novel data-driven prediction method that utilizes libraries of fragment and torsion angle parameters. We illustrate COSMOS using parameters extracted from the Cambridge Structural Database (CSD) by analyzing their distribution and then evaluating the system’s performance in terms of speed, coverage, and accuracy. Results show that COSMOS represents a significant improvement when compared to the state-of-the-art, particularly in terms of coverage of complex molecular structures, including metal-organics. COSMOS can predict structures for 96.4% of the molecules in the CSD [99.6% organic, 94.6% metal-organic] whereas the widely used commercial method CORINA predicts structures for 68.5% [98.5% organic, 51.6% metal-organic]. On the common subset of molecules predicted by both methods COSMOS makes predictions with an average speed per molecule of 0.15s [0.10s organic, 0.21s metal-organic], and an average RMSD of 1.57Å [1.26Å organic, 1.90Å metal-organic], and CORINA makes predictions with an average speed per molecule of 0.13s [0.18s organic, 0.08s metal-organic], and an average RMSD of 1.60Å [1.13Å organic, 2.11Å metal-organic]. COSMOS is available through the ChemDB chemoinformatics web portal at: http://cdb.ics.uci.edu/. PMID:21417267

  14. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    NASA Astrophysics Data System (ADS)

    Sumantri, Indro; Purwanto, Budiyono

    2015-12-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  15. Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an Aerodyne High-Resolution Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Huang, X.-F.; He, L.-Y.; Hu, M.; Canagaratna, M. R.; Kroll, J. H.; Ng, N. L.; Zhang, Y.-H.; Lin, Y.; Xue, L.; Sun, T.-L.; Liu, X.-G.; Shao, M.; Jayne, J. T.; Worsnop, D. R.

    2010-11-01

    The Pearl River Delta (PRD) region in South China is one of the most economically developed regions in China, but it is also noted for its severe air pollution due to industrial/metropolitan emissions. In order to continuously improve the understanding and quantification of air pollution in this region, an intensive campaign was executed in PRD during October-November 2008. Here, we report and analyze Aerodyne High-Resolution Aerosol Mass Spectrometer measurements at Kaiping, a rural site downwind of the highly-polluted central PRD area, to characterize the general features of submicron particulate pollution in the regional air. The mean measured PM1 mass concentration was 33.1 ± 18.1 μg m-3 during the campaign and composed of organic matter (33.8%), sulfate (33.7%), ammonium (14.0%), nitrate (10.7%), black carbon (6.7%), and chloride (1.1%), which is characterized by high fractions of inorganic ions due to huge emissions of SO2 and NOx in PRD. The average size distributions of the species (except BC) were all dominated by an accumulation mode peaking at ~450 nm in vacuum aerodynamic diameter. Calculations based on high-resolution organic mass spectra indicate that C, H, O, and N on average contributed 56.6, 7.0, 35.1, and 1.3% to the total organic mass, respectively, corresponding to an organic matter mass to organic carbon mass ratio (OM/OC) of 1.77 ± 0.08. Based on the high-resolution organic mass spectral dataset observed, Positive Matrix Factorization (PMF) analysis differentiated the organic aerosol into three components, i.e., biomass burning (BBOA) and two oxygenated (LV-OOA and SV-OOA) organic aerosols, which on average accounted for 24.5, 39.6 and 35.8% of the total organic mass, respectively. The BBOA showed strong features of biomass burning emissions and has been mainly attributed to field rice straw burning after harvest. The LV-OOA and SV-OOA were found to correspond to more aged (and thus less-volatile) and fresher (and semi-volatile) secondary organic aerosol, respectively. Analysis of meteorological influence supported that regional transport from the central PRD area was the major origin of the PM1 components observed at the Kaiping site.

  16. 3D Printing of Organs-On-Chips

    PubMed Central

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-01

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms. PMID:28952489

  17. 3D Printing of Organs-On-Chips.

    PubMed

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-25

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  18. Investigations in space-related molecular biology. [cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.; Pritzker, A. N.

    1974-01-01

    Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyzed

  19. Preliminary post-emplacement safety analysis of the subseabed disposal of high-level nuclear waste

    NASA Astrophysics Data System (ADS)

    Kaplan, M. F.; Koplik, C. M.; Klett, R. D.

    1984-09-01

    The radiological hazard from the disposal of high-level nuclear waste within the deep ocean sediments is evaluated, on a preliminary basis, for locations in the central North Pacific and in the northwestern Atlantic. Radio-nuclide transport in the sediment and water column and by marine organisms is considered. Peak doses to an individual are approximately five orders of magnitude below background levels for both sites. Sensitivity analyses for most aspects of the post-emplacement systems models are included.

  20. From carbon nanostructures to high-performance sorbents for chromatographic separation and preconcentration

    NASA Astrophysics Data System (ADS)

    Postnov, V. N.; Rodinkov, O. V.; Moskvin, L. N.; Novikov, A. G.; Bugaichenko, A. S.; Krokhina, O. A.

    2016-02-01

    Information on carbon nanostructures (fullerenes, nanotubes, graphene, nanodiamond and nanodispersed active carbon) used to develop high-performance sorbents of organics and heavy metal ions from aqueous solutions is collected and analyzed. The advantages in the synthesis of hybrid carbon nanostructures and the possibilities of surface modification of these systems in order to carry out fast sorption pre-concentration are considered. Prospects for application of these materials in sorption technologies and analytical chemistry are discussed. The bibliography includes 364 references.

  1. 77 FR 23305 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... Organizations Report to the Order Audit Trail System Information Barriers Put Into Place by the Member... Rule 5320 to require that member organizations report to the Order Audit Trail System (``OATS... implements and uses an effective system of internal controls--such as appropriate information barriers--that...

  2. 77 FR 74722 - Self-Regulatory Organizations; Chicago Mercantile Exchange Inc.; Order Approving Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... to approve a proposed rule change of a self-regulatory organization if it finds that such proposed... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-68401; File No. SR-CME-2012-42] Self-Regulatory Organizations; Chicago Mercantile Exchange Inc.; Order Approving Proposed Rule Change Regarding the Valuation of...

  3. 77 FR 15432 - Self-Regulatory Organizations; The Options Clearing Corporation; Order Approving Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... directs the Commission to approve a proposed rule change of a self-regulatory organization if it finds... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-66560; File No. SR-OCC-2012-01] Self-Regulatory Organizations; The Options Clearing Corporation; Order Approving Proposed Rule Change Relating to Public...

  4. 77 FR 40394 - Self-Regulatory Organizations; The Options Clearing Corporation; Order Approving Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... to approve a proposed rule change of a self-regulatory organization if it finds that such proposed... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-67333; File No. SR-OCC-2012-07] Self-Regulatory Organizations; The Options Clearing Corporation; Order Approving Proposed Rule Change Relating to Adjustment...

  5. 78 FR 59401 - Self-Regulatory Organizations; ICE Clear Europe Limited; Order Approving Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ...\\ directs the Commission to approve a proposed rule change of a self-regulatory organization if it finds... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-70464; File No. SR-ICEEU-2013-11] Self-Regulatory Organizations; ICE Clear Europe Limited; Order Approving Proposed Rule Change Related To Enhanced...

  6. 75 FR 59303 - Self-Regulatory Organizations; The Options Clearing Corporation; Order Granting Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-62956; File No. SR-OCC-2010-09] Self-Regulatory Organizations; The Options Clearing Corporation; Order Granting Approval of Proposed Rule Change Relating to... clearing organization'' registered as such with the CFTC, OCC also filed this proposed rule change for...

  7. 76 FR 73756 - Self-Regulatory Organizations; National Stock Exchange, Inc.; Notice of Filing and Order Granting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ...-Regulatory Organizations; National Stock Exchange, Inc.; Notice of Filing and Order Granting Accelerated... hereby given that on November 8, 2011, National Stock Exchange, Inc. (the ``Exchange'' or ``NSX'') filed...-Regulatory Organization's Statement of the Terms of the Substance of the Proposed Rule Change National Stock...

  8. In situ SHG monitoring of dipolar orientation and relaxation in Disperse Red type/derivative urethane-urea copolymer

    NASA Astrophysics Data System (ADS)

    Samoc, A.; Holland, A.; Tsuchimori, M.; Watanabe, O.; Samoc, M.; Luther-Davies, B.; Kolev, V. Z.

    2005-09-01

    We investigated linear optical and second-order nonlinear optical (NLO) properties of films of urethane-urea copolymer (UU2) functionalised with a high concentration of an azobenzene chromophore. The polymer films on ITO-coated substrate were corona poled to induce a noncentrosymmetric organization of chromophore dipoles and data on the second harmonic generated with the laser beam (the fundamental wavelength 1053 nm, 6 ps/pulse, 20 Hz repetition rate) was acquired as a function of time and temperature. Second harmonic generation (SHG) was used to monitor in situ the polar alignment and relaxation of orientation of the side-chain Disperse Red-like chromophore molecules in the films poled at room temperature and high above the glass transition temperature (Tg 140-150oC). The deff coefficient was determined from the Maker-fringe method and corrected for absorption. A strong second harmonic effect with a fast relaxation was observed in "cold" (room temperature) poling experiments. A large second-order resonantly enhanced optical nonlinearity (d33 of the order of 200 pm/V) was obtained in high temperature poling. A strong and stable nonlinearity has persisted for years after the films were high-temperature poled.

  9. Epitaxial growth of aligned AlGalnN nanowires by metal-organic chemical vapor deposition

    DOEpatents

    Han, Jung; Su, Jie

    2008-08-05

    Highly ordered and aligned epitaxy of III-Nitride nanowires is demonstrated in this work. <1010> M-axis is identified as a preferential nanowire growth direction through a detailed study of GaN/AlN trunk/branch nanostructures by transmission electron microscopy. Crystallographic selectivity can be used to achieve spatial and orientational control of nanowire growth. Vertically aligned (Al)GaN nanowires are prepared on M-plane AlN substrates. Horizontally ordered nanowires, extending from the M-plane sidewalls of GaN hexagonal mesas or islands demonstrate new opportunities for self-aligned nanowire devices, interconnects, and networks.

  10. 3.4-Inch Quarter High Definition Flexible Active Matrix Organic Light Emitting Display with Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Hatano, Kaoru; Chida, Akihiro; Okano, Tatsuya; Sugisawa, Nozomu; Inoue, Tatsunori; Seo, Satoshi; Suzuki, Kunihiko; Oikawa, Yoshiaki; Miyake, Hiroyuki; Koyama, Jun; Yamazaki, Shunpei; Eguchi, Shingo; Katayama, Masahiro; Sakakura, Masayuki

    2011-03-01

    In this paper, we report a 3.4-in. flexible active matrix organic light emitting display (AMOLED) display with remarkably high definition (quarter high definition: QHD) in which oxide thin film transistors (TFTs) are used. We have developed a transfer technology in which a TFT array formed on a glass substrate is separated from the substrate by physical force and then attached to a flexible plastic substrate. Unlike a normal process in which a TFT array is directly fabricated on a thin plastic substrate, our transfer technology permits a high integration of high performance TFTs, such as low-temperature polycrystalline silicon TFTs (LTPS TFTs) and oxide TFTs, on a plastic substrate, because a flat, rigid, and thermally-stable glass substrate can be used in the TFT fabrication process in our transfer technology. As a result, this technology realized an oxide TFT array for an AMOLED on a plastic substrate. Furthermore, in order to achieve a high-definition AMOLED, color filters were incorporated in the TFT array and a white organic light-emitting diode (OLED) was combined. One of the features of this device is that the whole body of the device can be bent freely because a source driver and a gate driver can be integrated on the substrate due to the high mobility of an oxide TFT. This feature means “true” flexibility.

  11. Determination of COD based on Photoelectrocatalysis of FeTiO3.TiO2/Ti Electrode

    NASA Astrophysics Data System (ADS)

    Wibowo, D.; Ruslan; Maulidiyah; Nurdin, M.

    2017-11-01

    Iron infrastructure technology of (Fe)-doped TiO2 nanotubes arrays (NTAs) was prepared for COD photoelectrocatalysis sensor. Fe-TiO2 NTAs was prepared using sol-gel method and coated with TiO2/Ti electrode by immersion technique. The optimization of COD photoelectrocatalytic sensor against Rhodamine B, Methyl Orange, and Methylene Blue organic dyes using photoelectrochemical system in a batch reactor. The high ordered FeTiO3.TiO2/Ti NTAs to determine COD value showed the high photocurrent response linearity and sensitivity to MO organic dye from the concentration of 5 ppm to 75 ppm with an average RSD value of 3.35. The development in this research is to utilize ilmenite mineral as model applied to COD sensor.

  12. Two-Dimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channel-Wall Functionalization

    PubMed Central

    Huang, Ning; Chen, Xiong; Krishna, Rajamani; Jiang, Donglin

    2015-01-01

    Ordered open channels found in two-dimensional covalent organic frameworks (2D COFs) could enable them to adsorb carbon dioxide. However, the frameworks’ dense layer architecture results in low porosity that has thus far restricted their potential for carbon dioxide adsorption. Here we report a strategy for converting a conventional 2D COF into an outstanding platform for carbon dioxide capture through channel-wall functionalization. The dense layer structure enables the dense integration of functional groups on the channel walls, creating a new version of COFs with high capacity, reusability, selectivity, and separation productivity for flue gas. These results suggest that channel-wall functional engineering could be a facile and powerful strategy to develop 2D COFs for high-performance gas storage and separation. PMID:25613010

  13. One-Step to Prepare Self-Organized Nanoporous NiO/TiO2 Layers and its Use in Non-Enzymatic Glucose Sensing

    PubMed Central

    Gao, Zhi-Da; Han, Yuyao; Wang, Yongmei; Xu, Jingwen; Song, Yan-Yan

    2013-01-01

    A highly ordered nanoporous NiTi oxide layers were fabricated on Ti alloys with high Ni contents (50.6 at.%) by a combination of self-organizing anodization at 0°C and subsequent selective etching in H2O2. The key for successful formation of such layers is to sufficiently suppress the dissolve of NiO by applying lower temperature during anodization. The resulting nanoporous structure is connected and well-adhered, which exhibits a much higher electrochemical cycling stability in 0.1 M NaOH. Without further surface modification or the use of polymer binders, the layers can be behave as a low-cost, stable and sensitive platform in non-enzymatic glucose sensing. PMID:24270125

  14. Spatial Associations and Chemical Composition of Organic Carbon Sequestered in Fe, Ca, and Organic Carbon Ternary Systems.

    PubMed

    Sowers, Tyler D; Adhikari, Dinesh; Wang, Jian; Yang, Yu; Sparks, Donald L

    2018-05-25

    Organo-mineral associations of organic carbon (OC) with iron (Fe) oxides play a major role in environmental OC sequestration, a process crucial to mitigating climate change. Calcium has been found to have high coassociation with OC in soils containing high Fe content, increase OC sorption extent to poorly crystalline Fe oxides, and has long been suspected to form bridging complexes with Fe and OC. Due to the growing realization that Ca may be an important component of C cycling, we launched a scanning transmission X-ray microscopy (STXM) investigation, paired with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, in order to spatially resolve Fe, Ca, and OC relationships and probe the effect of Ca on sorbed OC speciation. We performed STXM-NEXAFS analysis on 2-line ferrihydrite reacted with leaf litter-extractable dissolved OC and citric acid in the absence and presence of Ca. Organic carbon was found to highly associate with Ca ( R 2 = 0.91). Carboxylic acid moieties were dominantly sequestered; however, Ca facilitated the additional sequestration of aromatic and phenolic moieties. Also, C NEXAFS revealed polyvalent metal ion complexation. Our results provide evidence for the presence of Fe-Ca-OC ternary complexation, which has the potential to significantly impact how organo-mineral associations are modeled.

  15. Biochar of animal origin: a sustainable solution to the global problem of high-grade rock phosphate scarcity?

    PubMed

    Vassilev, Nikolay; Martos, Eva; Mendes, Gilberto; Martos, Vanessa; Vassileva, Maria

    2013-06-01

    Phosphorus (P) is an essential element for all living organisms. However, in soil-plant systems, this nutrient is the most limiting, leading to frequent applications of soluble P fertilisers. Their excessive use provokes alterations in the natural P cycle, soil biodiversity and ecological equilibrium and is the main reason for the eutrophication of water, with consequences on food safety. Biotechnology offers a number of sustainable solutions that can mitigate these problems by using various waste materials as a source of P and, on the other hand, their solubilisation by selected micro-organisms. This review present results on the solubilisation of animal bone char with high phosphate content by micro-organisms to produce organic acids such as lactic acid, citric acid and itaconic acid. All experiments were performed under conditions of liquid submerged and solid state fermentation processes. Freely suspended and immobilised cells of the corresponding microbial cultures were employed using substrates characterised by low cost and abundance. Other alternative technologies are discussed as well in order to stimulate further studies in this field, bearing in mind the progressive increase in P fertiliser prices based on high global P consumption and the scarcity of rock phosphate reserves. © 2013 Society of Chemical Industry.

  16. Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells.

    PubMed

    Dunaj, Sara J; Vallino, Joseph J; Hines, Mark E; Gay, Marcus; Kobyljanec, Christine; Rooney-Varga, Juliette N

    2012-02-07

    Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful renewable resource: soil organic carbon. We analyzed bacterial community structure, MFC performance, and soil characteristics in different microhabitats within MFCs constructed from agricultural or forest soils in order to determine how soil type and bacterial dynamics influence MFC performance. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs. Bacterial community profile data indicate that the bacterial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These results suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic bacterial communities, while the quality of available organic matter may have played a significant role in supporting high performing bacterial communities.

  17. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil.

    PubMed

    Fan, Pingping; Guo, Dali

    2010-06-01

    Among tree fine roots, the distal small-diameter lateral branches comprising first- and second-order roots lack secondary (wood) development. Therefore, these roots are expected to decompose more rapidly than higher order woody roots. But this prediction has not been tested and may not be correct. Current evidence suggests that lower order roots may decompose more slowly than higher order roots in tree species associated with ectomycorrhizal (EM) fungi because they are preferentially colonized by fungi and encased by a fungal sheath rich in chitin (a recalcitrant compound). In trees associated with arbuscular mycorrhizal (AM) fungi, lower order roots do not form fungal sheaths, but they may have poorer C quality, e.g. lower concentrations of soluble carbohydrates and higher concentrations of acid-insolubles than higher order roots, thus may decompose more slowly. In addition, litter with high concentrations of acid insolubles decomposes more slowly under higher N concentrations (such as lower order roots). Therefore, we propose that in both AM and EM trees, lower order roots decompose more slowly than higher order roots due to the combination of poor C quality and high N concentrations. To test this hypothesis, we examined decomposition of the first six root orders in Fraxinus mandshurica (an AM species) and Larix gmelinii (an EM species) using litterbag method in northeastern China. We found that lower order roots of both species decomposed more slowly than higher order roots, and this pattern appears to be associated mainly with initial C quality and N concentrations. Because these lower order roots have short life spans and thus dominate root mortality, their slow decomposition implies that a substantial fraction of the stable soil organic matter pool is derived from these lower order roots, at least in the two species we studied.

  18. Determination of astaxanthin in Haematococcus pluvialis by first-order derivative spectrophotometry.

    PubMed

    Liu, Xiao Juan; Juan, Liu Xiao; Wu, Ying Hua; Hua, Wu Ying; Zhao, Li Chao; Chao, Zhao Li; Xiao, Su Yao; Yao, Xiao Su; Zhou, Ai Mei; Mei, Zhou Ai; Liu, Xin; Xin, Liu

    2011-01-01

    A highly selective, convenient, and precise method, first-order derivative spectrophotometry, was applied for the determination of astaxanthin in Haematococcus pluvialis. Ethyl acetate and ethanol (1:1, v/v) were found to be the best extraction solvent tested due to their high efficiency and low toxicity compared with nine other organic solvents. Astaxanthin coexisting with chlorophyll and beta-carotene was analyzed by first-order derivative spectrophotometry in order to optimize the conditions for the determination of astaxanthin. The results show that when detected at 432 nm, the interfering substances could be eliminated. The dynamic linear range was 2.0-8.0 microg/mL, with a correlation coefficient of 0.9916. The detection threshold was 0.41 microg/mL. The RSD for the determination of astaxanthin was in the range of 0.01-0.06%; the results of recovery test were 98.1-108.0%. The statistical analysis between first-order derivative spectrophotometry and HPLC by T-testing did not exceed their critical values, revealing no significant differences between these two methods. It was proved that first-order derivative spectrophotometry is a rapid and convenient method for the determination of astaxanthin in H. pluvialis that can eliminate the negative effect resulting from the coexistence of astaxanthin with chlorophyll and beta-carotene.

  19. 75 FR 52560 - Self-Regulatory Organizations; NASDAQ OMX PHLX, Inc.; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ...-Regulatory Organizations; NASDAQ OMX PHLX, Inc.; Notice of Filing and Immediate Effectiveness of Proposed... and then cancelled totals 500 orders or more in a particular calendar month (the ``500 Order Threshold''). The Exchange proposes to modify the calculation of the 500 Order Threshold by creating two separate...

  20. 76 FR 11533 - Self-Regulatory Organizations; International Securities Exchange, LLC; Order Granting Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-63955; File No. SR-ISE-2010-73] Self-Regulatory Organizations; International Securities Exchange, LLC; Order Granting Approval of a Proposed Rule Change To Modify Qualified Contingent Cross Order Rules February 24, 2011. I. Introduction On July 14, 2010, the...

Top