Sample records for highly oriented fesb2

  1. Study for material analogs of FeSb2: Material design for thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Kang, Chang-Jong; Kotliar, Gabriel

    2018-03-01

    Using the ab initio evolutionary algorithm (implemented in uspex) and electronic structure calculations we investigate the properties of a new thermoelectric material FeSbAs, which is a material analog of the enigmatic thermoelectric FeSb2. We utilize the density functional theory and the Gutzwiller method to check the energetics. We find that FeSbAs can be made thermodynamically stable above ˜30 GPa. We investigate the electronic structure and thermoelectric properties of FeSbAs based on the density functional theory and compare with those of FeSb2. Above 50 K, FeSbAs has higher Seebeck coefficients than FeSb2. Upon doping, the figure of merit becomes larger for FeSbAs than for FeSb2. Another material analog FeSbP, was also investigated, and found thermodynamically unstable even at very high pressure. Regarding FeSb2 as a member of a family of compounds (FeSb2, FeSbAs, and FeSbP) we elucidate what are the chemical handles that control the gaps in this series. We also investigate solubility (As or P for Sb in FeSb2) we found As to be more soluble. Finally, we study a two-band model for thermoelectric properties and find that the temperature dependent chemical potential and the presence of the ionized impurities are important to explain the extremum in the Seebeck coefficient exhibited in experiments for FeSb2.

  2. Study for material analogs of FeSb 2 : Material design for thermoelectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Chang-Jong; Kotliar, Gabriel

    Using the ab initio evolutionary algorithm (implemented in uspex) and electronic structure calculations we investigate the properties of a new thermoelectric material FeSbAs, which is a material analog of the enigmatic thermoelectric FeSb 2. We utilize the density functional theory and the Gutzwiller method to check the energetics. We find that FeSbAs can be made thermodynamically stable above ~ 30 GPa. We investigate the electronic structure and thermoelectric properties of FeSbAs based on the density functional theory and compare with those of FeSb 2. Above 50 K, FeSbAs has higher Seebeck coefficients than FeSb 2. Upon doping, the figure ofmore » merit becomes larger for FeSbAs than for FeSb 2. Another material analog FeSbP, was also investigated, and found thermodynamically unstable even at very high pressure. Regarding FeSb 2 as a member of a family of compounds (FeSb 2, FeSbAs, and FeSbP) we elucidate what are the chemical handles that control the gaps in this series. Here, we also investigate solubility (As or P for Sb in FeSb 2) we found As to be more soluble. Finally, we study a two-band model for thermoelectric properties and find that the temperature dependent chemical potential and the presence of the ionized impurities are important to explain the extremum in the Seebeck coefficient exhibited in experiments for FeSb 2.« less

  3. Study for material analogs of FeSb 2 : Material design for thermoelectric materials

    DOE PAGES

    Kang, Chang-Jong; Kotliar, Gabriel

    2018-03-16

    Using the ab initio evolutionary algorithm (implemented in uspex) and electronic structure calculations we investigate the properties of a new thermoelectric material FeSbAs, which is a material analog of the enigmatic thermoelectric FeSb 2. We utilize the density functional theory and the Gutzwiller method to check the energetics. We find that FeSbAs can be made thermodynamically stable above ~ 30 GPa. We investigate the electronic structure and thermoelectric properties of FeSbAs based on the density functional theory and compare with those of FeSb 2. Above 50 K, FeSbAs has higher Seebeck coefficients than FeSb 2. Upon doping, the figure ofmore » merit becomes larger for FeSbAs than for FeSb 2. Another material analog FeSbP, was also investigated, and found thermodynamically unstable even at very high pressure. Regarding FeSb 2 as a member of a family of compounds (FeSb 2, FeSbAs, and FeSbP) we elucidate what are the chemical handles that control the gaps in this series. Here, we also investigate solubility (As or P for Sb in FeSb 2) we found As to be more soluble. Finally, we study a two-band model for thermoelectric properties and find that the temperature dependent chemical potential and the presence of the ionized impurities are important to explain the extremum in the Seebeck coefficient exhibited in experiments for FeSb 2.« less

  4. Polaronic transport and thermoelectricity in Fe1 -xCoxSb2S4 (x =0 , 0.1, and 0.2)

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Kang, Chang-Jong; Stavitski, Eli; Du, Qianheng; Attenkofer, Klaus; Kotliar, G.; Petrovic, C.

    2018-04-01

    We report a study of Co-doped berthierite Fe1 -xCoxSb2S4 (x =0 , 0.1, and 0.2). The alloy series of Fe1 -xCoxSb2S4 crystallize in an orthorhombic structure with the Pnma space group, similar to FeSb2, and show semiconducting behavior. The large discrepancy between activation energy for conductivity, Eρ (146 ˜270 meV ), and thermopower, ES (47 ˜108 meV ), indicates the polaronic transport mechanism. Bulk magnetization and heat-capacity measurements of pure FeSb2S4 (x =0 ) exhibit a broad antiferromagnetic transition (TN=46 K ) followed by an additional weak transition (T*=50 K ). Transition temperatures (TN and T*) slightly decrease with increasing Co content x . This is also reflected in the thermal conductivity measurement, indicating strong spin-lattice coupling. Fe1 -xCoxSb2S4 shows relatively high value of thermopower (up to ˜624 μ V K-1 at 300 K) and thermal conductivity much lower when compared to FeSb2, a feature desired for potential applications based on FeSb2 materials.

  5. Polaronic transport and thermoelectricity in Fe 1 – x Co x Sb 2 S 4 ( x = 0 , 0.1, and 0.2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu; Kang, Chang -Jong; Stavitski, Eli

    Here, we report a study of Co-doped berthierite Fe 1–xCo xSb 2S 4 (x=0, 0.1, and 0.2). The alloy series of Fe 1–xCo xSb 2S 4 crystallize in an orthorhombic structure with the Pnma space group, similar to FeSb 2, and show semiconducting behavior. The large discrepancy between activation energy for conductivity, E ρ (146 ~270meV), and thermopower, E S (47 ~108 meV), indicates the polaronic transport mechanism. Bulk magnetization and heat-capacity measurements of pure FeSb 2S 4 (x=0) exhibit a broad antiferromagnetic transition (T N = 46K) followed by an additional weak transition (T* = 50K). Transition temperatures (Tmore » N and T*) slightly decrease with increasing Co content x. This is also reflected in the thermal conductivity measurement, indicating strong spin-lattice coupling. Fe 1–xCo xSb 2S 4 shows relatively high value of thermopower (up to ~624μVK –1 at 300 K) and thermal conductivity much lower when compared to FeSb 2, a feature desired for potential applications based on FeSb 2 materials.« less

  6. Polaronic transport and thermoelectricity in Fe 1 – x Co x Sb 2 S 4 ( x = 0 , 0.1, and 0.2)

    DOE PAGES

    Liu, Yu; Kang, Chang -Jong; Stavitski, Eli; ...

    2018-04-09

    Here, we report a study of Co-doped berthierite Fe 1–xCo xSb 2S 4 (x=0, 0.1, and 0.2). The alloy series of Fe 1–xCo xSb 2S 4 crystallize in an orthorhombic structure with the Pnma space group, similar to FeSb 2, and show semiconducting behavior. The large discrepancy between activation energy for conductivity, E ρ (146 ~270meV), and thermopower, E S (47 ~108 meV), indicates the polaronic transport mechanism. Bulk magnetization and heat-capacity measurements of pure FeSb 2S 4 (x=0) exhibit a broad antiferromagnetic transition (T N = 46K) followed by an additional weak transition (T* = 50K). Transition temperatures (Tmore » N and T*) slightly decrease with increasing Co content x. This is also reflected in the thermal conductivity measurement, indicating strong spin-lattice coupling. Fe 1–xCo xSb 2S 4 shows relatively high value of thermopower (up to ~624μVK –1 at 300 K) and thermal conductivity much lower when compared to FeSb 2, a feature desired for potential applications based on FeSb 2 materials.« less

  7. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

    DOE PAGES

    Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; ...

    2015-07-05

    By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as depositedmore » (i.e. amorphous) and crystalline FeSb 3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb 3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb 3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb 6 octahedra with motifs highly resembling the local structure in crystalline FeSb 3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb 3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.« less

  8. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

    PubMed Central

    Jensen, Kirsten M. Ø.; Blichfeld, Anders B.; Bauers, Sage R.; Wood, Suzannah R.; Dooryhée, Eric; Johnson, David C.; Iversen, Bo B.; Billinge, Simon J. L.

    2015-01-01

    By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF) analysis have been obtained from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The ‘tfPDF’ method is illustrated through studies of as-deposited (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films. PMID:26306190

  9. Drastic effect of the Mn-substitution in the strongly correlated semiconductor FeSb2.

    NASA Astrophysics Data System (ADS)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2017-06-01

    We report the effects of Mn substitution, corresponding to hole doping, on the electronic properties of the narrow gap semiconductor, FeSb2, using single crystals of Fe1- x Mn x Sb2 grown by the Sb flux method. The orthorhombic Pnnm structure was confirmed by powder X-ray diffraction (XRD) for the pure and Mn-substituted samples. Their crystal structure parameters were refined using the Rietveld method. The chemical composition was investigated by wavelength-dispersive X-ray spectroscopy (WDX). The solubility limit of Mn in FeSb2 is x max ˜ 0.05 and the lattice constants change monotonically with increasing the actual Mn concentration. A drastic change from semiconducting to metallic electronic transports was found at very low Mn concentration at x ˜ 0.01. Our experimental results and analysis indicate that the substitution of a small amount of Mn changes drastically the electronic state in FeSb2 as well as the Co-substitution does: closing of the narrow gap and emergence of the density of states (DOS) at the Fermi level.

  10. Thermoelectric transport properties of nanostructured FeSb 2 and Ce-based heavy-fermions CeCu and CeAl 3

    NASA Astrophysics Data System (ADS)

    Pokharel, Mani R.

    Thermoelectric (TE) energy conversion is an all-solid-state technology which can convert waste thermal energy into useful electric power and cool ambience without using harmful gases like CFC. Due to their several advantages over traditional energy conversion technologies, thermoelectric generators (TEG) and coolers (TEC) have drawn enormous research efforts. The objective of this work is to find promising materials for thermoelectric cooling applications and optimize their thermoelectric performances. Finding a material with a good value for the thermoelectric figure-of-merit (ZT) at cryogenic temperatures, specifically below 77 K, has been of great interest. This work demonstrates that FeSb2 1, CeCu6 2 and CeAl3 3, all belonging to a class of materials with strongly correlated electron behavior; exhibit promising thermoelectric properties below 77 K. In general, ZT of a TE material can be increased using two basic approaches: lattice thermal conductivity reduction and power factor (PF) enhancement. The results of this study indicate that nanostructuring effectively decreases the thermal conductivity of FeSb2, CeCu6 and CeAl 3 leading to improved ZT. The approach of introducing point-defect scattering to further reduce the thermal conductivity is successfully implemented for Te-substituted FeSb2 nanostructured samples 4. A semiconductor/metal interface has long been proposed to exhibit enhanced thermoelectric properties. We use this technique by introducing Ag-nanoparticles in the host FeSb2 which further increases ZT by 70% 5. Additionally, a detailed investigation is made on the phonon-drag effect as a possible mechanism responsible for the large value of the Seebeck coefficient of FeSb2 6. We show that the phonon-drag mechanism contributes significantly to the large Seebeck effect in FeSb2 and hence this effect cannot be minor as was proposed in literatures previously. A model based on Kapitza-resistance and effective medium approach (EMA) is used to analyze the thermal conductivities of nanostructured FeSb2 samples 7. We find a notably large value for Kapitza length at low temperatures indicating the dominance of inter-grain thermal resistance over bulk thermal resistance in determining the thermal properties of FeSb 2. 1Huaizhou Zhao, Mani Pokharel, Gaohua Zhu, Shuo Chen, Kevin Lukas, Qing Jie,Cyril Opeil, Gang Chen, and Zhifeng Ren, Appl. Phys. Lett. 99, 163101 (2011). 2Mani Pokharel, Tulashi Dahal, Zhifeng Ren, and Cyril Opeil, Journal of Alloys and Compounds 609 (2014) 228-232. 3Mani Pokharel, Tulashi Dahal, Zhensong Ren, Peter Czajka, Stephen Wilson, Zhifeng Ren, and Cyril Opeil, Energy Conversion and Management, 87 (2014) 584-588. 4Mani Pokharel, Machhindra Koirala, Huaizhau Zhao, Zhifeng Ren, and Cyril Opeil, J. Low Temp. Phys., 176 (2014) 122-130. 5Mani Pokharel, Huaizhou Zhao, Shuo Chen, Kevin Lukas, Hui Wang, Cyril Opeil1, Gang Chen, and Zhifeng Ren, Nanotechnology 23 (2012) 505402. 6Mani Pokharel, Huaizhou Zhao, Kevin Lukas, Bogdan Mihaila, Zhifeng Ren, and Cyril Opeil, MRS Communications 3 (2013) 31-36. 7Mani Pokharel, Huaizhau Zhao, Zhifeng Ren, and Cyril Opeil, International Journal of Thermal Science, 71 (2013) 32-35.

  11. Low-temperature magnetotransport of the narrow-gap semiconductor FeSb2

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Okazaki, R.; Yasui, Y.; Terasaki, I.

    2011-11-01

    We present a study of the magnetoresistance and Hall effect in the narrow-gap semiconductor FeSb2 at low temperatures. Both the electrical and Hall resistivities show unusual magnetic field dependence in the low-temperature range where a large Seebeck coefficient was observed. By applying a two-carrier model, we find that the carrier concentration decreases from 1 down to 10-4 ppm/unit cell and the mobility increases from 2000 to 28 000 cm2/Vs with decreasing temperature from 30 down to 4 K. At lower temperatures, the magnetoresistive behavior drastically changes and a negative magnetoresistance is observed at 3 K. These low-temperature behaviors are reminiscent of the low-temperature magnetotransport observed in doped semiconductors such as As-doped Ge, which is well described by a weak-localization picture. We argue a detailed electronic structure in FeSb2 inferred from our observations.

  12. The reaction mechanism of FeSb 2 as anode for sodium-ion batteries

    DOE PAGES

    Baggetto, Loic; Hah, Hien-Yoong; Charles E. Johnson; ...

    2014-04-04

    The electrochemical reaction of FeSb 2 with Na is reported for the first time. The first discharge (sodiation) potential profile of FeSb 2 is characterized by a gentle slope centered at 0.25 V. During charge (Na removal) and the subsequent discharge, the main reaction takes place near 0.7 V and 0.4 V, respectively. The reversible storage capacity amounts to 360 mA h g -1, which is smaller than the theoretical value of 537 mA h g -1. The reaction, studied by ex situ and in situ X-ray diffraction, is found to proceed by the consumption of crystalline FeSb 2 tomore » form an amorphous phase. Upon further sodiation, the formation of nanocrystalline Na3Sb domains is evidenced. During desodiation, Na 3Sb domains convert into an amorphous phase. The chemical environment of Fe, probed by 57Fe Mo ssbauer spectroscopy, undergoes significant changes during the reaction. During sodiation, the well-resolved doublet of FeSb2 with an isomer shift around 0.45 mm s -1 and a quadrupole splitting of 1.26 mm s -1 is gradually converted into a doublet line centered at about 0.15 mm s1 along with a singlet line around 0 mm s -1. The former signal results from the formation of a Fe-rich FexSb alloy with an estimated composition of Fe4Sb while the latter signal corresponds to superparamagnetic Fe due to the formation of nanosized pure Fe domains. Interestingly the signal of Fe4Sb remains unaltered during desodiation. This mechanism is substantially different than that observed during the reaction with Li. The irreversible formation of a Fe-rich Fe 4Sb alloy and the absence of full desodiation of Sb domains explain the lower than theoretical practical storage capacity.« less

  13. Sb,123121 nuclear quadrupole resonance as a microscopic probe in the Te-doped correlated semimetal FeSb2: Emergence of electronic Griffith phase, magnetism, and metallic behavior

    NASA Astrophysics Data System (ADS)

    Gippius, A. A.; Zhurenko, S. V.; Hu, R.; Petrovic, C.; Baenitz, M.

    2018-02-01

    Sb,123121 nuclear quadrupole resonance (NQR) was applied to Fe(Sb1-xTex)2 in the low doping regime (x =0 , 0.01, and 0.05) as a microscopic zero field probe to study the evolution of 3 d magnetism and the emergence of metallic behavior. Whereas the NQR spectra itself reflects the degree of local disorder via the width of the individual NQR lines, the spin lattice relaxation rate (SLRR) 1 /T1(T ) probes the fluctuations at the Sb site. The fluctuations originate either from conduction electrons or from magnetic moments. In contrast to the semimetal FeSb2 with a clear signature of the charge and spin gap formation in 1 /T1(T ) T [˜exp/(Δ kBT ) ] , the 1% Te-doped system exhibits almost metallic conductivity and the SLRR nicely confirms that the gap is almost filled. A weak divergence of the SLRR coefficient 1 /T1(T ) T ˜T-n˜T-0.2 points towards the presence of electronic correlations towards low temperatures. This is supported by the electronic specific heat coefficient γ =(Cel/T ) showing a power-law divergence γ (T ) ˜T-m˜(1/T1T ) 1 /2˜T-n /2˜Cel/T which is expected in the renormalized Landau Fermi liquid theory for correlated electrons. In contrast to that the 5% Te-doped sample exhibits a much larger divergence in the SLRR coefficient showing 1 /T1(T ) T ˜T-0.72 . According to the specific heat divergence a power law with n =2 m =0.56 is expected for the SLRR. This dissimilarity originates from admixed critical magnetic fluctuations in the vicinity of antiferromagnetic long range order with 1 /T1(T ) T ˜T-3 /4 behavior. Furthermore Te-doped FeSb2 as a disordered paramagnetic metal might be a platform for the electronic Griffith phase scenario. NQR evidences a substantial asymmetric broadening of the Sb,123121 NQR spectrum for the 5% sample. This has a predominant electronic origin in agreement with the electronic Griffith phase and stems probably from an enhanced Sb-Te bond polarization and electronic density shift towards the Te atom inside Sb-Te dumbbell.

  14. Sb 121 , 123 nuclear quadrupole resonance as a microscopic probe in the Te-doped correlated semimetal FeSb 2 : Emergence of electronic Griffith phase, magnetism, and metallic behavior

    DOE PAGES

    Gippius, A. A.; Zhurenko, S. V.; Hu, R.; ...

    2018-02-12

    121,123Sb nuclear quadrupole resonance (NQR) was applied to Fe(Sb 1-xTe x) 2 in the low doping regime (x = 0 , 0.01, and 0.05) as a microscopic zero field probe to study the evolution of 3d magnetism and the emergence of metallic behavior. Whereas the NQR spectra itself reflects the degree of local disorder via the width of the individual NQR lines, the spin lattice relaxation rate (SLRR) 1/T 1 (T) probes the fluctuations at the Sb site. The fluctuations originate either from conduction electrons or from magnetic moments. In contrast to the semimetal FeSb 2 with a clear signaturemore » of the charge and spin gap formation in 1/T 1(T)T[~exp/(Δk BT)] , the 1% Te-doped system exhibits almost metallic conductivity and the SLRR nicely confirms that the gap is almost filled. A weak divergence of the SLRR coefficient 1/T 1(T)T ~ T -n ~ T -0.2 points towards the presence of electronic correlations towards low temperatures. This is supported by the electronic specific heat coefficient γ = (C el/T) showing a power-law divergence γ (T) ~ T -m ~ (1/T 1T) 1/2 ~ T -n/2 ~ C el/T which is expected in the renormalized Landau Fermi liquid theory for correlated electrons. In contrast to that the 5% Te-doped sample exhibits a much larger divergence in the SLRR coefficient showing 1/T 1(T)T ~ T -0.72 . According to the specific heat divergence a power law with n = 2 m = 0.56 is expected for the SLRR. This dissimilarity originates from admixed critical magnetic fluctuations in the vicinity of antiferromagnetic long range order with 1/T 1(T)T ~ T -3/4 behavior. Furthermore Te-doped FeSb 2 as a disordered paramagnetic metal might be a platform for the electronic Griffith phase scenario. NQR evidences a substantial asymmetric broadening of the 121,123Sb NQR spectrum for the 5% sample. Lastly, this has a predominant electronic origin in agreement with the electronic Griffith phase and stems probably from an enhanced Sb-Te bond polarization and electronic density shift towards the Te atom inside Sb-Te dumbbell.« less

  15. Sb 121 , 123 nuclear quadrupole resonance as a microscopic probe in the Te-doped correlated semimetal FeSb 2 : Emergence of electronic Griffith phase, magnetism, and metallic behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gippius, A. A.; Zhurenko, S. V.; Hu, R.

    121,123Sb nuclear quadrupole resonance (NQR) was applied to Fe(Sb 1-xTe x) 2 in the low doping regime (x = 0 , 0.01, and 0.05) as a microscopic zero field probe to study the evolution of 3d magnetism and the emergence of metallic behavior. Whereas the NQR spectra itself reflects the degree of local disorder via the width of the individual NQR lines, the spin lattice relaxation rate (SLRR) 1/T 1 (T) probes the fluctuations at the Sb site. The fluctuations originate either from conduction electrons or from magnetic moments. In contrast to the semimetal FeSb 2 with a clear signaturemore » of the charge and spin gap formation in 1/T 1(T)T[~exp/(Δk BT)] , the 1% Te-doped system exhibits almost metallic conductivity and the SLRR nicely confirms that the gap is almost filled. A weak divergence of the SLRR coefficient 1/T 1(T)T ~ T -n ~ T -0.2 points towards the presence of electronic correlations towards low temperatures. This is supported by the electronic specific heat coefficient γ = (C el/T) showing a power-law divergence γ (T) ~ T -m ~ (1/T 1T) 1/2 ~ T -n/2 ~ C el/T which is expected in the renormalized Landau Fermi liquid theory for correlated electrons. In contrast to that the 5% Te-doped sample exhibits a much larger divergence in the SLRR coefficient showing 1/T 1(T)T ~ T -0.72 . According to the specific heat divergence a power law with n = 2 m = 0.56 is expected for the SLRR. This dissimilarity originates from admixed critical magnetic fluctuations in the vicinity of antiferromagnetic long range order with 1/T 1(T)T ~ T -3/4 behavior. Furthermore Te-doped FeSb 2 as a disordered paramagnetic metal might be a platform for the electronic Griffith phase scenario. NQR evidences a substantial asymmetric broadening of the 121,123Sb NQR spectrum for the 5% sample. Lastly, this has a predominant electronic origin in agreement with the electronic Griffith phase and stems probably from an enhanced Sb-Te bond polarization and electronic density shift towards the Te atom inside Sb-Te dumbbell.« less

  16. Materials Data on FeSb4C6(O3F11)2 (SG:14) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries.

    PubMed

    Edison, Eldho; Sreejith, Sivaramapanicker; Madhavi, Srinivasan

    2017-11-15

    Owing to the high theoretical sodiation capacities, intermetallic alloy anodes have attracted considerable interest as electrodes for next-generation sodium-ion batteries (SIBs). Here, we demonstrate the fabrication of intermetallic Fe-Sb alloy anode for SIBs via a high-throughput and industrially viable melt-spinning process. The earth-abundant and low-cost Fe-Sb-based alloy anode exhibits excellent cycling stability with nearly 466 mAh g -1 sodiation capacity at a specific current of 50 mA g -1 with 95% capacity retention after 80 cycles. Moreover, the alloy anode displayed outstanding rate performance with ∼300 mAh g -1 sodiation capacity at 1 A g -1 . The crystalline features of the melt-spun fibers aid in the exceptional electrochemical performance of the alloy anode. Further, the feasibility of the alloy anode for real-life applications was demonstrated in a sodium-ion full-cell configuration which could deliver a sodiation capacity of over 300 mAh g -1 (based on anode) at 50 mA g -1 with more than 99% Coulombic efficiency. The results further exhort the prospects of melt-spun alloy anodes to realize fully functional sodium-ion batteries.

  18. Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb.

    PubMed

    He, Ran; Kraemer, Daniel; Mao, Jun; Zeng, Lingping; Jie, Qing; Lan, Yucheng; Li, Chunhua; Shuai, Jing; Kim, Hee Seok; Liu, Yuan; Broido, David; Chu, Ching-Wu; Chen, Gang; Ren, Zhifeng

    2016-11-29

    Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of ∼106 μW⋅cm -1 ⋅K -2 is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb 0.95 Ti 0.05 FeSb. The high power factor subsequently yields a record output power density of ∼22 W⋅cm -2 based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications.

  19. Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb

    PubMed Central

    He, Ran; Kraemer, Daniel; Mao, Jun; Zeng, Lingping; Jie, Qing; Lan, Yucheng; Li, Chunhua; Shuai, Jing; Kim, Hee Seok; Liu, Yuan; Broido, David; Chu, Ching-Wu; Chen, Gang; Ren, Zhifeng

    2016-01-01

    Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of ∼106 μW⋅cm−1⋅K−2 is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb0.95Ti0.05FeSb. The high power factor subsequently yields a record output power density of ∼22 W⋅cm−2 based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications. PMID:27856743

  20. Structural Evolution of Iron Antimonides from Amorphous Precursors to Crystalline Products Studied by Total Scattering Techniques.

    PubMed

    Bauers, Sage R; Wood, Suzannah R; Jensen, Kirsten M Ø; Blichfeld, Anders B; Iversen, Bo B; Billinge, Simon J L; Johnson, David C

    2015-08-05

    Homogeneous reaction precursors may be used to form several solid-state compounds inaccessible by traditional synthetic routes, but there has been little development of techniques that allow for a priori prediction of what may crystallize in a given material system. Here, the local structures of FeSbx designed precursors are determined and compared with the structural motifs of their crystalline products. X-ray total scattering and atomic pair distribution function (PDF) analysis are used to show that precursors that first nucleate a metastable FeSb3 compound share similar local structure to the product. Interestingly, precursors that directly crystallize to thermodynamically stable FeSb2 products also contain local structural motifs of the metastable phase, despite their compositional disagreement. While both crystalline phases consist of distorted FeSb6 octahedra with Sb shared between either two or three octahedra as required for stoichiometry, a corner-sharing arrangement indicative of AX3-type structures is the only motif apparent in the PDF of either precursor. Prior speculation was that local composition controlled which compounds nucleate from amorphous intermediates, with different compositions favoring different local arrangements and hence different products. This data suggests that local environments in these amorphous intermediates may not be very sensitive to overall composition. This can provide insight into potential metastable phases which may form in a material system, even with a precursor that does not crystallize to the kinetically stabilized product. Determination of local structure in homogeneous amorphous reaction intermediates from techniques such as PDF can be a valuable asset in the development of systematic methods to prepare targeted solid-state compounds from designed precursors.

  1. Interaction of exogenous refractory nanophases with antimony dissolved in liquid iron

    NASA Astrophysics Data System (ADS)

    Burtsev, V. T.; Anuchkin, S. N.; Samokhin, A. V.

    2017-07-01

    The heterophase interaction of Al2O3 refractory nanoparticles with a surfactant impurity (antimony) in the Fe-Sb (0.095 wt %)-O (0.008 wt %) system is studied. It is shown that the introduction of 0.06-0.18 wt % Al2O3 nanoparticles (25-83 nm) into a melt during isothermal holding for up to 1200 s leads to a decrease in the antimony content: the maximum degree of antimony removal is 26 rel %. The sessile drop method is used to investigate the surface tension and the density of Fe, Fe-Sb, and Fe-Sb-Al2O3 melts. The polytherms of the surface tension of these melts have a linear character, the removal of antimony from the Fe-Sb-Al2O3 melts depends on the time of melting in a vacuum induction furnace, and the experimental results obtained reveal the kinetic laws of the structure formation in the surface layers of the melts. The determined melt densities demonstrate that the introduction of antimony into the Fe-O melt causes an increase in its compression by 47 rel %. The structure of the Fe-Sb-O melt after the introduction of Al2O3 nanoparticles depends on the time of melting in a vacuum induction furnace.

  2. Pulse-Inversion Subharmonic Ultrafast Active Cavitation Imaging in Tissue Using Fast Eigenspace-Based Adaptive Beamforming and Cavitation Deconvolution.

    PubMed

    Bai, Chen; Xu, Shanshan; Duan, Junbo; Jing, Bowen; Yang, Miao; Wan, Mingxi

    2017-08-01

    Pulse-inversion subharmonic (PISH) imaging can display information relating to pure cavitation bubbles while excluding that of tissue. Although plane-wave-based ultrafast active cavitation imaging (UACI) can monitor the transient activities of cavitation bubbles, its resolution and cavitation-to-tissue ratio (CTR) are barely satisfactory but can be significantly improved by introducing eigenspace-based (ESB) adaptive beamforming. PISH and UACI are a natural combination for imaging of pure cavitation activity in tissue; however, it raises two problems: 1) the ESB beamforming is hard to implement in real time due to the enormous amount of computation associated with the covariance matrix inversion and eigendecomposition and 2) the narrowband characteristic of the subharmonic filter will incur a drastic degradation in resolution. Thus, in order to jointly address these two problems, we propose a new PISH-UACI method using novel fast ESB (F-ESB) beamforming and cavitation deconvolution for nonlinear signals. This method greatly reduces the computational complexity by using F-ESB beamforming through dimensionality reduction based on principal component analysis, while maintaining the high quality of ESB beamforming. The degraded resolution is recovered using cavitation deconvolution through a modified convolution model and compressive deconvolution. Both simulations and in vitro experiments were performed to verify the effectiveness of the proposed method. Compared with the ESB-based PISH-UACI, the entire computation of our proposed approach was reduced by 99%, while the axial resolution gain and CTR were increased by 3 times and 2 dB, respectively, confirming that satisfactory performance can be obtained for monitoring pure cavitation bubbles in tissue erosion.

  3. Synthesis and Thermoelectric Properties of Partially Double-Filled (Ce1- z Pr z ) y Fe4- x Co x Sb12 Skutterudites

    NASA Astrophysics Data System (ADS)

    Cha, Ye-Eun; Shin, Dong-Kil; Kim, Il-Ho

    2018-06-01

    Partially double-filled p-type (Ce1- z Pr z ) y Fe4- x Co x Sb12 ( z = 0.25, 0.75; y = 0.8; x = 0, 0.5, 1.0) skutterudites were synthesized by encapsulated melting and consolidated by hot pressing. The microstructure, phase, charge transport characteristics, and thermoelectric properties of the hot-pressed specimens were analyzed. Detailed measurements indicated that the skutterudite phase was successfully synthesized, but a small amount of a secondary phase (FeSb2) was also identified. However, the amount of the FeSb2 phase decreased with an increase in the Co substitution. Unlike for the filled Ce1- z Pr z Fe4- x Co x Sb12 skutterudites with y = 1, the (Ce,Pr)Sb2 phases were not formed by partial filling with Ce/Pr. The electrical conductivity decreased with increasing temperature, similar to the behavior shown by degenerate semiconductors. The Hall coefficient and the Seebeck coefficients were positive, indicating that all specimens exhibited p-type characteristics. The electrical conductivity and the electronic thermal conductivity decreased with increasing Pr filling and Co substitution because of the decreased carrier concentration caused by charge compensation. A maximum dimensionless figure of merit, ZTmax = 0.84, was obtained at 623 K for (Ce0.75Pr0.25)0.8Fe3CoSb12.

  4. Sequential and simultaneous adsorption of Sb(III) and Sb(V) on ferrihydrite: Implications for oxidation and competition.

    PubMed

    Qi, Pengfei; Pichler, Thomas

    2016-02-01

    Antimony (Sb) is a naturally occurring element of growing environmental concern whose toxicity, adsorption behavior and other chemical properties are similar to that of arsenic (As). However, less is known about Sb compared to As. Individual and simultaneous adsorption experiments with Sb(III) and Sb(V) were conducted in batch mode with focus on the Sb speciation of the remaining liquid phase during individual Sb(III) adsorption experiments. The simultaneous adsorption and oxidation of Sb(III) was confirmed by the appearance of Sb(V) in the solution at varying Fe/Sb ratios (500, 100 and 8) and varying pH values (3.8, 7 and 9). This newly formed Sb(V) was subsequently removed from solution at a Fe/Sb ratio of 500 or at a pH of 3.8. However, more or less only Sb(V) was observed in the liquid phase at the end of the experiments at lower Fe/Sb ratios and higher pH, indicating that competition took place between the newly formed Sb(V) and Sb(III), and that Sb(III) outcompeted Sb(V). This was independently confirmed by simultaneous adsorption experiments of Sb(III) and Sb(V) in binary systems. Under such conditions, the presence of Sb(V) had no influence on the adsorption of Sb(III) while Sb(V) adsorption was significantly inhibited by Sb(III) over a wide pH range (4-10). Thus, in the presence of ferrihydrite and under redox conditions, which allow the presence of both Sb species, Sb(V) should be the dominant species in aquatic environments, since Sb(III) is adsorbed preferentially and at the same time oxidized to Sb(V). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Thermoelectric properties of the unfilled skutterudite FeSb 3 from first principles and Seebeck local probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemal, Sébastien; Nguyen, Ngoc; de Boor, Johannes

    2015-11-16

    In this paper, using a combination of first-principles calculations and experimental transport measurements, we study the electronic and magnetic structure of the unfilled skutterudite FeSb 3. We employ the hybrid functional approach for exchange correlation. The ground state is determined to be antiferromagnetic with an atomic magnetic moment of 1.6μ B/Fe. The Néel temperature T N is estimated at 6 K, in agreement with experiments which found a paramagnetic state down to 10 K. The ground state is semiconducting, with a small electronic gap of 33meV, also consistent with previous experiments on films. Charge carrier concentrations are estimated from Hallmore » resistance measurements. The Seebeck coefficient is measured and mapped using a scanning probe at room temperature that yields an average value of 38.6μVK -1, slightly lower than the theoretical result. Finally, the theoretical conductivity is analyzed as a function of temperature and concentration of charge carriers.« less

  6. Charge Transport and Thermoelectric Properties of (Nd1- z Yb z ) y Fe4- x Co x Sb12 Skutterudites

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Kil; Jang, Kyung-Wook; Choi, Soon-Mok; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho

    2018-06-01

    Partially double-filled (Nd1- z Yb z ) y Fe4- x Co x Sb12 ( z = 0.25, 0.75, y = 0.8, and x = 0, 0.5, 1.0) skutterudites were prepared by encapsulated melting, annealing, and hot pressing, and the effects of Nd/Yb partial double filling and Co charge compensation on the microstructure, charge transport, and thermoelectric properties were investigated. All the specimens were transformed to the skutterudite phase together with a few secondary phases such as FeSb2, but FeSb2 formation was suppressed on increasing Co content. Nd and Yb were successfully double-filled in the voids of the skutterudite lattice and Co was well substituted at Fe sites, as indicated by changes in the lattice constant with Nd/Yb filling and Fe/Co substitution. All the specimens showed p-type conduction and exhibited degenerate semiconductor characteristics at temperatures from 323 K to 823 K, and the charge transport properties depended on the filling ratio of Nd and Yb because of the difference between the valencies of Nd and Yb. The electrical conductivity decreased and the Seebeck coefficient increased owing to a decrease in the carrier concentration with increasing Co content. The lattice thermal conductivity decreased because phonon scattering was enhanced by Nd and Yb partial double filling, but partially double-filled specimens did not exhibit a further significant reduction in the lattice thermal conductivity compared with the completely double-filled specimens. A maximum ZT of 0.83 was obtained for (Nd0.75Yb0.25)0.8Fe3CoSb12 at 723 K.

  7. Calculated and Experimental Vibrational Properties of P700 and the Iron Sulfur Cluster in Photosystem I

    NASA Astrophysics Data System (ADS)

    Lamichhane, Hari; Hastings, Gary

    2009-11-01

    Density functional theory (DFT) based vibrational frequency calculations of Fe4S4(SR)4^n- clusters show that the intense iron-sulfur stretching modes lie in the frequency region between 300-400 cm-1. Among them the iron-sulfur ligand (Fe-S^t) stretching modes are more intense and ˜ 30 cm-1 lower in frequency than the iron-sulfur body (Fe-S^b) stretching modes. Calculations in tetrahydrofuran (THF) show that all these iron-sulfur stretching modes of vibration downshift by ˜ 20 cm-1 upon reduction of the molecule. On the other hand, we have not observed any intense bands from chlorophyll a in the frequency region 400 to 320 cm-1 from the calculations. In an attempt to detect modes associated with iron sulfur clusters in PS I we have obtained light induced (P700^+ - P700) FTIR difference spectra for PSI particles from S. 6803 in the far infrared region. We observe difference bands at many frequencies in the 600-300 cm-1 region. Based on our calculations and literature values we claim that the negative bands at 388 cm-1 and 353 cm-1 in the (P700^+ - P700) FTIR difference spectra be assigned to Fe-S^b and Fe-S^t stretching modes of the ground state of the iron-sulfur cluster FB.

  8. Design, crystal growth, and physical properties of low-temperature thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Fuccillo, Michael K.

    Thermoelectric materials serve as the foundation for two important modern technologies, namely 1) solid-state cooling, which enables small-area refrigeration without vibrations or moving parts, and 2) thermoelectric power generation, which has important implications for waste heat recovery and improved sources of alternative energy. Although the overall field of thermoelectrics research has been active for decades, and several consumer and industrial products have already been commercialized, the design and synthesis of new thermoelectrics that outperform long-standing state of the art materials has proven extremely challenging. This is particularly true for low-temperature refrigeration applications, which is the focus of this work; however, scientific advances in this area generally support power generation as well. In order to achieve more efficient materials for virtually all thermoelectric applications, improved materials design principles must be developed and synthetic procedures must be better understood. We aim to contribute to these goals by studying two classes of materials, namely 1) the tetradymites Bi2TeSe 2 and Bi2Te2Se, which are close relatives of state of the art thermoelectric cooling materials, and 2) Kondo insulating (-like) FeSb2 and FeSi, which possess anomalously enhanced low-temperature thermoelectric properties that arise from exotic electronic and magnetic properties. The organization of this dissertation is as follows: Chapter 1 is a brief perspective on solid-state chemistry. Chapter 2 presents experimental methods for synthesizing and characterizing thermoelectric materials. In Chapter 3, two original research projects are discussed: first, work on the tetradymite Bi2TeSe2 doped with Sb to achieve an n- to p-type transition, and second, the tetradymite Bi2Te2Se with chemical defects through two different methods. Chapter 4 gives the magnetic and transport properties of FeSb 2--RuSb2 alloys, a family of compounds exemplifying what we consider to be the next generation of thermoelectric materials for low-temperature cooling due to their anomalously enhanced low-temperature thermoelectric properties, along with an outlook for seeking additional materials with similarly enhanced properties. Lastly, in Chapter 5, a brief outlook on the future of thermoelectrics is discussed, along with our current and future work on FeSi-RuSi alloys.

  9. Local crystal/chemical structures at iron sites in amorphous, magnetic, and nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Clark, Ted Michael

    Order-disorder phenomena have been examined by means of Mossbauer spectroscopy in a variety of materials, including (a) tektites and other silicate glasses, (b) magnetic materials such as natural and synthetic magnetoplumbite, M-type hexagonal ferrites and magnetite, and (c) nanocrystalline zinc ferrite. A methodology has been established for the analysis of the local crystal/chemical structures of iron in tektites and its application has reconfirmed a low ferric/ferrous ratio of approximately 0.10 for tektites. Additionally, a greater degree of submirocscopic heterogeneity has been established for Muong Nong tektites in comparison with splash form tektites. The dynamics of the 2b site in hexagonal ferrites has been studied above and below the Curie temperature for magnetoplumbite and its synthetic analogs, and also for polycrystalline and oriented single-crystals of MeFesb{12}Osb{19} (Me=Ba, Sr, Pb). Cation ordering on this site is shown to be dependent on the thermal history of the material, while the dynamic disorder of the 2b site for the end-member hexagonal ferrites is shown to be influenced by the divalent heavy metal species, Me. The influence of chemical composition on the morphology of magnetite has been shown to depend on the site preference of impurity cations: Substitutional impurities with tetrahedral site preferences are postulated to result in the seldom-observed cubic habit. Based on the cation distributions of bulk and nanocrystalline material it is held that the enhanced magnetic moments and susceptibilities of nanocrystalline zinc ferrite are shown to be consistent with surface phenomena, independent of synthesis methodology, and contrary to claims of special effects resulting from a particular synthesis methodology.

  10. Understanding the Formation of Kinetically Stable Compounds and the Development of Thin Film Pair Distribution Function Analysis

    NASA Astrophysics Data System (ADS)

    Wood, Suzannah Rebecca

    Navigating the synthesis landscape poses many challenges when developing novel solid state materials. Advancements in both synthesis and characterization are necessary to facilitate the targeting of specific materials. This dissertation discusses the formation of chalcogenide heterostructures and their properties in the first part and the development of thin film pair distribution function analysis (tfPDF) in the second part. The heterostructures were formed by the self-assembly of designed precursors deposited by physical vapor deposition in a modulated elemental reactants approach, which provides the control and predictability to synthesis. Specifically, a series of (BiSe)1+delta(TiSe2) n, where n = 2,3,&4, were synthesized to explore the extent of charge transfer from the BiSe to TiSe2 layers. To further explore the role Bi plays in charge donation, a family of structurally similar compounds, (Bix Sn1-xSe)1+deltaTiSe2, where 0≥x≥1, were synthesized and characterized. Electrical measurements show doping efficiency decreases as x increases, correlated with the structural distortion and the formation of periodic antiphase boundaries containing Bi-Bi pairs. The first heterostructures composed of three unique structural types were synthesized and Bi2Se3 layer thickness was used to tune electrical properties and further explore charge transfer. To better understand the potential energy landscape on which these kinetically stable compounds exist, two investigations were undertaken. The first was a study of the formation and subsequent decomposition of [(BiSe)1+delta]n(TiSe2)n compounds, where n= 2&3, the second an investigation of precursor structure for thermodynamically stable FeSb2 and kinetically stable FeSb3. The second section describes the development of thin film pair distribution function analysis, a technique in which total scattering data for pair distribution function (PDF) analysis is obtained from thin films, suitable for local structure analysis. This study illustrates how analysis of the local structure in amorphous precursor films can help to understand the crystallization processes of metastable phases and enables a range of new local structure studies of thin films. tfPDF was then demonstrated on In-Ga-O film materials and compared to traditional powder PDF analysis. This highlights differences between the products, and the utility of tfPDF to determined structural features of amorphous materials. This dissertation includes previously published and unpublished co-authored materials.

  11. Thermodynamic Analysis of Oxygen-Enriched Direct Smelting of Jamesonite Concentrate

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-Tang; Dai, Xi; Zhang, Wen-Hai

    2017-12-01

    Thermodynamic analysis of oxygen-enriched direct smelting of jamesonite concentrate is reported in this article. First, the occurrence state of lead, antimony and other metallic elements in the smelting process was investigated theoretically. Then, the verification test was carried out. The results indicate that lead and antimony mainly exist in the alloy in the form of metallic lead and metallic antimony. Simultaneously, lead and antimony were also oxidized into the slag in the form of lead-antimony oxide. Iron and copper could be oxidized into the slag in the form of oxides in addition to combining with antimony in the alloy, while zinc was mainly oxidized into the slag in the form of zinc oxide. The verification test indicates that the main phases in the alloy contain metallic lead, metallic antimony and a small amount of Cu2Sb, FeSb2 intermetallic compounds, and the slag is mainly composed of kirschsteinite, fayalite and zinc oxide, in agreement with the thermodynamic analysis.

  12. Synthesis of a fiber-optic magnetostrictive sensor (FOMS) pixel for RF magnetic field imaging

    NASA Astrophysics Data System (ADS)

    Rengarajan, Suraj

    The principal objective of this dissertation was to synthesize a sensor element with properties specifically optimized for integration into arrays capable of imaging RF magnetic fields. The dissertation problem was motivated by applications in nondestructive eddy current testing, smart skins, etc., requiring sensor elements that non-invasively detect millimeter-scale variations over several square meters, in low level magnetic fields varying at frequencies in the 100 kHz-1 GHz range. The poor spatial and temporal resolution of FOMS elements available prior to this dissertation research, precluded their use in non-invasive large area mapping applications. Prior research had been focused on large, discrete devices for detecting extremely low level magnetic fields varying at a few kHz. These devices are incompatible with array integration and imaging applications. The dissertation research sought to overcome the limitations of current technology by utilizing three new approaches; synthesizing magnetostrictive thin films and optimizing their properties for sensor applications, integrating small sensor elements into an array compatible fiber optic interferometer, and devising a RF mixing approach to measure high frequency magnetic fields using the integrated sensor element. Multilayer thin films were used to optimize the magnetic properties of the magnetostrictive elements. Alternating soft (Nisb{80}Fesb{20}) and hard (Cosb{50}Fesb{50}) magnetic alloy layers were selected for the multilayer and the layer thicknesses were varied to obtain films with a combination of large magnetization, high frequency permeability and large magnetostrictivity. X-Ray data and measurement of the variations in the magnetization, resistivity and magnetostriction with layer thicknesses, indicated that an interfacial layer was responsible for enhancing the sensing performance of the multilayers. A FOMS pixel was patterned directly onto the sensing arm of a fiber-optic interferometer, by sputtering a multilayer film with favorable sensor properties. After calibrating the interferometer response with a piezo, the mechanical and magnetic responses of the FOMS element were evaluated for various test fields. High frequency magnetic fields were detected using a local oscillator field to downconvert the RF signal fields to the lower mechanical resonant frequency of the element. A field sensitivity of 0.3 Oe/cm sensor element length was demonstrated at 1 MHz. A coherent magnetization rotation model was developed to predict the magnetostrictive response of the element, and identify approaches for optimizing its performance. This model predicts that an optimized element could resolve ˜1 mm variations in fields varying at frequencies >10 MHz with a sensitivity of ˜10sp{-3} Oe/mm. The results demonstrate the potential utility of integrating this device as a FOMS pixel in RF magnetic field imaging arrays.

  13. Power-Generation Characteristics After Vibration and Thermal Stresses of Thermoelectric Unicouples with CoSb3/Ti/Mo(Cu) Interfaces

    NASA Astrophysics Data System (ADS)

    Bae, Kwang Ho; Choi, Soon-Mok; Kim, Kyung-Hun; Choi, Hyoung-Seuk; Seo, Won-Seon; Kim, Il-Ho; Lee, Soonil; Hwang, Hae Jin

    2015-06-01

    Reliability tests for thermoelectric unicouples were carried out to investigate the adhesion properties of CoSb3/Ti/Mo(Cu) interfaces. The n-type In0.25 Co3.95Ni0.05Sb12 and p-type In0.25Co3FeSb12 bulks were prepared for fabricating a thermoelectric unicouple (one p- n couple) by an induction melting and a spark plasma sintering process. Mo-Cu alloy was selected as an electrode for the unicouples due to its high melting temperature and proper work function value. Many thermoelectric unicouples with the CoSb3/Ti/Mo(Cu) interfaces were fabricated with the proper brazing materials by means of a repeated firing process. Reliability of the unicouples with the interfaces was evaluated by a vibration test and a thermal cycling test. After the thermal cycling and vibration tests, the power-generation characteristics of the unicouples were compared with the unicouples before the tests. Even after the vibration test, electrical power with a power density of 0.5 W/cm2 was generated. The Ti-interlayer is considered as a possible candidate for making a reliable unicouple with high adhesion strength. With the thermal cycling test, the resistance of the unicouple increased and the electrical power from the unicouple decreased. A failure mode by the thermal cycling test was ascribed to a complex effect of micro-cracks originated from the thermal stress and oxidation problem of the thermoelectric materials; that is, a thick oxide layer more than 300 μm was detected after a high-temperature durability test of n-type In0.25Co3.95Ni0.05Sb12 material at 773 K in air for 7 days.

  14. Thermoelectricity in correlated narrow-gap semiconductors

    NASA Astrophysics Data System (ADS)

    Tomczak, Jan M.

    2018-05-01

    We review many-body effects, their microscopic origin, as well as their impact on thermoelectricity in correlated narrow-gap semiconductors. Members of this class—such as FeSi and FeSb2—display an unusual temperature dependence in various observables: insulating with large thermopowers at low temperatures, they turn bad metals at temperatures much smaller than the size of their gaps. This insulator-to-metal crossover is accompanied by spectral weight-transfers over large energies in the optical conductivity and by a gradual transition from activated to Curie–Weiss-like behaviour in the magnetic susceptibility. We show a retrospective of the understanding of these phenomena, discuss the relation to heavy-fermion Kondo insulators—such as Ce3Bi4Pt3 for which we present new results—and propose a general classification of paramagnetic insulators. From the latter, FeSi emerges as an orbital-selective Kondo insulator. Focussing on intermetallics such as silicides, antimonides, skutterudites, and Heusler compounds we showcase successes and challenges for the realistic simulation of transport properties in the presence of electronic correlations. Further, we explore new avenues in which electronic correlations may contribute to the improvement of thermoelectric performance.

  15. Oriented MOF-polymer Composite Nanofiber Membranes for High Proton Conductivity at High Temperature and Anhydrous Condition

    PubMed Central

    Wu, Bin; Pan, Jiefeng; Ge, Liang; Wu, Liang; Wang, Huanting; Xu, Tongwen

    2014-01-01

    The novel oriented electrospun nanofiber membrane composed of MOFs and SPPESK has been synthesized for proton exchange membrane fuel cell operating at high temperature and anhydrous conditions. It is clear that the oriented nanofiber membrane displays the higher proton conductivity than that of the disordered nanofiber membrane or the membrane prepared by conventional solvent-casting method (without nanofibers). Nanofibers within the membranes are significantly oriented. The proton conductivity of the oriented nanofiber membrane can reach up to (8.2 ± 0.16) × 10−2 S cm−1 at 160°C under anhydrous condition for the highly orientation of nanofibers. Moreover, the oxidative stability and resistance of methanol permeability of the nanofibers membrane are obviously improved with an increase in orientation of nanofibers. The observed methanol permeability of 0.707 × 10−7 cm2 s−1 is about 6% of Nafion-115. Consequently, orientated nanofibers membrane is proved to be a promising material as the proton exchange membrane for potential application in direct methanol fuel cells. PMID:25082522

  16. Orientation of Zn3P2 films via phosphidation of Zn precursors

    NASA Astrophysics Data System (ADS)

    Katsube, Ryoji; Nose, Yoshitaro

    2017-02-01

    Orientation of solar absorber is an important factor to achieve high efficiency of thin film solar cells. In the case of Zn3P2 which is a promising absorber of low-cost and high-efficiency solar cells, (110)/(001) orientation was only reported in previous studies. We have successfully prepared (101)-oriented Zn3P2 films by phosphidation of (0001)-oriented Zn films at 350 °C. The phosphidation mechanism of Zn is discussed through STEM observations on the partially-reacted sample and the consideration of the relationship between the crystal structures of Zn and Zn3P2 . We revealed that (0001)-oriented Zn led to nucleation of (101)-oriented Zn3P2 due to the similarity in atomic arrangement between Zn and Zn3P2 . The electrical resistivity of the (101)-oriented Zn3P2 film was lower than those of (110)/(001)-oriented films, which is an advantage of the phosphidation technique to the growth processes in previous works. The results in this study demonstrated that well-conductive Zn3P2 films could be obtained by controlling orientations of crystal grains, and provide a guiding principle for microstructure control in absorber materials.

  17. Highly oriented diamond films on Si: growth, characterization, and devices

    NASA Astrophysics Data System (ADS)

    Stoner, Brian R.; Malta, D. M.; Tessmer, A. J.; Holmes, J.; Dreifus, David L.; Glass, R. C.; Sowers, A.; Nemanich, Robert J.

    1994-04-01

    Highly oriented, (100) textured diamond films have been grown on single-crystal Si substrates via microwave plasma enhanced chemical vapor deposition. A multistep deposition process including bias-enhanced nucleation and textured growth was used to obtain smooth films consisting of epitaxial grains with only low-angle grain boundaries. Boron-doped layers were selectively deposited onto the surface of these oriented films and temperature-dependent Hall effect measurements indicated a 3 to 5 times improvement in hole mobility over polycrystalline films grown under similar conditions. Room temperature hole mobilities between 135 and 278 cm2/V-s were measured for the highly oriented samples as compared to 2 to 50 cm2/V-s for typical polycrystalline films. Grain size effects and a comparison between the transport properties of polycrystalline, highly oriented and homoepitaxial films will be discussed. Metal-oxide- semiconductor field-effect transistors were then fabricated on the highly oriented films and exhibited saturation and pinch-off of the channel current.

  18. Polarized emission from light-emitting electrochemical cells using uniaxially oriented polymer thin films of poly(9,9-dioctylfluorene-co-bithiophene)

    NASA Astrophysics Data System (ADS)

    Miyazaki, Masumi; Sakanoue, Tomo; Takenobu, Taishi

    2018-03-01

    Uniaxially oriented poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) films were prepared on rubbed polyimide substrates and applied to emitting layers of light-emitting electrochemical cells (LECs). The layered structure of the uniaxially oriented F8T2 film and ionic liquid electrolytes enabled us to demonstrate LEC operations with high anisotropic characteristics both in emission and charge transport. Polarized electroluminescence (EL) from electrochemically induced p-n junctions in the uniaxially oriented F8T2 was obtained. The dichroic ratios of EL were the same as those of photoluminescence, suggesting that the doping process into the oriented F8T2 did not interrupt the polymer ordering. This indicates the usefulness of the layered structure of the polymer/electrolyte for the fabrication of LECs based on highly oriented polymer films. In addition, uniaxially oriented F8T2 was found to show reduced threshold energy in optically pumped amplified spontaneous emission. These demonstrations suggest the advantage of uniaxially oriented polymer-based LECs for potential application in future electrically pumped lasers.

  19. The Representation of Orientation in Macaque V2: Four Stripes Not Three

    PubMed Central

    Felleman, Daniel J.; Lim, Heejin; Xiao, Youping; Wang, Yi; Eriksson, Anastasia; Parajuli, Arun

    2015-01-01

    Area V2 of macaque monkeys is traditionally thought to consist of 3 distinct functional compartments with characteristic cortical connections and functional properties. Orientation selectivity is one property that has frequently been used to distinguish V2 stripes, however, this receptive field property has been found in a high percentage of neurons across V2 compartments. Using quantitative intrinsic cortical imaging, we derived maps of preferred orientation, orientation selectivity, and orientation gradient in thin stripes, thick stripes, and interstripes in area V2. Orientation-selective responses were found in each V2 stripe, but the magnitude and organization of orientation selectivity differed significantly from stripe to stripe. Remarkably, the 2 pale stripes flanking each cytochrome oxidase dense stripe differed significantly in their representation of orientation resulting in their distinction as type-I and type-II interstripes. V2 orientation maps are characterized by clockwise and anticlockwise “orientation pinwheels”, but unlike V1, they are not homogeneously distributed across V2. Furthermore, V2 stripes contain large-scale sequences of preferred orientation. These analyses demonstrate that V2 consists of 4 distinct functional compartments; thick stripes and type-II interstripes, which are strongly orientation selective and thin stripes and type-I interstripes, which are significantly less selective for orientation and exhibit larger orientation gradient magnitudes. PMID:24614951

  20. Oriented Pt Nanoparticles Supported on Few-Layers Graphene as Highly Active Catalyst for Aqueous-Phase Reforming of Ethylene Glycol.

    PubMed

    Esteve-Adell, Iván; Bakker, Nadia; Primo, Ana; Hensen, Emiel; García, Hermenegildo

    2016-12-14

    Pt nanoparticles (NPs) strongly grafted on few-layers graphene (G) have been prepared by pyrolysis under inert atmosphere at 900 °C of chitosan films (70-120 nm thickness) containing adsorbed H 2 PtCl 6 . Preferential orientation of exposed Pt facets was assessed by X-ray diffraction of films having high Pt loading where the 111 and 222 diffraction lines were observed and also by SEM imaging comparing elemental Pt mapping with the image of the 111 oriented particles. Characterization techniques allow determination of the Pt content (from 45 ng to 1 μg cm -2 , depending on the preparation conditions), particle size distribution (9 ± 2 nm), and thickness of the films (12-20 nm). Oriented Pt NPs on G exhibit at least 2 orders of magnitude higher catalytic activity for aqueous-phase reforming of ethylene glycol to H 2 and CO 2 compared to analogous samples of randomly oriented Pt NPs supported on preformed graphene. Oriented [Formula: see text]/fl-G undergoes deactivation upon reuse, the most probable cause being Pt particle growth, probably due to the presence of high concentrations of carboxylic acids acting as mobilizing agents during the course of the reaction.

  1. Student Engagement in High School Physical Education: Do Social Motivation Orientations Matter?

    ERIC Educational Resources Information Center

    Garn, Alex; Ware, David R.; Solmon, Melinda A.

    2011-01-01

    High school physical education classes provide students with numerous opportunities for social interactions, but few studies have explored how social strivings impact class engagement. The purpose of this study was to investigate the relationships among 2 x 2 achievement goals, social motivation orientations, and effort in high school physical…

  2. Moxie matters: associations of future orientation with active life expectancy.

    PubMed

    Laditka, Sarah B; Laditka, James N

    2017-10-01

    Being oriented toward the future has been associated with better future health. We studied associations of future orientation with life expectancy and the percentage of life with disability. We used the Panel Study of Income Dynamics (n = 5249). Participants' average age in 1968 was 33.0. Six questions repeatedly measured future orientation, 1968-1976. Seven waves (1999-2011, 33,331 person-years) measured disability in activities of daily living for the same individuals, whose average age in 1999 was 64.0. We estimated monthly probabilities of disability and death with multinomial logistic Markov models adjusted for age, sex, race/ethnicity, childhood health, and education. Using the probabilities, we created large populations with microsimulation, measuring disability in each month for each individual, age 55 through death. Life expectancy from age 55 for white men with high future orientation was age 77.6 (95% confidence interval 75.5-79.0), 6.9% (4.9-7.2) of those years with disability; results with low future orientation were 73.6 (72.2-75.4) and 9.6% (7.7-10.7). Comparable results for African American men were 74.8 (72.9-75.3), 8.1 (5.6-9.3), 71.0 (69.6-72.8), and 11.3 (9.1-11.7). For women, there were no significant differences associated with levels of future orientation for life expectancy. For white women with high future orientation 9.1% of remaining life from age 55 was disabled (6.3-9.9), compared to 12.4% (10.2-13.2) with low future orientation. Disability results for African American women were similar but statistically significant only at age 80 and over. High future orientation during early to middle adult ages may be associated with better health in older age.

  3. Supramolecular order and structural dynamics: A STM study of 2H-tetraphenylporphycene on Cu(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Michael; Träg, Johannes; Ditze, Stefanie

    2015-03-14

    The adsorption of 2H-tetraphenylporphycene (2HTPPc) on Cu(111) was investigated by scanning tunneling microscopy (STM). At medium coverages, supramolecular ordered islands are observed. The individual 2HTPPc molecules appear as two pairs of intense protrusions which are separated by an elongated depression. In the islands, the molecules are organized in rows oriented along one of the close packed Cu(111) substrate rows; the structure is stabilized by T-type interactions of the phenyl substituents of neighboring molecules. Two types of rows are observed, namely, highly ordered rows in which all molecules exhibit the same orientation, and less ordered rows in which the molecules exhibitmore » two perpendicular orientations. Altogether, three different azimuthal orientations of 2HTPPc are observed within one domain, all of them rotated by 15° ± 1° relative to one closed packed Cu direction. The highly ordered rows are always separated by either one or two less ordered rows, with the latter structure being the thermodynamically more stable one. The situation in the islands is highly dynamic, such that molecules in the less ordered rows occasionally change orientation, also complete highly ordered rows can move. The supramolecular order and structural dynamics are discussed on the basis of the specific molecule-substrate and molecule-molecule interactions.« less

  4. Culture and social hierarchy: Self- and other-oriented correlates of socioeconomic status across cultures.

    PubMed

    Miyamoto, Yuri; Yoo, Jiah; Levine, Cynthia S; Park, Jiyoung; Boylan, Jennifer Morozink; Sims, Tamara; Markus, Hazel Rose; Kitayama, Shinobu; Kawakami, Norito; Karasawa, Mayumi; Coe, Christopher L; Love, Gayle D; Ryff, Carol D

    2018-05-17

    Current theorizing on socioeconomic status (SES) focuses on the availability of resources and the freedom they afford as a key determinant of the association between high SES and stronger orientation toward the self and, by implication, weaker orientation toward others. However, this work relies nearly exclusively on data from Western countries where self-orientation is strongly sanctioned. In the present work, we predicted and found that especially in East Asian countries, where other-orientation is strongly sanctioned, high SES is associated with stronger other-orientation as well as with self-orientation. We first examined both psychological attributes (Study 1, N = 2,832) and socialization values (Study 2a, N = 4,675) in Japan and the United States. In line with the existent evidence, SES was associated with greater self-oriented psychological attributes and socialization values in both the U.S. and Japan. Importantly, however, higher SES was associated with greater other orientation in Japan, whereas this association was weaker or even reversed in the United States. Study 2b (N = 85,296) indicated that the positive association between SES and self-orientation is found, overall, across 60 nations. Further, Study 2b showed that the positive association between SES and other-orientation in Japan can be generalized to other Confucian cultures, whereas the negative association between SES and other-orientation in the U.S. can be generalized to other Frontier cultures. Implications of the current findings for modernization and globalization are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. GO-guided direct growth of highly oriented metal-organic framework nanosheet membranes for H2/CO2 separation.

    PubMed

    Li, Yujia; Liu, Haiou; Wang, Huanting; Qiu, Jieshan; Zhang, Xiongfu

    2018-05-07

    Highly oriented, ultrathin metal-organic framework (MOF) membranes are attractive for practical separation applications, but the scalable preparation of such membranes especially on standard tubular supports remains a huge challenge. Here we report a novel bottom-up strategy for directly growing a highly oriented Zn 2 (bIm) 4 (bIm = benzimidazole) ZIF nanosheet tubular membrane, based on graphene oxide (GO) guided self-conversion of ZnO nanoparticles (NPs). Through our approach, a thin layer of ZnO NPs confined between a substrate and a GO ultrathin layer self-converts into a highly oriented Zn 2 (bIm) 4 nanosheet membrane. The resulting membrane with a thickness of around 200 nm demonstrates excellent H 2 /CO 2 gas separation performance with a H 2 performance of 1.4 × 10 -7 mol m -2 s -1 Pa -1 and an ideal separation selectivity of about 106. The method can be easily scaled up and extended to the synthesis of other types of Zn-based MOF nanosheet membranes. Importantly, our strategy is particularly suitable for the large-scale fabrication of tubular MOF membranes that has not been possible through other methods.

  6. Strain and in-plane orientation effects on the ferroelectricity of (111)-oriented tetragonal Pb(Zr0.35Ti0.65)O3 thin films prepared by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kuwabara, Hiroki; Menou, Nicolas; Funakubo, Hiroshi

    2007-05-01

    The growth and characterization of epitaxial (111)-oriented Pb(Zr0.35Ti0.65)O3 films deposited by metal organic chemical vapor deposition on (100)-oriented silicon substrates [(111)SrRuO3‖(111)Pt ‖(100)yttria-stabilizedzirconia‖(100)Si] are reported. The orientation, microstructure, and electric properties of these films are compared to those of fiber-textured highly (111)-oriented lead zirconate titanate (PZT) films deposited on (111)SrRuO3/(111)Pt/TiOx/SiO2/(100)Si substrates and epitaxial (111)-oriented PZT films deposited on (111)SrRuO3‖(111)SrTiO3 substrates. The ferroelectric properties of these films are not drastically influenced by the in-plane orientation of the film and by the strain state imposed by the underlying substrate. These results support the use of fiber-textured highly (111)-oriented films in highly stable ferroelectric capacitors.

  7. A Protocol-Analytic Study of Metacognition in Mathematical Problem Solving.

    ERIC Educational Resources Information Center

    Cai, Jinfa

    1994-01-01

    Metacognitive behaviors of subjects having high (n=2) and low (n=2) levels of mathematical experience were compared across four cognitive processes in mathematical problem solving: orientation, organization, execution, and verification. High-experience subjects engaged in self-regulation and spent more time on orientation and organization. (36…

  8. The transient oxidation of single crystal NiAl+Zr. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Doychak, J. K.

    1983-01-01

    The 800 C oxidation of oriented single crystals of Zr doped beta-NiAl was studied using transmission electron microscopy. The oxide phases and metal-oxide orientation relationships were determined to characterize the transient stages of oxidation prior to the transformation to or formation of alpha-Al2O3. On (001) and (012) metal orientations, NiAl2O4 was the first oxide to form followed by delta-Al2O3 which becomes the predominant oxide phase. All oxides were highly epitaxially related to the metal; the orientation relationships being function of parallel cation close-packed directions in the meta and oxide. On (011) and (111) metal orientations, gamma-Al2O3 became the predominant oxide phase rather than delta-Al2O3, indicating a structural stability from the highly epitaxial oxides. The relative concentration of aluminum in the oxide scales increased with time indicating preferential gamma-or delta-Al2O3 growth. The striking feature common to the orientation relationships is the alignment of 100 m and 110 ox directions, believed to result from the minimal 3 percent mismatch between the corresponding (100)m and (110)ox planes.

  9. Magnetism in Na-filled Fe-based skutterudites

    DOE PAGES

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; ...

    2015-06-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. We investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe 4Sb 12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for amore » material near an itinerant ferromagnetic quantum critical point. NaFe 4P 12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe 4Sb 12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe 4As 12 shows intermediate behavior. We also present results for skutterudite FeSb 3, which is a metastable phase that has been reported in thin film form.« less

  10. Reactions to a health threat: dispositional threat orientations and message characteristics.

    PubMed

    Thompson, Suzanne C; Schlehofer, Michèle M; Gonzalez, Amelia; Denison, Elizabeth

    2011-05-01

    This study explored the interactive effects of dispositional threat orientation, type of message, and having children on reactions to a message about exposure to bisphenol A (BPA) in plastics. The study used a 2 (message: Fear Arousal or Plain)×2 (parenting status: child or no child)×2 (threat orientation: high or low) mixed factorial design. Adults (N= 200) recruited via the Internet completed measures of threat orientations, reported whether they were a parent, and read either a low or high fear-arousal message about the risks of BPA exposure. They then completed measures of reactions to the message (perceived susceptibility to BPA effects, negative emotions, and behavioural intentions to engage in protection). Depending on threat orientations, the fear arousal version of the message and parenthood had strikingly different effects, ranging from no effect (for those high in a control-based approach) to prompting change (for those low in a control-based approach) to counterproductive (for those high in an optimistic denial approach). These findings suggest that considering individual differences and their interactions with situational factors could improve both the predictive ability of threat protection theories and the delivery of messages intended to change behaviour. ©2010 The British Psychological Society.

  11. High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film

    PubMed Central

    Primo, Ana; Esteve-Adell, Ivan; Blandez, Juan F.; Dhakshinamoorthy, Amarajothi; Álvaro, Mercedes; Candu, Natalia; Coman, Simona M.; Parvulescu, Vasile I.; García, Hermenegildo

    2015-01-01

    Metal oxide nanoparticles supported on graphene exhibit high catalytic activity for oxidation, reduction and coupling reactions. Here we show that pyrolysis at 900 °C under inert atmosphere of copper(II) nitrate embedded in chitosan films affords 1.1.1 facet-oriented copper nanoplatelets supported on few-layered graphene. Oriented (1.1.1) copper nanoplatelets on graphene undergo spontaneous oxidation to render oriented (2.0.0) copper(I) oxide nanoplatelets on few-layered graphene. These films containing oriented copper(I) oxide exhibit as catalyst turnover numbers that can be three orders of magnitude higher for the Ullmann-type coupling, dehydrogenative coupling of dimethylphenylsilane with n-butanol and C–N cross-coupling than those of analogous unoriented graphene-supported copper(I) oxide nanoplatelets. PMID:26509224

  12. Feeling Better When Someone Is Alike: Poor Emotion Regulators Profit From Pro-Social Values and Priming for Similarities With Close Others.

    PubMed

    Chatterjee, Monischa B; Baumann, Nicola; Koole, Sander L

    2017-12-01

    The dispositional inability to self-regulate one's own emotions intuitively is described as state orientation and has been associated with numerous psychological impairments. The necessity to search for buffering effects against negative outcomes of state orientation is evident. Research suggests that state-oriented individuals can benefit from feeling close to others. Yet, there are individual differences in the extent to which supportive relationships are valued. The objective of the present article was to examine whether high importance of relatedness increases the utilization of its situational activation among state-oriented individuals. In two studies, we examined whether situational activation of relatedness (by priming for similarities with a close other) is particularly advantageous for state-oriented individuals who attach high importance to relatedness (i.e., benevolence values). The sample consisted of 170 psychology undergraduates in Study 1 and 177 in Study 2. In both studies, state-oriented participants high in benevolence had reduced negative mood after thinking about similarities (vs. differences). State-oriented participants low in benevolence did not benefit from priming for similarities. In Study 2, physical presence of a close other did not boost priming effects for state-oriented participants but stimulated action-oriented participants to attune their self-regulatory efforts to the context. The results show that state-oriented individuals who value benevolence do benefit from a situational activation of relatedness. © 2016 Wiley Periodicals, Inc.

  13. Edge orientations of mechanically exfoliated anisotropic two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Yang, Juntan; Wang, Yi; Li, Yinfeng; Gao, Huajian; Chai, Yang; Yao, Haimin

    2018-03-01

    Mechanical exfoliation is an approach widely applied to prepare high-quality two-dimensional (2D) materials for investigating their intrinsic physical properties. During mechanical exfoliation, in-plane cleavage results in new edges whose orientations play an important role in determining the properties of the as-exfoliated 2D materials especially those with high anisotropy. Here, we systematically investigate the factors affecting the edge orientation of 2D materials obtained by mechanical exfoliation. Our theoretical study manifests that the fractured direction during mechanical exfoliation is determined synergistically by the tearing direction and material anisotropy of fracture energy. For a specific 2D material, our theory enables us to predict the possible edge orientations of the exfoliated flakes as well as their occurring probabilities. The theoretical prediction is experimentally verified by examining the inter-edge angles of the exfoliated flakes of four typical 2D materials including graphene, MoS2, PtS2, and black phosphorus. This work not only sheds light on the mechanics of exfoliation of the 2D materials but also provides a new approach to deriving information of edge orientations of mechanically exfoliated 2D materials by data mining of their macroscopic geometric features.

  14. Epitaxial growth of single-orientation high-quality MoS2 monolayers

    NASA Astrophysics Data System (ADS)

    Bana, Harsh; Travaglia, Elisabetta; Bignardi, Luca; Lacovig, Paolo; Sanders, Charlotte E.; Dendzik, Maciej; Michiardi, Matteo; Bianchi, Marco; Lizzit, Daniel; Presel, Francesco; De Angelis, Dario; Apostol, Nicoleta; Das, Pranab Kumar; Fujii, Jun; Vobornik, Ivana; Larciprete, Rosanna; Baraldi, Alessandro; Hofmann, Philip; Lizzit, Silvano

    2018-07-01

    We present a study on the growth and characterization of high-quality single-layer MoS2 with a single orientation, i.e. without the presence of mirror domains. This single orientation of the MoS2 layer is established by means of x-ray photoelectron diffraction. The high quality is evidenced by combining scanning tunneling microscopy with x-ray photoelectron spectroscopy measurements. Spin- and angle-resolved photoemission experiments performed on the sample revealed complete spin-polarization of the valence band states near the K and -K points of the Brillouin zone. These findings open up the possibility to exploit the spin and valley degrees of freedom for encoding and processing information in devices that are based on epitaxially grown materials.

  15. Oriented thin films of mixture of a low-bandgap polymer and a fullerene derivative prepared by friction-transfer method

    NASA Astrophysics Data System (ADS)

    Tanigaki, Nobutaka; Mizokuro, Toshiko; Miyadera, Tetsuhiko; Shibata, Yousei; Koganezawa, Tomoyuki

    2018-02-01

    We have been studying oriented thin films of polymers fabricated by the friction-transfer method, which allows the alignment of a variety of conjugated polymers into highly oriented films. In this study, we prepared oriented blend films of a mixture of a low-bandgap polymer, poly{4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl} (PTB7), and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), which is a promising combination for application in organic solar cells. We obtained oriented blend films of PTB7 and PC71BM by the friction-transfer method from a solid block. Polarized UV-visible spectra show that the PTB7 chains were aligned parallel to the friction direction in the blend films. Grazing-incidence X-ray diffraction (GIXD) studies with synchrotron radiation suggested that the preferred orientation of PTB7 crystallites was face-on in the blend films. The GIXD results also showed the high uniaxial orientation of PTB7 chains in blend films. Photovoltaic devices were fabricated using the friction-transferred blend films of the PTB7 and PC71BM. These bulk heterojunction devices showed better performance than planar heterojunction devices fabricated using pure friction-transferred PTB7 films.

  16. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components

    NASA Astrophysics Data System (ADS)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Edwards, Danny J.; Chou, Yeong-Shyung; Cramer, Carolyn N.

    Oxidation-resistant alloys find use as interconnect materials, heat exchangers, and gas supply tubing in solid oxide fuel cell (SOFC) systems, especially when operated at temperatures below ∼800 °C. If fueled with synthesis gas derived from coal or biomass, such metallic components could be exposed to impurities contained in those fuel sources. In this study, coupons of ferritic stainless steels Crofer 22 APU and SS 441, austenitic nickel-chromium superalloy Inconel 600, and an alumina-forming high nickel alloy alumel were exposed to synthesis gas containing ≤2 ppm phosphorus, arsenic and antimony, and reaction products were tested. Crofer 22 APU coupons coated with a (Mn,Co) 3O 4 protective layer were also evaluated. Phosphorus was found to be the most reactive. On Crofer 22 APU, the (Mn,Cr) 3O 4 passivation layer reacted to form an Mn-P-O product, predicted to be manganese phosphate from thermochemical calculations, and Cr 2O 3. On SS 441, reaction of phosphorus with (Mn,Cr) 3O 4 led to the formation of manganese phosphate as well as an Fe-P product, predicted from thermochemical calculations to be Fe 3P. Minimal interactions with antimony or arsenic in synthesis gas were limited to Fe-Sb and Fe-As solid solution formation. Though not intended for use on the anode side, a (Mn,Co) 3O 4 spinel coating on Crofer 22 APU reacted with phosphorus in synthesis gas to produce products consistent with Mn 3(PO 4) 2 and Co 2P. A thin Cr 2O 3 passivation layer on Inconel 600 did not prevent the formation of nickel phosphides and arsenides and of iron phosphides and arsenides, though no reaction with Cr 2O 3 was apparent. On alumel, an Al 2O 3 passivation layer rich in Ni did not prevent the formation of nickel phosphides, arsenides, and antimonides, though no reaction with Al 2O 3 occurred. This work shows that unprotected metallic components of an SOFC stack and system can provide a sink for P, As and Sb impurities that may be present in fuel gases, and thus complicate experimental studies of impurity interactions with the anode.

  17. Simulation of Orientation in Injection Molding of High Aspect Ratio Particle Thermoplastic Composites

    NASA Astrophysics Data System (ADS)

    Vélez-García, Gregorio M.; Ortman, Kevin C.; Eberle, Aaron P. R.; Wapperom, Peter; Baird, Donald G.

    2008-07-01

    A 2D coupled Hele-Shaw flow approximation for predicting the flow-induced orientation of high aspect ratio particles in injection molded composite parts is presented. For a highly concentrated short glass fiber PBT suspension, the impact of inter-particle interactions and the orientation at the gate is investigated for a center-gated disk using material parameters determined from rheometry. Experimental orientation is determined from confocal laser micrographs using the methods of ellipses. The constitutive equations are discretized using discontinuous Galerkin Finite Elements. Model predictions are significantly improved by using a localized orientation measured experimentally at the gate region instead of random or averaged gapwise measured orientation assumed in previous studies. The predicted profile in different radial positions can be related to the layered structure along the gapwise direction. Model modifications including interactions have lower impact than the initial conditions.

  18. Electroluminescence from completely horizontally oriented dye molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komino, Takeshi; Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395; Japan Science and Technology Agency, ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395

    2016-06-13

    A complete horizontal molecular orientation of a linear-shaped thermally activated delayed fluorescent guest emitter 2,6-bis(4-(10Hphenoxazin-10-yl)phenyl)benzo[1,2-d:5,4-d′] bis(oxazole) (cis-BOX2) was obtained in a glassy host matrix by vapor deposition. The orientational order of cis-BOX2 depended on the combination of deposition temperature and the type of host matrix. Complete horizontal orientation was obtained when a thin film with cis-BOX2 doped in a 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) host matrix was fabricated at 200 K. The ultimate orientation of guest molecules originates from not only the kinetic relaxation but also the kinetic stability of the deposited guest molecules on the film surface during film growth. Utilizing the ultimatemore » orientation, a highly efficient organic light-emitting diode with the external quantum efficiency of 33.4 ± 2.0% was realized. The thermal stability of the horizontal orientation of cis-BOX2 was governed by the glass transition temperature (T{sub g}) of the CBP host matrix; the horizontal orientation was stable unless the film was annealed above T{sub g}.« less

  19. 100-Fold Enhancement of Charge Transport in Uniaxially Oriented Mesoporous Anatase TiO 2 Films

    DOE PAGES

    Li, Ke; Liu, Jie; Sheng, Xia; ...

    2017-12-04

    Mesoporous semiconductor films are of considerable interest for applications in photoelectrochemical devices, however, despite intensive research till now, their charge transport properties remain significantly lower than their single-crystal counterparts. Herein, we report a novel low-temperature template-free technique for growing high surface area mesoporous anatase TiO2 films with a preferred [001] crystalline-orientation on FTO-coated glass substrate. Compared to mesoporous films that comprised of randomly oriented crystallites, the uniaxial orientation enables a 100-fold increase in the rate of electron transport. The uniaxially oriented mesoporous anatase TiO2 films exhibit should greatly facilitate the development and application of photoelectrochemical and electrochemical devices.

  20. Centrosymmetry vs noncentrosymmetry in La2Ga0.33SbS5 and Ce4GaSbS9 based on the interesting size effects of lanthanides: Syntheses, crystal structures, and optical properties

    NASA Astrophysics Data System (ADS)

    Zhao, Hua-Jun

    2016-05-01

    Two new quaternary sulfides La2Ga0.33SbS5 and Ce4GaSbS9 have been prepared from stoichiometric elements at 1223 K in an evacuated silica tube. Interestingly, La2Ga0.33SbS5 crystallizes in the centrosymmetric structure, while Ce4GaSbS9 crystallizes in the noncentrosymmetric structure, which show obvious size effects of lanthanides on the crystal structures of these two compounds. Ce4GaSbS9 belongs to RE4GaSbS9 (RE=Pr, Nd, Sm, Gd-Ho) structure type with a=13.8834(9) Å, b=14.3004(11) Å, c=14.4102(13) Å, V=2861.0(4) Å3. The structure features infinite chains of [Ga2Sb2S1110-]∞ propagating along a direction separated by Ce3+ cations and S2- anions. La2Ga0.33SbS5 adopts the family of La4FeSb2S10-related structure with a=7.5193(6) Å, c=13.4126(17) Å, V=758.35(13) Å3. Its structure is built up from the alternate stacking of La/Sb/S and La/Ga/S 2D building blocks. The La/Sb/S slabs consist of teeter-totter chains of Sb1S4 seesaws, which are connected via sharing the apexes of μ4-S1. Moreover, La1 is positionally disordered with Sb1 and stabilized in a bicapped trigonal prismatic coordination sphere. Between these La/Sb/S slabs, La2S8 square antiprisms are connected via edge-sharing into 2D building blocks, creating tetrahedral sites partially occupied by the Ga1 atoms. UV/Vis diffuse reflectance spectroscopy study shows that the optical gap of La2Ga0.33SbS5 is about 1.76 eV.

  1. Orientation dependent ferroelectric properties in samarium doped bismuth titanate thin films grown by the pulsed-laser-ablation method

    NASA Astrophysics Data System (ADS)

    Cheng, Zhenxiang; Kannan, Chinna Venkatasamy; Ozawa, Kiyoshi; Kimura, Hideo; Wang, Xiaolin

    2006-07-01

    Samarium doped bismuth titanate thin films with the composition of Bi3.25Sm0.75Ti3O12 and with strong preferred orientations along the c axis and the (117) direction were fabricated on Pt /TiO2/SiO2/Si substrate by pulsed laser ablation. Measurements on Pt /BSmT/Pt capacitors showed that the c-axis oriented film had a small remanent polarization (2Pr) of 5μC/cm2, while the highly (117) oriented film showed a 2Pr value of 54μC/cm2 at an electrical field of 268kV/cm and a coercive field Ec of 89kV/cm. This is different from the sol-gel derived c-axis oriented Bi3.15Sm0.85Ti3O12 film showing a 2Pr value of 49μC/cm2.

  2. Redox-linked ionization of sulredoxin, an archaeal Rieske-type [2Fe-2S] protein from Sulfolobus sp. strain 7.

    PubMed

    Iwasaki, T; Imai, T; Urushiyama, A; Oshima, T

    1996-11-01

    "Sulredoxin" of Sulfolobus sp. strain 7 is an archaeal soluble Rieske-type [2Fe-2S] protein and was initially characterized by several spectroscopic techniques (Iwasaki, T., Isogai, T., Iizuka, T. , and Oshima, T. (1995) J. Bacteriol. 177, 2576-2582). It appears to have tightly linked ionization affecting the redox properties of the protein, which is characteristic of the Rieske FeS proteins found as part of the respiratory chain. Sulredoxin had an Em(low pH) value of +188 +/- 9 mV, and the slope of pH dependence of the midpoint redox potential indicated two ionization equilibria in the oxidized form with pKa(ox1) of 6.23 +/- 0.22 and pKa(ox2) of 8.57 +/- 0.20. The absorption, CD, and resonance Raman spectra of oxidized sulredoxin are consistent with the proposed St2FeSb2Fe[N(His)]t2 core structure, and deprotonation of one of the two putative coordinated histidine imidazoles, having the pKa(ox2) of 8.57 +/- 0.20, causes a decrease in the midpoint redox potential, the change in the optical and CD spectra, and the appearance of a new Raman transition at 278 cm-1, without major structural rearrangement of the [2Fe-2S] cluster as well as the overall protein conformation. The redox-linked ionization of sulredoxin is also contributed by local changes involving another ionizable group having the pKa(ox1) of 6.23 +/- 0. 22, which is probably attributed to a certain positively charged amino acid residue that may not be a ligand by itself but located very close to the cluster. We suggest that sulredoxin provides a new tractable model of the membrane-bound homologue of the respiratory chain, the Rieske FeS proteins of the cytochrome bc1-b6f complexes.

  3. Two-dimensional X-ray diffraction and transmission electron microscopy study on the effect of magnetron sputtering atmosphere on GaN/SiC interface and gallium nitride thin film crystal structure

    NASA Astrophysics Data System (ADS)

    Shen, Huaxiang; Zhu, Guo-Zhen; Botton, Gianluigi A.; Kitai, Adrian

    2015-03-01

    The growth mechanisms of high quality GaN thin films on 6H-SiC by sputtering were investigated by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The XRD θ-2θ scans show that high quality ( 0002 ) oriented GaN was deposited on 6H-SiC by reactive magnetron sputtering. Pole figures obtained by 2D-XRD clarify that GaN thin films are dominated by ( 0002 ) oriented wurtzite GaN and { 111 } oriented zinc-blende GaN. A thin amorphous silicon oxide layer on SiC surfaces observed by STEM plays a critical role in terms of the orientation information transfer from the substrate to the GaN epilayer. The addition of H2 into Ar and/or N2 during sputtering can reduce the thickness of the amorphous layer. Moreover, adding 5% H2 into Ar can facilitate a phase transformation from amorphous to crystalline in the silicon oxide layer and eliminate the unwanted { 3 3 ¯ 02 } orientation in the GaN thin film. Fiber texture GaN thin films can be grown by adding 10% H2 into N2 due to the complex reaction between H2 and N2.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Mo, Kun; Yao, Tiankai

    Here coordinated experimental efforts to quantitatively correlate crystallographic orientation and surface faceting features in UO2 are reported upon. A sintered polycrystalline UO2 sample was thermally etched to induce the formation of surface faceting features. Synchrotron Laue microdiffraction was used to obtain a precise crystallographic orientation map for the UO2 surface grains. Scanning electron microscopy (SEM) was utilized to collect the detailed information on the surface morphology of the sample. The surface faceting features were found to be highly dependent on the crystallographic orientation. In most cases, Triple-plane structures containing one {100} plane and two {111} planes were found to dominatemore » the surface of UO2. The orientation-faceting relationship established in this study revealed a practical and efficient method of determining crystallographic orientation based on the surface features captured by SEM images.« less

  5. EMEN2: An Object Oriented Database and Electronic Lab Notebook

    PubMed Central

    Rees, Ian; Langley, Ed; Chiu, Wah; Ludtke, Steven J.

    2013-01-01

    Transmission electron microscopy and associated methods such as single particle analysis, 2-D crystallography, helical reconstruction and tomography, are highly data-intensive experimental sciences, which also have substantial variability in experimental technique. Object-oriented databases present an attractive alternative to traditional relational databases for situations where the experiments themselves are continually evolving. We present EMEN2, an easy to use object-oriented database with a highly flexible infrastructure originally targeted for transmission electron microscopy and tomography, which has been extended to be adaptable for use in virtually any experimental science. It is a pure object-oriented database designed for easy adoption in diverse laboratory environments, and does not require professional database administration. It includes a full featured, dynamic web interface in addition to APIs for programmatic access. EMEN2 installations currently support roughly 800 scientists worldwide with over 1/2 million experimental records and over 20 TB of experimental data. The software is freely available with complete source. PMID:23360752

  6. Mesoscopic self-organization of a self-assembled supramolecular rectangle on highly oriented pyrolytic graphite and Au(111) surfaces.

    PubMed

    Gong, Jian-Ru; Wan, Li-Jun; Yuan, Qun-Hui; Bai, Chun-Li; Jude, Hershel; Stang, Peter J

    2005-01-25

    A self-assembled supramolecular metallacyclic rectangle was investigated with scanning tunneling microscopy on highly oriented pyrolytic graphite and Au(111) surfaces. The rectangles spontaneously adsorb on both surfaces and self-organize into well ordered adlayers. On highly oriented pyrolytic graphite, the long edge of the rectangle stands on the surface, forming a 2D molecular network. In contrast, the face of the rectangle lays flat on the Au(111) surface, forming linear chains. The structures and intramolecular features obtained through high-resolution scanning tunneling microscopy imaging are discussed.

  7. Demonstration of Tuning to Stimulus Orientation in the Human Visual Cortex: A High-Resolution fMRI Study with a Novel Continuous and Periodic Stimulation Paradigm

    PubMed Central

    Sun, Pei; Gardner, Justin L.; Costagli, Mauro; Ueno, Kenichi; Waggoner, R. Allen; Tanaka, Keiji; Cheng, Kang

    2013-01-01

    Cells in the animal early visual cortex are sensitive to contour orientations and form repeated structures known as orientation columns. At the behavioral level, there exist 2 well-known global biases in orientation perception (oblique effect and radial bias) in both animals and humans. However, their neural bases are still under debate. To unveil how these behavioral biases are achieved in the early visual cortex, we conducted high-resolution functional magnetic resonance imaging experiments with a novel continuous and periodic stimulation paradigm. By inserting resting recovery periods between successive stimulation periods and introducing a pair of orthogonal stimulation conditions that differed by 90° continuously, we focused on analyzing a blood oxygenation level-dependent response modulated by the change in stimulus orientation and reliably extracted orientation preferences of single voxels. We found that there are more voxels preferring horizontal and vertical orientations, a physiological substrate underlying the oblique effect, and that these over-representations of horizontal and vertical orientations are prevalent in the cortical regions near the horizontal- and vertical-meridian representations, a phenomenon related to the radial bias. Behaviorally, we also confirmed that there exists perceptual superiority for horizontal and vertical orientations around horizontal and vertical meridians, respectively. Our results, thus, refined the neural mechanisms of these 2 global biases in orientation perception. PMID:22661413

  8. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    PubMed Central

    Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.

    2016-01-01

    We demonstrate the high structural and optical properties of InxGa1−xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm−2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1−xN epilayers can be achieved with high optical quality of InxGa1−xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design. PMID:27412372

  9. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer.

    PubMed

    Muhammed, M M; Roldan, M A; Yamashita, Y; Sahonta, S-L; Ajia, I A; Iizuka, K; Kuramata, A; Humphreys, C J; Roqan, I S

    2016-07-14

    We demonstrate the high structural and optical properties of InxGa1-xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 10(7) cm(-2)) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1-xN epilayers can be achieved with high optical quality of InxGa1-xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.

  10. Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases.

    PubMed

    Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Zeng, Xierong; Huang, Haitao

    2015-06-24

    A highly textured (111)-oriented Pb0.8Ba0.2ZrO3 (PBZ) relaxor thin film with the coexistence of antiferroelectric (AFE) and ferroelectric (FE) phases was prepared on a Pt/TiOx/SiO2/Si(100) substrate by using a sol-gel method. A large recoverable energy storage density of 40.18 J/cm(3) along with an efficiency of 64.1% was achieved at room temperature. Over a wide temperature range of 250 K (from room temperature to 523 K), the variation of the energy density is within 5%, indicating a high thermal stability. The high energy storage performance was endowed by a large dielectric breakdown strength, great relaxor dispersion, highly textured orientation, and the coexistence of FE and AFE phases. The PBZ thin film is believed to be an attractive material for applications in energy storage systems over a wide temperature range.

  11. Industrial Technology Orientation Curriculum Guide.

    ERIC Educational Resources Information Center

    Illinois State Board of Education, Springfield. Dept. of Adult, Vocational and Technical Education.

    The four courses in this guide were designed to meet the specifications for the career orientation level of Illinois' Education for Employment Curriculum Model. These orientation-level courses can be taken by high school students in any sequence: (1) communication technology; (2) energy utilization technology; (3) production technology; and (4)…

  12. Small, highly oriented Ru grains in intermediate layer realized through suppressing relaxation of low-angle grain boundaries for perpendicular recording media

    NASA Astrophysics Data System (ADS)

    Itagaki, Norikazu; Saito, Shin; Takahashi, Migaku

    2009-04-01

    Through analyzing the growth mechanism of the Ru layer in a nonmagnetic intermediate layer (NMIL) for perpendicular magnetic recording media, a concept for the NMIL is proposed in order to realize a recording layer of small, highly c-plane oriented grains with no intergranular exchange coupling. It was found that (1) fast Fourier transform analysis of plan-view transmission electron microscopy lattice images of Ru layers revealed that hexagonal close packed Ru grains in a c-plane oriented film readily coalesce with each other due to the disappearance of low-angle tilt boundaries. (2) A promising candidate for a NMIL consists of three individual epitaxially grown functional layers: a large-grain seed layer with a highly oriented sheet texture, a first interlayer of small grains, and a second interlayer of nonmagnetic grains isolated by a segregated oxide. (3) The Ru-SiO2/Ru/Mg NMIL based on the proposed concept exhibited small (diameter: 4.8 nm) Ru grains while retaining a narrow orientation distribution of 4.1°.

  13. 3D Fiber Orientation Simulation for Plastic Injection Molding

    NASA Astrophysics Data System (ADS)

    Lin, Baojiu; Jin, Xiaoshi; Zheng, Rong; Costa, Franco S.; Fan, Zhiliang

    2004-06-01

    Glass fiber reinforced polymer is widely used in the products made using injection molding processing. The distribution of fiber orientation inside plastic parts has direct effects on quality of molded parts. Using computer simulation to predict fiber orientation distribution is one of most efficient ways to assist engineers to do warpage analysis and to find a good design solution to produce high quality plastic parts. Fiber orientation simulation software based on 2-1/2D (midplane /Dual domain mesh) techniques has been used in industry for a decade. However, the 2-1/2D technique is based on the planar Hele-Shaw approximation and it is not suitable when the geometry has complex three-dimensional features which cannot be well approximated by 2D shells. Recently, a full 3D simulation software for fiber orientation has been developed and integrated into Moldflow Plastics Insight 3D simulation software. The theory for this new 3D fiber orientation calculation module is described in this paper. Several examples are also presented to show the benefit in using 3D fiber orientation simulation.

  14. Social power facilitates the effect of prosocial orientation on empathic accuracy.

    PubMed

    Côté, Stéphane; Kraus, Michael W; Cheng, Bonnie Hayden; Oveis, Christopher; van der Löwe, Ilmo; Lian, Hua; Keltner, Dacher

    2011-08-01

    Power increases the tendency to behave in a goal-congruent fashion. Guided by this theoretical notion, we hypothesized that elevated power would strengthen the positive association between prosocial orientation and empathic accuracy. In 3 studies with university and adult samples, prosocial orientation was more strongly associated with empathic accuracy when distinct forms of power were high than when power was low. In Study 1, a physiological indicator of prosocial orientation, respiratory sinus arrhythmia, exhibited a stronger positive association with empathic accuracy in a face-to-face interaction among dispositionally high-power individuals. In Study 2, experimentally induced prosocial orientation increased the ability to accurately judge the emotions of a stranger but only for individuals induced to feel powerful. In Study 3, a trait measure of prosocial orientation was more strongly related to scores on a standard test of empathic accuracy among employees who occupied high-power positions within an organization. Study 3 further showed a mediated relationship between prosocial orientation and career satisfaction through empathic accuracy among employees in high-power positions but not among employees in lower power positions. Discussion concentrates upon the implications of these findings for studies of prosociality, power, and social behavior.

  15. Hetero-Orientation Epitaxial Growth of TiO2 Splats on Polycrystalline TiO2 Substrate

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yang, Guan-Jun

    2018-05-01

    In the present study, the effect of titania (TiO2) substrate grain size and orientation on the epitaxial growth of TiO2 splat was investigated. Interestingly, the splat presented comparable grain size with that of substrate, indicating the hereditary feature of grain size. In addition, hetero- and homo-orientation epitaxial growth was observed at deposition temperatures below 400 °C and above 500 °C, respectively. The preferential growth of high-energy (001) face was also observed at low deposition temperatures (≤ 400 °C), which was found to result from dynamic nonequilibrium effect during the thermal spray deposition. Moreover, thermal spray deposition paves the way for a new approach to prepare high-energy (001) facets of TiO2 crystals.

  16. The oblique effect has an optical component: Orientation-specific contrast thresholds after correction of high-order aberrations

    PubMed Central

    Murray, Ian J.; Elliott, Sarah L.; Pallikaris, Aris; Werner, John S.; Choi, Stacey; Tahir, Humza J.

    2010-01-01

    Most of the high-order aberrations of the eye are not circularly symmetric. Hence, while it is well known that human vision is subject to cortically based orientation preference in cell tuning, the optics of the eye might also introduce some orientational anisotropy. We tested this idea by measuring contrast sensitivity at different orientations of sine-wave gratings when viewing through a closed-loop adaptive optics phoropter. Under aberration-corrected conditions, mean contrast sensitivity improved for all observers by a factor of 1.8× to 5×. The detectability of some orientations improved more than others. As expected, this orientation-specific effect varied between individuals. The sensitivity benefits were accurately predicted from MTF model simulations, demonstrating that the observed effects reflected the individual's pattern of high-order aberrations. In one observer, the orientation-specific effects were substantial: an improvement of 8× at one orientation and 2× in another orientation. The experiments confirm that, for conditions that are not diffraction limited, the optics of the eye introduce rotational asymmetry to the luminance distribution on the retina and that this impacts vision, inducing orientational anisotropy. These results suggest that the traditional view of meridional anisotropy having an entirely neural origin may be true for diffraction-limited pupils but that viewing through larger pupils introduces an additional orientation-specific optical component to this phenomenon. PMID:20884505

  17. Preferentially Oriented Ag Nanocrystals with Extremely High Activity and Faradaic Efficiency for CO2 Electrochemical Reduction to CO.

    PubMed

    Peng, Xiong; Karakalos, Stavros G; Mustain, William E

    2018-01-17

    Selective electrochemical reduction of CO 2 is one of the most important processes to study because of its promise to convert this greenhouse gas to value-added chemicals at low cost. In this work, a simple anodization treatment was devised that first oxidizes Ag to Ag 2 CO 3 , then uses rapid electrochemical reduction to create preferentially oriented nanoparticles (PONs) of metallic Ag (PON-Ag) with high surface area as well as high activity and very high selectivity for the reduction of CO 2 to CO. The PON-Ag catalyst was dominated by (110) and (100) orientation, which allowed PON-Ag to achieve a CO Faradaic efficiency of 96.7% at an operating potential of -0.69 V vs RHE. This performance is not only significantly higher than that of polycrystalline Ag (60% at -0.87 V vs RHE) but also represents one of the best combinations of activity and selectivity achieved to date - all with a very simple, scalable approach to electrode fabrication.

  18. Coupling Graphene Sheets with Iron Oxide Nanoparticles for Energy Storage and Microelectronics

    DTIC Science & Technology

    2015-12-18

    obtained from three different synthetic methods: (i) electrochemical exfoliation of highly oriented pyrolytic graphite ( HOPG ) [8], (ii) reduction of ...Fe2O3 -Graphene Sheets Graphene sheets are obtained from electrochemical exfoliation of highly oriented pyrolytic graphite ( HOPG ) flake. Two...fringes of ɤ-Fe2O3 nanoparticles in graphene sheet is shown. Typical X-ray diffraction ( XRD ) patterns of the HOPG , exfoliated graphene, PyDop1-ɤ-Fe2O3

  19. High-Hall-Mobility Al-Doped ZnO Films Having Textured Polycrystalline Structure with a Well-Defined (0001) Orientation

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2016-06-01

    Five hundred-nanometer-thick ZnO-based textured polycrystalline films consisting of 490-nm-thick Al-doped ZnO (AZO) films deposited on 10-nm-thick Ga-doped ZnO (GZO) films exhibited a high Hall mobility ( μ H) of 50.1 cm2/Vs with a carrier concentration ( N) of 2.55 × 1020 cm-3. Firstly, the GZO films were prepared on glass substrates by ion plating with dc arc discharge, and the AZO films were then deposited on the GZO films by direct current magnetron sputtering (DC-MS). The GZO interface layers with a preferential c-axis orientation play a critical role in producing AZO films with texture development of a well-defined (0001) orientation, whereas 500-nm-thick AZO films deposited by only DC-MS showed a mixture of the c-plane and the other plane orientation, to exhibit a μ H of 38.7 cm2/Vs with an N of 2.22 × 1020 cm-3.

  20. Chromophore orientation in bacteriorhodopsin determined from the angular dependence of deuterium nuclear magnetic resonance spectra of oriented purple membranes.

    PubMed

    Moltke, S; Nevzorov, A A; Sakai, N; Wallat, I; Job, C; Nakanishi, K; Heyn, M P; Brown, M F

    1998-08-25

    The orientation of prosthetic groups in membrane proteins is of considerable importance in understanding their functional role in energy conversion, signal transduction, and ion transport. In this work, the orientation of the retinylidene chromophore of bacteriorhodopsin (bR) was investigated using 2H NMR spectroscopy. Bacteriorhodopsin was regenerated with all-trans-retinal stereospecifically deuterated in one of the geminal methyl groups on C1 of the cyclohexene ring. A highly oriented sample, which is needed to obtain individual bond orientations from 2H NMR, was prepared by forming hydrated lamellar films of purple membranes on glass slides. A Monte Carlo method was developed to accurately simulate the 2H NMR line shape due to the distribution of bond angles and the orientational disorder of the membranes. The number of free parameters in the line shape simulation was reduced by independent measurements of the intrinsic line width (1.6 kHz from T2e experiments) and the effective quadrupolar coupling constant (38. 8-39.8 kHz from analysis of the line shape of a powder-type sample). The angle between the C1-(1R)-1-CD3 bond and the purple membrane normal was determined with high accuracy from the simultaneous analysis of a series of 2H NMR spectra recorded at different inclinations of the uniaxially oriented sample in the magnetic field at 20 and -50 degrees C. The value of 68.7 +/- 2.0 degrees in dark-adapted bR was used, together with the previously determined angle of the C5-CD3 bond, to calculate the possible orientations of the cyclohexene ring in the membrane. The solutions obtained from 2H NMR were then combined with additional constraints from linear dichroism and electron cryomicroscopy to obtain the allowed orientations of retinal in the noncentrosymmetric membrane structure. The combined data indicate that the methyl groups on the polyene chain point toward the cytoplasmic side of the membrane and the N-H bond of the Schiff base to the extracellular side, i.e., toward the side of proton release in the pump pathway.

  1. Flow theory – goal orientation theory: positive experience is related to athlete’s goal orientation

    PubMed Central

    Stavrou, Nektarios A. M.; Psychountaki, Maria; Georgiadis, Emmanouil; Karteroliotis, Konstantinos; Zervas, Yannis

    2015-01-01

    The main purpose of this study was to examine the relationship between flow experience and goal orientation theory, as well as, the differences in flow experience based on the orthogonal model of goal orientation theory. Two hundred and seventy eight athletes completed the Task and Ego Orientation Sport Questionnaire based on how they usually feel. The challenge and skills ratings were completed 1 h before the competition, based on how they felt at the exact time of answering. In the following, the Flow State Scale-2 was completed up to 30 min after the competition they just participated, along with the challenge-skill ratings, based on how athletes felt during the competition. The results indicated that the athletes’ task orientation may be an important factor for attaining flow in competitive sport, feeling more skillful and estimating the upcoming competition as challenging, while low ego and low task oriented athletes lack these elements, which are important for them to get into flow. Additionally, not the level of task and ego orientation per se, but the balance between athletes’ goal orientation preferences seems important for the formation of flow experience, indicating that high task – high ego and high task – low ego athletes are experiencing the most positive mental state. PMID:26500577

  2. Self-reported experience of bullying of students who stutter: relations with life satisfaction, life orientation, and self-esteem.

    PubMed

    Blood, Gordon W; Blood, Ingrid M; Tramontana, G Michael; Sylvia, Anna J; Boyle, Michael P; Motzko, Gina R

    2011-10-01

    Self-reported self-esteem, life orientation, satisfaction with life, and bullying were examined in relation to victimization experiences among 54 students who stuttered and 54 students who did not stutter. Those who stuttered reported greater, i.e., clinically significant, victimization (44.4%) than students who did not stutter (9.2%). Significant differences were found between means for self-esteem and life orientation, with students who stuttered reporting lower self-esteem and less optimistic life orientation than those who did not stutter. In both groups of students, high victimization scores had statistically significant negative correlations with optimistic life orientation, high self-esteem, and high satisfaction with life scores. Given the increased likelihood of students who stuttered being bullied, the negative relation of adjustment variables and bullying, and the potentially negative long-term effects of bullying, increased vigilance and early intervention are discussed.

  3. Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells.

    PubMed

    Zhang, Xu; Munir, Rahim; Xu, Zhuo; Liu, Yucheng; Tsai, Hsinhan; Nie, Wanyi; Li, Jianbo; Niu, Tianqi; Smilgies, Detlef-M; Kanatzidis, Mercouri G; Mohite, Aditya D; Zhao, Kui; Amassian, Aram; Liu, Shengzhong Frank

    2018-05-01

    Ruddlesden-Popper reduced-dimensional hybrid perovskite (RDP) semiconductors have attracted significant attention recently due to their promising stability and excellent optoelectronic properties. Here, the RDP crystallization mechanism in real time from liquid precursors to the solid film is investigated, and how the phase transition kinetics influences phase purity, quantum well orientation, and photovoltaic performance is revealed. An important template-induced nucleation and growth of the desired (BA) 2 (MA) 3 Pb 4 I 13 phase, which is achieved only via direct crystallization without formation of intermediate phases, is observed. As such, the thermodynamically preferred perpendicular crystal orientation and high phase purity are obtained. At low temperature, the formation of intermediate phases, including PbI 2 crystals and solvate complexes, slows down intercalation of ions and increases nucleation barrier, leading to formation of multiple RDP phases and orientation randomness. These insights enable to obtain high quality (BA) 2 (MA) 3 Pb 4 I 13 films with preferentially perpendicular quantum well orientation, high phase purity, smooth film surface, and improved optoelectronic properties. The resulting devices exhibit high power conversion efficiency of 12.17%. This work should help guide the perovskite community to better control Ruddlesden-Popper perovskite structure and further improve optoelectronic and solar cell devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Crystal structure of solid molecular hydrogen under high pressures

    NASA Astrophysics Data System (ADS)

    Cui, T.; Ma, Y.; Zou, G.

    2002-11-01

    In an effort to achieve a comprehensive understanding of the structure of dense H2, we have performed path-integral Monte Carlo simulations for three combinations of pressures and temperatures corresponding to three phases of solid hydrogen. Our results suggest three kinds of distribution of molecules: orientationally disordered hexagonal close packed (hcp), orientationally ordered hcp with Pa3-type local orientation order and orientationally ordered orthorhombic structure of Cmca symmetry, for the three phases.

  5. In vivo quantification of T2* anisotropy in white matter fibers in marmoset monkeys

    PubMed Central

    Sati, P.; Silva, A. C.; van Gelderen, P.; Gaitan, M. I.; Wohler, J. E.; Jacobson, S.; Duyn, J. H.; Reich, D. S.

    2011-01-01

    T2*-weighted MRI at high field is a promising approach for studying noninvasively the tissue structure and composition of the brain. However, the biophysical origin of T2* contrast, especially in white matter, remains poorly understood. Recent work has shown that R2* (=1/T2*) may depend on the tissue’s orientation relative to the static magnetic field (B0) and suggested that this dependence could be attributed to local anisotropy in the magnetic properties of brain tissue. In the present work, we analyzed high-resolution, multi-gradient-echo images of in vivo marmoset brains at 7T, and compared them with ex vivo diffusion tensor images, to show that R2* relaxation in white matter is highly sensitive to the fiber orientation relative to the main field. We directly demonstrate this orientation dependence by performing in vivo multi-gradient-echo acquisitions in two orthogonal brain positions, uncovering a nearly 50% change in the R2*relaxation rate constant of the optic radiations. We attribute this substantial R2* anisotropy to local subvoxel susceptibility effects arising from the highly ordered and anisotropic structure of the myelin sheath. PMID:21906687

  6. Polarization switching behavior of one-axis-oriented lead zirconate titanate films fabricated on metal oxide nanosheet layer

    NASA Astrophysics Data System (ADS)

    Uchida, Hiroshi; Ichinose, Daichi; Shiraishi, Takahisa; Shima, Hiromi; Kiguchi, Takanori; Akama, Akihiko; Nishida, Ken; Konno, Toyohiko J.; Funakubo, Hiroshi

    2017-10-01

    For the application of electronic devices using ferroelectric/piezoelectric components, one-axis-oriented tetragonal Pb(Zr0.40Ti0.60)O3 (PZT) films with thicknesses of up to 1 µm were fabricated with the aid of a Ca2Nb3O10 nanosheet (ns-CN) template for preferential crystal growth for evaluating their polarization switching behavior. The ns-CN template was supported on ubiquitous silicon (Si) wafer by a simple dip coating technique, followed by the repetitive chemical solution deposition (CSD) of PZT films. The PZT films were grown successfully with preferential crystal orientation of PZT(100) up to the thickness of 1020 nm. The (100)-oriented PZT film with ∼1 µm thickness exhibited unique polarization behavior of ferroelectric polarization, i.e., a marked increase in remanent polarization (P r) up to approximately 40 µC/cm2 induced by domain switching under high electric field, whereas the film with a lower thickness showed only a lower P r of approximately 11 µC/cm2 even under a high electric field. The ferroelectric property of the (100)-oriented PZT film after domain switching on ns-CN/Pt/Si can be comparable to those of (001)/(100)-oriented epitaxial PZT films.

  7. Two-stage epitaxial growth of vertically-aligned SnO 2 nano-rods on(001) ceria

    DOE PAGES

    Solovyov, Vyacheslav F.; Wu, Li-jun; Rupich, Martin W.; ...

    2014-09-20

    Growth of high-aspect ratio oriented tin oxide, SnO 2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO 2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO 2 deposit. Second, vertical SnO 2nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 μm long nano-rods with an average diameter of ≈20 nm.

  8. Indecision and avoidant procrastination: the role of morningness-eveningness and time perspective in chronic delay lifestyles.

    PubMed

    Díaz-Morales, Juan Francisco; Ferrari, Joseph R; Cohen, Joseph R

    2008-07-01

    The authors examined how time orientation and morningness-eveningness relate to 2 forms of procrastination: indecision and avoidant forms. Participants were 509 adults (M age = 49.78 years, SD = 6.14) who completed measures of time orientation, morningness-eveningness, decisional procrastination (i.e., indecision), and avoidant procrastination. Results showed that morningness was negatively related to avoidant procrastination but not decisional procrastination. Overall, the results indicated different temporal profiles for indecision and avoidant procrastinations. Avoidant procrastination related to low future time orientation and low morningness, whereas indecision related to both (a) high negative and high positive past orientations and (b) low present-hedonistic and low future time orientations. The authors inferred that distinct forms of procrastination seem different on the basis of dimensions of time.

  9. Crystal orientation dependence of band matching in all-B2-trilayer current-perpendicular-to-plane giant magnetoresistance pseudo spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) Heusler alloy and NiAl spacer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jiamin; Hono, K., E-mail: kazuhiro.hono@nims.go.jp; Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-2-1, Sengen, Tsukuba 305-0047

    2015-05-07

    We have experimentally investigated the crystal orientation dependence of band matching in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo-spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) (CFGG) Heusler alloy ferromagnetic layer and NiAl spacer. The high quality epitaxial CFGG/NiAl/CFGG all-B2-trilayers structure devices were fabricated on both MgO(001) and sapphire (112{sup ¯}0) single crystal substrates to create (001) and (110) crystal orientations. Same magneto-transport properties were observed from these two differently orientated devices indicating that there is no or little orientation dependence of band matching on MR output. We also found that all-B2-trilayer structure was free of lattice matching influence depending on the crystal orientation,more » which made it a good candidate for CPP-GMR device.« less

  10. Orientation effect on microwave dielectric properties of Si-integrated Ba0.6Sr0.4TiO3 thin films for frequency agile devices

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Suk; Hyun, Tae-Seon; Kim, Ho-Gi; Kim, Il-Doo; Yun, Tae-Soon; Lee, Jong-Chul

    2006-07-01

    The effect of texture with (100) and (110) preferred orientations on dielectric properties of Ba0.6Sr0.4TiO3 (BST) thin films grown on SrO (9nm) and CeO2 (70nm ) buffered Si substrates, respectively, was investigated. The coplanar waveguide (CPW) phase shifter using (100) oriented BST films on SrO buffered Si exhibited a much-enhanced figure of merit of 24.7°/dB, as compared to that (10.2°/dB) of a CPW phase shifter using (110) oriented BST films on CeO2 buffered Si at 12GHz. This work demonstrates that the microwave properties of the Si-integrated BST thin films are highly correlated with crystal orientation.

  11. A Micromagnetic Study of Medium Orientation Ratio Effects in High Areal Density Recording

    NASA Astrophysics Data System (ADS)

    Plumer, Martin; van Ek, Johannes

    2000-03-01

    An extensive analysis of written tracks on granular media with anisotropy axes preferentially oriented either in the down-track or cross-track direction was performed with a newly developed micromagnetic model of magnetic recording [1]. The response of planar media to writer head fields, derived from the Finite-Element-Method, is calculated by solving the LLG equations. Signal from the written transitions is determined through a micromagnetic model of a GMR spin-valve device. Using fields from a generic 10Gb/in2 head (TPWG=0.6um, gap=0.2um, 1.8T materials around the gap), dibits were written at high linear density. Relative to the isotropic case, both erase bands and read-back voltage deteriorate for cross-track oriented media and improve in the down-track orientation case. For an orientation ratio of 1.23, the read-back signal at 200 kbpi drops by 15% in the radial case and increases by 15% in the circumferential case. Although the cross-track coercivity is smaller for down-track oriented media, and thus easier to write with the corners of the head, the remnant cross-track magnetization is correspondingly smaller. Track edge distortion is thus less severe than for isotropic media. Oriented media is of interest due to enhanced thermal stability and faster switching times [2]. [1] J. van Ek, M.L. Plumer, H. Zhou and H.N. Bertram, ``A Micromagnetic Recording Model for Write and Read-back," in preparation. Also see the GMAG symposium, this conference. [2] E.N. Abarra, I. Okamoto and M. Shinohara, IEEE Trans. Mag. 35, 2709 (1999).

  12. Structural stigma and sexual orientation disparities in adolescent drug use.

    PubMed

    Hatzenbuehler, Mark L; Jun, Hee-Jin; Corliss, Heather L; Bryn Austin, S

    2015-07-01

    Although epidemiologic studies have established the existence of large sexual orientation disparities in illicit drug use among adolescents and young adults, the determinants of these disparities remain understudied. This study sought to determine whether sexual orientation disparities in illicit drug use are potentiated in states that are characterized by high levels of stigma surrounding sexual minorities. State-level structural stigma was coded using a previously established measure based on a 4-item composite index: (1) density of same-sex couples; (2) proportion of Gay-Straight Alliances per public high school; (3) 5 policies related to sexual orientation discrimination (e.g., same-sex marriage, employment non-discrimination); and (4) public opinion toward homosexuality (aggregated responses from 41 national polls). The index was linked to individual-level data from the Growing Up Today Study, a prospective community-based study of adolescents (2001-2010). Sexual minorities report greater illicit drug use than their heterosexual peers. However, for both men and women, there were statistically significant interactions between sexual orientation status and structural stigma, such that sexual orientation disparities in marijuana and illicit drug use were more pronounced in high-structural stigma states than in low-structural stigma states, controlling for individual- and state-level confounders. For instance, among men, the risk ratio indicating the association between sexual orientation and marijuana use was 24% greater in high- versus low-structural stigma states, and for women it was 28% greater in high- versus low-structural stigma states. Stigma in the form of social policies and attitudes may contribute to sexual orientation disparities in illicit drug use. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Fabrication of a highly oriented line structure on an aluminum surface and the nanoscale patterning on the nanoscale structure using highly functional molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Y.; Kato, H.; Takemura, S.

    2009-07-15

    The surface of an Al plate was treated with a combination of chemical and electrochemical processes for fabrication of surface nanoscale structures on Al plates. Chemical treatments by using acetone and pure water under supersonic waves were conducted on an Al surface. Additional electrochemical process in H{sub 2}SO{sub 4} solution created a finer and oriented nanoscale structure on the Al surface. Dynamic force microscopy (DFM) measurement clarified that the nanoscale highly oriented line structure was successfully created on the Al surface. The line distance was estimated approximately 30-40 nm. At the next stage, molecular patterning on the highly oriented linemore » structure by functional molecules such as copper phthalocyanine (CuPc) and fullerene C{sub 60} was also conducted. CuPc or C{sub 60} molecules were deposited on the highly oriented line structure on Al. A toluene droplet containing CuPc molecules was cast on the nanostructured Al plate and was extended on the surface. CuPc or C{sub 60} deposition on the nanostructured Al surface proceeded by evaporation of toluene. DFM and x-ray photoemission spectroscopy measurements demonstrated that a unique molecular pattern was fabricated so that the highly oriented groove channels were filled with the functional molecules.« less

  14. Anisotropic Effects on the Thermoelectric Properties of Highly Oriented Electrodeposited Bi2Te3 Films

    PubMed Central

    Manzano, Cristina V.; Abad, Begoña; Muñoz Rojo, Miguel; Koh, Yee Rui; Hodson, Stephen L.; Lopez Martinez, Antonio M.; Xu, Xianfan; Shakouri, Ali; Sands, Timothy D.; Borca-Tasciuc, Theodorian; Martin-Gonzalez, Marisol

    2016-01-01

    Highly oriented [1 1 0] Bi2Te3 films were obtained by pulsed electrodeposition. The structure, composition, and morphology of these films were characterized. The thermoelectric figure of merit (zT), both parallel and perpendicular to the substrate surface, were determined by measuring the Seebeck coefficient, electrical conductivity, and thermal conductivity in each direction. At 300 K, the in-plane and out-of-plane figure of merits of these Bi2Te3 films were (5.6 ± 1.2)·10−2 and (10.4 ± 2.6)·10−2, respectively. PMID:26776726

  15. Making High-Temperature Superconductors By Melt Sintering

    NASA Technical Reports Server (NTRS)

    Golben, John P.

    1992-01-01

    Melt-sintering technique applied to YBa2Cu3O7-x system and to Bi/Ca/Sr/Cu-oxide system to produce highly oriented bulk high-temperature-superconductor materials extending to macroscopically usable dimensions. Processing requires relatively inexpensive and simple equipment. Because critical current two orders of magnitude greater in crystal ab plane than in crystal c direction, high degree of orientation greatly enhances critical current in these bulk materials, making them more suitable for many proposed applications.

  16. Roughness of Ti Substrates for Control of the Preferred Orientation of TiO 2 Nanotube Arrays as a New Orientation Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong, Won Mo; Kim, Dong Hoe; Park, Ik Jae

    2015-06-11

    We report the surface roughness of a Ti substrate as a critical factor for controlling the degree of the preferred orientation of anatase TiO2 nanotube arrays (NTAs) which are synthesized by anodization and a subsequent annealing process. The degree of the preferred orientation to the (004) plane of the anatase crystal structure has a strong dependency on the root-mean-square roughness (Sq) of the initial Ti substrate when the roughness-controlled substrates are anodized in an ethylene glycol-based electrolyte containing ~2 wt % of water. Highly preferred oriented NTAs were obtained from low-Sq (<10 nm) substrates, which were accompanied by uniform poremore » distribution and low concentration of hydroxyl ions in as-anodized amorphous NTAs. The mechanism of the preferred oriented crystallization of nanometer-scaled tube walls is explained considering the microscopic geometrical uniformity of the oxide barrier and nanopores at the early stage of anodization, which affected the local electric field and thus the insertion of the hydroxyl group into the amorphous TiO2 tube walls.« less

  17. Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on (001) ceria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyov, VF; Wu, LJ; Rupich, MW

    2014-12-15

    Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2 nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 mu m long nano-rods with an average diameter of approximate to 20 nm. 2014 Elsevier B.V. All rights reserved.

  18. Oriented Nucleation of both Ge-Fresnoite and Benitoite/BaGe4O9 during the Surface Crystallisation of Glass Studied by Electron Backscatter Diffraction

    PubMed Central

    Wisniewski, Wolfgang; Patschger, Marek; Murdzheva, Steliana; Thieme, Christian; Rüssel, Christian

    2016-01-01

    Two glasses of the compositions 2 BaO - TiO2 - 2.75 GeO2 and 2 BaO – TiO2 –3.67 GeO2 (also known as BTG55) are annealed at temperatures from 680 to 970 °C to induce surface crystallization. The resulting samples are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD). Ge-Fresnoite (Ba2TiGe2O8, BTG) is observed at the immediate surface of all samples and oriented nucleation is proven in both compositions. After a very fast kinetic selection, the crystal growth of BTG into the bulk occurs via highly oriented dendrites where the c-axes are oriented perpendicular to the surface. The growth of this oriented layer is finally blocked by dendritc BTG originating from bulk nucleation. The secondary phases BaTiGe3O9 (benitoite) and BaGe4O9 are also identified near the surface by XRD and localized by EBSD which additionally indicates orientation preferences for these phases. This behaviour is in contrast with previous reports from the Ba2TiSi2O8 as well as the Sr2TiSi2O8 systems. PMID:26853738

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Sijun, E-mail: sluo1@tulane.edu; Riggs, Brian C.; Shipman, Joshua T.

    Direct integration of proton conductor films on Pt-coated substrates opens the way to film-based proton transport devices. Columnar SrZr{sub 0.95}Y{sub 0.05}O{sub 3−δ} (SZY) films with dense microstructure were deposited on Pt-coated MgO(100) substrates at 830 °C by pulsed laser deposition. The optimal window of ambient O{sub 2} pressure for good crystallinity of SZY films is from 400 to 600 mTorr. The ambient O{sub 2} compresses the plasma plume of SZY and increases the deposition rate. The 10 nm thick Ti adhesion layer on MgO(100) greatly affects the orientation of the sputtered Pt layers. Pt deposited directly on MgO shows a highly (111)-preferredmore » orientation and leads to preferentially oriented SZY films while the addition of a Ti adhesion layer makes Pt show a less preferential orientation that leads to randomly oriented SZY films. The RMS surface roughness of preferentially oriented SZY films is larger than that of randomly oriented SZY films deposited under the same ambient O{sub 2} pressure. As the O{sub 2} pressure increased, the RMS surface roughness of preferentially oriented SZY films increased, reaching 45.7 nm (2.61% of film thickness) at 600 mTorr. This study revealed the ambient O{sub 2} pressure and orientation dependent surface roughness of SZY films grown on Pt-coated MgO substrates, which provides the potential to control the surface microstructure of SZY films for electrochemical applications in film-based hydrogen devices.« less

  20. Reciprocal relationships between value orientation and motivational interference during studying and leisure.

    PubMed

    Hofer, Manfred; Schmid, Sebastian; Fries, Stefan; Kilian, Britta; Kuhnle, Claudia

    2010-12-01

    Motivational interference is defined as the amount of impairment in a target activity due to the incentives of a non-chosen attractive alternative. The amount to which pupils experience motivational interference while studying or while performing a leisure activity in a school-leisure conflict situation is seen as depending on the values they attach to achievement and well-being. At the same time, values may also be effects of frequent experience of motivational interference in the respective areas. The study is aimed at investigating the reciprocal relationship between personal value orientations and the experience of motivational interference during studying and leisure. A total of 363 pupils (sixth to eighth graders at the time of first measurement) completed the same questionnaire twice in a 2-year interval. The questionnaire included measures of achievement and well-being value orientation and the experience of motivational interference during studying and during leisure in school-leisure conflicts. For this, two scenarios were created. In regression analyses, achievement and well-being value orientations as well as their interaction terms were used as predictors for experience of motivational interference at t(2) while controlling for experience of motivational interference at t(1), and vice versa. Additionally in path models, these relations were tested in an integrative way. Pupils' achievement value orientations were connected to differential changes in experiencing motivational interference during leisure and during studying in one scenario but only for pupils low or medium in well-being value orientation. Conversely, experience of motivational interference at t(1) was related to changes in value orientations 2 years later. High motivational interference during studying led to an increase in well-being value orientation, while high motivational interference during leisure was followed by a decrease in well-being value orientation and an increase in achievement value orientation. Overall, path models supported these results. The results are discussed in terms of value change and are linked to self-control and motivation research.

  1. Pressure-induced orientational glass phase in molecular para-hydrogen.

    PubMed

    Schelkacheva, T I; Tareyeva, E E; Chtchelkatchev, N M

    2009-02-01

    We propose a theoretical description of a possible orientational glass transition in solid molecular para-hydrogen and ortho-deuterium under pressure supposing that they are mixtures of J=0 and J=2 states of molecules. The theory uses the basic concepts and methods of standard spin-glass theory. We expect our orientational glass to correspond to the II' phase of the high-pressure hydrogen phase diagram.

  2. Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X Zhang; L Richter; D DeLongchamp

    We describe a series of highly soluble diketo pyrrolo-pyrrole (DPP)-bithiophene copolymers exhibiting field effect hole mobilities up to 0.74 cm{sup 2} V{sup -1} s{sup -1}, with a common synthetic motif of bulky 2-octyldodecyl side groups on the conjugated backbone. Spectroscopy, diffraction, and microscopy measurements reveal a transition in molecular packing behavior from a preferentially edge-on orientation of the conjugated plane to a preferentially face-on orientation as the attachment density of the side chains increases. Thermal annealing generally reduces both the face-on population and the misoriented edge-on domains. The highest hole mobilities of this series were obtained from edge-on molecular packingmore » and in-plane liquid-crystalline texture, but films with a bimodal orientation distribution and no discernible in-plane texture exhibited surprisingly comparable mobilities. The high hole mobility may therefore arise from the molecular packing feature common to the entire polymer series: backbones that are strictly oriented parallel to the substrate plane and coplanar with other backbones in the same layer.« less

  3. Local sensitivity to stimulus orientation and spatial frequency within the receptive fields of neurons in visual area 2 of macaque monkeys

    PubMed Central

    Tao, X.; Zhang, B.; Smith, E. L.; Nishimoto, S.; Ohzawa, I.

    2012-01-01

    We used dynamic dense noise stimuli and local spectral reverse correlation methods to reveal the local sensitivities of neurons in visual area 2 (V2) of macaque monkeys to orientation and spatial frequency within their receptive fields. This minimized the potentially confounding assumptions that are inherent in stimulus selections. The majority of neurons exhibited a relatively high degree of homogeneity for the preferred orientations and spatial frequencies in the spatial matrix of facilitatory subfields. However, about 20% of all neurons showed maximum orientation differences between neighboring subfields that were greater than 25 deg. The neurons preferring horizontal or vertical orientations showed less inhomogeneity in space than the neurons preferring oblique orientations. Over 50% of all units also exhibited suppressive profiles, and those were more heterogeneous than facilitatory profiles. The preferred orientation and spatial frequency of suppressive profiles differed substantially from those of facilitatory profiles, and the neurons with suppressive subfields had greater orientation selectivity than those without suppressive subfields. The peak suppression occurred with longer delays than the peak facilitation. These results suggest that the receptive field profiles of the majority of V2 neurons reflect the orderly convergence of V1 inputs over space, but that a subset of V2 neurons exhibit more complex response profiles having both suppressive and facilitatory subfields. These V2 neurons with heterogeneous subfield profiles could play an important role in the initial processing of complex stimulus features. PMID:22114163

  4. Independent sources of anisotropy in visual orientation representation: a visual and a cognitive oblique effect.

    PubMed

    Balikou, Panagiota; Gourtzelidis, Pavlos; Mantas, Asimakis; Moutoussis, Konstantinos; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2015-11-01

    The representation of visual orientation is more accurate for cardinal orientations compared to oblique, and this anisotropy has been hypothesized to reflect a low-level visual process (visual, "class 1" oblique effect). The reproduction of directional and orientation information also leads to a mean error away from cardinal orientations or directions. This anisotropy has been hypothesized to reflect a high-level cognitive process of space categorization (cognitive, "class 2," oblique effect). This space categorization process would be more prominent when the visual representation of orientation degrades such as in the case of working memory with increasing cognitive load, leading to increasing magnitude of the "class 2" oblique effect, while the "class 1" oblique effect would remain unchanged. Two experiments were performed in which an array of orientation stimuli (1-4 items) was presented and then subjects had to realign a probe stimulus within the previously presented array. In the first experiment, the delay between stimulus presentation and probe varied, while in the second experiment, the stimulus presentation time varied. The variable error was larger for oblique compared to cardinal orientations in both experiments reproducing the visual "class 1" oblique effect. The mean error also reproduced the tendency away from cardinal and toward the oblique orientations in both experiments (cognitive "class 2" oblique effect). The accuracy or the reproduced orientation degraded (increasing variable error) and the cognitive "class 2" oblique effect increased with increasing memory load (number of items) in both experiments and presentation time in the second experiment. In contrast, the visual "class 1" oblique effect was not significantly modulated by any one of these experimental factors. These results confirmed the theoretical predictions for the two anisotropies in visual orientation reproduction and provided support for models proposing the categorization of orientation in visual working memory.

  5. Perfectionism and Achievement Motivation in High-Ability Students: An Examination of the 2 x 2 Model of Perfectionism

    ERIC Educational Resources Information Center

    Speirs Neumeister, Kristie L.; Fletcher, Kathryn L.; Burney, Virginia H.

    2015-01-01

    This study examined the relationship among subtypes of perfectionism and achievement goal orientations within the context of Gaudreau and Thompson's quadripartite framework. The authors first sought to replicate Campbell and Di Paula's factor analysis to identify subtypes of self-oriented perfectionism (SOP) and socially prescribed perfectionism…

  6. Molecular orientation of copper phthalocyanine thin films on different monolayers of fullerene on SiO{sub 2} or highly oriented pyrolytic graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenggong; Wang, Congcong; Liu, Xiaoliang

    2015-03-23

    The interface electronic structures of copper phthalocyanine (CuPc) have been studied using ultraviolet photoemission spectroscopy as different monolayers of C{sub 60} were inserted between CuPc and a SiO{sub 2} or highly ordered pyrolytic graphite (HOPG) substrate. The results show that CuPc has standing up configuration with one monolayer of C{sub 60} insertion on SiO{sub 2} while lying down on HOPG, indicating that the insertion layer propagates the CuPc-substrate interaction. Meanwhile, CuPc on more than one monolayers of C{sub 60} on different substrates show that the substrate orientation effect quickly vanished. Our study elucidates intriguing molecular interactions that manipulate molecular orientationmore » and donor-acceptor energy level alignment.« less

  7. Test anxiety, perfectionism, goal orientation, and academic performance.

    PubMed

    Eum, KoUn; Rice, Kenneth G

    2011-03-01

    Dimensions of perfectionism and goal orientation have been reported to have differential relationships with test anxiety. However, the degree of inter-relationship between different dimensions of perfectionism, the 2 × 2 model of goal orientations proposed by Elliot and McGregor, cognitive test anxiety, and academic performance indicators is not known. Based on data from 134 university students, we conducted correlation and regression analyses to test associations between adaptive and maladaptive perfectionism, four types of goal orientations, cognitive test anxiety, and two indicators of academic performance: proximal cognitive performance on a word list recall test and distal academic performance in terms of grade point average. Cognitive test anxiety was inversely associated with both performance indicators, and positively associated with maladaptive perfectionism and avoidance goal orientations. Adaptive and maladaptive perfectionism accounted for significant variance in cognitive test anxiety after controlling for approach and avoidance goal orientations. Overall, nearly 50% of the variance in cognitive test anxiety could be attributed to gender, goal orientations, and perfectionism. Results suggested that students who are highly test anxious are likely to be women who endorse avoidance goal orientations and are maladaptively perfectionistic.

  8. Anisotropy in Third-Order Nonlinear Optical Susceptibility of a Squarylium Dye in a Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Jin, Zhao-Hui; Li, Zhong-Yu; Kasatani, Kazuo; Okamoto, Hiroaki

    2006-03-01

    A squarylium dye is dissolved in 4-cyano-4'-pentylbiphenyl (5CB) and oriented by sandwiching mixtures between two pieces of rubbed glass plates. The optical absorption spectra of the oriented squarylium dye-5CB layers exhibit high anisotropy. The third-order nonlinear optical responses and susceptibilities χ(3)e of squarylium dye in 5CB are measured with light polarizations parallel and perpendicular to the orientational direction by the resonant femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal of the oriented squarylium dye-5CB layers with light polarizations parallel and perpendicular to the orientational direction are measured with a time resolution of 0.3 ps (FWHM), and are found to consist of two components, i.e., the coherent instantaneous nonlinear response and slow response due to the formation of excited molecules. A high anisotropic ratio of χ(3)e, 10.8±1.2, is observed for the oriented layers.

  9. A two-step process for growth of highly oriented Sb{sub 2}Te{sub 3} using sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Yuta, E-mail: yuta-saito@aist.go.jp; Fons, Paul; Bolotov, Leonid

    2016-04-15

    A two-step growth method is proposed for the fabrication of highly-oriented Sb{sub 2}Te{sub 3} and related superlattice films using sputtering. We report that the quality and grain size of Sb{sub 2}Te{sub 3} as well as GeTe/Sb{sub 2}Te{sub 3} superlattice films strongly depend on the thickness of the room-temperature deposited and subsequently by annealing at 523 K Sb{sub 2}Te{sub 3} seed layer. This result may open up new possibilities for the fabrication of two-dimensional electronic devices using layered chalcogenides.

  10. Determining the orientation of depth-rotated familiar objects.

    PubMed

    Niimi, Ryosuke; Yokosawa, Kazuhiko

    2008-02-01

    How does the human visual system determine the depth-orientation of familiar objects? We examined reaction times and errors in the detection of 15 degrees differences in the depth orientations of two simultaneously presented familiar objects, which were the same objects (Experiment 1) or different objects (Experiment 2). Detection of orientation differences was best for 0 degrees (front) and 180 degrees (back), while 45 degrees and 135 degrees yielded poorer results, and 90 degrees (side) showed intermediate results, suggesting that the visual system is tuned for front, side and back orientations. We further found that those advantages are due to orientation-specific features such as horizontal linear contours and symmetry, since the 90 degrees advantage was absent for objects with curvilinear contours, and asymmetric object diminished the 0 degrees and 180 degrees advantages. We conclude that the efficiency of visually determining object orientation is highly orientation-dependent, and object orientation may be perceived in favor of front-back axes.

  11. High-temperature langatate elastic constants and experimental validation up to 900 degrees C.

    PubMed

    Davulis, Peter M; da Cunha, Mauricio Pereira

    2010-01-01

    This paper reports on a set of langatate (LGT) elastic constants extracted from room temperature to 1100 degrees C using resonant ultrasound spectroscopy techniques and an accompanying assessment of these constants at high temperature. The evaluation of the constants employed SAW device measurements from room temperature to 900 degrees C along 6 different LGT wafer orientations. Langatate parallelepipeds and wafers were aligned, cut, ground, and polished, and acoustic wave devices were fabricated at the University of Maine facilities along specific orientations for elastic constant extraction and validation. SAW delay lines were fabricated on LGT wafers prepared at the University of Maine using 100-nm platinumrhodium- zirconia electrodes capable of withstanding temperatures up to 1000 degrees C. The numerical predictions based on the resonant ultrasound spectroscopy high-temperature constants were compared with SAW phase velocity, fractional frequency variation, and temperature coefficients of delay extracted from SAW delay line frequency response measurements. In particular, the difference between measured and predicted fractional frequency variation is less than 2% over the 25 degrees C to 900 degrees C temperature range and within the calculated and measured discrepancies. Multiple temperature-compensated orientations at high temperature were predicted and verified in this paper: 4 of the measured orientations had turnover temperatures (temperature coefficient of delay = 0) between 200 and 420 degrees C, and 2 had turnover temperatures below 100 degrees C. In summary, this work reports on extracted high-temperature elastic constants for LGT up to 1100 degrees C, confirmed the validity of those constants by high-temperature SAW device measurements up to 900 degrees C, and predicted and identified temperature-compensated LGT orientations at high temperature.

  12. {001} Oriented piezoelectric films prepared by chemical solution deposition on Ni foils

    NASA Astrophysics Data System (ADS)

    Yeo, Hong Goo; Trolier-McKinstry, Susan

    2014-07-01

    Flexible metal foil substrates are useful in some microelectromechanical systems applications including wearable piezoelectric sensors or energy harvesters based on Pb(Zr,Ti)O3 (PZT) thin films. Full utilization of the potential of piezoelectrics on metal foils requires control of the film crystallographic texture. In this study, {001} oriented PZT thin films were grown by chemical solution deposition (CSD) on Ni foil and Si substrates. Ni foils were passivated using HfO2 grown by atomic layer deposition in order to suppress substrate oxidation during subsequent thermal treatment. To obtain the desired orientation of PZT film, strongly (100) oriented LaNiO3 films were integrated by CSD on the HfO2 coated substrates. A high level of {001} LaNiO3 and PZT film orientation were confirmed by X-ray diffraction patterns. Before poling, the low field dielectric permittivity and loss tangents of (001) oriented PZT films on Ni are near 780 and 0.04 at 1 kHz; the permittivity drops significantly on poling due to in-plane to out-of-plane domain switching. (001) oriented PZT film on Ni displayed a well-saturated hysteresis loop with a large remanent polarization ˜36 μC/cm2, while (100) oriented PZT on Si showed slanted P-E hysteresis loops with much lower remanent polarizations. The |e31,f| piezoelectric coefficient was around 10.6 C/m2 for hot-poled (001) oriented PZT film on Ni.

  13. Crystallographic orientation mapping with an electron backscattered diffraction technique in (Bi, Pb)2Sr2Ca2Cu3O10 superconductor tapes

    NASA Astrophysics Data System (ADS)

    Tan, T. T.; Li, S.; Oh, J. T.; Gao, W.; Liu, H. K.; Dou, S. X.

    2001-02-01

    It is believed that grain boundaries act as weak links in limiting the critical current density (Jc) of bulk high-Tc superconductors. The weak-link problem can be greatly reduced by elimination or minimization of large-angle grain boundaries. It has been reported that the distribution of the Jc in (Bi, Pb)2Sr2Ca2Cu3O10+x (Bi2223) superconductor tapes presents a parabolic relationship in the transverse cross section of the tapes, with the lowest currents occurring at the centre of the tapes. It was proposed that the Jc distribution is strongly dependent on the local crystallographic orientation distribution of the Bi2223 oxides. However, the local three-dimensional crystallographic orientation distribution of Bi2223 crystals in (Bi, Pb)2Sr2Ca2Cu3O10+x superconductor tapes has not yet been experimentally determined. In this work, the electron backscattered diffraction technique was employed to map the crystallographic orientation distribution, determine the misorientation of grain boundaries and also map the misorientation distribution in Bi2223 superconductor tapes. Through crystallographic orientation mapping, the relationship between the crystallographic orientation distribution, the boundary misorientation distribution and the fabrication parameters may be understood. This can be used to optimize the fabrication processes thus increasing the critical current density in Bi2223 superconductor tapes.

  14. 1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Darolia, Ram

    2003-01-01

    The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.

  15. Highly conducting and preferred <220> oriented boron doped nc–Si films for window layers in nc–Si solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, Praloy; Das, Debajyoti, E-mail: erdd@iacs.res.in

    2016-05-23

    Growth and optimization of the boron dopednanocrystalline silicon (nc-Si) films have been studied by varyingthe gaspressure applied to the hydrogendiluted silane plasma in RF (13.56 MHz) plasma-enhanced chemical vapor deposition (PECVD) system, using diborane (B{sub 2}H{sub 6}) as the dopant gas. High magnitudeof electrical conductivity (~10{sup 2} S cm{sup −1}) and<220>orientedcrystallographic lattice planes have been obtained with high crystalline volume fraction (~86 %) at an optimum pressure of 2.5 Torr. XRD and Raman studies reveal good crystallinity with preferred orientation, suitable for applications in stacked layer devices, particularly in nc–Si solar cells.

  16. The correlations of the electronic structure and film growth of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on SiO2.

    PubMed

    Lyu, Lu; Niu, Dongmei; Xie, Haipeng; Zhao, Yuan; Cao, Ningtong; Zhang, Hong; Zhang, Yuhe; Liu, Peng; Gao, Yongli

    2017-01-04

    Combining ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS), atomic force microscopy (AFM) and small angle X-ray diffraction (SAXD) measurements, we perform a systematic investigation on the correlations of the electronic structure, film growth and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on silicon oxide (SiO 2 ). AFM analysis reveals a phase transition of disorderedly oriented molecules in clusters in thinner films to highly ordered standing-up molecules in islands in thicker films. SAXD peaks consistently support the standing-up configuration in islands. The increasing ordering of the molecular orientation with film thickness contributes to the changing of the shape and lowering of the leading edge of the highest occupied molecular orbital (HOMO). The end methyl of the highly ordered standing molecules forms an outward pointing dipole layer which makes the work function (WF) decrease with increasing thickness. The downward shift of the HOMO and a decrease of WF result in unconventional downward band bending and decreased ionization potential (IP). The correlations of the orientation ordering of molecules, film growth and interface electronic structures provide a useful design strategy to improve the performance of C8-BTBT thin film based field effect transistors.

  17. Thickness and Nb-doping effects on ferro- and piezoelectric properties of highly a-axis-oriented Nb-doped Pb(Zr0.3Ti0.7)O3 films

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Xiang; Ruangchalermwong, C.; Li, Jing-Feng

    2008-09-01

    Tetragonal Nb-doped Pb(Zr0.3Ti0.7)O3 (PNZT) films with a lead oxide seeding layer were deposited on the Pt(111)/Ti/SiO2/Si(100) substrates by sol-gel processing. The as-grown PNZT films with thicknesses ranging from about 0.08 to 0.78 μm show highly a-axis preferential orientation, and their ferroelectric and piezoelectric properties improved with increasing film thickness. Due to the combined effects of Nb doping and a-axis texturing as well as reduced substrate constraint, a high d33 constant up to 196 pm/V was obtained for PNZT film at 0.78 μm in addition to a large remnant polarization of 69 μC/cm2. This well a-axis-oriented PNZT films on platinized Si with a high piezoresponse are suitable for the fabrication of microelectromechanical devices.

  18. Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates

    NASA Astrophysics Data System (ADS)

    Bayraktar, M.; Chopra, A.; Bijkerk, F.; Rijnders, G.

    2014-09-01

    Integration of PbZr0.52Ti0.48O3 (PZT) films on glass substrates is of high importance for device applications. However, to make use of the superior ferro- and piezoelectric properties of PZT, well-oriented crystalline or epitaxial growth with control of the crystal orientation is a prerequisite. In this article, we report on epitaxial growth of PZT films with (100)- and (110)-orientation achieved by utilizing Ca2Nb3O10 (CNO) and Ti0.87O2 (TO) nanosheets as crystalline buffer layers. Fatigue measurements demonstrated stable ferroelectric properties of these films up to 5 × 109 cycles. (100)-oriented PZT films on CNO nanosheets show a large remnant polarization of 21 μC/cm2 that is the highest remnant polarization value compared to (110)-oriented and polycrystalline films reported in this work. A piezoelectric response of 98 pm/V is observed for (100)-oriented PZT film which is higher than the values reported in the literature on Si substrates.

  19. Relationship among achievement goal orientations and multidimensional situational motivation in physical education.

    PubMed

    Standage, Martyn; Treasure, Darren C

    2002-03-01

    Contemporary research suggests that task and ego achievement goal orientations affect students' intrinsic motivation in physical education. This research has assessed intrinsic motivation as a unidimensional contruct, however, which is inconsistent with the more contemporary postulates of self-determination theory (Deci & Ryan, 1985, 1991) which states that intrinsic motivation is only one type of motivation. To date, research has not addressed whether different types of motivation at the situational level are influenced by the proneness to adopt task or ego involvement. To examine the relationship between achievement goal orientations and multidimensional situational motivation in PE. Middle school children (182 male, 136 female; M age = 13.2 years). Responded to questionnaires assessing their dispositional goal orientation (POSQ; Roberts, Treasure, & Balague, 1998) and situational motivation (SIMS; Guay, Vallerand, & Blanchard, 2000) in PE. Task orientation was found to be positively associated with more self-determined types of situational motivation. Ego orientation was weakly related to less self-determined motivation. An extreme group split was conducted to create four goal groups and goal profile analyses conducted. A significant MANOVA was followed by univariate analyses, post hoc comparisons, and calculated effect sizes, which revealed that groups high in task orientation reported more motivationally adaptive responses than groups low in task orientation. The results suggest that a high level of task orientation singularly or in combination with ego orientation fosters self-determined situational motivation in the context of PE.

  20. Thick homoepitaxial (110)-oriented phosphorus-doped n-type diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balasubramaniam, Y.; Pobedinskas, P., E-mail: paulius.pobedinskas@uhasselt.be; Janssens, S. D.

    2016-08-08

    The fabrication of n-type diamond is essential for the realization of electronic components for extreme environments. We report on the growth of a 66 μm thick homoepitaxial phosphorus-doped diamond on a (110)-oriented diamond substrate, grown at a very high deposition rate of 33 μm h{sup −1}. A pristine diamond lattice is observed by high resolution transmission electron microscopy, which indicates the growth of high quality diamond. About 2.9 × 10{sup 16} cm{sup −3} phosphorus atoms are electrically active as substitutional donors, which is 60% of all incorporated dopant atoms. These results indicate that P-doped (110)-oriented diamond films deposited at high growth rates are promising candidates formore » future use in high-power electronic applications.« less

  1. Hydrothermal growth of highly textured BaTiO₃ films composed of nanowires.

    PubMed

    Zhou, Zhi; Lin, Yirong; Tang, Haixiong; Sodano, Henry A

    2013-03-08

    Textured barium titanate (BaTiO(3)) films are attracting immense research interest due to their lead-free composition and excellent piezoelectric and dielectric properties. Most synthesis methods for these films require a high temperature, leading to the formation of a secondary phase and an overall decrease in the electrical properties of the ceramic. In order to alleviate these issues, a novel fabrication method is introduced by transferring oriented rutile TiO(2) nanowires to a textured BaTiO(3) film at temperatures below 160 °C. The microstructure and thickness of the fabricated BaTiO(3) films were characterized by scanning electron microscopy, and the crystal structure and degree of orientation were evaluated by x-ray diffraction patterns using the Lotgering method. It is shown that the thickness of the BaTiO(3) film can be controlled by the length of TiO(2) nanowire array template, and the degree of orientation of the textured BaTiO(3) films is highly dependent on the film thickness; the crystallographic orientation has been measured to reach up to 87%. The relative dielectric constant (ε(r) = 1300) and ferroelectric properties (P(r) = 2.7 μC cm(-2), E(c) = 4.0 kV mm(-1)) of the textured BaTiO(3) films were also characterized to demonstrate their potential application in sensors, random access memory, and micro-electromechanical systems.

  2. Interfacial band alignment and structural properties of nanoscale TiO2 thin films for integration with epitaxial crystallographic oriented germanium

    NASA Astrophysics Data System (ADS)

    Jain, N.; Zhu, Y.; Maurya, D.; Varghese, R.; Priya, S.; Hudait, M. K.

    2014-01-01

    We have investigated the structural and band alignment properties of nanoscale titanium dioxide (TiO2) thin films deposited on epitaxial crystallographic oriented Ge layers grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy. The TiO2 thin films deposited at low temperature by physical vapor deposition were found to be amorphous in nature, and high-resolution transmission electron microscopy confirmed a sharp heterointerface between the TiO2 thin film and the epitaxially grown Ge with no traceable interfacial layer. A comprehensive assessment on the effect of substrate orientation on the band alignment at the TiO2/Ge heterointerface is presented by utilizing x-ray photoelectron spectroscopy and spectroscopic ellipsometry. A band-gap of 3.33 ± 0.02 eV was determined for the amorphous TiO2 thin film from the Tauc plot. Irrespective of the crystallographic orientation of the epitaxial Ge layer, a sufficient valence band-offset of greater than 2 eV was obtained at the TiO2/Ge heterointerface while the corresponding conduction band-offsets for the aforementioned TiO2/Ge system were found to be smaller than 1 eV. A comparative assessment on the effect of Ge substrate orientation revealed a valence band-offset relation of ΔEV(100) > ΔEV(111) > ΔEV(110) and a conduction band-offset relation of ΔEC(110) > ΔEC(111) > ΔEC(100). These band-offset parameters are of critical importance and will provide key insight for the design and performance analysis of TiO2 for potential high-κ dielectric integration and for future metal-insulator-semiconductor contact applications with next generation of Ge based metal-oxide field-effect transistors.

  3. Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size.

    PubMed

    Schilling, Martin; Ziemann, Paul; Zhang, Zaoli; Biskupek, Johannes; Kaiser, Ute; Wiedwald, Ulf

    2016-01-01

    Texture formation and epitaxy of thin metal films and oriented growth of nanoparticles (NPs) on single crystal supports are of general interest for improved physical and chemical properties especially of anisotropic materials. In the case of FePt, the main focus lies on its highly anisotropic magnetic behavior and its catalytic activity, both due to the chemically ordered face-centered tetragonal (fct) L10 phase. If the c-axis of the tetragonal system can be aligned normal to the substrate plane, perpendicular magnetic recording could be achieved. Here, we study the orientation of FePt NPs and films on a-SiO2/Si(001), i.e., Si(001) with an amorphous (a-) native oxide layer on top, on MgO(001), and on sapphire(0001) substrates. For the NPs of an approximately equiatomic composition, two different sizes were chosen: "small" NPs with diameters in the range of 2-3 nm and "large" ones in the range of 5-8 nm. The 3 nm thick FePt films, deposited by pulsed laser deposition (PLD), served as reference samples. The structural properties were probed in situ, particularly texture formation and epitaxy of the specimens by reflection high-energy electron diffraction (RHEED) and, in case of 3 nm nanoparticles, additionally by high-resolution transmission electron microscopy (HRTEM) after different annealing steps between 200 and 650 °C. The L10 phase is obtained at annealing temperatures above 550 °C for films and 600 °C for nanoparticles in accordance with previous reports. On the amorphous surface of a-SiO2/Si substrates we find no preferential orientation neither for FePt films nor nanoparticles even after annealing at 630 °C. On sapphire(0001) supports, however, FePt nanoparticles exhibit a clearly preferred (111) orientation even in the as-prepared state, which can be slightly improved by annealing at 600-650 °C. This improvement depends on the size of NPs: Only the smaller NPs approach a fully developed (111) orientation. On top of MgO(001) the effect of annealing on particle orientation was found to be strongest. From a random orientation in the as-prepared state observed for both, small and large FePt NPs, annealing at 650 °C for 30 min reorients the small particles towards a cube-on-cube epitaxial orientation with a minor fraction of (111)-oriented particles. In contrast, large FePt NPs keep their as-prepared random orientation even after doubling the annealing period at 650 °C to 60 min.

  4. Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size

    PubMed Central

    Schilling, Martin; Ziemann, Paul; Zhang, Zaoli; Biskupek, Johannes; Kaiser, Ute

    2016-01-01

    Summary Texture formation and epitaxy of thin metal films and oriented growth of nanoparticles (NPs) on single crystal supports are of general interest for improved physical and chemical properties especially of anisotropic materials. In the case of FePt, the main focus lies on its highly anisotropic magnetic behavior and its catalytic activity, both due to the chemically ordered face-centered tetragonal (fct) L10 phase. If the c-axis of the tetragonal system can be aligned normal to the substrate plane, perpendicular magnetic recording could be achieved. Here, we study the orientation of FePt NPs and films on a-SiO2/Si(001), i.e., Si(001) with an amorphous (a-) native oxide layer on top, on MgO(001), and on sapphire(0001) substrates. For the NPs of an approximately equiatomic composition, two different sizes were chosen: “small” NPs with diameters in the range of 2–3 nm and “large” ones in the range of 5–8 nm. The 3 nm thick FePt films, deposited by pulsed laser deposition (PLD), served as reference samples. The structural properties were probed in situ, particularly texture formation and epitaxy of the specimens by reflection high-energy electron diffraction (RHEED) and, in case of 3 nm nanoparticles, additionally by high-resolution transmission electron microscopy (HRTEM) after different annealing steps between 200 and 650 °C. The L10 phase is obtained at annealing temperatures above 550 °C for films and 600 °C for nanoparticles in accordance with previous reports. On the amorphous surface of a-SiO2/Si substrates we find no preferential orientation neither for FePt films nor nanoparticles even after annealing at 630 °C. On sapphire(0001) supports, however, FePt nanoparticles exhibit a clearly preferred (111) orientation even in the as-prepared state, which can be slightly improved by annealing at 600–650 °C. This improvement depends on the size of NPs: Only the smaller NPs approach a fully developed (111) orientation. On top of MgO(001) the effect of annealing on particle orientation was found to be strongest. From a random orientation in the as-prepared state observed for both, small and large FePt NPs, annealing at 650 °C for 30 min reorients the small particles towards a cube-on-cube epitaxial orientation with a minor fraction of (111)-oriented particles. In contrast, large FePt NPs keep their as-prepared random orientation even after doubling the annealing period at 650 °C to 60 min. PMID:27335749

  5. Thermal expansion and elastic anisotropy in single crystal Al2O3 and SiC reinforcements

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Li, Zhuang; Bradt, Richard C.

    1994-01-01

    In single crystal form, SiC and Al2O3 are attractive reinforcing components for high temperature composites. In this study, the axial coefficients of thermal expansion and single crystal elastic constants of SiC and Al2O3 were used to determine their coefficients of thermal expansion and Young's moduli as a function of crystallographic orientation and temperature. SiC and Al2O3 exhibit a strong variation of Young's modulus with orientation; however, their moduli and anisotropies are weak functions of temperature below 1000 C. The coefficients of thermal expansion exhibit significant temperature dependence, and that of the non-cubic Al2O3 is also a function of crystallographic orientation.

  6. Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Monavarian, M.; Rashidi, A.; Aragon, A. A.; Oh, S. H.; Rishinaramangalam, A. K.; DenBaars, S. P.; Feezell, D.

    2018-01-01

    High-speed InGaN/GaN blue light-emitting diodes (LEDs) are needed for future gigabit-per-second visible-light communication systems. Large LED modulation bandwidths are typically achieved at high current densities, with reports close to 1 GHz bandwidth at current densities ranging from 5 to 10 kA/cm2. However, the internal quantum efficiency (IQE) of InGaN/GaN LEDs is quite low at high current densities due to the well-known efficiency droop phenomenon. Here, we show experimentally that nonpolar and semipolar orientations of GaN enable higher modulation bandwidths at low current densities where the IQE is expected to be higher and power dissipation is lower. We experimentally compare the modulation bandwidth vs. current density for LEDs on nonpolar (10 1 ¯ 0 ), semipolar (20 2 ¯ 1 ¯) , and polar (" separators="|0001 ) orientations. In agreement with wavefunction overlap considerations, the experimental results indicate a higher modulation bandwidth for the nonpolar and semipolar LEDs, especially at relatively low current densities. At 500 A/cm2, the nonpolar LED has a 3 dB bandwidth of ˜1 GHz, while the semipolar and polar LEDs exhibit bandwidths of 260 MHz and 75 MHz, respectively. A lower carrier density for a given current density is extracted from the RF measurements for the nonpolar and semipolar LEDs, consistent with the higher wavefunction overlaps in these orientations. At large current densities, the bandwidth of the polar LED approaches that of the nonpolar and semipolar LEDs due to coulomb screening of the polarization field. The results support using nonpolar and semipolar orientations to achieve high-speed LEDs at low current densities.

  7. Monetary rewards influence retrieval orientations.

    PubMed

    Halsband, Teresa M; Ferdinand, Nicola K; Bridger, Emma K; Mecklinger, Axel

    2012-09-01

    Reward anticipation during learning is known to support memory formation, but its role in retrieval processes is so far unclear. Retrieval orientations, as a reflection of controlled retrieval processing, are one aspect of retrieval that might be modulated by reward. These processes can be measured using the event-related potentials (ERPs) elicited by retrieval cues from tasks with different retrieval requirements, such as via changes in the class of targeted memory information. To determine whether retrieval orientations of this kind are modulated by reward during learning, we investigated the effects of high and low reward expectancy on the ERP correlates of retrieval orientation in two separate experiments. The reward manipulation at study in Experiment 1 was associated with later memory performance, whereas in Experiment 2, reward was directly linked to accuracy in the study task. In both studies, the participants encoded mixed lists of pictures and words preceded by high- or low-reward cues. After 24 h, they performed a recognition memory exclusion task, with words as the test items. In addition to a previously reported material-specific effect of retrieval orientation, a frontally distributed, reward-associated retrieval orientation effect was found in both experiments. These findings suggest that reward motivation during learning leads to the adoption of a reward-associated retrieval orientation to support the retrieval of highly motivational information. Thus, ERP retrieval orientation effects not only reflect retrieval processes related to the sought-for materials, but also relate to the reward conditions with which items were combined during encoding.

  8. Crystallization Dynamics of Organolead Halide Perovskite by Real-Time X-ray Diffraction.

    PubMed

    Miyadera, Tetsuhiko; Shibata, Yosei; Koganezawa, Tomoyuki; Murakami, Takurou N; Sugita, Takeshi; Tanigaki, Nobutaka; Chikamatsu, Masayuki

    2015-08-12

    We analyzed the crystallization process of the CH3NH3PbI3 perovskite by observing real-time X-ray diffraction immediately after combining a PbI2 thin film with a CH3NH3I solution. A detailed analysis of the transformation kinetics demonstrated the fractal diffusion of the CH3NH3I solution into the PbI2 film. Moreover, the perovskite crystal was found to be initially oriented based on the PbI2 crystal orientation but to gradually transition to a random orientation. The fluctuating characteristics of the crystallization process of perovskites, such as fractal penetration and orientational transformation, should be controlled to allow the fabrication of high-quality perovskite crystals. The characteristic reaction dynamics observed in this study should assist in establishing reproducible fabrication processes for perovskite solar cells.

  9. Substrate Structures For Growth Of Highly Oriented And/Or Epitaxial Layers Thereon

    DOEpatents

    Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Jia, Quanxi

    2005-07-26

    A composite substrate structure including a substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer is provided together with additional layers such as one or more layers of a buffer material upon the oriented cubic oxide material layer. Jc's of 2.3×106 A/cm2 have been demonstrated with projected Ic's of 320 Amperes across a sample 1 cm wide for a superconducting article including a flexible polycrystalline metallic substrate, an inert oxide material layer upon the surface of the flexible polycrystalline metallic substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the layer of the inert oxide material, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer, a layer of a buffer material upon the oriented cubic oxide material layer, and, a top-layer of a high temperature superconducting material upon the layer of a buffer material.

  10. Eating Disorder Symptoms and Obesity at the Intersections of Gender, Ethnicity, and Sexual Orientation in US High School Students

    PubMed Central

    Nelson, Lauren A.; Birkett, Michelle A.; Calzo, Jerel P.; Everett, Bethany

    2013-01-01

    Objectives. We examined purging for weight control, diet pill use, and obesity across sexual orientation identity and ethnicity groups. Methods. Anonymous survey data were analyzed from 24 591 high school students of diverse ethnicities in the federal Youth Risk Behavioral Surveillance System Survey in 2005 and 2007. Self-reported data were gathered on gender, ethnicity, sexual orientation identity, height, weight, and purging and diet pill use in the past 30 days. We used multivariable logistic regression to estimate odds of purging, diet pill use, and obesity associated with sexual orientation identity in gender-stratified models and examined for the presence of interactions between ethnicity and sexual orientation. Results. Lesbian, gay, and bisexual (LGB) identity was associated with substantially elevated odds of purging and diet pill use in both girls and boys (odds ratios [OR] range =  1.9–6.8). Bisexual girls and boys were also at elevated odds of obesity compared to same-gender heterosexuals (OR = 2.3 and 2.1, respectively). Conclusions. Interventions to reduce eating disorders and obesity that are appropriate for LGB youths of diverse ethnicities are urgently needed. PMID:23237207

  11. High-efficiency orange and tandem white organic light-emitting diodes using phosphorescent dyes with horizontally oriented emitting dipoles.

    PubMed

    Lee, Sunghun; Shin, Hyun; Kim, Jang-Joo

    2014-09-03

    Tandem white organic light-emitting diodes (WOLEDs) using horizontally oriented phosphorescent dyes in an exciplex-forming co-host are presented, along with an orange OLED. A high external quantum efficiency of 32% is achieved for the orange OLED at 1000 cd m(-2) and the tandem WOLEDs exhibit a high maximum EQE of 54.3% (PE of 63 lm W(-1)). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High magnetic field processing of liquid crystalline polymers

    DOEpatents

    Smith, M.E.; Benicewicz, B.C.; Douglas, E.P.

    1998-11-24

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  13. High magnetic field processing of liquid crystalline polymers

    DOEpatents

    Smith, Mark E.; Benicewicz, Brian C.; Douglas, Elliot P.

    1998-01-01

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  14. ACE DD genotype is unfavorable to Korean short-term muscle power athletes.

    PubMed

    Kim, C-H; Cho, J-Y; Jeon, J Y; Koh, Y G; Kim, Y-M; Kim, H-J; Park, M; Um, H-S; Kim, C

    2010-01-01

    The purpose of this study was to test the hypothesis that the ACE DD genotype is unfavorably associated with the ultimate power-oriented performance. To test the hypothesis we recruited a total of 848 subjects including 55 international level power-oriented athletes (High-performance), 100 national level power-oriented athletes (Mid-performance) and 693 healthy controls (Control) in Korea. Then the distributions of ACE polymorphism throughout these groups were analyzed. As a result, there was a gradual decrease of frequencies of the DD genotype with advancing levels of performance (Control vs. Mid-performance vs. High-performance=17.2% vs. 10.0% vs. 5.5%, p=0.002). Also, the frequencies of D allele decreased gradually with advancing levels of performance (Control vs. Mid-performance vs. High-performance=42.6% vs. 35.0% vs. 30.9%, p<0.01). Therefore, power-oriented athletes at the top level had a markedly diminished frequency of the DD genotype and the D allele. This finding gave 3.83 times lower probability of success in power-oriented sports for individuals with the DD genotype than those with the II+ ID genotype. In conclusion, these results indicate that Korean power-oriented athletes with a lower frequency of the DD genotype had a lower probability of success in power-oriented sports. Georg Thieme Verlag KG Stuttgart, New York.

  15. VO2 nanoparticles on edge orientated graphene foam for high rate lithium ion batteries and supercapacitors

    NASA Astrophysics Data System (ADS)

    Ren, Guofeng; Zhang, Ruibo; Fan, Zhaoyang

    2018-05-01

    With the fully exposed graphene edges, high conductivity and large surface area, edge oriented graphene foam (EOGF), prepared by deposition of perpendicular graphene network encircling the struts of Ni foam, is a superior scaffold to support active materials for electrochemical applications. With VO2 as an example, EOGF loaded VO2 nanoparticle (VO2/EOGF) electrode has high rate performance as cathode in lithium ion batteries (LIBs). In addition to the Li+ intercalation into the lattice, contribution of non-diffusion-limited pseudocapacitance to the capacity is prominent at high rates. VO2/EOGF based supercapacitor also exhibits fast response, with a characteristic frequency of 15 Hz when the phase angle reaches -45°, or a relaxation time constant of 66.7 ms. These results suggest the promising potential of EOGF as a scaffold in supporting active nanomaterials for electrochemical energy storage and other applications.

  16. High-Power Characteristics of Thickness Shear Mode for Textured SrBi2Nb2O9 Ceramics

    NASA Astrophysics Data System (ADS)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Higuchi, Yukio; Takagi, Hiroshi

    2009-09-01

    The high-power piezoelectric characteristics of the thickness shear mode for <00l> oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi2Nb2O9 (SBN), were studied by the constant current driving method. These textured ceramics were fabricated by the templated grain growth (TGG) method, and the Lotgering factor was 95%. The vibration of the thickness shear mode in the textured SBN ceramics was stable at the vibration velocity of 2.0 m/s. The resonant frequency was almost constant with increasing vibration velocity in the textured SBN ceramics, however, it decreased with increasing vibration velocity in the randomly oriented SBN ceramics. In the case of Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 ceramics, the vibration velocity of the thickness shear mode was saturated at more than 0.3 m/s, and the resonant frequency decreased at lower vibration velocity than in the case of SBN ceramics. The dissipation power density of the textured SBN ceramics was the lowest among those of the randomly oriented SBN and Pb(Mn,Nb)O3-PZT ceramics. The thickness shear mode of textured SBN ceramics is a good candidate for high-power piezoelectric applications.

  17. Perpendicular Orientation Control without Interfacial Treatment of RAFT-Synthesized High-χ Block Copolymer Thin Films with Sub-10 nm Features Prepared via Thermal Annealing.

    PubMed

    Nakatani, Ryuichi; Takano, Hiroki; Chandra, Alvin; Yoshimura, Yasunari; Wang, Lei; Suzuki, Yoshinori; Tanaka, Yuki; Maeda, Rina; Kihara, Naoko; Minegishi, Shinya; Miyagi, Ken; Kasahara, Yuusuke; Sato, Hironobu; Seino, Yuriko; Azuma, Tsukasa; Yokoyama, Hideaki; Ober, Christopher K; Hayakawa, Teruaki

    2017-09-20

    In this study, a series of perpendicular lamellae-forming poly(polyhedral oligomeric silsesquioxane methacrylate-block-2,2,2-trifluoroethyl methacrylate)s (PMAPOSS-b-PTFEMAs) was developed based on the bottom-up concept of creating a simple yet effective material by tailoring the chemical properties and molecular composition of the material. The use of silicon (Si)-containing hybrid high-χ block copolymers (BCPs) provides easy access to sub-10 nm feature sizes. However, as the surface free energies (SFEs) of Si-containing polymers are typically vastly lower than organic polymers, this tends to result in the selective segregation of the inorganic block onto the air interface and increased difficulty in controlling the BCP orientation in thin films. Therefore, by balancing the SFEs between the organic and inorganic blocks through the use of poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) on the organic block, a polymer with an SFE similar to Si-containing polymers, orientation control of the BCP domains in thin films becomes much simpler. Herein, perpendicularly oriented BCP thin films with a χ eff value of 0.45 were fabricated using simple spin-coating and thermal annealing processes under ambient conditions. The thin films displayed a minimum domain size of L 0 = 11 nm, as observed via atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Furthermore, directed self-assembly (DSA) of the BCP on a topographically prepatterned substrate using the grapho-epitaxy method was used to successfully obtain perpendicularly oriented lamellae with a half pitch size of ca. 8 nm.

  18. Development of anticipatory orienting strategies and trajectory formation in goal-oriented locomotion.

    PubMed

    Belmonti, Vittorio; Cioni, Giovanni; Berthoz, Alain

    2013-05-01

    In goal-oriented locomotion, healthy adults generate highly stereotyped trajectories and a consistent anticipatory head orienting behaviour, both evidence of top-down, open-loop control. The aim of this study is to describe the typical development of anticipatory orienting strategies and trajectory formation. Our hypothesis is that full-blown anticipatory control requires advanced navigational skills. Twenty-six healthy subjects (14 children: 4-11 years; 6 adolescents: 13-17 years; 6 adults) were asked to walk freely towards one of the three visual targets, in a randomised order. Movement was captured via an optoelectronic system, with 15 body markers. The whole-body displacement, yaw orientation of head, trunk and pelvis, heading direction and foot placements were extracted. Head-heading anticipation, trajectory curvature, indexes of variability of trajectories, foot placements and kinematic profiles were studied. The mean head-heading anticipation time and trajectory curvature did not significantly differ among age groups. In children, however, head anticipation was more often lacking (χ2 = 9.55, p < 0.01), and there were significant intra- and inter-subject variations. Trajectory curvature was often very high in children, while it became consistently lower in adolescence (χ2 = 78.59, p < 10(-17)). The indexes of spatial and kinematic variability all followed a decreasing developmental trend (R (2) > 0.5, p < 0.0001). In conclusion, children under 11 do not perform curvilinear locomotor trajectories as adolescents and adults do. Anticipatory head orientation and trajectory formation develop in late childhood, well after gait maturation. Navigational skills, such as path planning and shifting from ego- to allocentric spatial reference frames, are proposed as necessary requisites for mature locomotor control.

  19. High-Power Piezoelectric Vibration Characteristics of Textured SrBi2Nb2O9 Ceramics

    NASA Astrophysics Data System (ADS)

    Kawada, Shinichiro; Ogawa, Hirozumi; Kimura, Masahiko; Shiratsuyu, Kosuke; Niimi, Hideaki

    2006-09-01

    The high-power piezoelectric vibration characteristics of textured SrBi2Nb2O9 (SBN) ceramics, that is bismuth-layer-structured ferroelectrics, were studied in the longitudinal mode (33-mode) by constant current driving method and compared with those of ordinary randomly oriented SBN and widely used Pb(Ti,Zr)O3 (PZT) ceramics. In the case of textured SBN ceramics, resonant properties are stable up to a vibration velocity of 2.6 m/s. Vibration velocity at resonant frequency increases proportionally with the applied electric field, and resonant frequency is almost constant in high-vibration-velocity driving. On the other hand, in the case of randomly oriented SBN and PZT ceramics, the increase in vibration velocity is not proportional to the applied high electric field, and resonant frequency decreases with increasing vibration velocity. The resonant sharpness Q of textured SBN ceramics is about 2000, even at a vibration velocity of 2.6 m/s. Therefore, textured SBN ceramics are good candidates for high-power piezoelectric applications.

  20. High levels of absorption in orientation-unbiased, radio-selected 3CR Active Galaxies

    NASA Astrophysics Data System (ADS)

    Wilkes, Belinda J.; Haas, Martin; Barthel, Peter; Leipski, Christian; Kuraszkiewicz, Joanna; Worrall, Diana; Birkinshaw, Mark; Willner, Steven P.

    2014-08-01

    A critical problem in understanding active galaxies (AGN) is the separation of intrinsic physical differences from observed differences that are due to orientation. Obscuration of the active nucleus is anisotropic and strongly frequency dependent leading to complex selection effects for observations in most wavebands. These can only be quantified using a sample that is sufficiently unbiased to test orientation effects. Low-frequency radio emission is one way to select a close-to orientation-unbiased sample, albeit limited to the minority of AGN with strong radio emission.Recent Chandra, Spitzer and Herschel observations combined with multi-wavelength data for a complete sample of high-redshift (1 24.2) = 2.5:1.4:1 in these high-luminosity (log L(0.3-8keV) ~ 44-46) sources. These ratios are consistent with current expectations based on modelingthe Cosmic X-ray Background. A strong correlation with radio orientation constrains the geometry of the obscuring disk/torus to have a ~60 degree opening angle and ~12 degree Compton-thick cross-section. The deduced ~50% obscured fraction of the population contrasts with typical estimates of ~20% obscured in optically- and X-ray-selected high-luminosity samples. Once the primary nuclear emission is obscured, AGN X-ray spectra are frequently dominated by unobscured non-nuclear or scattered nuclear emission which cannot be distinguished from direct nuclear emission with a lower obscuration level unless high quality data is available. As a result, both the level of obscuration and the estimated instrinsic luminosities of highly-obscured AGN are likely to be significantly (*10-1000) underestimated for 25-50% of the population. This may explain the lower obscured fractions reported for optical and X-ray samples which have no independent measure of the AGN luminosity. Correcting AGN samples for these underestimated luminosities would result in flatter derived luminosity functions and potentially change their evolution.

  1. Electrical and structural properties of TiO2-δ thin film with oxygen vacancies prepared by RF magnetron sputtering using oxygen radical

    NASA Astrophysics Data System (ADS)

    Kawamura, Kinya; Suzuki, Naoya; Tsuchiya, Takashi; Shimazu, Yuichi; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru

    2016-06-01

    Anatase TiO2-δ thin film was prepared by RF magnetron sputtering using oxygen radical and Ti-metal target. Degrees of the TiO2-δ crystal orientation in the thin film depends of the oxygen gas pressure (P\\text{O2}) in the radical gun. The (004)- and (112)-oriented TiO2-δ thin films crystallized without postannealing have the mixed valence Ti4+/Ti3+ state. The electrical conductivities, which corresponds to n-type oxide semiconductor, is higher in the case of (004)-oriented TiO2-δ thin film containing with high concentration of oxygen vacancy. The donor band of TiO2-δ thin film is observed at ˜1.0 eV from the Fermi level (E F). The density-of-state at E F is higher in (004)-oriented TiO2-δ thin film. The above results indicate that the oxygen vacancies can control by changing the P\\text{O2} of the oxygen radical.

  2. Linking quality and performance. Quality orientation can be a competitive strategy for health care providers.

    PubMed

    Rapert, M I; Babakus, E

    1996-01-01

    Many organizations are not convinced a quality orientation pays off and are looking for ways to link quality with performance. The authors' exploratory study found that a quality orientation is a differentiating factor between low-performing and high-performing general service hospitals. They also developed a quality scale to assess the performance implications of quality-based strategies in the health care industry. Successful health care organizations (1) develop a strategic quality orientation at the management level, (2) support the pursuit of quality at the contact level, and (3) monitor external customers' perceptions of quality.

  3. Tunable photoelectric response in NiO-based heterostructures by various orientations

    NASA Astrophysics Data System (ADS)

    Luo, Yidong; Qiao, Lina; Zhang, Qinghua; Xu, Haomin; Shen, Yang; Lin, Yuanhua; Nan, Cewen

    2018-02-01

    We engineered various orientations of NiO layers for NiO-based heterostructures (NiO/Au/STO) to investigate their effects on the generation of hot electrons and holes. Our calculation and experimental results suggested that bandgap engineering and the orientation of the hole transport layer (NiO) were crucial elements for the optimization of photoelectric responses. The (100)-orientated NiO/Au/STO achieved the highest photo-current density (˜30 μA/cm2) compared with (111) and (110)-orientated NiO films, which was attributed to the (100) films's lowest effective mass of photogenerated holes (˜1.82 m0) and the highest efficiency of separating and transferring electron-holes of the (100)-orientated sample. Our results opened a direction to design a high efficiency photoelectric solar cell.

  4. Deducing 2D Crystal Structure at the Solid/Liquid Interface with Atomic Resolution by Combined STM and SFG Study

    NASA Astrophysics Data System (ADS)

    McClelland, Arthur; Ahn, Seokhoon; Matzger, Adam J.; Chen, Zhan

    2009-03-01

    Supplemented by computed models, Scanning Tunneling Microscopy (STM) can provide detailed structure of 2D crystals formed at the liquid/solid interface with atomic resolution. However, some structural information such as functional group orientations in such 2D crystals needs to be tested experimentally to ensure the accuracy of the deduced structures. Due to the limited sensitivity, many other experimental techniques such as Raman and infrared spectroscopy have not been allowed to provide such structural information of 2D crystals. Here we showed that Sum Frequency Generation Vibrational Spectroscopy (SFG) can measure average orientation of functional groups in such 2D crystals, or physisorbed monolayers, providing key experimental data to aid in the modeling and interpretation of the STM images. The usefulness of combining these two techniques is demonstrated with a phthalate diesters monolayer formed at the 1-phenyloctane/ highly oriented pyrolytic graphite (HOPG) interface. The spatial orientation of the ester C=O of the monolayer was successfully determined using SFG.

  5. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance.

    PubMed

    Chen, Alexander Z; Shiu, Michelle; Ma, Jennifer H; Alpert, Matthew R; Zhang, Depei; Foley, Benjamin J; Smilgies, Detlef-M; Lee, Seung-Hun; Choi, Joshua J

    2018-04-06

    Thin films based on two-dimensional metal halide perovskites have achieved exceptional performance and stability in numerous optoelectronic device applications. Simple solution processing of the 2D perovskite provides opportunities for manufacturing devices at drastically lower cost compared to current commercial technologies. A key to high device performance is to align the 2D perovskite layers, during the solution processing, vertical to the electrodes to achieve efficient charge transport. However, it is yet to be understood how the counter-intuitive vertical orientations of 2D perovskite layers on substrates can be obtained. Here we report a formation mechanism of such vertically orientated 2D perovskite in which the nucleation and growth arise from the liquid-air interface. As a consequence, choice of substrates can be liberal from polymers to metal oxides depending on targeted application. We also demonstrate control over the degree of preferential orientation of the 2D perovskite layers and its drastic impact on device performance.

  6. SCC of Alloy 690 and its Weld Metals

    NASA Astrophysics Data System (ADS)

    Andresen, Peter L.; Morra, Martin M.; Ahluwalia, Kawaljit

    Alloy 690 base metal, HAZ and weld metal were tested in representative PWR primary water at 290 to 360°C. Intergranular cracking was observed in all materials. Growth rates as high as 1.2 × 10-6 mm/s were observed in the S-L orientation with micro structural banded material after cold rolling or forging to align the planes of banding, rolling and cracking. However, not all banded material has exhibited such high growth rates. Growth rates on homogeneous Alloy 690, including extruded CRDM tubing, often showed growth rates in the range of 2 - 8 × 10-8 mm/s in cold worked condition and an S-L orientation. Crack growth rates in some Alloy 690 tests were in the range of 1 to 10 × 10-9 mm/s, primarily in orientations other than S-L. For cracks aligned along the HAZ, growth rates as high as 1.2 × 10-8 mm/s were observed. Alloy 152/52/52i weld metals always exhibited low growth rates, apart from a weld that was further cold worked by 20%, which grew at 7 × 10-9 mm/s.

  7. Highly c-axis-oriented monocrystalline Pb(Zr, Ti)O₃ thin films on si wafer prepared by fast cooling immediately after sputter deposition.

    PubMed

    Yoshida, Shinya; Hanzawa, Hiroaki; Wasa, Kiyotaka; Esashi, Masayoshi; Tanaka, Shuji

    2014-09-01

    We successfully developed sputter deposition technology to obtain a highly c-axis-oriented monocrystalline Pb(Zr, Ti)O3 (PZT) thin film on a Si wafer by fast cooling (~-180°C/min) of the substrate after deposition. The c-axis orientation ratio of a fast-cooled film was about 90%, whereas that of a slow-cooled (~-40°C/min) film was only 10%. The c-axis-oriented monocrystalline Pb(Zr0.5, Ti0.5)O3 films showed reasonably large piezoelectric coefficients, e(31,f) = ~-11 C/m(2), with remarkably small dielectric constants, ϵ(r) = ~220. As a result, an excellent figure of merit (FOM) was obtained for piezoelectric microelectromechanical systems (MEMS) such as a piezoelectric gyroscope. This c-axis orientation technology on Si will extend industrial applications of PZT-based thin films and contribute further to the development of piezoelectric MEMS.

  8. Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors.

    PubMed

    Ahn, Wook; Lee, Dong Un; Li, Ge; Feng, Kun; Wang, Xiaolei; Yu, Aiping; Lui, Gregory; Chen, Zhongwei

    2016-09-28

    Highly oriented rGO sponge (HOG) can be easily synthesized as an effective anode for application in high-capacity lithium ion hybrid capacitors. X-ray diffraction and morphological analyses show that successfully exfoliated rGO sponge on average consists of 4.2 graphene sheets, maintaining its three-dimensional structure with highly oriented morphology even after the thermal reduction procedure. Lithium-ion hybrid capacitors (LIC) are fabricated in this study based on a unique cell configuration which completely eliminates the predoping process of lithium ions. The full-cell LIC consisting of AC/HOG-Li configuration has resulted in remarkably high energy densities of 231.7 and 131.9 Wh kg(-1) obtained at 57 W kg(-1) and 2.8 kW kg(-1). This excellent performance is attributed to the lithium ion diffusivity related to the intercalation reaction of AC/HOG-Li which is 3.6 times higher that of AC/CG-Li. This unique cell design and configuration of LIC presented in this study using HOG as an effective anode is an unprecedented example of performance enhancement and improved energy density of LIC through successful increase in cell operation voltage window.

  9. Responsibility/Threat Overestimation Moderates the Relationship Between Contamination-Based Disgust and Obsessive-Compulsive Concerns About Sexual Orientation.

    PubMed

    Ching, Terence H W; Williams, Monnica T; Siev, Jedidiah; Olatunji, Bunmi O

    2018-05-01

    Disgust has been shown to perform a "disease-avoidance" function in contamination fears. However, no studies have examined the relevance of disgust to obsessive-compulsive (OC) concerns about sexual orientation (e.g., fear of one's sexual orientation transforming against one's will, and compulsive avoidance of same-sex and/or gay or lesbian individuals to prevent that from happening). Therefore, we investigated whether the specific domain of contamination-based disgust (i.e., evoked by the perceived threat of transmission of essences between individuals) predicted OC concerns about sexual orientation, and whether this effect was moderated/amplified by obsessive beliefs, in evaluation of a "sexual orientation transformation-avoidance" function. We recruited 283 self-identified heterosexual college students (152 females, 131 males; mean age = 20.88 years, SD = 3.19) who completed three measures assessing disgust, obsessive beliefs, and OC concerns about sexual orientation. Results showed that contamination-based disgust (β = .17), responsibility/threat overestimation beliefs (β = .15), and their interaction (β = .17) each uniquely predicted OC concerns about sexual orientation, ts = 2.22, 2.50, and 2.90, ps < .05. Post hoc probing indicated that high contamination-based disgust accompanied by strong responsibility/threat overestimation beliefs predicted more severe OC concerns about sexual orientation, β = .48, t = 3.24, p < .001. The present study, therefore, provided preliminary evidence for a "sexual orientation transformation-avoidance" process underlying OC concerns about sexual orientation in heterosexual college students, which is facilitated by contamination-based disgust, and exacerbated by responsibility/threat overestimation beliefs. Treatment for OC concerns about sexual orientation should target such beliefs.

  10. Origin and Function of Tuning Diversity in Macaque Visual Cortex

    PubMed Central

    Goris, Robbe L.T.; Simoncelli, Eero P.; Movshon, J. Anthony

    2016-01-01

    SUMMARY Neurons in visual cortex vary in their orientation selectivity. We measured responses of V1 and V2 cells to orientation mixtures and fit them with a model whose stimulus selectivity arises from the combined effects of filtering, suppression, and response nonlinearity. The model explains the diversity of orientation selectivity with neuron-to-neuron variability in all three mechanisms, of which variability in the orientation bandwidth of linear filtering is the most important. The model also accounts for the cells’ diversity of spatial frequency selectivity. Tuning diversity is matched to the needs of visual encoding. The orientation content found in natural scenes is diverse, and neurons with different selectivities are adapted to different stimulus configurations. Single orientations are better encoded by highly selective neurons, while orientation mixtures are better encoded by less selective neurons. A diverse population of neurons therefore provides better overall discrimination capabilities for natural images than any homogeneous population. PMID:26549331

  11. Strain, magnetic anisotropy, and anisotropic magnetoresistance in (Ga,Mn)As on high-index substrates: Application to (113)A -oriented layers

    NASA Astrophysics Data System (ADS)

    Dreher, L.; Donhauser, D.; Daeubler, J.; Glunk, M.; Rapp, C.; Schoch, W.; Sauer, R.; Limmer, W.

    2010-06-01

    Based on a detailed theoretical examination of the lattice distortion in high-index epilayers in terms of continuum mechanics, expressions are deduced that allow the calculation and experimental determination of the strain tensor for (hhl) -oriented (Ga,Mn)As layers. Analytical expressions are derived for the strain-dependent free-energy density and for the resistivity tensor for monoclinic and orthorhombic crystal symmetries, phenomenologically describing the magnetic anisotropy and anisotropic magnetoresistance by appropriate anisotropy and resistivity parameters, respectively. Applying the results to (113)A orientation with monoclinic crystal symmetry, the expressions are used to determine the strain tensor and the shear angle of a series of (113)A -oriented (Ga,Mn)As layers by high-resolution x-ray diffraction and to probe the magnetic anisotropy and anisotropic magnetoresistance at 4.2 K by means of angle-dependent magnetotransport. Whereas the transverse-resistivity parameters are nearly unaffected by the magnetic field, the parameters describing the longitudinal resistivity are strongly field dependent.

  12. Biomimetic light-harvesting funnels for re-directioning of diffuse light.

    PubMed

    Pieper, Alexander; Hohgardt, Manuel; Willich, Maximilian; Gacek, Daniel Alexander; Hafi, Nour; Pfennig, Dominik; Albrecht, Andreas; Walla, Peter Jomo

    2018-02-14

    Efficient sunlight harvesting and re-directioning onto small areas has great potential for more widespread use of precious high-performance photovoltaics but so far intrinsic solar concentrator loss mechanisms outweighed the benefits. Here we present an antenna concept allowing high light absorption without high reabsorption or escape-cone losses. An excess of randomly oriented pigments collects light from any direction and funnels the energy to individual acceptors all having identical orientations and emitting ~90% of photons into angles suitable for total internal reflection waveguiding to desired energy converters (funneling diffuse-light re-directioning, FunDiLight). This is achieved using distinct molecules that align efficiently within stretched polymers together with others staying randomly orientated. Emission quantum efficiencies can be >80% and single-foil reabsorption <0.5%. Efficient donor-pool energy funneling, dipole re-orientation, and ~1.5-2 nm nearest donor-acceptor transfer occurs within hundreds to ~20 ps. Single-molecule 3D-polarization experiments confirm nearly parallel emitters. Stacked pigment selection may allow coverage of the entire solar spectrum.

  13. Preferential orientation of metal oxide superconducting materials by mechanical means

    DOEpatents

    Capone, Donald W.

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0<.times.<0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu--O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities.

  14. Preferential orientation of metal oxide superconducting materials by mechanical means

    DOEpatents

    Capone, D.W.

    1990-11-27

    A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities. 3 figs.

  15. Persuading drivers to refrain from speeding: Effects of message sidedness and regulatory fit.

    PubMed

    Pierro, Antonio; Giacomantonio, Mauro; Pica, Gennaro; Giannini, Anna Maria; Kruglanski, Arie W; Higgins, E Tory

    2013-01-01

    Building on regulatory fit theory (Higgins, 2000, 2005), we tested whether two-sided ads were more effective than one-sided ads in changing intentions toward driving behavior when message recipients were high in assessment orientation rather than locomotion orientation. In one study either a locomotion or an assessment orientation were situationally induced (Study 1) and in another study these different orientations were chronic predispositions (Study 2). As predicted, both studies found that for participants high in assessment, two-sided ads were more effective than one-sided ads, as reflected in stronger engagement with the persuasive message and stronger intentions to reduce driving speed. In contrast, for participants high in locomotion, one-sided ads were more effective than two-sided ads. There was also evidence that the fit effect on intentions to comply was mediated by strength of engagement with the message. Implications for persuasion concerning driving behaviors are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Nonlinear optical anisotropy and molecular orientational distribution in poly(p-phenylene benzobisthiazole) Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Wada, Tatsuo; Yuba, Tomoyuki; Kakimoto, Masaaki; Imai, Yoshio; Sasabe, Hiroyuki

    1996-06-01

    The orientational distribution and packing of polymer chains were investigated in poly(p-phenylene benzobisthiazole) (PBT) Langmuir-Blodgett (LB) films by nonresonant third-harmonic generation measurement at a wavelength of 1907 nm. The tensor components of the third-harmonic susceptibility on the PBT LB film with a surface pressure of 50 mN/m were determined to be χ(3)XXXX=(16.6±2.5)×10-12 and χ(3)YYYY=(2.0±0.3)×10-12. The large nonlinear optical anisotropy can be explained as a result of highly oriented packing of the polymer chains induced by a flow orientation. A Gaussian distribution function with a standard deviation of σ=0.40 gives a practical description of the orientational distribution of PBT polymer chains. A maximum χ(3) value of (26.8±4.4)×10-12 esu is predicted assuming a perfect alignment of polymer chains. The χ(3)XXXX value increased by factor of 2 with the surface pressure from 30 to 50 mN/m mainly due to the packing density of the polymer chains, while the orientational degree did not change.

  17. Effect of height and orientation ( microclimate) on geomorphic degradation rates and processes, late-glacial terrace scarps in central Idaho

    USGS Publications Warehouse

    Pierce, K.L.; Colman, Steven M.

    1986-01-01

    Examines the effects of scarp size (height) and orientation (microclimate) by keeping constant variables such as age, lithology, and regional climate. For scarps 2m high, the degradation rate on S-facing scarps is 2 times that on N-facing scarps; for 10-m scarps, it is 5 times. Scarp morphology may be used to estimate age. -from Authors

  18. A review of research on smoking behavior in three demographic groups of veterans: women, racial/ethnic minorities, and sexual orientation minorities.

    PubMed

    Weinberger, Andrea H; Esan, Hannah; Hunt, Marcia G; Hoff, Rani A

    2016-05-01

    Veterans comprise a large segment of the U.S. population and smoke at high rates. One significant way to reduce healthcare costs and improve the health of veterans is to reduce smoking-related illnesses for smokers who have high smoking rates and/or face disproportionate smoking consequences (e.g. women, racial/ethnic minorities, sexual orientation minorities). We reviewed published studies of smoking behavior in three demographic subgroups of veterans - women, racial/ethnic minorities, and sexual orientation minorities - to synthesize current knowledge and identify areas in need of more research. A MEDLINE search identified papers on smoking and veterans published through 31 December 2014. Twenty-five studies were identified that focused on gender (n = 17), race/ethnicity (n = 6), or sexual orientation (n = 2). Female and sexual orientation minority veterans reported higher rates of smoking than non-veteran women and sexual orientation majority veterans, respectively. Veterans appeared to be offered VA smoking cessation services equally by gender and race. Few studies examined smoking behavior by race/ethnicity or sexual orientation. Little information was identified examining the outcomes of specific smoking treatments for any group. There is a need for more research on all aspects of smoking and quit behavior for women, racial/ethnic minorities, and sexual orientation minority veterans. The high rates of smoking by these groups of veterans suggest that they may benefit from motivational interventions aimed at increasing quit attempts and longer and more intense treatments to maximize outcomes. Learning more about these veterans can help reduce costs for those who experience greater consequences of smoking.

  19. Suppression of Rotational Twins in Epitaxial B 12P 2 on 4H-SiC

    DOE PAGES

    Frye, C. D.; Saw, C. K.; Padavala, Balabalaji; ...

    2017-12-22

    B 12P2 was grown epitaxially on (0001) 4H-SiC using two different substrate miscuts: a standard 4° miscut toward the [more » $$11\\bar{20}$$] and a custom miscut 4° toward the [$$1\\bar{10}0$$]. Epitaxy on substrates miscut to the [$$11\\bar{20}$$] resulted in highly twinned B 12P 2 films with a rotational twin density of approximately 70% twin orientation I and 30% twin orientation II. In contrast, epitaxy on substrates tilted toward the [$$1\\bar{10}0$$] produced films of >99% twin orientation I. A H 2 etch model is used to explain the 4H-SiC surface morphology for each miscut prior to epitaxy and demonstrate how the surface steps influence the nucleation of B 12P 2 twin orientations. Surface steps on substrates miscut to the [$$11\\bar{20}$$] tend to be zig-zagged with steps rotated 60° from one another producing B 12P 2 crystals that nucleate in orientations rotated by 60°, hence forming rotationally twinned films. In conclusion, steps on substrates tilted to the [$$1\\bar{10}0$$] tend to be parallel resulting in crystallographically aligned B 12P 2 nucleation.« less

  20. Suppression of Rotational Twins in Epitaxial B 12P 2 on 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, C. D.; Saw, C. K.; Padavala, Balabalaji

    B 12P2 was grown epitaxially on (0001) 4H-SiC using two different substrate miscuts: a standard 4° miscut toward the [more » $$11\\bar{20}$$] and a custom miscut 4° toward the [$$1\\bar{10}0$$]. Epitaxy on substrates miscut to the [$$11\\bar{20}$$] resulted in highly twinned B 12P 2 films with a rotational twin density of approximately 70% twin orientation I and 30% twin orientation II. In contrast, epitaxy on substrates tilted toward the [$$1\\bar{10}0$$] produced films of >99% twin orientation I. A H 2 etch model is used to explain the 4H-SiC surface morphology for each miscut prior to epitaxy and demonstrate how the surface steps influence the nucleation of B 12P 2 twin orientations. Surface steps on substrates miscut to the [$$11\\bar{20}$$] tend to be zig-zagged with steps rotated 60° from one another producing B 12P 2 crystals that nucleate in orientations rotated by 60°, hence forming rotationally twinned films. In conclusion, steps on substrates tilted to the [$$1\\bar{10}0$$] tend to be parallel resulting in crystallographically aligned B 12P 2 nucleation.« less

  1. High ferroelectric polarization in c-oriented BaTiO 3 epitaxial thin films on SrTiO 3/Si(001)

    DOE PAGES

    Scigaj, M.; Chao, C. H.; Gázquez, J.; ...

    2016-09-21

    The integration of epitaxial BaTiO 3 films on silicon, combining c-orientation, surface flatness, and high ferroelectric polarization is of main interest towards its use in memory devices. This combination of properties has been only achieved so far by using yttria-stabilized zirconia buffer layers. Here, the all-perovskite BaTiO 3/LaNiO 3/SrTiO 3 heterostructure is grown monolithically on Si(001). The BaTiO 3 films are epitaxial and c-oriented and present low surface roughness and high remnant ferroelectric polarization around 6 μC/cm 2. Lastly, this result paves the way towards the fabrication of lead-free BaTiO 3 ferroelectric memories on silicon platforms.

  2. Enhancing and Evaluating Scientific Argumentation in the Inquiry-Oriented College Chemistry Classroom

    ERIC Educational Resources Information Center

    D'Souza, Annabel Nica

    2017-01-01

    The research presented in chapters 2, 3, and 4 in this dissertation uses a sociocultural and sociohistorical lens, particularly around power, authority of knowledge and identity formation, to investigate the complexity of engaging in, supporting, and evaluating high-quality argumentation within a college biochemistry inquiry-oriented classroom.…

  3. Quantitative polarized Raman spectroscopy in highly turbid bone tissue

    NASA Astrophysics Data System (ADS)

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-05-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  4. Quantitative polarized Raman spectroscopy in highly turbid bone tissue.

    PubMed

    Raghavan, Mekhala; Sahar, Nadder D; Wilson, Robert H; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H; Morris, Michael D

    2010-01-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  5. C-axis orientated AlN films deposited using deep oscillation magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Jianliang; Chistyakov, Roman

    2017-02-01

    Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm-2) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm-2 improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm-2 showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.

  6. Ambivalence toward imposed change: the conflict between dispositional resistance to change and the orientation toward the change agent.

    PubMed

    Oreg, Shaul; Sverdlik, Noga

    2011-03-01

    Following an analysis of the concept of "imposed change," we propose 2 factors that jointly contribute to an individual's experience of ambivalence to imposed change. In a secondary analysis of data (N = 172) and 2 field studies (N = 104, N = 89), we showed that individuals' personal orientation toward change interacts with their orientation toward the change agent and yields ambivalence. Specifically, among employees with a positive orientation toward the change agent (i.e., high trust in management, identification with the organization), the relationship between employees' dispositional resistance to change and ambivalence was positive. The opposite pattern emerged among employees with a negative orientation toward the change agent (Studies 2 and 3). Our findings suggest that researchers may have been misinterpreting employees' reactions to change, neglecting the possibility that some may simultaneously hold strong, yet conflicting, views about the change. By accounting for, and predicting, ambivalence, these studies provide a more accurate explanation of employees' responses to change. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  7. Salience of Somatosensory Stimulus Modulating External-to-Internal Orienting Attention.

    PubMed

    Peng, Jiaxin; Chan, Sam C C; Chau, Bolton K H; Yu, Qiuhua; Chan, Chetwyn C H

    2017-01-01

    Shifting between one's external and internal environments involves orienting attention. Studies on differentiating subprocesses associated with external-to-internal orienting attention are limited. This study aimed to reveal the characteristics of the disengagement, shifting and reengagement subprocesses by using somatosensory external stimuli and internally generated images. Study participants were to perceive nociceptive external stimuli (External Low (E L ) or External High (E H )) induced by electrical stimulations (50 ms) followed by mentally rehearsing learned subnociceptive images (Internal Low (I L ) and Internal High (I H )). Behavioral responses and EEG signals of the participants were recorded. The three significant components elicited were: fronto-central negativity (FCN; 128-180 ms), fronto-central P2 (200-260 ms), and central P3 (320-380 ms), which reflected the three subprocesses, respectively. Differences in the FCN and P2 amplitudes during the orienting to the subnociceptive images revealed only in the E H but not E L stimulus condition that are new findings. The results indicated that modulations of the disengagement and shifting processes only happened if the external nociceptive stimuli were of high salience and the external-to-internal incongruence was large. The reengaging process reflected from the amplitude of P3 correlated significantly with attenuation of the pain intensity felt from the external nociceptive stimuli. These findings suggested that the subprocesses underlying external-to-internal orienting attention serve different roles. Disengagement subprocess tends to be stimulus dependent, which is bottom-up in nature. Shifting and reengagement tend to be top-down subprocesses, which taps on cognitive control. This subprocess may account for the attenuation effects on perceived pain intensity after orienting attention.

  8. Salience of Somatosensory Stimulus Modulating External-to-Internal Orienting Attention

    PubMed Central

    Peng, Jiaxin; Chan, Sam C. C.; Chau, Bolton K. H.; Yu, Qiuhua; Chan, Chetwyn C. H.

    2017-01-01

    Shifting between one’s external and internal environments involves orienting attention. Studies on differentiating subprocesses associated with external-to-internal orienting attention are limited. This study aimed to reveal the characteristics of the disengagement, shifting and reengagement subprocesses by using somatosensory external stimuli and internally generated images. Study participants were to perceive nociceptive external stimuli (External Low (EL) or External High (EH)) induced by electrical stimulations (50 ms) followed by mentally rehearsing learned subnociceptive images (Internal Low (IL) and Internal High (IH)). Behavioral responses and EEG signals of the participants were recorded. The three significant components elicited were: fronto-central negativity (FCN; 128–180 ms), fronto-central P2 (200–260 ms), and central P3 (320–380 ms), which reflected the three subprocesses, respectively. Differences in the FCN and P2 amplitudes during the orienting to the subnociceptive images revealed only in the EH but not EL stimulus condition that are new findings. The results indicated that modulations of the disengagement and shifting processes only happened if the external nociceptive stimuli were of high salience and the external-to-internal incongruence was large. The reengaging process reflected from the amplitude of P3 correlated significantly with attenuation of the pain intensity felt from the external nociceptive stimuli. These findings suggested that the subprocesses underlying external-to-internal orienting attention serve different roles. Disengagement subprocess tends to be stimulus dependent, which is bottom-up in nature. Shifting and reengagement tend to be top-down subprocesses, which taps on cognitive control. This subprocess may account for the attenuation effects on perceived pain intensity after orienting attention. PMID:28970787

  9. Energies and 2'-Hydroxyl Group Orientations of RNA Backbone Conformations. Benchmark CCSD(T)/CBS Database, Electronic Analysis, and Assessment of DFT Methods and MD Simulations.

    PubMed

    Mládek, Arnošt; Banáš, Pavel; Jurečka, Petr; Otyepka, Michal; Zgarbová, Marie; Šponer, Jiří

    2014-01-14

    Sugar-phosphate backbone is an electronically complex molecular segment imparting RNA molecules high flexibility and architectonic heterogeneity necessary for their biological functions. The structural variability of RNA molecules is amplified by the presence of the 2'-hydroxyl group, capable of forming multitude of intra- and intermolecular interactions. Bioinformatics studies based on X-ray structure database revealed that RNA backbone samples at least 46 substates known as rotameric families. The present study provides a comprehensive analysis of RNA backbone conformational preferences and 2'-hydroxyl group orientations. First, we create a benchmark database of estimated CCSD(T)/CBS relative energies of all rotameric families and test performance of dispersion-corrected DFT-D3 methods and molecular mechanics in vacuum and in continuum solvent. The performance of the DFT-D3 methods is in general quite satisfactory. The B-LYP-D3 method provides the best trade-off between accuracy and computational demands. B3-LYP-D3 slightly outperforms the new PW6B95-D3 and MPW1B95-D3 and is the second most accurate density functional of the study. The best agreement with CCSD(T)/CBS is provided by DSD-B-LYP-D3 double-hybrid functional, although its large-scale applications may be limited by high computational costs. Molecular mechanics does not reproduce the fine energy differences between the RNA backbone substates. We also demonstrate that the differences in the magnitude of the hyperconjugation effect do not correlate with the energy ranking of the backbone conformations. Further, we investigated the 2'-hydroxyl group orientation preferences. For all families, we conducted a QM and MM hydroxyl group rigid scan in gas phase and solvent. We then carried out set of explicit solvent MD simulations of folded RNAs and analyze 2'-hydroxyl group orientations of different backbone families in MD. The solvent energy profiles determined primarily by the sugar pucker match well with the distribution data derived from the simulations. The QM and MM energy profiles predict the same 2'-hydroxyl group orientation preferences. Finally, we demonstrate that the high energy of unfavorable and rarely sampled 2'-hydroxyl group orientations can be attributed to clashes between occupied orbitals.

  10. Applications technology satellite advanced missions study, volume 1

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.

    1972-01-01

    Four different spacecraft configurations were developed for geostationary service as a high power communications satellite. The first configuration is a Thor-Delta launch into a low orbit with a spiral ascent to synchronous altitude by ion engine propulsion. The spacecraft is earth oriented with rotating solar arrays. Configuration 2 is a direct injection Atlas/Centaur/Burner II vehicle which when in orbit is sun-oriented with a rotating transponder tower. Configurations 3 and 4 are Titan IIIC launches, and are therefore larger and heavier than Configuration 2. They are both sun-oriented, with rotating transponder towers and are directly injected into orbit. Technology discussed includes high power (up to 2 kW) transmitters with collectors radiating heat directly into space, and contoured antenna patterns designed to illuminate particular earth regions. There is also a review of potential users of the services which can be performed by this type satellite in such areas as information networking, public broadcasting and educational television.

  11. Highly oriented Bi-based thin films with zero resistance at 106 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kula, W.; Sobolewski, R.; Gorecka, J.

    1991-03-01

    This paper reports on fabrication and characterization of nearly single-phase superconducting Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} thin films. The films were dc magnetron sputtered from heavily Pb-doped (Pb/Bi molar ratios up to 1.25), sintered targets on unheated MgO, SrTiO{sub 3}, CaNdAlO{sub 4}, and SrLaAlO{sub 4} single crystals. For the films grown on the (100) oriented MgO substrate, less than 1 hour of annealing in air at 870{degrees} C was sufficient to obtain more than 90% of the 110-K-phase material, with highly c-axis oriented crystalline structure and zero resistivity at 106 K. The films fabricated on the other substrates alsomore » exhibited a narrow superconducting transition and were fully superconducting above 100 K, but they consisted of a mixed-phase material with a large percentage of the 80 K phase.« less

  12. Oxides for sustainable photovoltaics with earth-abundant materials

    NASA Astrophysics Data System (ADS)

    Wagner, Alexander; Stahl, Mathieu; Ehrhardt, Nikolai; Fahl, Andreas; Ledig, Johannes; Waag, Andreas; Bakin, Andrey

    2014-03-01

    Energy conversion technologies are aiming to extremely high power capacities per year. Nontoxicity and abundance of the materials are the key requirements to a sustainable photovoltaic technology. Oxides are among the key materials to reach these goals. We investigate the influence of thin buffer layers on the performance of an ZnO:Al/buffer/Cu2O solar cells. Introduction of a thin ZnO or Al2O3 buffer layer, grown by thermal ALD, between ZnO:Al and Cu2O resulted in 45% increase of the solar cell efficiency. VPE growth of Cu2O employing elemental copper and pure oxygen as precursor materials is presented. The growth is performed on MgO substrates with the (001) orientation. On- and off- oriented substrates have been employed and the growth results are compared. XRD investigations show the growth of the (110) oriented Cu2O for all temperatures, whereas at a high substrate temperature additional (001) Cu2O growth occurs. An increase of the oxygen partial pressure leads to a more pronounced 2D growth mode, whereby pores between the islands still remain. The implementation of off-axis substrates with 3.5° and 5° does not lead to an improvement of the layer quality. The (110) orientation remains predominant, the grain size decreases and the FWHM of the (220) peak increases. From the AFM images it is concluded, that the (110) surface grows with a tilt angle to the substrate surface.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong

    Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented withinmore » flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.« less

  14. Controlling Surface Termination and Facet Orientation in Cu2O Nanoparticles for High Photocatalytic Activity: A Combined Experimental and Density Functional Theory Study.

    PubMed

    Su, Yang; Li, Hongfei; Ma, Hanbin; Robertson, John; Nathan, Arokia

    2017-03-08

    Cu 2 O nanoparticles with controllable facets are of great significance for photocatalysis. In this work, the surface termination and facet orientation of Cu 2 O nanoparticles are accurately tuned by adjusting the amount of hydroxylamine hydrochloride and surfactant. It is found that Cu 2 O nanoparticles with Cu-terminated (110) or (111) surfaces show high photocatalytic activity, while other exposed facets show poor reactivity. Density functional theory simulations confirm that sodium dodecyl sulfate surfactant can lower the surface free energy of Cu-terminated surfaces, increase the density of exposed Cu atoms at the surfaces and thus benefit the photocatalytic activity. It also shows that the poor reactivity of the Cu-terminated Cu 2 O (100) surface is due to the high energy barrier of holes at the surface region.

  15. MrBayes tgMC3++: A High Performance and Resource-Efficient GPU-Oriented Phylogenetic Analysis Method.

    PubMed

    Ling, Cheng; Hamada, Tsuyoshi; Gao, Jingyang; Zhao, Guoguang; Sun, Donghong; Shi, Weifeng

    2016-01-01

    MrBayes is a widespread phylogenetic inference tool harnessing empirical evolutionary models and Bayesian statistics. However, the computational cost on the likelihood estimation is very expensive, resulting in undesirably long execution time. Although a number of multi-threaded optimizations have been proposed to speed up MrBayes, there are bottlenecks that severely limit the GPU thread-level parallelism of likelihood estimations. This study proposes a high performance and resource-efficient method for GPU-oriented parallelization of likelihood estimations. Instead of having to rely on empirical programming, the proposed novel decomposition storage model implements high performance data transfers implicitly. In terms of performance improvement, a speedup factor of up to 178 can be achieved on the analysis of simulated datasets by four Tesla K40 cards. In comparison to the other publicly available GPU-oriented MrBayes, the tgMC 3 ++ method (proposed herein) outperforms the tgMC 3 (v1.0), nMC 3 (v2.1.1) and oMC 3 (v1.00) methods by speedup factors of up to 1.6, 1.9 and 2.9, respectively. Moreover, tgMC 3 ++ supports more evolutionary models and gamma categories, which previous GPU-oriented methods fail to take into analysis.

  16. Sources of Variability in Performance Times at the World Orienteering Championships.

    PubMed

    Hébert-Losier, Kim; Platt, Simon; Hopkins, William G

    2015-07-01

    An improvement equal to 0.3 of the typical variation in an elite athlete's race-to-race performance estimates the smallest worthwhile enhancement, which has not yet been determined for orienteers. Moreover, much of the research in high-performance orienteering has focused on physical and cognitive aspects, although course characteristics might influence race performance. Analysis of race data provides insights into environmental effects and other aspects of competitive performance. Our aim was to examine such factors in relation to World Orienteering Championships performances. We used mixed linear modelling to analyze finishing times from the three qualification rounds and final round of the sprint, middle-distance, and long-distance disciplines of World Orienteering Championships from 2006 to 2013. Models accounted for race length, distance climbed, number of controls, home advantage, venue identity, round (qualification final), athlete identity, and athlete age. Within-athlete variability (coefficient of variation, mean ± SD) was lower in the final (4.9% ± 1.4%) than in the qualification (7.3% ± 2.4%) rounds and provided estimates of smallest worthwhile enhancements of 1.0%-3.5%. The home advantage was clear in most disciplines, with distance climbed particularly impacting sprint performances. Small to very large between-venue differences were apparent. Performance predictability expressed as intraclass correlation coefficients was extremely high within years and was high to very high between years. Age of peak performance ranged from 27 to 31 yr. Our results suggest that elite orienteers should focus on training and strategies that enhance performance by at least 1.0%-3.5% for smallest worthwhile enhancement. Moreover, as greater familiarity with the terrain likely mediated the home advantage, foreign athletes would benefit from training in nations hosting the World Orienteering Championships for familiarization.

  17. You are not alone: relatedness reduces adverse effects of state orientation on well-being under stress.

    PubMed

    Chatterjee, Monischa B; Baumann, Nicola; Osborne, Danny

    2013-04-01

    A low ability to self-regulate emotions (state orientation) is associated with reduced well-being--especially under stress. Until now, research has approached this topic from an asocial perspective that views the self as devoid from relatedness concerns. However, people are social creatures who benefit from their relationships with others. As such, we expected that personally valuing (Study 1) and experimentally priming (Study 2) a sense of relatedness with others would act as a buffer against stress-related impairments in state-oriented individuals. In Study 1, high (vs. low) benevolence values removed the adverse effect of state orientation on well-being found under stressful life circumstances. In Study 2, focusing on similarities (vs. differences) while comparing oneself with a friend removed the adverse effect of state orientation on recovery from a negative mood induction. Our findings suggest that individuals with low self-regulatory competencies may profit from valuing and directing their attention toward their relatedness with others.

  18. A topological screening heuristic for low-energy, high-index surfaces

    NASA Astrophysics Data System (ADS)

    Sun, Wenhao; Ceder, Gerbrand

    2018-03-01

    Robust ab initio investigations of nanoparticle surface properties require a method to identify candidate low-energy surface facets a priori. By assuming that low-energy surfaces are planes with high atomic density, we devise an efficient algorithm to screen for low-energy surface orientations, even if they have high (hkl) miller indices. We successfully predict the observed low-energy, high-index { 10 12 bar } and { 10 1 bar 4 } surfaces of hematite α-Fe2O3, the {311} surfaces of cuprite Cu2O, and the {112} surfaces of anatase TiO2. We further tabulate candidate low-energy surface orientations for nine of the most common binary oxide structures. Screened surfaces are found to be generally applicable across isostructural compounds with varying chemistries, although relative surface energies between facets may vary based on the preferred coordination of the surface atoms.

  19. Thermal Instability Induced Oriented 2D Pores for Enhanced Sodium Storage.

    PubMed

    Kong, Lingjun; Xie, Chen-Chao; Gu, Haichen; Wang, Chao-Peng; Zhou, Xianlong; Liu, Jian; Zhou, Zhen; Li, Zhao-Yang; Zhu, Jian; Bu, Xian-He

    2018-04-19

    Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium-based metal-organic frameworks (MOFs). High-temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit-like 2D pores in vanadium oxide/porous carbon nanorods (VO x /PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VO x /PCs demonstrate high-rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs-derived composites with hierarchical porous architectures for energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sexual Orientation Discordance and Nonfatal Suicidal Behaviors in U.S. High School Students.

    PubMed

    Annor, Francis B; Clayton, Heather B; Gilbert, Leah K; Ivey-Stephenson, Asha Z; Irving, Shalon M; David-Ferdon, Corinne; Kann, Laura K

    2018-04-01

    Studies among adults have documented association between sexual orientation discordance and some suicide risk factors. However, studies examining sexual orientation discordance and nonfatal suicidal behaviors in youth are rare. This study examines the association between sexual orientation discordance and suicidal ideation/suicide attempts among a nationally representative sample of U.S. high school students. Using sexual identity and sex of sexual contact measures from the 2015 national Youth Risk Behavior Survey (n=6,790), a sexual orientation discordance variable was constructed describing concordance and discordance (agreement and disagreement, respectively, between sexual identity and sex of sexual contacts). Three suicide-related questions (seriously considered attempting suicide, making a plan about how they would attempt suicide, and attempting suicide) were combined to create a two-level nonfatal suicide risk variable. Analyses were restricted to students who identified as heterosexual or gay/lesbian, who had sexual contact, and who had no missing data for sex or suicide variables. The association between sexual orientation discordance and nonfatal suicide risk was assessed using logistic regression. Analyses were performed in 2017. Approximately 4.0% of students experienced sexual orientation discordance. High suicide risk was significantly more common among discordant students compared with concordant students (46.3% vs 22.4%, p<0.0001). In adjusted models, discordant students were 70% more likely to have had suicidal ideation/suicide attempts compared with concordant students (adjusted prevalence ratio=1.7, 95% CI=1.4, 2.0). Sexual orientation discordance was associated with increased likelihood of nonfatal suicidal behaviors. Discordant adolescents may experience unique stressors that should be considered when developing and implementing suicide prevention programs. Published by Elsevier Inc.

  1. High-Performance Java Codes for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  2. Is moral elevation an approach-oriented emotion?

    PubMed Central

    Van de Vyver, Julie; Abrams, Dominic

    2017-01-01

    Abstract Two studies were designed to test whether moral elevation should be conceptualized as an approach-oriented emotion. The studies examined the relationship between moral elevation and the behavioral activation and inhibition systems. Study 1 (N = 80) showed that individual differences in moral elevation were associated with individual differences in behavioral activation but not inhibition. Study 2 (N = 78) showed that an elevation-inducing video promoted equally high levels of approach orientation as an anger-inducing video and significantly higher levels of approach orientation than a control video. Furthermore, the elevation-inducing stimulus (vs. the control condition) significantly promoted prosocial motivation and this effect was sequentially mediated by feelings of moral elevation followed by an approach-oriented state. Overall the results show unambiguous support for the proposal that moral elevation is an approach-oriented emotion. Applied and theoretical implications are discussed. PMID:28191027

  3. Musculoskeletal Injuries and Training Patterns in Junior Elite Orienteering Athletes

    PubMed Central

    Taube, Wolfgang; Zuest, Peter; Clénin, German; Wyss, Thomas

    2015-01-01

    Findings about the relation between musculoskeletal injuries and training patterns in orienteering athletes are sparse. Therefore, the musculoskeletal injuries and training patterns of 31 Swiss elite orienteering athletes aged 18-19 years were analyzed in a retrospective study. Individual training diaries and medical records were used to assess training data and injury history, respectively. Group comparisons and a multiple linear regression (MLR) were performed for statistical analysis. The junior elite orienteering athletes performed 7.38 ± 2.00 training sessions weekly, with a total duration of 455.75 ± 98.22 minutes. An injury incidence rate (IIR) of 2.18 ± 2.13 injuries per 1000 hours of training was observed. The lower extremity was affected in 93% of all injuries, and the knee (33%) was the most commonly injured location. The MLR revealed that gender and six training variables explained 60% of the variance in the injury severity index in this study. Supported by the low IIR in the observed age group, the training protocol of the junior elite orienteering athletes was generally adequate. In comparison to elite track, marathon, and orienteering athletes, the junior elite athletes performed less high-intensity interval training (HIIT). However, more frequent HIIT seems to be a protective factor against injuries. PMID:26258134

  4. Novel design of highly [110]-oriented barium titanate nanorod array and its application in nanocomposite capacitors.

    PubMed

    Yao, Lingmin; Pan, Zhongbin; Zhai, Jiwei; Chen, Haydn H D

    2017-03-23

    Nanocomposites in capacitors combining highly aligned one dimension ferroelectric nanowires with polymer would be more desirable for achieving higher energy density. However, the synthesis of the well-isolated ferroelectric oxide nanorod arrays with a high orientation has been rather scant, especially using glass-made substrates. In this study, a novel design that is capable of fabricating a highly [110]-oriented BaTiO 3 (BT) nanorod array was proposed first, using a three-step hydrothermal reaction on glass-made substrates. The details for controlling the dispersion of the nanorod array, the orientation and the aspect ratio are also discussed. It is found that the alkaline treatment of the TiO 2 (TO) nanorod array, rather than the completing transformation into sodium titanate, favors the transformation of the TO into the BT nanorod array, as well as protecting the glass-made substrate. The dispersity of the nanorod array can be controlled by the introduction of a glycol ether-deionized water mixed solvent and soluble salts. Moreover, the orientation of the nanorod arrays could be tuned by the ionic strength of the solution. This novel BT nanorod array was used as a filler in a nanocomposite capacitor, demonstrating that a large energy density (11.82 J cm -3 ) can be achieved even at a low applied electric field (3200 kV cm -1 ), which opens us a new application in nanocomposite capacitors.

  5. Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging.

    PubMed

    Gierlinger, Notburga; Luss, Saskia; König, Christian; Konnerth, Johannes; Eder, Michaela; Fratzl, Peter

    2010-01-01

    The functional characteristics of plant cell walls depend on the composition of the cell wall polymers, as well as on their highly ordered architecture at scales from a few nanometres to several microns. Raman spectra of wood acquired with linear polarized laser light include information about polymer composition as well as the alignment of cellulose microfibrils with respect to the fibre axis (microfibril angle). By changing the laser polarization direction in 3 degrees steps, the dependency between cellulose and laser orientation direction was investigated. Orientation-dependent changes of band height ratios and spectra were described by quadratic linear regression and partial least square regressions, respectively. Using the models and regressions with high coefficients of determination (R(2) > 0.99) microfibril orientation was predicted in the S1 and S2 layers distinguished by the Raman imaging approach in cross-sections of spruce normal, opposite, and compression wood. The determined microfibril angle (MFA) in the different S2 layers ranged from 0 degrees to 49.9 degrees and was in coincidence with X-ray diffraction determination. With the prerequisite of geometric sample and laser alignment, exact MFA prediction can complete the picture of the chemical cell wall design gained by the Raman imaging approach at the micron level in all plant tissues.

  6. Magnetic properties of in-plane oriented barium hexaferrite thin films prepared by direct current magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaozhi; Yue, Zhenxing, E-mail: yuezhx@mail.tsinghua.edu.cn; Meng, Siqin

    2014-12-28

    In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup ¯}0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80 W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s}more » of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup ¯}0)//α-Fe{sub 2}O{sub 3}(112{sup ¯}0)//Al{sub 2}O{sub 3}(112{sup ¯}0)« less

  7. Structural and crystal orientation analysis of Al-Si coating on Ni-based superalloy by means of EBSD technique

    NASA Astrophysics Data System (ADS)

    Muslimin, A. N.; Sugiarti, E.; Aritonang, T.; Purawiardi, R. I.; Desiati, R. D.

    2018-03-01

    Ni-based superalloy is widely used for high performance components in power generation turbine due to its excellent mechanical properties. However, Ni-based superalloy has low oxidation resistantance. Therefore, surface coating is required to improve oxidation resistance at high temperatures. Al-Si as a coting material was successfully co-deposited on Ni-based substrate by pack cementation method at 900 °C for about 4 hours. The oxidation test was carried out at high temperature of 1000 °C for 100 hours. Micro structural characterization and analysis on crystal orientation were perfomed by using Field Emission Scanning Electron Microscope (FE-SEM) and Electron Back Scatter Diffraction (EBSD) technique, respectively. The results showed that the coating layer with a homogenous layer and had a thickness of 53 μm consisting of β-NiAl with cubic structure and Ni2Al3 with hexagonal structure. TGO layer was developed after oxidation and had a thickness of about 5 μm consisting of α-Al2O3 and spinel NiCr2O4. The phase composition map and crystal orientation acquired by EBSD technique was also discussed both in TGO and coating layers.

  8. Third-order nonlinear optical properties of ADP crystal

    NASA Astrophysics Data System (ADS)

    Wang, Mengxia; Wang, Zhengping; Chai, Xiangxu; Sun, Yuxiang; Sui, Tingting; Sun, Xun; Xu, Xinguang

    2018-05-01

    By using the Z-scan method, we investigated the third-order nonlinear optical (NLO) properties of ADP crystal at different wavelengths (355, 532, and 1064 nm) and different orientations ([001], [100], [110], I and II). The experimental data were fitted by NLO theory, to give out the two photon absorption (TPA) coefficient β 2 and the nonlinear refractive index n 2. When the light source changed from a 40 ps, 1064 nm fundamental laser to a 30 ps, 355 nm third-harmonic-generation (THG) laser, the β 2 value increased about 5 times (0.2 × 10‑2 → 1 × 10‑2 cm GW‑1), and the n 2 value increased about 1.5 times (1.5 × 10‑16 → 2.2 × 10‑16 cm2 W‑1). Among all of the orientations, the [110] sample exhibits the smallest β 2, and the second smallest n 2. It indicates that this orientation and its surroundings will be the preferred directions for high-power laser applications of ADP crystal.

  9. Untuned Suppression Makes a Major Contribution to the Enhancement of Orientation Selectivity in Macaque V1

    PubMed Central

    Ringach, Dario L.; Hawken, Michael J.; Shapley, Robert M.

    2011-01-01

    One of the functions of the cerebral cortex is to increase the selectivity for stimulus features. Finding more about the mechanisms of increased cortical selectivity is important for understanding how the cortex works. Up to now, studies in multiple cortical areas have reported that suppressive mechanisms are involved in feature selectivity. However, the magnitude of the contribution of suppression to tuning selectivity is not yet determined. We use orientation selectivity in macaque primary visual cortex, V1, as an archetypal example of cortical feature selectivity and develop a method to estimate the magnitude of the contribution of suppression to orientation selectivity. The results show that untuned suppression, one form of cortical suppression, decreases the orthogonal-to-preferred response ratio (O/P ratio) of V1 cells from an average of 0.38 to 0.26. Untuned suppression has an especially large effect on orientation selectivity for highly selective cells (O/P < 0.2). Therefore, untuned suppression is crucial for the generation of highly orientation-selective cells in V1 cortex. PMID:22049440

  10. Thermally stable dielectric responses in uniaxially (001)-oriented CaBi4Ti4O15 nanofilms grown on a Ca2Nb3O10- nanosheet seed layer.

    PubMed

    Kimura, Junichi; Takuwa, Itaru; Matsushima, Masaaki; Shimizu, Takao; Uchida, Hiroshi; Kiguchi, Takanori; Shiraishi, Takahisa; Konno, Toyohiko J; Shibata, Tatsuo; Osada, Minoru; Sasaki, Takayoshi; Funakubo, Hiroshi

    2016-02-15

    To realize a high-temperature capacitor, uniaxially (001)-oriented CaBi4Ti4O15 films with various film thicknesses were prepared on (100)cSrRuO3/Ca2Nb3O10(-) nanosheet/glass substrates. As the film thickness decreases to 50 nm, the out-of-plane lattice parameters decrease while the in-plane lattice ones increase due to the in-plane tensile strain. However, the relative dielectric constant (εr) at room temperature exhibits a negligible degradation as the film thickness decreases to 50 nm, suggesting that εr of (001)-oriented CaBi4Ti4O15 is less sensitive to the residual strain. The capacitance density increases monotonously with decreasing film thickness, reaching a value of 4.5 μF/cm(2) for a 50-nm-thick nanofilm, and is stable against temperature changes from room temperature to 400 °C irrespective of film thickness. This behaviour differs from that of the widely investigated perovskite-structured dielectrics. These results show that (001)-oriented CaBi4Ti4O15 films derived using Ca2Nb3O10(-) nanosheets as seed layers can be made candidates for high-temperature capacitor applications by a small change in the dielectric properties against film thickness and temperature variations.

  11. Controlling compositional homogeneity and crystalline orientation in Bi 0.8 Sb 0.2 thermoelectric thin films [Control of composition and crystallinity in Bi 0.8Sb 0.2 thermoelectric thin films].

    DOE PAGES

    Rochford, C.; Medlin, D. L.; Erickson, K. J.; ...

    2015-12-01

    Controlling alloy composition, crystalline quality, and crystal orientation is necessary to achieve high thermoelectric performance in Bi 1-xSb x thin films. These microstructural attributes are demonstrated in this letter via co-sputter deposition of Bi and Sb metals on Si/SiO 2 substrates followed by ex-situ post anneals ranging from 200 – 300 °C in forming gas with rapid cooling to achieve orientation along the trigonal axis. We show with cross-sectional transmission electron microscopy and energy-dispersive X-ray spectrometry that 50 – 95% of the Sb segregates at the surface upon exposure to air during transfer. This then forms a nanocrystalline Sb 2Omore » 3 layer upon annealing, leaving the bulk of the film primarily Bi metal which is a poor thermoelectric material. We demonstrate a SiN capping technique to eliminate Sb segregation and preserve a uniform composition throughout the thickness of the film. Given that the Bi 1-xSb x solid solution melting point depends on the Sb content, the SiN cap allows one to carefully approach but not exceed the melting point during annealing. This leads to the strong orientation along the trigonal axis and high crystalline quality desired for thermoelectric applications.« less

  12. Relationship between Organizational Culture and Workplace Bullying among Korean Nurses.

    PubMed

    An, Yuseon; Kang, Jiyeon

    2016-09-01

    To identify the relationship between organizational culture and experience of workplace bullying among Korean nurses. Participants were 298 hospital nurses in Busan, South Korea. We assessed nursing organizational culture and workplace bullying among nurses using structured questionnaires from July 1 through August 15, 2014. Most participants considered their organizational culture as hierarchy-oriented (45.5%), followed by relation-oriented (36.0%), innovation-oriented (10.4%), and task-oriented (8.1%). According to the operational bullying criteria, the prevalence of workplace bullying was 15.8%. A multivariate logistic regression analysis revealed that the odds of being a victim of bullying were 2.58 times as high among nurses in a hierarchy-oriented culture as among nurses in a relation-oriented culture [95% confidence interval (1.12, 5.94)]. The results suggest that the types of nursing organizational culture are related to workplace bullying in Korean nurses. Further research is needed to develop interventions that can foster relation-oriented cultures to prevent workplace bullying in nurses. Copyright © 2016. Published by Elsevier B.V.

  13. Origin and Function of Tuning Diversity in Macaque Visual Cortex.

    PubMed

    Goris, Robbe L T; Simoncelli, Eero P; Movshon, J Anthony

    2015-11-18

    Neurons in visual cortex vary in their orientation selectivity. We measured responses of V1 and V2 cells to orientation mixtures and fit them with a model whose stimulus selectivity arises from the combined effects of filtering, suppression, and response nonlinearity. The model explains the diversity of orientation selectivity with neuron-to-neuron variability in all three mechanisms, of which variability in the orientation bandwidth of linear filtering is the most important. The model also accounts for the cells' diversity of spatial frequency selectivity. Tuning diversity is matched to the needs of visual encoding. The orientation content found in natural scenes is diverse, and neurons with different selectivities are adapted to different stimulus configurations. Single orientations are better encoded by highly selective neurons, while orientation mixtures are better encoded by less selective neurons. A diverse population of neurons therefore provides better overall discrimination capabilities for natural images than any homogeneous population. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The repetitive portion of the Xenopus IgH Mu switch region mediates orientation-dependent class switch recombination.

    PubMed

    Zhang, Zheng Z; Pannunzio, Nicholas R; Lu, Zhengfei; Hsu, Ellen; Yu, Kefei; Lieber, Michael R

    2015-10-01

    Vertebrates developed immunoglobulin heavy chain (IgH) class switch recombination (CSR) to express different IgH constant regions. Most double-strand breaks for Ig CSR occur within the repetitive portion of the switch regions located upstream of each set of constant domain exons for the Igγ, Igα or Igϵ heavy chain. Unlike mammalian switch regions, Xenopus switch regions do not have a high G-density on the non-template DNA strand. In previous studies, when Xenopus Sμ DNA was moved to the genome of mice, it is able to support substantial CSR when it is used to replace the murine Sγ1 region. Here, we tested both the 2kb repetitive portion and the 4.6 kb full-length portions of the Xenopus Sμ in both their natural (forward) orientation relative to the constant domain exons, as well as the opposite (reverse) orientation. Consistent with previous work, we find that the 4.6 kb full-length Sμ mediates similar levels of CSR in both the forward and reverse orientations. Whereas, the forward orientation of the 2kb portion can restore the majority of the CSR level of the 4.6 kb full-length Sμ, the reverse orientation poorly supports R-looping and no CSR. The forward orientation of the 2kb repetitive portion has more GG dinucleotides on the non-template strand than the reverse orientation. The correlation of R-loop formation with CSR efficiency, as demonstrated in the 2kb repetitive fragment of the Xenopus switch region, confirms a role played by R-looping in CSR that appears to be conserved through evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Robust and Accurate Image-Based Georeferencing Exploiting Relative Orientation Constraints

    NASA Astrophysics Data System (ADS)

    Cavegn, S.; Blaser, S.; Nebiker, S.; Haala, N.

    2018-05-01

    Urban environments with extended areas of poor GNSS coverage as well as indoor spaces that often rely on real-time SLAM algorithms for camera pose estimation require sophisticated georeferencing in order to fulfill our high requirements of a few centimeters for absolute 3D point measurement accuracies. Since we focus on image-based mobile mapping, we extended the structure-from-motion pipeline COLMAP with georeferencing capabilities by integrating exterior orientation parameters from direct sensor orientation or SLAM as well as ground control points into bundle adjustment. Furthermore, we exploit constraints for relative orientation parameters among all cameras in bundle adjustment, which leads to a significant robustness and accuracy increase especially by incorporating highly redundant multi-view image sequences. We evaluated our integrated georeferencing approach on two data sets, one captured outdoors by a vehicle-based multi-stereo mobile mapping system and the other captured indoors by a portable panoramic mobile mapping system. We obtained mean RMSE values for check point residuals between image-based georeferencing and tachymetry of 2 cm in an indoor area, and 3 cm in an urban environment where the measurement distances are a multiple compared to indoors. Moreover, in comparison to a solely image-based procedure, our integrated georeferencing approach showed a consistent accuracy increase by a factor of 2-3 at our outdoor test site. Due to pre-calibrated relative orientation parameters, images of all camera heads were oriented correctly in our challenging indoor environment. By performing self-calibration of relative orientation parameters among respective cameras of our vehicle-based mobile mapping system, remaining inaccuracies from suboptimal test field calibration were successfully compensated.

  16. Moderating Effects of Sexual Orientation and Gender Characteristic on Condom Use Intentions Among Boys' Senior High School Students in Taiwan: An Exploration Based on the Theory of Planned Behavior.

    PubMed

    Cheng, Chien-Mu; Huang, Jiun-Hau

    2017-10-27

    This study examined condom use intentions among adolescent boys in relation to the constructs of the Theory of Planned Behavior (TPB): attitude toward the behavior (ATB), subjective norm (SN), and perceived behavioral control (PBC). The potential moderating effects of sexual orientation and gender characteristic (masculine/feminine) were also explored. Anonymous survey data were collected from 929 students enrolled in a boys' senior high school in Taiwan (response rate: 89.9%). Multivariate logistic regression analyses found higher condom use intentions linked to more positive ATB (adjusted odds ratio [AOR] = 8.09) and supportive SN (AOR = 2.73), as well as high PBC under facilitating conditions (AOR = 2.04). Notably, nonheterosexual boys perceiving supportive SN (AOR = 0.23) or high support for condom use from teachers and health educators (AOR = 0.10 and 0.26, respectively) had lower condom use intentions than their heterosexual peers. By contrast, relatively feminine boys perceiving supportive SN (AOR = 2.06) or high support from close friends (AOR = 2.18) had higher condom use intentions than their masculine counterparts. In conclusion, ATB and SN were strongly linked to condom use intentions; PBC was significant only under facilitating conditions. Sexual orientation and gender characteristic had important moderating effects. These empirical findings could inform tailored health education programs to increase condom use intentions in the male student population.

  17. Orientation-dependent energy level alignment and film growth of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on HOPG

    NASA Astrophysics Data System (ADS)

    Lyu, Lu; Niu, Dongmei; Xie, Haipeng; Cao, Ningtong; Zhang, Hong; Zhang, Yuhe; Liu, Peng; Gao, Yongli

    2016-01-01

    Combining ultraviolet photoemission spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, and X-ray diffraction measurements, we performed a systematic investigation on the correlation of energy level alignment, film growth, and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on highly oriented pyrolytic graphite. The molecules lie down in the first layer and then stand up from the second layer. The ionization potential shows a sharp decrease from the lying down region to the standing up region. When C8-BTBT molecules start standing up, unconventional energy level band-bending-like shifts are observed as the film thickness increases. These shifts are ascribed to gradual decreasing of the molecular tilt angle about the substrate normal with the increasing film thickness.

  18. Orientation-dependent energy level alignment and film growth of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on HOPG.

    PubMed

    Lyu, Lu; Niu, Dongmei; Xie, Haipeng; Cao, Ningtong; Zhang, Hong; Zhang, Yuhe; Liu, Peng; Gao, Yongli

    2016-01-21

    Combining ultraviolet photoemission spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, and X-ray diffraction measurements, we performed a systematic investigation on the correlation of energy level alignment, film growth, and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on highly oriented pyrolytic graphite. The molecules lie down in the first layer and then stand up from the second layer. The ionization potential shows a sharp decrease from the lying down region to the standing up region. When C8-BTBT molecules start standing up, unconventional energy level band-bending-like shifts are observed as the film thickness increases. These shifts are ascribed to gradual decreasing of the molecular tilt angle about the substrate normal with the increasing film thickness.

  19. Refinement of the crystal structure of the high-temperature phase G0 in (NH4)2WO2F4 (powder, x-ray, and neutron scattering)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novak, D. M.; Smirnov, Lev S; Kolesnikov, Alexander I

    2013-01-01

    The (NH4)2WO2F4 compound undergoes a series of phase transitions: G0 -> 201 K -> G1 -> 160 K -> G2, with a significant change in entropy ( S1 ~ Rln10 at the G0 -> G1 transition), which indicates significant orientational disordering in the G0 phase and the order disorder type of the phase transition. X-ray diffraction is used to identify the crystal structure of the G0 phase as rhombohedral (sp. gr. Cmcm, Z = 4), determine the lattice parameters and the positions of all atoms (except hydrogen), and show that [WO2F4]2 ions can form a superposition of dynamic and staticmore » orientational disorders in the anionic sublattice. A determination of the orientational position of [NH4]+ ions calls for the combined method of elastic and inelastic neutron scattering. Inelastic neutron scattering is used to determine the state of hindered rotation for ammonium ions in the G0 phase. Powder neutron diffraction shows that the orientational disorder of NH4 ions can adequately be described within the free rotation approximation.« less

  20. Single crystal EPR determination of the quantum energy level structure for Fe8 molecular clusters

    NASA Astrophysics Data System (ADS)

    Maccagnano, S.; Hill, S.; Negusse, E.; Lussier, A.; Mola, M. M.; Achey, R.; Dalal, N. S.

    2001-05-01

    Using a high sensitivity resonance cavity technique,^1 we are able to obtain high field/frequency (up to 9 tesla/210 GHz) EPR spectra for oriented single crystals of [Fe_8O_2(OH)_12(tacn)_6]Br_8.9H_2O (or Fe8 for short). Extrapolating the frequency dependence of transitions to zero-field (for any orientation of the field) allows us to directly, and accurately (to within 0.5 percent), determine the first five zero-field splittings, which are in reasonable agreement with recent inelastic neutron studies.^2 The dependence of these splittings on the applied field strength, and its orientation with respect to the crystal, enables us to identify (to within 1^o) the easy, intermediate and hard magnetic axes. Subsequent analysis of EPR spectra for field parallel to the easy axis yields a value of for gz which is appreciably different from the value assumed in a recent high field EPR study by Barra et al.^3 ^1 M.M. Mola, S. Hill, P. Goy, and M. Gross, Rev. Sci. Inst. 71, 186 (2000). ^2 R. Caciuffo, G. Amoretti, R. Sessoli, A. Caneschi, and D. Gatteschi, Phys. Rev. Lett. 81, 4744 (1998). ^3 A. L. Barra, D. Gatteschi, and R. Sessoli, cond?mat/0002386 (Feb, 2000).

  1. Orientation relationship of eutectoid FeAl and FeAl2.

    PubMed

    Scherf, A; Kauffmann, A; Kauffmann-Weiss, S; Scherer, T; Li, X; Stein, F; Heilmaier, M

    2016-04-01

    Fe-Al alloys in the aluminium range of 55-65 at.% exhibit a lamellar microstructure of B2-ordered FeAl and triclinic FeAl 2 , which is caused by a eutectoid decomposition of the high-temperature Fe 5 Al 8 phase, the so-called ∊ phase. The orientation relationship of FeAl and FeAl 2 has previously been studied by Bastin et al. [ J. Cryst. Growth (1978 ▸), 43 , 745] and Hirata et al. [ Philos. Mag. Lett. (2008 ▸), 88 , 491]. Since both results are based on different crystallographic data regarding FeAl 2 , the data are re-evaluated with respect to a recent re-determination of the FeAl 2 phase provided by Chumak et al. [ Acta Cryst. (2010 ▸), C 66 , i87]. It is found that both orientation relationships match subsequent to a rotation operation of 180° about a 〈112〉 crystallographic axis of FeAl or by applying the inversion symmetry of the FeAl 2 crystal structure as suggested by the Chumak data set. Experimental evidence for the validity of the previously determined orientation relationships was found in as-cast fully lamellar material (random texture) as well as directionally solidified material (∼〈110〉 FeAl || solidification direction) by means of orientation imaging microscopy and global texture measurements. In addition, a preferential interface between FeAl and FeAl 2 was identified by means of trace analyses using cross sectioning with a focused ion beam. On the basis of these habit planes the orientation relationship between the two phases can be described by ([Formula: see text]01) FeAl || (114)[Formula: see text] and [111] FeAl || [1[Formula: see text]0][Formula: see text]. There is no evidence for twinning within FeAl lamellae or alternating orientations of FeAl lamellae. Based on the determined orientation and interface data, an atomistic model of the structure relationship of Fe 5 Al 8 , FeAl and FeAl 2 in the vicinity of the eutectoid decomposition is derived. This model is analysed with respect to the strain which has to be accommodated at the interface of FeAl and FeAl 2 .

  2. Orientational behavior of thin films of poly(3-methylthiophene) on platinium: A FTIR and near edge x-ray absorption fine structure (NEXAFS) study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X.Q.; Chen, J.; Hale, P.D.

    1988-01-01

    Near edge x-ray absorption fine structure (NEXAFS) and infrared reflection-absorption spectroscopy (IRRAS) have been used to study the orientational behavior of thin films of poly(3-methylthiophene) electrochemically polymerized on a platinum surface. Clear orientational effects, with the thiophene rings predominantly oriented parallel to the platinum surface, were observed when the thickness of the polymer films were within a few hundred /angstrom/A. It was found that more highly ordered films were produced at lower polymerization potential (1.4V vs SCE) than at higher potential (1.8V vs SCE). 5 refs., 4 figs., 2 tabs.

  3. Engineering Controlled Spalling in (100)-Oriented GaAs for Wafer Reuse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweet, Cassi A.; McNeely, Joshua E.; Gorman, Brian

    Controlled spalling offers a way to cleave thin, single-crystal films or devices from wafers, particularly if the fracture planes in the material are oriented parallel to the wafer surface. Unfortunately, misalignment between the favored fracture planes and the wafer surface preferred for photovoltaic growth in (100)-oriented GaAs produces a highly faceted surface when subject to controlled spalling. This highly faceted cleavage surface is problematic in several ways: (1) it can result in large variations of spall depth due to unstable crack propagation; (2) it may introduce defects into the device zone or underlying substrate; and (3) it consumes many micronsmore » of material outside of the device zone. We present the ways in which we have engineered controlled spalling for (100)-oriented GaAs to minimize these effects. We expand the operational window for controlled spalling to avoid spontaneous spalling, find no evidence of dislocation activity in the spalled film or the parent wafer, and reduce facet height and facet height irregularity. Resolving these issues provides a viable path forward for reducing III-V device cost through the controlled spalling of (100)-oriented GaAs devices and subsequent wafer reuse when these processes are combined with a high-throughput growth method such as Hydride Vapor Phase Epitaxy.« less

  4. Orientations for the successful categorization of facial expressions and their link with facial features.

    PubMed

    Duncan, Justin; Gosselin, Frédéric; Cobarro, Charlène; Dugas, Gabrielle; Blais, Caroline; Fiset, Daniel

    2017-12-01

    Horizontal information was recently suggested to be crucial for face identification. In the present paper, we expand on this finding and investigate the role of orientations for all the basic facial expressions and neutrality. To this end, we developed orientation bubbles to quantify utilization of the orientation spectrum by the visual system in a facial expression categorization task. We first validated the procedure in Experiment 1 with a simple plaid-detection task. In Experiment 2, we used orientation bubbles to reveal the diagnostic-i.e., task relevant-orientations for the basic facial expressions and neutrality. Overall, we found that horizontal information was highly diagnostic for expressions-surprise excepted. We also found that utilization of horizontal information strongly predicted performance level in this task. Despite the recent surge of research on horizontals, the link with local features remains unexplored. We were thus also interested in investigating this link. In Experiment 3, location bubbles were used to reveal the diagnostic features for the basic facial expressions. Crucially, Experiments 2 and 3 were run in parallel on the same participants, in an interleaved fashion. This way, we were able to correlate individual orientation and local diagnostic profiles. Our results indicate that individual differences in horizontal tuning are best predicted by utilization of the eyes.

  5. Orientation control of barium titanate films using metal oxide nanosheet layer

    NASA Astrophysics Data System (ADS)

    Uchida, Hiroshi; Oi, Tomotake; Noguchi, Keito; Moki, Shota; Kim, Jin Woon; Shima, Hiromi; Nishida, Ken; Kiguchi, Takanori; Akama, Akihiko; Konno, Toyohiko J.; Funakubo, Hiroshi

    2016-10-01

    In the present work, we aim to achieve the preferred crystal orientation of chemical solution deposition (CSD)-derived BaTiO3 films on ubiquitous Si wafers with the assistance of Ca2Nb3O10 nanosheet (ns-CN) template layers. The ns-CN on platinized Si (Pt/Si) substrates aligned the BaTiO3(100) plane to the substrate surface, because of the favorable lattice matching of the ns-CN (001) plane. The CSD process in air required a high crystallization temperature of 900 °C for the preferred crystal orientation of BaTiO3(100) because of the BaCO3 byproduct generated during the combustion reaction of the precursor gel. The processing in vacuum to remove CO2 species enhanced the crystal orientation even at the crystallization temperature of 800 °C, although it can generate oxygen vacancies (\\text{V}\\text{O}{} \\bullet \\bullet ) that cause distorted polarization behavior under an applied field higher than approximately 150 kV/cm. The relative dielectric constant (εr) of the (100)-oriented BaTiO3 film on the ns-CN-supported Pt/Si substrate (ns-CN/Pt/Si) was generally larger than that of the randomly oriented film on Pt/Si, depending on the degree of crystal orientation.

  6. [Influence of growing experience on non-heterosexual orientation among male college students in Nanjing].

    PubMed

    Li, X S; Fang, K; Zhang, M; Du, G P; Wu, S S; Song, Y; Xu, Y Y; Yan, W J; Ge, Y; Ji, Y; Wei, P M

    2017-07-06

    Objective: To analyze the influence of growing experience on non-heterosexual orientation among male college students. Methods: From October to November in 2015, a total of 2 535 male students from 96 classes in 14 colleges/departments were recruited from two colleges that participated in the experimental work of AIDS prevention by cluster random sampling method. A structured questionnaire was administered in this study, including general demographic information, growing experience and Kinsey scale (to evaluate sexual orientation). Out of 2 500 questionnaires distributed in this study, 2 332 effective copies were withdrew, with the effective rate at 93.3%. Chi square test was used to analyze the differences of non-heterosexual orientation among the individuals with different social demographic characteristics. Multivariate logistic regression model was used to analyze the influencing factors of non-heterosexual orientation. Results: Among the 2 332 individuals, the proportion of self-reported non-heterosexual was 6.2% (144).The proportions of male students who identify as non-heterosexual from freshman to junior year were 5.2%(63/1216),6.9%(65/941),11.7%(13/111) and 4.7%(3/64), respectively (χ(2)=9.06, P= 0.029). Compared with the individuals of very good relationship with parents, those with bad relationship ( OR= 3.3, 95 %CI: 1.7-6.5) and general relationship ( OR= 1.7, 95 %CI: 1.0-2.9) with parents had a higher risk of non-heterosexual orientation, respectively. Those encountered sexual assault had a higher risk of non-heterosexual orientation than those without encountered sexual assault ( OR= 5.9, 95 %CI: 3.2-10.9). Conclusions: This study reported a high proportion of self-reported non-heterosexual among college male students in Nanjing, and highlighted the importance of targeting students with poor parental relationships and who subjected to sexually abused.

  7. Struggling toward reward: Recent experience of anhedonia interacts with motivation to predict reward pursuit in the face of a stressful manipulation.

    PubMed

    Bryant, Jessica; Winer, E Samuel; Salem, Taban; Nadorff, Michael R

    2017-01-01

    Anhedonia, or the loss of interest and/or pleasure, is a core symptom of depression. Individuals experiencing anhedonia have difficulty motivating themselves to pursue rewarding stimuli, which can result in dysfunction. Action orientation is a motivational factor that might interact with anhedonia to potentially buffer against this dysfunction, as action-oriented individuals upregulate positive affect to quickly motivate themselves to complete goals in the face of stress. The Effort-Expenditure for Rewards Task (EEfRT) is a promising new method for examining differences in motivation in individuals experiencing anhedonia. In the EEfRT, participants choose either easier tasks associated with smaller monetary rewards or harder tasks associated with larger monetary rewards. We examined the relationship between action orientation and EEfRT performance following a negative mood induction in a sample with varying levels of anhedonia. There were two competing hypotheses: (1) action orientation would act as a buffer against anhedonia such that action-oriented individuals, regardless of anhedonic symptoms, would be motivated to pursue greater rewards despite stress, or (2) anhedonia would act as a debilitating factor such that individuals with elevated anhedonic symptoms, regardless of action orientation, would not pursue greater rewards. We examined these hypotheses via Generalized Estimating Equations and found an interaction between anhedonia and action orientation. At low levels of anhedonia, action orientation was associated with effort for reward, but this relationship was not present at high levels of anhedonia. Thus, at low levels of anhedonia, action orientation acted as a buffer against stress, but at high levels, anhedonia debilitated action orientation so that it was no longer a promotive factor.

  8. Catalyst effects in heterogeneous nucleation of acicular ferrite

    NASA Astrophysics Data System (ADS)

    Grong, Ø.; Kluken, A. O.; Nylund, H. K.; Dons, A. L.; Hjelen, J.

    1995-03-01

    The present investigation is concerned with basic studies of the mechanisms of acicular ferrite (AF)’formation in low-alloy steel weld metal. It is confirmed experimentally that different types of orientation relationships exist between AF and specific cubic inclusion constituent phases (i.e., γ-Al2 MnOAl2O3, and TiN). Since the majority of these falls within the Bain orientation region, it is concluded that the associated reduction of the energy barrier to nucleation is the primary cause for the ferrite nucleus to develop orientation relationships with both the substrate and the austenite. Theoretical calculations show that about 12 pct of the inclusions will contain a cubic phase that lies within the Bain region purely by chance if they are randomly orientated in space. This intrinsic density of heterogeneous nucleation sites is sufficiently high to promote the formation of fine, interlocking AF laths in the weld metal during the y- to- a transformation.

  9. Online time-differential perturbed angular correlation study with an 19O beam - Residence sites of oxygen atoms in highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Sato, W.; Ueno, H.; Watanabe, H.; Miyoshi, H.; Yoshimi, A.; Kameda, D.; Ito, T.; Shimada, K.; Kaihara, J.; Suda, S.; Kobayashi, Y.; Shinohara, A.; Ohkubo, Y.; Asahi, K.

    2008-01-01

    The online time-differential perturbed angular correlation (TDPAC) method was applied to a study of the physical states of a probe 19F, the β- decay product of 19O (t1/2 = 26.9 s), implanted in highly oriented pyrolytic graphite. The observed magnitude of the electric field gradient at the probe nucleus, ∣Vzz∣ = 2.91(17) × 1022 V m-2, suggests that the incident 19O atoms are stabilized at an interlayer position with point group C3v. Exhibiting observed TDPAC spectra having a clear sample-to-detector configuration dependence, we demonstrate the applicability of the present online method with a short-lived radioactive 19O beam.

  10. Effects of social identity salience on motivational orientation and conflict strategies in intergenerational conflict.

    PubMed

    Ho, Henry C Y; Yeung, Dannii Y

    2017-06-01

    With the upsurge of older adults still working, the labour force is becoming increasingly diverse in age. Age diversity in an organisation can increase the likelihood of intergenerational conflict. The present study aims to integrate the dual concern model and social identity theory to explain the underlying mechanisms of intergenerational conflict by examining the effects of social identity salience on motivational orientation and conflict strategies. A 2 (subgroup identity salience: low vs. high younger/older group membership) × 2 (superordinate identity salience: low vs. high organisational group membership) factorial design with a structured questionnaire on motivational orientation and conflict strategies in relation to a hypothetical work conflict scenario was implemented among 220 postgraduate university students in Hong Kong. Results revealed that subgroup and superordinate identities had a combined influence on conflict strategies but not in motivational orientation. Subgroup and superordinate identification promoted integrating and compromising strategies, superordinate identification promoted obliging strategy, subgroup identification promoted dominating strategy and no identification promoted avoiding strategy. Age did not moderate these relationships. This study contributes to the development of the integrated model of conflict. © 2017 International Union of Psychological Science.

  11. The Polarization Orientation Shift Estimation and Compensation of PolSAR Data in Forest Area

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Chen, Erxue; Li, Zengyuan; Li, Lan; Gu, Xinzhi

    2016-08-01

    Polarization orientation angle (POA) is a major parameter of electromagnetic wave. This angle will be shift due to azimuth slopes, which will affect the radiometric quality of PolSAR data. Under the assumption of reflection symmetrical medium, the shift value of polarization orientation angle (POAs) can be estimated by Circular Polarization Method (CPM). Then, the shift angle can be used to compensate PolSAR data or extract DEM information. However, it is less effective when using high-frequency SAR (L-, C-band) in the forest area. The main reason is that the polarization orientation angle shift of forest area not only influenced by topography, but also affected by the forest canopy. Among them, the influence of the former belongs to the interference information should be removed, but the impact of the latter belongs to the polarization feature information needs to be retained. The ALOS2 PALSAR2 L-band full polarimetric SAR data was used in this study. Base on the Circular Polarization and DEM-based method, we analyzed the variation of shift value of polarization orientation angle and developed the polarization orientation shift estimation and compensation of PolSAR data in forest.

  12. Error analysis of the crystal orientations obtained by the dictionary approach to EBSD indexing.

    PubMed

    Ram, Farangis; Wright, Stuart; Singh, Saransh; De Graef, Marc

    2017-10-01

    The efficacy of the dictionary approach to Electron Back-Scatter Diffraction (EBSD) indexing was evaluated through the analysis of the error in the retrieved crystal orientations. EBSPs simulated by the Callahan-De Graef forward model were used for this purpose. Patterns were noised, distorted, and binned prior to dictionary indexing. Patterns with a high level of noise, with optical distortions, and with a 25 × 25 pixel size, when the error in projection center was 0.7% of the pattern width and the error in specimen tilt was 0.8°, were indexed with a 0.8° mean error in orientation. The same patterns, but 60 × 60 pixel in size, were indexed by the standard 2D Hough transform based approach with almost the same orientation accuracy. Optimal detection parameters in the Hough space were obtained by minimizing the orientation error. It was shown that if the error in detector geometry can be reduced to 0.1% in projection center and 0.1° in specimen tilt, the dictionary approach can retrieve a crystal orientation with a 0.2° accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Tailoring Graphene Morphology and Orientation on Cu(100), Cu(110), and Cu(111)

    NASA Astrophysics Data System (ADS)

    Jacobberger, Robert; Arnold, Michael

    2013-03-01

    Graphene CVD on Cu is phenomenologically complex, yielding diverse crystal morphologies, such as lobes, dendrites, stars, and hexagons, of various orientations. We present a comprehensive study of the evolution of these morphologies as a function of Cu surface orientation, pressure, H2:CH4, and nucleation density. Growth was studied on ultra-smooth, epitaxial Cu films inside Cu enclosures to minimize factors that normally complicate growth. With low H2:CH4, Mullins-Sekerka instabilities propagate to form dendrites, indicating transport limited growth. In LPCVD, the dendrites extend hundreds of microns in the 100, 111, and 110 directions on Cu(100), (110), and (111) and are perturbed by twin boundaries. In APCVD, multiple preferred dendrite orientations exist. With increasing H2:CH4, the dendritic nature of growth is suppressed. In LPCVD, square, rectangle, and hexagon crystals form on Cu(100), (110) and (111), reflecting the Cu crystallography. In APCVD, the morphology becomes hexagonal on each surface. If given ample time, every growth regime yields high-quality monolayers with D:G Raman ratio <0.1. The understanding gained here provides a framework to rationally tailor the graphene crystal morphology and orientation.

  14. Strain hardening and fracture behavior during tension of directionally solidified high-nitrogen austenitic steel

    NASA Astrophysics Data System (ADS)

    Maier, Galina; Astafurova, Elena; Melnikov, Eugene; Moskvina, Valentina; Galchenko, Nina

    2017-12-01

    The effect of grain orientation relative to tensile load on the strain hardening behavior and fracture mechanism of directionally solidified high-nitrogen steel Fe-20Cr-22Mn-1.5V-0.2C-0.6N (in wt %) was studied. The tensile samples oriented along the longitudinal direction of columnar grains demonstrated the improved mechanical properties compared to specimens with the transversal directions of columnar grains: the values of tensile strength and strain-to-fracture were as high as 1080 MPa and 22%, respectively, for tension along the columnar grains and 870 MPa and 11%, respectively, for the tension transversal to the columnar grains. The change in the grain orientation relative to the tensile load varies a fracture mode of the steel. The fraction of the transgranular fracture was higher in the samples with longitudinal directions of the columnar grains compared to the transversal ones.

  15. Narrow bandgap semiconducting silicides: Intrinsic infrared detectors on a silicon chip

    NASA Technical Reports Server (NTRS)

    Mahan, John E.

    1990-01-01

    Work done during the final report period is presented. The main technical objective was to achieve epitaxial growth on silicon of two semiconducting silicides, ReSi2 and CrSi2. ReSi2 thin films were grown on (001) silicon wafers by vacuum evaporation of rhenium onto hot substrates in ultrahigh vacuum. The preferred epitaxial relationship was found to be ReSi2(100)/Si(001) with ReSi2(010) parallel to Si(110). The lattice matching consists of a common unit mesh of 120 A(sup 2) area, and a mismatch of 1.8 percent. Transmission electron microscopy revealed the existence of rotation twins corresponding to two distinct but equivalent azimuthal orientations of the common unit mesh. MeV He(+) backscattering spectrometry revealed a minimum channeling yield of 2 percent for an approximately 1,500 A thick film grown at 650 C. Although the lateral dimension of the twins is on the order of 100 A, there is a very high degree of alignment between the ReSi2(100) and the Si(001) planes. Highly oriented films of CrSi2 were grown on (111) silicon substrates, with the matching crystallographic faces being CrSi2(001)/Si(111). The reflection high-energy electron diffraction (RHEED) patterns of the films consist of sharp streaks, symmetrically arranged. The predominant azimuthal orientation of the films was determined to be CrSi2(210) parallel to Si(110). This highly desirable heteroepitaxial relationship has been obtained previously by others; it may be described with a common unit mesh of 51 A(sup 2) and mismatch of 0.3 percent. RHEED also revealed the presence of limited film regions of a competing azimuthal orientation, CrSi2(110) parallel to Si(110). A channeling effect for MeV He(+) ions was not found for this material. Potential commercial applications of this research may be found in silicon-integrated infrared detector arrays. Optical characterizations showed that semiconducting ReSi2 is a strong absorber of infrared radiation, with the adsorption constant increasing above 2 x 10(exp 4) cm(sup -1) for photon energies above 0.2 eV. CrSi2 is of potential utility for detection at photon energies above approximately 0.3 eV.

  16. Effect of bottom electrode on dielectric property of sputtered-(Ba,Sr)TiO{sub 3} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Shinichi; Yamada, Tomoaki; Takahashi, Kenji

    2009-03-15

    (Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} (BST) films were deposited on (111)Pt/TiO{sub 2}/SiO{sub 2}/Al{sub 2}O{sub 3} substrates by rf sputtering. By inserting a thin layer of SrRuO{sub 3} in between BST film and (111)Pt electrode, the BST films grew fully (111)-oriented without any other orientations. In addition, it enables us to reduce the growth temperature of BST films while keeping the dielectric constant and tunability as high as those of BST films directly deposited on Pt at higher temperatures. The dielectric loss of the films on SrRuO{sub 3}-top substrates was comparable to that on Pt-top substrates for the same level of dielectricmore » constant. The results suggest that the SrRuO{sub 3} thin layer on (111)Pt electrode is an effective approach to growing highly crystalline BST films with (111) orientation at lower deposition temperatures.« less

  17. 300% Enhancement of Carrier Mobility in Uniaxial-Oriented Perovskite Films Formed by Topotactic-Oriented Attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong Hoe; Park, Jaehong; Li, Zhen

    Organic-inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large-grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single-crystal counterparts. Here, a facile topotactic-oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial-crystallographic texture, micrometer-grain morphology, high crystallinity, low trap density (≈4 x 10 14 cm -3), and unprecedented 9 GHz charge-carrier mobility (71 cm 2 V -1 smore » -1), is demonstrated. TOA-perovskite-based n-i-p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse-scan efficiency (19.7%). In conclusion, the TOA process is also applicable for growing other state-of-the-art perovskite alloys, including triple-cation and mixed-halide perovskites.« less

  18. Characteristics of Stress and Suicidal Ideation in the Disclosure of Sexual Orientation among Young French LGB Adults.

    PubMed

    Charbonnier, Elodie; Dumas, Florence; Chesterman, Adam; Graziani, Pierluigi

    2018-02-07

    Lesbians, gays, and bisexual people (LGB) present high levels of suicidal ideation. The disclosure of sexual orientation is a stressful experience which presents a high suicide risk. Research has not paid sufficient attention to stress during this disclosure in order to understand suicide among LGB people. The aims of this study were to investigate: (1) the characteristics of stress during this revelation, more precisely cognitive appraisal, emotions, and coping; and (2) associations between these characteristics and suicidal ideation. A total of 200 LGB young adults answered the "Stressful situation assessment questionnaire", focusing on the most stressful disclosure of sexual orientation they have ever experienced. Avoidance coping is a good predictor of suicidal ideation, and mediates the association between primary appraisal (risk "Harm myself and others") and suicidal ideation. Our study illustrates the need to better understand stress during the disclosure of sexual orientation to prevent and care for suicide risk among LGB young adults.

  19. Characteristics of Stress and Suicidal Ideation in the Disclosure of Sexual Orientation among Young French LGB Adults

    PubMed Central

    Charbonnier, Elodie; Dumas, Florence; Chesterman, Adam; Graziani, Pierluigi

    2018-01-01

    Background: Lesbians, gays, and bisexual people (LGB) present high levels of suicidal ideation. The disclosure of sexual orientation is a stressful experience which presents a high suicide risk. Research has not paid sufficient attention to stress during this disclosure in order to understand suicide among LGB people. The aims of this study were to investigate: (1) the characteristics of stress during this revelation, more precisely cognitive appraisal, emotions, and coping; and (2) associations between these characteristics and suicidal ideation. Method: A total of 200 LGB young adults answered the “Stressful situation assessment questionnaire”, focusing on the most stressful disclosure of sexual orientation they have ever experienced. Results: Avoidance coping is a good predictor of suicidal ideation, and mediates the association between primary appraisal (risk “Harm myself and others”) and suicidal ideation. Conclusions: Our study illustrates the need to better understand stress during the disclosure of sexual orientation to prevent and care for suicide risk among LGB young adults. PMID:29414915

  20. 300% Enhancement of Carrier Mobility in Uniaxial-Oriented Perovskite Films Formed by Topotactic-Oriented Attachment

    DOE PAGES

    Kim, Dong Hoe; Park, Jaehong; Li, Zhen; ...

    2017-04-18

    Organic-inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large-grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single-crystal counterparts. Here, a facile topotactic-oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial-crystallographic texture, micrometer-grain morphology, high crystallinity, low trap density (≈4 x 10 14 cm -3), and unprecedented 9 GHz charge-carrier mobility (71 cm 2 V -1 smore » -1), is demonstrated. TOA-perovskite-based n-i-p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse-scan efficiency (19.7%). In conclusion, the TOA process is also applicable for growing other state-of-the-art perovskite alloys, including triple-cation and mixed-halide perovskites.« less

  1. Effect of cooling rate on magnetic domain structure and magnetic properties of Tb0.27Dy0.73Fe1.95 alloys solidified in high magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Tie; Dong, Meng; Gao, Pengfei; Xiao, Yubao; Yuan, Yi; Wang, Qiang

    2018-05-01

    In this work, Tb0.27Dy0.73Fe1.95 alloys were solidified in a high magnetic field of 4.4 T at various cooling rates. Changes in the magnetostriction, crystal orientation, magnetization, and magnetic domain of the solidified alloys were investigated. The application of the magnetic field can induce <111> orientation of (Tb, Dy)Fe2 phase. However, the effect of the magnetic field is strongly dependent on the cooling rate. The alloy solidified at 5 °C/min shows the highest magnetostriction, strongest <111> orientation, best contrast of light and dark in the domain image, and fastest magnetization, and followed in descending order by the alloys solidified at 1.5 °C/min and 60 °C/min. The change in the magnetostriction of the alloys can be attributed to the changes in crystal orientation and magnetic domain structure caused by both the magnetic field and cooling rate.

  2. Well-aligned polycrystalline lanthanum silicate oxyapatite grown by reactive diffusion between solid La{sub 2}SiO{sub 5} and gases [SiO+1/2O{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuda, Koichiro, E-mail: fukuda.koichiro@nitech.ac.jp; Hasegawa, Ryo; Kitagawa, Takuya

    2016-03-15

    The c-axis-oriented polycrystalline lanthanum silicate oxyapatite, La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} (□ denotes a vacancy in the Si site), was successfully prepared by the reactive diffusion between randomly grain-oriented La{sub 2}SiO{sub 5} polycrystal and [SiO+1/2O{sub 2}] gases at 1873 K in Ar atmosphere. The polycrystal was characterized using optical microscopy, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, micro-Raman spectroscopy, X-ray diffractometry, and impedance spectroscopy. The crystal structure (space group P6{sub 3}/m) showed the deficiency of Si site at ca. 1.9%. The bulk oxide-ion conductivity along the grain-alignment direction steadily increased from 9.2 × 10{sup −3} to 1.17 ×more » 10{sup −2} S/cm with increasing temperature from 923 to 1073 K. The activation energy of conduction was 0.23(2) eV. - Graphical abstract: We have successfully prepared the highly c-axis-oriented polycrystalline La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} by the reactive diffusion between randomly grain-oriented La{sub 2}SiO{sub 5} polycrystal and [SiO + 1/2O{sub 2}] gases at 1873 K in Ar atmosphere. The crystal structure (space group P6{sub 3}/m) showed the deficiency of Si site of ca. 1.9%. - Highlights: • The c-axis-oriented polycrystalline La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} is successfully prepared. • Crystal structure of La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} is determined by single-crystal XRD. • The polycrystal shows relatively high oxide ion conductivity along the common c-axis. • Reactive diffusion is successfully used for the preparation of grain-aligned ceramics.« less

  3. Orientation-dependent energy level alignment and film growth of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on HOPG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyu, Lu; Niu, Dongmei, E-mail: mayee@csu.edu.cnmailto; Xie, Haipeng

    Combining ultraviolet photoemission spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, and X-ray diffraction measurements, we performed a systematic investigation on the correlation of energy level alignment, film growth, and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on highly oriented pyrolytic graphite. The molecules lie down in the first layer and then stand up from the second layer. The ionization potential shows a sharp decrease from the lying down region to the standing up region. When C8-BTBT molecules start standing up, unconventional energy level band-bending-like shifts are observed as the film thickness increases. These shifts are ascribed to gradual decreasing of the molecularmore » tilt angle about the substrate normal with the increasing film thickness.« less

  4. Examination of soil effect upon GPR detectability of landmine with different orientations

    NASA Astrophysics Data System (ADS)

    Ebrahim, Shereen M.; Medhat, N. I.; Mansour, Khamis K.; Gaber, A.

    2018-06-01

    Landmines represent a serious environmental problem for several countries as it causes severe injured and many victims. In this paper, the response of GPR from different parameters of the landmine targets has been shown and the data is correlated with observed field experiment made in 2012 at Miami Crandon Park test site. The ability of GPR for detecting non-metallic mines with different orientations was revealed and soil effect upon the GPR signal was examined putting into consideration the soil parameters in different locations in Egypt such as in Sinai and El Alamein. The simulation results showed that PMN-2 landmine was detected at 5 cm and 15 cm depths, even at the minimum radar cross section vertical orientation. The B-Scan (2D GPR profiles) of PMN-2 target at 15 cm depth figured out high reflectivity for Wadi deposits due to large contrast between PMN-2 landmine material and soil of sand dunes.

  5. Autonomy Support as an Interpersonal Motivating Style: Is It Teachable?

    PubMed

    Reeve

    1998-07-01

    Students benefit when teachers support their autonomy. Recognizing this, the present study examined the motivating styles of beginning preservice teachers by asking two questions: (1) Do personality characteristics orient preservice teachers toward either an autonomy-supportive or controlling motivating style? and (2) Is the autonomy-supportive style teachable to preservice teachers? Study 1, which addressed the first question, relied on self-determination theory to identify and confirm causality orientation as one personality characteristic related to motivating style. Study 2, which addressed the second question, randomly assigned preservice teachers to receive training in either autonomy-supportive, controlling, or neutral instructional strategies. Results showed that the autonomy-supportive style was teachable. Autonomy-oriented preservice teachers (as measured by causality orientation) assimilated the information rather easily, while control-oriented preservice teachers accommodated the information only in proportion to the extent that they perceived it to be highly plausible and classroom applicable. The discussion relies on self-determination theory and the conceptual change literature to recommend how teacher certification programs can assist teachers-in-training develop an autonomy-supportive motivating style. Copyright 1998 Academic Press.

  6. Epitaxial Growth of YBa2Cu3O7 Films onto LaAlO3 (100) by Using Oxalates

    NASA Astrophysics Data System (ADS)

    Dominguez, A. Bustamante; Felix, L. León; Garcia, J.; Santibañez, J. Flores; Valladares, L. De Los Santos; Gonzalez, J. C.; Anaya, A. Osorio; Pillaca, M.

    Due to the current necessity to obtain epitaxial superconductor films at low cost, we report the growth of YBa2Cu3O7 (Y123) films by chemical deposition. The procedure involved simple steps such as precipitation of stoichiometric amounts of yttrium, barium and copper acetates in oxalic acid (H2C2O4). The precursor solution was dripped onto LaAlO3 (100) substrates with the help of a Fisher pipette. The films were annealed in oxygen atmosphere during 12 h at three different temperatures: 820 °C, 840 °C and 860 °C. After 820 °C and 860 °C annealing, X-ray diffraction (XRD) analysis revealed high intensity of the (00l) reflections denoting that most of the Y123 grains were c-axis oriented. In addition, we also observed a-axis oriented grains ((h00) reflexion), minor randomly oriented grains and other phases (such as Y2BaCuO5 and CuO). In contrast, the sample treated at 840 °C, we noticed c - and a-axis oriented grains, very small amounts of randomly oriented grains without formation of other phases. From the magnetization versus temperature measurements, the critical temperatures were estimated at 70K and 90K for the samples annealed at 820 °C and 860 °C respectively.

  7. The effect of aluminium on mechanical properties and deformation mechanisms of hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Zakharova, E. G.; Kireeva, I. V.; Chumlyakov, Y. I.; Shul'Mina, A. A.; Sehitoglu, H.; Karaman, I.

    2004-06-01

    On single crystals of Hadfield steel (Fe-13Mn-1.3C, Fe-13Mn-2.7Al-1.3C, wt.%) the systematical investigations of deformation mechanisms - slip and twinning, stages of plastic flow, strain hardening coefficient depending on orientation of tensile axis have been carried out by methods of optical and electron microscopy, x-ray analysis. Is has been shown that the combination of low stacking fault energy (γ{SF}=0.03J/m^2) with high concentration of carbon atoms in aluminium-free steel results in development of the mechanical twinning at room temperature in all crystal orientations. The new type of twinning with formation of extrinsic stacking fault has been found out in [001] single crystals. Experimentally it has been established that alloying with aluminium leads to increase of stacking fault energy of Hadfield steel and suppresses twinning in all orientations of crystals at preservation of high values of strain-hardening coefficients θ.

  8. Four highly pseudosymmetric and/or twinned structures of d(CGCGCG) 2 extend the repertoire of crystal structures of Z-DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Zhipu; Dauter, Zbigniew; Gilski, Miroslaw

    DNA oligomer duplexes containing alternating cytosines and guanines in their sequences tend to form left-handed helices of the Z-DNA type, with the sugar and phosphate backbone in a zigzag conformation and a helical repeat of two successive nucleotides. Z-DNA duplexes usually crystallize as hexagonally arranged parallel helical tubes, with various relative orientations and translation of neighboring duplexes. Four novel high-resolution crystal structures of d(CGCGCG) 2duplexes are described here. They are characterized by a high degree of pseudosymmetry and/or twinning, with three or four independent duplexes differently oriented in a monoclinicP2 1lattice of hexagonal metric. The various twinning criteria give somewhatmore » conflicting indications in these complicated cases of crystal pathology. The details of molecular packing in these crystal structures are compared with other known crystal forms of Z-DNA.« less

  9. A flexible, high-performance magnetoelectric heterostructure of (001) oriented Pb(Zr0.52Ti0.48)O3 film grown on Ni foil

    NASA Astrophysics Data System (ADS)

    Palneedi, Haribabu; Yeo, Hong Goo; Hwang, Geon-Tae; Annapureddy, Venkateswarlu; Kim, Jong-Woo; Choi, Jong-Jin; Trolier-McKinstry, Susan; Ryu, Jungho

    2017-09-01

    In this study, a flexible magnetoelectric (ME) heterostructure of PZT/Ni was fabricated by depositing a (001) oriented Pb(Zr0.52Ti0.48)O3 (PZT) film on a thin, flexible Ni foil buffered with LaNiO3/HfO2. Excellent ferroelectric properties and large ME voltage coefficient of 3.2 V/cmṡOe were realized from the PZT/Ni heterostructure. The PZT/Ni composite's high performance was attributed to strong texturing of the PZT film, coupled with the compressive stress in the piezoelectric film. Besides, reduced substrate clamping in the PZT film due to the film on the foil structure and strong interfacial bonding in the PZT/LaNiO3/HfO2/Ni heterostructure could also have contributed to the high ME performance of PZT/Ni.

  10. Investigation of noble metal substrates and buffer layers for BiSrCaCuO thin films

    NASA Astrophysics Data System (ADS)

    Matthiesen, M. M.; Rubin, L. M.; Williams, K. E.; Rudman, D. A.

    Noble metal buffer layers and substrates for Bi2Sr2CaCu2O8 (BSCCO) films were investigated using bulk ceramic processing and thin-film techniques. Highly oriented, superconducting BSCCO films were fabricated on polycrystalline Ag substrates and on Ag/MgO and Ag/YSZ structures. Such films could not be produced on Au or Pt substrates under any annealing conditions. In addition, superconducting BSCCO films could not be produced on Ag/Al2O3, Ag/SiO2/Si, or Ag/(Haynes 230 alloy) structures using high annealing temperatures (870 C). However, oriented although poorly connected, superconducting BSCCO films were fabricated on Ag/Al2O3 structures by using lower annealing temperatures (820 C). Once lower processing temperatures are optimized, Ag may be usable as a buffer layer for BSCCO films.

  11. Description of Sexual Orientation and Sexual Behaviors among High School Girls in New York City.

    PubMed

    Coble, Chanelle A; Silver, Ellen J; Chhabra, Rosy

    2017-08-01

    Examination of the association of sexual orientation to the sexual practices and health behaviors of high school girls in New York City (NYC). Data were drawn from the 2013 Youth Risk Behavior Surveillance System survey of public high school students in grades 9-12 in NYC. None. Independent variables included sexual orientation and gender of sexual partners. Dependent variables include sexual/health risk behaviors. We used t tests to compare mean ages and χ 2 tests to compare distributions according to sexual orientation, gender of sexual partners, and differences in risk behaviors. The survey was completed by 4643 girls; mean age, 15.5 years; (1103 + 1842)/4254 (69%) black or Latina; 1101/4000 (27.5%) sexually active; 3574/4412 (81%) heterosexual; and (92 + 526)/4412 (14%) sexual minorities; 24.1% were heterosexual, 52.1% lesbian, and 49.4% were bisexual girls and were sexually active; 247 were classified as women who have sex with women (WSW) or WSW and men (WSWM). Of the sexually active girls, (65 + 182)/1081 (23%) were WSW/WSWM. The WSW/WSWM reported earlier sexual debut, more sexual partners, higher pregnancy rate, use of alcohol at last sex, history of intimate partner violence, and less likelihood of having an HIV test. Almost one in four of sexually active high school girls in NYC can be classified as WSW, who are vulnerable to increased sexual and health risk-taking behaviors leading to adverse health outcomes. The discordance between sexual behavior and sexual orientation emphasizes the importance of the provider sharing protective strategies in the sexual health counseling session for their patients who engage in sex with female partners regardless of sexual orientation. Copyright © 2017 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  12. Effects of gene orientation and use of multiple promoters on the expression of XYL1 and XYL2 in Saccharomyces cerevisiae

    Treesearch

    Ju Yun Bae; Jose Laplaza; Thomas W. Jeffries

    2008-01-01

    Orientation of adjacent genes has been reported to affect their expression in eukaryotic systems, and metabolic engineering also often makes repeated use of a few promoters to obtain high expression. To improve transcriptional control in heterologous expression, we examined how these factors affect gene expression and enzymatic activity in Saccharomyces cerevisiae. We...

  13. An Investigation of the Relationships Between Characteristics of Secondary Schools and Student Alienation. Final Report.

    ERIC Educational Resources Information Center

    Hoy, Wayne K.

    Three sets of hypotheses served to delineate the focus of this study: (1) the more open the organization climate of the high school, the less custodial the pupil control orientation of the school, (2) the more custodial the pupil control orientation of the school, the greater the total alienation of the students, and (3) the more open the…

  14. Moral competence as a positive youth development construct: conceptual bases and implications for curriculum development.

    PubMed

    Ma, Hing Keung

    2006-01-01

    Moral competence refers to the orientation to perform altruistic behavior and the ability to judge moral issues logically, consistently and at an advanced level of development. A brief review of the concepts of altruism and justice is presented. The gender and cultural issues are also discussed. The contents of moral competence program units include four major topics: (1) Fairness, (2) Proper conduct (mainly altruistic and prosocial orientation), (3) Responsibility and altruistic orientation, and (4) Integrity and fairness. The general goal is to help students to develop an altruistic orientation and a judgment structure of a high level of justice. This paper is part of the development of the positive youth development program in Hong Kong.

  15. Controllable Electrical Contact Resistance between Cu and Oriented-Bi2Te3 Film via Interface Tuning.

    PubMed

    Kong, Xixia; Zhu, Wei; Cao, Lili; Peng, Yuncheng; Shen, Shengfei; Deng, Yuan

    2017-08-02

    The contact resistance between metals and semiconductors has become critical for the design of thin-film thermoelectric devices with their continuous miniaturization. Herein, we report a novel interface tuning method to regulate the contact resistance at the Bi 2 Te 3 -Cu interface, and three Bi 2 Te 3 films with different oriented microstructures are obtained. The lowest contact resistivity (∼10 -7 Ω cm 2 ) is observed between highly (00l) oriented Bi 2 Te 3 and Cu film, nearly an order of magnitude lower than other orientations. This significant decrease of contact resistivity is attributed to the denser film connections, lower lattice misfit, larger effective conducting contact area, and smaller width of the surface depletion region. Meanwhile, our results show that the reduction of contact resistance has little dependence on the interfacial diffusion based on the little change in contact resistivity after the introduction of an effective Ti barrier layer. Our work provides a new idea for the mitigation of contact resistivity in thin-film thermoelectric devices and also gives certain guidance for the size design of the next-level miniaturized devices.

  16. Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification

    PubMed Central

    Borca, Valeria Casanova; Russo, Giuliana; Grosso, Pierangelo; Cante, Domenico; Sciacero, Piera; Girelli, Giuseppe; Porta, Maria Rosa La; Tofani, Santi

    2013-01-01

    Radiochromic film has become an important tool to verify dose distributions in highly conformal radiation therapy such as IMRT. Recently, a new generation of these films, EBT3, has become available. EBT3 has the same composition and thickness of the sensitive layer of the previous EBT2 films, but its symmetric layer configuration allows the user to eliminate side orientation dependence, which is reported for EBT2 films. The most important EBT3 characteristics have been investigated, such as response at high‐dose levels, sensitivity to scanner orientation and postirradiation coloration, energy and dose rate dependence, and orientation dependence with respect to film side. Additionally, different IMRT fields were measured with both EBT3 and EBT2 films and evaluated using gamma index analysis. The results obtained show that most of the characteristics of EBT3 film are similar to the EBT2 film, but the orientation dependence with respect to film side is completely eliminated in EBT3 films. The study confirms that EBT3 film can be used for clinical practice in the same way as the previous EBT2 film. PACS number: 87.56.Fc PMID:23470940

  17. Effect of substrates on the molecular orientation of silicon phthalocyanine dichloride thin films

    NASA Astrophysics Data System (ADS)

    Deng, Juzhi; Baba, Yuji; Sekiguchi, Tetsuhiro; Hirao, Norie; Honda, Mitsunori

    2007-05-01

    Molecular orientations of silicon phthalocyanine dichloride (SiPcCl2) thin films deposited on three different substrates have been measured by near-edge x-ray absorption fine structure (NEXAFS) spectroscopy using linearly polarized synchrotron radiation. The substrates investigated were highly oriented pyrolitic graphite (HOPG), polycrystalline gold and indium tin oxide (ITO). For thin films of about five monolayers, the polarization dependences of the Si K-edge NEXAFS spectra showed that the molecular planes of SiPcCl2 on three substrates were nearly parallel to the surface. Quantitative analyses of the polarization dependences revealed that the tilted angle on HOPG was only 2°, which is interpreted by the perfect flatness of the HOPG surface. On the other hand, the tilted angle on ITO was 26°. Atomic force microscopy (AFM) observation of the ITO surface showed that the periodicity of the horizontal roughness is of the order of a few nanometres, which is larger than the molecular size of SiPcCl2. It is concluded that the morphology of the top surface layer of the substrate affects the molecular orientation of SiPcCl2 molecules not only for mono-layered adsorbates but also for multi-layered thin films.

  18. Specificity of V1-V2 Orientation Networks in the Primate Visual Cortex

    PubMed Central

    Roe, Anna W.; Ts'o, Daniel Y.

    2015-01-01

    The computation of texture and shape involves integration of features of various orientations. Orientation networks within V1 tend to involve cells which share similar orientation selectivity. However, emergent properties in V2 require the integration of multiple orientations. We now show that, unlike interactions within V1, V1-V2 orientation interactions are much less synchronized and are not necessarily orientation dependent. We find V1-V2 orientation networks are of two types: a more tightly synchronized, orientation-preserving network and a less synchronized orientation-diverse network. We suggest that such diversity of V1-V2 interactions underlies the spatial and functional integration required for computation of higher order contour and shape in V2. PMID:26314798

  19. Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity

    NASA Astrophysics Data System (ADS)

    Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming'en; Hu, Zhiwei; Zhu, Jiliang

    2018-03-01

    A highly self-textured Ga2O3-substituted Li7La3Zr2O12 (LLZO-Ga) solid electrolyte with a nominal composition of Li6.55Ga0.15La3Zr2O12 is obtained by a simple and low-cost solid-state reaction technique, requiring no seed crystals to achieve grain orientation. The as-prepared self-textured LLZO-Ga shows a strong (420) preferred orientation with a high Lotgering factor of 0.91. Coherently, a terrace-shaped microstructure consisting of many parallel layers, indicating a two-dimensional-like growth mode, is clearly observed in the self-textured sample. As a result, the highly self-textured garnet-type lithium-ion conducting solid electrolyte of LLZO-Ga exhibits an extremely high ionic conductivity, reaching a state-of-the-art level of 2.06 × 10-3 S cm-1 at room temperature (25 °C) and thus shedding light on an important strategy for improving the structure and ionic conductivity of solid electrolytes.

  20. Fabrication and Piezoelectric Properties of Textured (Bi1/2K1/2)TiO3 Ferroelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Nagata, Hajime; Saitoh, Masahiro; Hiruma, Yuji; Takenaka, Tadashi

    2010-09-01

    Textured (Bi1/2K1/2)TiO3 (BKT) ceramics were prepared by a reactive templated grain growth (RTGG) method to improve their piezoelectric properties. Also, a hot-pressing (HP) method was modified on the basis of RTGG method to obtain dense ceramics and promote the grain orientation. The textured BKT ceramics prepared by the RTGG and HP methods exhibited a relatively high orientation factor F of 0.82 and a high density ratio of 95-99%. Scanning electron microscopy (SEM) micrographs of the textured HP-BKT indicated a textured and poreless microstructure. In addition, the resistivity of the textured HP-BKT was 1.73×1013 Ω·cm. The piezoelectric strain constant d33 determined by means of resonance and antiresonance method was 125 pC/N for the direction parallel to the sheet-stacking direction of the RTGG process. From the measurement of field-induced stain, the normalized d33* (=Smax/Emax) at 80 kV/cm were 127 and 238 pm/V on the randomly oriented and textured samples (F=0.82) for the (∥) direction, respectively.

  1. Goal orientations of health profession students throughout the undergraduate program: a multilevel study.

    PubMed

    Kool, Ada; Mainhard, Tim; Brekelmans, Mieke; van Beukelen, Peter; Jaarsma, Debbie

    2016-03-31

    The achievement goal theory defines two major foci of students' learning goals (1) primarily interested in truly mastering a task (mastery orientation), and (2) striving to show ones competences to others (performance orientation). The present study is undertaken to better understand if and how health profession students' goal orientations change during the undergraduate program and to what degree gender, academic achievement, and self-efficacy are associated with mastery and performance orientation between students and within students over time. By means of an online questionnaire, students of medical, pharmaceutical, and veterinary sciences (N = 2402) were asked to rate themselves on mastery orientation, performance orientation, and self-efficacy at the beginning of five consecutive semesters. Data on grades and gender were drawn from university's files. Multilevel analyses were used for data analysis. Students' goal orientations showed relative stability over time, but substantial fluctuations within individual students were found. These fluctuations were associated with fluctuations in self-efficacy. Students' gender, high school grades, study grades, and self-efficacy were all associated with differences in mastery or performance orientation between students. Self-efficacy was the strongest predictor for mastery orientation and grades for performance orientation. The relatively strong association between the goal orientations and students' self-efficacy found in this study emphasizes the potential of enhancing self-efficacy in health profession students. Also, for educators and researchers, fluctuations of both goal orientations within individual students are important to consider.

  2. Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging

    PubMed Central

    Gierlinger, Notburga; Luss, Saskia; König, Christian; Konnerth, Johannes; Eder, Michaela; Fratzl, Peter

    2010-01-01

    The functional characteristics of plant cell walls depend on the composition of the cell wall polymers, as well as on their highly ordered architecture at scales from a few nanometres to several microns. Raman spectra of wood acquired with linear polarized laser light include information about polymer composition as well as the alignment of cellulose microfibrils with respect to the fibre axis (microfibril angle). By changing the laser polarization direction in 3° steps, the dependency between cellulose and laser orientation direction was investigated. Orientation-dependent changes of band height ratios and spectra were described by quadratic linear regression and partial least square regressions, respectively. Using the models and regressions with high coefficients of determination (R2 > 0.99) microfibril orientation was predicted in the S1 and S2 layers distinguished by the Raman imaging approach in cross-sections of spruce normal, opposite, and compression wood. The determined microfibril angle (MFA) in the different S2 layers ranged from 0° to 49.9° and was in coincidence with X-ray diffraction determination. With the prerequisite of geometric sample and laser alignment, exact MFA prediction can complete the picture of the chemical cell wall design gained by the Raman imaging approach at the micron level in all plant tissues. PMID:20007198

  3. Biological and psychosocial determinants of male and female human sexual orientation.

    PubMed

    James, William H

    2005-09-01

    Some propositions on male and female sexual orientation will be considered. Some of these are established; others are more speculative. The aim is to offer some notes towards a coherent, comprehensive theory of sexual orientation. 1. The distinction between butch and femme lesbians seems real rather than a social construct. 2. High levels of prenatal steroid hormones seem to be causally associated with the sexual orientation of butch lesbians. However it is not established whether the causal process operates prenatally or postnatally (or both). This is so because prenatal hormone levels are thought to correlate positively with postnatal hormone levels. And high postnatal hormone levels may facilitate homosexual behaviour as a consequence of sensation-seeking. 3. Male bisexuals also are interpreted to have been exposed to high prenatal testosterone levels. But (for reasons similar to those outlined above in regard to butch lesbians) it is unclear whether these have a direct prenatal effect on the brain or whether they are precursors of high postnatal testosterone levels, which are associated with male bisexual orientation by promoting sensation-seeking behaviour. 4. Postnatal learning processes seem to be causally involved in the sexual orientation of some femme lesbians and some exclusive male homosexuals. 5. Some homosexual men have genes that predispose to their sexual orientation. 6. The same may apply to some lesbians, but such genes have not, as far as I know, been identified. 7. People (of both sexes) who engage in same-sex sexual behaviour may be classified simultaneously in two ways, viz (1) 'active' vs 'passive' and (2) those who do and those who do not engage (or consider engaging) in sex with members of the opposite sex. Ex hypothesi, some of the 'active' ones initiate some of the 'passive' ones. The active ones are driven more by hormones and the passive ones by psychosocial factors. The active males contain a substantial proportion of self-identified bisexuals; and the active females a substantial proportion of self-identified butches. 8. These two active categories (butch lesbians and male bisexuals) share a number of endocrinological, psychological, morphological and behavioural features vis-a-vis their exclusively homosexual and heterosexual peers. Methods of testing some of these ideas are presented.

  4. The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage.

    PubMed

    Meng, Qingen; An, Shuqiang; Damion, Robin A; Jin, Zhongmin; Wilcox, Ruth; Fisher, John; Jones, Alison

    2017-01-01

    The highly inhomogeneous distribution of collagen fibrils may have important effects on the biphasic mechanics of articular cartilage. However, the effect of the inhomogeneity of collagen fibrils has mainly been investigated using simplified three-layered models, which may have underestimated the effect of collagen fibrils by neglecting their realistic orientation. The aim of this study was to investigate the effect of the realistic orientation of collagen fibrils on the biphasic mechanics of articular cartilage. Five biphasic material models, each of which included a different level of complexity of fibril reinforcement, were solved using two different finite element software packages (Abaqus and FEBio). Model 1 considered the realistic orientation of fibrils, which was derived from diffusion tensor magnetic resonance images. The simplified three-layered orientation was used for Model 2. Models 3-5 were three control models. The realistic collagen orientations obtained in this study were consistent with the literature. Results from the two finite element implementations were in agreement for each of the conditions modelled. The comparison between the control models confirmed some functions of collagen fibrils. The comparison between Models 1 and 2 showed that the widely-used three-layered inhomogeneous model can produce similar fluid load support to the model including the realistic fibril orientation; however, an accurate prediction of the other mechanical parameters requires the inclusion of the realistic orientation of collagen fibrils. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Cirrus properties deduced from CO2 lidar observations of zenith-enhanced backscatter from oriented crystals

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.

    1993-01-01

    Many lidar researchers have occasionally observed zenith-enhanced backscatter (ZEB) from middle and high clouds. The ZEB signature consists of strong backscatter when the lidar is pointed directly at zenith and a dramatic decline in backscatter as the zenith angle dips slightly off zenith. Mirror-like reflection from horizontal facets of oriented crystals (especially plates) is generally accepted as the cause. It was found during a 3-year observation program that approximately 50 percent of ice clouds had ZEB, regardless of cloud height. The orientation of crystals and the ZEB they cause are important to study and understand for several reasons. First, radiative transfer in clouds with oriented crystals is different than if the same particles were randomly oriented. Second, crystal growth depends partly on the orientation of the particles. Third, ZEB measurements may provide useful information about cirrus microphysical and radiative properties. Finally, the remarkable effect of ZEB on lidar signals should be understood in order to properly interpret lidar data.

  6. Visual orientation and navigation in nocturnal arthropods.

    PubMed

    Warrant, Eric; Dacke, Marie

    2010-01-01

    With their highly sensitive visual systems, the arthropods have evolved a remarkable capacity to orient and navigate at night. Whereas some navigate under the open sky, and take full advantage of the celestial cues available there, others navigate in more difficult conditions, such as through the dense understory of a tropical rainforest. Four major classes of orientation are performed by arthropods at night, some of which involve true navigation (i.e. travel to a distant goal that lies beyond the range of direct sensory contact): (1) simple straight-line orientation, typically for escape purposes; (2) nightly short-distance movements relative to a shoreline, typically in the context of feeding; (3) long-distance nocturnal migration at high altitude in the quest to locate favorable feeding or breeding sites, and (4) nocturnal excursions to and from a fixed nest or food site (i.e. homing), a task that in most species involves path integration and/or the learning and recollection of visual landmarks. These four classes of orientation--and their visual basis--are reviewed here, with special emphasis given to the best-understood animal systems that are representative of each. 2010 S. Karger AG, Basel.

  7. The Association Between Sexual Orientation Identity and Behavior Across Race/Ethnicity, Sex, and Age in a Probability Sample of High School Students

    PubMed Central

    Mustanski, Brian; Birkett, Michelle; Greene, George J.; Rosario, Margaret; Bostwick, Wendy; Everett, Bethany G.

    2014-01-01

    Objectives. We examined the prevalence and associations between behavioral and identity dimensions of sexual orientation among adolescents in the United States, with consideration of differences associated with race/ethnicity, sex, and age. Methods. We used pooled data from 2005 and 2007 Youth Risk Behavior Surveys to estimate prevalence of sexual orientation variables within demographic sub-groups. We used multilevel logistic regression models to test differences in the association between sexual orientation identity and sexual behavior across groups. Results. There was substantial incongruence between behavioral and identity dimensions of sexual orientation, which varied across sex and race/ethnicity. Whereas girls were more likely to identify as bisexual, boys showed a stronger association between same-sex behavior and a bisexual identity. The pattern of association of age with sexual orientation differed between boys and girls. Conclusions. Our results highlight demographic differences between 2 sexual orientation dimensions, and their congruence, among 13- to 18-year-old adolescents. Future research is needed to better understand the implications of such differences, particularly in the realm of health and health disparities. PMID:24328662

  8. The association between sexual orientation identity and behavior across race/ethnicity, sex, and age in a probability sample of high school students.

    PubMed

    Mustanski, Brian; Birkett, Michelle; Greene, George J; Rosario, Margaret; Bostwick, Wendy; Everett, Bethany G

    2014-02-01

    We examined the prevalence and associations between behavioral and identity dimensions of sexual orientation among adolescents in the United States, with consideration of differences associated with race/ethnicity, sex, and age. We used pooled data from 2005 and 2007 Youth Risk Behavior Surveys to estimate prevalence of sexual orientation variables within demographic sub-groups. We used multilevel logistic regression models to test differences in the association between sexual orientation identity and sexual behavior across groups. There was substantial incongruence between behavioral and identity dimensions of sexual orientation, which varied across sex and race/ethnicity. Whereas girls were more likely to identify as bisexual, boys showed a stronger association between same-sex behavior and a bisexual identity. The pattern of association of age with sexual orientation differed between boys and girls. Our results highlight demographic differences between 2 sexual orientation dimensions, and their congruence, among 13- to 18-year-old adolescents. Future research is needed to better understand the implications of such differences, particularly in the realm of health and health disparities.

  9. Slip and Twinning in the [ 1 ¯ $ /line{mathbf{1}} $ 49]-Oriented Single Crystals of a High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Kireeva, I. V.; Chumlyakov, Yu. I.; Pobedennaya, Z. V.; Platonova, Yu. N.; Kuksgauzen, I. V.; Kuksgauzen, D. A.; Poklonov, V. V.; Karaman, I.; Sehitoglu, H.

    2016-12-01

    Using [ overline{1} 49] - oriented single crystals of an FCC Fe20Ni20Mn20Cr20Co20 (at.%) high-entropy alloy subjected to tensile deformation, the temperature dependence of critical resolved shear stresses τcr(T) and the deformation mechanism of slip and twinning are investigated in the early stages of deformation at ɛ ≤ 5% within the temperature interval T = 77-573 K. It is shown that τcr increases with decreasing the testing temperature and the τcr(T) temperature dependence is controlled by the slip of perfect dislocations a/2<110>. The early deformation stages ɛ ≤ 5% are associated with the development of planar slip by pileups of perfect dislocations a/2<110>, stacking faults and mechanical twins, which is observed in the temperature interval from 77 to 423 K. A comparison of the temperature dependence τcr(T) and the development of mechanical twinning is performed between the [ overline{1} 49] -oriented single crystals of the Fe20Ni20Mn20Cr20Co20 high-entropy alloy, the single crystals of the austenitic stainless steel, Fe - 18% Cr - 12% Ni - 2Mo (wt.%) without nitrogen atoms (Steel 316) and Hadfield steel, Fe - 13% Mn - (1-1.3)% C (wt.%).

  10. Real time coarse orientation detection in MR scans using multi-planar deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Bhatia, Parmeet S.; Reda, Fitsum; Harder, Martin; Zhan, Yiqiang; Zhou, Xiang Sean

    2017-02-01

    Automatically detecting anatomy orientation is an important task in medical image analysis. Specifically, the ability to automatically detect coarse orientation of structures is useful to minimize the effort of fine/accurate orientation detection algorithms, to initialize non-rigid deformable registration algorithms or to align models to target structures in model-based segmentation algorithms. In this work, we present a deep convolution neural network (DCNN)-based method for fast and robust detection of the coarse structure orientation, i.e., the hemi-sphere where the principal axis of a structure lies. That is, our algorithm predicts whether the principal orientation of a structure is in the northern hemisphere or southern hemisphere, which we will refer to as UP and DOWN, respectively, in the remainder of this manuscript. The only assumption of our method is that the entire structure is located within the scan's field-of-view (FOV). To efficiently solve the problem in 3D space, we formulated it as a multi-planar 2D deep learning problem. In the training stage, a large number coronal-sagittal slice pairs are constructed as 2-channel images to train a DCNN to classify whether a scan is UP or DOWN. During testing, we randomly sample a small number of coronal-sagittal 2-channel images and pass them through our trained network. Finally, coarse structure orientation is determined using majority voting. We tested our method on 114 Elbow MR Scans. Experimental results suggest that only five 2-channel images are sufficient to achieve a high success rate of 97.39%. Our method is also extremely fast and takes approximately 50 milliseconds per 3D MR scan. Our method is insensitive to the location of the structure in the FOV.

  11. Fabrication of Ti substrate grain dependent C/TiO2 composites through carbothermal treatment of anodic TiO2.

    PubMed

    Rüdiger, Celine; Favaro, Marco; Valero-Vidal, Carlos; Calvillo, Laura; Bozzolo, Nathalie; Jacomet, Suzanne; Hejny, Clivia; Gregoratti, Luca; Amati, Matteo; Agnoli, Stefano; Granozzi, Gaetano; Kunze-Liebhäuser, Julia

    2016-04-07

    Composite materials of titania and graphitic carbon, and their optimized synthesis are highly interesting for application in sustainable energy conversion and storage. We report on planar C/TiO2 composite films that are prepared on a polycrystalline titanium substrate by carbothermal treatment of compact anodic TiO2 with acetylene. This thin film material allows for the study of functional properties of C/TiO2 as a function of chemical composition and structure. The chemical and structural properties of the composite on top of individual Ti substrate grains are examined by scanning photoelectron microscopy and micro-Raman spectroscopy. Through comparison of these data with electron backscatter diffraction, it is found that the amount of generated carbon and the grade of anodic film crystallinity correlate with the crystallographic orientation of the Ti substrate grains. On top of Ti grains with ∼(0001) orientations the anodic TiO2 exhibits the highest grade of crystallinity, and the composite contains the highest fraction of graphitic carbon compared to Ti grains with other orientations. This indirect effect of the Ti substrate grain orientation yields new insights into the activity of TiO2 towards the decomposition of carbon precursors.

  12. The evolvement of pits and dislocations on TiO{sub 2}-B nanowires via oriented attachment growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Bin; Chen Feng, E-mail: Fengchen@ecust.edu.c; Qu Wenwu

    2009-08-15

    TiO{sub 2}-B nanowires were synthesized by an ion exchanging-thermal treatment. The unique morphology of pits and dislocations interspersed on TiO{sub 2}-B nanowires were firstly characterized and studied by high-resolution transmission electron microscopy (HRTEM). Oriented attachment is suggested as an important growth mechanism in the evolvement of pits and dislocations on TiO{sub 2}-B nanowires. Lattice shears and fractures were originally formed during the ion exchanging process of the sodium titanate nanowires, which resulted in the formation of primary crystalline units and vacancies in the layered hydrogen titanate nanowires. Then the (110) lattice planes of TiO{sub 2}-B grown in [110] direction ismore » faster than the other lattice planes, which caused the exhibition of long dislocations on TiO{sub 2}-B nanowires. The enlargement of the vacancies, which was caused by the rearrangement of primary crystalline units, should be the reason of the formation of pits. Additionally, the transformation from TiO{sub 2}-B to anatase could be also elucidated by oriented attachment mechanism. - Graphical abstract: The unique morphology of pits and dislocations on TiO{sub 2}-B nanowires shown in high-resolution transmission electron microscopy (HRTEM) and a proposed evolvement mechanism of pits and dislocations on TiO{sub 2}-B nanowires.« less

  13. Degradation studies on highly oriented poly(glycolic acid) fibres with different lamellar structures.

    PubMed

    de Oca, Horacio Montes; Farrar, David F; Ward, Ian M

    2011-04-01

    Highly oriented poly(glycolic acid) (PGA) fibres with an initial tensile strength of 1.1 GPa and different lamellar morphologies were prepared and studied during degradation in aqueous media at 37°C. A combination of small- and wide-angle X-ray scattering was used to study the structural changes during degradation and to generate two structural models of highly oriented PGA fibres with different lamellar morphologies. It is shown that as a result of crystallisation during degradation PGA crystals grow preferentially along the (110) and (020) directions of the crystal lattice or perpendicular to the orientation direction of the fibres. (1)H nuclear magnetic resonance measurements revealed three phases within the fibres with different relaxation times: (1) a mobile amorphous phase with a short relaxation time; (2) a semi-rigid phase with an intermediate relaxation time; (3) a rigid crystalline phase with a longer relaxation time. It is shown that the mobile amorphous phase degrades very rapidly and that it plays only a small role in the tensile mechanical behaviour of the fibres during degradation. It is shown that semi-rigid chains connecting crystalline domains are responsible for transferring the stress between crystalline domains and carrying the tensile deformation. It is proposed that once these tie molecules degrade considerably the oriented fibres very rapidly lose their strength retention. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Mercury's gravity field, tidal Love number k2, and spin axis orientation revealed with MESSENGER radio tracking data

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Margot, J. L.

    2015-12-01

    We are conducting an independent analysis of two-way Doppler and two-way range radio tracking data from the MESSENGER spacecraft in orbit around Mercury from 2011 to 2015. Our goals are to estimate Mercury's gravity field and to obtain independent estimates of the tidal Love number k2 and spin axis orientation. Our gravity field solution reproduces existing values with high fidelity, and prospects for recovery of the other quantities are excellent. The tidal Love number k2 provides powerful constraints on interior models of Mercury, including the mechanical properties of the mantle and the possibility of a solid FeS layer at the top of the core. Current gravity analyses cannot rule out a wide range of values (k2=43-0.50) and a variety of plausible interior models. We are seeking an independent estimate of tidal Love number k2 with improved errors to further constrain these models. Existing gravity-based solutions for Mercury's spin axis orientation differ from those of Earth-based radar and topography-based solutions. This difference may indicate an error in one of the determinations, or a real difference between the orientations about which the gravity field and the crust rotate, which can exist in a variety of plausible configuration. Securing an independent estimate of the spin axis orientation is vital because this quantity has a profound impact on the determination of the moment of inertia and interior models. We have derived a spherical harmonic solution of the gravity field to degree and order 40 as well as estimates of the tidal Love number k2 and spin axis orientation.

  15. Mercury’s gravity field, tidal Love number k2, and spin axis orientation revealed with MESSENGER radio tracking data

    NASA Astrophysics Data System (ADS)

    Verma, Ashok Kumar; Margot, Jean-Luc

    2015-11-01

    We are conducting an independent analysis of two-way Doppler and two-way range radio tracking data from the MESSENGER spacecraft in orbit around Mercury from 2011 to 2015. Our goals are to estimate Mercury’s gravity field and to obtain independent estimates of the tidal Love number k2 and spin axis orientation. Our gravity field solution reproduces existing values with high fidelity, and prospects for recovery of the other quantities are excellent.The tidal Love number k2 provides powerful constraints on interior models of Mercury, including the mechanical properties of the mantle and the possibility of a solid FeS layer at the top of the core. Current gravity analyses cannot rule out a wide range of values (k2=43-0.50) and a variety of plausible interior models. We are seeking an independent estimate of tidal Love number k2 with improved errors to further constrain these models.Existing gravity-based solutions for Mercury's spin axis orientation differ from those of Earth-based radar and topography-based solutions. This difference may indicate an error in one of the determinations, or a real difference between the orientations about which the gravity field and the crust rotate, which can exist in a variety of plausible configuration. Securing an independent estimate of the spin axis orientation is vital because this quantity has a profound impact on the determination of the moment of inertia and interior models.We have derived a spherical harmonic solution of the gravity field to degree and order 40 as well as estimates of the tidal Love number k2 and spin axis orientation

  16. Mechanisms of optical orientation of an individual Mn2+ ion spin in a II-VI quantum dot

    NASA Astrophysics Data System (ADS)

    Smoleński, T.; Cywiński, Ł.; Kossacki, P.

    2018-02-01

    We provide a theoretical description of the optical orientation of a single Mn2+ ion spin under quasi-resonant excitation demonstrated experimentally by Goryca et al (2009 Phys. Rev. Lett. 103 087401). We build and analyze a hierarchy of models by starting with the simplest assumptions (transfer of perfectly spin-polarized excitons from Mn-free dot to the other dot containing a single Mn2+ spin, followed by radiative recombination) and subsequently adding more features, such as spin relaxation of electrons and holes. Particular attention is paid to the role of the influx of the dark excitons and the process of biexciton formation, which are shown to contribute significantly to the orientation process in the quasi-resonant excitation case. Analyzed scenarios show how multiple features of the excitonic complexes in magnetically-doped quantum dots, such as the values of exchange integrals, spin relaxation times, etc, lead to a plethora of optical orientation processes, characterized by distinct dependencies on light polarization and laser intensity, and occurring on distinct timescales. Comparison with experimental data shows that the correct description of the optical orientation mechanism requires taking into account Mn2+ spin-flip processes occurring not only when the exciton is already in the orbital ground state of the light-emitting dot, but also those that happen during the exciton transfer from high-energy states to the ground state. Inspired by the experimental results on energy relaxation of electrons and holes in nonmagnetic dots, we focus on the process of biexciton creation allowed by mutual spin-flip of an electron and the Mn2+ spin, and we show that by including it in the model, we obtain good qualitative and quantitative agreement with the experimental data on quasi-resonantly driven Mn2+ spin orientation.

  17. High current densities above 100 K in the high-temperature superconductor HgBa2CaCu2O6+δ

    NASA Astrophysics Data System (ADS)

    Krusin-Elbaum, L.; Tsuei, C. C.; Gupta, A.

    1995-02-01

    THE recent discovery1,2 of a family of mercury-based copper oxide superconductors having transition temperatures1-3 above 130 K is of considerable technological interest. But the viability of high-temperature superconductors for many applications will ultimately depend on the size of the current density, Jc, that they are able to support, not only at high temperatures, but also in high magnetic fields. For the cuprate superconductors, and in particular for Hg-based materials, the combination of high transition temperature1-3 and large mass anisotropy implies that the transport properties will be intrinsically limited by large thermal fluctuations and short superconducting coherence lengths4. Here we report that high-quality c-axis-oriented epitaxial films of the compound HgBa2CaCu6O6+δ (Hg-1212; ref. 5) can support large in-plane current densities at temperatures higher than has been achieved for other superconductors. In low magnetic fields oriented normal to the film surface, we find Jc>~107 A cm-2 at 5 K and Jc~ 105 A cm-2 at 110 K, at least an order of magnitude larger than for Bi- or Tl-based films6-11. For in-plane magnetic fields, the critical current (~108 A cm-2) is close to the theoretical limit even at high fields, indicative of strong intrinsic pinning in this compound.

  18. 3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures.

    PubMed

    Park, Chan Ho; Kim, Kyoung-Hwa; Lee, Yong-Moo; Giannobile, William V; Seol, Yang-Jo

    2017-09-08

    Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned organizations, it remains a challenge to develop ligament-guided, 3D architectures with the angular controllability for parallel, oblique or perpendicular orientations of cells required for biomechanical support of organs. Here, we show the use of scaffold design by additive manufacturing for specific topographies or angulated microgroove patterns to control cell orientations such as parallel (0°), oblique (45°) and perpendicular (90°) angulations. These results demonstrate that ligament cells displayed highly predictable and controllable orientations along microgroove patterns on 3D biopolymeric scaffolds. Our findings demonstrate that 3D printed topographical approaches can regulate spatiotemporal cell organizations that offer strong potential for adaptation to complex tissue defects to regenerate ligament-bone complexes.

  19. The Effects of Purpose Orientations on Recent High School Graduates' College Application Decisions

    ERIC Educational Resources Information Center

    Sharma, Gitima; Kim, Jungnam; Bryan, Julia

    2017-01-01

    Using the 2002 Educational Longitudinal Study database, the authors examined the different types of purpose orientations amongst a nationally representative sample of adolescents and the effect of these purpose orientations on high school graduates' college application decisions. Results indicated four types of purpose orientations: career,…

  20. Object-Oriented Programming in High Schools the Turing Way.

    ERIC Educational Resources Information Center

    Holt, Richard C.

    This paper proposes an approach to introducing object-oriented concepts to high school computer science students using the Object-Oriented Turing (OOT) language. Students can learn about basic object-oriented (OO) principles such as classes and inheritance by using and expanding a collection of classes that draw pictures like circles and happy…

  1. Enhanced energy storage and pyroelectric properties of highly (100)-oriented (Pb1-x-yLaxCay)Ti1-x/4O3 thin films derived at low temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Hanfei; Ma, Hongfang; Zhao, Yuyao

    2018-05-01

    Highly (100)-oriented (Pb1-x-yLaxCay)Ti1-x/4O3 (x = 0.15, y = 0.05; x = 0.1, y = 0.1; x = 0.05, y = 0.15) thin films were deposited on Pt/Ti/SiO2/Si substrates at a low temperature of 450 °C via a sol-gel route. It was found that all the (Pb1-x-yLaxCay)Ti1-x/4O3 thin films could be completely crystallized and the content of La/Ca showed a significant effect on the electrical properties of films. Among the three films, the (Pb1-x-yLaxCay)Ti1-x/4O3 (x = 0.1, y = 0.1) thin film exhibited the enhanced overall electrical properties, such as a low dielectric loss (tan ⁡ δ < 0.08) and leakage current (J ∼ 4.6 ×10-5 A/cm2), a high recoverable energy density (Wre ∼ 15 J/cm3), as well as a large pyroelectric coefficient (p ∼ 190 μC/m2K) and figure of merit (Fd‧∼ 77 μC /m2K). The findings suggest that the fabricated thin films with a good (100) orientation can be an attractive candidate for applications in Si-based energy storage and pyroelectric devices.

  2. Observation of an hexatic vortex glass in flux lattices of the high- Tc superconductor Bi 2.1Sr 1.9Ca 0.9Cu 2O 8+δ

    NASA Astrophysics Data System (ADS)

    Bishop, D. J.; Gammel, P. L.; Murray, C. A.; Mitzi, D. B.; Kapitulnik, A.

    1991-02-01

    We report observation of hexatic order in Abrikosov flux lattices in very clean crystals of the high- Tc superconductor Bi 2.1Sr 1.9Ca 0.9Cu 2O 8+δ (BSCCO). Our experiments consist of in situ magnetic decoration of the flux lattice at 4.2 K. Analysis of the decoration images shows that the positional order decays exponentially with a correlation length of a few lattice constants while the orientational order persists for hundreds of lattice constants and decays algebraically with an exponent η 6 = 0.6 ± 0.01. Our results confirm recent theoretical speculation that the positional order should be far more sensitive to disorder than the orientational order and that the low-temperature ordered phase of the flux lines in these systems might be an hexatic glass.

  3. Observation of an hexatic vortex glass in flux lattices of the high Tc superconductor Bi2.1Sr1.9Ca0.9Cu2O8+δ

    NASA Astrophysics Data System (ADS)

    Bishop, D. J.; Gammel, P. L.; Murray, C. A.; Mitzi, D. B.; Kapitulnik, A.

    1990-10-01

    We report observation of hexatic order in Abrikosov flux lattices in very clean crystals of the high Tc superconductor Bi2.1Sr1.9Ca0.9Cu2O8+δ (BSCCO). Our experiments consist of in situ magnetic decoration of the flux lattice at 4.2 K. Analysis of the decoration images shows that the positional order decays exponentially with a correlation length of a few lattice constants while the orientational order persists for hundreds of lattice constants and decays algebraically with an exponent η6=0.06±0.01. Our results confirm recent theoretical speculation that the positional order should be far more sensitive to disorder than the orientational order and that the low temperature ordered phase of the flux lines in these systems might be an hexatic glass.

  4. Observation of a hexatic vortex glass in flux lattices of the High-Tc superconductor Bi(2.1)Sr(1.9)Ca(0.9)Cu2O(8 + delta)

    NASA Astrophysics Data System (ADS)

    Murray, C. A.; Gammel, P. L.; Bishop, D. J.; Mitzi, D. B.; Kapitulnik, A.

    1990-05-01

    Hexatic order is observed in Abrikosov flux lattices in very clean crystals of the high-Tc superconductor Bi(2.1)Sr(1.9)Ca(0.9)Cu2O(8 + delta) by in situ magnetic decoration of the flux lattice at 4.2 K. Analysis of the decoration images shows that the positional order decays exponentially with a correlation length of a few lattice constants, while the orientational order persists for hundreds of lattice constants and decays algebraically with an exponent eta6 = 0.06 + or - 0.01. These results confirm recent theoretical speculation that the positional order should be far more sensitive to disorder than the orientational order, and that the low-temperature ordered phase of the flux lines in these systems might be a hexatic glass.

  5. Patient-doctor relationship: the practice orientation of doctors in Kano.

    PubMed

    Abiola, T; Udofia, O; Abdullahi, A T

    2014-01-01

    Attitude and orientation of doctors to the doctor-patient relationship has a direct influence on delivery of high quality health- care. No study to the knowledge of these researchers has so far examined the practice orientation of doctors in Nigeria to this phenomenon. The aims of this study were to determine the orientation of Kano doctors to the practice of doctor-patient relationship and physicians' related-factors. Participants were doctors working in four major hospitals (i.e., two federal-owned and two state-owned) servicing Kano State and its environs. The Patient-Practitioner Orientation Scale (PPOS) and a socio-demographic questionnaire were completed by the 214 participants. The PPOS has 18 items and measures three parameters of a total score and two dimension of "sharing" and "caring". The mean age of participants was 31.72 years (standard deviation = 0.87), with 22% being females, 40.7% have been practicing for ≥ 6 years and about two-third working in federal-owned health institution. The Cronbach's alpha of total PPOS scores was 0.733 and that of two sub-scale scores of "sharing" and "caring" were 0.659 and 0.546 respectively. Most of the doctors' orientation (92.5%) was towards doctor-centered (i.e., paternalistic) care, majority (75.2%) upheld the view of not sharing much information and control with patients, and showing little interest in psychosocial concerns of patients (i.e., 'caring'=93.0%). Respondents' characteristics that were significantly associated with high doctor 'caring' relationship orientation were being ≥ 30-year-old and practicing for ≥ 6 years. Working in State-owned hospitals was also significantly associated with high doctor "sharing" orientation. This paper demonstrated why patient-centered medical interviewing should be given top priority in medical training in Nigeria, and particularly for federal health institutions saddled with production of new doctors and further training for practicing doctors.

  6. The face evoked steady-state visual potentials are sensitive to the orientation, viewpoint, expression and configuration of the stimuli.

    PubMed

    Vakli, Pál; Németh, Kornél; Zimmer, Márta; Kovács, Gyula

    2014-12-01

    Previous studies demonstrated that the steady-state visual-evoked potential (SSVEP) is reduced to the repetition of the same identity face when compared with the presentation of different identities, suggesting high-level neural adaptation to face identity. Here we investigated whether the SSVEP is sensitive to the orientation, viewpoint, expression and configuration of faces (Experiment 1), and whether adaptation to identity at the level of the SSVEP is robust enough to generalize across these properties (Experiment 2). In Experiment 1, repeating the same identity face with continuously changing orientation, viewpoint or expression evoked a larger SSVEP than the repetition of an unchanged face, presumably reflecting a release of adaptation. A less robust effect was observed in the case of changes affecting face configuration. In Experiment 2, we found a similar release of adaptation for faces with changing orientation, viewpoint and configuration, as there was no difference between the SSVEP for the same and different identity faces. However, we found an adaptation effect for faces with changing expressions, suggesting that face identity coding, as reflected in the SSVEP, is largely independent of the emotion displayed by faces. Taken together, these results imply that the SSVEP taps high-level face representations which abstract away from the changeable aspects of the face and likely incorporate information about face configuration, but which are specific to the orientation and viewpoint of the face. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Fabrication of SrGe2 thin films on Ge (100), (110), and (111) substrates

    NASA Astrophysics Data System (ADS)

    Imajo, T.; Toko, K.; Takabe, R.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.

    2018-01-01

    Semiconductor strontium digermanide (SrGe2) has a large absorption coefficient in the near-infrared light region and is expected to be useful for multijunction solar cells. This study firstly demonstrates the formation of SrGe2 thin films via a reactive deposition epitaxy on Ge substrates. The growth morphology of SrGe2 dramatically changed depending on the growth temperature (300-700 °C) and the crystal orientation of the Ge substrate. We succeeded in obtaining single-oriented SrGe2 using a Ge (110) substrate at 500 °C. Development on Si or glass substrates will lead to the application of SrGe2 to high-efficiency thin-film solar cells.

  8. Room temperature chemical synthesis of lead selenide thin films with preferred orientation

    NASA Astrophysics Data System (ADS)

    Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan

    2006-11-01

    Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.

  9. Orientation estimation algorithm applied to high-spin projectiles

    NASA Astrophysics Data System (ADS)

    Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.

    2014-06-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.

  10. Random oriented hexagonal nickel hydroxide nanoplates grown on graphene as binder free anode for lithium ion battery with high capacity

    NASA Astrophysics Data System (ADS)

    Du, Yingjie; Ma, Hu; Guo, Mingxuan; Gao, Tie; Li, Haibo

    2018-05-01

    In this work, two-step method has been employed to prepare random oriented hexagonal hydroxide nanoplates on graphene (Ni(OH)2@G) as binder free anode for lithium ion battery (LIB) with high capacity. The morphology, microstructure, crystal phase and elemental bonding have been characterized. When evaluated as anode for LIB, the Ni(OH)2@G exhibited high initial discharge capacity of 1318 mAh/g at the current density of 50 mA/g. After 80 cycles, the capacity was maintained at 834 mAh/g, implying 63.3% remaining. Even the charge rate was increased to 2000 mA/g, an impressive capacity of 141 mAh/g can be obtained, indicating good rate capability. The superior LIB behavior of Ni(OH)2@G is ascribed to the excellent combination between Ni(OH)2 nanoplates and graphene via both covalent chemical bonding and van der Waals interactions.

  11. Perfect Composition Depth Profiling of Ionic Liquid Surfaces Using High-resolution RBS/ERDA.

    PubMed

    Nakajima, Kaoru; Zolboo, Enkhbayar; Ohashi, Tomohiro; Lísal, Martin; Kimura, Kenji

    2016-01-01

    In order to reveal the surface structures of large molecular ionic liquids (ILs), the near-surface elemental depth distributions of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C n C 1 Im][Tf 2 N], n = 2, 6, 10) were studied using high-resolution Rutherford backscattering spectroscopy (HRBS) in combination with high-resolution elastic recoil detection analysis (HR-ERDA). The elemental depth profiles of all constituent elements, including hydrogen, were derived from HR-ERDA/HRBS measurements, so that the profiles would reproduce both HR-ERDA and HRBS spectra simultaneously. The derived elemental depth profiles agree with state-of-the-art molecular dynamics simulations, indicating the feasibility of this method. A controversy concerning the preferential orientation of [C 2 C 1 Im] at the surface has been resolved by this new combination analysis; namely, the [C 2 C 1 Im] cation has a preferential orientation with the ethyl chain pointing towards the vacuum in the topmost molecular layer.

  12. Does water belong to the homologous series of hydroxyl compounds H(CH2)nOH?

    PubMed

    Swiergiel, Jolanta; Jadżyn, Jan

    2017-04-12

    The main objective of this paper is to find a source of anomalously high value of the equilibrium permittivity of water. The source is identified to be the unusually high deformation polarizability. The conclusion follows from the analysis of the behavior of the orientational entropy increment induced by an external electric field applied to the liquids belonging to the homologous series of hydroxyl compounds H(CH 2 ) n OH at the end of which water is located. The finding reflects the "indecision" of water about its dielectric relationship with the alcohol family: the value of the permittivity of water absolutely does not fit into alcohols (is too high), while the dipolar orientation effects (which normally determine the permittivity level) fit into alcohols quite well. It results from the presented experimental data that among all the diversity of intermolecular hydrogen-bonded structures existing in liquid water, predominant are the polar entities, i.e. the structures which more or less resemble the chains. Otherwise, the dipolar orientational effects would behave in a quite different way than what is observed in the experiment. The result is convergent with the conclusion of Wernet et al., based on the high-performance X-ray studies of water (Science, 2004).

  13. CuInS2 Films Deposited by Aerosol-Assisted Chemical Vapor Deposition Using Ternary Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Jin, Michael; Banger, Kal; Harris, Jerry; Hepp, Aloysius

    2003-01-01

    Polycrystalline CuInS2 films were deposited by aerosol-assisted chemical vapor deposition using both solid and liquid ternary single-source precursors (SSPs) which were prepared in-house. Films with either (112) or (204/220) preferred orientation, had a chalcopyrite structure, and (112)-oriented films contained more copper than (204/220)-oriented films. The preferred orientation of the film is likely related to the decomposition and reaction kinetics associated with the molecular structure of the precursors at the substrate. Interestingly, the (204/220)-oriented films were always In-rich and were accompanied by a secondary phase. From the results of post-growth annealing, etching experiments, and Raman spectroscopic data, the secondary phase was identified as an In-rich compound. On the contrary, (112)-oriented films were always obtained with a minimal amount of the secondary phase, and had a maximum grain size of about 0.5 micron. Electrical and optical properties of all the films grown were characterized. They all showed p-type conduction with an electrical resistivity between 0.1 and 30 Omega-cm, and an optical band gap of approximately 1.46 eV +/- 0.02, as deposited. The material properties of deposited films revealed this methodology of using SSPs for fabricating chalcopyrite-based solar cells to be highly promising.

  14. Chemical disorder and 207Pb hyperfine fields in the magnetoelectric multiferroic Pb (F e1 /2S b1 /2 ) O3 and its solid solution with Pb (F e1 /2N b1 /2) O3

    NASA Astrophysics Data System (ADS)

    Zagorodniy, Yu. O.; Kuzian, R. O.; Kondakova, I. V.; Maryško, M.; Chlan, V.; Štěpánková, H.; Olekhnovich, N. M.; Pushkarev, A. V.; Radyush, Yu. V.; Raevski, I. P.; Zalar, B.; Laguta, V. V.; Stephanovich, V. A.

    2018-01-01

    We report on the results of magnetic susceptibility, electron paramagnetic resonance, and 207Pb nuclear magnetic resonance (NMR) studies of the magnetoelectric multiferroic Pb (F e1 /2S b1 /2 ) O3 (PFS) ceramic, as well as its solid solution with Pb (F e1 /2N b1 /2) O3 (PFN) of different degrees of the 1:1 ordering of magnetic F e3 + and nonmagnetic S b5 + ions. The ordering has been studied by x-ray diffraction (XRD) and NMR methods. In particular, two spectral lines, originating from the ordered and disordered regions, respectively, are resolved in the 207Pb NMR spectra. This demonstrates the presence of spatially heterogeneous ordering where ordered regions are embedded into a disordered matrix. Combining XRD and NMR data, we have determined both the long-range order parameter s and the volume fraction of ordered regions s' for all investigated samples. The values vary in the range s =0 -0.93 and s'=0 -1 . We have found that the 207Pb Fermi contact interaction strongly depends on the disorder in the Fe/Sb positions: whereas it reaches 7.08 MHz in the ordered lattice, it is almost zero in the disordered environment. These results are further supported by the studies of PFS-PFN solid solutions. The analysis of experimental data in terms of density functional theory reveals a noticeably higher hybridization between Pb 6s and Fe 3d orbitals in the ordered case. The ordering of magnetic and nonmagnetic ions has a strong impact on the magnetic properties of PFS, leading to a transformation of the long-range ordered antiferromagnetic phase in chemically ordered samples to the spin glass state already in partially (s =0.35 ) disordered specimens. In our opinion, the difference in the magnetic properties of PFN and PFS is related to the fact that PFN is completely disordered, in contrast to PFS, which is only partially disordered, with small ordered regions existing in the disordered matrix that prevent the percolation of the nearest-neighbor Fe-Fe exchange interaction across the lattice.

  15. Erosion Data from the MISSE 8 Polymers Experiment After 2 Years of Space Exposure on the International Space Station

    NASA Technical Reports Server (NTRS)

    de Groh, Kim K.; Banks, Bruce A.; Asmar, Olivia C.; Yi, Grace T.; Mitchell, Gianna G.; Guo, Aobo; Sechkar, Edward A.

    2016-01-01

    The Polymers Experiment was exposed to the low Earth orbit (LEO) space environment for 2.14 and 2.0 years as part of the Materials International Space Station Experiment 8 (MISSE 8) and the Optical Reflector Materials Experiment-III (ORMatE-III), respectively. The experiment contained 42 samples, which were flown in either ram, wake, or zenith orientations. The primary objective was to determine the effect of solar exposure on the atomic oxygen erosion yield (Ey) of fluoropolymers. This paper provides an overview of the experiment with details on the polymers flown, the characterization techniques used, the atomic oxygen fluence for each exposure orientation, and the LEO Ey results. The Ey values for the fluoropolymers range from 1.45 x 10(exp -25) cm(exp 3)/atom for white Tedlar Registered Trademark? (polyvinyl fluoride with white titanium dioxide pigment) flown in the ram orientation to 6.32 x 10(exp -24) cm(exp 3)/atom for aluminized-Teflon Registered Trademark? fluorinated ethylene propylene (Al-FEP) flown in the zenith orientation. Erosion yield data for FEP flown in ram, wake and zenith orientations are compared, and the Ey was found to be highly dependent on orientation, hence environmental exposure. Teflon FEP had an order of magnitude higher Ey when flown in the zenith direction (6.32 x10(exp -24) cm(exp3)/atom) as compared to the ram direction (2.37 x 10(exp -25) cm(exp 3)/atom). The Ey of FEP was found to increase with a direct correlation to the solar exposure/AO fluence ratio showing the effect of solar radiation and/or heating due to solar exposure on FEP erosion. In addition, back-surface carbon painted FEP (C-FEP) flown in the zenith orientation had a significantly higher Ey than clear FEP or Al-FEP further indicating that heating has a significant impact on the erosion of FEP, particularly in the zenith orientation.

  16. [Stage-adjusted treatment for haemorrhoidal disease].

    PubMed

    Herold, A

    2008-05-01

    Haemorrhoidal disease is one of the most frequent disorders in western countries. The aim of individual therapy is eradication of symptoms achieved by normalisation of anatomy and physiology. Treatment is orientated to the stage of the disease: First-degree haemorrhoids are treated conservatively. In addition to high fibre diet, sclerotherapy is used. Haemorrhoids of the 2nd degree prolapse during defecation and return spontaneously. First-line treatment is rubber band ligation. Third-degree haemorrhoids that prolapse during defecation have to be digitally reduced. The majority of these patients need surgery. For segmental disorders haemorrhoidectomy according to Milligan-Morgan or Ferguson is recommended. In circular disease Stapler haemorrhoidopexy is now the procedure of choice. Using a classification orientated therapeutical regime orientated to the classification of haemorrhoidal disease offers high healing rates with a low rate of complications and recurrences.

  17. Delta-opiate DPDPE in magnetically oriented phospholipid micelles: binding and arrangement of aromatic pharmacophores.

    PubMed Central

    Rinaldi, F; Lin, M; Shapiro, M J; Petersheim, M

    1997-01-01

    D-Penicillamine(2,5)-enkephalin (DPDPE) is a potent opioid peptide that exhibits a high selectivity for the delta-opiate receptors. This zwitterionic peptide has been shown, by pulsed-field gradient 1H NMR diffusion studies, to have significant affinity for a zwitterionic phospholipid bilayer. The bilayer lipid is in the form of micelles composed of dihexanoylphosphatidylcholine (DHPC) and dimyristoylphosphatidylcholine (DMPC) mixtures, where the DMPC forms the bilayer structure. At high lipid concentration (25% w/w) these micelles orient in the magnetic field of an NMR spectrometer. The resulting 1H-13C dipolar couplings and chemical shift changes in the natural abundance 13C resonances for the Tyr and Phe aromatic rings were used to characterize the orientations in the bilayer micelles of these two key pharmacophores. Images FIGURE 1 FIGURE 8 PMID:9414244

  18. Evidence for filamentary superconductivity up to 220 K in oriented multiphase Y-Ba-Cu-O thin films

    NASA Astrophysics Data System (ADS)

    Schönberger, R.; Otto, H. H.; Brunner, B.; Renk, K. F.

    1991-02-01

    We report on the observation of filamentary superconductivity up to 220 K in multiphase Y-Ba-Cu-O materials that are deposited as highly oriented thin films on (110)-SrTiO 3 substrates by laser ablation from ceramic targets. The high temperature zero resistivity states are reproducible after temperature cycling down to 80 K for samples treated by a special oxygenation and ozonization process at 340 K and measured in a pure oxygen atmosphere. Our results on thin films confirm former experiments of J.T. Chen and co-workers obtained on ceramic samples with preferred crystallite orientation. A close connection between superconductivity and structural instabilities of most likely ferroic nature, which are observed more often for YBa 2Cu 3O 7 in a narrow temperature range near 220 K, is suggested.

  19. Effect of motivational climate profiles on motivational indices in team sport.

    PubMed

    Ommundsen, Y; Roberts, G C

    1999-12-01

    Contemporary perspectives of achievement motivation have been based on social cognitive theories which give motivational climate a central place in the regulation of subsequent affective states, cognitions and behaviour in achievement contexts. This study examined the relationship between different profiles of the motivational climate in teamsport and achievement, and socially related cognitions among Norwegian team sport athletes. Players (N= 148) assessed their perception of the motivational climate using the Norwegian version of the Motivational climate in sport questionnaire, sources of satisfaction in team sport, achievement strategies, perceived purposes of sport, and conceptions of ability. Multivariate analysis of variance (2x2) showed both main effects for profiles of the motivational climate and an interaction effect. Athletes perceiving the climate as high in mastery and high in performance oriented criteria reported psychological responses that were more adaptative than those perceiving the climate as low in mastery and high in performance criteria. With one exception, the findings showed that those high in mastery and low in performance were more likely to emphasise self-referenced criteria when judging perceived ability in team sport. For both social responsibility and lifetime skills as purposes in sport, it was the high performance and low mastery athletes who were least likely to endorse these purposes. And importantly, the high mastery climate seemed to moderate the impact of being in a high performance climate. The pattern of findings suggests that perceiving the motivational climate as performance oriented may not be motivationally maladaptive when accompanied by mastery oriented situational cues.

  20. Structure development in melt processing isotactic polypropylene, polypropylene blends/compounds and dynamically vulcanized polyolefin TPEs

    NASA Astrophysics Data System (ADS)

    Yu, Yishan

    The influence of various fillers, nucleating agents and ethylene propylene diene terpolymer (EPDM) additive on crystalline modification (alpha-, beta- and smectic forms) and crystalline orientation of polypropylene in die extrudates, melt spun filaments, thick rods, blow molded bottles and injection molded parts of isotactic polypropylene (PP), its blends/compounds and dynamically vulcanized polypropylene thermoplastic elastomers (TPEs) were experimentally studied under a range of cooling and processing conditions. The phenomena of crystallization, polymorphism and orientation in processing of both thin and thick samples (filaments, rods, bottles and injection molded parts) were simulated through transport laws incorporating polymer crystallization kinetics. Continuous cooling transformation (CCT) curves for the various material systems investigated were developed under quiescent and uniaxial stress conditions. We applied experimental data on polymorphism of thin sections to predict crystalline structure variation in thick parts. The predictions were consistent with experiments. For filaments, the polypropylene crystalline orientation-spinline stress relationship is generally similar for the neat PP, blends/compounds and TPEs. However, the blends and TPEs have much lower birefringence apparently due to a lack of orientation in the rubber phase. It was shown that the polypropylene contribution to the birefringence for the neat PP and its blends is the same at the same spinline stress. For bottles, the inflation pressures used have little effect on orientation of either polypropylene crystals or disc-shaped talc filler. The talc discs are highly oriented parallel to the bottle surface. For the bottles without talc, the orientation of polypropylene crystallographic axes are low. The polypropylene crystallographic b-axes in the talc filled bottles are more highly oriented. For injection molded parts, it was found that a low orientation layer exists between the part surface and an intermediate highly oriented layer in the parts of neat PP and its blends/compounds. The thickness of this layer increases as the injection pressure decreases. This layer was not formed in the TPE parts. This would seem to be associated with the TPEs exhibiting a yield stress in shear flow and not exhibiting fountain flow in mold filling. For all parts studied, the orientation characteristics of polypropylene crystallographic axes in the highly oriented layer are similar from sample to sample. The strong orientation of the c-axis parallel to the machine direction and the b-axis perpendicular to the machine direction are observed in the highly oriented layer. The talc discs in both the highly oriented layer and the intermediate position are highly oriented parallel to the part face due to melt flow. At intermediate position in the talc-filled parts, the polypropylene crystallographic (040) planes prefer to align themselves parallel to the part surface but are not so well oriented when the talc is absent.

  1. Influence of Discharge Current on Phase Transition Properties of High Quality Polycrystalline VO2 Thin Film Fabricated by HiPIMS

    PubMed Central

    Lin, Tiegui; Wang, Jian; Liu, Gang; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen

    2017-01-01

    To fabricate high-quality polycrystalline VO2 thin film with a metal–insulator transition (MIT) temperature less than 50 °C, high-power impulse magnetron sputtering with different discharge currents was employed in this study. The as-deposited VO2 films were characterized by a four-point probe resistivity measurement system, visible-near infrared (IR) transmittance spectra, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. The resistivity results revealed that all the as-deposited films had a high resistance change in the phase transition process, and the MIT temperature decreased with the increased discharge current, where little deterioration in the phase transition properties, such as the resistance and transmittance changes, could be found. Additionally, XRD patterns at various temperatures exhibited that some reverse deformations that existed in the MIT process of the VO2 film, with a large amount of preferred crystalline orientations. The decrease of the MIT temperature with little deterioration on phase transition properties could be attributed to the reduction of the preferred grain orientations. PMID:28772990

  2. Outstanding compressive creep strength in Cr/Ir-codoped (Mo0.85Nb0.15)Si2 crystals with the unique cross-lamellar microstructure.

    PubMed

    Hagihara, Koji; Ikenishi, Takaaki; Araki, Haruka; Nakano, Takayoshi

    2017-06-21

    A (Mo 0.85 Nb 0.15 )Si 2 crystal with an oriented, lamellar, C40/C11 b two-phase microstructure is a promising ultrahigh-temperature (UHT) structural material, but its low room-temperature fracture toughness and low high-temperature strength prevent its practical application. As a possibility to overcome these problems, we first found a development of unique "cross-lamellar microstructure", by the cooping of Cr and Ir. The cross-lamellar microstructure consists of a rod-like C11 b -phase grains that extend along a direction perpendicular to the lamellar interface in addition to the C40/C11 b fine lamellae. In this study, the effectiveness of the cross-lamellar microstructure for improving the high-temperature creep deformation property, being the most essential for UHT materials, was examined by using the oriented crystals. The creep rate significantly reduced along a loading orientation parallel to the lamellar interface. Furthermore, the degradation in creep strength for other loading orientation that is not parallel to the lamellar interface, which has been a serious problem up to now, was also suppressed. The results demonstrated that the simultaneous improvement of high-temperature creep strength and room temperature fracture toughness can be first accomplished by the development of unique cross-lamellar microstructure, which opens a potential avenue for the development of novel UHT materials as alternatives to existing Ni-based superalloys.

  3. Grain orientations and grain boundaries in tungsten nonotendril fuzz grown under divertor-like conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parish, Chad M.; Wang, Kun; Doerner, Russel P.

    2016-09-19

    We grew nanotendril “fuzz” on tungsten via plasma exposure and performed transmission Kikuchi diffraction (tKD) in scanning electron microscopy of isolated nanotendrils. 900 °C, 10 23 He/m 2sec, 4 × 10 26 He/m 2 exposure of tungsten produced a deep and fully developed nanotendril mat. tKD of isolated nanotendrils indicated that there was no preferred crystallographic direction oriented along the long axes of the tendrils, and the grain boundary character showed slightly preferential orientations. In conclusion, tendril growth is sufficiently non-equilibrium to prevent any preference of growth direction to manifest measurably, and that new high-angle boundaries (with new grains andmore » grain-growth axes) nucleate randomly along the tendrils during growth.« less

  4. Towards a characterization of a motive whose ultimate goal is to increase the welfare of the world: Quixoteism.

    PubMed

    Salgado, Sergio; Oceja, Luis

    2011-05-01

    We use the term Quixoteism to refer to a new social motive. The characterization of this motive deals with two aspects: the definition of the ultimate goal (i.e., to increase the welfare of the world) and the proposal of a process that activates it (i.e., a transcendental-change orientation). Three studies were conducted to test this characterization. In Study 1 we developed an empirical measure of the transcendental-change orientation. The participants in Studies 2 and 3 were presented with a need situation. Results showed that the centrality of such an orientation was directly related to an interpretation consistent with the ultimate goal of Quixoteism (Study 2), and that its salience increases the likelihood of performing a high-cost prosocial behavior (Study 3).

  5. Effects of Shear on the Smectic A Phase of Thermotropic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Panizza, Pascal; Archambault, Pascal; Roux, Didier

    1995-02-01

    The rheological behaviour of the smectic A phase of the thermotropic liquid crystal 4-cyano-4'-octylbiphenyl (8CB) is examined. X-ray scattering studies under shear flow were performed to probe changes of structures. We found that in a certain range of temperatures two states of orientation of lamellae exist. These two steady states of orientation are separated by a first order dynamic transition that becomes continuous at T_c (a temperature different from that of the smectic/nematic transition). At low shear rates, the smectic A phase is non-Newtonian: its viscosity η varies as (T_c-T)^{1/2}.dot{γ}^{-1/2} (where dot{γ} is the shear rate and T the temperature). In this regime, the structure of the system is compatible with multilamellar cylinders oriented along the flow direction. At high shear rates, the system becomes Newtonian, its layers are then oriented perpendicular to the shearing plates (as already noticed by Safinya et al. [1]).

  6. Two-dimensional mapping of triaxial strain fields in a multiferroic BiFeO3 thin film using scanning x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Bark, Chung W.; Cho, Kyung C.; Koo, Yang M.; Tamura, Nobumichi; Ryu, Sangwoo; Jang, Hyun M.

    2007-03-01

    The dramatically enhanced polarizations and saturation magnetizations observed in the epitaxially constrained BiFeO3 (BFO) thin films with their pronounced grain-orientation dependence have attracted much attention and are attributed largely to the constrained in-plane strain. Thus, it is highly desirable to directly obtain information on the two-dimensional (2D) distribution of the in-plane strain and its correlation with the grain orientation of each corresponding microregion. Here the authors report a 2D quantitative mapping of the grain orientation and the local triaxial strain field in a 250nm thick multiferroic BFO film using a synchrotron x-ray microdiffraction technique. This direct scanning measurement demonstrates that the deviatoric component of the in-plane strain tensor is between 5×10-3 and 6×10-3 and that the local triaxial strain is fairly well correlated with the grain orientation in that particular region.

  7. Hospital-acquired fever in oriental medical hospitals.

    PubMed

    Moon, Soo-Youn; Park, Ki-Ho; Lee, Mi Suk; Son, Jun Seong

    2018-02-07

    Traditional Oriental medicine is used in many Asian countries and involves herbal medicines, acupuncture, moxibustion, and cupping. We investigated the incidence and causes of hospital-acquired fever (HAF) and the characteristics of febrile inpatients in Oriental medical hospitals (OMHs). Patients hospitalized in two OMHs of a university medical institute in Seoul, Korea, were retrospectively reviewed from 2006 to 2013. Adult patients with HAF were enrolled. There were 560 cases of HAF (5.0%). Infection, non-infection, and unknown cause were noted in 331 cases (59.1%), 109 cases (19.5%), and 120 cases (21.4%) of HAF, respectively. Respiratory tract infection was the most common cause (51.2%) of infectious fever, followed by urinary tract infection. Drug fever due to herbal medicine was the most common cause of non-infectious fever (53.1%), followed by procedure-related fever caused by oriental medical procedures. The infection group had higher white blood cell count (WBC) (10,400/mm 3 vs. 7000/mm 3 , p < 0.001) and more frequent history of antibiotic therapy (29.6% vs. 15.1%, p < 0.001). Multivariate analysis showed that older age (odds ratio (OR) 1.67, 95% confidence interval (C.I.) 1.08-2.56, p = 0.020), history of antibiotic therapy (OR 3.17, C.I. 1.85-5.41, p < 0.001), and WBC > 10,000/mm 3 (OR 2.22, C.I. 1.85-3.32, p < 0.001) were associated with infection. Compared to previous studies on HAF in Western medicine, the incidence of HAF in OMHs was not high. However, Oriental medical treatment does play some role in HAF. Fever in patients with history of antibiotic therapy, or high WBC was more likely of infectious origin.

  8. Insights Into the Solution Crystallization of Oriented Alq3 and Znq2 Microprisms and Nanorods.

    PubMed

    Boulet, Joel; Mohammadpour, Arash; Shankar, Karthik

    2015-09-01

    Optimized solution-based methods to grow high quality micro- and nanocrystals of organic semi-conductors with defined size, shape and orientation are important to a variety of optoelectronic applications. In this context, we report the growth of single crystal micro- and nanostructures of the organic semiconductors Tris(8-hydroxyquinoline)aluminum (Alq3) and bis(8-hydroxyquinoline)zinc (Znq2) terminating in flat crystal planes using a combination of evaporative and antisolvent crystallization. By controlling substrate-specific nucleation and optimizing the conditions of growth, we generate vertically-oriented hexagonal prism arrays of Alq3, and vertical half-disks and sharp-edged rectangular prisms of Znq2. The effect of process variables such as ambient vapour pressure, choice of anti-solvent and temperature on the morphology and crystal habit of the nanostructures were studied and the results of varying them catalogued to gain a better understanding of the mechanism of growth.

  9. High-precision control of static magnetic field magnitude, orientation, and gradient using optically pumped vapour cell magnetometry.

    PubMed

    Ingleby, S J; Griffin, P F; Arnold, A S; Chouliara, M; Riis, E

    2017-04-01

    An integrated system of hardware and software allowing precise definition of arbitrarily oriented magnetic fields up to |B| = 1 μT within a five-layer Mumetal shield is described. The system is calibrated with reference to magnetic resonance observed between Zeeman states of the 6S 1/2 F = 4 133 Cs ground state. Magnetic field definition over the full 4π solid angle is demonstrated with one-sigma tolerances in magnitude, orientation, and gradient of δ|B| = 0.94 nT, δθ = 5.9 mrad, and δ|∇B|=13.0 pT/mm, respectively. This field control is used to empirically map M x magnetometer signal amplitude as a function of the static field (B 0 ) orientation.

  10. Pegylation of Magnetically Oriented Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    King, Valencia; Parker, Margaret; Howard, Kathleen P.

    2000-01-01

    We report NMR data for magnetically oriented phospholipid bilayers which have been doped with a lipid derivatized with a polyethylene glycol polymer headgroup to stabilize samples against aggregation. 13C, 31P, and 2H NMR data indicate that the incorporation of PEG2000-PE (1% molar to DMPC) does not interfere with the orientation properties of bicelles prepared at 25% w/v with or without the presence of lanthanide. Bicelles prepared at 10% w/v are also shown to orient when PEG2000-PE is added. The addition of PEG2000-PE to cholesterol-containing, lanthanide-flipped bicelles is shown to inhibit sample phase separation and improve spectral quality. Furthermore, the addition of PEG2000-PE to high w/v bicelles (40% w/v) is demonstrated to lead to an increase in overall sample order.

  11. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001) Patterned Si Substrates by Metal Organic Chemical Vapor Deposition

    PubMed Central

    Megalini, Ludovico; Šuran Brunelli, Simone Tommaso; Charles, William O.; Taylor, Aidan; Isaac, Brandon; Klamkin, Jonathan

    2018-01-01

    We report on the use of InGaAsP strain-compensated superlattices (SC-SLs) as a technique to reduce the defect density of Indium Phosphide (InP) grown on silicon (InP-on-Si) by Metal Organic Chemical Vapor Deposition (MOCVD). Initially, a 2 μm thick gallium arsenide (GaAs) layer was grown with very high uniformity on exact oriented (001) 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO2) stripes and oriented along the [110] direction. Undercut at the Si/SiO2 interface was used to reduce the propagation of defects into the III–V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP) was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD); atomic force microscopy (AFM); transmission electron microscopy (TEM); and electron channeling contrast imaging (ECCI); which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 108/cm2 and 1.2 nm; respectively and 7.8 × 107/cm2 and 10.8 nm for the GaAs-on-Si layer. PMID:29495381

  12. Applying machine learning methods for characterization of hexagonal prisms from their 2D scattering patterns - an investigation using modelled scattering data

    NASA Astrophysics Data System (ADS)

    Salawu, Emmanuel Oluwatobi; Hesse, Evelyn; Stopford, Chris; Davey, Neil; Sun, Yi

    2017-11-01

    Better understanding and characterization of cloud particles, whose properties and distributions affect climate and weather, are essential for the understanding of present climate and climate change. Since imaging cloud probes have limitations of optical resolution, especially for small particles (with diameter < 25 μm), instruments like the Small Ice Detector (SID) probes, which capture high-resolution spatial light scattering patterns from individual particles down to 1 μm in size, have been developed. In this work, we have proposed a method using Machine Learning techniques to estimate simulated particles' orientation-averaged projected sizes (PAD) and aspect ratio from their 2D scattering patterns. The two-dimensional light scattering patterns (2DLSP) of hexagonal prisms are computed using the Ray Tracing with Diffraction on Facets (RTDF) model. The 2DLSP cover the same angular range as the SID probes. We generated 2DLSP for 162 hexagonal prisms at 133 orientations for each. In a first step, the 2DLSP were transformed into rotation-invariant Zernike moments (ZMs), which are particularly suitable for analyses of pattern symmetry. Then we used ZMs, summed intensities, and root mean square contrast as inputs to the advanced Machine Learning methods. We created one random forests classifier for predicting prism orientation, 133 orientation-specific (OS) support vector classification models for predicting the prism aspect-ratios, 133 OS support vector regression models for estimating prism sizes, and another 133 OS Support Vector Regression (SVR) models for estimating the size PADs. We have achieved a high accuracy of 0.99 in predicting prism aspect ratios, and a low value of normalized mean square error of 0.004 for estimating the particle's size and size PADs.

  13. Effects of Gene Orientation and Use of Multiple Promoters on the Expression of XYL1 and XYL2 in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Bae, Ju Yun; Laplaza, José; Jeffries, Thomas W.

    Orientation of adjacent genes has been reported to affect their expression in eukaryotic systems, and metabolic engineering also often makes repeated use of a few promoters to obtain high expression. To improve transcriptional control in heterologous expression, we examined how these factors affect gene expression and enzymatic activity in Saccharomyces cerevisiae. We assembled d-xylose reductase (XYL1) and d-xylitol dehydrogenase (XYL2) in four ways. Each pair of genes was placed in two different tandem (l→2→ or √1√2), convergent (1→√2), and divergent (√1 2→) orientations in autonomous plasmids. The TEF1 promoter was used to drive XYL1 and the TDH3 promoter to drive XYL2 in each of the constructs. The effects of gene orientation on growth, transcription, and enzyme activity were analyzed. The transcription level as measured by quantitative PCR (q-PCR) correlated with enzyme activities, but our data did not show a significant effect of gene orientation. To test the possible dilution of promoter strength due to multiple use of the same promoter, we examined the level of expression of XYL1 driven by either the TEF1 or TDH3 promoter when carried on a single copy plasmid. We then coexpressed XYL2 from either a single or multicopy plasmid, which was also driven by the same promoter. XYL2 transcript and enzyme expression increased with plasmid copy number, while the expression of XYLl was constant regardless of the number of other TEF1 or TDH3 promoters present in the cell. According to our data, there is no significant effect of gene orientation or multiple promoter use on gene transcription and translation when genes are expressed from plasmids; however, other factors could affect expression of adjacent genes in chromosomes.

  14. On the difference between the pyroxenes LiFeSi2O6 and LiFeGe2O6 in their magnetic structures and spin orientations

    NASA Astrophysics Data System (ADS)

    Lee, Changhoon; Hong, Jisook; Shim, Ji Hoon; Whangbo, Myung-Hwan

    2014-03-01

    The clinopyroxenes LiFeSi2O6 and LiFeGe2O6, crystallizing in a monoclinic space group P21/c, are isostructural and isoelectronic Their crystal structures are made up of zigzag chains of edge-sharing FeO6 octahedra containing high-spin Fe3 + ions, which run along the c direction. Despite this structural similarity, the two have quite different magnetic structures and spin orientations. In LiFeSi2O6 the Fe spins have a ferromagnetic coupling within the zigzag chains along c and such FM chains have an antiferromagnetic coupling along a. In contrast, in LiFeGe2O6, the spins have an AFM coupling within the zigzag chains along c and such FM chains have an ↑ ↑ ↓ ↓ coupling along a. In addition, the spin orientation is parallel to c in LiFeSi2O6, but is perpendicular to c in LiFeGe2O6. To explain these differences in the magnetic structure and spin orientation, we evaluated the spin exchange parameters by performing energy mapping analysis based on LDA +U and GGA +U calculations and also by evaluating the magnetocrystalline anisotropy energies in terms of GGA +U +SOC and LDA +U +SOC calculations. Our study show that the magnetic structures and spin orientations of LiFeSi2O6 and LiFeGe2O6 are better described by LDA +U and LDA +U +SOC calculations. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2013R1A1A2060341).

  15. Magnetic preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, D.W.; Dunlap, B.D.; Veal, B.W.

    1990-07-17

    A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.

  16. Magnetic preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, Donald W.; Dunlap, Bobby D.; Veal, Boyd W.

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0

  17. The Effect of Layer Orientation on the Mechanical Properties and Microstructure of a Polymer

    NASA Astrophysics Data System (ADS)

    Vega, V.; Clements, J.; Lam, T.; Abad, A.; Fritz, B.; Ula, N.; Es-Said, O. S.

    2011-08-01

    Rapid Prototyping (RP) is a method used everywhere from the entertainment industry to healthcare. Layer orientation is an important aspect of the final product. The objective of this research was to evaluate the effect of layer orientation on the mechanical strength and toughness of a polymer. The polymer used was a combination of two materials, ZP 130 and ZB 58, fused together in the Z Corporation Spectrum Z510 Rapid Prototyping Machine. ZP 130 is a powder composed of vinyl polymer (2-20%), sulfate salt (0-5%), and plaster that contains <1% crystalline silica (50-95%). ZB 58 is a liquid composed of glycerol (1-10%), preservative (sorbic acid salt) (0-2%), surfactant (<1%), pigment (<1%), and water (85-95%). After removal from the machine the samples were sealed with Z bond 101 which is Beta-methoxyethyl cyanoacrylate (60-100%). The layer orientations studied were the crack arrestor, crack divider, and short transverse with various combinations of the three, for a total of seven orientations. The mechanical strength was evaluated using tensile testing and three-point bend testing. The toughness was evaluated by Izod impact testing. Five samples for tensile testing and three-point bend testing as well as 15 samples for the Izod impact test for each of the seven orientations were made. The total number of samples was 175. The crack arrestor orientation was the strongest main orientation for the tensile and three-point bend test. Weibull analysis was done on the Izod impact testing due to high variation in the results for the crack arrestor and short transverse directions. It was found that the layer orientation and surface roughness played a significant role in the penetration of the Z bond 101 coating and in the overall strength of the samples.

  18. The Strengths of High-Achieving Black High School Students in a Racially Diverse Setting

    ERIC Educational Resources Information Center

    Marsh, Kris; Chaney, Cassandra; Jones, Derrick

    2012-01-01

    Robert Hill (1972) identified strengths of Black families: strong kinship bonds, strong work orientation, adaptability of family roles, high achievement orientation, and religious orientation. Some suggest these strengths sustain the physical, emotional, social, and spiritual needs of Blacks. This study used narratives and survey data from a…

  19. Fabrication of Bi2223 bulks with high critical current properties sintered in Ag tubes

    NASA Astrophysics Data System (ADS)

    Takeda, Yasuaki; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Nakashima, Takayoshi; Kagiyama, Tomohiro; Kobayashi, Shin-ichi; Hayashi, Kazuhiko

    2017-03-01

    Randomly grain oriented Bi2223 sintered bulks are one of the representative superconducting materials having weak-link problem due to very short coherence length particularly along the c-axis, resulting in poor intergrain Jc properties. In our previous studies, sintering and/or post-annealing under moderately reducing atmospheres were found to be effective for improving grain coupling in Bi2223 sintered bulks. Further optimizations of the synthesis process for Bi2223 sintered bulks were attempted in the present study to enhance their intergrain Jc. Effects of applied pressure of uniaxial pressing and sintering conditions on microstructure and superconducting properties have been systematically investigated. The best sample showed intergrain Jc of 2.0 kA cm-2 at 77 K and 8.2 kA cm-2 at 20 K, while its relative density was low ∼65%. These values are quite high as for a randomly oriented sintered bulk of cuprate superconductors.

  20. Grain boundary misorientations and percolative current paths in high-{ital J}{sub {ital c}} powder-in-tube (Bi,Pb){sub 2}Sr{sub 3}Ca{sub 3}Cu{sub 3}O{sub {ital x}}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, A.; Specht, E.D.; Kroeger, D.M.

    1995-05-22

    Grain orientations and grain boundary misorientations in high-{ital J}{sub {ital c}}, powder-in-tube (PIT) (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} (Bi-2223) were determined using electron backscatter Kikuchi diffraction and x-ray microdiffraction. Data collected from over 113 spatially correlated grains, resulting in 227 grain boundaries, show that over 40% of the boundaries are {Sigma}1 or small angle (less than 15{degree}). In addition, 8% of the boundaries are within the Brandon criterion for CSLs (sigma larger than 1 and less than 50). Grain boundary ``texture maps`` derived from the electron microscope image and orientation data reveal the presence of percolative paths betweenmore » low energy boundaries.« less

  1. Sparse Bayesian Inference of White Matter Fiber Orientations from Compressed Multi-resolution Diffusion MRI

    PubMed Central

    Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe

    2017-01-01

    The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations. PMID:28845484

  2. Sparse Bayesian Inference of White Matter Fiber Orientations from Compressed Multi-resolution Diffusion MRI.

    PubMed

    Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe

    2015-10-01

    The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations.

  3. Optimization of strength and ductility in nanotwinned ultrafine grained Ag: twin density and grain orientations

    DOE PAGES

    Ott, R. T.; Geng, J.; Besser, M. F.; ...

    2015-06-27

    Nanotwinned ultrafine grained Ag thick films with different twin densities and orientations have been synthesized by magnetron sputtering with a wide-range of deposition rates. The twin boundary (TB) spacings and orientations as well as the grain size for the different deposition conditions have been characterized by both synchrotron X-ray scattering and transmission electron microscopy (TEM). Structural characterization combined with uniaxial tensile tests of the free-standing films reveals a large increase in the yield strength for films deposited at high deposition rates without any accompanying change in the TB spacing – a behavior that is in contrast with what has beenmore » reported in the literature. We find that films deposited at lower deposition rates exhibit more randomly oriented grains with a lower overall twin density (averaged over all the grains) than the more heavily twinned grains with strong <111> fiber texture in the films deposited at higher deposition rates. The TB spacing in the twinned grains, however, does not show any significant dependence on the deposition rate. The dependence of the strength and ductility on the twin density and orientations can be described by two different soft deformation modes: 1) untwinned grains and 2) nanowinned grains that are not oriented with <111> along the growth direction. The untwinned grains provide relatively low resistance to slip, and thus decreased strength, while the nanotwinned grains that are not oriented with <111> along the growth direction are softer than nanotwinned grains that are oriented with <111> along the growth direction. We reveal that an ultrafine-grained (150-200 nm) structure consisting of a mixture of nanotwinned (~ 8-12 nm spacing) and untwined grains yields the best combination of high strength and uniform tensile ductility.« less

  4. Crystallography of Alumina-YAG-Eutectic

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali; Dickerson, Robert M.; Matson, Lawrence E.

    2000-01-01

    Multiple descriptions of the alumina-YAG eutectic crystallography appear in the ceramic literature. The orientation between two phases in a eutectic system has direct impact on residual stress, morphology, microstructural stability, and high temperature mechanical properties. A study to demonstrate that the different crystallographic relationships can be correlated with different growth constraints was undertaken. Fibers produced by Laser-Heated Float Zone (LHFZ) and Edge-defined Film-fed Growth (EFG) were examined. A map of the orientation relationship between Al2O3 and Y3Al5O12 and their relationship to the fiber growth axis as a function of pull rate are presented. Regions in which a single orientation predominates are identified.

  5. Diazonium Functionalisation of Carbon Nanotubes for Specific Orientation of Multicopper Oxidases: Controlling Electron Entry Points and Oxygen Diffusion to the Enzyme.

    PubMed

    Lalaoui, Noémie; Holzinger, Michael; Le Goff, Alan; Cosnier, Serge

    2016-07-18

    We report the controlled orientation of bilirubin oxidases (BOD) from Myrothecium verrucaria on multiwalled carbon nanotubes (MWCNTs) functionalised by electrografting of 6-carboxynaphthalenediazonium and 4-(2-aminoethyl)benzenediazonium salts. On negatively charged naphthoate-modified MWCNTs, a high-potential (0.44 V vs. SCE) oxygen reduction electrocatalysis is observed, occurring via the T1 copper centre. On positively charged ammonium-modified MWCNTs, a low-potential (0.15 V) oxygen reduction electrocatalysis is observed, occurring through a partially oxidised state of the T2/T3 trinuclear copper cluster. Finally, chemically modified naphthoate MWCNTs exhibit high bioelectrocatalytic current densities of 3.9 mA cm(-2) under air at gas-diffusion electrode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A highly oriented hybrid microarray modified electrode fabricated by a template-free method for ultrasensitive electrochemical DNA recognition

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Chu, Zhenyu; Dong, Xueliang; Jin, Wanqin; Dempsey, Eithne

    2013-10-01

    Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors.Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors. Electronic supplementary information (ESI) available: Four-probe method for determining the conductivity of the hybrid crystal (Fig. S1); stability comparisons of the hybrid films (Fig. S2); FESEM images of the hybrid microarray (Fig. S3); electrochemical characterizations of the hybrid films (Fig. S4); DFT simulations (Fig. S5); cross-sectional FESEM image of the hybrid microarray (Fig. S6); regeneration and stability tests of the DNA biosensor (Fig. S7). See DOI: 10.1039/c3nr03097k

  7. Orientation dependence of elastic and piezomagnetic properties in NiFe2O4

    NASA Astrophysics Data System (ADS)

    Jian, Gang; Xue, Fei; Zhang, Chen; Yan, Chao; Zhao, Ning; Wong, C. P.

    2017-11-01

    In this paper, the crystal orientation dependence of the elastic and piezomagnetic properties have been calculated for nickel ferrite (NiFe2O4) in three-dimensional space by means of coordinate transformations. The maximum elastic compliances s11‧, s12‧ and piezomagnetic constants q31‧, q33‧ along specific orientations have been determined based on experimental data of NiFe2O4 and original matrices for m3m point group. The piezomagnetic constants q31‧ and q33‧ show highly dependence on crystal orientation compared with elastic compliances s11‧, s12‧, meanwhile permittivity μ33‧ is a constant. The max s11‧ and s12‧ can be obtained along directions [n k l] (n·k = 0, l ≠ 0) and [n k l] (n·k·l = 0), respectively. The max q31‧ and max q33‧ lie along [0 0 1] and [1 1 1] axes, respectively, NiFe2O4||[1 1 1] axis can produce large q31‧ and q33‧ at the same time. The result suggests that by adopting the optimal directions, the elastic and piezomagnetic properties of the devices made from NiFe2O4 can be precisely modulated.

  8. Development of Chemistry Triangle Oriented Module on Topic of Reaction Rate for Senior High School Level Grade XI Chemistry Learning.

    NASA Astrophysics Data System (ADS)

    Sari, D. R.; Hardeli; Bayharti

    2018-04-01

    This study aims to produce chemistry triangle oriented module on topic of reaction rate, and to reveal the validity and practicality level of the generated module. The type of research used is EducationalDesign Research (EDR) with development model is Plompmodel. This model consists of three phases, which are preliminary research, prototyping phase, and assessment phase. The instrument used in this research is questionnaire validity and practicality. The data of the research were analyzed by using Kappa Cohen formula. The chemistry triangle oriented module validation sheet was given to 5 validators consisting of 3 chemistry lecturers and 2 high school chemistry teachers, while the practicality sheet was given to 2 chemistry teachers, 6 students of SMAN 10 Padang grade XII MIA 5 on the small groupevaluation and 25 students of SMAN 10 Padang grade XII MIA 6 on the field test. Based on the questionnaire validity analysis, the validity level of the module is very high with the value of kappa moment 0.87. The level of practicality based on teacher questionnaire response is very high category with a kappa moment value 0.96. Based on the questionnaire of student responses on small group evaluation, the level of practicality is very high category with a kappa moment 0.81, and the practicality is very high category with kappa moment value 0.83 based on questionnaire of student response on field test.

  9. Electrodeposition of platinum on highly oriented pyrolytic graphite. Part I: electrochemical characterization.

    PubMed

    Lu, Guojin; Zangari, Giovanni

    2005-04-28

    The electrochemical deposition of Pt on highly oriented pyrolytic graphite (HOPG) from H2PtCl6 solutions was investigated by cyclic voltammetry and chronoamperometry. The effects of deposition overpotential, H2PtCl6 concentration, supporting electrolyte, and anion additions on the deposition process were evaluated. Addition of chloride inhibits Pt deposition due to adsorption on the substrate and blocking of reduction sites, while SO4(2-) and ClO4- slightly promote Pt reduction. By comparing potentiostatic current-time transients with the Scharifker-Hills model, a transition from progressive to instantaneous nucleation was observed when increasing the deposition overpotential. Following addition of chloride anions the fit of experimental transients with the instantaneous nucleation mode improves, while the addition of SO4(2-) induces only small changes. Chloride anions strongly inhibit the reduction process, which is shifted in the cathodic direction. The above results indicate that the most appropriate conditions for growing Pt nanoparticles on HOPG with narrow size distribution are to use an H2PtCl6 solution with HCl as supporting electrolyte and to apply a high cathodic overpotential.

  10. Pyramid image codes

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1990-01-01

    All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.

  11. Distinct transcripts are recognized by sense and antisense riboprobes for a member of the murine HSP70 gene family, HSP70.2, in various reproductive tissues

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Wolgemuth, D. J.

    1996-01-01

    The expression of hsp70.2, an hsp70 gene family member, originally characterized by its high levels of expression in germ cells in the adult mouse testis, was detected in several other reproductive tissues, including epididymis, prostate, and seminal vesicles, as well as in extraembryonic tissues of mid-gestation fetuses. In addition, hybridization with RNA probes transcribed in the sense orientation surprisingly indicated the presence of slightly larger "antisense" transcripts in several tissues. The levels of antisense transcripts varied among the tissues, with the highest signal detected in the prostate and no signal being detectable in the testis. Consistent with these results, in situ hybridization analysis clearly localized the sense-orientation transcripts to pachytene spermatocytes, while no antisense-orientation transcripts were observed in adjacent sections of the same tubules. Our findings have thus shown that although hsp70.2 was expressed abundantly and in a highly stage-specific manner in the male germ line, it was also expressed in other murine tissues. Furthermore, we have made the surprising observation of antisense transcription of the hsp70.2 gene in several mouse tissues, revealing another level of complexity in the regulation and function of heat shock proteins.

  12. Research on the Rapid and Accurate Positioning and Orientation Approach for Land Missile-Launching Vehicle

    PubMed Central

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-01-01

    Getting a land vehicle’s accurate position, azimuth and attitude rapidly is significant for vehicle based weapons’ combat effectiveness. In this paper, a new approach to acquire vehicle’s accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle’s accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm’s iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system’s working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min. PMID:26492249

  13. Research on the rapid and accurate positioning and orientation approach for land missile-launching vehicle.

    PubMed

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-10-20

    Getting a land vehicle's accurate position, azimuth and attitude rapidly is significant for vehicle based weapons' combat effectiveness. In this paper, a new approach to acquire vehicle's accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle's accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm's iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system's working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min.

  14. Fabrication of SrGe2 thin films on Ge (100), (110), and (111) substrates.

    PubMed

    Imajo, T; Toko, K; Takabe, R; Saitoh, N; Yoshizawa, N; Suemasu, T

    2018-01-16

    Semiconductor strontium digermanide (SrGe 2 ) has a large absorption coefficient in the near-infrared light region and is expected to be useful for multijunction solar cells. This study firstly demonstrates the formation of SrGe 2 thin films via a reactive deposition epitaxy on Ge substrates. The growth morphology of SrGe 2 dramatically changed depending on the growth temperature (300-700 °C) and the crystal orientation of the Ge substrate. We succeeded in obtaining single-oriented SrGe 2 using a Ge (110) substrate at 500 °C. Development on Si or glass substrates will lead to the application of SrGe 2 to high-efficiency thin-film solar cells.

  15. Effect of gravity orientation on the thermal performance of Stirling-type pulse tube cryocoolers

    NASA Astrophysics Data System (ADS)

    Ross, Ronald G.; Johnson, Dean L.

    2004-06-01

    The effect of angular orientation on the off-state conduction of pulse tube cryocoolers has been previously explored, as has the effect of orientation on the thermal performance of low-frequency (˜2 Hz) GM-style pulse tube refrigerators. The significant effects that have been found are well explained by the presence of free convection that builds up in the hollow pulse tube when the hot end of the pulse tube is not higher than the cold end. This paper extends the investigation of angular orientation effects to the refrigeration performance of high frequency (˜40 Hz) Stirling-type pulse tube cryocoolers typical of those used in long-life space applications. Strong orientation effects on the performance of such cryocoolers have recently been observed during system-level testing of both linear and U-tube type pulse tubes. To quantify the angular dependency effects, data have been gathered on both U-tube and linear type pulse tubes of two different manufacturers as a function of orientation angle, cold-tip temperature, and compressor stroke.

  16. [Application of orientation to the mechanical alignment of lower limbs in operation of high tibial osteotomy].

    PubMed

    Hu, Yue-Zheng; Wen, Hong; Pan, Xiao-Yun; Yu, Hua-Chen

    2012-09-01

    To evaluate the effects of orientation to the mechanical alignment of lower limbs in high tibial osteotomy (HTO). From March 2005 to July 2010, the data of 57 patients (63 knees) with medial compartment osteoarthritis were retrospectively analyzed. There were 24 males and 33 females with an average age of 52 years (ranged, 34 to 68). HTO was used in all the patients, and with wire the exact orientation to the mechanical alignment of lower limbs was performed in order to obtain good angle of intercepted bone. X-rays of full-length lower limbs were done at the 3rd month after operation and final follow-up, in which femorotibial angle would be observed. Clinical results were evaluated according to Hospital for Special Surgery knee scores (HSS) including pain, function, activities, myodynamia, deformity and instability. All patients were followed up from 24 to 60 months with an average of 36.7 months. All osteotomy site achieved radiographic healing. The femorotibial angle was corrected from preoperative (182.8 +/- 2.9) degrees to postoperative (167.6 +/- 2.5) degrees and (168.1 +/- 2.5) degrees at final follow-up (compared with preoperative data, P < 0.01). Pain relieved and genu valgum recovered. HSS score improved from preoperative 69.5 +/- 7.1 to postoperative 91.1 +/- 4.9 and 92.2 +/- 5.6 at final follow-up. According to HSS standard, 43 knees got excellent results, 18 good and 2 fair. The orientation to mechanical alignment of lower limbs using wire during operation of HTO is a good method in correcting femorotibial angle and treating medial compartment osteoarthritis of the knee. Moreover, the method is simple and precise for orthopedist.

  17. Importance of rotational adiabaticity in collisions of CO2 super rotors with Ar and He

    NASA Astrophysics Data System (ADS)

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.

    2018-02-01

    The collision dynamics of optically centrifuged CO2 with Ar and He are reported here. The optical centrifuge produces an ensemble of CO2 molecules in high rotational states (with J ˜ 220) with oriented angular momentum. Polarization-dependent high-resolution transient IR absorption spectroscopy was used to measure the relaxation dynamics in the presence of Ar or He by probing the CO2 J = 76 and 100 states with Er o t=2306 and 3979 cm-1, respectively. The data show that He relaxes the CO2 super rotors more quickly than Ar. Doppler-broadened line profiles show that He collisions induce substantially larger rotation-to-translation energy transfer. CO2 super rotors have greater orientational anisotropy with He collisions and the anisotropy from the He collisions persists longer than with Ar. Super rotor relaxation dynamics are discussed in terms of mass effects related to classical gyroscope physics and collisional rotational adiabaticity.

  18. fMRI orientation decoding in V1 does not require global maps or globally coherent orientation stimuli.

    PubMed

    Alink, Arjen; Krugliak, Alexandra; Walther, Alexander; Kriegeskorte, Nikolaus

    2013-01-01

    The orientation of a large grating can be decoded from V1 functional magnetic resonance imaging (fMRI) data, even at low resolution (3-mm isotropic voxels). This finding has suggested that columnar-level neuronal information might be accessible to fMRI at 3T. However, orientation decodability might alternatively arise from global orientation-preference maps. Such global maps across V1 could result from bottom-up processing, if the preferences of V1 neurons were biased toward particular orientations (e.g., radial from fixation, or cardinal, i.e., vertical or horizontal). Global maps could also arise from local recurrent or top-down processing, reflecting pre-attentive perceptual grouping, attention spreading, or predictive coding of global form. Here we investigate whether fMRI orientation decoding with 2-mm voxels requires (a) globally coherent orientation stimuli and/or (b) global-scale patterns of V1 activity. We used opposite-orientation gratings (balanced about the cardinal orientations) and spirals (balanced about the radial orientation), along with novel patch-swapped variants of these stimuli. The two stimuli of a patch-swapped pair have opposite orientations everywhere (like their globally coherent parent stimuli). However, the two stimuli appear globally similar, a patchwork of opposite orientations. We find that all stimulus pairs are robustly decodable, demonstrating that fMRI orientation decoding does not require globally coherent orientation stimuli. Furthermore, decoding remained robust after spatial high-pass filtering for all stimuli, showing that fine-grained components of the fMRI patterns reflect visual orientations. Consistent with previous studies, we found evidence for global radial and vertical preference maps in V1. However, these were weak or absent for patch-swapped stimuli, suggesting that global preference maps depend on globally coherent orientations and might arise through recurrent or top-down processes related to the perception of global form.

  19. Epitaxial growth of (111)-oriented BaTiO3/SrTiO3 perovskite superlattices on Pt(111)/Ti/Al2O3(0001) substrates

    NASA Astrophysics Data System (ADS)

    Panomsuwan, Gasidit; Takai, Osamu; Saito, Nagahiro

    2013-09-01

    Symmetric BaTiO3/SrTiO3 (BTO/STO) superlattices (SLs) were epitaxially grown on Pt(111)/Ti/Al2O3(0001) substrates with various modulation periods (Λ = 4.8 - 48 nm) using double ion beam sputter deposition. The BTO/STO SLs exhibit high (111) orientation with two in-plane orientation variants related by a 180° rotation along the [111]Pt axis. The BTO layer is under an in-plane compressive state, whereas the STO layer is under an in-plane tensile state due to the effect of lattice mismatch. A remarkable enhancement of dielectric constant is observed for the SL with relatively small modulation period, which is attributed to both the interlayer biaxial strain effect and the Maxwell-Wagner effect.

  20. 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting

    PubMed Central

    Mateo, Diego; Esteve-Adell, Iván; Albero, Josep; Royo, Juan F. Sánchez; Primo, Ana; Garcia, Hermenegildo

    2016-01-01

    Development of renewable fuels from solar light appears as one of the main current challenges in energy science. A plethora of photocatalysts have been investigated to obtain hydrogen and oxygen from water and solar light in the last decades. However, the photon-to-hydrogen molecule conversion is still far from allowing real implementation of solar fuels. Here we show that 111 facet-oriented gold nanoplatelets on multilayer graphene films deposited on quartz is a highly active photocatalyst for simulated sunlight overall water splitting into hydrogen and oxygen in the absence of sacrificial electron donors, achieving hydrogen production rate of 1.2 molH2 per gcomposite per h. This photocatalytic activity arises from the gold preferential orientation and the strong gold–graphene interaction occurring in the composite system. PMID:27264495

  1. Fatigue mechanism of textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Yongke; Zhou, Yuan; Gupta, Shashaank; Priya, Shashank

    2013-08-01

    Grain orientation, BaTiO3 heterogeneous template content, and electrode materials are expected to play an important role in controlling the polarization fatigue behavior of ⟨001⟩ textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. A comparative analysis with randomly oriented ceramics showed that ⟨001⟩ grain orientation/texture exhibits improved fatigue characteristics due to the reduced switching activation energy and high domain mobility. The hypothesis was validated from the systematic characterization of polarization—electric field behavior and domain wall density. The defect accumulation at the grain boundary and clamping effect arising from the presence of BaTiO3 heterogeneous template in the final microstructure was found to be the main cause for polarization degradation in textured ceramic.

  2. 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting.

    PubMed

    Mateo, Diego; Esteve-Adell, Iván; Albero, Josep; Royo, Juan F Sánchez; Primo, Ana; Garcia, Hermenegildo

    2016-06-06

    Development of renewable fuels from solar light appears as one of the main current challenges in energy science. A plethora of photocatalysts have been investigated to obtain hydrogen and oxygen from water and solar light in the last decades. However, the photon-to-hydrogen molecule conversion is still far from allowing real implementation of solar fuels. Here we show that 111 facet-oriented gold nanoplatelets on multilayer graphene films deposited on quartz is a highly active photocatalyst for simulated sunlight overall water splitting into hydrogen and oxygen in the absence of sacrificial electron donors, achieving hydrogen production rate of 1.2 molH2 per gcomposite per h. This photocatalytic activity arises from the gold preferential orientation and the strong gold-graphene interaction occurring in the composite system.

  3. Charge dynamics of MgO single crystals subjected to KeV electron irradiation

    NASA Astrophysics Data System (ADS)

    Boughariou, A.; Blaise, G.; Braga, D.; Kallel, A.

    2004-04-01

    A scanning electron microscope has been equipped to study the fundamental aspects of charge trapping in insulating materials, by measuring the secondary electron emission (SEE) yield σ with a high precision (a few percent), as a function of energy, electron current density, and dose. The intrinsic secondary electron emission yield σ0 of uncharged MgO single crystals annealed at 1000 °C, 2 h, has been studied at four energies 1.1, 5, 15, and 30 keV on three different crystal orientations (100), (110), and (111). At low energies (1.1 and 5 keV) σ0 depends on the crystalline orientation wheras at high energies (30 keV) no differentiation occurs. It is shown that the value of the second crossover energy E2, for which the intrinsic SEE yield σ0=1, is extremely delicate to measure with precision. It is about 15 keV±500 eV for the (100) orientation, 13.5 keV±500 eV for the (110), and 18.5 keV±500 eV for the (111) one. At low current density J⩽105 pA/cm2, the variation of σ with the injected dose makes possible the observation of a self-regulated regime characterized by a steady value of the SEE yield σst=1. At low energies 1.1 and 5 keV, there is no current density effects in MgO, but at high energies ≈30 keV, apparent current density effects come from a bad collect of secondary electrons, due to very high negative surface potential. At 30 keV energy, an intense erratic electron exoemission was observed on the MgO (110) orientation annealed at 1500 °C. This phenomenon is the result of a disruptive process similar to flashover, which takes place at the surface of the material.

  4. Model Driven Development of Web Services and Dynamic Web Services Composition

    DTIC Science & Technology

    2005-01-01

    27 2.4.1 Feature-Oriented Domain Analysis ( FODA ).......................................27 2.4.2 The need of automation for Feature-Oriented...Diagram Algebra FDL Feature Description Language FODA Feature-Oriented Domain Analysis FSM Finite State Machine GDM Generative Domain...Oriented Domain Analysis ( FODA ) in Section 2.4 and Aspect-Oriented Generative Do- main Modeling (AOGDM) in Section 2.5, which not only represent two

  5. Perceived Discrimination and Mexican-Origin Young Adults' Sleep Duration and Variability: The Moderating Role of Cultural Orientations.

    PubMed

    Zeiders, Katharine H; Updegraff, Kimberly A; Kuo, Sally I-Chun; Umaña-Taylor, Adriana J; McHale, Susan M

    2017-08-01

    Perceived ethnic discrimination is central to the experiences of Latino young adults, yet we know little about the ways in which and the conditions under which ethnic discrimination relates to Latino young adults' sleep patterns. Using a sample of 246 Mexican-origin young adults (M age  = 21.11, SD = 1.54; 50 % female), the current study investigated the longitudinal links between perceived ethnic discrimination and both sleep duration and night-to-night variability in duration, while also examining the moderating roles of Anglo and Mexican orientations in the associations. The results revealed that perceived discrimination predicted greater sleep variability, and this link was not moderated by cultural orientations. The relation between perceived discrimination and hours of sleep, however, was moderated by Anglo and Mexican orientations. Individuals with high Anglo and Mexican orientations (bicultural) and those with only high Mexican orientations (enculturated), showed no association between discrimination and hours of sleep. Individuals with low Anglo and Mexican orientations (marginalized) displayed a positive association, whereas those with high Anglo and low Mexican orientations (acculturated) displayed a negative association. The results suggest that discrimination has long term effects on sleep variability of Mexican-origin young adults, regardless of cultural orientations; however, for sleep duration, bicultural and enculturated orientations are protective.

  6. Controlling orientational order in block copolymers using low-intensity magnetic fields

    PubMed Central

    Choo, Youngwoo; Kawabata, Kohsuke; Kaufman, Gilad; Feng, Xunda; Di, Xiaojun; Rokhlenko, Yekaterina; Mahajan, Lalit H.; Ndaya, Dennis; Kasi, Rajeswari M.

    2017-01-01

    The interaction of fields with condensed matter during phase transitions produces a rich variety of physical phenomena. Self-assembly of liquid crystalline block copolymers (LC BCPs) in the presence of a magnetic field, for example, can result in highly oriented microstructures due to the LC BCP’s anisotropic magnetic susceptibility. We show that such oriented mesophases can be produced using low-intensity fields (<0.5 T) that are accessible using permanent magnets, in contrast to the high fields (>4 T) and superconducting magnets required to date. Low-intensity field alignment is enabled by the addition of labile mesogens that coassemble with the system’s nematic and smectic A mesophases. The alignment saturation field strength and alignment kinetics have pronounced dependences on the free mesogen concentration. Highly aligned states with orientation distribution coefficients close to unity were obtained at fields as small as 0.2 T. This remarkable field response originates in an enhancement of alignment kinetics due to a reduction in viscosity, and increased magnetostatic energy due to increases in grain size, in the presence of labile mesogens. These developments provide routes for controlling structural order in BCPs, including the possibility of producing nontrivial textures and patterns of alignment by locally screening fields using magnetic nanoparticles. PMID:29078379

  7. 27 T ultra-high static magnetic field changes orientation and morphology of mitotic spindles in human cells

    PubMed Central

    Zhang, Lei; Hou, Yubin; Li, Zhiyuan; Ji, Xinmiao; Wang, Ze; Wang, Huizhen; Tian, Xiaofei; Yu, Fazhi; Yang, Zhenye; Pi, Li; Mitchison, Timothy J; Lu, Qingyou; Zhang, Xin

    2017-01-01

    Purified microtubules have been shown to align along the static magnetic field (SMF) in vitro because of their diamagnetic anisotropy. However, whether mitotic spindle in mammalian cells can be aligned by magnetic field has not been experimentally proved. In particular, the biological effects of SMF of above 20 T (Tesla) on mammalian cells have never been reported. Here we found that in both CNE-2Z and RPE1 human cells spindle orients in 27 T SMF. The direction of spindle alignment depended on the extent to which chromosomes were aligned to form a planar metaphase plate. Our results show that the magnetic torque acts on both microtubules and chromosomes, and the preferred direction of spindle alignment relative to the field depends more on chromosome alignment than microtubules. In addition, spindle morphology was also perturbed by 27 T SMF. This is the first reported study that investigated the mammalian cellular responses to ultra-high magnetic field of above 20 T. Our study not only found that ultra-high magnetic field can change the orientation and morphology of mitotic spindles, but also provided a tool to probe the role of spindle orientation and perturbation in developmental and cancer biology. DOI: http://dx.doi.org/10.7554/eLife.22911.001 PMID:28244368

  8. Epitaxial growth and dielectric properties of Pb0.4Sr0.6TiO3 thin films on (00l)-oriented metallic Li0.3Ni0.7O2 coated MgO substrates

    NASA Astrophysics Data System (ADS)

    Li, X. T.; Du, P. Y.; Mak, C. L.; Wong, K. H.

    2007-06-01

    Highly (00l)-oriented Li0.3Ni0.7O2 thin films have been fabricated on (001) MgO substrates by pulsed laser deposition. The Pb0.4Sr0.6TiO3 (PST40) thin film deposited subsequently also shows a significant (00l)-oriented texture. Both the PST40 and Li0.3Ni0.7O2 have good epitaxial behavior. The epitaxial growth of the PST40 thin film is more perfect with the Li0.3Ni0.7O2 buffer layer due to the less distortion in the film. The dielectric tunability of the PST40 thin film with Li0.3Ni0.7O2 buffer layer therefore reaches 70%, which is 75% higher than that without Li0.3Ni0.7O2 buffer layer, and the dielectric loss of the PST40 thin film is 0.06.

  9. Hierarchical Oriented Anatase TiO2 Nanostructure arrays on Flexible Substrate for Efficient Dye-sensitized Solar Cells

    PubMed Central

    Wu, Wu-Qiang; Rao, Hua-Shang; Xu, Yang-Fan; Wang, Yu-Fen; Su, Cheng-Yong; Kuang, Dai-Bin

    2013-01-01

    The vertically oriented anatase single crystalline TiO2 nanostructure arrays (TNAs) consisting of TiO2 truncated octahedrons with exposed {001} facets or hierarchical TiO2 nanotubes (HNTs) consisting of numerous nanocrystals on Ti-foil substrate were synthesized via a two-step hydrothermal growth process. The first step hydrothermal reaction of Ti foil and NaOH leads to the formation of H-titanate nanowire arrays, which is further performed the second step hydrothermal reaction to obtain the oriented anatase single crystalline TiO2 nanostructures such as TiO2 nanoarrays assembly with truncated octahedral TiO2 nanocrystals in the presence of NH4F aqueous or hierarchical TiO2 nanotubes with walls made of nanocrystals in the presence of pure water. Subsequently, these TiO2 nanostructures were utilized to produce dye-sensitized solar cells in a backside illumination pattern, yielding a significant high power conversion efficiency (PCE) of 4.66% (TNAs, JSC = 7.46 mA cm−2, VOC = 839 mV, FF = 0.75) and 5.84% (HNTs, JSC = 10.02 mA cm−2, VOC = 817 mV, FF = 0.72), respectively. PMID:23715529

  10. Completely optical orientation determination for an unstabilized aerial three-line camera

    NASA Astrophysics Data System (ADS)

    Wohlfeil, Jürgen

    2010-10-01

    Aerial line cameras allow the fast acquisition of high-resolution images at low costs. Unfortunately the measurement of the camera's orientation with the necessary rate and precision is related with large effort, unless extensive camera stabilization is used. But also stabilization implicates high costs, weight, and power consumption. This contribution shows that it is possible to completely derive the absolute exterior orientation of an unstabilized line camera from its images and global position measurements. The presented approach is based on previous work on the determination of the relative orientation of subsequent lines using optical information from the remote sensing system. The relative orientation is used to pre-correct the line images, in which homologous points can reliably be determined using the SURF operator. Together with the position measurements these points are used to determine the absolute orientation from the relative orientations via bundle adjustment of a block of overlapping line images. The approach was tested at a flight with the DLR's RGB three-line camera MFC. To evaluate the precision of the resulting orientation the measurements of a high-end navigation system and ground control points are used.

  11. Ultrafast shock-induced orientation of polycrystalline films: Applications to high explosives

    NASA Astrophysics Data System (ADS)

    Franken, Jens; Hambir, Selezion A.; Dlott, Dana D.

    1999-02-01

    Tiny laser-driven shock waves of ˜5 GPa pressure (nanoshocks) are used to study fast mechanical processes occurring in a thin layer of polycrystalline insensitive energetic material, (3-nitro-1,2,4-triazol-5-one) (NTO). Ultrafast coherent Raman spectroscopy of shocked NTO shows the existence of three distinct mechanical processes. Very fast (˜600 ps) changes in intensity and the appearance of new transitions are associated with the uniaxial nature of compression by the shock front. Frequency shifting and broadening processes which track the ˜2 ns duration nanoshock are associated with transient changes in density and temperature. A novel slower process (5-10 ns) starts as the shock begins to unload, and continues for several nanoseconds after the shock is over, resulting in changes of widths and intensities of several vibrational transitions. By comparing ultrafast spectra to static Raman spectra of single NTO crystals in various orientations, it is concluded that this process involves shock-induced partial orientation of the crystals in the NTO layer. The NTO crystals are oriented faster than the time scale for initiating chemical reactions. The sensitivity of explosive crystals to shock initiation may depend dramatically on the orientation of the crystal relative to the direction of shock propagation, so the implications of fast shock-induced orientation for energetic materials initiation are discussed briefly.

  12. Thermomechanical In Situ Monitoring of Bi2Te3 Thin Film and Its Relationship with Microstructure and Thermoelectric Performances

    NASA Astrophysics Data System (ADS)

    Jeong, Min-Woo; Na, Sekwon; Shin, Haishan; Park, Hong-Bum; Lee, Hoo-Jeong; Joo, Young-Chang

    2018-07-01

    Performance enhancement has been studied for thin-film thermoelectric materials for small-scale energy applications. The microstructural evolution of bismuth telluride (Bi2Te3) was investigated with respect to performance enhancement via in situ thermomechanical analysis due to the post-annealing process. The thermomechanical behavior of Bi2Te3 changes gradually at approximately 200 °C with the formation of a quintuple-layer structure, which was confirmed by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It was found that highly oriented (006), (0015) was formed with a quintuple-layer structure parallel to the substrate, and the E g 2 Raman vibration mode of Bi2Te3 significantly increased after forming the layer structure with decreased defects. Therefore, the slope of the stress curve was affected by the longer atomic distance of the van der Waals bonds with the formation of (00 l) oriented layered-structure grain. The decreased number of defects in the layer structure affects the electrical and thermal properties of the Bi2Te3 thin film. Due to the microstructural evolution, the power factor of Bi2Te3 was enhanced by approximately 14.8 times by the quintuple-layer structure of Bi2Te3 formed during the annealing process, which contributed to a better understanding of the performance enhancement via post-annealing and to research on other highly oriented layer structure materials.

  13. Thermomechanical In Situ Monitoring of Bi2Te3 Thin Film and Its Relationship with Microstructure and Thermoelectric Performances

    NASA Astrophysics Data System (ADS)

    Jeong, Min-Woo; Na, Sekwon; Shin, Haishan; Park, Hong-Bum; Lee, Hoo-Jeong; Joo, Young-Chang

    2018-04-01

    Performance enhancement has been studied for thin-film thermoelectric materials for small-scale energy applications. The microstructural evolution of bismuth telluride (Bi2Te3) was investigated with respect to performance enhancement via in situ thermomechanical analysis due to the post-annealing process. The thermomechanical behavior of Bi2Te3 changes gradually at approximately 200 °C with the formation of a quintuple-layer structure, which was confirmed by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It was found that highly oriented (006), (0015) was formed with a quintuple-layer structure parallel to the substrate, and the Eg 2Raman vibration mode of Bi2Te3 significantly increased after forming the layer structure with decreased defects. Therefore, the slope of the stress curve was affected by the longer atomic distance of the van der Waals bonds with the formation of (00l) oriented layered-structure grain. The decreased number of defects in the layer structure affects the electrical and thermal properties of the Bi2Te3 thin film. Due to the microstructural evolution, the power factor of Bi2Te3 was enhanced by approximately 14.8 times by the quintuple-layer structure of Bi2Te3 formed during the annealing process, which contributed to a better understanding of the performance enhancement via post-annealing and to research on other highly oriented layer structure materials.

  14. Sexual Orientation Self-Presentation Among Bisexual-Identified Women and Men: Patterns and Predictors.

    PubMed

    Mohr, Jonathan J; Jackson, Skyler D; Sheets, Raymond L

    2017-07-01

    Writing on the experiences of bisexual-identified people has highlighted the potential complexity of the ongoing process of deciding when and how to present one's sexual orientation identity to others (Rust, 2002). The two studies presented here were designed to contribute basic knowledge regarding self-presentation of sexual orientation among bisexual people. In Study 1, bisexual participants (N = 147) were less likely than their lesbian and gay (LG) peers (N = 191) to present their actual orientation to others, and more likely to present themselves as having a sexual orientation different from their actual orientation. These sexual orientation differences were explained by gender of romantic partner and uncertainty about one's sexual orientation. Sexual orientation differences also emerged in links between self-presentation and outness level. For example, bisexual participants who presented themselves as LG had relatively high everyday outness levels; in contrast, LG participants who presented themselves as bisexual had relatively low everyday outness levels. In Study 2, 240 bisexual women and men indicated their levels of outness as a sexual minority person (potentially including identification as gay, lesbian, queer) and specifically as bisexual. Outness was higher with respect to status as a sexual minority compared to status as bisexual; the magnitude of this difference was predicted by gender of romantic partner and uncertainty about one's sexual orientation. Moreover, even controlling for outness as a sexual minority person, well-being was predicted by outness as bisexual to family members.

  15. High-Oriented Thermoelectric Nano-Bulk Fabricated from Thermoelectric Ink

    NASA Astrophysics Data System (ADS)

    Koyano, M.; Mizutani, S.; Hayashi, Y.; Nishino, S.; Miyata, M.; Tanaka, T.; Fukuda, K.

    2017-05-01

    Printing technology is expected to provide innovative and environmentally friendly processes for thermoelectric (TE) module fabrication. As described in this paper, we propose an orientation control process using plastic deformation at high temperatures and present high-oriented TE nano-bulks fabricated from bismuth telluride (Bi-Te) TE inks using this process. In the case of n-type Bi-Te, surface x-ray diffraction reveals that crystalline grains in the plastic-deformed nano-bulk demonstrate a c-plane orientation parallel to the pressed face. According to the high orientation, electrical resistivity ρ, thermal conductivity κ, and figure of merit ZT show anisotropic behavior. It is noteworthy that ( ZT)// almost reaches unity ( ZT)// ˜1 at 340 K, even at low temperatures of the plastic deformation process. In contrast, the ZT of plastic-deformed p-type nano-bulk indicates isotropic behavior. The difference in the process temperature dependence of ZT suggests that n-type and p-type nano-bulk orientation mechanisms mutually differ.

  16. Investigation of Body Force Effects on Flow Boiling Critical Heat Flux

    NASA Technical Reports Server (NTRS)

    Zhang, Hui; Mudawar, Issam; Hasan, Mohammad M.

    2002-01-01

    The bubble coalescence and interfacial instabilities that are important to modeling critical heat flux (CHF) in reduced-gravity systems can be sensitive to even minute body forces. Understanding these complex phenomena is vital to the design and safe implementation of two-phase thermal management loops proposed for space and planetary-based thermal systems. While reduced gravity conditions cannot be accurately simulated in 1g ground-based experiments, such experiments can help isolate the effects of the various forces (body force, surface tension force and inertia) which influence flow boiling CHF. In this project, the effects of the component of body force perpendicular to a heated wall were examined by conducting 1g flow boiling experiments at different orientations. FC-72 liquid was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface at conditions approaching CHF. High-speed video imaging was employed to capture dominant CHF mechanisms. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed great sensitivity to orientation for flow velocities below 0.2 m/s, where very small CHF values where measured, especially with downflow and downward-facing heated wall orientations. High flow velocities dampened the effects of orientation considerably. Figure I shows representative images for the different CHF regimes. The Wavy Vapor Layer regime was dominant for all high velocities and most orientations, while all other regimes were encountered at low velocities, in the downflow and/or downward-facing heated wall orientations. The Interfacial Lift-off model was modified to predict the effects of orientation on CHF for the dominant Wavy Vapor Layer regime. The photographic study captured a fairly continuous wavy vapor layer travelling along the heated wall while permitting liquid contact only in wetting fronts, located in the troughs of the interfacial waves. CHF commenced when wetting fronts near the outlet were lifted off the wall. The Interfacial Lift-off model is shown to be an effective tool for predicting the effects of body force on CHF at high velocities.

  17. Psychological Adjustment among Young Puerto Rican Mothers: Perceived Partner Support and the Moderating Role of Latino Cultural Orientation

    PubMed Central

    Grau, Josefina M.; Castellanos, Patricia; Smith, Erin N.; Duran, Petra A.; Silberman, Stephanie; Wood, Lauren

    2016-01-01

    Adolescent mothers face multiple stressors and are at risk for experiencing high levels of depressive symptoms and parenting stress. This study examined the interplay of Latino cultural orientation and perceived support from romantic partners in protecting the adjustment of young, low-income, Puerto Rican mothers (N = 103; M age = 18.0 yrs; SD = 1.2) during the second year postpartum. In multivariate analyses, perceived partner support was uniquely and negatively associated with both maternal depressive symptoms and parenting stress. However, in the case of parenting stress, this association was moderated by mothers’ Latino cultural orientation. Perceived partner support was related to less parenting stress when mothers endorsed a relatively strong Latino cultural orientation; perceived partner support was no longer protective at low levels of Latino orientation. The implications for intervention and for the understanding of the role of culture in social support processes within close relationships are discussed. PMID:28210534

  18. Single-fabrication-step Ge nanosphere/SiO2/SiGe heterostructures: a key enabler for realizing Ge MOS devices

    NASA Astrophysics Data System (ADS)

    Liao, P. H.; Peng, K. P.; Lin, H. C.; George, T.; Li, P. W.

    2018-05-01

    We report channel and strain engineering of self-organized, gate-stacking heterostructures comprising Ge-nanosphere gate/SiO2/SiGe-channels. An exquisitely-controlled dynamic balance between the concentrations of oxygen, Si, and Ge interstitials was effectively exploited to simultaneously create these heterostructures in a single oxidation step. Process-controlled tunability of the channel length (5–95 nm diameters for the Ge-nanospheres), gate oxide thickness (2.5–4.8 nm), as well as crystal orientation, chemical composition and strain engineering of the SiGe-channel was achieved. Single-crystalline (100) Si1‑x Ge x shells with Ge content as high as x = 0.85 and with a compressive strain of 3%, as well as (110) Si1‑x Ge x shells with Ge content of x = 0.35 and corresponding compressive strain of 1.5% were achieved. For each crystal orientation, our high Ge-content, highly-stressed SiGe shells feature a high degree of crystallinity and thus, provide a core ‘building block’ required for the fabrication of Ge-based MOS devices.

  19. Single-fabrication-step Ge nanosphere/SiO2/SiGe heterostructures: a key enabler for realizing Ge MOS devices.

    PubMed

    Liao, P H; Peng, K P; Lin, H C; George, T; Li, P W

    2018-05-18

    We report channel and strain engineering of self-organized, gate-stacking heterostructures comprising Ge-nanosphere gate/SiO 2 /SiGe-channels. An exquisitely-controlled dynamic balance between the concentrations of oxygen, Si, and Ge interstitials was effectively exploited to simultaneously create these heterostructures in a single oxidation step. Process-controlled tunability of the channel length (5-95 nm diameters for the Ge-nanospheres), gate oxide thickness (2.5-4.8 nm), as well as crystal orientation, chemical composition and strain engineering of the SiGe-channel was achieved. Single-crystalline (100) Si 1-x Ge x shells with Ge content as high as x = 0.85 and with a compressive strain of 3%, as well as (110) Si 1-x Ge x shells with Ge content of x = 0.35 and corresponding compressive strain of 1.5% were achieved. For each crystal orientation, our high Ge-content, highly-stressed SiGe shells feature a high degree of crystallinity and thus, provide a core 'building block' required for the fabrication of Ge-based MOS devices.

  20. Microstructure and Sn crystal orientation evolution in Sn-3.5Ag lead-free solders in high temperature packaging applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Bite; Muralidharan, Govindarajan; Kurumaddali, Nalini Kanth

    2014-01-01

    Understanding the reliability of eutectic Sn-3.5Ag lead-free solders in high temperature packaging applications is of significant interest in power electronics for the next generation electric grid. Large area (2.5mm 2.5mm) Sn-3.5Ag solder joints between silicon dies and direct bonded copper substrates were thermally cycled between 5 C and 200 C. Sn crystal orientation and microstructure evolution during thermal cycling were characterized by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Comparisons are made between observed initial texture and microstructure and its evolution during thermal cycling. Gradual lattice rotation and grain boundary misorientation evolution suggested the continuous recrystallization mechanism. Recrystallizationmore » behavior was correlated with dislocation slip activities.« less

  1. School factors affecting postsecondary career pursuits of high-achieving girls in mathematics and science

    NASA Astrophysics Data System (ADS)

    Yoo, Hyunsil

    This study examined the influences of secondary school experiences of high-achieving girls in math and science on their postsecondary career pursuits in science fields. Specifically, using the National Education Longitudinal Study of 1988 (NELS:88), the study investigated how science class experiences in high school affect science career persistence of high-achieving girls over and above personal and family factors. Selecting the top 10% on the 8 th grade math and science achievement tests from two panel samples of 1988--1994 and 1988--2000, this study examined which science instructional experiences (i.e., lecture-oriented, experiment-oriented, and student-oriented) best predicted college major choices and postsecondary degree attainments in the fields of science after controlling for personal and family factors. A two-stage test was employed for the analysis of each panel sample. The first test examined the dichotomous career pursuits between science careers and non-science careers and the second test examined the dichotomous pursuits within science careers: "hard" science and "soft" science. Logistic regression procedures were used with consideration of panel weights and design effects. This study identified that experiment-oriented and student-oriented instructional practices seem to positively affect science career pursuits of high-achieving females, while lecture-oriented instruction negatively affected their science career pursuits, and that the longitudinal effects of the two positive instructional contributors to science career pursuits appear to be differential between major choice and degree attainment. This study also found that the influences of instructional practices seem to be slight for general females, while those for high-achieving females were highly considerable, regardless of whether negative or positive. Another result of the study found that only student-oriented instruction seemed to have positive effects for high-achieving males. In addition, this study found that the lecture-oriented and experiment-oriented instructional practices were more likely to contribute to the choice of soft sciences for general and high-achieving females, while student-oriented instructional practices were more likely to contribute to the degree attainment in hard sciences for high-achieving females in science. The results should provide information for educational policies regarding school instruction and curriculum and career development targeted towards improving gender equity in science career pursuits.

  2. Symmetry Breaking in Side Chains Leading to Mixed Orientations and Improved Charge Transport in Isoindigo-alt-Bithiophene Based Polymer Thin Films.

    PubMed

    Xue, Guobiao; Zhao, Xikang; Qu, Ge; Xu, Tianbai; Gumyusenge, Aristide; Zhang, Zhuorui; Zhao, Yan; Diao, Ying; Li, Hanying; Mei, Jianguo

    2017-08-02

    The selection of side chains is important in design of conjugated polymers. It not only affects their intrinsic physical properties, but also has an impact on thin film morphologies. Recent reports suggested that a face-on/edge-on bimodal orientation observed in polymer thin films may be responsible for a three-dimensional (3D) charge transport and leads to dramatically improved mobility in donor-acceptor based conjugated polymers. To achieve a bimodal orientation in thin films has been seldom explored from the aspect of molecular design. Here, we demonstrate a design strategy involving the use of asymmetric side chains that enables an isoindigo-based polymer to adopt a distinct bimodal orientation, confirmed by the grazing incidence X-ray diffraction. As a result, the polymer presents an average high mobility of 3.8 ± 0.7 cm 2 V -1 s -1 with a maximum value of 5.1 cm 2 V -1 s -1 , in comparison with 0.47 and 0.51 cm 2 V -1 s -1 obtained from the two reference polymers. This study exemplifies a new strategy to develop the next generation polymers through understanding the property-structure relationship.

  3. Orientational order in smectic liquid-crystalline phases of amphiphilic diols

    NASA Astrophysics Data System (ADS)

    Giesselmann, Frank; Germer, Roland; Saipa, Alexander

    2005-07-01

    The thermotropic smectic phases of amphiphilic 2-(trans-4-n-alkylcyclohexyl)-propane-1,3-diols were investigated by means of small- and wide-angle x-ray scattering and values of the smectic (bi-)layer spacing, the orientational order parameters ⟨P2⟩ and ⟨P4⟩, the orientational distribution function as well as the intralayer correlation length were extracted from the scattering profiles. The results for the octyl homolog indicate that these smectic phases combine a very high degree of smectic one-dimensional-translational order with remarkably low orientational order, the order parameter of which (⟨P2⟩≈0.56) is far below those values typically found in nonamphiphilic smectics. This combination, quite exceptional in thermotropic smectics, most likely originates from the intermolecular hydrogen bonding between the terminal diol groups which seems to be the specific driving force in the formation of the thermotropic smectic structure in these amphiphiles and leads to a type of microphase segregation. Even in the absence of a solvent, the liquid-crystalline ordering of the amphiphilic mesogens comes close to the structure of the so-called neat soaps, found in lyotropic liquid crystals.

  4. Surface Polarity and Self-Structured Nanogrooves Collaboratively Oriented Molecular Packing for High Crystallinity toward Efficient Charge Transport.

    PubMed

    Ji, Deyang; Xu, Xiaomin; Jiang, Longfeng; Amirjalayer, Saeed; Jiang, Lang; Zhen, Yonggang; Zou, Ye; Yao, Yifan; Dong, Huanli; Yu, Junsheng; Fuchs, Harald; Hu, Wenping

    2017-02-22

    Efficient charge transport in organic semiconductors is essential for construction of high performance optoelectronic devices. Herein, for the first time, we demonstrate that poly(amic acid) (PAA), a facilely deposited and annealing-free dielectric layer, can tailor the growth of organic semiconductor films with large area and high crystallinity toward efficient charge transport and high mobility in their thin film transistors. Pentacene is used as a model system to demonstrate the concept with mobility up to 30.6 cm 2 V -1 s -1 , comparable to its high quality single crystal devices. The structure of PAA has corrugations with OH groups pointing out of the surface, and the presence of an amide bond further allows adjacent polymer strands to interact via hydrogen bonding, leading to a self-rippled surface perpendicular to the corrugation. On the other hand, the strong polar groups (-COOH/-CONH) of PAA could provide repulsive forces between PAA and pentacene, which results in the vertical orientation of pentacene on the dielectric surface. Indeed, in comparison with its imidized counterpart polyimide (PI), PAA dielectric significantly enhances the film crystallinity, drastically increases the domain size, and decreases the interface trap density, giving rise to superior device performance with high mobility. This concept can be extended to more organic semiconducting systems, e.g., 2,6-diphenylanthracene (DPA), tetracene, copper phthalocyanine (CuPc), and copper hexadecafluorophthalocyanine (F 16 CuPc), demonstrating the general applicability. The results show the importance of combining surface nanogrooves with the strong polarity in orienting the molecular arrangement for high crystallinity toward efficient charge transport in organic semiconductors.

  5. High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applications

    NASA Astrophysics Data System (ADS)

    Marcaud, Guillaume; Matzen, Sylvia; Alonso-Ramos, Carlos; Le Roux, Xavier; Berciano, Mathias; Maroutian, Thomas; Agnus, Guillaume; Aubert, Pascal; Largeau, Ludovic; Pillard, Valérie; Serna, Samuel; Benedikovic, Daniel; Pendenque, Christopher; Cassan, Eric; Marris-Morini, Delphine; Lecoeur, Philippe; Vivien, Laurent

    2018-03-01

    Functional oxides are considered as promising materials for photonic applications due to their extraordinary and various optical properties. Especially, yttria-stabilized zirconia (YSZ) has a high refractive index (˜2.15), leading to a good confinement of the optical mode in waveguides. Furthermore, YSZ can also be used as a buffer layer to expand toward a large family of oxides-based thin-films heterostructures. In this paper, we report a complete study of the structural properties of YSZ for the development of integrated optical devices on sapphire in telecom wavelength range. The substrate preparation and the epitaxial growth using pulsed-laser deposition technique have been studied and optimized. High-quality YSZ thin films with remarkably sharp x-ray diffraction rocking curve peaks in 10-3∘ range have then been grown on sapphire (0001). It was demonstrated that a thermal annealing of sapphire substrate before the YSZ growth allowed controlling the out-of-plane orientation of the YSZ thin film. Single-mode waveguides were finally designed, fabricated, and characterized for two different main orientations of high-quality YSZ (001) and (111). Propagation loss as low as 2 dB/cm at a wavelength of 1380 nm has been demonstrated for both orientations. These results pave the way for the development of a functional oxides-based photonics platform for numerous applications including on-chip optical communications and sensing.

  6. Oriented conjugates of monoclonal and single-domain antibodies with quantum dots for flow cytometry and immunohistochemistry diagnostic applications

    NASA Astrophysics Data System (ADS)

    Sukhanova, Alyona; Even-Desrumeaux, Klervi; Millot, Jean-Marc; Chames, Patrick; Baty, Daniel; Artemyev, Mikhail; Oleinikov, Vladimir; Cohen, Jacques H. M.; Nabiev, Igor

    2012-03-01

    Ideal diagnostic nanoprobes should not exceed 15 nm in size and should contain high-affinity homogeneously oriented capture molecules on their surface. An advanced procedure for antibody (Ab) reduction was used to cleave each Ab into two functional half-Abs, 75-kDa heavy-light chain fragments, each containing an intact antigen-binding site. Affinity purification of half-Abs followed by their linkage to quantum dots (QDs) yielded oriented QD-Ab conjugates whose functionality was considerably improved compared to those obtained using the standard protocols. Ultrasmall diagnostic nanoprobes were engineered through oriented conjugation of QDs with 13-kDa single-domain Abs (sdAbs) derived from llama IgG. sdAbs were tagged with QDs via an additional cysteine residue specifically integrated into the C-terminal region of sdAb using genetic engineering. This approach made it possible to obtain sdAb-QD nanoprobes <12 nm in diameter comprising four copies of sdAbs linked to the same QD in an oriented manner. sdAb-QD conjugates against carcinoembryonic antigen (CEA) and HER2 exhibited an extremely high specificity in flow cytometry; the quality of immunohistochemical labeling of biopsy samples was found to be superior to that of labeling according to the current "gold standard" protocols of anatomo-pathological practice. The nano-bioengineering approaches developed can be extended to oriented conjugation of Abs and sdAbs with different semiconductor, noble metal, or magnetic nanoparticles.

  7. Diversity oriented synthesis of tricyclic compounds from glycals using the Ferrier and the Pauson-Khand reactions.

    PubMed

    Hotha, Srinivas; Tripathi, Ashish

    2005-01-01

    Diversity oriented synthesis of tricyclic compounds was achieved using a combination of the Ferrier reaction and the Pauson-Khand reaction. Ferrier reaction was effected using NbCl5, and the Pauson-Khand reaction was carried out using Co2(CO)8, acetonitrile-dimethoxyethane. Michael additions using various alkyl, aryl, and heterocyclic thiols were also performed successfully. The Ferrier, Pauson-Khand, and Michael addition reactions were found to be highly diastereoselective.

  8. Crystalline orientation engineering and charge transport in thin film YBa(2)Cu(3)O(7-x) superconducting surface-coated conductors

    NASA Astrophysics Data System (ADS)

    Chudzik, Michael Patrick

    The weak-link behavior of grain boundaries in polycrystalline high-T c superconductors adversely affects the current density in these materials. The development of wire technology based on polycrystalline high-Tc materials requires understanding and controlling the development of low-angle grain boundaries in these conductors. The research goal is to comprehensively examine the methodology in fabrication and characterization to understand the structure-transport correlation in YBa2Cu3O 7-x (YBCO) surface-coated conductors. High current density YBCO coated conductors were fabricated and characterized as candidates for second generation high-Tc wire technology. Critical current densities (Jc) greater than 1 x 106 A/cm2 at 77 K and zero magnetic field were obtained using thin films epitaxially grown by metalorganic chemical vapor deposition (MOCVD) and pulsed laser deposition (PLD) on oriented buffer layers. The biaxially textured oxide buffer layers were deposited by ion-beam-assisted deposition (IBAD). The transport properties of coated conductors were evaluated in high magnetic fields for intrinsic and extrinsic flux vortex pinning effects for improved high-field properties. Transport Jc's of these coated conductors at 7 tesla (77 K) were measured at values greater than 105 A/cm 2 with the magnetic field perpendicular to the YBCO c-axis (B⊥ c) in both MOCVD and PLD derived conductors. The Jc's in B || c orientation fell an order of magnitude lower at 7 tesla to values near 10 4 A/cm2 due to decreased intrinsic flux pinning. The critical current densities as a function of grain boundary misorientation were found to deviate from the general trend determined for single grain boundary junctions, due to the mosaic structure, which allows meandering current flow. Extensive parametric investigations of relevant thin film growth techniques were utilized to establish growth-property relationships that led to optimized fabrication of high-Tc conductors. The work contained in this dissertation successfully addresses the challenge in engineering low-angle grain boundary polycrystalline conductors for high-current high-field applications and develops a structure-property correlation, which is essential for advancing this technology.

  9. Surface and pseudo surface acoustic waves in langatate: predictions and measurements.

    PubMed

    Pereira da Cunha, Maurício; Malocha, Donald C; Adler, Eric L; Casey, Kevin J

    2002-09-01

    Langatate (LGT, La3Ga(5.5)Ta(0.5)O14) is a recent addition to materials of the trigonal crystal class 32, which is the same crystal class as quartz, langasite, langanite, and gallium phosphate. Langatate has several attractive acoustical properties, in particular: a measured bulk acoustic wave (BAW) resonator quality factor frequency product (Qf) of 16 million, comparable to that of AT cut quartz; high-piezoelectric coupling orientations, up to 0.5% for surface acoustic waves (SAWs), about five times larger than that of ST-X quartz; low power flow angle orientations in the vicinity of high coupling orientations; phase velocities about 20% smaller than those of ST-X quartz, facilitating the production of smaller, lower frequency devices; the existence of pseudo SAW modes for higher frequency applications. In this paper SAW contour plots of the phase velocity (vp), the electromechanical coupling coefficient (K2), the temperature coefficient of delay (TCD), and the power flow angle (PFA), are given showing the orientations in space in which high coupling is obtained, with the corresponding TCD, PFA, and vp characteristics for these orientations. This work reports experimental results on the SAW temperature fractional frequency variation (delta f/fo) and the TCD for several LGT orientations on the plane with Euler angles: (0 degrees, 132 degrees, psi). The temperature behavior has been measured directly on SAW wafers from 10 to 200 degrees C, and the results are compared with numerical predictions using our recently measured temperature coefficients for LGT material constants. This research also has uncovered temperature compensated orientations, which we have experimentally verified with parabolic behavior, turnover temperatures in the 130 to 160 degrees C range, and delta f/fo within 1000 ppm variation from 10 to 260 degrees C, appropriate for higher temperature device applications. Regarding the pseudo surface acoustic waves (PSAWs), results of calculations are presented for both the PSAW and the high velocity PSAW (HVPSAW) for some selected, rotated cuts. This study shows that propagation losses for the PSAWs of about 0.01 dB/wavelength, and phase velocities approximately 20% higher than that of the SAW, exist along specific orientations for the PSAW, thus showing the potential for somewhat higher frequency SAW device applications on this material, if required.

  10. Monoclinic Tungsten Oxide with {100} Facet Orientation and Tuned Electronic Band Structure for Enhanced Photocatalytic Oxidations.

    PubMed

    Zhang, Ning; Chen, Chen; Mei, Zongwei; Liu, Xiaohe; Qu, Xiaolei; Li, Yunxiang; Li, Siqi; Qi, Weihong; Zhang, Yuanjian; Ye, Jinhua; Roy, Vellaisamy A L; Ma, Renzhi

    2016-04-27

    Exploring surface-exposed highly active crystal facets for photocatalytic oxidations is promising in utilizing monoclinic WO3 semiconductor. However, the previously reported highly active facets for monoclinic WO3 were mainly toward enhancing photocatalytic reductions. Here we report that the WO3 with {100} facet orientation and tuned surface electronic band structure can effectively enhance photocatalytic oxidation properties. The {100} faceted WO3 single crystals are synthesized via a facile hydrothermal method. The UV-visible diffuse reflectance, X-ray photoelectron spectroscopy valence band spectra, and photoelectrochemical measurements suggest that the {100} faceted WO3 has a much higher energy level of valence band maximum compared with the normal WO3 crystals without preferred orientation of the crystal face. The density functional theory calculations reveal that the shift of O 2p and W 5d states in {100} face induce a unique band structure. In comparison with the normal WO3, the {100} faceted WO3 exhibits an O2 evolution rate about 5.1 times in water splitting, and also shows an acetone evolution rate of 4.2 times as well as CO2 evolution rate of 3.8 times in gaseous degradation of 2-propanol. This study demonstrates an efficient crystal face engineering route to tune the surface electronic band structure for enhanced photocatalytic oxidations.

  11. Growth and Analysis of Highly Oriented (11n) BCSCO Films for Device Research

    NASA Technical Reports Server (NTRS)

    Raina, K. K.; Pandey, R. K.

    1995-01-01

    Films of BCSCO superconductor of the type Bi2CaSr2Cu2O(x), have been grown by liquid phase epitaxy method (LPE), using a partially closed growth chamber. The films were grown on (001) and (110) NdGaO3 substrates by slow cooling process in an optimized temperature range below the peritectic melting point (880 C) of Bi2CaSr2Cu2O8. Optimization of parameters, such as seed rotation, soak of initial growth temperature and growth period results in the formation of 2122 phase BCSCO films. The films grown at rotation rates of less than 30 and more than 70 rpm are observed to be associated with the second phase of Sr-Ca-Cu-O system. Higher growth temperatures (greater than 860 C) also encourage to the formation of this phase. XRD measurements show that the films grown on (110) NdGaO3 have a preferred (11n)-orientation. It is pertinent to mention here that in our earlier results published elsewhere we obtained c-axis oriented Bi2CaSr2Cu2O8 phase films on (001) NdGaO3 substrate. Critical current density is found to be higher for the films grown on (110) than (001) NdGaO3 substrate orientation. The best values, zero resistance (T(sab co)) and critical current density obtained are 87 K and 10(exp 5) A/sq cm respectively.

  12. Growth and analysis of highly oriented (11n) BCSCO films for device research

    NASA Technical Reports Server (NTRS)

    Raina, K. K.; Pandey, R. K.

    1995-01-01

    Films of BCSCO superconductor of the type Bi2CaSr2Cu2Ox have been grown by liquid phase epitaxy method (LPE), using a partially closed growth chamber. The films were grown on (001) and (110) NdGaO3 substrates by slow cooling process in an optimized temperature range below the peritectic melting point (880 C) of Bi2CaSr2Cu2O8. Optimization of parameters, such as seed rotation, soak of initial growth temperature and growth period results in the formation of 2122 phase BCSCO films. The films grown at rotation rates of less than 30 and more than 70 rpm are observed to be associated with the second phase of Sr-Ca-Cu-O system. Higher growth temperatures (is greater than 860 C) also encourage to the formation of this phase. X-Ray Diffraction (XRD) measurements show that the films grown on (110) NdGaO3 have a preferred (11 n)-orientation. It is pertinent to mention here that in our earlier results published elsewhere we obtained c-axis oriented Bi2CaSr2Cu2O8 phase films on (001) NdGaO3 substrate. Critical current density is found to be higher for the films grown on (110) than (001) NdGaO3 substrate orientation. The best values of zero resistance (T(sub co)) and critical current density obtained are 87 K and 105 A/sq cm, respectively.

  13. Comparison of high temperature, high frequency core loss and dynamic B-H loops of a 2V-49Fe-49Co and a grain oriented 3Si-Fe alloy

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1992-01-01

    The design of power magnetic components such as transformers, inductors, motors, and generators, requires specific knowledge about the magnetic and electrical characteristics of the magnetic materials used in these components. Limited experimental data exists that characterizes the performance of soft magnetic materials for the combined conditions of high temperature and high frequency over a wide flux density range. An experimental investigation of a 2V-49-Fe-49Co (Supermendur) and a grain oriented 3 Si-Fe (Magnesil) alloy was conducted over the temperature range of 23 to 300 C and frequency range of 0.1 to 10 kHz. The effects of temperature, frequency, and maximum flux density on the core loss and dynamic B-H loops for sinusoidal voltage excitation conditions are examined for each of these materials. A comparison of the core loss of these two materials is also made over the temperature and frequency range investigated.

  14. Sexual orientation discrimination and tobacco use disparities in the United States.

    PubMed

    McCabe, Sean Esteban; Hughes, Tonda L; Matthews, Alicia K; Lee, Joseph G L; West, Brady T; Boyd, Carol J; Arslanian-Engoren, Cynthia

    2017-12-30

    Differences in tobacco/nicotine use by sexual orientation are well documented. Development of interventions requires attention to the etiology of these differences. This study examined associations among sexual orientation discrimination, cigarette smoking, any tobacco/nicotine use, and DSM-5 tobacco use disorder (TUD) in the U.S. We used data from the 2012-2013 National Epidemiologic Survey on Alcohol and Related Conditions based on in-person interviews with a nationally representative sample of non-institutionalized U.S. adults. Approximately 8.3% of the population reported same-sex sexual attraction, 3.1% reported at least one same-sex sexual partner in the past-year, and 2.8% self-identified as lesbian, gay or bisexual. Sexual attraction, sexual behavior, and sexual identity were significantly associated with cigarette smoking, any tobacco/nicotine use, and DSM-5 TUD. Risk of all tobacco/nicotine outcomes was most pronounced for bisexual adults across all three sexual orientation dimensions. Approximately half of sexual minorities who identified as lesbian or gay and one-fourth of those who identified as bisexual reported past-year sexual orientation discrimination. Sexual minorities who experienced high levels of past-year sexual orientation discrimination had significantly greater probability of past-year cigarette smoking, any tobacco/nicotine use, and TUD relative to sexual minorities who experienced lower levels of sexual orientation discrimination or no discrimination. Sexual minorities, especially bisexual adults, are at heightened risk of cigarette smoking, any tobacco/nicotine use, and DSM-5 TUD across all three major sexual orientation dimensions. Tobacco prevention and cessation efforts should target bisexual adults and consider the role sexual orientation discrimination plays in cigarette smoking and treatment of TUD. Differences in tobacco/nicotine use by sexual orientation are well documented, but little is known about differences across all three sexual orientation dimensions (attraction, behavior, and identity) or the origins of these differences. This study is the first to show that differences in tobacco/nicotine use across the three sexual orientation dimensions for respondents who were exclusively heterosexually-oriented were minimal, but varied more substantially among sexual minority women and men across the three sexual orientation dimensions. Sexual minorities who experienced high levels of past-year sexual orientation discrimination had significantly greater probability of cigarette smoking, any tobacco/nicotine use and DSM-5 tobacco use disorder. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Effect of crystal orientation on conductivity and electron mobility in single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.

    1992-01-01

    The electrical conductivity of high-purity, single-crystal alumina is determined parallel to and perpendicular to the c-axis. The mean conductivity of four samples of each orientation is a factor 3.3 higher parallel to the c-axis than perpendicular to it. The conductivity as a function of temperature is attributed to extrinsic electron conduction at temperatures from 400 to 900 C, and intrinsic semiconduction at temperatures from 900 to 1300 C. In the high-temperature regime, the slope on all eight specimens is 4.7 +/- 0.1 eV. Hence, the thermal bandgap at O K is 9.4 +/- 0.2 eV.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scigaj, M.; Chao, C. H.; Gázquez, J.

    The integration of epitaxial BaTiO 3 films on silicon, combining c-orientation, surface flatness, and high ferroelectric polarization is of main interest towards its use in memory devices. This combination of properties has been only achieved so far by using yttria-stabilized zirconia buffer layers. Here, the all-perovskite BaTiO 3/LaNiO 3/SrTiO 3 heterostructure is grown monolithically on Si(001). The BaTiO 3 films are epitaxial and c-oriented and present low surface roughness and high remnant ferroelectric polarization around 6 μC/cm 2. Lastly, this result paves the way towards the fabrication of lead-free BaTiO 3 ferroelectric memories on silicon platforms.

  17. The interfacial orientation relationship of oxide nanoparticles in a hafnium-containing oxide dispersion-strengthened austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin, E-mail: miao2@illinois.edu; Mo, Kun; Cui, Bai

    2015-03-15

    This work reports comprehensive investigations on the orientation relationship of the oxide nanoparticles in a hafnium-containing austenitic oxide dispersion-strengthened 316 stainless steel. The phases of the oxide nanoparticles were determined by a combination of scanning transmission electron microscopy–electron dispersive X-ray spectroscopy, atom probe tomography and synchrotron X-ray diffraction to be complex Y–Ti–Hf–O compounds with similar crystal structures, including bixbyite Y{sub 2}O{sub 3}, fluorite Y{sub 2}O{sub 3}–HfO{sub 2} solid solution and pyrochlore (or fluorite) Y{sub 2}(Ti,Hf){sub 2−x}O{sub 7−x}. High resolution transmission electron microscopy was used to characterize the particle–matrix interfaces. Two different coherency relationships along with one axis-parallel relation between themore » oxide nanoparticles and the steel matrix were found. The size of the nanoparticles significantly influences the orientation relationship. The results provide insight into the relationship of these nanoparticles with the matrix, which has implications for interpreting material properties as well as responses to radiation. - Highlights: • The oxide nanoparticles in a hafnium-containing austenitic ODS were characterized. • The nanoparticles are Y–Hf–Ti–O enriched phases according to APT and STEM–EDS. • Two coherency and an axis-parallel orientation relationships were found by HR-TEM. • Particle size has a prominent effect on the orientation relationship (OR). • Formation mechanism of the oxide nanoparticles was discussed based on the ORs.« less

  18. High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell.

    PubMed

    Hong, Xinguo; Newville, Matthew; Prakapenka, Vitali B; Rivers, Mark L; Sutton, Stephen R

    2009-07-01

    We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over a small angular range of DAC orientation, e.g., within +/-3 degrees relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO2 recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO2 glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO2 glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures.

  19. High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, X.; Newville, M.; Prakapenka, V.B.

    We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over amore » small angular range of DAC orientation, e.g., within {+-}3{sup o} relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO{sub 2} recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO{sub 2} glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO{sub 2} glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures.« less

  20. Oriented Liquid Crystalline Polymer Semiconductor Films with Large Ordered Domains.

    PubMed

    Xue, Xiao; Chandler, George; Zhang, Xinran; Kline, R Joseph; Fei, Zhuping; Heeney, Martin; Diemer, Peter J; Jurchescu, Oana D; O'Connor, Brendan T

    2015-12-09

    Large strains are applied to liquid crystalline poly(2,5-bis(3-tetradecylthiophen-2yl)thieno(3,2-b)thiophene) (pBTTT) films when held at elevated temperatures resulting in in-plane polymer alignment. We find that the polymer backbone aligns significantly in the direction of strain, and that the films maintain large quasi-domains similar to that found in spun-cast films on hydrophobic surfaces, highlighted by dark-field transmission electron microscopy imaging. The highly strained films also have nanoscale holes consistent with dewetting. Charge transport in the films is then characterized in a transistor configuration, where the field effect mobility is shown to increase in the direction of polymer backbone alignment, and decrease in the transverse direction. The highest saturated field-effect mobility was found to be 1.67 cm(2) V(-1) s(-1), representing one of the highest reported mobilities for this material system. The morphology of the oriented films demonstrated here contrast significantly with previous demonstrations of oriented pBTTT films that form a ribbon-like morphology, opening up opportunities to explore how differences in molecular packing features of oriented films impact charge transport. Results highlight the role of grain boundaries, differences in charge transport along the polymer backbone and π-stacking direction, and structural features that impact the field dependence of charge transport.

  1. Nonlocal Coulomb correlations in pure and electron-doped Sr2IrO4 : Spectral functions, Fermi surface, and pseudo-gap-like spectral weight distributions from oriented cluster dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Martins, Cyril; Lenz, Benjamin; Perfetti, Luca; Brouet, Veronique; Bertran, François; Biermann, Silke

    2018-03-01

    We address the role of nonlocal Coulomb correlations and short-range magnetic fluctuations in the high-temperature phase of Sr2IrO4 within state-of-the-art spectroscopic and first-principles theoretical methods. Introducing an "oriented-cluster dynamical mean-field scheme", we compute momentum-resolved spectral functions, which we find to be in excellent agreement with angle-resolved photoemission spectra. We show that while short-range antiferromagnetic fluctuations are crucial to accounting for the electronic properties of Sr2IrO4 even in the high-temperature paramagnetic phase, long-range magnetic order is not a necessary ingredient of the insulating state. Upon doping, an exotic metallic state is generated, exhibiting cuprate-like pseudo-gap spectral properties, for which we propose a surprisingly simple theoretical mechanism.

  2. Preferentially oriented, High temperature superconductors by seeding and a method for their preparation

    DOEpatents

    Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2001-01-01

    A multi-domained bulk REBa.sub.2 Cu.sub.3 O.sub.x with low-angle domain boundaries which resembles a quasi-single domained material and a method for producing the same comprising arranging multiple seeds, which can be small single crystals, single domained melt-textured REBa.sub.2 Cu.sub.3 O.sub.x pieces, textured substrates comprised of grains with low misorientation angles, or thick film REBa.sub.2 Cu.sub.3 O.sub.x deposited on such textured substrate, such seeds being tailored for various REBa.sub.2 Cu.sub.3 O.sub.x compounds, in specific pattern and relative seed orientations on a superconductor precursor material which may be placed in contact with a porous substrate so as to reduce the amount of liquid phase in the melt. Because seeds can be arranged in virtually any pattern, high quality REBa.sub.2 Cu.sub.3 O.sub.x elements of virtually unlimited size and complex geometry can be fabricated.

  3. Method for preparing preferentially oriented, high temperature superconductors using solution reagents

    DOEpatents

    Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2002-01-01

    A multi-domained bulk REBa.sub.2 CU.sub.3 O.sub.x with low-angle domain boundaries which resemble a quasi-single domained material and a method for producing the same comprising arranging multiple seeds, which can be small single crystals, single domained melt-textured REBa.sub.2 CU.sub.3 O.sub.x pieces, textured substrates comprises of grains with low misorientation angles, or thick film REBa.sub.2 CU.sub.3 O.sub.x deposited on such textured substrate, such seeds being tailored for various REBa.sub.2 CU.sub.3 O.sub.x compounds, in specific pattern and relative seed orientations on a superconductor precursor material which may be placed in contact with a porous substrate so as to reduce the amount of liquid phase in the melt. Because seeds can be arranged in virtually any pattern, high quality REBa.sub.2 CU.sub.3 O.sub.x elements of virtually unlimited size and complex geometry can be fabricated.

  4. A novel approach for determining three-dimensional acetabular orientation: results from two hundred subjects.

    PubMed

    Higgins, Sean W; Spratley, E Meade; Boe, Richard A; Hayes, Curtis W; Jiranek, William A; Wayne, Jennifer S

    2014-11-05

    The inherently complex three-dimensional morphology of both the pelvis and acetabulum create difficulties in accurately determining acetabular orientation. Our objectives were to develop a reliable and accurate methodology for determining three-dimensional acetabular orientation and to utilize it to describe relevant characteristics of a large population of subjects without apparent hip pathology. High-resolution computed tomography studies of 200 patients previously receiving pelvic scans for indications not related to orthopaedic conditions were selected from our institution's database. Three-dimensional models of each osseous pelvis were generated to extract specific anatomical data sets. A novel computational method was developed to determine standard measures of three-dimensional acetabular orientation within an automatically identified anterior pelvic plane reference frame. Automatically selected points on the osseous ridge of the acetabulum were used to generate a best-fit plane for describing acetabular orientation. Our method showed excellent interobserver and intraobserver agreement (an intraclass correlation coefficient [ICC] of >0.999) and achieved high levels of accuracy. A significant difference between males and females in both anteversion (average, 3.5°; 95% confidence interval [CI], 1.9° to 5.1° across all angular definitions; p < 0.0001) and inclination (1.4°; 95% CI, 0.6° to 2.3° for anatomic angular definition; p < 0.002) was observed. Intrapatient asymmetry in anatomic measures showed bilateral differences in anteversion (maximum, 12.1°) and in inclination (maximum, 10.9°). Significant differences in acetabular orientation between the sexes can be detected only with accurate measurements that account for the entire acetabulum. While a wide range of interpatient acetabular orientations was observed, the majority of subjects had acetabula that were relatively symmetrical in both inclination and anteversion. A highly accurate and reproducible method for determining the orientation of the acetabulum's aperture will benefit both surgeons and patients, by further refining the distinctions between normal and abnormal hip characteristics. Enhanced understanding of the acetabulum could be useful in the diagnostic, planning, and execution stages for surgical procedures of the hip or in advancing the design of new implant systems. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.

  5. Edge-Oriented Graphene on Carbon Nanofiber for High-Frequency Supercapacitors

    NASA Astrophysics Data System (ADS)

    Islam, Nazifah; Warzywoda, Juliusz; Fan, Zhaoyang

    2018-03-01

    High-frequency supercapacitors are being studied with the aim to replace the bulky electrolytic capacitors for current ripple filtering and other functions used in power systems. Here, 3D edge-oriented graphene (EOG) was grown encircling carbon nanofiber (CNF) framework to form a highly conductive electrode with a large surface area. Such EOG/CNF electrodes were tested in aqueous and organic electrolytes for high-frequency supercapacitor development. For the aqueous and the organic cell, the characteristic frequency at - 45° phase angle was found to be as high as 22 and 8.5 kHz, respectively. At 120 Hz, the electrode capacitance density was 0.37 and 0.16 mF cm-2 for the two cells. In particular, the 3 V high-frequency organic cell was successfully tested as filtering capacitor used in AC/DC converter, suggesting the promising potential of this technology for compact power supply design and other applications. [Figure not available: see fulltext.

  6. High Performance Object-Oriented Scientific Programming in Fortran 90

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Decyk, Viktor K.; Szymanski, Boleslaw K.

    1997-01-01

    We illustrate how Fortran 90 supports object-oriented concepts by example of plasma particle computations on the IBM SP. Our experience shows that Fortran 90 and object-oriented methodology give high performance while providing a bridge from Fortran 77 legacy codes to modern programming principles. All of our object-oriented Fortran 90 codes execute more quickly thatn the equeivalent C++ versions, yet the abstraction modelling capabilities used for scentific programming are comparably powereful.

  7. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters

    PubMed Central

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762

  8. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters.

    PubMed

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme.

  9. Curriculum Orientations and Educational Philosophies of High School Arabic Teachers

    ERIC Educational Resources Information Center

    Alsalem, Abeer Saleh

    2018-01-01

    This study aims to investigate the curriculum orientations of High school Arabic teacher in Riyadh city and to examine the relationship between curriculum orientation and their educational philosophies. The quantitative method (descriptive study) was adopted in this questionnaire survey-based study. Mean and standard deviation for the overall of…

  10. Weak orientation and direction selectivity in lateral geniculate nucleus representing central vision in the gray squirrel Sciurus carolinensis

    PubMed Central

    Zaltsman, Julia B.; Heimel, J. Alexander

    2015-01-01

    Classic studies of lateral geniculate nucleus (LGN) and visual cortex (V1) in carnivores and primates have found that a majority of neurons in LGN exhibit a center-surround organization, while V1 neurons exhibit strong orientation selectivity and, in many species, direction selectivity. Recent work in the mouse and the monkey has discovered previously unknown classes of orientation- and direction-selective neurons in LGN. Furthermore, some recent studies in the mouse report that many LGN cells exhibit pronounced orientation biases that are of comparable strength to the subthreshold inputs to V1 neurons. These results raise the possibility that, in rodents, orientation biases of individual LGN cells make a substantial contribution to cortical orientation selectivity. Alternatively, the size and contribution of orientation- or direction-selective channels from LGN to V1 may vary across mammals. To address this question, we examined orientation and direction selectivity in LGN and V1 neurons of a highly visual diurnal rodent: the gray squirrel. In the representation of central vision, only a few LGN neurons exhibited strong orientation or direction selectivity. Across the population, LGN neurons showed weak orientation biases and were much less selective for orientation compared with V1 neurons. Although direction selectivity was weak overall, LGN layers 3abc, which contain neurons that express calbindin, exhibited elevated direction selectivity index values compared with LGN layers 1 and 2. These results suggest that, for central visual fields, the contribution of orientation- and direction-selective channels from the LGN to V1 is small in the squirrel. As in other mammals, this small contribution is elevated in the calbindin-positive layers of the LGN PMID:25717157

  11. Growth and magnetoelectric properties of (00l)-oriented La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} heterostructure films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Fuxue, E-mail: yanfuxue@126.com; Han, Kai, E-

    2017-02-15

    C-axis oriented La{sub 0.67}Sr{sub 0.33}MnO{sub 3}(LSMO)/PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}(PZT) films are fabricated successfully by sol-gel method on LaAlO{sub 3} (00l) substrates. The structure, composition and morphology of the films are investigated by X-ray diffractometer (XRD, θ-2θ scan, ω-scan and ϕ-scan), X-ray photoelectron spectroscope (XPS), field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). The electric and magnetic properties of randomly and c-axis oriented LSMO/PZT films are studied comparably using ferroelectric testing apparatus and physical property measurement system (PPMS). It is found that the epitaxial LSMO/PZT composite films show well controlled growth along c-axis, and much bettermore » magnetoelectric properties than the randomly oriented ones. The ME voltage coefficient increases from 23 mV cm{sup −1} Oe{sup −1} for the randomly oriented LSMO/PZT composite films to 52 mV cm{sup −1} Oe{sup −1} for c-axis oriented ones prepared using the low cost sol-gel method presented in this study, which shows high potential in promising applications. - Highlights: •Epitaxial LSMO/PZT films were fabricated successfully by sol-gel method on LAO (00l) substrate. •The prepared films exhibit well-defined multiferroic properties for the epitaxial LSMO/PZT films. •Epitaxial LSMO/PZT films show superior magnetoelectric properties to the randomly oriented ones.« less

  12. Grain orientation in high Tc superconductors by molten salt powder synthesis

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, Sudhakar; Schulze, Walter A.

    1991-01-01

    The molten salt or the flux method is used to fabricate a grain oriented YBa2Cu3O(7-x) (123) superconductor. Here we suggest a two-stage approach in using the 'green phase', Y2BaCuO5 (211), as seed crystals in the formation of YBa2Cu3O(7-x). The process uses Y2BaCuO5 formed by molten salt synthesis. The Y2BaCuO5 phase was observed to be stable in water and in most of the salt systems. Salt processing can form a small quantity of anisotropic particles of Y2BaCuO5. This material can form the 123 phase when tape cast and sintered in the presence of the required levels of Ba and Cu.

  13. Shock and Microstructural Characterization of the α-ω Phase Transition in Titanium Crystals

    NASA Astrophysics Data System (ADS)

    Morrow, Benjamin M.; Rigg, Paulo A.; Jones, David R.; Addessio, Francis L.; Trujillo, Carl P.; Saavedra, Ramon A.; Martinez, Daniel T.; Cerreta, Ellen K.

    2017-12-01

    A multicrystal comprised of a small number of large crystals of high-purity titanium and a [0001] oriented high-purity single crystal titanium sample were shock loaded using gas gun plate impact experiments. Tests were performed at stresses above the α {-}ω phase transition stress (for high-purity polycrystalline specimens) to observe the behavior of oriented crystals under similar conditions. Post-mortem characterization of the shocked microstructure was conducted on the single crystal sample to measure textures, and quantify phases and twinning. The apparent activation of plastic and transformation mechanisms was dependent upon crystal orientation. Specifically, the [0001] crystal showed a higher Hugoniot elastic limit than the [10\\bar{1}0] or [3\\bar{1}\\bar{4}4] orientations. The slope of velocity as a function of time was lower in the [0001] orientation than the other orientations during plastic deformation, indicating sluggish transformation kinetics for the α to ω phase transition for the [0001] oriented crystal. Microtexture measurements of a recovered [0001] oriented single crystal revealed the presence of retained ω phase after unloading, with orientations of the constituent phase fractions indicative of the forward α → ω transition, rather than the reverse ω → α transition, suggesting that the material never achieved a state of 100% ω phase.

  14. Mechanism of calcite co-orientation in the sea urchin tooth.

    PubMed

    Killian, Christopher E; Metzler, Rebecca A; Gong, Y U T; Olson, Ian C; Aizenberg, Joanna; Politi, Yael; Wilt, Fred H; Scholl, Andreas; Young, Anthony; Doran, Andrew; Kunz, Martin; Tamura, Nobumichi; Coppersmith, Susan N; Gilbert, P U P A

    2009-12-30

    Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO(3)) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin ( Strongylocentrotus purpuratus ), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction (muXRD). All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO(3) is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.

  15. Flux pinning forces in irradiated a-axis oriented EuBa{sub 2}Cu{sub 3}O{sub 7} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, J. I.; Gonzalez, E. M.; Kwok, W.-K

    1999-10-12

    {alpha}-axis oriented EuBa{sub 2}Cu{sub 3}O{sub 7} films have been irradiated with high energy heavy ions in different configurations to study the possible pinning role of the artificial defects in this kind of samples. The original pinning limiting mechanism of the samples is not essentially altered what the irradiation is parallel to the CuO{sub 2} planes. However, when it is deviated from this direction, an increase in critical current density and a change in pinning force are observed when the magnetic field is parallel to the columnar defects at values around the matching field.

  16. Influence of grain orientation on the incipient oxidation behavior of Haynes 230 at 900 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xu, E-mail: xuw388@mail.usask.ca; Fan, Fan; Szpunar, Jerzy A.

    Ni-based superalloy Haynes 230 is used in many applications such as very high temperature reactor (VHTR) or solid oxide fuel cells (SOFCs) where it is exposed to high temperature service environment. In order to improve the resistance for high temperature oxidation, the effect of crystallographic orientation on the early stage oxidation was investigated. It was demonstrated that different oxide thicknesses are formed on grains having different orientations. Comparison of electron backscatter diffraction (EBSD) orientation maps before and after oxidation at 900 °C indicates that grains near (111) orientation, especially with the deviation angle from <111> that is smaller than 20°,more » are more oxidation resistant than grains of other orientations. Correlation between the results of electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) was used to compare the oxidation rate of grains having different crystallographic orientation. The oxidation rate was found to change with the crystallographic orientation as follows (111) < (110) < (100), also it was demonstrated that the oxidation rate changes are a nearly linear function of the angle of deviation from <111> direction. The morphology of surface oxide also depends on the orientation of grains. - Highlights: • Comparison of EBSD maps before and after oxidation allows to investigate the effect of orientation on oxidation in a more direct way; • Effect of crystallographic orientation on oxidation behavior of alloy 230 is studied by combination of EBSD and AFM; • Different thickness of oxide is formed on grain with different orientation and dependence of anisotropic oxidation behavior is discussed; • The morphology of grains is also orientation dependence.« less

  17. Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices.

    PubMed

    George, J P; Smet, P F; Botterman, J; Bliznuk, V; Woestenborghs, W; Van Thourhout, D; Neyts, K; Beeckman, J

    2015-06-24

    The electro-optical properties of lead zirconate titanate (PZT) thin films depend strongly on the quality and crystallographic orientation of the thin films. We demonstrate a novel method to grow highly textured PZT thin films on silicon using the chemical solution deposition (CSD) process. We report the use of ultrathin (5-15 nm) lanthanide (La, Pr, Nd, Sm) based intermediate layers for obtaining preferentially (100) oriented PZT thin films. X-ray diffraction measurements indicate preferentially oriented intermediate Ln2O2CO3 layers providing an excellent lattice match with the PZT thin films grown on top. The XRD and scanning electron microscopy measurements reveal that the annealed layers are dense, uniform, crack-free and highly oriented (>99.8%) without apparent defects or secondary phases. The EDX and HRTEM characterization confirm that the template layers act as an efficient diffusion barrier and form a sharp interface between the substrate and the PZT. The electrical measurements indicate a dielectric constant of ∼650, low dielectric loss of ∼0.02, coercive field of 70 kV/cm, remnant polarization of 25 μC/cm(2), and large breakdown electric field of 1000 kV/cm. Finally, the effective electro-optic coefficients of the films are estimated with a spectroscopic ellipsometer measurement, considering the electric field induced variations in the phase reflectance ratio. The electro-optic measurements reveal excellent linear effective pockels coefficients of 110 to 240 pm/V, which makes the CSD deposited PZT thin film an ideal candidate for Si-based active integrated nanophotonic devices.

  18. A study on male homosexual behavior.

    PubMed

    Ramachandran, R; Viswanath, Sudha; Elangovan, P; Saravanan, N

    2015-01-01

    Male homosexual behavior carries a high risk of transmitting sexually transmitted infections (STIs). Ignorance regarding the associated high risk, indulgence inspite of no natural homosexual orientation and not using protective barrier methods can affect the sexual health of adolescents and adults. (1) To assess the proportion of men who have sex with men (MSM) having a natural homosexual orientation compared to those who had acquired the homosexual behavior initially under various circumstances (such as due to certain misconceptions, fear of having heterosexual contact, peer pressure, and influence of alcohol). (2) To assess the level of awareness regarding increased risk of transmission of STIs associated with homosexual behavior and regarding protective barrier methods. After obtaining consent from the subjects, questionnaire - based interview used for obtaining data for this observational (cross-sectional) study. (1) Of the 50 subjects, only about 25% had interest in homosexual behavior prior to initial episode. (2) About 50% subjects indulged in homosexual behavior due to lack/fear of having heterosexual contact. (3) About 60% subjects believed that homosexual behavior carried relatively lower risk of acquiring STIs and 68% subjects have had unprotected contact. (4) About 70% subjects had only acquired this behavior and nearly 60% subjects were interested in heterosexual marriage and not interested in further homosexual behavior. (1) Homosexuality is a natural orientation in some and an acquired behavior in the rest. (2) If homosexual behavior is acquired, due to misconceptions, then imparting sex education and awareness regarding involved risks, and the importance of protective barrier methods will prevent ignorance driven behavior. For those with natural homosexual orientation, the importance of protective barrier methods in homosexual behavior needs emphasis.

  19. Acentric 2-D ensembles of D-br-A electron-transfer chromophores via vectorial orientation within amphiphilic n-helix bundle peptides for photovoltaic device applications.

    PubMed

    Koo, Jaseung; Park, Jaehong; Tronin, Andrey; Zhang, Ruili; Krishnan, Venkata; Strzalka, Joseph; Kuzmenko, Ivan; Fry, H Christopher; Therien, Michael J; Blasie, J Kent

    2012-02-14

    We show that simply designed amphiphilic 4-helix bundle peptides can be utilized to vectorially orient a linearly extended donor-bridge-acceptor (D-br-A) electron transfer (ET) chromophore within its core. The bundle's interior is shown to provide a unique solvation environment for the D-br-A assembly not accessible in conventional solvents and thereby control the magnitudes of both light-induced ET and thermal charge recombination rate constants. The amphiphilicity of the bundle's exterior was employed to vectorially orient the peptide-chromophore complex at a liquid-gas interface, and its ends were tailored for subsequent covalent attachment to an inorganic surface, via a "directed assembly" approach. Structural data, combined with evaluation of the excited state dynamics exhibited by these peptide-chromophore complexes, demonstrate that densely packed, acentrically ordered 2-D monolayer ensembles of such complexes at high in-plane chromophore densities approaching 1/200 Å(2) offer unique potential as active layers in binary heterojunction photovoltaic devices.

  20. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge.

    PubMed

    Murray, Matthew J; Ogden, Hannah M; Mullin, Amy S

    2017-10-21

    An optical centrifuge is used to generate an ensemble of CO 2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  1. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge

    NASA Astrophysics Data System (ADS)

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.

    2017-10-01

    An optical centrifuge is used to generate an ensemble of CO2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  2. Twin related domains in 3D microstructures of conventionally processed and grain boundary engineered materials

    DOE PAGES

    Lind, Jonathan; Li, Shiu Fai; Kumar, Mukul

    2016-05-20

    The concept of twin-limited microstructures has been explored in the literature as a crystallographically constrained grain boundary network connected via only coincident site lattice (CSL) boundaries. The advent of orientation imaging has made classification of twin-related domains (TRD) or any other orientation cluster experimentally accessible in 2D using EBSD. With the emergence of 3D orientation mapping, a comparison of TRDs in measured 3D microstructures is performed in this paper and compared against their 2D counterparts. The TRD analysis is performed on a conventionally processed (CP) and a grain boundary engineered (EM) high purity copper sample that have been subjected tomore » successive anneal procedures to promote grain growth. Finally, the EM sample shows extremely large TRDs which begin to approach that of a twin-limited microstructure, while the TRDs in the CP sample remain relatively small and remote.« less

  3. High Temperature Superconducting Thick Films

    DOEpatents

    Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Holesinger, Terry G.; Jia, Quanxi

    2005-08-23

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.

  4. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud

    NASA Astrophysics Data System (ADS)

    Chen, Jianqin; Zhu, Hehua; Li, Xiaojun

    2016-10-01

    This paper presents a new method for extracting discontinuity orientation automatically from rock mass surface 3D point cloud. The proposed method consists of four steps: (1) automatic grouping of discontinuity sets using an improved K-means clustering method, (2) discontinuity segmentation and optimization, (3) discontinuity plane fitting using Random Sample Consensus (RANSAC) method, and (4) coordinate transformation of discontinuity plane. The method is first validated by the point cloud of a small piece of a rock slope acquired by photogrammetry. The extracted discontinuity orientations are compared with measured ones in the field. Then it is applied to a publicly available LiDAR data of a road cut rock slope at Rockbench repository. The extracted discontinuity orientations are compared with the method proposed by Riquelme et al. (2014). The results show that the presented method is reliable and of high accuracy, and can meet the engineering needs.

  5. Orientation independence of heterojunction-band offsets at GaAs-AlAs heterointerfaces characterized by x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hirakawa, K.; Hashimoto, Y.; Ikoma, T.

    1990-12-01

    We systematically studied the orientation and the growth sequence dependence of the valence-band offset ΔEv at the lattice-matched common anion GaAs-AlAs interfaces. High quality GaAs-AlAs heterojunctions were carefully grown on GaAs substrates with three major orientations, namely, (100), (110), and (111)B. The core level energy distance ΔECL between Ga 3d and Al 2p levels was measured by in situ x-ray photoemission spectroscopy. ΔECL is found to be independent of the substrate orientation and the growth sequence, which clearly indicates the face independence of ΔEv. This result suggests that the band lineup at lattice-matched isovalent semiconductor heterojunctions is determined by the bulk properties of the constituent materials. ΔEv is determined to be 0.44 ± 0.05 eV.

  6. Preferred Orientation of Rare Earth (RE)-Doped Alumina Crystallites by an Applied Magnetic Field

    DTIC Science & Technology

    2016-06-01

    Magnetic Field by Victoria L Blair, Raymond E Brennan, and Jane W Adams Weapons and Materials Research Directorate, ARL Carli A Moorehead...public release; distribution is unlimited. 16 13. Terada N, Suzuki HS, Suzuki TS, Kitazawa H, Sakka Y, Kaneko K, Metok N. In situ neutron diffraction...HS, Suzuki TS, Kitazawa H, Sakka Y, Kaneko K, Metoki N. Neutron diffraction texture analysis for alpha-Al2O3 oriented by high magnetic field and

  7. Synthesis and Microstructure of Highly Oriented PbTiO3 Thin Films Prepared by a Sol-Gel Method

    DTIC Science & Technology

    1989-06-01

    lead acetate with titanium isopropoxide * in 2-methoxyethanol,* in a method similar to that reported by Gurkovitch and Blum." The resulting yellow-gold...orientation by a sol-gel processing method. EXPERIMENTAL Precursor Solution Preparation Stock solutions of complex Pb-Ti alkoxide were prepared by reacting... solution had an equivalent PbTiO 3 concentration of approximately 66 wt%. The alkoxide solutions were handled as moisture-sensitive reagents and, as

  8. Research and Development of High-Performance Axial-Flow Turbomachinery

    DTIC Science & Technology

    1968-05-01

    following conditions: 1. At any orientation of the turbocompressor in a zero to 0.18-g accelera- tion field; 2. At any angle between zero and 180...degrees shaft angle (where zero would correspond to a vertically oriented shaft with the compressor-end up and 180 degrees would be vertical with the...rpm. Hence, the absolute values of bearing forces in the vicinity of the rigid body criticals are approximate. Over the range of 40,000 to 60,000 rpm

  9. Electrochemical growth of highly oriented organic-inorganic superlattices using solid-supported multilamellar membranes as templates.

    PubMed

    Xing, Li-Li; Li, Da-Peng; Hu, Shu-Xin; Jing, Huai-Yu; Fu, Honglan; Mai, Zhen-Hong; Li, Ming

    2006-02-08

    Controllable depositing of relatively thick inorganic sublayers into organic templates to fabricate organic-inorganic superlattices is of great importance. We report a novel approach to fabricating phospholipid/Ni(OH)(2) superlattices by electrochemical deposition of the inorganic component into solid-supported multilamellar templates. The well-ordered and highly oriented multilamellar templates are produced by spreading small drops of lipid solution on silicon surfaces and letting the solvent evaporate slowly. The templates which are used as working electrodes preserve the lamellar structure in the electrolyte solution. The resulting superlattices are highly oriented. The thickness of the nickel hydroxide is controlled by the concentration of nickel ions in the electrolyte bath. The electron density profiles derived from the X-ray diffraction data reveal that the thickness of the nickel hydroxide sublayers increases from 15 to 27 A as the concentration of nickel nitrate increases from 0.005 mol/L to 0.08 mol/L. We expect that the new method can be extended to depositing a variety of inorganic components including metals, oxides, and semiconductors.

  10. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials

    PubMed Central

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; Yan, Yongke; Li, Jiefang; Viehland, Dwight; Priya, Shashank

    2015-01-01

    We synthesized grain-oriented lead-free piezoelectric materials in (K0.5Bi0.5TiO3-BaTiO3-xNa0.5Bi0.5TiO3 (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d33 ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectric materials. PMID:25716551

  11. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K₀̣₅Bi₀̣₅TiO₃-BaTiO₃-Na₀̣₅Bi₀̣₅TiO₃ piezoelectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin

    2015-02-26

    We synthesized grain-oriented lead-free piezoelectric materials in (K₀̣₅Bi₀̣₅TiO₃-BaTiO₃-xNa₀̣₅Bi₀̣₅TiO₃ (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d₃₃ ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectricmore » materials.« less

  12. Object-oriented feature extraction approach for mapping supraglacial debris in Schirmacher Oasis using very high-resolution satellite data

    NASA Astrophysics Data System (ADS)

    Jawak, Shridhar D.; Jadhav, Ajay; Luis, Alvarinho J.

    2016-05-01

    Supraglacial debris was mapped in the Schirmacher Oasis, east Antarctica, by using WorldView-2 (WV-2) high resolution optical remote sensing data consisting of 8-band calibrated Gram Schmidt (GS)-sharpened and atmospherically corrected WV-2 imagery. This study is a preliminary attempt to develop an object-oriented rule set to extract supraglacial debris for Antarctic region using 8-spectral band imagery. Supraglacial debris was manually digitized from the satellite imagery to generate the ground reference data. Several trials were performed using few existing traditional pixel-based classification techniques and color-texture based object-oriented classification methods to extract supraglacial debris over a small domain of the study area. Multi-level segmentation and attributes such as scale, shape, size, compactness along with spectral information from the data were used for developing the rule set. The quantitative analysis of error was carried out against the manually digitized reference data to test the practicability of our approach over the traditional pixel-based methods. Our results indicate that OBIA-based approach (overall accuracy: 93%) for extracting supraglacial debris performed better than all the traditional pixel-based methods (overall accuracy: 80-85%). The present attempt provides a comprehensive improved method for semiautomatic feature extraction in supraglacial environment and a new direction in the cryospheric research.

  13. A Landscape Analysis to Understand Orientation of Honey Bee (Hymenoptera: Apidae) Drones in Puerto Rico.

    PubMed

    Galindo-Cardona, A; Monmany, A C; Diaz, G; Giray, T

    2015-08-01

    Honey bees [Apis mellifera L. (Apidae, Hymenoptera)] show spatial learning behavior or orientation, in which animals make use of structured home ranges for their daily activities. Worker (female) orientation has been studied more extensively than drone (male) orientation. Given the extensive and large flight range of drones as part of their reproductive biology, the study of drone orientation may provide new insight on landscape features important for orientation. We report the return rate and orientation of drones released at three distances (1, 2, and 4 km) and at the four cardinal points from an apiary located in Gurabo, Puerto Rico. We used high-resolution aerial photographs to describe landscape characteristics at the releasing sites and at the apiary. Analyses of variance were used to test significance among returning times from different distances and directions. A principal components analysis was used to describe the landscape at the releasing sites and generalized linear models were used to identify landscape characteristics that influenced the returning times of drones. Our results showed for the first time that drones are able to return from as far as 4 km from the colony. Distance to drone congregation area, orientation, and tree lines were the most important landscape characteristics influencing drone return rate. We discuss the role of landscape in drone orientation. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Probing Ligand Effects on the Redox Energies of [4Fe-4S] Clusters Using Broken-Symmetry Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Shuqiang; Ichiye, Toshiko

    A central issue in understanding redox properties of iron-sulfur proteins is determining the factors that tune the reduction potentials of the Fe-S clusters. Recently, Solomon and coworkers have shown that the Fe-S bond covalency of protein analogs measured by %L, the percent ligand character of the Fe 3d orbitals, from ligand K-edge X-ray absorption spectroscopy (XAS) correlates with the electrochemical redox potentials. Also, Wang and coworkers have measured electron detachment energies for iron-sulfur clusters without environmental perturbations by gas-phase photoelectron spectroscopy (PES). Here the correlations of the ligand character with redox energy and %L character are examined in [Fe₄S₄L₄]2⁻ clustersmore » with different ligands by broken symmetry density functional theory (BS-DFT) calculations using the B3LYP functional together with PES and XAS experimental results. These gas-phase studies assess ligand effects independently of environmental perturbations and thus provide essential information for computational studies of iron-sulfur proteins. The B3LYP oxidation energies agree well with PES data, and the %L character obtained from natural bond orbital analysis correlates with XAS values, although it systematically underestimates them because of basis set effects. The results show that stronger electron-donating terminal ligands increase %Lt, the percent ligand character from terminal ligands, but decrease %Sb, the percent ligand character from the bridging sulfurs. Because the oxidized orbital has significant Fe-Lt antibonding character, the oxidation energy correlates well with %Lt. However, because the reduced orbital has varying contributions of both Fe-Lt and Fe-Sb antibonding character, the reduction energy does not correlate with either %Lt or %Sb. Overall, BSDFT calculations together with XAS and PES experiments can unravel the complex underlying factors in the redox energy and chemical bonding of the [4Fe-4S] clusters in iron-sulfur proteins.« less

  15. Creating and Manipulating a Domain-Specific Formal Object Base to Support a Domain-Oriented Application Composition System

    DTIC Science & Technology

    1992-12-01

    and add new attributes as needed (11:129). 2.2.3.2 Feature Oriented Domain Analysis In their Feature-Oriented Domain Analysis ( FODA ) study, the...dissertation, The University of Texas at Austin, Austin Texas, 1990. 12. Kang, Kyo C. and others. Feature-Oriented Domain Analysis ( FODA ) Feasibil- ity Study...2-1 2.2.2 Requirements Languages ..................... 2-2 2.2.3 Domain Analysis ............................ 2-3 2.2.4

  16. Mental Health Issues Related to Sexual Orientation in a High School Setting

    ERIC Educational Resources Information Center

    Williams, Susan G.

    2017-01-01

    High school students are maturing physically, psychosocially, and sexually. Some may be unsure of their sexual orientation. The purpose of the study was to determine whether students who self-identified as homosexual-lesbian/gay, bisexual (LGB), and unsure of sexual orientation had more stressful life events (SLEs), perceived stress, bullying…

  17. Marketing foods to children through product packaging: prolific, unhealthy and misleading.

    PubMed

    Mehta, Kaye; Phillips, Clare; Ward, Paul; Coveney, John; Handsley, Elizabeth; Carter, Patricia

    2012-09-01

    To investigate marketing techniques used on the packaging of child-oriented products sold through supermarkets. Food and beverage products which met criteria for 'marketed to children' were recorded as child-oriented. The products were analysed for food categories, nutritional value, and type and extent of marketing techniques used. A major supermarket chain in Adelaide, South Australia. Child-oriented food and beverage products. One hundred and fifty-seven discrete products were marketed to children via product packaging; most (75·2 %) represented non-core foods, being high in fat or sugar. Many marketing techniques (more than sixteen unique marketing techniques) were used to promote child-oriented food products. Claims about health and nutrition were found on 55·5 % of non-core foods. A median of 6·43 marketing techniques per product was found. The high volume and power of marketing non-core foods to children via product packaging in supermarkets should be of concern to policy makers wanting to improve children's diet for their health and to tackle childhood obesity. Claims about health or nutrition on non-core foods deserve urgent attention owing to their potential to mislead and confuse child and adult consumers.

  18. Tunable gas adsorption in graphene oxide framework

    NASA Astrophysics Data System (ADS)

    Razmkhah, Mohammad; Moosavi, Fatemeh; Taghi Hamed Mosavian, Mohammad; Ahmadpour, Ali

    2018-06-01

    Effect of length of linker inter-space was studied on the adsorption capacity of CO2 by graphene oxide framework (GOF). Effect of linker inter-space of 14, 11, and 8 Å was studied here. The linker inter-space of 11 Å showed the highest CO2 adsorption capacity. A dual-site Langmuir model was observed for adsorption of CO2 and CH4 into the GOF. According to radial distribution function (RDF), facial and central atoms of linker are the dual-site predicted by Langmuir model. Two distinguishable sites of adsorption and parallel orientation of CO2 are the main reasons of high adsorption capacity in 11 Å linker inter-space. Gas-adsorbent affinity obtains the orientation of CO2 near the linker. The affinity in the 11 Å linker inter-space is the highest. Thus, it forces the CO2 to lay parallel and orient more localized than the other GOFs. In addition, CH4 resulted higher working capacity than CO2 in 14 Å. This occurs because of the change in gas-adsorbent affinity by changing pressure. An entrance adsorption occurs out of the pore of the GOF. This adsorption is not as stable as deep adsorption.

  19. High-harmonic spectroscopy of oriented OCS molecules: emission of even and odd harmonics.

    PubMed

    Kraus, P M; Rupenyan, A; Wörner, H J

    2012-12-07

    We study the emission of even and odd high-harmonic orders from oriented OCS molecules. We use an intense, nonresonant femtosecond laser pulse superimposed with its phase-controlled second harmonic field to impulsively align and orient a dense sample of molecules from which we subsequently generate high-order harmonics. The even harmonics appear around the full revivals of the rotational dynamics. We demonstrate perfect coherent control over their intensity through the subcycle delay of the two-color fields. The odd harmonics are insensitive to the degree of orientation, but modulate with the degree of axis alignment, in agreement with calculated photorecombination dipole moments. We further compare the shape of the even and odd harmonic spectra with our calculations and determine the degree of orientation.

  20. Single-crystal-like, c-axis oriented BaTiO3 thin films with high-performance on flexible metal templates for ferroelectric applications

    NASA Astrophysics Data System (ADS)

    Shin, Junsoo; Goyal, Amit; Jesse, Stephen; Kim, Dae Ho

    2009-06-01

    Epitaxial, c-axis oriented BaTiO3 thin films were deposited using pulsed laser ablation on flexible, polycrystalline Ni alloy tape with biaxially textured oxide buffer multilayers. The high quality of epitaxial BaTiO3 thin films with P4mm group symmetry was confirmed by x-ray diffraction. The microscopic ferroelectric domain structure and the piezoelectric domain switching in these films were confirmed via spatially resolved piezoresponse mapping and local hysteresis loops. Macroscopic measurements demonstrate that the films have well-saturated hysteresis loops with a high remanent polarization of ˜11.5 μC/cm2. Such high-quality, single-crystal-like BaTiO3 films on low-cost, polycrystalline, flexible Ni alloy substrates are attractive for applications in flexible lead-free ferroelectric devices.

  1. Hierachical Ni@Fe2O3 superparticles through epitaxial growth of γ-Fe2O3 nanorods on in situ formed Ni nanoplates

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad Nawaz; Herzberger, Jana; Natalio, Filipe; Köhler, Oskar; Branscheid, Robert; Mugnaioli, Enrico; Ksenofontov, Vadim; Panthöfer, Martin; Kolb, Ute; Frey, Holger; Tremel, Wolfgang

    2016-05-01

    One endeavour of nanochemistry is the bottom-up synthesis of functional mesoscale structures from basic building blocks. We report a one-pot wet chemical synthesis of Ni@γ-Fe2O3 superparticles containing Ni cores densely covered with highly oriented γ-Fe2O3 (maghemite) nanorods (NRs) by controlled reduction/decomposition of nickel acetate (Ni(ac)2) and Fe(CO)5. Automated diffraction tomography (ADT) of the Ni-Fe2O3 interface in combination with Mössbauer spectroscopy showed that selective and oriented growth of the γ-Fe2O3 nanorods on the Ni core is facilitated through the formation of a Fe0.05Ni0.95 alloy and the appearance of superstructure features that may reduce strain at the Ni-Fe2O3 interface. The common orientation of the maghemite nanorods on the Ni core of the superparticles leads to a greatly enhanced magnetization. After functionalization with a catechol-functional polyethylene glycol (C-PEG) ligand the Ni@γ-Fe2O3 superparticles were dispersible in water.One endeavour of nanochemistry is the bottom-up synthesis of functional mesoscale structures from basic building blocks. We report a one-pot wet chemical synthesis of Ni@γ-Fe2O3 superparticles containing Ni cores densely covered with highly oriented γ-Fe2O3 (maghemite) nanorods (NRs) by controlled reduction/decomposition of nickel acetate (Ni(ac)2) and Fe(CO)5. Automated diffraction tomography (ADT) of the Ni-Fe2O3 interface in combination with Mössbauer spectroscopy showed that selective and oriented growth of the γ-Fe2O3 nanorods on the Ni core is facilitated through the formation of a Fe0.05Ni0.95 alloy and the appearance of superstructure features that may reduce strain at the Ni-Fe2O3 interface. The common orientation of the maghemite nanorods on the Ni core of the superparticles leads to a greatly enhanced magnetization. After functionalization with a catechol-functional polyethylene glycol (C-PEG) ligand the Ni@γ-Fe2O3 superparticles were dispersible in water. Electronic supplementary information (ESI) available: Synthesis scheme of catechol-PEG (Scheme S1), GPC trace (RI, DMF, PEG standard) of CA-PEG67 (Fig. S1) 1H NMR spectrum (400 MHz, methanol-d4) of catechol-PEG (C-PEG67) (Fig. S2), EDX spectrum of Ni0.95Fe0.05 precursors (Fig. S3), HRTEM of a superparticle in two view directions (Fig. S4), TEM images of Ni0.95 Fe0.05@γ-Fe2O3 nanoparticles at different growth stages (Fig. S5), digital photograph of reaction mixture at different temperatures (Fig. S6), orientation of the lattice of the Ni0.95Fe0.05 core with respect to that of triangular and hexagonal superparticles (Fig. S7), geometrical relations between hexagonal lattice of the Ni0.95Fe0.05 core and cubic cell of Ni (Fig. S8), magnetic properties of the Ni@γ-Fe2O3 core shell nanoparticles (Fig. S9). See DOI: 10.1039/c6nr00065g

  2. Steady-state LPO is not always reached in high-strain shear zones

    NASA Astrophysics Data System (ADS)

    Kumamoto, K. M.; Warren, J. M.

    2017-12-01

    Seismic anisotropy in the upper mantle results from the alignment of olivine crystal lattices during flow by dislocation creep. Experiments on the evolution of olivine lattice preferred orientation (LPO) as a function of shear strain have found that high strains (>10) are necessary to achieve a steady-state LPO (i.e., the dominant slip system does not change appreciably with further strain) when a pre-existing LPO is present. At lower strain ( 2), a pseudo-steady-state fabric is reached, in which the [100] axes of olivine reach a steady orientation relative to the deformation kinematics, but the [010] and [001] axes continue to evolve (e.g. Hansen et al., 2014). To constrain LPO evolution at mantle conditions, we looked at the LPO variation across three high temperature mantle shear zones in the Josephine Peridotite of SW Oregon. These shear zones provide a rare opportunity to examine LPO evolution in natural samples as a function of shear strain, due to the presence of a pyroxene foliation that serves as a strain marker. Observations of two of these shear zones are consistent with experimental observations (Warren et al., 2008; Skemer et al., 2010). Shear Zone G reaches a steady-state LPO at a strain of >20. Shear Zone P reaches a pseudo-steady-state LPO, with a consistent [100] axis orientation, at a strain of 3.5. However, a steady-state orientation is not reached in the [010] or [001] axes at the maximum strain of 5.25. The third shear zone, Shear Zone A, does not appear to reach even a pseudo-steady-state LPO, despite reaching strains >20 at its center. Instead, the dominant slip plane switches back and forth between the (010) and (001) planes with increasing strain, while the [100] axis orientations continue to evolve. Unusually, at peak strain, the [100] axes are oriented 40° past the shear plane. In contrast, the other two shear zones, along with other natural and experimental examples, have the [100] axes oriented approximately parallel to the shear direction at very high strain. The high angle of the [100] axes to the shear direction at high strain in SZA may explain angular offsets between plate motion and fast seismic direction, for instance as seen in the MELT experiment (Wolfe and Solomon, 1998). Hansen et al., 2014, EPSLSkemer et al., 2010, J. Pet. Warren et al., 2008, EPSLWolfe and Solomon, 1998, Science

  3. Publications 1 & 2 (Yearbook) Curriculum Guide. Bulletin 1816.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge.

    This guide for teachers is intended to establish a standard curriculum for teaching yearbook production in Louisiana high schools through two courses (Publications 1 and Publications 2) structured as academically oriented electives. Following a foreword, acknowledgements, philosophy, introduction, and course descriptions, the sections are as…

  4. Growth and analysis of highly oriented (11n) BCSCO films for device research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raina, K.K.; Pandey, R.K.

    1994-12-31

    Films of BCSCO superconductor of the type Bi{sub 2}CaSr{sub 2}Cu{sub 2}O{sub x} have been grown by liquid phase epitaxy method (LPE), using a partially closed growth chamber. The films were grown on (001) and (110) NdGaO{sub 3} substrates by slow cooling process in an optimized temperature range below the peritectic melting point (880{degrees}C) of Bi{sub 2}CaSr{sub 2}Cu{sub 2}O{sub 8}. Optimization of parameters, such as seed rotation, soak of initial growth temperature and growth period results in the formation of 2122 phase BCSCO films. The films grown at rotation rates of less than 30 and more than 70 rpm are observedmore » to be associated with the second phase of Sr-Ca-Cu-O system. Higher growth temperatures (>860{degrees}C) also encourage to the formation of this phase. XRD measurements show that the films grown on (110) NdGaO{sub 3} have a preferred (11n)-orientation. It is pertinent to mention here that in our earlier results published elsewhere we obtained c-axis oriented Bi{sub 2}CaSr{sub 2}Cu{sub 2}O{sub 8} phase films on (001) NdGaO{sub 3} substrate. Critical current density is found to be higher for the films grown on (110) than (001) NdGaO{sub 3} substrate orientation. The best values of zero resistance (T{sub co}) and critical current density obtained are 87 K and 10{sup 5} A/cm{sup 2}, respectively.« less

  5. Control of Rotational Energy and Angular Momentum Orientation with an Optical Centrifuge

    NASA Astrophysics Data System (ADS)

    Ogden, Hannah M.; Murray, Matthew J.; Mullin, Amy S.

    2017-04-01

    We use an optical centrifuge to trap and spin molecules to an angular frequency of 30 THz with oriented angular momenta and extremely high rotational energy and then investigate their subsequent collision dynamics with transient high resolution IR spectroscopy. The optical centrifuge is formed by combining oppositely-chirped pulses of 800 nm light, and overlapping them spatially and temporally. Polarization-sensitive Doppler-broadened line profiles characterize the anisotropic kinetic energy release of the super rotor molecules, showing that they behave like molecular gyroscopes. Studies are reported for collisions of CO2 super rotors with CO2, He and Ar. These studies reveal how mass, velocity and rotational adiabaticity impact the angular momentum relaxation and reorientation. Quantum scattering calculations provide insight into the J-specific collision cross sections that control the relaxation. NSF-CHE 105 8721.

  6. Properties of highly (100) oriented Pb(Mg1/3,Nb2/3)O3-PbTiO3 films on LaNiO3 bottom electrodes

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Hu, Z. G.; Yue, F. Y.; Yang, G. Y.; Shi, W. Z.; Meng, X. J.; Sun, J. L.; Chu, J. H.

    2007-12-01

    The 70%Pb(Mg1/3,Nb2/3)O3-30%PbTiO3 (PMNT) films have been fabricated on LaNiO3 (LNO) coated silicon substrate. The conductive LNO films act as a seed layer for the growth of PMNT films, which depresses the formation of pyrochlore phase and induces the high (100) preferred orientation of perovskite PMNT films. Compared with the PMNT films grown on platinum bottom electrode, the ferroelectric properties of PMNT films grown on LNO are enhanced. The frequency dependence of complex permittivity from PMNT films on LNO is the conjunct result of polarization relaxation and movement of oxygen vacancy, which can be fitted by the function containing Debye and universal dielectric response models, respectively.

  7. Magnetic guidance versus manual control: comparison of radiofrequency lesion dimensions and evaluation of the effect of heart wall motion in a myocardial phantom.

    PubMed

    Bhaskaran, Abhishek; Barry, M A Tony; Al Raisi, Sara I; Chik, William; Nguyen, Doan Trang; Pouliopoulos, Jim; Nalliah, Chrishan; Hendricks, Roger; Thomas, Stuart; McEwan, Alistair L; Kovoor, Pramesh; Thiagalingam, Aravinda

    2015-10-01

    Magnetic navigation system (MNS) ablation was suspected to be less effective and unstable in highly mobile cardiac regions compared to radiofrequency (RF) ablations with manual control (MC). The aim of the study was to compare the (1) lesion size and (2) stability of MNS versus MC during irrigated RF ablation with and without simulated mechanical heart wall motion. In a previously validated myocardial phantom, the performance of Navistar RMT Thermocool catheter (Biosense Webster, CA, USA) guided with MNS was compared to manually controlled Navistar irrigated Thermocool catheter (Biosense Webster, CA, USA). The lesion dimensions were compared with the catheter in inferior and superior orientation, with and without 6-mm simulated wall motion. All ablations were performed with 40 W power and 30 ml/ min irrigation for 60 s. A total of 60 ablations were performed. The mean lesion volumes with MNS and MC were 57.5 ± 7.1 and 58.1 ± 7.1 mm(3), respectively, in the inferior catheter orientation (n = 23, p = 0.6), 62.8 ± 9.9 and 64.6 ± 7.6 mm(3), respectively, in the superior catheter orientation (n = 16, p = 0.9). With 6-mm simulated wall motion, the mean lesion volumes with MNS and MC were 60.2 ± 2.7 and 42.8 ± 8.4 mm(3), respectively, in the inferior catheter orientation (n = 11, p = <0.01*), 74.1 ± 5.8 and 54.2 ± 3.7 mm(3), respectively, in the superior catheter orientation (n = 10, p = <0.01*). During 6-mm simulated wall motion, the MC catheter and MNS catheter moved 5.2 ± 0.1 and 0 mm, respectively, in inferior orientation and 5.5 ± 0.1 and 0 mm, respectively, in the superior orientation on the ablation surface. The lesion dimensions were larger with MNS compared to MC in the presence of simulated wall motion, consistent with greater catheter stability. However, similar lesion dimensions were observed in the stationary model.

  8. Effect of vertically oriented few-layer graphene on the wettability and interfacial reactions of the AgCuTi-SiO2f/SiO2 system.

    PubMed

    Sun, Z; Zhang, L X; Qi, J L; Zhang, Z H; Hao, T D; Feng, J C

    2017-03-22

    With the aim of expanding their applications, particularly when joining metals, a simple but effective method is reported whereby the surface chemical reactivity of SiO 2f /SiO 2 (SiO 2f /SiO 2 stands for silica fibre reinforced silica based composite materials and f is short for fibre) composites with vertically oriented few-layer graphene (VFG, 3-10 atomic layers of graphene vertically oriented to the substrate) can be tailored. VFG was uniformly grown on the surface of a SiO 2f /SiO 2 composite by using plasma enhanced chemical vapour deposition (PECVD). The wetting experiments were conducted by placing small pieces of AgCuTi alloy foil on SiO 2f /SiO 2 composites with and without VFG decoration. It was demonstrated that the contact angle dropped from 120° (without VFG decoration) to 50° (with VFG decoration) when the holding time was 10 min. The interfacial reaction layer in SiO 2f /SiO 2 composites with VFG decoration became continuous without any unfilled gaps compared with the composites without VFG decoration. High-resolution transmission electron microscopy (HRTEM) was employed to investigate the interaction between VFG and Ti from the AgCuTi alloy. The results showed that VFG possessed high chemical reactivity and could easily react with Ti even at room temperature. Finally, a mechanism of how VFG promoted the wetting of the SiO 2f /SiO 2 composite by the AgCuTi alloy is proposed and thoroughly discussed.

  9. Fantasy Orientation Constructs and Related Executive Function Development in Preschool: Developmental Benefits to Executive Functions by Being a Fantasy-Oriented Child

    ERIC Educational Resources Information Center

    Pierucci, Jillian M.; O'Brien, Christopher T.; McInnis, Melissa A.; Gilpin, Ansley Tullos; Barber, Angela B.

    2014-01-01

    This study explored unique constructs of fantasy orientation and whether there are developmental benefits for fantasy-oriented children. By age 3, children begin developing executive functions, with some children exhibiting high fantasy orientation in their cognitions and behaviors. Preschoolers ("n" = 106) completed fantasy orientation…

  10. Emotion understanding, theory of mind, and prosocial orientation: Relations over time in early childhood

    PubMed Central

    Eggum, Natalie D.; Eisenberg, Nancy; Kao, Karen; Spinrad, Tracy L.; Bolnick, Rebecca; Hofer, Claire; Kupfer, Anne S.; Fabricius, William V.

    2012-01-01

    Data were collected when children were 42, 54, and 72 months of age (Ns=210, 191, and 172 for T1, T2, and T3, respectively). Children's emotion understanding (EU) and theory of mind (ToM) were examined as predictors of children's prosocial orientation within and across time. EU positively related to children's sympathy across 2.5 years, and T1 EU positively related to parent-reported prosocial orientation concurrently and across 1 year (T2). T2 ToM positively related to parents' reports of sympathy and prosocial orientation concurrently and 18 months later (T3); in contrast, T3 ToM did not relate to sympathy or prosocial orientation. T2 ToM accounted for marginally significant variance (p<0.058) in T3 mother-reported prosocial orientation over and above that accounted for by T2 prosocial orientation. Fostering the development of EU and ToM may contribute to children's prosocial orientation. PMID:22518196

  11. Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in field-grown rice

    PubMed

    Murchie; Chen; Hubbart; Peng; Horton

    1999-02-01

    Photosynthesis and photoinhibition in field-grown rice (Oryza sativa L.) were examined in relation to leaf age and orientation. Two varieties (IR72 and IR65598-112-2 [BSI206]) were grown in the field in the Philippines during the dry season under highly irrigated, well-fertilized conditions. Flag leaves were examined 60 and 100 d after transplanting. Because of the upright nature of 60-d-old rice leaves, patterns of photosynthesis were determined by solar movements: light falling on the exposed surface in the morning, a low incident angle of irradiance at midday, and light striking the opposite side of the leaf blade in the afternoon. There was an early morning burst of CO2 assimilation and high levels of saturation of photosystem II electron transfer as incident irradiance reached a maximum level. However, by midday the photochemical efficiency increased again almost to maximum. Leaves that were 100 d old possessed a more horizontal orientation and were found to suffer greater levels of photoinhibition than younger leaves, and this was accompanied by increases in the de-epoxidation state of the xanthophyll cycle. Older leaves had significantly lower chlorophyll content but only slightly diminished photosynthesis capacity.

  12. Disparities in safety belt use by sexual orientation identity among US high school students.

    PubMed

    Reisner, Sari L; Van Wagenen, Aimee; Gordon, Allegra; Calzo, Jerel P

    2014-02-01

    We examined associations between adolescents' safety belt use and sexual orientation identity. We pooled data from the 2005 and 2007 Youth Risk Behavior Surveys (n = 26,468 weighted; mean age = 15.9 years; 35.4% White, 24.7% Black, 23.5% Latino, 16.4% other). We compared lesbian and gay (1.2%), bisexual (3.5%), and unsure (2.6%) youths with heterosexuals (92.7%) on a binary indicator of passenger safety belt use. We stratified weighted multivariable logistic regression models by sex and adjusted for survey wave and sampling design. Overall, 12.6% of high school students reported "rarely" or "never" wearing safety belts. Sexual minority youths had increased odds of reporting nonuse relative to heterosexuals (48% higher for male bisexuals, 85% for lesbians, 46% for female bisexuals, and 51% for female unsure youths; P < .05), after adjustment for demographic (age, race/ethnicity), individual (body mass index, depression, bullying, binge drinking, riding with a drunk driver, academic achievement), and contextual (living in jurisdictions with secondary or primary safety belt laws, percentage below poverty, percentage same-sex households) risk factors. Public health interventions should address sexual orientation identity disparities in safety belt use.

  13. Highly oriented carbon fiber–polymer composites via additive manufacturing

    DOE PAGES

    Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; ...

    2014-10-16

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructuremore » and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.« less

  14. The effect of Argon pressure dependent V thin film on the phase transition process of (020) VO2 thin film

    NASA Astrophysics Data System (ADS)

    Meng, Yifan; Huang, Kang; Tang, Zhou; Xu, Xiaofeng; Tan, Zhiyong; Liu, Qian; Wang, Chunrui; Wu, Binhe; Wang, Chang; Cao, Juncheng

    2018-01-01

    It has been proved challenging to fabricate the single crystal orientation of VO2 thin film by a simple method. Based on chemical reaction thermodynamic and crystallization analysis theory, combined with our experimental results, we find out that when stoichiometric number of metallic V in the chemical equation is the same, the ratio of metallic V thin film surface average roughness Ra to thin film average particle diameter d decreases with the decreasing sputtering Argon pressure. Meanwhile, the oxidation reaction equilibrium constant K also decreases, which will lead to the increases of oxidation time, thereby the crystal orientation of the VO2 thin film will also become more uniform. By sputtering oxidation coupling method, metallic V thin film is deposited on c-sapphire substrate at 1 × 10-1 Pa, and then oxidized in the air with the maximum oxidation time of 65s, high oriented (020) VO2 thin film has been fabricated successfully, which exhibits ∼4.6 orders sheet resistance change across the metal-insulator transition.

  15. Correlation between academic achievement goal orientation and the performance of Malaysian students in an Indian medical school.

    PubMed

    Barkur, Rajashekar Rao; Govindan, Sreejith; Kamath, Asha

    2013-01-01

    According to goal orientation theory, achievement goals are defined as the terminal point towards which one's efforts are directed. The four academic achievement goal orientations commonly recognised are mastery, performance approach, performance avoidance and work avoidance. The objective of this study was to understand the goal orientation of second year undergraduate medical students and how this correlates with their academic performance. The study population consisted of 244 second year Bachelor of Medicine and Bachelor of Surgery (MBBS) students of Melaka Manipal Medical College, Manipal campus, Manipal University, India. Students were categorised as high performers and low performers based on their first year university examination marks. Their goal orientations were assessed through a validated questionnaire developed by Was et al. These components were analysed by independent sample t-test and correlated to their first year university examination marks. Confirmatory component factor analysis extracted four factors, which accounted for 40.8% of the total variance in goal orientation. The performance approach goal orientation alone explained 16.7% of the variance followed by mastery (10.8%), performance avoidance (7.7%) and work avoidance (5.7%). The Cronbach's alpha for 19 items, which contributed to internal consistency of the tool, was observed to be 0.635. A strong positive correlation was shown between performance approach, performance avoidance and work avoidance orientations. Of the four goal orientations, only the mean scores in work avoidance orientation differed for low performers and high performers (5.0 vs. 4.3; P = 0.0003). Work avoidance type of goal orientation among the low performer group may account for their lower performance compared with high performer group. This indicates that academic achievement goal orientation may play a role in the performance of undergraduate medical students.

  16. Transformations to granular zircon revealed: Twinning, reidite, and ZrO2 in shocked zircon from Meteor Crater (Arizona, USA)

    USGS Publications Warehouse

    Cavosie, Aaron; Timms, Nicholas E.; Erickson, Timmons M.; Hagerty, Justin J.; Hörz, Friedrich

    2016-01-01

    Granular zircon in impact environments has long been recognized but remains poorly understood due to lack of experimental data to identify mechanisms involved in its genesis. Meteor Crater in Arizona (United States) contains abundant evidence of shock metamorphism, including shocked quartz, the high pressure polymorphs coesite and stishovite, diaplectic SiO2 glass, and lechatelierite (fused SiO2). Here we report the presence of granular zircon, a new shocked mineral discovery at Meteor Crater, that preserve critical orientation evidence of specific transformations that occurred during its formation at extreme impact conditions. The zircon grains occur as aggregates of sub-µm neoblasts in highly shocked Coconino Formation Sandstone (CFS) comprised of lechatelierite. Electron backscatter diffraction shows that each grain consists of multiple domains, some with boundaries disoriented by 65°, a known {112} shock-twin orientation. Other domains have crystallographic c-axes in alignment with {110} of neighboring domains, consistent with the former presence of the high pressure ZrSiO4 polymorph reidite. Additionally, nearly all zircon preserve ZrO2 + SiO2, providing evidence of partial dissociation. The genesis of CFS granular zircon started with detrital zircon that experienced shock-twinning and reidite formation from 20 to 30 GPa, ultimately yielding a phase that retained crystallographic memory; this phase subsequently recrystallized to systematically oriented zircon neoblasts, and in some areas partially dissociated to ZrO2. The lechatelierite matrix, experimentally constrained to form at >2000 °C, provided an ultra high-temperature environment for zircon dissociation (~1670 °C) and neoblast formation. The capacity of granular zircon to preserve a cumulative P-T record has not been recognized previously, and provides a new method for retrieving histories of impact-related mineral transformations in the crust at conditions far beyond which most rocks melt.

  17. Ultra-thin grain-oriented silicon steel sheet fabricated by a novel way: Twin-roll strip casting and two-stage cold rolling

    NASA Astrophysics Data System (ADS)

    Wang, Yin-Ping; Liu, Hai-Tao; Song, Hong-Yu; Liu, Jia-Xin; Shen, Hui-Ying; Jin, Yang; Wang, Guo-Dong

    2018-04-01

    0.05-0.15 mm-thick ultra-thin grain-oriented silicon steel sheets were successfully produced by a novel processing route including strip casting, hot rolling, normalizing, two-stage cold rolling with intermediate annealing, primary recrystallization annealing and secondary recrystallization annealing. The evolutions of microstructure, texture and inhibitor along the processing were briefly investigated. The results showed that the initial Goss orientation originated due to the heterogenous nucleation of δ-ferrite grains during solidification. Because of the lack of shear deformation, only a few Goss grains were observed in the hot rolled sheet. After the first cold rolling and intermediate annealing, Goss texture was enhanced and distributed in the whole thickness. A small number of Goss grains having a high fraction of high energy boundaries exhibited in the primary recrystallization annealed sheet. A large number of fine and dispersed MnS and AlN and a few co-precipitates MnS and AlN with the size range of 10-70 nm were also observed. Interestingly, a well-developed secondary recrystallization microstructure characterized by 10-60 mm grains and a sharp Goss texture were finally produced in the 0.05-0.15 mm-thick ultra-thin sheets. A magnetic induction B8 of 1.72-1.84 T was obtained. Another new finding was that a few {2 3 0}〈0 0 1〉 and {2 1 0}〈1 2 7〉 grains also can grow up abnormally because of the high fraction of high energy boundaries and the size and number advantage, respectively. These non-Goss grains finally deteriorated the magnetic properties of the ultra-thin sheets. In addition, low surface energies of {hk0} planes may also contribute to the abnormal growth of Goss, {2 3 0}〈0 0 1〉 and {2 1 0}〈1 2 7〉 grains.

  18. Multiferroic BiFeO3 thin films and nanodots grown on highly oriented pyrolytic graphite substrates

    NASA Astrophysics Data System (ADS)

    Shin, Hyun Wook; Son, Jong Yeog

    2017-12-01

    Multiferroic BiFeO3 (BFO) thin films and nanodots are deposited on highly oriented pyrolytic graphite (HOPG) substrates via a pulsed laser deposition technique, where the HOPG surface has a honeycomb lattice structure made of carbon atoms, similar to graphene. A graphene/BFO/HOPG capacitor exhibited multiferroic properties, namely ferroelectricity (a residual polarization of 26.8 μC/cm2) and ferromagnetism (a residual magnetization of 1.1 × 10-5 emu). The BFO thin film had high domain wall energies and demonstrated switching time of approximately 82 ns. An 8-nm BFO nanodot showed a typical piezoelectric hysteresis loop with an effective residual piezoelectric constant of approximately 110 pm/V and exhibited two clearly separated current curves depending on the ferroelectric polarization direction.

  19. Investigating the relationship between changes in collagen fiber orientation during skin aging and collagen/water interactions by polarized-FTIR microimaging.

    PubMed

    Eklouh-Molinier, Christophe; Happillon, Teddy; Bouland, Nicole; Fichel, Caroline; Diébold, Marie-Danièle; Angiboust, Jean-François; Manfait, Michel; Brassart-Pasco, Sylvie; Piot, Olivier

    2015-09-21

    Upon chronological aging, human skin undergoes structural and molecular modifications, especially at the level of type I collagen. This macromolecule is one of the main dermal structural proteins and presents several age-related alterations. It exhibits a triple helical structure and assembles itself to form fibrils and fibers. In addition, water plays an important role in stabilizing the collagen triple helix by forming hydrogen-bonds between collagen residues. However, the influence of water on changes of dermal collagen fiber orientation with age has not been yet understood. Polarized-Fourier Transform Infrared (P-FTIR) imaging is an interesting biophotonic approach to determine in situ the orientation of type I collagen fibers, as we have recently shown by comparing skin samples of different ages. In this work, P-FTIR spectral imaging was performed on skin samples from two age groups (35- and 38-year-old on the one hand, 60- and 66-year-old on the other hand), and our analyses were focused on the effect of H2O/D2O substitution. Spectral data were processed with fuzzy C-means (FCM) clustering in order to distinguish different orientations of collagen fibers. We demonstrated that the orientation was altered with aging, and that D2O treatment, affecting primarily highly bound water molecules, is more marked for the youngest skin samples. Collagen-bound water-related spectral markers were also highlighted. Our results suggest a weakening of water/collagen interactions with age. This non-destructive and label-free methodology allows us to understand better the importance of bound water in collagen fiber orientation alterations occurring with skin aging. Obtaining such structural information could find benefits in dermatology as well as in cosmetics.

  20. Near-ambient pressure XPS of high-temperature surface chemistry in Sr2Co2O5 thin films

    DOE PAGES

    Hong, Wesley T.; Stoerzinger, Kelsey; Crumlin, Ethan J.; ...

    2016-02-11

    Transition metal perovskite oxides are promising electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells, but a lack of fundamental understanding of oxide surfaces impedes the rational design of novel catalysts with improved device efficiencies. In particular, understanding the surface chemistry of oxides is essential for controlling both catalytic activity and long-term stability. Thus, elucidating the physical nature of species on perovskite surfaces and their catalytic enhancement would generate new insights in developing oxide electrocatalysts. In this article, we perform near-ambient pressure XPS of model brownmillerite Sr 2Co 2O 5 (SCO) epitaxial thin films with different crystallographic orientations. Detailedmore » analysis of the Co 2p spectra suggests that the films lose oxygen as a function of temperature. Moreover, deconvolution of the O 1s spectra shows distinct behavior for (114)-oriented SCO films compared to (001)-oriented SCO films, where an additional bulk oxygen species is observed. These findings indicate a change to a perovskite-like oxygen chemistry that occurs more easily in (114) SCO than (001) SCO, likely due to the orientation of oxygen vacancy channels out-of-plane with respect to the film surface. This difference in surface chemistry is responsible for the anisotropy of the oxygen surface exchange coefficient of SCO and may contribute to the enhanced ORR kinetics of La 0.8Sr 0.2CoO 3-δ thin films by SCO surface particles observed previously.« less

  1. Field-aligned current and auroral Hall current characteristics derived from the Swarm constellation

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Wang, Hui; Hermann, Luehr

    2017-04-01

    On the basis of field-aligned currents (FACs) and Hall currents derived from high-resolution magnetic field data of the Swarm constellation the average characteristics of these two current systems in the auroral regions are comprehensively investigated by statistical methods. This is the first study considering both current types simultaneously and for both hemispheres. The FAC distribution, derived from the Swarm dual-spacecraft approach, reveals the well-known features of Region 1 (R1) and Region 2 (R2) FACs. At high latitudes, Region 0 (R0) FACs appear on the dayside. Their direction depends on the orientation of the interplanetary magnetic field (IMF) By component. Of particular interest is the distribution of auroral Hall currents. The most prominent auroral electrojets are found to be closely controlled by the solar wind input. But there is no dependence on the IMF By orientation. The eastward electrojet is about twice as strong in summer as in winter. Conversely, the westward electrojet shows less dependence on season. Part of the electrojet current is closed over the polar cap. Here the seasonal variation of conductivity mainly controls the current density. There is a clear channeling of return currents over the polar cap. Depending on IMF By orientation most of the current is flowing either on the dawn or dusk side. The direction of Hall currents in the noon sector depends directly on the orientation of the IMF By. This is true for both signs of the IMF Bz component. But largest differences between summer and winter seasons are found for northward IMF Bz. Around the midnight sector the westward substorm electrojet is dominating. As expected, it is highly dependent on magnetic activity, but shows only little response to the IMF By polarity.

  2. Robust generation of Fourier-synthesized laser fields and their estimation of the optical phase by using quantum control of molecular tunneling ionization

    NASA Astrophysics Data System (ADS)

    Yoshida, Tsuyoshi; Saito, Naoaki; Ohmura, Hideki

    2018-03-01

    Intense (5.0 × 1012 W cm-2) nanosecond Fourier-synthesized laser fields consisting of fundamental, second-, third-, and fourth-harmonic light generated by an interferometer-free Fourier-synthesized laser field generator induce orientation-selective ionization based on directionally asymmetric molecular tunneling ionization (TI). The laser field generator ensures adjustment-free operation, high stability, and high reproducibility. Phase-sensitive, orientation-selective molecular TI provides a simple way to estimate the relative phase differences between the fundamental light and each harmonic by data-fitting analysis. This application of Fourier-synthesized laser fields will facilitate not only lightwave engineering but also the control of matter.

  3. Career plans for male-dominated occupations among female seniors in religious and secular high schools.

    PubMed

    Rich, Y; Golan, R

    1992-01-01

    This study investigated the hypothesis that the religious beliefs of young women significantly affect their career planning. All female seniors (N = 315) in one public religious and two public secular high schools in Israel responded to inventories examining their (1) orientation to homemaking or career, (2) interest in male-dominated occupations, and (3) preference for male-dominated occupations. Results from regression analyses indicated that young women from the secular schools, as compared to those from the religious school, expressed greater interest in and preference for male-dominated occupations. In addition, religious orientation, more than other background variables, had predictive power for interest in and preference for male-dominated occupations.

  4. Understanding academic attitudes and achievement in mexican-origin youths: ethnic identity, other-group orientation, and fatalism.

    PubMed

    Guzmán, Michele R; Santiago-Rivera, Azara L; Hasse, Richard F

    2005-02-01

    This study tested the relationships among ethnic identity, other-group orientation, fatalism, and 2 dependent variables: attitude toward education and school, and grade point average (GPA). Mexican-origin adolescents (N = 222) completed the Multigroup Ethnic Identity Measure (J. S. Phinney, 1992), the fatalism scale of the Multiphasic Assessment of Cultural Constructs-Short Form (I. Cuellar, B. Arnold, & G. Gonzalez, 1995), and the attitude scale of the Learning and Study Strategies Inventory-High School (C. E. Weinstein & D. R. Palmer, 1990a). Other-group orientation was positively related to attitude and GPA, and a negative relationship between fatalism and attitude was demonstrated. No relationship emerged between ethnic identity and the dependent variables. ((c) 2005 APA, all rights reserved).

  5. Sexual orientation disparities in substance misuse: the role of childhood abuse and intimate partner violence among patients in care at an urban community health center.

    PubMed

    Reisner, Sari L; Falb, Kathryn L; Wagenen, Aimee Van; Grasso, Chris; Bradford, Judith

    2013-02-01

    This study examined disparities in lifetime substance misuse by sexual orientation among 2,653 patients engaged in care at an urban community health center in Boston, MA, as well as the potential mediating roles of childhood abuse

  6. Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings

    PubMed Central

    Kim, Hyunbin; Camata, Renato P.; Lee, Sukbin; Rohrer, Gregory S.; Rollett, Anthony D.; Vohra, Yogesh K.

    2008-01-01

    The orientation texture of pulsed laser deposited hydroxyapatite coatings was studied by X-ray diffraction techniques. Increasing the laser energy density of the KrF excimer laser used in the deposition process from 5 to 7 J/cm2 increases the tendency for the c-axes of the hydroxyapatite grains to be aligned perpendicular to the substrate. This preferred orientation is most pronounced when the incidence direction of the plume is normal to the substrate. Orientation texture of the hydroxyapatite grains in the coatings is associated with the highly directional and energetic nature of the ablation plume. Anisotropic stresses, transport of hydroxyl groups and dehydroxylation effects during deposition all seem to play important roles in the texture development. PMID:18563207

  7. Multivariate combination of magnetization transfer, T2* and B0 orientation to study the myelo-architecture of the in vivo human cortex

    PubMed Central

    Mangeat, G.; Govindarajan, S. T.; Mainero, C.; Cohen-Adad, J.

    2015-01-01

    Recently, T2* imaging at 7 tesla (T) MRI was shown to reveal microstructural features of the cortical myeloarchitecture thanks to an increase in contrast-to-noise ratio. However, several confounds hamper the specificity of T2* measures (iron content, blood vessels, tissues orientation). Another metric, magnetization transfer ratio (MTR), is known to also be sensitive to myelin content and thus would be an excellent complementary measure because its underlying contrast mechanisms are different than that from T2*. The goal of this study was thus to combine MTR and T2* using multivariate statistics in order to gain insights into cortical myelin content. Seven healthy subjects were scanned at 7T and 3T to obtain T2* and MTR data, respectively. A multivariate myelin estimation model (MMEM) was developed, and consists in (i) normalizing T2* and MTR values and (ii) extracting their shared information using independent component analysis (ICA). B0 orientation dependence and cortical thickness were also computed and included in the model. Results showed high correlation between MTR and T2* in the whole cortex (r=0.76, p<10−16), suggesting that both metrics are partly driven by a common source of contrast, here assumed to be the myelin. Average MTR and T2* were respectively 31.0 +/− 0.3% and 32.1 +/− 1.4 ms. Results of the MMEM spatial distribution showed similar trends to that from histological work stained for myelin (r=0.77, p<0.01). Significant right-left differences were detected in the primary motor cortex (p<0.05), the posterior cingulate cortex (p<0.05) and the visual cortex (p<0.05). This study demonstrates that MTR and T2* are highly correlated in the cortex. The combination of MTR, T2*, CT and B0 orientation may be a useful means to study cortical myeloarchitecture with more specificity than using any of the individual methods. The MMEM framework is extendable to other contrasts such as T1 and diffusion MRI. PMID:26095090

  8. Academic Identity Status, Goal Orientation, and Academic Achievement among High School Students

    ERIC Educational Resources Information Center

    Hejazi, Elaheh; Lavasani, Masoud Gholamali; Amani, Habib; Was, Christopher A.

    2012-01-01

    The aim of the present study was to determine the relationship between academic identity status, goal orientations and academic achievement. 301 first year high school students completed the Academic Identity Measure and Goal Orientation Questionnaire. The average of 10 exam scores in the final semester was used as an index of academic…

  9. Low-temperature plasma-enhanced atomic layer deposition of 2-D MoS2: large area, thickness control and tuneable morphology.

    PubMed

    Sharma, Akhil; Verheijen, Marcel A; Wu, Longfei; Karwal, Saurabh; Vandalon, Vincent; Knoops, Harm C M; Sundaram, Ravi S; Hofmann, Jan P; Kessels, W M M Erwin; Bol, Ageeth A

    2018-05-10

    Low-temperature controllable synthesis of monolayer-to-multilayer thick MoS2 with tuneable morphology is demonstrated by using plasma enhanced atomic layer deposition (PEALD). The characteristic self-limiting ALD growth with a growth-per-cycle of 0.1 nm per cycle and digital thickness control down to a monolayer are observed with excellent wafer scale uniformity. The as-deposited films are found to be polycrystalline in nature showing the signature Raman and photoluminescence signals for the mono-to-few layered regime. Furthermore, a transformation in film morphology from in-plane to out-of-plane orientation of the 2-dimensional layers as a function of growth temperature is observed. An extensive study based on high-resolution transmission electron microscopy is presented to unravel the nucleation mechanism of MoS2 on SiO2/Si substrates at 450 °C. In addition, a model elucidating the film morphology transformation (at 450 °C) is hypothesized. Finally, the out-of-plane oriented films are demonstrated to outperform the in-plane oriented films in the hydrogen evolution reaction for water splitting applications.

  10. Strong Orientation-Dependent Spin-Orbit Torque in Thin Films of the Antiferromagnet Mn2Au

    NASA Astrophysics Data System (ADS)

    Zhou, X. F.; Zhang, J.; Li, F.; Chen, X. Z.; Shi, G. Y.; Tan, Y. Z.; Gu, Y. D.; Saleem, M. S.; Wu, H. Q.; Pan, F.; Song, C.

    2018-05-01

    Antiferromagnets with zero net magnetic moment, strong anti-interference, and ultrafast switching speed are potentially competitive in high-density information storage. The body-centered tetragonal antiferromagnet Mn2Au with opposite-spin sublattices is a unique metallic material for Néel-order spin-orbit-torque (SOT) switching. We investigate the SOT switching in quasiepitaxial (103), (101) and (204) Mn2Au films prepared by a simple magnetron sputtering method. We demonstrate current-induced antiferromagnetic moment switching in all of the prepared Mn2Au films by using a short current pulse at room temperature, whereas differently oriented films exhibit distinguished switching characters. A direction-independent reversible switching is attained in Mn2Au (103) films due to negligible magnetocrystalline anisotropy energy, while for Mn2Au (101) and (204) films, the switching is invertible with the current applied along the in-plane easy axis and its vertical axis, but it becomes attenuated seriously during initial switching circles when the current is applied along the hard axis because of the existence of magnetocrystalline anisotropy energy. Besides the fundamental significance, the strong orientation-dependent SOT switching, which is not realized, irrespective of ferromagnet and antiferromagnet, provides versatility for spintronics.

  11. Dielectric relaxation of guest molecules in a clathrate structure of syndiotactic polystyrene.

    PubMed

    Urakawa, Osamu; Kaneko, Fumitoshi; Kobayashi, Hideo

    2012-12-13

    Structure and dynamics of semicrystalline polymer films composed of syndiotactic polystyrene (sPS) and 2-butanone were examined through X-ray diffraction, polarized FTIR, and dielectric relaxation measurements. The X-ray and FTIR measurements revealed its crystal structure to be δ-clathrate containing 2-butanone molecules inside. The carbonyl group of 2-butanone in the crystal was found to orient preferentially parallel to the ac plane of the crystal through the polarized ATR FTIR measurements. Dielectric measurements were also conducted on these film samples to see only the relaxation dynamics of 2-butanone thanks to the high dielectric intensity of 2-butanone compared to sPS. Two relaxation modes denoted by slow and fast modes appeared. The former was assigned to the motion of 2-butanone molecules entrapped in the cavities of the crystalline (δ-form) and the latter to those in the amorphous region. We focused on the slow mode in order to elucidate the specific dynamics of the guest molecule confined in the crystalline region. The relaxation time of the slow mode was about 4 orders of magnitude longer than that of liquid 2-butanone. This suggests that the dynamics of guest molecules is highly restricted due to the high barrier to conformational and/or orientational change of the guest molecule in the cavity of δ-crystal. Furthermore, the dielectric intensity Δε of the slow mode was much smaller than the one calculated from that of bulk liquid 2-butanone and the guest concentration in the crystalline region (the intensity was only 10% of the estimated value from the bulk liquid data). This result also indicates that the free rotational motion of 2-butanone molecules is restricted inside the crystal. This will be consistently related to the weak uniplanar orientation of the carbonyl group of 2-butanone parallel to the ac plane revealed by the X-ray and polarized ATR FTIR measurements.

  12. Women's representation in 60 occupations from 1972 to 2010: more women in high-status jobs, few women in things-oriented jobs.

    PubMed

    Lippa, Richard A; Preston, Kathleen; Penner, John

    2014-01-01

    To explore factors associated with occupational sex segregation in the United States over the past four decades, we analyzed U.S. Bureau of Labor Statistics data for the percent of women employed in 60 varied occupations from 1972 to 2010. Occupations were assessed on status, people-things orientation, and data-ideas orientation. Multilevel linear modeling (MLM) analyses showed that women increasingly entered high-status occupations from 1972 to 2010, but women's participation in things-oriented occupations (e.g., STEM fields and mechanical and construction trades) remained low and relatively stable. Occupations' data-ideas orientation was not consistently related to sex segregation. Because of women's increased participation in high-status occupations, occupational status became an increasingly weak predictor of women's participation rates in occupations, whereas occupations' people-things orientation became an increasingly strong predictor over time. These findings are discussed in relation to theories of occupational sex segregation and social policies to reduce occupational sex segregation.

  13. Women's Representation in 60 Occupations from 1972 to 2010: More Women in High-Status Jobs, Few Women in Things-Oriented Jobs

    PubMed Central

    Lippa, Richard A.; Preston, Kathleen; Penner, John

    2014-01-01

    To explore factors associated with occupational sex segregation in the United States over the past four decades, we analyzed U.S. Bureau of Labor Statistics data for the percent of women employed in 60 varied occupations from 1972 to 2010. Occupations were assessed on status, people-things orientation, and data-ideas orientation. Multilevel linear modeling (MLM) analyses showed that women increasingly entered high-status occupations from 1972 to 2010, but women's participation in things-oriented occupations (e.g., STEM fields and mechanical and construction trades) remained low and relatively stable. Occupations' data-ideas orientation was not consistently related to sex segregation. Because of women's increased participation in high-status occupations, occupational status became an increasingly weak predictor of women's participation rates in occupations, whereas occupations' people-things orientation became an increasingly strong predictor over time. These findings are discussed in relation to theories of occupational sex segregation and social policies to reduce occupational sex segregation. PMID:24788710

  14. Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios.

    PubMed

    Fu, Donglong; Schmidt, Joel E; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian; Weckhuysen, Bert M

    2017-09-04

    Highly b-oriented zeolite ZSM-5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al 3+ usually disrupts the orientation of zeolite films. Herein, using structure-directing agents with hydroxy groups, we demonstrate a new method to prepare highly b-oriented zeolite ZSM-5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞). Fluorescence micro-(spectro)scopy was used to monitor misoriented microstructures, which are invisible to X-ray diffraction, and show Al 3+ framework incorporation and illustrate the differences between misoriented and b-oriented films. The methanol-to-hydrocarbons process was studied by operando UV/Vis diffuse reflectance micro-spectroscopy with on-line mass spectrometry, showing that the b-oriented zeolite ZSM-5 films are active and stable under realistic process conditions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Highly Oriented Growth of Catalytically Active Zeolite ZSM‐5 Films with a Broad Range of Si/Al Ratios

    PubMed Central

    Fu, Donglong; Schmidt, Joel E.; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian

    2017-01-01

    Abstract Highly b‐oriented zeolite ZSM‐5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al3+ usually disrupts the orientation of zeolite films. Herein, using structure‐directing agents with hydroxy groups, we demonstrate a new method to prepare highly b‐oriented zeolite ZSM‐5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞). Fluorescence micro‐(spectro)scopy was used to monitor misoriented microstructures, which are invisible to X‐ray diffraction, and show Al3+ framework incorporation and illustrate the differences between misoriented and b‐oriented films. The methanol‐to‐hydrocarbons process was studied by operando UV/Vis diffuse reflectance micro‐spectroscopy with on‐line mass spectrometry, showing that the b‐oriented zeolite ZSM‐5 films are active and stable under realistic process conditions. PMID:28675590

  16. Uniaxially oriented polycrystalline thin films and air-stable n-type transistors based on donor-acceptor semiconductor (diC8BTBT)(FnTCNQ) [n = 0, 2, 4

    NASA Astrophysics Data System (ADS)

    Shibata, Yosei; Tsutsumi, Jun'ya; Matsuoka, Satoshi; Matsubara, Koji; Yoshida, Yuji; Chikamatsu, Masayuki; Hasegawa, Tatsuo

    2015-04-01

    We report the fabrication of high quality thin films for semiconducting organic donor-acceptor charge-transfer (CT) compounds, (diC8BTBT)(FnTCNQ) (diC8BTBT = 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene and FnTCNQ [n = 0,2,4] = fluorinated derivatives of 7,7,8,8,-tetracyanoquinodimethane), which have a high degree of layered crystallinity. Single-phase and uniaxially oriented polycrystalline thin films of the compounds were obtained by co-evaporation of the component donor and acceptor molecules. Organic thin-film transistors (OTFTs) fabricated with the compound films exhibited n-type field-effect characteristics, showing a mobility of 6.9 × 10-2 cm2/V s, an on/off ratio of 106, a sub-threshold swing of 0.8 V/dec, and an excellent stability in air. We discuss the suitability of strong intermolecular donor-acceptor interaction and the narrow CT gap nature in compounds for stable n-type OTFT operation.

  17. Highly Oriented Atomically Thin Ambipolar MoSe2 Grown by Molecular Beam Epitaxy

    PubMed Central

    2017-01-01

    Transition metal dichalcogenides (TMDCs), together with other two-dimensional (2D) materials, have attracted great interest due to the unique optical and electrical properties of atomically thin layers. In order to fulfill their potential, developing large-area growth and understanding the properties of TMDCs have become crucial. Here, we have used molecular beam epitaxy (MBE) to grow atomically thin MoSe2 on GaAs(111)B. No intermediate compounds were detected at the interface of as-grown films. Careful optimization of the growth temperature can result in the growth of highly aligned films with only two possible crystalline orientations due to broken inversion symmetry. As-grown films can be transferred onto insulating substrates, allowing their optical and electrical properties to be probed. By using polymer electrolyte gating, we have achieved ambipolar transport in MBE-grown MoSe2. The temperature-dependent transport characteristics can be explained by the 2D variable-range hopping (2D-VRH) model, indicating that the transport is strongly limited by the disorder in the film. PMID:28530829

  18. The affective structure of supportive parenting: depressive symptoms, immediate emotions, and child-oriented motivation.

    PubMed

    Dix, Theodore; Gershoff, Elizabeth T; Meunier, Leah N; Miller, Pamela C

    2004-11-01

    This study investigated the maternal concerns and emotions that may regulate one form of sensitive parenting, support for children's immediate desires or intentions. While reviewing a videotape of interactions with their 1-year-olds, mothers who varied on depressive symptoms reported concerns and emotions they had during the interaction. Emotions reflected outcomes either to children (child-oriented concerns) or to mothers themselves (parent-oriented concerns). Child-oriented concerns were associated with fewer negative emotions and more supportive behavior. Supportive parenting was high among mothers who experienced high joy and worry and low anger, sadness, and guilt. However, relations depended on whether emotions were child or parent oriented: Supportive behavior occurred more when emotions were child oriented. In addition, as depressive symptoms increased, mothers reported fewer child-oriented concerns, fewer child-oriented positive emotions, and more parent-oriented negative emotions. They also displayed less supportive behavior. Findings suggest that support for children's immediate intentions may be regulated by parents' concerns, immediate emotions, and depressive symptoms. (c) 2004 APA, all rights reserved

  19. Optimal control of the orientation and alignment of an asymmetric-top molecule with terahertz and laser pulses

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.

    2018-03-01

    Quantum optimal control theory is applied to determine numerically the terahertz and nonresonant laser pulses leading, respectively, to the highest degree of orientation and alignment of the asymmetric-top H2S molecule. The optimized terahertz pulses retrieved for temperatures of zero and 50 K lead after 50 ps to an orientation with ⟨ΦZx⟩ = 0.959 73 and ⟨⟨ΦZx⟩⟩ = 0.742 30, respectively. For the zero temperature, the orientation is close to its maximum theoretical value; for the higher temperature, it is below the maximum theoretical value. The mechanism by which the terahertz pulse populates high lying rotational levels is elucidated. The 5 ps long optimized laser pulse calculated for a zero temperature leads to an alignment with ⟨ΦZy 2 ⟩ =0.944 16 and consists of several kick pulses with a duration of ≈0.1 ps. It is found that the timing of these kick pulses is such that it leads to an increase of the rotational energy of the molecule. The optimized laser pulse retrieved for a temperature of 20 K is 6 ps long and yields a lower alignment with ⟨⟨ΦZy 2 ⟩ ⟩ =0.717 20 .

  20. Symmetry Breaking in Side Chains Leading to Mixed Orientations and Improved Charge Transport in Isoindigo- alt -Bithiophene Based Polymer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Guobiao; Zhao, Xikang; Qu, Ge

    The selection of side chains is important in design of conjugated polymers. It not only affects their intrinsic physical properties, but also has an impact on thin film morphologies. Recent reports suggested that a face-on/edge-on bimodal orientation observed in polymer thin films may be responsible for a three-dimensional (3D) charge transport and leads to dramatically improved mobility in donor–acceptor based conjugated polymers. To achieve a bimodal orientation in thin films has been seldom explored from the aspect of molecular design. Here, we demonstrate a design strategy involving the use of asymmetric side chains that enables an isoindigo-based polymer to adoptmore » a distinct bimodal orientation, confirmed by the grazing incidence X-ray diffraction. As a result, the polymer presents an average high mobility of 3.8 ± 0.7 cm2 V–1 s–1 with a maximum value of 5.1 cm2 V–1 s–1, in comparison with 0.47 and 0.51 cm2 V–1 s–1 obtained from the two reference polymers. This study exemplifies a new strategy to develop the next generation polymers through understanding the property-structure relationship.« less

  1. Novel Gas Sensor Based on ZnO Nanorod Circular Arrays for C2H5OH Gas Detection.

    PubMed

    Jianjiao, Zhang; Hongyan, Yue; Erjun, Guo; Shaolin, Zhang; Liping, Wang; Chunyu, Zhang; Xin, Gao; Jing, Chang; Hong, Zhang

    2015-03-01

    Novel side-heating gas sensor based on ZnO nanorod circular arrays was firstly fabricated by hydrothermal treatment assisted with a kind of simple dip-coating technique. The structure and morphologies of ZnO nanorods were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), respectively. XRD result indicates that the obtained ZnO nanorods have good crystalline with the hexagonal wurtzite structure. SEM result indicates that ZnO nanorod arrays are vertically growth on the surface of ceramic tube of side-heating sensor with controlled diameter and length, narrow size distribution and high orientation. The gas sensing properties of ZnO nanorod circular arrays are also evaluated. Comparative to the sensor based on scattered ZnO nanorods responding to 25 ppm H2, CO, C6H5CH3 and C2H5OH gas, respectively, the sensing values of high orientation gas sensor are generally increased by 5%. This novel sensor has good application promising for the fabrication of cost effective and high performance gas sensors.

  2. Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guedj, C.; CEA, LETI, MINATEC Campus, F-38054 Grenoble; Hung, L.

    2014-12-01

    The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO{sub 2}) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO{sub 2}, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO{sub 2} may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectricmore » permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.« less

  3. Microwave properties of epitaxial (111)-oriented Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} thin films on Al{sub 2}O{sub 3}(0001) up to 40 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Lihui; UMR CNRS 8520, IEMN-DOAE-MIMM Team, Bat. P3, Cite Scientifique, Villeneuve d'Ascq, 59655 Lille; Ponchel, Freddy

    2010-10-18

    Perovskite Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) thin films have been grown on Al{sub 2}O{sub 3}(0001) substrates without/with inserting an ultrathin TiO{sub x} seeding layer by rf magnetron sputtering. X-ray diffraction and pole figure studies reveal that the film with the TiO{sub x} layer (12-A-thick) is highly oriented along the (111) direction and exhibits a good in-plane relationship of BST(111)||Al{sub 2}O{sub 3}(0001). The high frequency dielectric measurements demonstrate that the complex permittivity ({epsilon}={epsilon}{sup '}-j{epsilon}{sup ''}) is well described by a Curie-von Scheidler dispersion with an exponent of 0.40. The resulting epitaxial BST films show high permittivity ({approx}428) and tunability ({approx}41%, atmore » 300 kV/cm and 40 GHz) and their microwave properties (1-40 GHz) potentially could be made suitable for tunable devices.« less

  4. High-ionic-strength electroosmotic flows in uncharged hydrophobic nanochannels.

    PubMed

    Kim, Daejoong; Darve, Eric

    2009-02-01

    We report molecular dynamics simulation results of high-ionic-strength electroosmotic flows inside uncharged nanochannels. The possibility of this unusual electrokinetic phenomenon has been discussed by Dukhin et al. [A. Dukhin, S. Dukhin, P. Goetz, Langmuir 21 (2005) 9990]. Our computed velocity profiles clearly indicate the presence of a net flow with a maximum velocity around 2 m/s. We found the apparent zeta potential to be -29.7+/-6.8 mV, using the Helmholtz-Smoluchowski relation and the measured mean velocity. This value is comparable to experimentally measured values in Dukhin et al. and references therein. We also investigate the orientations of water molecules in response to an electric field by computing polarization density. Water molecules in the bulk region are oriented along the direction of the external electric field, while their near-wall orientation shows oscillations. The computation of three-dimensional density distributions of sodium and chloride ions around each individual water molecule show that chloride ions tend to concentrate near a water molecule, whereas sodium ions are diffusely distributed.

  5. Acoustic plane wave preferential orientation of metal oxide superconducting materials

    DOEpatents

    Tolt, Thomas L.; Poeppel, Roger B.

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0

  6. MicroFilament Analyzer identifies actin network organizations in epidermal cells of Arabidopsis thaliana roots

    PubMed Central

    Jacques, Eveline; Lewandowski, Michal; Buytaert, Jan; Fierens, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris

    2013-01-01

    The plant cytoskeleton plays a crucial role in the cells’ growth and development during different developmental stages and it undergoes many rearrangements. In order to describe the arrangements of the F-actin cytoskeleton in root epidermal cells of Arabidopsis thaliana, the recently developed software MicroFilament Analyzer (MFA) was exploited. This software enables high-throughput identification and quantification of the orientation of filamentous structures on digital images in a highly standardized and fast way. Using confocal microscopy and transgenic GFP-FABD2-GFP plants the actin cytoskeleton was visualized in the root epidermis. MFA analysis revealed that during the early stages of cell development F-actin is organized in a mainly random pattern. As the cells grow, they preferentially adopt a longitudinal organization, a pattern that is also preserved in the largest cells. In the evolution from young to old cells, an approximately even distribution of transverse, oblique or combined orientations is always present besides the switch from random to a longitudinal oriented actin cytoskeleton. PMID:23656865

  7. Electromigration and Thermomechanical Fatigue Behavior of Sn0.3Ag0.7Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Zuo, Yong; Bieler, Thomas R.; Zhou, Quan; Ma, Limin; Guo, Fu

    2017-12-01

    The anisotropy of Sn crystal structures greatly affects the electromigration (EM) and thermomechanical fatigue (TMF) of solder joints. The size of solder joint shrinkage in electronic systems further makes EM and TMF an inseparably coupled issue. To obtain a better understanding of failure under combined moderately high (2000 A/cm2) current density and 10-150°C/1 h thermal cycling, analysis of separate, sequential, and concurrent EM and thermal cycling (TC) was imposed on single shear lap joints, and the microstructure and crystal orientations were incrementally characterized using electron backscatter diffraction (EBSD) mapping. First, it was determined that EM did not significantly change the crystal orientation, but the formation of Cu6Sn5 depended on the crystal orientation, and this degraded subsequent TMF behavior. Secondly, TC causes changes in crystal orientation. Concurrent EM and TC led to significant changes in crystal orientation by discontinuous recrystallization, which is facilitated by Cu6Sn5 particle formation. The newly formed Cu6Sn5 often showed its c-axis close to the direction of electron flow.

  8. Orienting Periodic Organic-Inorganic Nanoscale Domains Through One-Step Electrodeposition

    PubMed Central

    Herman, David J.; Goldberger, Joshua E.; Chao, Stephen; Martin, Daniel T.; Stupp, Samuel I

    2011-01-01

    One of the challenges in the synthesis of hybrid materials with nanoscale structure is to precisely control morphology across length scales. Using a one-step electrodeposition process on indium tin oxide (ITO) substrates followed by annealing, we report here the preparation of materials with preferentially oriented lamellar domains of electron donor surfactants and the semiconductor ZnO. We found that either increasing the concentration of surfactant or the water to dimethyl sulfoxide ratio of solutions used resulted in the suppression of bloom-like morphologies and enhanced the density of periodic domains on ITO substrates. Furthermore, by modifying the surface of the ITO substrate with the conductive polymer blend poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), we were able to alter the orientation of these electrodeposited lamellar domains to be perpendicular to the substrate. The long-range orientation achieved was characterized by 2D grazing incidence small angle X-ray scattering. This high degree of orientation in electronically active hybrids with alternating nanoscale p-type and n-type domains is of potential interest in photovoltaics or thermoelectric materials. PMID:21142087

  9. Role of crystal orientation on electrical tuning of dynamic permeability in strain-mediated multiferroic structures

    NASA Astrophysics Data System (ADS)

    Phuoc, Nguyen N.; Ong, C. K.

    2017-06-01

    Multiferroic structures of FeCo/NiFe/[Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32 (PMN-PT) with three different crystal orientations of PMN-PT(0 1 1), PMN-PT(0 0 1) and PMN-PT(1 1 1) were fabricated by a sputtering deposition system. Their dynamic magnetic properties were characterized under various applied electrical fields. The sample with PMN-PT(0 1 1) orientation shows a large tuning of the permeability spectra while the ones with PMN-PT(0 0 1) and PMN-PT(1 1 1) orientations exhibit a moderate and little change in the permeability spectra, respectively. The result can be explained via the magnetoelectric effect by considering the role of the piezoelectric coefficients being highly dependent on the crystal orientation along which the PMN-PT is poled. This explanation is consistent with the static magnetic characteristics of the samples before and after poling.

  10. Uniaxial alignment of triisopropylsilylethynyl pentacene via zone-casting technique.

    PubMed

    Su, Yajun; Gao, Xiang; Liu, Jiangang; Xing, Rubo; Han, Yanchun

    2013-09-14

    Uniaxially aligned triisopropylsilylethynyl pentacene (TIPS-pentacene) crystals over a large area were fabricated using zone-casting technique. The array of TIPS-pentacene displayed a high orientation degree with a dichroic ratio (DR) of 0.80. The crystals were arranged with c axis perpendicular to the substrate and the long axis of the ribbon corresponded to the a axis of TIPS-pentacene. The properties of the solutions and the processing parameters were shown to influence the formation of the oriented TIPS-pentacene crystalline array. Solvent with a low boiling point (such as chloroform) favoured the orientation of the ribbon-like crystals. The concentration of the solution should be appropriate, ensuring the crystallization velocity of TIPS-pentacene matching with the receding of the meniscus. Besides, we proved that the casting speed should be large enough to induce a sufficient concentration gradient. The orientation mechanism of TIPS-pentacene was attributed to a synergy of the ordered nuclei and a match between the crystallization velocity and the casting speed. Field effect transistors (FETs) based on the oriented TIPS-pentacene crystalline array showed a mobility of 0.67 cm(2) V(-1) s(-1).

  11. Kinetics of solvent supported tubule formation of Lotus (Nelumbo nucifera) wax on highly oriented pyrolytic graphite (HOPG) investigated by atomic force microscopy

    PubMed Central

    Koch, Kerstin; Barthlott, Wilhelm; Wandelt, Klaus

    2018-01-01

    The time dependence of the formation of lotus wax tubules after recrystallization from various chloroform-based solutions on an HOPG surface at room temperature was studied by atomic force microscopy (magnetic AC mode) taking series of consecutive images of the formation process. The growth of the tubules oriented in an upright fashion follows a sequential rodlet→ring→tubule behavior. The influence of a number of factors, e.g., different wax concentration in chloroform, the additional presence of water, or salts [(NH4)2SO4, NH4NO3] or a mixture of salt/water in the solution on the growth rate and orientation of the tubules is also investigated. Different wax concentrations were found to have no effect on the growth rate or the orientation of tubules in none of the solutions. The presence of water, however, considerably increased the growth rate of tubule formation, while the presence of salt was again found to have no effect on growth rate or orientation of tubules. PMID:29515959

  12. Electromigration and Thermomechanical Fatigue Behavior of Sn0.3Ag0.7Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Zuo, Yong; Bieler, Thomas R.; Zhou, Quan; Ma, Limin; Guo, Fu

    2018-03-01

    The anisotropy of Sn crystal structures greatly affects the electromigration (EM) and thermomechanical fatigue (TMF) of solder joints. The size of solder joint shrinkage in electronic systems further makes EM and TMF an inseparably coupled issue. To obtain a better understanding of failure under combined moderately high (2000 A/cm2) current density and 10-150°C/1 h thermal cycling, analysis of separate, sequential, and concurrent EM and thermal cycling (TC) was imposed on single shear lap joints, and the microstructure and crystal orientations were incrementally characterized using electron backscatter diffraction (EBSD) mapping. First, it was determined that EM did not significantly change the crystal orientation, but the formation of Cu6Sn5 depended on the crystal orientation, and this degraded subsequent TMF behavior. Secondly, TC causes changes in crystal orientation. Concurrent EM and TC led to significant changes in crystal orientation by discontinuous recrystallization, which is facilitated by Cu6Sn5 particle formation. The newly formed Cu6Sn5 often showed its c-axis close to the direction of electron flow.

  13. Determination of Earth orientation using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Freedman, A. P.

    1989-01-01

    Modern spacecraft tracking and navigation require highly accurate Earth-orientation parameters. For near-real-time applications, errors in these quantities and their extrapolated values are a significant error source. A globally distributed network of high-precision receivers observing the full Global Positioning System (GPS) configuration of 18 or more satellites may be an efficient and economical method for the rapid determination of short-term variations in Earth orientation. A covariance analysis using the JPL Orbit Analysis and Simulation Software (OASIS) was performed to evaluate the errors associated with GPS measurements of Earth orientation. These GPS measurements appear to be highly competitive with those from other techniques and can potentially yield frequent and reliable centimeter-level Earth-orientation information while simultaneously allowing the oversubscribed Deep Space Network (DSN) antennas to be used more for direct project support.

  14. Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis.

    PubMed

    Masharawi, Youssef; Rothschild, Bruce; Dar, Gali; Peleg, Smadar; Robinson, Dror; Been, Ella; Hershkovitz, Israel

    2004-08-15

    Thoracolumbar facet orientations were measured and analyzed. To establish a comprehensive database for facet orientation in the thoracolumbar vertebrae and to determine the normal human condition. Most studies on facet orientation have based their conclusions on two-dimensional measurements, in small samples or isolated vertebrae. The amount of normal asymmetry in facet orientation is poorly addressed. Transverse and longitudinal facet angles were measured directly from 240 human vertebral columns (males/females, blacks/whites). The specimens' osteologic material is part of the Hamann-Todd Osteological Collection housed at the Cleveland Museum of Natural History (Cleveland, OH). A total of 4,080 vertebrae (T1-L5) from the vertebral columns of individuals 20 to 80 years of age were measured, using a Microscribe three-dimensional apparatus (Immersion Co., San Jose, CA). Data were recorded directly on computer software. Statistical analysis included paired t tests and analysis of variance. RESULTS.: Facet orientation is independent of gender, age, and ethnic group. Asymmetry in facet orientation is found in the thorax. All thoracolumbar facets are positioned in an oblique plane. In the transverse plane, all facets from T1 to T11 are positioned with an anterior inclination of approximately 25 degrees to 30 degrees from the frontal plane. The facets of T12-L2 are oriented closer to the midsagittal plane of the vertebral body (mean range, 25.89 degrees-33.87 degrees), while the facets of L3-L5 are oriented away from that plane (mean range, 40.40 degrees-56.30 degrees). Facet transverse orientation at the thoracolumbar junction is highly variable (approximately 80% with approximately 101 degrees and approximately 20% with 35 degrees). All facets are oriented more vertically from T1 (approximately 150 degrees) to L5 (approximately 170 degrees). The facet sagittal orientations of the lumbar zygoapophyseal joints are not equivalent. CONCLUSIONS.: Asymmetry in facet orientation is a normal characteristic in the thorax.

  15. Undifferentiated Gender Role Orientation, Drinking Motives, and Increased Alcohol Use in Men and Women.

    PubMed

    Fugitt, Jessica L; Ham, Lindsay S; Bridges, Ana J

    2017-05-12

    Alcohol misuse has historically affected men more than women. However, the differences in drinking behaviors across sex have steadily decreased over time and accumulating research suggests that gender role orientation, or culturally scripted gender-specific characteristics, and negative reinforcement drinking motives may better explain risk for alcohol use and related problems than sex. The current study tested a mediational model of the undifferentiated orientation (low masculinity and low femininity), an oft neglected orientation despite evidence that it could carry much weight in drinking behaviors, versus the other three gender role orientations, coping and conformity drinking motives, and hazardous alcohol use. Participants were 426 current drinkers over age 21 (41% men; 77.8% Caucasian; M age = 34.5, range = 21-73) residing across the United States who completed an online survey. Structural equation modeling analyses suggested that individuals with an undifferentiated orientation (n = 99), compared to masculine (high masculinity, low femininity; n = 102), feminine (high femininity, low masculinity; n = 113), or androgynous (high masculinity, high femininity; n = 112) orientations, reported higher coping drinking motives, which were positively associated with levels of hazardous alcohol use. Although analyses suggested that undifferentiated individuals reported drinking for conformity motives more often than masculine and androgynous individuals, conformity motives were not associated with increased use. Conclusions/Importance: An undifferentiated gender role orientation may contribute a unique risk for alcohol use and related problems by increasing frequency of drinking to cope, a motive specifically associated with hazardous use trajectories.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killian, Christopher; Metzler, Rebecca; Gong, Y. U. T.

    Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO{sub 3}) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin (Strongylocentrotus purpuratus), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction ({mu}XRD).more » All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO{sub 3} is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.« less

  17. High-aspect-ratio microstructures with versatile slanting angles on silicon by uniform metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Liyi; Zhang, Cheng; Tuan, Chia-Chi; Chen, Yun; Wong, C.-P.

    2018-05-01

    High-aspect-ratio (HAR) microstructures on silicon (Si) play key roles in photonics and electromechanical devices. However, it has been challenging to fabricate HAR microstructures with slanting profiles. Here we report successful fabrication of uniform HAR microstructures with controllable slanting angles on (1 0 0)-Si by slanted uniform metal-assisted chemical etching (SUMaCE). The trenches have width of 2 µm, aspect ratio greater than 20:1 and high geometric uniformity. The slanting angles can be adjusted between 2-70° with respect to the Si surface normal. The results support a fundamental hypothesis that under the UMaCE condition, the preferred etching direction is along the normal of the thin film catalysts, regardless of the relative orientation of the catalyst to Si substrates or the crystalline orientation of the substrates. The SUMaCE method paves the way to HAR 3D microfabrication with arbitrary slanting profiles inside Si.

  18. Orientation damage in the Christchurch cemeteries generated during the Christchurch earthquakes of 2010

    NASA Astrophysics Data System (ADS)

    Martín-González, Fidel; Perez-Lopez, Raul; Rodrigez-Pascua, Miguel Angel; Martin-Velazquez, Silvia

    2014-05-01

    The intensity scales determined the damage caused by an earthquake. However, a new methodology takes into account not only the damage but the type of damage "Earthquake Archaeological Effects" EAE's, and its orientation (e.g. displaced masonry blocks, impact marks, conjugated fractures, fallen and oriented columns, dipping broken corners, etc.). It focuses not only on the amount of damage but also in its orientation, giving information about the ground motion during the earthquake. In 2010 an earthquake of magnitude 6.2 took place in Christchurch (New Zealand) (22-2-2010), 185 casualties, making it the second-deadliest natural disaster in New Zealand. Due to the magnitude of the catastrophe, the city centre (CBD) was closed and the most damaged buildings were closed and later demolished. For this reason it could not be possible to access to sampling or make observations in the most damaged areas. However, the cemeteries were not closed and a year later still remained intact since the financial means to recover were used to reconstruct infrastructures and housing the city. This peculiarity of the cemeteries made measures of the earthquake effects possible. Orientation damage was measured on the tombs, crosses and headstones of the cemeteries (mainly on falling objects such as fallen crosses, obelisks, displaced tombstones, etc.). 140 data were taken in the most important cemeteries (Barbadoes, Addington, Pebleton, Woodston, Broomley and Linwood cemeteries) covering much of the city area. The procedure involved two main phases: a) inventory and identification of damages, and b) analysis of the damage orientations. The orientation was calculated for each element and plotted in a map and statistically in rose diagrams. The orientation dispersion is high in some cemeteries but damage orientation S-N and E-W is observed. However, due to the multiple seismogenic faults responsible for earthquakes and damages in Christchurch during the year after the 2010 earthquake, a more detailed correlation of the ground acceleration and the damages is being carried out. The orientation of the damage is not usually recorded after an earthquake; however, it can provide information on the orientation of the peak ground acceleration. Thus, when an earthquake occurs, the analysis of the damage orientation can provide information about the seismic source.

  19. Growth diagram of N-face GaN (0001{sup ¯}) grown at high rate by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okumura, Hironori, E-mail: okumura@engineering.ucsb.edu; McSkimming, Brian M.; Speck, James S.

    2014-01-06

    N-face GaN was grown on free-standing GaN (0001{sup ¯}) substrates at a growth rate of 1.5 μm/h using plasma-assisted molecular beam epitaxy. Difference in growth rate between (0001{sup ¯}) and (0001) oriented GaN depends on nitrogen plasma power, and the (0001{sup ¯}) oriented GaN had only 70% of the growth rate of the (0001) oriented GaN at 300 W. Unintentional impurity concentrations of silicon, carbon, and oxygen were 2 × 10{sup 15}, 2 × 10{sup 16}, and 7 × 10{sup 16} cm{sup −3}, respectively. A growth diagram was constructed that shows the dependence of the growth modes on the difference in the Ga and active nitrogen flux, Φ{sub Ga} − Φ{submore » N*}, and the growth temperature. At high Φ{sub Ga} − Φ{sub N*} (Φ{sub Ga} ≫ Φ{sub N*}), two-dimensional (step-flow and layer-by-layer) growth modes were realized. High growth temperature (780 °C) expanded the growth window of the two-dimensional growth modes, achieving a surface with rms roughness of 0.48 nm without Ga droplets.« less

  20. High-Oriented Polypyrrole Nanotubes for Next-Generation Gas Sensor.

    PubMed

    Xue, Mianqi; Li, Fengwang; Chen, Dong; Yang, Zhanhai; Wang, Xiaowei; Ji, Junhui

    2016-10-01

    Highly oriented PPy nanotubes are grown by in situ vapor phase polymerization within a nanoscale template under low temperature. As-fabricated PPy nanotubes are used for gas sensing, where an ultralow detection limit (0.05 ppb) and very fast response are achieved. Such an in situ mass-productive method for synthesizing highly oriented conducting polymers may pave a new step toward next-generation gas sensors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Brain system for mental orientation in space, time, and person.

    PubMed

    Peer, Michael; Salomon, Roy; Goldberg, Ilan; Blanke, Olaf; Arzy, Shahar

    2015-09-01

    Orientation is a fundamental mental function that processes the relations between the behaving self to space (places), time (events), and person (people). Behavioral and neuroimaging studies have hinted at interrelations between processing of these three domains. To unravel the neurocognitive basis of orientation, we used high-resolution 7T functional MRI as 16 subjects compared their subjective distance to different places, events, or people. Analysis at the individual-subject level revealed cortical activation related to orientation in space, time, and person in a precisely localized set of structures in the precuneus, inferior parietal, and medial frontal cortex. Comparison of orientation domains revealed a consistent order of cortical activity inside the precuneus and inferior parietal lobes, with space orientation activating posterior regions, followed anteriorly by person and then time. Core regions at the precuneus and inferior parietal lobe were activated for multiple orientation domains, suggesting also common processing for orientation across domains. The medial prefrontal cortex showed a posterior activation for time and anterior for person. Finally, the default-mode network, identified in a separate resting-state scan, was active for all orientation domains and overlapped mostly with person-orientation regions. These findings suggest that mental orientation in space, time, and person is managed by a specific brain system with a highly ordered internal organization, closely related to the default-mode network.

  2. Study on the effects of Ga-2N high co-doping and preferred orientation on the stability, bandgap and absorption spectrum of ZnO

    NASA Astrophysics Data System (ADS)

    Hou, Qing-Yu; Li, Wen-Cai; Qu, Ling-Feng; Zhao, Chun-Wang

    2017-06-01

    Currently, the stability and visible light properties of Ga-2N co-doped ZnO systems have been studied extensively by experimental analysis and theoretical calculations. However, previous theoretical calculations arbitrarily assigned Ga- and 2N-doped sites in ZnO. In addition, the most stable and possible doping orientations of doped systems have not been fully and systematically considered. Therefore, in this paper, the electron structure and absorption spectra of the unit cells of doped and pure systems were calculated by first-principles plane-wave ultrasoft pseudopotential with the GGA+U method. Calculations were performed for pure ZnO, Ga-2N supercells heavily co-doped with Zn1-xGaxO1-yNy (x = 0.03125 - 0.0625, y = 0.0625 - 0.125) under different co-doping orientations and conditions, and the Zn16GaN2O14 interstitial model. The results indicated that under different orientations and constant Ga-2N co-doping concentrations, the systems co-doped with Ga-N atoms vertically oriented to the c-axis and with another N atom located in the nearest-neighboring site exhibited higher stability over the others, thus lowering formation energy and facilitating doping. Moreover, Ga-interstitial- and 2N-co-doped ZnO systems easily formed chemical compounds. Increasing co-doping concentration while the co-doping method remained constant decreased doped system volume and lowered formation energies. Meantime, co-doped systems were more stable and doping was facilitated. The bandgap was also narrower and red shifting of the absorption spectrum was more significant. These results agreed with previously reported experimental results. In addition, the absorption spectra of Ga-interstitial- and 2N-co-doped ZnO both blue shifted in the UV region compared with that of the pure ZnO system.

  3. Oriented epitaxial TiO2 nanowires for water splitting

    NASA Astrophysics Data System (ADS)

    Hou, Wenting; Cortez, Pablo; Wuhrer, Richard; Macartney, Sam; Bozhilov, Krassimir N.; Liu, Rong; Sheppard, Leigh R.; Kisailus, David

    2017-06-01

    Highly oriented epitaxial rutile titanium dioxide (TiO2) nanowire arrays have been hydrothermally grown on polycrystalline TiO2 templates with their orientation dependent on the underlying TiO2 grain. Both the diameter and areal density of the nanowires were tuned by controlling the precursor concentration, and the template surface energy and roughness. Nanowire tip sharpness was influenced by precursor solubility and diffusivity. A new secondary ion mass spectrometer technique has been developed to install additional nucleation sites in single crystal TiO2 templates and the effect on nanowire growth was probed. Using the acquired TiO2 nanowire synthesis knowhow, an assortment of nanowire arrays were installed upon the surface of undoped TiO2 photo-electrodes and assessed for their photo-electrochemical water splitting performance. The key result obtained was that the presence of short and dispersed nanowire arrays significantly improved the photocurrent when the illumination intensity was increased from 100 to 200 mW cm-2. This is attributed to the alignment of the homoepitaxially grown nanowires to the [001] direction, which provides the fastest charge transport in TiO2 and an improved pathway for photo-holes to find water molecules and undertake oxidation. This result lays a foundation for achieving efficient water splitting under conditions of concentrated solar illumination.

  4. Does power distance exacerbate or mitigate the effects of abusive supervision? It depends on the outcome.

    PubMed

    Lian, Huiwen; Ferris, D Lance; Brown, Douglas J

    2012-01-01

    We predicted that the effects of abusive supervision are likely to be moderated by subordinate power distance orientation and that the nature of the moderating effect will depend on the outcome. Drawing upon work suggesting that high power distance orientation subordinates are more tolerant of supervisory mistreatment, we posited that high power distance orientation subordinates would be less likely to view abusive supervision as interpersonally unfair. Drawing upon social learning theory suggestions that high power distance orientation subordinates are more likely to view supervisors as role models, we posited that high power distance orientation subordinates would be more likely to pattern their own interpersonally deviant behavior after that of abusive supervisors. Across 3 samples we found support for our predicted interactions, culminating in a mediated moderation model demonstrating that social learning mediates the interaction of abusive supervision and power distance on subordinate interpersonal deviance, while ruling out alternate self-regulation impairment or displaced aggression explanations. Implications for the abusive supervision literature are discussed.

  5. High-Temperature Microindentation Tests on Olivine and Clinopyroxene

    NASA Astrophysics Data System (ADS)

    Dorner, D.; Schellewald, M.; Stöckhert, B.

    2001-12-01

    The perspectives of microindentation techniques for the investigation of the mechanical behaviour of minerals at high temperatures are explored. The technique offers the following advantages: (1) natural specimens with small grain size can be used, (2) preparation is simple, (3) a reasonable number of experiments can be performed within a short period of time. The strength of single crystals as a function of orientation and the activated glide systems are studied using scanning electron microscopy (SEM) combined with electron backscatter diffraction (EBSD) facilities. Furthermore, the effects of compositional variations on the flow strength of solid solutions are explored. The indentation hardness tests are performed on selected grains within natural polycrystalline aggregates. The surface of the specimen is polished mechanically and chemically. The orientation of the crystals is determined using EBSD. The indentation tests are performed with a diamond pyramid (Vickers indenter) at temperatures of 25 ° C to 900 ° C. Loading is done with a constant displacement rate up to a force of 0.5 N, followed by a creep period of 10 s at constant load. SEM is used to measure the size of the indents and to examine their morphology in detail. The microhardness obtained for olivine depends on crystal and indenter orientation and decreases slightly with temperature. Slip steps are observed on the surface around the indents. Their orientation with respect to the crystal orientation indicates that the predominant glide system activated in the indentation process is \\{110\\}[001]. The Schmid factors for this glide system correlate with the observed orientation dependence of the hardness. Indentation hardness of clinopyroxene solid solutions depends on composition with jadeite being stronger than diopside. This is inverse to what is expected for dislocation creep. The high yield stresses inferred from the hardness data and the weak dependence of hardness on temperature are consistent with plasticity being the deformation regime explored in indentation hardness tests.

  6. Coupled solar-magnetic orientation during leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) long-distance migration

    NASA Astrophysics Data System (ADS)

    Horton, T. W.; Holdaway, R. N.; Zerbini, A.; Andriolo, A.; Clapham, P. J.

    2010-12-01

    Determining how animals perform long-distance animal migration remains one of the most enduring and fundamental mysteries of behavioural ecology. It is widely accepted that navigation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and significant experimental research has documented a variety of viable orientation and navigation cues. However, relatively few investigations have attempted to reconcile experimentally determined orientation and navigation capacities of animals with empirical remotely sensed animal track data, leaving most theories of navigation and orientation untested. Here we show, using basic hypothesis testing, that leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) migration paths are non-randomly distributed in magnetic coordinate space, with local peaks in magnetic coordinate distributions equal to fractional multiples of the angular obliquity of Earth’s axis of rotation. Time series analysis of humpback whale migratory behaviours, including migration initiation, changes in course, and migratory stop-overs, further demonstrate coupling of magnetic and celestial orientation cues during long-distance migration. These unexpected and highly novel results indicate that diverse taxa integrate magnetic and celestial orientation cues during long-distance migration. These results are compatible with a 'map and compass' orientation and navigation system. Humpback whale migration track geometries further indicate a map and compass orientation system is used. Several humpback whale tracks include highly directional segments (Mercator latitude vs. longitude r2>0.99) exceeding 2000 km in length, despite exposure to variable strength (c. 0-1 km/hr) surface cross-currents. Humpback whales appear to be able to compensate for surface current drift. The remarkable directional precision of these humpback whale track segments is far better than the ±25°-40° precision of the avian magnetic compass. The positional and directional orientation data presented suggests signal transduction provides spatial information to migrating animals with better than 1° precision.

  7. George Washington High School. Bilingual Academic and Career Orientation Program, 1981-1982. O.E.E. Evaluation Report.

    ERIC Educational Resources Information Center

    Cotayo, Armando; And Others

    The Bilingual Academic and Career Orientation Program (BACOP) at George Washington High School in New York City is a basic bilingual secondary education program with a career orientation focus. In 1981-82, the program offered bilingual instructional and supportive services to 250 Hispanic students of limited English proficiency in grades nine…

  8. Citizenship Orientations in a Divided Society: A Comparison of Three Groups of Israeli Junior-High Students--Secular Jews, Religious Jews, and Israeli Arabs

    ERIC Educational Resources Information Center

    Sabbagh, Clara; Resh, Nura

    2014-01-01

    This study identifies major preferences for combinations of rights and duties (henceforth, citizenship orientations), as reflected in the political worldview of Israeli junior-high school students. Two distinct orientations were found, termed here as "liberal" and "ethno-republican". In order to contextualize the examination of…

  9. Autonomous, Controlled, and Amotivated Types of Academic Motivation: A Person-Oriented Analysis

    ERIC Educational Resources Information Center

    Ratelle, Catherine F.; Guay, Frederic; Vallerand, Robert J.; Larose, Simon; Senecal, Caroline

    2007-01-01

    The authors investigated students' profiles regarding autonomous, controlled, and amotivated regulation and tested whether profile groups differed on some academic adjustment outcomes. Studies 1 and 2 performed on high school students revealed 3 profiles: (a) students with high levels of both controlled motivation and amotivation but low levels of…

  10. Special Education: Program of Studies for Senior High School, Core IV.

    ERIC Educational Resources Information Center

    Forsyth County - Winston-Salem City Schools, NC.

    A curriculum guide for senior high school educable retarded pupils, based on activities undertaken during the first 2 years of the special program, is oriented toward job training and preparation. Purposes, course structure, and objectives are given for each of the following areas of study: arts and crafts, binding, business practice, driver…

  11. Climate Control. Secondary School Course Guide.

    ERIC Educational Resources Information Center

    DuPlantis, Ernest P.

    This course guide is oriented toward developing skills in air conditioning and refrigeration installation and service. Although primarily designed as a 2-year program for high school students at the junior and senior levels, it is equally acceptable for the post high school student as an occupational training program, or as a refresher course for…

  12. Fabrication of highly oriented nanoporous fibers via airflow bubble-spinning

    NASA Astrophysics Data System (ADS)

    Liu, Fujuan; Li, Shaokai; Fang, Yue; Zheng, Fangfang; Li, Junhua; He, Jihuan

    2017-11-01

    Highly oriented Poly(lactic acid) (PLA) nanofibers with nanoporous structures has been successfully fabricated via airflow bubble-spinning without electrostatic hazard. In this work, the volatile solvent was necessary for preparing the nanoporous fiber, which was attributed to the competition between phase separation and solvent evaporation. The interconnected porous structures were affected by the processing variables of solution concentration, airflow temperature, collecting distance and relative humidity (RH). Besides, the rheological properties of solutions were studied and the highly oriented PLA nanofibers with nanoporous structure were also completely characterized using scanning electron microscope (SEM). This study provided a novel technique that successfully gets rid of the potential safety hazards caused by unexpected static to prepare highly oriented nanoporous fibers, which would demonstrate an impressive prospect for the fields of adsorption and filtration.

  13. Goal orientations and sport motivation, differences between the athletes of competitive and non-competitive rhythmic gymnastics.

    PubMed

    Koumpoula, M; Tsopani, D; Flessas, K; Chairopoulou, C

    2011-09-01

    The present study examines the sport motivation and the goal orientations in the competitive and non-competitive structure of rhythmic gymnastics. Participation of individuals in one or the other structure of the sport differs in line with the goals they want to achieve and possibly also with respect to the factors that impulse them to take part in one or the other. The purpose of this study is to examine how individuals who participate in different structures of the sport of rhythmic gymnastics differentiate with regard to the type of motivation (intrinsic, extrinsic, amotivation) and goal orientations. The study involved 98 young female rhythmic gymnastics athletes (aged 14 years and up), out of which 40 were athletes of competitive clubs or members of national teams, and 58 were athletes of non-competitive clubs. For the evaluation of motivation and goal orientations the following tools were used: the Sport Motivation Scale (SMS) and the Task and Ego Orientation in Sport Questionnaire (TEOSQ). Descriptive and inductive statistical data analysis was conducted. The results showed that the athletes of the non-competitive structure presented higher levels of introjected regulation (extrinsic motivation), amotivation and lower levels of ego orientation (P<0.05). Rhythmic gymnastics athletes' (regardless of the structure of the sport) presented high level in task orientation while the high levels of task orientation is positively associated with high levels of intrinsic motivation regardless of the levels of ego orientation. The intrinsic motivation of athletes participating in rhythmic gymnastics runs at high levels. The amotivation of rhythmic gymnastics athletes' is a phenomenon which is also presented in the the non-competitive sport structure. It is important that the two different structures of sports be determined with accurate criteria.

  14. Methodology for object-oriented real-time systems analysis and design: Software engineering

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.

    1991-01-01

    Successful application of software engineering methodologies requires an integrated analysis and design life-cycle in which the various phases flow smoothly 'seamlessly' from analysis through design to implementation. Furthermore, different analysis methodologies often lead to different structuring of the system so that the transition from analysis to design may be awkward depending on the design methodology to be used. This is especially important when object-oriented programming is to be used for implementation when the original specification and perhaps high-level design is non-object oriented. Two approaches to real-time systems analysis which can lead to an object-oriented design are contrasted: (1) modeling the system using structured analysis with real-time extensions which emphasizes data and control flows followed by the abstraction of objects where the operations or methods of the objects correspond to processes in the data flow diagrams and then design in terms of these objects; and (2) modeling the system from the beginning as a set of naturally occurring concurrent entities (objects) each having its own time-behavior defined by a set of states and state-transition rules and seamlessly transforming the analysis models into high-level design models. A new concept of a 'real-time systems-analysis object' is introduced and becomes the basic building block of a series of seamlessly-connected models which progress from the object-oriented real-time systems analysis and design system analysis logical models through the physical architectural models and the high-level design stages. The methodology is appropriate to the overall specification including hardware and software modules. In software modules, the systems analysis objects are transformed into software objects.

  15. On the Binding Stress-Enhanced Sensitivity of (Pb(Mg1/3Nb2/3)O3)0.65-(PbTiO3) 0.35 (PMN-PT) Piezoelectric Plate Sensor (PEPS)

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    (Pb(Mg1/3Nb2/3)O3)0.65-(PbTiO 3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) showed enhanced sensitivity in chemical and biological sensing applications which has been attributed to binding-induced crystalline orientation switching in the PMN-PT layer. However, so far there has been no direct demonstration of PEPS crystalline orientation switching upon target-analyte binding. Using biotin and streptavidin binding as a model detection system and by direct X-Ray diffraction observations after analyte binding we have unambiguously demonstrated that switching of the crystalline orientations of the PMN-PT layer indeed occurred. In addition, we have shown that PEPS sensitivity enhancement increased with an increasing transverse electromechanical coupling constant, -k31, of the PMN-PT layer--which is known to correlate with the crystalline orientation switching capability--by increasing the grain size of the PMN-PT layer or by applying a DC bias electric field. Finally, unprecedented high sensitivity of PEPS with high -k31, (i.e., -k31 > 0.3) were illustrated by the aM (10-18 M) sensitivity of in situ DNA hybridization detection without amplification and by the 100 fg/ml (10-13 g/ml) sensitivity of rapid, in situ protein detection in biological fluids such as troponin I detection in serum for early sign of myocardial infarction (heart attack), Her2 detection in serum for cancer treatment and monitoring, Tn antigen and anti-Tn antibody detection in serum for early cancer detection, and Toxins detection in stool for Clostridium difficile infection detection.

  16. Tilted Orientation of Photochromic Dyes with Guest-Host Effect of Liquid Crystalline Polymer Matrix for Electrical UV Sensing

    PubMed Central

    Ranjkesh, Amid; Park, Min-Kyu; Park, Do Hyuk; Park, Ji-Sub; Choi, Jun-Chan; Kim, Sung-Hoon; Kim, Hak-Rin

    2015-01-01

    We propose a highly oriented photochromic dye film for an ultraviolet (UV)-sensing layer, where spirooxazine (SO) derivatives are aligned with the liquid crystalline UV-curable reactive mesogens (RM) using a guest-host effect. For effective electrical UV sensing with a simple metal-insulator-metal structure, our results show that the UV-induced switchable dipole moment amount of the SO derivatives is high; however, their tilting orientation should be controlled. Compared to the dielectric layer with the nearly planar SO dye orientation, the photochromic dielectric layer with the moderately tilted dye orientation shows more than seven times higher the UV-induced capacitance variation. PMID:26729116

  17. The orientation of iron–sulphur clusters in membrane multilayers prepared from aerobically-grown Escherichia coli K12 and a cytochrome-deficient mutant

    PubMed Central

    Blum, Haywood; Poole, Robert K.; Ohnishi, Tomoko

    1980-01-01

    1. Membrane particles prepared from ultrasonically-disrupted, aerobically-grown Escherichia coli were centrifuged on to a plastic film that was supported perpendicular to the centrifugal field to yield oriented membrane multilayers. In such preparations, there is a high degree of orientation of the planes of the membranes such that they lie parallel to each other and to the supporting film. 2. When dithionite- or succinate-reduced multilayers are rotated in the magnetic field of an e.p.r. spectrometer, about an axis lying in the membrane plane, angular-dependent signals from an iron–sulphur cluster at gx=1.92, gy=1.93 and gz=2.02 are seen. The g=1.93 signal has maximal amplitude when the plane of the multilayer is perpendicular to the magnetic field. Conversely, the g=2.02 signal is maximal when the plane of the multilayer is parallel with the magnetic field. 3. Computer simulations of the experimental data show that the cluster lies in the cytoplasmic membrane with the gy axis perpendicular to the membrane plane and with the gx and gz axes lying in the membrane plane. 4. In partially-oxidized multilayers, a signal resembling the mitochondrial high-potential iron–sulphur protein (Hipip) is seen whose gz=2.02 axis may be deduced as lying perpendicular to the membrane plane. 5. Appropriate choice of sample temperature and receiver gain reveals two further signals in partially-reduced multilayers: a g=2.09 signal arises from a cluster with its gz axis in the membrane plane, whereas a g=2.04 signal is from a cluster with the gz axis lying along the membrane normal. 6. Membrane particles from a glucose-grown, haem-deficient mutant contain dramatically-lowered levels of cytochromes and exhibit, in addition to the iron–sulphur clusters seen in the parental strain, a major signal at g=1.90. 7. Only the latter may be demonstrated to be oriented in multilayer preparations from the mutant. 8. Comparisons are drawn between the orientations of the iron–sulphur proteins in the cytoplasmic membrane of E. coli and those in mitochondrial membranes. The effects of diminished cytochrome content on the properties of the iron–sulphur proteins are discussed. PMID:6258566

  18. 3D hierarchical porous cobalt monoxide nanoplates with a book-like structure derived from Co(CO3)0.5(OH)·0.11H2O: two-steps oriented attachment and high-performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Xiao, Yuanhua; Zhao, Xiaobing; Jin, Qingxian; Su, Dangcheng; Wang, Xuezhao; Wu, Shide; Zhou, Liming; Fang, Shaoming

    2017-10-01

    3D Hierarchical porous cobalt monoxide (CoO) nanoplates with a book-like structure derive from Co(CO3)0.5(OH)·0.11H2O by a two-steps oriented attachment mechanism in the solvothermal process. Firstly, nanoplates are formed by oriented attachment of nanorods. Secondly, new nanoplates could be generated on the old nanoplates by a sloped oriented attachment of nanorods with the based nanoplates shape into a 3D hierarchical book-like structure. The CoO nanoplates show superior specific capacitance about 1221.7 F g-1 at 1 A g-1 to most of the Co-based supercapacitor materials up to date. An asymmetric supercapacitor (ASC) based on positive electrode CoO and negative electrode active carbon (AC) exhibits an excellent energy density of 50.1 Wh kg-1 at a power density of 589 W kg-1 and gets a satisfactory cycling stability (86.3% of its initial capacitance retention at 10 A g-1 over 10 000 cycles).

  19. The long road to employment: Incivility experienced by job seekers.

    PubMed

    Ali, Abdifatah A; Ryan, Ann Marie; Lyons, Brent J; Ehrhart, Mark G; Wessel, Jennifer L

    2016-03-01

    This study addresses how job seekers' experiences of rude and discourteous treatment--incivility--can adversely affect self-regulatory processes underlying job searching. Using the social-cognitive model (Zimmerman, 2000), we integrate social-cognitive theory with the goal orientation literature to examine how job search self-efficacy mediates the relationship between incivility and job search behaviors and how individual differences in learning goal orientation and avoid-performance goal orientation moderate that process. We conducted 3 studies with diverse methods and samples. Study 1 employed a mixed-method design to understand the nature of incivility within the job search context and highlight the role of attributions in linking incivility to subsequent job search motivation and behavior. We tested our hypotheses in Study 2 and 3 employing time-lagged research designs with unemployed job seekers and new labor market entrants. Across both Study 2 and 3 we found evidence that the negative effect of incivility on job search self-efficacy and subsequent job search behaviors are stronger for individuals low, rather than high, in avoid-performance goal orientation. Theoretical implications of our findings and practical recommendations for how to address the influence of incivility on job seeking are discussed. (c) 2016 APA, all rights reserved).

  20. A Confined Fabrication of Perovskite Quantum Dots in Oriented MOF Thin Film.

    PubMed

    Chen, Zheng; Gu, Zhi-Gang; Fu, Wen-Qiang; Wang, Fei; Zhang, Jian

    2016-10-26

    Organic-inorganic hybrid lead organohalide perovskites are inexpensive materials for high-efficiency photovoltaic solar cells, optical properties, and superior electrical conductivity. However, the fabrication of their quantum dots (QDs) with uniform ultrasmall particles is still a challenge. Here we use oriented microporous metal-organic framework (MOF) thin film prepared by liquid phase epitaxy approach as a template for CH 3 NH 3 PbI 2 X (X = Cl, Br, and I) perovskite QDs fabrication. By introducing the PbI 2 and CH 3 NH 3 X (MAX) precursors into MOF HKUST-1 (Cu 3 (BTC) 2 , BTC = 1,3,5-benzene tricarboxylate) thin film in a stepwise approach, the resulting perovskite MAPbI 2 X (X = Cl, Br, and I) QDs with uniform diameters of 1.5-2 nm match the pore size of HKUST-1. Furthermore, the photoluminescent properties and stability in the moist air of the perovskite QDs loaded HKUST-1 thin film were studied. This confined fabrication strategy demonstrates that the perovskite QDs loaded MOF thin film will be insensitive to air exposure and offers a novel means of confining the uniform size of the similar perovskite QDs according to the oriented porous MOF materials.

  1. The influence of surface on the running velocities of elite and amateur orienteer athletes.

    PubMed

    Hébert-Losier, K; Jensen, K; Mourot, L; Holmberg, H-C

    2014-12-01

    We compared the reduction in running velocities from road to off-road terrain in eight elite and eight amateur male orienteer athletes to investigate whether this factor differentiates elite from amateur athletes. On two separate days, each subject ran three 2-km time trials and three 20-m sprints "all-out" on a road, on a path, and in a forest. On a third day, the running economy and maximal aerobic power of individuals were assessed on a treadmill. The elite orienteer ran faster than the amateur on all three surfaces and at both distances, in line with their better running economy and aerobic power. In the forest, the elites ran at a slightly higher percentage of their 2-km (∼3%) and 20-m (∼4%) road velocities. Although these differences did not exhibit traditional statistical significance, magnitude-based inferences suggested likely meaningful differences, particularly during 20-m sprinting. Of course, cognitive, mental, and physical attributes other than the ability to run on different surfaces are required for excellence in orienteering (e.g., a high aerobic power). However, we suggest that athlete-specific assessment of running performance on various surfaces and distances might assist in tailoring training and identifying individual strengths and/or weaknesses in an orienteer. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Praseodymium Cuprate Thin Film Cathodes for Intermediate Temperature Solid Oxide Fuel Cells: Roles of Doping, Orientation, and Crystal Structure.

    PubMed

    Mukherjee, Kunal; Hayamizu, Yoshiaki; Kim, Chang Sub; Kolchina, Liudmila M; Mazo, Galina N; Istomin, Sergey Ya; Bishop, Sean R; Tuller, Harry L

    2016-12-21

    Highly textured thin films of undoped, Ce-doped, and Sr-doped Pr 2 CuO 4 were synthesized on single crystal YSZ substrates using pulsed laser deposition to investigate their area-specific resistance (ASR) as cathodes in solid-oxide fuel cells (SOFCs). The effects of T' and T* crystal structures, donor and acceptor doping, and a-axis and c-axis orientation on ASR were systematically studied using electrochemical impedance spectroscopy on half cells. The addition of both Ce and Sr dopants resulted in improvements in ASR in c-axis oriented films, as did the T* crystal structure with the a-axis orientation. Pr 1.6 Sr 0.4 CuO 4 is identified as a potential cathode material with nearly an order of magnitude faster oxygen reduction reaction kinetics at 600 °C compared to thin films of the commonly studied cathode material La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3-δ . Orientation control of the cuprate films on YSZ was achieved using seed layers, and the anisotropy in the ASR was found to be less than an order of magnitude. The rare-earth doped cuprate was found to be a versatile system for study of relationships between bulk properties and the oxygen reduction reaction, critical for improving SOFC performance.

  3. Determination and experimental verification of high-temperature SAW orientations on langatate.

    PubMed

    Davulis, Peter M; da Cunha, Mauricio Pereira

    2012-02-01

    Langatate (LGT) is a member of the langasite family of crystals appropriate for high-temperature frequency control and sensing applications. This paper identifies multiple LGT SAW orientations for use at high temperature, specifically in the 400°C to 900°C range. Orientations with low sensitivity to temperature are desired for frequency control devices and many sensors, conversely large temperature sensitivity is a benefit for temperature sensors. The LGT SAW temperature behavior has been calculated for orientations sweeping the Euler angles (0°, Θ, ψ), (90°, Θ, ψ), and (ψ, 90°, ψ), based on newly identified high-temperature elastic constants and temperature coefficients for this material. The temperature coefficient of delay (TCD) and total frequency change over the temperature range were analyzed from 400°C to 900°C. Multiple SAW orientations were identified with zero-TCD between 400°C and 500°C. Although no orientations that have turn-over temperatures above 500°C were identified, several have low frequency variation with temperature, of the order of -0.8% over the range 400°C to 800°C. Temperature-sensitive orientations with TCD up to 75 ppm/°C at 900°C were identified, with potential for high-temperature sensor applications. The reported predictions are shown to agree with measured behavior of LGT SAW delay lines fabricated along 6 orientations in the (90°, 23°, ψ) plane. In addition, this work demonstrates that concurrently operated LGT SAW devices fabricated on the same wafer provide means of temperature sensing. In particular, the measured frequency difference between delay lines oriented along (90°, 23°, 0°) and (90°, 23°, 48°) has fractional temperature sensitivity that ranges from -172 ppm/°C at 25°C to -205 ppm/°C at 900°C.

  4. Sexual Orientation Disparities in Weight Status in Adolescence: Findings From a Prospective Study

    PubMed Central

    Austin, S. Bryn; Ziyadeh, Najat J.; Corliss, Heather L.; Haines, Jess; Rockett, Helaine; Wypij, David; Field, Alison E.

    2009-01-01

    A growing number of studies among adult women have documented disparities in overweight adversely affecting lesbian and bisexual women, but few studies have examined sexual orientation-related patterns in weight status among men or adolescents. We examined sexual orientation group trends in body mass index (BMI; kg/m2), BMI Z-scores, and overweight using 56,990 observations from 13,785 adolescent females and males in the Growing Up Today Study, a large prospective cohort of U.S. youth. Participants provided self-reported information from six waves of questionnaire data collection from 1998 to 2005. Gender-stratified linear regression models were used to estimate BMI and BMI Z-score and modified Poisson regression models to estimate risk ratios (RR) for overweight, controlling for age and race/ethnicity, with heterosexuals as the referent group. Among females, we observed fairly consistently elevated BMI in all sexual orientation minority groups relative to heterosexual peers. In contrast, among males we documented a sexual-orientation-by-age interaction indicating steeper increases in BMI with age from early to late adolescence in heterosexuals relative to sexual orientation minorities. Additional prospective research is needed to understand the determinants of observed sexual orientation disparities and to inform appropriate preventive and treatment interventions. The long-term health consequences of overweight are well-documented and over time are likely to exact a high toll on populations with elevated rates. PMID:19300430

  5. Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphrey, A.L.; Hendrickson, A.E.

    1983-02-01

    The authors have used 2-deoxy-D-(/sup 14/C)glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided with the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in themore » cortex, while the cytochrome label in these animals remained patchy. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli.« less

  6. Strong-field approximation for ionization of a diatomic molecule by a strong laser field. II. The role of electron rescattering off the molecular centers

    NASA Astrophysics Data System (ADS)

    Busuladžić, M.; Gazibegović-Busuladžić, A.; Milošević, D. B.; Becker, W.

    2008-09-01

    The strong-field approximation for ionization of diatomic molecules by a strong laser field [D. B. Milošević, Phys. Rev. A 74, 063404 (2006)] is generalized to include rescattering of the ionized electron wave packet off the molecular centers (the electron’s parent ion or the second atom). There are four rescattering contributions to the ionization rate, which are responsible for the high-energy plateau in the electron spectra and which interfere in a complicated manner. The spectra are even more complicated due to the different symmetry properties of the atomic orbitals of which a particular molecular orbital consists. Nevertheless, a comparatively simple condition emerges for the destructive interference of all these contributions, which yields a curve in the (Epf,θ) plane. Here θ is the electron emission angle and Epf is the electron kinetic energy. The resulting suppression of the rescattering plateau can be strong and affect a large area of the (Epf,θ) plane, depending on the orientation of the molecule. We illustrate this using the examples of the 3σg molecular orbital of N2 and the 1πg molecular orbital of O2 for various orientations of these molecules with respect to the laser polarization axis. For N2 , for perpendicular orientation and the equilibrium internuclear distance R0 , we find that the minima of the ionization rate form the curve Epfcos2θ=π2/(2R02) in the (Epf,θ) plane. For O2 the rescattering plateau is absent for perpendicular orientation.

  7. 76 FR 56735 - Small Takes of Marine Mammals Incidental to Specified Activities; Cape Wind's High Resolution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ... contexts and use sound for various biological functions including, but not limited to, (1) Social interactions; (2) foraging; (3) orientation; and (4) predator detection. Interference with producing or...

  8. Heating equipment installation system

    DOEpatents

    Meuschke, Robert E.; Pomaibo, Paul P.

    1991-01-01

    A method for installing a heater unit assembly (52, 54) in a reactor pressure vessel (2) for performance of an annealing treatment on the vessel (2), the vessel (2) having a vertical axis, being open at the top, being provided at the top with a flange (6) having a horizontal surface, and being provided internally, at a location below the flange (6), with orientation elements (8) which are asymmetrical with respect to the vertical axis, by the steps of: providing an orientation fixture (10) having an upwardly extending guide member (18) and orientation elements (14, 16) and installing the orientation fixture (10) in the vessel (2) so that the orientation elements (14,16) of the orientation fixture (10) mate with the orientation elements (8) of the pressure vessel (2) in order to establish a defined position of the orientation fixture (10) in the pressure vessel (2), and so that the guide member (18) projects above the pressure vessel (2) flange (6); placing a seal ring (30) in a defined position on the pressure vessel (2) flange (6) with the aid of the guide member (18); mounting at least one vertical, upwardly extending guide stud (40) upon the seal ring (30); withdrawing the orientation fixture (10) from the pressure vessel (2); and moving the heater unit assembly (52,54) vertically downwardly into the pressure vessel (2) while guiding the heater unit assembly (52,54) along a path with the aid of the guide stud (40).

  9. Determination of residual stress in a microtextured α titanium component using high-energy synchrotron X-rays

    DOE PAGES

    Park, Jun -Sang; Ray, Atish K.; Dawson, Paul R.; ...

    2016-05-02

    A shrink-fit sample is manufactured with a Ti-8Al-1Mo-1V alloy to introduce a multiaxial residual stress field in the disk of the sample. A set of strain and orientation pole figures are measured at various locations across the disk using synchrotron high-energy X-ray diffraction. Two approaches—the traditional sin 2Ψ method and the bi-scale optimization method—are taken to determine the stresses in the disk based on the measured strain and orientation pole figures, to explore the range of solutions that are possible for the stress field within the disk. While the stress components computed using the sin 2Ψ method and the bi-scalemore » optimization method have similar trends, their magnitudes are significantly different. Lastly, it is suspected that the local texture variation in the material is the cause of this discrepancy.« less

  10. Development of Functional Inorganic Materials by Soft Chemical Process Using Ion-Exchange Reactions

    NASA Astrophysics Data System (ADS)

    Feng, Qi

    Our study on soft chemical process using the metal oxide and metal hydroxide nanosheets obtained by exfoliation their layered compounds were reviewed. Ni(OH)2⁄MnO2 sandwich layered nanostructure can be prepared by layer by-layer stacking of exfoliated manganese oxide nanosheets and nickel hydroxide layers. Manganese oxide nanotubes can be obtained by curling the manganese oxide nanosheets using the cationic surfactants as the template. The layered titanate oriented thin film can be prepared by restacking the titanate nanosheets on a polycrystalline substrate, and transformed to the oriented BaTiO3 and TiO2 thin films by the topotactic structural transformation reactions, respectively. The titanate nanosheets can be transformed anatase-type TiO2 nanocrystals under hydrothermal conditions. The TiO2 nanocrystals are formed by a topotactic structural transformation reaction. The TiO2 nanocrystals prepared by this method expose specific crystal plane on their surfaces, and show high photocatalytic activity and high dye adsorption capacity for high performance dye-sensitized solar cell. A series of layered basic metal salt (LBMS) compounds were prepared by hydrothermal reactions of transition metal hydroxides and organic acids. We succeeded in the exfoliation of these LBMS compounds in alcohol solvents, and obtained the transition metal hydroxide nanosheets for the first time.

  11. Extracting cardiac myofiber orientations from high frequency ultrasound images

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Jiang, Rong; Shen, Ming; Wagner, Mary B.; Kirshbom, Paul; Fei, Baowei

    2013-03-01

    Cardiac myofiber plays an important role in stress mechanism during heart beating periods. The orientation of myofibers decides the effects of the stress distribution and the whole heart deformation. It is important to image and quantitatively extract these orientations for understanding the cardiac physiological and pathological mechanism and for diagnosis of chronic diseases. Ultrasound has been wildly used in cardiac diagnosis because of its ability of performing dynamic and noninvasive imaging and because of its low cost. An extraction method is proposed to automatically detect the cardiac myofiber orientations from high frequency ultrasound images. First, heart walls containing myofibers are imaged by B-mode high frequency (<20 MHz) ultrasound imaging. Second, myofiber orientations are extracted from ultrasound images using the proposed method that combines a nonlinear anisotropic diffusion filter, Canny edge detector, Hough transform, and K-means clustering. This method is validated by the results of ultrasound data from phantoms and pig hearts.

  12. Oriented niobate ferroelectric thin films for electrical and optical devices

    DOEpatents

    Wessels, Bruce W.; Nystrom, Michael J.

    2001-01-01

    Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or cyrstalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

  13. Adrenocorticotropic Hormone (ACTH) Responses Require Actions of the Melanocortin-2 Receptor Accessory Protein on the Extracellular Surface of the Plasma Membrane.

    PubMed

    Malik, Sundeep; Dolan, Terrance M; Maben, Zachary J; Hinkle, Patricia M

    2015-11-13

    The melanocortin-2 (MC2) receptor is a G protein-coupled receptor that mediates responses to ACTH. The MC2 receptor acts in concert with the MC2 receptor accessory protein (MRAP) that is absolutely required for ACTH binding and signaling. MRAP has a single transmembrane domain and forms a highly unusual antiparallel homodimer that is stably associated with MC2 receptors at the plasma membrane. Despite the physiological importance of the interaction between the MC2 receptor and MRAP, there is little understanding of how the accessory protein works. The dual topology of MRAP has made it impossible to determine whether highly conserved and necessary regions of MRAP are required on the intracellular or extracellular face of the plasma membrane. The strategy used here was to fix the orientation of two antiparallel MRAP molecules and then introduce inactivating mutations on one side of the membrane or the other. This was achieved by engineering proteins containing tandem copies of MRAP fused to the amino terminus of the MC2 receptor. The data firmly establish that only the extracellular amino terminus (Nout) copy of MRAP, oriented with critical segments on the extracellular side of the membrane, is essential. The transmembrane domain of MRAP is also required in only the Nout orientation. Finally, activity of MRAP-MRAP-MC2-receptor fusion proteins with inactivating mutations in either MRAP or the receptor was rescued by co-expression of free wild-type MRAP or free wild-type receptor. These results show that the basic MRAP-MRAP-receptor signaling unit forms higher order complexes and that these multimers signal. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Mixed ionic-electronic conductors for electrodes of barium cerate-based SOFCS

    NASA Astrophysics Data System (ADS)

    Wu, Zhonglin

    Gadolinium doped barium cerates (BCGs) have been identified as promising electrolyte materials for intermediate-temperature solid oxide fuel cells (SOFCs). It is crucial to develop compatible electrode materials for such electrolytes. Mixed ionic-electronic conductor (MIEC) electrode materials developed for SOFCs based on yttrium-stabilized zirconia (YSZ) may be used as electrode materials for BCG-based SOFCs; but a careful re-evaluation is required due to the intrinsic differences between BCG and YSZ. The performance of these electrode materials depends critically the transport of ionic and electronic species as well as gas. Accordingly, a profound understanding of transport in MIEC electrodes is imperative to effective design of high performance SOFCs. In this thesis, ambipolar transport in composite MIEC electrodes has been modeled using percolation theory to predict the effect of volume fractions of constituent phases and porosity on ambipolar conductivity. Transport and electrode kinetics of homogeneous MIEC electrodes have also been formulated under a steady-state condition to predict the distributions of ionic defects and current carried by each defect in such electrodes. Effects of catalytic properties, transport properties, and microstructure of porous electrodes and interfaces on the electrode performance are investigated. Under the guidelines of the theoretical modeling, several MIEC electrode materials are developed. Lasb{1-x}Srsb{x}Cosb{1-x}Fesb{y}Osb{3-delta} homogeneous materials are studied as cathode materials. However, the interfacial resistance seems too high due to the lack of catalytic activity at intermediate temperatures. Results indicate that Ag-Bisb{1.5}Ysb{0.5}Osb3 composite MIECs are good cathode materials when the volume fractions of constituent phases and porosity are carefully controlled. Such electrodes have low interfacial resistance, better binding strength, and smaller thermal mismatch with the BCG electrolyte, compared to other metal electrodes (such as Pt and Ag). Ni-BCG composite MIECs are studied as anode materials. It is found that electrodes prepared from NiO and reduced to Ni in situ is not catalytically active because of diffusion of NiO into BCG, which forms a resistive layer. Electrodes prepared from Ni metal and fired in an inert or reducing atmosphere exhibit low interfacial resistance and good compatibility with BCG electrolyte. Stability of these developed electrode materials is investigated under conditions pertinent to SOFCs.

  15. Oriented graphite layer formation in Ti/C and TiC/C multilayers deposited by high current pulsed cathodic arc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persson, P. O. A.; Ryves, L.; Tucker, M. D.

    2008-10-01

    Ti/C and TiC/C multilayers with periods ranging from 2 to 18 nm were grown by filtered high current pulsed cathodic arc. The growth was monitored in situ by ellipsometry and cantilever stress measurements. The ellipsometry results reveal that the optical properties of the carbon vary as a function of thickness. Correspondingly, the stress in each carbon layer as measured in situ exhibits two well defined values: initially the stress is low and then takes on a higher value for the remainder of the layer. Transmission electron microscopy shows that the initial growth of carbon on Ti or TiC layer ismore » oriented with graphitic basal planes aligned parallel to the interface. After 2-4 nm of growth, the graphitic structure transforms to amorphous carbon. Electron energy loss spectroscopy shows that the carbon layer simultaneously undergoes a transition from sp{sup 2} rich to sp{sup 3} rich material.« less

  16. Optically controlled polarization in highly oriented ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Borkar, Hitesh; Tomar, M.; Gupta, Vinay; Katiyar, Ram S.; Scott, J. F.; Kumar, Ashok

    2017-08-01

    The out-of-plane and in-plane polarization of (Pb0.6Li0.2Bi0.2)(Zr0.2Ti0.8)O3 (PLBZT) thin film has been studied in the dark and under illumination from a weak light source of a comparable bandgap. A highly oriented PLBZT thin film was grown on a LaNiO3/LaAlO3 substrate by pulsed laser deposition; it showed well-saturated polarization which was significantly enhanced under light illumination. We employed two configurations for polarization characterization: the first deals with out-of-plane polarization with a single capacitor under investigation, whereas the second uses two capacitors connected in series via the bottom electrode. Two different configurations were illuminated using different energy sources and their effects were studied. The latter configuration shows a significant change in polarization under light illumination that may provide an extra degree of freedom for device miniaturization. The polarization was also tested using positive-up and negative-down measurements, confirming robust polarization and its switching under illumination.

  17. Stacking fault density and bond orientational order of fcc ruthenium nanoparticles

    NASA Astrophysics Data System (ADS)

    Seo, Okkyun; Sakata, Osami; Kim, Jae Myung; Hiroi, Satoshi; Song, Chulho; Kumara, Loku Singgappulige Rosantha; Ohara, Koji; Dekura, Shun; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi

    2017-12-01

    We investigated crystal structure deviations of catalytic nanoparticles (NPs) using synchrotron powder X-ray diffraction. The samples were fcc ruthenium (Ru) NPs with diameters of 2.4, 3.5, 3.9, and 5.4 nm. We analyzed average crystal structures by applying the line profile method to a stacking fault model and local crystal structures using bond orientational order (BOO) parameters. The reflection peaks shifted depending on rules that apply to each stacking fault. We evaluated the quantitative stacking faults densities for fcc Ru NPs, and the stacking fault per number of layers was 2-4, which is quite large. Our analysis shows that the fcc Ru 2.4 nm-diameter NPs have a considerably high stacking fault density. The B factor tends to increase with the increasing stacking fault density. A structural parameter that we define from the BOO parameters exhibits a significant difference from the ideal value of the fcc structure. This indicates that the fcc Ru NPs are highly disordered.

  18. Adsorption and self-assembly of M13 phage into directionally organized structures on C and SiO2 films.

    PubMed

    Moghimian, Pouya; Srot, Vesna; Rothenstein, Dirk; Facey, Sandra J; Harnau, Ludger; Hauer, Bernhard; Bill, Joachim; van Aken, Peter A

    2014-09-30

    A versatile method for the directional assembly of M13 phage using amorphous carbon and SiO2 thin films was demonstrated. A high affinity of the M13 phage macromolecules for incorporation into aligned structures on an amorphous carbon surface was observed at the concentration range, in which the viral nanofibers tend to disorder. In contrast, the viral particles showed less freedom to adopt an aligned orientation on SiO2 films when deposited in close vicinity. Here an interpretation of the role of the carbon surface in significant enhancement of adsorption and generation of viral arrays with a high orientational order was proposed in terms of surface chemistry and competitive electrostatic interactions. This study suggests the use of amorphous carbon substrates as a template for directional organization of a closely-packed and two-dimensional M13 viral film, which can be a promising route to mineralize a variety of smooth and homogeneous inorganic nanostructure layers.

  19. Low-energy electron diffraction study of potassium adsorbed on single-crystal graphite and highly oriented pyrolytic graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferralis, N.; Diehl, R.D.; Pussi, K.

    2004-12-15

    Potassium adsorption on graphite has been a model system for the understanding of the interaction of alkali metals with surfaces. The geometries of the (2x2) structure of potassium on both single-crystal graphite (SCG) and highly oriented pyrolytic graphite (HOPG) were investigated for various preparation conditions for graphite temperatures between 55 and 140 K. In all cases, the geometry was found to consist of K atoms in the hollow sites on top of the surface. The K-graphite average perpendicular spacing is 2.79{+-}0.03 A , corresponding to an average C-K distance of 3.13{+-}0.03 A , and the spacing between graphite planes ismore » consistent with the bulk spacing of 3.35 A. No evidence was observed for a sublayer of potassium. The results of dynamical LEED studies for the clean SCG and HOPG surfaces indicate that the surface structures of both are consistent with the truncated bulk structure of graphite.« less

  20. Molecular simulation of CH4/CO2/H2O competitive adsorption on low rank coal vitrinite.

    PubMed

    Yu, Song; Bo, Jiang; Wu, Li

    2017-07-21

    The competitive adsorptions of CH 4 /CO 2 /H 2 O on coal vitrinite (DV-8, C 214 H 180 O 24 N 2 ) were computed based on density function theory (DFT) and grand canonical Monte Carlo (GCMC). The adsorption process reaches the saturation state after adsorbing 17 CH 4 s, 22 CO 2 s, and 35 H 2 Os per C 214 H 180 O 24 N 2 respectively. The optimal configurations of CH 4 -vitrinite, CO 2 -vitrinite, and H 2 O-vitrinite respectively manifest as aromatic 1 /T 2 /rT 3 (1 adsorption location, 2 adsorption sites and T here represents sites above the carbon atom and the heteroatom, 3 adsorption orientation and rT here means the orientations of three hydrogen atoms pointing to vitrinite), aromatic/T/v (v represents the orientations perpendicular to the plane of vitrinite), and aromatic/rV/T (rV represents an oxygen atom pointing to the vitrinite surface). The GCMC results show that high temperature is not conducive to the vitrinite's adsorption of adsorbates and the adsorption capacity order is H 2 O > CO 2 > CH 4 (263-363 K) in the one-component, binary, and ternary adsorbate systems. The optimal configurations of vitrinite are similar to graphite/graphene, while ΔE is significantly lower than graphite/graphene. Simulation data are in good agreement with the experimental results.

Top