Science.gov

Sample records for highly oriented vo2

  1. High level runners are able to maintain a VO2 steady-state below VO2max in an all-out run over their critical velocity.

    PubMed

    Billat, V; Binsse, V; Petit, B; Koralsztein, J P

    1998-02-01

    During prolonged and intense running exercises beyond the critical power level, a VO2 slow component elevates VO2 above predicted VO2-work rates calculated from exercise performed at intensities below the lactate threshold. In such cases, the actual VO2 value will increase over time until it reaches VO2max. The aims of the present study were to examine whether the VO2 slow component is a major determinant of VO2 over time when running at a speed beyond critical velocity, and whether the exhaustion latency period at such intensity correlates with the magnitude of the VO2 slow component. Fourteen highly trained long-distance runners performed four exhaustive runs, each separated by one week of light training. VO2 and the velocity at VO2max (vVO2max) were determined for each by a graded treadmill exercise. The critical velocity (86.1 +/- 1.5% vVO2max) of each runner was calculated from exhaustive treadmill runs at 90, 100 and 105% of vVO2max. During supra-critical velocity runs at 90% of vVO2max, there was no significant rise in VO2max (20.9 +/- 2.1 ml min-1 kg-1 between the third and last min of tlim 90), such that the runners reached a VO2 steady-state, but did not reach their vVO2max level over time (69.5 +/- 5.0 vs 74.9 +/- 3.0 ml min-1 kg-1). Thus, subjects' time to exhaustion at 90% of vVO2max was not correlated with the VO2max slow component (r = 0.11, P = 0.69), but significantly correlated with the lactate threshold (r = 0.54, P = 0.04) and the critical velocity (% vVO2max; r = 0.65, P = 0.01). In conclusion, the present study demonstrates that for highly trained long-distance runners performing exhaustive, supra-critical velocity runs at 90% of vVO2max, there was not a VO2 slow component tardily completing the rise of VO2. Instead, runners will maintain a VO2 steady-state below VO2max, such that the time to exhaustion at 90% of vVO2max for these runners is positively correlated with the critical velocity expressed as % of vVO2max.

  2. Determinants of VO(2) kinetics at high power outputs during a ramp exercise protocol.

    PubMed

    Lucía, Alejandro; Rivero, José-Luis L; Pérez, Margarita; Serrano, Antonio L; Calbet, José A L; Santalla, Alfredo; Chicharro, José L

    2002-02-01

    To determine the relationship between the additional, nonlinear increase in oxygen uptake (Delta VO(2)) that occurs at high power outputs during a ramp cycle ergometer test, on one hand; and possible explanatory mechanisms of the phenomenon, such as cardiorespiratory work, blood lactate, fitness level, or muscle fiber distribution, on the other. Ten healthy, sedentary young adults (age (mean +/- SEM), 22 +/- 1 yr) were chosen as subjects. A muscle biopsy specimen was taken from the vastus lateralis of the right leg to determine fiber type distribution by immunohistochemical identification of myosin heavy chain (MHC) isoforms. During the ramp tests (power output increases of 5 W every 15-s interval), the ventilatory threshold (VT) and lactate threshold (LT) were measured. We defined Delta VO(2) as the difference between "true" VO(2) values observed at the maximal power output (VO(2)obs) and those expected (VO(2)exp) from the previous linear VO2:power output relationship below the VT. A nonlinear increase was observed in VO2 (Delta VO(2) = 239 +/- 79 mL x min(-1), P < 0.05 for VO(2)obs vs VO(2)exp), which was significantly correlated with the percentage of type IIX fibers (r = 0.80, P < 0.05). No other correlations were found between Delta VO(2) and possible explanatory mechanisms. A greater percentage of type IIX fibers is associated with a higher excess VO(2) at high power outputs (above VT).

  3. Enhanced electrochemical performance of orientated VO2(B) raft-like nanobelt arrays through direct lithiation for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Liu, Qiang; Zhao, Wen; Li, Guochun; Wang, Limei; Shi, Weidong; Chen, Long

    2017-02-01

    Lithiation modification of VO2(B) has been carried out by a facile hydrothermal process, and the compact and locally ordered VO2(B) raft-like nanobelt arrays have been prepared. The synthesis route provides a new approach to elaborate a VO2(B) nanostructure under a mild environment condition. It is found that the growth mechanism of VO2(B) raft-like nanobelt arrays is different from the traditional nucleation-growth process. A novel chemical lithiating-exfoliating-splitting model is proposed. Compared with the bulk counterpart, the lithiated VO2(B) raft-like nanobelt arrays as cathodes exhibit a higher discharge capacity and an enhanced high-rate performance owing to their increased structural anisotropy and decreased polarization. This work indicates that VO2(B) raft-like nanobelt arrays have great potential applications as cathode materials for lithium ion batteries.

  4. Enhanced electrochemical performance of orientated VO2(B) raft-like nanobelt arrays through direct lithiation for lithium ion batteries.

    PubMed

    Liu, Liang; Liu, Qiang; Zhao, Wen; Li, Guochun; Wang, Limei; Shi, Weidong; Chen, Long

    2017-02-10

    Lithiation modification of VO2(B) has been carried out by a facile hydrothermal process, and the compact and locally ordered VO2(B) raft-like nanobelt arrays have been prepared. The synthesis route provides a new approach to elaborate a VO2(B) nanostructure under a mild environment condition. It is found that the growth mechanism of VO2(B) raft-like nanobelt arrays is different from the traditional nucleation-growth process. A novel chemical lithiating-exfoliating-splitting model is proposed. Compared with the bulk counterpart, the lithiated VO2(B) raft-like nanobelt arrays as cathodes exhibit a higher discharge capacity and an enhanced high-rate performance owing to their increased structural anisotropy and decreased polarization. This work indicates that VO2(B) raft-like nanobelt arrays have great potential applications as cathode materials for lithium ion batteries.

  5. Hydrothermal growth of VO2 nanoplate thermochromic films on glass with high visible transmittance

    PubMed Central

    Zhang, Jiasong; Li, Jingbo; Chen, Pengwan; Rehman, Fida; Jiang, Yijie; Cao, Maosheng; Zhao, Yongjie; Jin, Haibo

    2016-01-01

    The preparation of thermochromic vanadium dioxide (VO2) films in an economical way is of interest to realizing the application of smart windows. Here, we reported a successful preparation of self-assembly VO2 nanoplate films on TiO2-buffered glass by a facile hydrothermal process. The VO2 films composed of triangle-shaped plates standing on substrates exhibit a self-generated porous structure, which favors the transmission of solar light. The porosity of films is easily controlled by changing the concentration of precursor solutions. Excellent thermochromic properties are observed with visible light transmittance as high as 70.3% and solar modulating efficiency up to 9.3% in a VO2 film with porosity of ~35.9%. This work demonstrates a promising technique to promote the commercial utilization of VO2 in smart windows. PMID:27296772

  6. Hydrothermal growth of VO2 nanoplate thermochromic films on glass with high visible transmittance

    NASA Astrophysics Data System (ADS)

    Zhang, Jiasong; Li, Jingbo; Chen, Pengwan; Rehman, Fida; Jiang, Yijie; Cao, Maosheng; Zhao, Yongjie; Jin, Haibo

    2016-06-01

    The preparation of thermochromic vanadium dioxide (VO2) films in an economical way is of interest to realizing the application of smart windows. Here, we reported a successful preparation of self-assembly VO2 nanoplate films on TiO2-buffered glass by a facile hydrothermal process. The VO2 films composed of triangle-shaped plates standing on substrates exhibit a self-generated porous structure, which favors the transmission of solar light. The porosity of films is easily controlled by changing the concentration of precursor solutions. Excellent thermochromic properties are observed with visible light transmittance as high as 70.3% and solar modulating efficiency up to 9.3% in a VO2 film with porosity of ~35.9%. This work demonstrates a promising technique to promote the commercial utilization of VO2 in smart windows.

  7. Hydrothermal growth of VO2 nanoplate thermochromic films on glass with high visible transmittance.

    PubMed

    Zhang, Jiasong; Li, Jingbo; Chen, Pengwan; Rehman, Fida; Jiang, Yijie; Cao, Maosheng; Zhao, Yongjie; Jin, Haibo

    2016-06-14

    The preparation of thermochromic vanadium dioxide (VO2) films in an economical way is of interest to realizing the application of smart windows. Here, we reported a successful preparation of self-assembly VO2 nanoplate films on TiO2-buffered glass by a facile hydrothermal process. The VO2 films composed of triangle-shaped plates standing on substrates exhibit a self-generated porous structure, which favors the transmission of solar light. The porosity of films is easily controlled by changing the concentration of precursor solutions. Excellent thermochromic properties are observed with visible light transmittance as high as 70.3% and solar modulating efficiency up to 9.3% in a VO2 film with porosity of ~35.9%. This work demonstrates a promising technique to promote the commercial utilization of VO2 in smart windows.

  8. Effects of high-intensity interval training on the VO2 response during severe exercise.

    PubMed

    Duffield, Rob; Edge, Johann; Bishop, David

    2006-06-01

    This study examined the effect of high-intensity interval training on the VO2 response during severe, constant-load exercise. Prior to, and following training, 10 females (V O2 peak 37.4+/-6.0 mL kg-1 min-1) performed a graded exercise test to determine VO2 peak and lactate threshold (LT) and a 6 min cycle test (CT) at the pre-training VO2 peak intensity. Training involved high-intensity intervals (2 min work, 1 min rest) performed 3x week for 8 weeks. Breath-by-breath data from 0 to 6 min during the CT were smoothed using 5s averages and fit to a bi-exponential model starting from 20s. Training resulted in significant improvements in VO2 max (2.34+/-0.37-2.78+/-0.30 L min-1), power at VO2 max (170+/-26-204+/-25 W) and power at LT (113+/-17-136+/-20 W) (p<0.05). Following training, the VO2 response showed a significant increase in the amplitude of the primary phase (A1) (1396+/-103-1695+/-100 mL min-1; p<0.05) and end-exercise VO2 (VO2 EE), with no difference (p>0.05) in the time constants of either phase or the amplitude of the slow component (318+/-67-380+/-48 mL; p=0.15). In conjunction, accumulated oxygen deficit (AOD) (43.7+/-9.8-17.2+/-2.8 mL O2 eq kg-1) and anaerobic contribution to the CT (19.4+/-4.4-7.2+/-1.2%) were significantly reduced. In contrast to previous moderate-intensity research, a high-intensity interval training program increased A1 and VO2 EE for the same absolute exercise intensity, decreasing the AOD during a severe-intensity CT.

  9. Hybrid Resonators and Highly Tunable Terahertz Metamaterials Enabled by Vanadium Dioxide (VO2).

    PubMed

    Wang, Shengxiang; Kang, Lei; Werner, Douglas H

    2017-06-28

    Hybrid metamaterials that exhibit reconfigurable responses under external stimulus, such as electric fields and light radiation, have only recently been demonstrated by combining active media with patterned metallic structures. Nevertheless, hybrid terahertz (THz) metamaterials whose spectral performance can be dynamically tuned over a large scale remain rare. Compared with most active media (for instance, silicon) that provide limited activity, vanadium dioxide (VO2), which exhibits an insulator-to-metal transition, has been recently explored to facilitate dynamically tunable metamaterials. More importantly, the phase transition yields a three orders of magnitude increase in THz electrical conductivity, which suggests the potential for creating VO2 based hybrid resonators that operate at THz frequencies. Here, we show that an integration of VO2 structures and conventional metallic resonating components can enable a class of highly tunable THz metamaterials. Considering the widely studied phase-transition dynamics in VO2, the proposed hybrid metamaterials are capable of offering ultrafast modulation of THz radiation.

  10. Self-Assembly and Horizontal Orientation Growth of VO2 Nanowires

    PubMed Central

    Cheng, Chun; Guo, Hua; Amini, Abbas; Liu, Kai; Fu, Deyi; Zou, Jian; Song, Haisheng

    2014-01-01

    Single-crystalline vanadium dioxide (VO2) nanostructures have attracted an intense research interest recently because of their unique single-domain metal-insulator phase transition property. Synthesis of these nanostructures in the past was limited in density, alignment, or single-crystallinity. The assembly of VO2 nanowires (NWs) is desirable for a “bottom-up” approach to the engineering of intricate structures using nanoscale building blocks. Here, we report the successful synthesis of horizontally aligned VO2 NWs with a dense growth mode in the [1-100]quartz direction of a polished x-cut quartz surface using a simple vapor transport method. Our strategy of controlled growth of VO2 NWs promisingly paves the way for designing novel metal-insulator transition devices based on VO2 NWs. PMID:24965899

  11. VO2max Trainability and High Intensity Interval Training in Humans: A Meta-Analysis

    PubMed Central

    Bacon, Andrew P.; Carter, Rickey E.; Ogle, Eric A.; Joyner, Michael J.

    2013-01-01

    Endurance exercise training studies frequently show modest changes in VO2max with training and very limited responses in some subjects. By contrast, studies using interval training (IT) or combined IT and continuous training (CT) have reported mean increases in VO2max of up to ∼1.0 L · min−1. This raises questions about the role of exercise intensity and the trainability of VO2max. To address this topic we analyzed IT and IT/CT studies published in English from 1965–2012. Inclusion criteria were: 1)≥3 healthy sedentary/recreationally active humans <45 yrs old, 2) training duration 6–13 weeks, 3) ≥3 days/week, 4) ≥10 minutes of high intensity work, 5) ≥1∶1 work/rest ratio, and 6) results reported as mean ± SD or SE, ranges of change, or individual data. Due to heterogeneity (I2 value of 70), statistical synthesis of the data used a random effects model. The summary statistic of interest was the change in VO2max. A total of 334 subjects (120 women) from 37 studies were identified. Participants were grouped into 40 distinct training groups, so the unit of analysis was 40 rather than 37. An increase in VO2max of 0.51 L ·min−1 (95% CI: 0.43 to 0.60 L · min−1) was observed. A subset of 9 studies, with 72 subjects, that featured longer intervals showed even larger (∼0.8–0.9 L · min−1) changes in VO2max with evidence of a marked response in all subjects. These results suggest that ideas about trainability and VO2max should be further evaluated with standardized IT or IT/CT training programs. PMID:24066036

  12. VO2max trainability and high intensity interval training in humans: a meta-analysis.

    PubMed

    Bacon, Andrew P; Carter, Rickey E; Ogle, Eric A; Joyner, Michael J

    2013-01-01

    Endurance exercise training studies frequently show modest changes in VO2max with training and very limited responses in some subjects. By contrast, studies using interval training (IT) or combined IT and continuous training (CT) have reported mean increases in VO2max of up to ~1.0 L · min(-1). This raises questions about the role of exercise intensity and the trainability of VO2max. To address this topic we analyzed IT and IT/CT studies published in English from 1965-2012. Inclusion criteria were: 1)≥ 3 healthy sedentary/recreationally active humans <45 yrs old, 2) training duration 6-13 weeks, 3) ≥ 3 days/week, 4) ≥ 10 minutes of high intensity work, 5) ≥ 1:1 work/rest ratio, and 6) results reported as mean ± SD or SE, ranges of change, or individual data. Due to heterogeneity (I(2) value of 70), statistical synthesis of the data used a random effects model. The summary statistic of interest was the change in VO2max. A total of 334 subjects (120 women) from 37 studies were identified. Participants were grouped into 40 distinct training groups, so the unit of analysis was 40 rather than 37. An increase in VO2max of 0.51 L · min(-1) (95% CI: 0.43 to 0.60 L · min(-1)) was observed. A subset of 9 studies, with 72 subjects, that featured longer intervals showed even larger (~0.8-0.9 L · min(-1)) changes in VO2max with evidence of a marked response in all subjects. These results suggest that ideas about trainability and VO2max should be further evaluated with standardized IT or IT/CT training programs.

  13. Highly integrated VO2-based tunable antenna for millimeter-wave applications

    NASA Astrophysics Data System (ADS)

    Huitema, L.; Crunteanu, A.; Wong, H.; Arnaud, E.

    2017-05-01

    We report the concept of a frequency tunable antenna device operating in the millimeter wave frequency domain. The ability of the antenna to switch between two frequency states is achieved by the monolithic integration of a metal-insulator transition material (vanadium dioxide, VO2). The VO2 material is an insulator at room temperature but can be driven in a high conductivity metallic state when it is electrically activated using a continuous (DC) voltage. The antenna design is based on a slot antenna excited by a microstrip line having a length that can be conveniently varied using a VO2-based switch. Following the high-frequency VO2 material characterization, we present its monolithic integration in the device prototype along with the comparison between the measured and the simulated performances of the agile antenna. Thus, depending on the VO2 material state, the antenna device can be conveniently switched between 33 and 37 GHz operating frequency bands presenting stable radiation patterns with 5.28 dBi and 5.41 dBi maximum gains, respectively.

  14. Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force.

    PubMed

    Astorino, Todd A; Allen, Ryan P; Roberson, Daniel W; Jurancich, Matt

    2012-01-01

    The purpose of this study was to examine the effects of short-term high-intensity interval training (HIIT) on cardiovascular function, cardiorespiratory fitness, and muscular force. Active, young (age and body fat = 25.3 ± 4.5 years and 14.3 ± 6.4%) men and women (N = 20) of a similar age, physical activity, and maximal oxygen uptake (VO2max) completed 6 sessions of HIIT consisting of repeated Wingate tests over a 2- to 3-week period. Subjects completed 4 Wingate tests on days 1 and 2, 5 on days 3 and 4, and 6 on days 5 and 6. A control group of 9 men and women (age and body fat = 22.8 ± 2.8 years and 15.2 ± 6.9%) completed all testing but did not perform HIIT. Changes in resting blood pressure (BP) and heart rate (HR), VO2max, body composition, oxygen (O2) pulse, peak, mean, and minimum power output, fatigue index, and voluntary force production of the knee flexors and extensors were examined pretraining and posttraining. Results showed significant (p < 0.05) improvements in VO2max, O2 pulse, and Wingate-derived power output with HIIT. The magnitude of improvement in VO2max was related to baseline VO2max (r = -0.44, p = 0.05) and fatigue index (r = 0.50, p < 0.05). No change (p > 0.05) in resting BP, HR, or force production was revealed. Data show that HIIT significantly enhanced VO2max and O2 pulse and power output in active men and women.

  15. Increases in .VO2max with "live high-train low" altitude training: role of ventilatory acclimatization.

    PubMed

    Wilhite, Daniel P; Mickleborough, Timothy D; Laymon, Abigail S; Chapman, Robert F

    2013-02-01

    The purpose of this study was to estimate the percentage of the increase in whole body maximal oxygen consumption (.VO(2max)) that is accounted for by increased respiratory muscle oxygen uptake after altitude training. Six elite male distance runners (.VO(2max) = 70.6 ± 4.5 ml kg(-1) min(-1)) and one elite female distance runner (.VO(2max)) = 64.7 ml kg(-1) min(-1)) completed a 28-day "live high-train low" training intervention (living elevation, 2,150 m). Before and after altitude training, subjects ran at three submaximal speeds, and during a separate session, performed a graded exercise test to exhaustion. A regression equation derived from published data was used to estimate respiratory muscle .VO(2) (.VO(2RM)) using our ventilation (.VE) values. .VO(2RM) was also estimated retrospectively from a larger group of distance runners (n = 22). .VO(2max) significantly (p < 0.05) increased from pre- to post-altitude (196 ± 59 ml min(-1)), while (.VE) at .VO(2max) also significantly (p < 0.05) increased (13.3 ± 5.3 l min(-1)). The estimated .VO(2RM) contributed 37 % of Δ .VO(2max). The retrospective group also saw a significant increase in .VO(2max) from pre- to post-altitude (201 ± 36 ml min(-1)), along with a 10.8 ± 2.1 l min(-1) increase in (.VE), thus requiring an estimated 27 % of Δ .VO(2max) Our data suggest that a substantial portion of the improvement in .VO(2max) with chronic altitude training goes to fuel the respiratory muscles as opposed to the musculature which directly contributes to locomotion. Consequently, the time-course of decay in ventilatory acclimatization following return to sea-level may have an impact on competitive performance.

  16. Characterization of polycrystalline VO2 thin film with low phase transition temperature fabricated by high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Tiegui; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen

    2016-04-01

    VO2 is a unique material that undergoes a reversible phase transformation around 68∘C. Currently, applications of VO2 on smart windows are limited by its high transition temperature. In order to reduce the temperature, VO2 thin film was fabricated on quartz glass substrate by high power impulse magnetron sputtering with a modulated pulsed power. The phase transition temperature has been reduced to as low as 32∘C. In addition, the VO2 film possesses a typical metal-insulator transition. X-ray diffraction and selected area electron diffraction patterns reveal that an obvious lattice distortion has been formed in the as-deposited polycrystalline VO2 thin film. X-ray photoelectron spectroscopy proves that oxygen vacancies have been formed in the as-deposited thin film, which will induce a lattice distortion in the VO2 thin film.

  17. A VO2-Based Multifunctional Window with Highly Improved Luminous Transmittance

    NASA Astrophysics Data System (ADS)

    Jin, Ping; Xu, Gang; Tazawa, Masato; Yoshimura, Kazuki

    2002-03-01

    A novel window structure composed of VO2 thermochromic film with TiO2 antireflection (AR) coating was proposed. TiO2 was chosen as the best AR candidatefor reasons that it is an AR material superior to the reported SiO2, and that it is capable to make the window multifunctional with excellent photocatalytic properties. Optical calculation was done for the proposed structure, which predicts a strong enhancement in luminous transmittance (Tlum). A TiO2 (40 nm)/VO2 (50 nm) structure, optimized to a maximum integrated luminous transmittance by calculation, was formed on SiO2 glass by magnetron sputtering. A maximum increase in Tlum by 53% (from 32% to 49%) was experimentally obtained. The proposed window is the most advanced among the similarly reported in being multifunctional with automatic solar/heat control, ultraviolet stopping, and possibly a wide range of photocatalytic functions in addition to being highly luminous transmitting.

  18. Epitaxial stabilization and phase instability of VO2 polymorphs

    DOE PAGES

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; ...

    2016-01-20

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. Bymore » investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. In conclusion, our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.« less

  19. Epitaxial stabilization and phase instability of VO2 polymorphs

    PubMed Central

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-01

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices. PMID:26787259

  20. A high blood lactate induced by heavy exercise does not affect the increase in submaximal VO2 with hyperoxia.

    PubMed

    Favier, F B; Prieur, F; Grataloup, O; Busso, T; Castells, J; Denis, C; Geyssant, A; Benoit, H

    2005-05-01

    Few studies evidenced an enhancement in oxygen uptake (VO2) during submaximal exercise in hyperoxia. This O2 "overconsumption" seems to increase above the lactate threshold. The aim of this study was to determine whether the hyperoxia-induced enhancement in VO2 may be related to a higher metabolism of lactate. Nine healthy males (aged 23.1 years, mean VO2 max= 53.8 ml min-1 kg-1) were randomized to two series of exercise in either normoxia or hyperoxia corresponding to an inspired O2 fraction (FIO2) of 30%. Each series consisted of 6 min cycling at 50% VO2 max (Moderate1), 5 min cycling at 95%VO2 max (Near Max) and then 6 min at 50% VO2 max (Moderate2). In both series Near Max was performed in normoxia. VO2 was significantly greater under hyperoxia than in normoxia during Moderate1 (2192 +/- 189 vs. 2025 +/- 172 ml min-1) and during Moderate2 (2352 +/- 173 vs. 2180+ /- 193 ml min-1). However, the effect of the high FIO2 was not significantly different on VO2Moderate2 (+172+/-137 ml min-1 with [La] approximately 6 mmol l-1) compared to VO2Moderate1 (+166 +/- 133 ml min-1 with [La] approximately 2.4 mmol l-1). [La] at the onset of Moderate2 was not different between normoxia and hyperoxia (10.1 +/- 2.2 vs. 10.9 +/- 1.6 mmol l-1). The results show that VO2 is significantly increased during moderate exercise in hyperoxia. But this O2 overconsumption was not modified by a high [La] induced by a prior heavy exercise. It could be concluded that lactate accumulation is not directly responsible for the increase in O2 overconsumption with intensity during exercise in hyperoxia.

  1. High Performance and Enhanced Durability of Thermochromic Films Using VO2@ZnO Core-Shell Nanoparticles.

    PubMed

    Chen, Yunxiang; Zeng, Xianzhe; Zhu, Jingting; Li, Rong; Yao, Heliang; Cao, Xun; Ji, Shidong; Jin, Ping

    2017-08-23

    For VO2-based thermochromic smart windows, high luminous transmittance (Tlum) and solar regulation efficiency (ΔTsol) are usually pursued as the most critical issues, which have been discussed in numerous researches. However, environmental durability, which has rarely been considered, is also so vital for practical application because it determines lifetime and cycle times of smart windows. In this paper, we report novel VO2@ZnO core-shell nanoparticles with ultrahigh durability as well as improved thermochromic performance. The VO2@ZnO nanoparticles-based thermochromic film exhibits a robust durability that the ΔTsol keeps 77% (from 19.1% to 14.7%) after 10(3) hours in a hyperthermal and humid environment, while a relevant property of uncoated VO2 nanoparticles-based film badly deteriorates after 30 h. Meanwhile, compared with the uncoated VO2-based film, the VO2@ZnO-based film demonstrates an 11.0% increase (from 17.2% to 19.1%) in ΔTsol and a 31.1% increase (from 38.9% to 51.0%) in Tlum. Such integrated thermochromic performance expresses good potential for practical application of VO2-based smart windows.

  2. Recruitment pattern of muscle fibre type during high intensity exercise (60-100% VO2max) in thoroughbred horses.

    PubMed

    Yamano, S; Eto, D; Hiraga, A; Miyata, H

    2006-02-01

    To consider the optimal training programme for Thoroughbred horses, we examined the recruitment pattern of muscle fibres including hybrid muscle fibres in well-trained Thoroughbred horses. The horses performed exercise at three different intensities and durations; i.e., 100% VO2max for 4 min, 80% and 60% VO2max for 8 min on a treadmill with 10% incline. Muscle samples were obtained from the middle gluteal muscle before, during (4 min at 80% and 60% VO2max), and after exercise. Four muscle fibre types (types I, IIA, IIA/IIX, and IIX) were immunohistochemically identified, and optical density of periodic acid Schiff staining (OD-PAS) in each fibre type, and the glycogen content of the muscle sample, were determined by quantitative histochemical and biochemical procedures. The changes in OD-PAS showed that the recruitment of all fibre types were identical at the final time stage of each exercise bout, i.e., 4 min running at 100% VO2max, and 8 min running at 80% and 60% VO2max. The changes in OD-PAS of type IIA/IIX fibre were very similar to those of type IIX fibre. The recruitment of these fibres were obviously more facilitated by 4 min running at 100% VO2max than by 4 min running at 80% or 60% VO2max. Short duration with high intensity exercise, such as 4 min running at 100% VO2max or 8 min running at 80% or 60% VO2max, is effective to stimulate type IIX fibre and IIA/IIX fibres that have the fastest speed of contraction.

  3. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors

    PubMed Central

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-01-01

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm−2 (~548 F g−1) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors. PMID:26531072

  4. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-11-01

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm-2 (~548 F g-1) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors.

  5. Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires.

    PubMed

    Lu, Junpeng; Liu, Hongwei; Deng, Suzi; Zheng, Minrui; Wang, Yinghui; van Kan, Jeroen A; Tang, Sing Hai; Zhang, Xinhai; Sow, Chorng Haur; Mhaisalkar, Subodh G

    2014-07-07

    In this work, we report a novel and feasible strategy for the practical applications of one-dimensional ultrasensitive phototransistors made of tungsten-doped VO2 single nanowires. The photoconductive response of the single nanowire device was investigated under different visible light excitations (405 nm, 532 nm, and 660 nm). The phototransistor device exhibited ultrafast photoresponse, high responsivity, broad multispectral response, and rapid saturation characteristic curves. These promising results help to promote the applications of this material in nano-scale optoelectronic devices such as efficient multispectral phototransistors and optical switches.

  6. The self-paced VO2max test to assess maximal oxygen uptake in highly trained runners.

    PubMed

    Hogg, James S; Hopker, James G; Mauger, Alexis R

    2015-03-01

    The novel self-paced maximal-oxygen-uptake (VO2max) test (SPV) may be a more suitable alternative to traditional maximal tests for elite athletes due to the ability to self-regulate pace. This study aimed to examine whether the SPV can be administered on a motorized treadmill. Fourteen highly trained male distance runners performed a standard graded exercise test (GXT), an incline-based SPV (SPVincline), and a speed-based SPV (SPVspeed). The GXT included a plateau-verification stage. Both SPV protocols included 5×2-min stages (and a plateau-verification stage) and allowed for self-pacing based on fixed increments of rating of perceived exertion: 11, 13, 15, 17, and 20. The participants varied their speed and incline on the treadmill by moving between different marked zones in which the tester would then adjust the intensity. There was no significant difference (P=.319, ES=0.21) in the VO2max achieved in the SPVspeed (67.6±3.6 mL·kg(-1)·min(-1), 95%CI=65.6-69.7 mL·kg(-1)·min(-1)) compared with that achieved in the GXT (68.6±6.0 mL·kg(-1)·min(-1), 95%CI=65.1-72.1 mL·kg(-1)·min(-1)). Participants achieved a significantly higher VO2max in the SPVincline (70.6±4.3 mL·kg(-1)·min(-1), 95%CI=68.1-73.0 mL·kg(-1)·min(-1)) than in either the GXT (P=.027, ES=0.39) or SPVspeed (P=.001, ES=0.76). The SPVspeed protocol produces VO2max values similar to those obtained in the GXT and may represent a more appropriate and athlete-friendly test that is more oriented toward the variable speed found in competitive sport.

  7. Min-By-Min Respiratory Exchange and Oxygen Uptake Kinetics During Steady-State Exercise in Subjects of High and Low Max VO2

    ERIC Educational Resources Information Center

    Weltman, Arthur; Katch, Victor

    1976-01-01

    No statistically meaningful differences in steady-state vo2 uptake for high and low max vo2 groups was indicated in this study, but a clear tendency was observed for the high max vo2 group to reach the steady-state at a faster rate. (MB)

  8. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries.

    PubMed

    Niu, Chaojiang; Meng, Jiashen; Han, Chunhua; Zhao, Kangning; Yan, Mengyu; Mai, Liqiang

    2014-05-14

    Development of three-dimensional nanostructures with high surface area and excellent structural stability is an important approach for realizing high-rate and long-life battery electrodes. Here, we report VO2 hollow microspheres showing empty spherical core with radially protruding nanowires, synthesized through a facile and controllable ion-modulating approach. In addition, by controlling the self-assembly of negatively charged C12H25SO4(-) spherical micelles and positively charged VO(2+) ions, six-armed microspindles and random nanowires are also prepared. Compared with them, VO2 hollow microspheres show better electrochemical performance. At high current density of 2 A/g, VO2 hollow microspheres exhibit 3 times higher capacity than that of random nanowires, and 80% of the original capacity is retained after 1000 cycles. The superior performance of VO2 hollow microspheres is because they exhibit high surface area about twice higher than that of random nanowires and also provide an efficient self-expansion and self-shrinkage buffering during lithiation/delithiation, which effectively inhibits the self-aggregation of nanowires. This research indicates that VO2 hollow microspheres have great potential for high-rate and long-life lithium batteries.

  9. VO2 Nanoflakes as the Cathode Material of Hybrid Magnesium-Lithium-Ion Batteries with High Energy Density.

    PubMed

    Pei, Cunyuan; Xiong, Fangyu; Sheng, Jinzhi; Yin, Yameng; Tan, Shuangshuang; Wang, Dandan; Han, Chunhua; An, Qinyou; Mai, Liqiang

    2017-05-24

    The hybrid magnesium-lithium-ion batteries (MLIBs) combining the dendrite-free deposition of the Mg anode and the fast Li intercalation cathode are better alternatives to Li-ion batteries (LIBs) in large-scale power storage systems. In this article, we reported hybrid MLIBs assembled with the VO2 cathode, dendrite-free Mg anode, and the Mg-Li dual-salt electrolyte. Satisfactorily, the VO2 cathode delivered a stable plateau at about 1.75 V, and a high specific discharge capacity of 244.4 mA h g(-1). To the best of our knowledge, the VO2 cathode displays the highest energy density of 427 Wh kg(-1) among reported MLIBs in coin-type batteries. In addition, an excellent rate performance and a wide operating temperature window from 0 to 55 °C have been obtained. The combination of VO2 cathode, dual-salt electrolyte, and Mg anode would pave the way for the development of high energy density, safe, and low-cost batteries.

  10. Structure evolution and thermal stability of high-energy density Li-ion battery cathode Li2VO2F

    DOE PAGES

    Wang, Xiaoya; Huang, Yiqing; Ji, Dongsheng; ...

    2017-05-24

    Lithium-ion batteries (LIBs) provide high-energy-density electrochemical energy storage, which plays a central role in advancing technologies ranging from portable electronics to electric vehicles (EVs). However, a demand for lighter, more compact devices and for extended range EVs continues to fuel the need for higher energy density storage systems. Li2VO2F, which is synthesized in its lithiated state, allows two-electron transfer per formula during the electrochemical reaction providing a high theoretical capacity of 462 mAh/g. Herein, the synthesis and electrochemical performance of Li2VO2F are optimized. The thermal stability of Li2VO2F, which is related to the safety of a battery is studied bymore » thermal gravimetric analysis. The structure and vanadium oxidation state evolution along Li cycling are studied by ex-situ X-ray diffraction and absorption techniques. It is shown that the rock-salt structure of pristine Li2VO2F is stable up to at least 250°C, and is preserved upon Li cycling, which proceeds by the solid-solution mechanism. However, not all Li can be removed from the structure upon charge to 4.5 V, limiting the experimentally obtained capacity.« less

  11. High prevalence of false-positive plateau phenomena during VO2max testing in adolescents.

    PubMed

    Beltrami, Fernando G; Wong, Del P; Noakes, Timothy D

    2014-09-01

    It is believed that a plateau in oxygen consumption (VO2) at the end of an incremental exercise test identifies the upper limits of cardiovascular capacity. We investigated how different criteria influence the frequency with which the "plateau phenomenon" is detected and the prevalence at which "false" plateau phenomena occurs during sub-maximal exercise. Cross-sectional. Six different criteria with 3 different sampling intervals each were used to identify the "plateau phenomenon" from a single data set comprising 63 incremental exercise tests along with secondary criteria based on target heart rate (HR) and respiratory exchange ratio (RER). A single criterion from the original 18 (HALF) was also used to detect the incidence of any plateau phenomena during each test. The plateau phenomenon was detected in 16-82% of the tests depending on the criteria used, mostly as a result of the different sampling intervals. HALF identified 103 "plateau phenomena" but 73 (70.9%) of these occurred during sub-maximal exercise and so were "false". "False" plateaus were verified by at least one secondary criterion in 27% of cases. Participants reached the HR and RER targets after 83.6 ± 11.7% and 81.9 ± 18.1% of total test duration, respectively. The wide range in the percentage of plateau phenomena detected by different criteria plus the high rate (71%) of "false" plateau during sub-maximal exercise could indicate that this phenomenon is a calculation artifact rather than an indicator of true physiological events. Secondary criteria can be reached early in exercise and often identify "false" plateau phenomena as "true". Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph.

    PubMed

    Liu, Hengwu; Wan, Dongyun; Ishaq, Ahmad; Chen, Lanli; Guo, Beibei; Shi, Siqi; Luo, Hongjie; Gao, Yanfeng

    2016-03-01

    For specific application to an uncooled infrared detector, VO2 thin films should have a series of characteristics including purposefully chosen polymorphs, accurate stoichiometry, phase stabilization, a high temperature-coefficient of resistance (TCR), and suitable square-resistance. This work reports controllable preparation of high-performance VO2 films via post annealing of a sandwich-structured V2O5/metal (V, W)/V2O5 multilayer precursor, which was deposited by RF magnetron sputtering. This sandwich structure can dynamically regulate oxygen contents and doping element levels in the films, enabling us to achieve accurate regulation of stoichiometry and polymorphs. The precursor films undergo a B to M phase transition depending on the quantity of the metal layers. At the thickness of the metal layer below a limitation, the resulting film after heat treatment was VO2 (B), and above the limitation, the product was VO2 (M). The optical modulation of the VO2 (M) in the near-infrared region can be tuned from 1.2 to 39.8% (ΔT2000 nm). TCR values can range from -1.89 to -4.29%/K and the square-resistances at room temperature (R0) from 69.68 to 12.63 kΩ. The simplicity in phase regulation of the present method and the superior optical and electrical properties of the films may allow its wide applications in thermo-opto-electro sensing devices.

  13. High-intensity interval training every second week maintains VO2max in soccer players during off-season.

    PubMed

    Slettaløkken, Gunnar; Rønnestad, Bent R

    2014-07-01

    Reduced endurance training among semiprofessional soccer players during off-season may have negative effect on game performance during the competition season. This negative effect can be prevented by adding high-intensity interval training (HIT) to normal activity. In this study, we want to compare 2 different frequencies of HIT (5 bouts of 4 minutes on 87-97% peak heart rate) session on maintenance of aerobic fitness among semiprofessional soccer players during a 6-week off-season period. Seventeen male players at second and third highest soccer division in Norway participated. The subjects were randomized into 1 HIT session every second week (HIT 0.5) or 1 HIT session per week (HIT 1). All participants performed a 20-m shuttle run test and a maximal oxygen uptake (VO2max) test on treadmill before and after the training intervention. VO2max (HIT 0.5, 63.4 ± 5.9 ml·kg-1·min-1; HIT 1, 65.6 ± 2.1 ml·kg-1·min-1) and 20-m shuttle run performance (HIT 0.5, 2335 ± 390 m, HIT 1, 2531 ± 106 m) were not different between the groups before the training intervention. VO2max was maintained after the training intervention in both HIT 0.5 and HIT 1 (64.0 ± 5.9 ml·kg-1·min-1 and 64.3 ± 1.3 ml·kg-1·min-1, respectively). There was a reduction in distance covered during the 20-m shuttle run test in HIT 1 and when groups were pooled (-7.9 ± 5.7% and -6.4 ± 7.9%, respectively, p ≤ 0.05). In conclusion, HIT 1 did not maintain VO2max better than HIT 0.5 when added to normal off-season activity. However, performance in 20-m shuttle run, which is a more soccer-specific fitness test than VO2max test, was slightly reduced when both groups was pooled.

  14. Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface.

    PubMed

    Zhou, Gaochao; Dai, Penghui; Wu, Jingbo; Jin, Biaobing; Wen, Qiye; Zhu, Guanghao; Shen, Ze; Zhang, Caihong; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2017-07-24

    An active vanadium dioxide integrated metasurface offering broadband transmitted terahertz wave modulation with large modulation-depth under electrical control is demonstrated. The device consists of metal bias-lines arranged with grid-structure patterned vanadium dioxide (VO2) film on sapphire substrate. Amplitude transmission is continuously tuned from more than 78% to 28% or lower in the frequency range from 0.3 THz to 1.0 THz, by means of electrical bias at temperature of 68 °C. The physical mechanism underlying the device's electrical tunability is investigated and found to be attributed to the ohmic heating. The developed device possessing over 87% modulation depth with 0.7 THz frequency band is expected to have many potential applications in THz regime such as tunable THz attenuator.

  15. Improved VO2 uptake kinetics and shift in muscle fiber type in high-altitude trekkers.

    PubMed

    Doria, C; Toniolo, L; Verratti, V; Cancellara, P; Pietrangelo, T; Marconi, V; Paoli, A; Pogliaghi, S; Fanò, G; Reggiani, C; Capelli, C

    2011-12-01

    The study investigated the effect of prolonged hypoxia on central [i.e., cardiovascular oxygen delivery (Q(a)O(2))] and peripheral (i.e., O(2) utilization) determinants of oxidative metabolism response during exercise in humans. To this aim, seven male mountaineers were examined before and immediately after the Himalayan Expedition Interamnia 8000-Manaslu 2008, lasting 43 days, among which, 23 days were above 5,000 m. The subjects showed a decrease in body weight (P < 0.05) and of power output during a Wingate Anaerobic test (P < 0.05) and an increase of thigh cross-sectional area (P < 0.05). Absolute maximal O(2) uptake (VO(2max)) did not change. The mean response time of VO(2) kinetics at the onset of step submaximal cycling exercise was reduced significantly from 53.8 s ± 10.9 to 39.8 s ± 10.9 (P < 0.05), whereas that of Q(a)O(2) was not. Analysis of single fibers dissected from vastus lateralis biopsies revealed that the expression of slow isoforms of both heavy and light myosin subunits increased, whereas that of fast isoforms decreased. Unloaded shortening velocity of fibers was decreased significantly. In summary, independent findings converge in indicating that adaptation to chronic hypoxia brings about a fast-to-slow transition of muscle fibers, resulting in a faster activation of the mitochondrial oxidative metabolism. These results indicate that a prolonged and active sojourn in hypoxia may induce muscular ultrastructural and functional changes similar to those observed after aerobic training.

  16. Mitochondrial Coupling and Contractile Efficiency in Humans with High and Low VO2 peak

    PubMed Central

    Layec, Gwenael; Bringard, Aurélien; Le Fur, Yann; Micallef, Jean-Paul; Vilmen, Christophe; Perrey, Stéphane; Cozzone, Patrick J.; Bendahan, David

    2016-01-01

    Introduction Endurance training elicits tremendous adaptations of the mitochondrial energetic capacity. Yet, the effects of training or physical fitness on mitochondrial efficiency during exercise are still unclear. Accordingly, the purpose of the present study was to examine in vivo the differences in mitochondrial efficiency and ATP cost of contraction during exercise in two groups of adults differing in their aerobic capacity. Method We simultaneously assessed the ATP synthesis and O2 fluxes with 31P-Magnetic Resonance Spectroscopy and pulmonary gas exchange measurements in 7 endurance-trained (ET, VO2max: 67±8 ml.min-1.kg-1) and 7 recreationally active (RA, VO2max: 43±7 ml.min-1.kg-1) subjects during 6 min of dynamic moderate-intensity knee-extension. Results The ATP cost of dynamic contraction was not significantly different between ET and RA (P>0.05). Similarly, end-exercise O2 consumption was not significantly different between groups (ET: 848±155 ml.min-1 and RA: 760±131 ml.min-1, P>0.05). During the recovery period, the PCr offset time constant was significantly faster in ET compared to RA (ET: 32±8 s and RA: 43±10 s, P<0.05) thus indicating an increased mitochondrial capacity for ATP synthesis in the quadriceps of ET. In contrast, the estimated mitochondrial efficiency during exercise was not significantly different (P/O, ET: 2.0±1.0 and RA: 1.8±0.4, P>0.05). Consequently, the higher mitochondrial capacity for ATP synthesis in ET likely originated from an elevated mitochondrial volume density, mitochondria-specific respiratory capacity and/or slower post-exercise inactivation of oxidative phosphorylation by the parallel activation mechanism. Conclusion Together, these findings reveal that 1) mitochondrial and contractile efficiency are unaltered by several years of endurance-training in young adults, and 2) the training-induced improvement in mitochondrial energetic capacity appears to be independent from changes in mitochondrial coupling. PMID

  17. Study on Thermochromic VO2 Films Grown on ZnO-Coated Glass Substrates for “Smart Windows”

    NASA Astrophysics Data System (ADS)

    Kato, Kazuhiro; Song, Pung Keun; Odaka, Hidehumi; Shigesato, Yuzo

    2003-10-01

    Vanadium dioxide (VO2) is one of the most attractive thermochromic materials, which show large changes in optical and electrical properties at the transition temperature (Tt) close to the atmospheric temperature (approximately 340 K). We already reported for VO2 deposition by rf magnetron sputtering using V2O3 or V2O5 targets that VO2 films thicker than 400 nm showed high thermochromic performance, whereas the VO2 films thinner than 200 nm did not show such performance because of their poor crystallinity and off-stoichiometry. In this study, very thin thermochromic VO2 films with thicknesses of about 50 nm were successfully deposited using highly < 001>-preferred oriented ZnO polycrystalline films as a buffer layer between the VO2 film and glass substrate (VO2/ZnO/glass) because of the heteroepitaxial growth of VO2 polycrystalline films. W-doped VO2 films were also deposited on the ZnO-coated glass substrates (ZnO/glass) by cosputtering. It was confirmed that W doping for thin VO2 films deposited on the ZnO/glass can decrease Tt systematically. Such very thin VO2 films should have high potential for application in “smart windows”.

  18. Facile and Low-Temperature Fabrication of Thermochromic Cr2O3/VO2 Smart Coatings: Enhanced Solar Modulation Ability, High Luminous Transmittance and UV-Shielding Function.

    PubMed

    Chang, Tianci; Cao, Xun; Li, Ning; Long, Shiwei; Gao, Xiang; Dedon, Liv R; Sun, Guangyao; Luo, Hongjie; Jin, Ping

    2017-08-09

    In the pursuit of energy efficient materials, vanadium dioxide (VO2) based smart coatings have gained much attention in recent years. For smart window applications, VO2 thin films should be fabricated at low temperature to reduce the cost in commercial fabrication and solve compatibility problems. Meanwhile, thermochromic performance with high luminous transmittance and solar modulation ability, as well as effective UV shielding function has become the most important developing strategy for ideal smart windows. In this work, facile Cr2O3/VO2 bilayer coatings on quartz glasses were designed and fabricated by magnetron sputtering at low temperatures ranging from 250 to 350 °C as compared with typical high growth temperatures (>450 °C). The bottom Cr2O3 layer not only provides a structural template for the growth of VO2 (R), but also serves as an antireflection layer for improving the luminous transmittance. It was found that the deposition of Cr2O3 layer resulted in a dramatic enhancement of the solar modulation ability (56.4%) and improvement of luminous transmittance (26.4%) when compared to single-layer VO2 coating. According to optical measurements, the Cr2O3/VO2 bilayer structure exhibits excellent optical performances with an enhanced solar modulation ability (ΔTsol = 12.2%) and a high luminous transmittance (Tlum,lt = 46.0%), which makes a good balance between ΔTsol and Tlum for smart windows applications. As for UV-shielding properties, more than 95.8% UV radiation (250-400 nm) can be blocked out by the Cr2O3/VO2 structure. In addition, the visualized energy-efficient effect was modeled by heating a beaker of water using infrared imaging method with/without a Cr2O3/VO2 coating glass.

  19. High-performance thermal sensitive W-doped VO2(B) thin film and its identification by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Wan, Dongyun; Xiong, Ping; Chen, Lanli; Shi, Siqi; Ishaq, Ahmad; Luo, Hongjie; Gao, Yanfeng

    2017-03-01

    VO2(B) is currently a preferred phase structure for the application as bolometer material, which, however, suffers from low temperature-coefficient-of-resistance (TCR) values and large resistances. Here we present the combined experimental and first-principles calculations study on both doped and undoped VO2(B) thin films enabling us to attain high TCR (-3.9%/k) and suitable square-resistance (32.7 kΩ) by controlled W doping employing the widely used magnetron sputtering technique. The TCR value is 50% larger than reported ones at the similar resistance. The underlying microscopic mechanism for the performance improvement was studied and results indicated that the introduction of extra electrons and the variation in the band structure resulting from the incorporation of W6+ ions in the VO2(B) crystal lattice contribute to the enhancement of the electronic conductivity. Moreover, the special two-dimensional octahedral structure of monoclinic (C2/m) B-phase VO2 favors the strain control with W-doping for achieving a large TCR, which overcomes the analogous predicament between the high conductivity and large TCR generated by dopants in the M-phase VO2. The present findings provides a facile and simple pathway for the design and fabrication of high performance W-doped VO2(B) thin films rendering superior optical and electrical properties for its wide applications in thermo-opto-electro sensing devices.

  20. Matching characteristics of different buffer layers with VO2 thin films

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Zhang, Dongping; Liu, Yi; Guan, Tianrui; Qin, Xiaonan; Zhong, Aihua; Cai, Xingmin; Fan, Ping; Lv, Weizhong

    2016-10-01

    VO2 thin films were fabricated by reactive DC magnetron sputtering on different buffer layers of MgF2, Al2O3 and TiO2, respectively. The crystallinity and orientation relationship, thickness of VO2 thin films, atoms vibrational modes, optical and electrical property, surface morphology of films were characterized by X-ray diffraction, Raman scattering microscopy, step profiler, spectrophotometer, four-probe technique, and scanning electron microscopy, respectively. XRD results investigated that the films have preferential crystalline planes VO2 (011). The crystallinity of VO2 films grown on TiO2 buffer layers are superior to VO2 directly deposited on soda-lime glass. The Raman bands of the VO2 films correspond to an Ag symmetry mode of VO2 (M). The sample prepared on 100nm TiO2 buffer layer appears nanorods structure, and exhibits remarkable solar energy modulation ability as high as 5.82% in full spectrum and 23% in near infrared spectrum. Cross-sectional SEM image of the thin films samples indicate that MgF2 buffer layer has clear interface with VO2 layer. But there are serious interdiffusion phenomenons between Al2O3, TiO2 buffer layer with VO2 layer.

  1. Effect of Oxide Buffer Layer on the Thermochromic Properties of VO2 Thin Films

    NASA Astrophysics Data System (ADS)

    Koo, Hyun; Xu, Lu; Ko, Kyeong-Eun; Ahn, Seunghyun; Chang, Se-Hong; Park, Chan

    2013-12-01

    VO2 thin films were deposited on soda lime glass substrates with ZnO, TiO2, SnO2, and CeO2 thin films applied as buffer layers between the VO2 films and the substrates in order to investigate the effect of buffer layer on the formation and the thermochromic properties of VO2 film. Buffer layers with thicknesses over 50 nm were found to affect the formation of VO2 film, which was confirmed by XRD spectra. By using ZnO, TiO2, and SnO2 buffer layers, monoclinic VO2 (VO2(M)) film was successfully fabricated on soda lime glass at 370 °C. On the contrary, films of VO2(B), which is known to have no phase transition near room temperature, were formed rather than VO2(M) when the film was deposited on CeO2 buffer layer at the same film deposition temperature. The excellent thermochromic properties of the films deposited on ZnO, TiO2, and SnO2 buffer layers were confirmed from the temperature dependence of electrical resistivity from room temperature to 80 °C. Especially, due to the tendency of ZnO thin film to grow with a high degree of preferred orientation on soda lime glass at low temperature, the VO2 film deposited on ZnO buffer layer exhibits the best thermochromic properties compared to those on other buffer layer materials used in this study. These results suggest that deposition of VO2 films on soda lime glass at low temperature with excellent thermochromic properties can be achieved by considering the buffer layer material having structural similarity with VO2. Moreover, the degree of crystallization of buffer layer is also related with that of VO2 film, and thus ZnO can be one of the most effective buffer layer materials.

  2. Formation of highly ordered VO2 nanotubular/nanoporous layers and their supercooling effect in phase transitions.

    PubMed

    Yang, Yang; Lee, Kiyoung; Zobel, Mirijam; Maćković, Mirza; Unruh, Tobias; Spiecker, Erdmann; Schmuki, Patrik

    2012-03-22

    The fabrication of self-organized VO(2) nanotubular/nanoporous layers is demonstrated by self-organizing anodization, followed by a suitable heat treatment. These VO(2) layers show a reversible metal to insulator transition (MIT) at 70 and 44 °C, when heating and cooling, respectively.

  3. Rapid hydrothermal synthesis of VO2 (B) and its conversion to thermochromic VO2 (M1).

    PubMed

    Popuri, Srinivasa Rao; Miclau, Marinela; Artemenko, Alla; Labrugere, Christine; Villesuzanne, Antoine; Pollet, Michaël

    2013-05-06

    The present study provides a rapid way to obtain VO2 (B) under economical and environmentally friendly conditions. VO2 (B) is one of the well-known polymorphs of vanadium dioxide and is a promising cathode material for aqueous lithium ion batteries. VO2 (B) was successfully synthesized by rapid single-step hydrothermal process using V2O5 and citric acid as precursors. The present study shows that phase-pure VO2 (B) polytype can be easily obtained at 180 °C for 2 h and 220 °C for 1 h, that is, the lowest combination of temperature and duration reported so far. The obtained VO2 (B) is characterized by X-ray powder diffraction, high-resolution scanning electron microscopy, and Fourier transform infrared spectroscopy. In addition, we present an indirect way to obtain VO2 (M1) by annealing VO2 (B) under vacuum for 1 h.

  4. High resolution Hall measurements across the VO2 metal-insulator transition reveal impact of spatial phase separation

    PubMed Central

    Yamin, Tony; Strelniker, Yakov M.; Sharoni, Amos

    2016-01-01

    Many strongly correlated transition metal oxides exhibit a metal-insulator transition (MIT), the manipulation of which is essential for their application as active device elements. However, such manipulation is hindered by lack of microscopic understanding of mechanisms involved in these transitions. A prototypical example is VO2, where previous studies indicated that the MIT resistance change correlate with changes in carrier density and mobility. We studied the MIT using Hall measurements with unprecedented resolution and accuracy, simultaneously with resistance measurements. Contrast to prior reports, we find that the MIT is not correlated with a change in mobility, but rather, is a macroscopic manifestation of the spatial phase separation which accompanies the MIT. Our results demonstrate that, surprisingly, properties of the nano-scale spatially-separated metallic and semiconducting domains actually retain their bulk properties. This study highlights the importance of taking into account local fluctuations and correlations when interpreting transport measurements in highly correlated systems. PMID:26783076

  5. Electric field-induced transport modulation in VO2 FETs with high-k oxide/organic parylene-C hybrid gate dielectric

    NASA Astrophysics Data System (ADS)

    Wei, Tingting; Kanki, Teruo; Fujiwara, Kohei; Chikanari, Masashi; Tanaka, Hidekazu

    2016-02-01

    We report on the observation of reversible and immediate resistance switching by high-k oxide Ta2O5/organic parylene-C hybrid dielectric-gated VO2 thin films. Resistance change ratios at various temperatures in the insulating regime were demonstrated to occur in the vicinity of phase transition temperature. We also found an asymmetric hole-electron carrier modulation related to the suppression of phase transition temperature. The results in this research provide a possibility for clarifying the origin of metal-insulator transition in VO2 through the electrostatic field-induced transport modulation.

  6. VO2 responses to running speeds above VO2max.

    PubMed

    Duffield, R; Bishop, D

    2008-06-01

    This study compared VO2, heart rate (HR) and electromyographic (iEMG) responses to speeds above the velocity associated with VO2max (v-VO2max). Eight male, middle-distance runners performed a graded exercise test to determine VO2max and v-VO2max and runs to fatigue at 100 % and 110 % v-VO2max. Breath-by-breath VO2 and HR were continuously recorded; lactate [La (-)] measured pre- and post-run and iEMG measures of rectus femoris (RF) and vastus lateralis were recorded during the first and last 20 s of each run. Analysis indicated longer time to fatigue in the 100 % v-VO2max run with no differences between conditions for VO2 or HR amplitudes or post-run [La (-)] (p > 0.05). There were significantly faster tau values (p < 0.05) in the 110 % condition in VO2 and HR. No significant correlations were observed between VO2 or HR tau values and time to fatigue. RF iEMG was significantly larger in 110 % compared to 100 % run in the first 20 s (p < 0.05). While no association between treadmill performance and VO2 response was evident, faster running speeds resulted in faster VO2 and HR responses, with no difference in amplitude or % VO2max attained. This may potentially be as a result of an increased muscle fibre recruitment stimulus during the faster running velocity resulting in faster cardiodynamic responses.

  7. Improved VO2max and time trial performance with more high aerobic intensity interval training and reduced training volume: a case study on an elite national cyclist.

    PubMed

    Støren, Øyvind; Bratland-Sanda, Solfrid; Haave, Marius; Helgerud, Jan

    2012-10-01

    The present study investigated to what extent more high aerobic intensity interval training (HAIT) and reduced training volume would influence maximal oxygen uptake (VO2max) and time trial (TT) performance in an elite national cyclist in the preseason period. The cyclist was tested for VO2max, cycling economy (C(c)), and TT performance on an ergometer cycle during 1 year. Training was continuously logged using heart rate monitor during the entire period. Total monthly training volume was reduced in the 2011 preseason compared with the 2010 preseason, and 2 HAIT blocks (14 sessions in 9 days and 15 sessions in 10 days) were performed as running. Between the HAIT blocks, 3 HAIT sessions per week were performed as cycling. From November 2010 to February 2011, the cyclist reduced total average monthly training volume by 18% and cycling training volume by 60%. The amount of training at 90-95% HRpeak increased by 41%. VO2max increased by 10.3% on ergometer cycle. TT performance improved by 14.9%. C(c) did not change. In conclusion, preseason reduced total training volume but increased amount of HAIT improved VO2max and TT performance without any changes in C(c). These improvements on cycling appeared despite that the HAIT blocks were performed as running. Reduced training time, and training transfer from running into improved cycling form, may be beneficial for cyclists living in cold climate areas.

  8. [VO2 max, a true exercise test].

    PubMed

    Saunier, Carole

    2013-01-01

    VO2 max is nowadays an essential examination performed in the monitoring of heart failure. The nurse has a role to play during the test and in supporting the patient, although this test remains highly technical and complex.

  9. Magnetic phase transition of high-pressure phase (VO)2P2O7 studied by high-field ESR measurements

    NASA Astrophysics Data System (ADS)

    Hiraka, K.; Nagasaka, Y.; Kunimoto, T.; Inagaki, Y.; Okubo, S.; Ohta, H.; Saito, T.; Azuma, M.; Takano, M.

    2004-05-01

    The high-pressure phase of (VO)2P2O7 (HP-VOPO) is a S=1/2 Heisenberg antiferromagnetic alternating chain compound with one spin gap. The high-field ESR measurements of the HP-VOPO single crystal have been performed using the pulsed magnetic field up to 30T. Small anomaly is observed in ESR mode for both a- and b-axis. The linewidth became broad around Bc=20T when the field is applied along the a- and b-axis. The magnetic state of HP-VOPO above Bc will be discussed.

  10. Magnetic Irreversibility in VO2/Ni Bilayers

    NASA Astrophysics Data System (ADS)

    de La Venta, Jose; Lauzier, Josh; Sutton, Logan

    The temperature dependence of the coercivity and magnetization of VO2/Ni bilayers was studied. VO2 exhibits a well-known Structural Phase Transition (SPT) at 330-340 K, from a low temperature monoclinic (M) to a high temperature rutile (R) structure. The SPT of VO2 induces an inverse magnetoelastic effect that strongly modifies the coercivity and magnetization of the Ni films. In addition, the growth conditions allow tuning of the magnetic properties. Ni films deposited on top of VO2 (M) show an irreversible change in the coercivity after the first cycle through the high temperature phase, with a corresponding change in the surface morphology of VO2. On the other hand, the Ni films grown on top of VO2 (R) do not show this irreversibility. These results indicate that properties of magnetic films are strongly affected by the strain induced by materials that undergo SPT and that it is possible to control the magnetic properties by tuning the growth conditions.

  11. Validation of a new method for estimating VO2max based on VO2 reserve.

    PubMed

    Swain, David P; Parrott, James A; Bennett, Anna R; Branch, J David; Dowling, Elizabeth A

    2004-08-01

    The American College of Sports Medicine's (ACSM) preferred method for estimating maximal oxygen consumption (VO2max) has been shown to overestimate VO2max, possibly due to the short length of the cycle ergometry stages. This study validates a new method that uses a final 6-min stage and that estimates VO2max from the relationship between heart rate reserve (HRR) and VO2 reserve. A cycle ergometry protocol was designed to elicit 65-75% HRR in the fifth and sixth minutes of the final stage. Maximal workload was estimated by dividing the workload of the final stage by %HRR. VO2max was then estimated using the ACSM metabolic equation for cycling. After the 6-min stage was completed, an incremental test to maximal effort was used to measure actual VO2max. Forty-nine subjects completed a pilot study using one protocol to reach the 6-min stage, and 50 additional subjects completed a modified protocol. The pilot study obtained a valid estimate of VO2max (r = 0.91, SEE = 3.4 mL x min(-1) x kg-1) with no over- or underestimation (mean estimated VO2max = 35.3 mL x min(-1) x kg(-1), mean measured VO2max = 36.1 mL x min(-1) x kg(-1)), but the average %HRR achieved in the 6-min stage was 78%, with several subjects attaining heart rates considered too high for submaximal fitness testing. The second study also obtained a valid estimate of VO2max (r = 0.89, SEE = 4.0 mL x min(-1) x kg(-1)) with no over- or underestimation (mean estimated VO2max = 36.7 mL x min(-1) x kg(-1), mean measured VO2max = 36.9 mL x min(-1) x kg(-1), and the average %HRR achieved in the 6-min stage was 64%. A new method for estimating VO2max from submaximal cycling based on VO2 reserve has been found to be valid and more accurate than previous methods.

  12. High-intensity interval training improves VO(2peak), maximal lactate accumulation, time trial and competition performance in 9-11-year-old swimmers.

    PubMed

    Sperlich, Billy; Zinner, Christoph; Heilemann, Ilka; Kjendlie, Per-Ludvik; Holmberg, Hans-Christer; Mester, Joachim

    2010-11-01

    Training volume in swimming is usually very high when compared to the relatively short competition time. High-intensity interval training (HIIT) has been demonstrated to improve performance in a relatively short training period. The main purpose of the present study was to examine the effects of a 5-week HIIT versus high-volume training (HVT) in 9-11-year-old swimmers on competition performance, 100 and 2,000 m time (T(100 m) and T(2,000 m)), VO(2peak) and rate of maximal lactate accumulation (Lac(max)). In a 5-week crossover study, 26 competitive swimmers with a mean (SD) age of 11.5 ± 1.4 years performed a training period of HIIT and HVT. Competition (P < 0.01; effect size = 0.48) and T(2,000 m) (P = 0.04; effect size = 0.21) performance increased following HIIT. No changes were found in T(100 m) (P = 0.20). Lac(max) increased following HIIT (P < 0.01; effect size = 0.43) and decreased after HVT (P < 0.01; effect size = 0.51). VO(2peak) increased following both interventions (P < 0.05; effect sizes = 0.46-0.57). The increases in competition performance, T(2,000 m), Lac(max) and VO(2peak) following HIIT were achieved in significantly less training time (~2 h/week).

  13. Electric Field-induced Resistance Switching in VO2 Channels using Hybrid Gate Dielectric of High- k Ta2O5/Organic material Parylene-C

    NASA Astrophysics Data System (ADS)

    Wei, Tingting; Kanki, Teruo; Fujiwara, Kohei; Chikanari, Masashi; Tanaka, Hidekazu

    Electrostatic approach utilizing field-effect transistor (FET) with correlated electron materials provides an avenue to realize the novel devices (Mott-transistor) and to clarify condensed matter physics. In this study, we have prepared Mott-transistors using vanadium dioxide (VO2) channels and employed hybrid gate dielectric consisted of high- k material Ta2O5 and organic polymer parylene-C to trigger carrier transport modulation in VO2. Obvious resistance modulations were observed in insulating regime through time-dependent resistance measurement at varied square-shaped gate bias (VG) . Contrasting to the hysteretic response in electric double layer transistor (EDLT), an abrupt resistance switching in less than of 2-second-interval enables us to attribute such immediate modulation to pure electrostatic effect. Moreover, the maximum of resistance change was identified to appear around phase transition temperature (TMI) , which confirmed the disordered heterogeneous regime at TMI. Taking advantage of systematic modulation using VO2-based devices, we demonstrated the pronounced shifts of TMI by gate bias. Another fascinating behavior on asymmetric drop in TMI by hole-electron carrier doping was observed.

  14. Time to exhaustion and time spent at a high percentage of VO2max in severe intensity domain in children and adults.

    PubMed

    Leclair, Erwan; Mucci, Patrick; Borel, Benoit; Baquet, Georges; Carter, Helen; Berthoin, Serge

    2011-04-01

    The aim of the study was to compare time spent at a high percentage of VO2max (>90% of VO2max) (ts90%), time to achieve 90% of VO2max (ta90%), and time to exhaustion (TTE) for exercise in the severe intensity domain in children and adults. Fifteen prepubertal boys (10.3 ± 0.9 years) and 15 men (23.5 ± 3.6 years) performed a maximal graded exercise to determine VO2max, maximal aerobic power (MAP) and power at ventilatory threshold (PVTh). Then, they performed 4 constant load exercises in a random order at PVTh plus 50 and 75% of the difference between MAP and PVTh (PΔ50 and PΔ75) and 100 and 110% of MAP (P100 and P110). VO2max was continuously monitored. The P110 test was used to determine maximal accumulated oxygen deficit (MAOD). No significant difference was found in ta90% between children and adults. ts90% and TTE were not significantly different between children and adults for the exercises at PΔ50 and PΔ75. However, ts90% and TTE during P100 (p < 0.05 and p < 0.01, respectively) and P110 (p < 0.001) exercises were significantly shorter in children. Children had a significantly lower MAOD than adults (34.3 ± 9.4 ml · kg vs. 53.6 ± 11.1 ml · kg). A positive relationship (p < 0.05) was obtained between MAOD and TTE values during the P100 test in children. This study showed that only for intensities at, or higher than MAP, lower ts90% in children was linked to a reduced TTE, compared to adults. Shorter TTE in children can partly be explained by a lower anaerobic capacity (MAOD). These results give precious information about exercise intensity ranges that could be used in children's training sessions. Moreover, they highlight the implication of both aerobic and anaerobic processes in endurance performances in both populations.

  15. Kinetics of VO(2) in professional cyclists.

    PubMed

    Lucía, Alejandro; Hoyos, Jesús; Santalla, Alfredo; Pérez, Margarita; Chicharro, José L

    2002-02-01

    To analyze the kinetics of oxygen uptake (VO(2)) in professional road cyclists during a ramp cycle ergometer test and to compare the results with those derived from well-trained amateur cyclists. Twelve professional cyclists (P group; 25 +/- 1 yr; maximal power output (W(max)), 508.3 +/- 9.3 watts) and 10 amateur cyclists (A group; 22 +/- 1 y; W(max), 429.9 +/- 8.6 watts) performed a ramp test until exhaustion (power output increases of 25 watts x min(-1)). The regression lines of the VO(2):power output (W) relationship were calculated for the following three phases: phase I (below the lactate threshold (LT)), phase II (between LT and the respiratory compensation point (RCP)), and phase III (above RCP). In group P, the mean slope (Delta VO(2):Delta W) of the VO(2):W relationship decreased significantly (P < 0.01) across the three phases (9.9 +/- 0.1, 8.9 +/- 0.2, and 3.8 +/- 0.6 mL O(2) x watts(-1) x min(-1) for phases I, II, and III, respectively). No significant differences (P > 0.05) were found between phases I and II (P > 0.05) in group A, whereas Delta VO(2):Delta W significantly increased in phase III (P < 0.01), compared with phase II (10.2 +/- 0.3, 9.2 +/- 0.4, and 10.1 +/- 1.1 mL O(2) x watts(-1) x min(-1) in phases I, II, and III, respectively). The mean value of Delta VO(2):Delta W for phase III was significantly lower in group P than in group A (P < 0.01). Contrary to the case in amateur riders, the rise in VO(2) in professional cyclists is attenuated at moderate to high workloads. This is possibly an adaptation to the higher demands of their training/competition schedule.

  16. VO2 (A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms

    NASA Astrophysics Data System (ADS)

    Rao Popuri, Srinivasa; Artemenko, Alla; Labrugere, Christine; Miclau, Marinela; Villesuzanne, Antoine; Pollet, Michaël

    2014-05-01

    Well crystallized VO2 (A) microrods were grown via a single step hydrothermal reaction in the presence of V2O5 and oxalic acid. With the advantage of high crystalline samples, we propose P4/ncc as an appropriate space group at room temperature. From morphological studies, we found that the oriented attachment and layer by layer growth mechanisms are responsible for the formation of VO2 (A) micro rods. The structural and electronic transitions in VO2 (A) are strongly first order in nature, and a marked difference between the structural transition temperatures and electronic transitions temperature was evidenced. The reversible intra- (LTP-A to HTP-A) and irreversible inter- (HTP-A to VO2 (M1)) structural phase transformations were studied by in-situ powder X-ray diffraction. Attempts to increase the size of the VO2 (A) microrods are presented and the possible formation steps for the flower-like morphologies of VO2 (M1) are described.

  17. Joule-heat-driven high-efficiency electronic-phase switching in freestanding VO2/TiO2 nanowires

    NASA Astrophysics Data System (ADS)

    Higuchi, Yoshiyuki; Kanki, Teruo; Tanaka, Hidekazu

    2017-03-01

    In this study, we demonstrated that an insulator-to-metal transition is driven by a low electric power using freestanding structures with two different sizes. The critical power (P C) required to induce the insulator-to-metal transition was measured with clamped and freestanding nanowires. The required P C for 400-nm-wide freestanding nanowires was 483 nW at a temperature 2 K lower than the temperature of the insulator-to-metal transition. This P C value is approximately 1 order of magnitude smaller than that for freestanding microwires with a width of 1 µm. The thermal dissipation model explains the changes in P C. These results provide guidelines for achieving significant reductions in P C in two-terminal VO2 phase-switching devices.

  18. Role of surface defects and microstructure in infrared optical properties of thermochromic VO2 materials

    NASA Astrophysics Data System (ADS)

    Guinneton, Frédéric; Sauques, Laurent; Valmalette, Jean-Christophe; Cros, Frédéric; Gavarri, Jean-Raymond

    2005-01-01

    Thermochromic vanadium dioxide VO2 exhibits a semi-conducting to metallic phase transition at Tc=68 °C, involving strong variations in optical transmittance, reflectance and emissivity. However, the optical contrasts observed in thin films or nanostructured compacted samples seem to depend on both surface microstructure and surface crystal texture. In the case of opaque materials, surface defects might play a drastic role in optical reflectivity. As the high temperature metallic phase of VO2 is opaque for infrared radiations, we used aluminum samples as standards allowing us to correlate reflectivity responses with porosity and surface defects. Then, various polycrystalline and nanostructured VO2 samples compacted at various pressures and presenting variable surface roughness were prepared. Thin films were deposited by radio frequency sputtering process. The samples were characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Optical properties (reflectance and emissivity) were analyzed above and below the transition temperature, making use of specific FTIR equipments. In thin films, the deposited VO2 phase was systematically oriented and surface porosity was very weak. In polycrystalline samples, as the compaction pressure increased, surface porosity decreased, and infrared optical contrast increased. In such samples, preferred orientations were favored for low applied pressures. These features clearly show that the main parameters conditioning the optical contrast should be the surface defects and porosity, not the preferred crystal orientations. As an additional interesting result, the surfaces formed from compacted nanocrystalline VO2 powders present improved optical contrast for reflectance and emissivity properties.

  19. The influence of exercise duration at VO2 max on the off-transient pulmonary oxygen uptake phase during high intensity running activity.

    PubMed

    Billat, V L; Hamard, L; Koralsztein, J P

    2002-12-01

    The purpose of this study was to examine the influence of time run at maximal oxygen uptake (VO2 max) on the off-transient pulmonary oxygen uptake phase after supra-lactate threshold runs. We hypothesised: 1) that among the velocities eliciting VO2 max there is a velocity threshold from which there is a slow component in the VO2-off transient, and 2) that at this velocity the longer the duration of this time at VO2 max (associated with an accumulated oxygen kinetics since VO2 can not overlap VO2 max), the longer is the off-transient phase of oxygen uptake kinetics. Nine long-distance runners performed five maximal tests on a synthetic track (400 m) while breathing through the COSMED K4b2 portable, telemetric metabolic analyser: i) an incremental test which determined VO2 max, the minimal velocity associated with VO2 max (vVO2 max) and the velocity at the lactate threshold (vLT), ii) and in a random order, four supra-lactate threshold runs performed until exhaustion at vLT + 25, 50, 75 and 100% of the difference between vLT and vVO2 max (vdelta25, vdelta50, vdelta75, vdelta100). At vdelta25, vdelta50 (= 91.0 +/- 0.9% vVO2 max) and vdelta75, an asymmetry was found between the VO2 on (double exponential) and off-transient (mono exponential) phases. Only at vdelta75 there was at positive relationship between the time run at VO2 max (%tlimtot) and the VO2 recovery time constant (Z = 1.8, P = 0.05). In conclusion, this study showed that among the velocities eliciting VO2 max, vdelta75 is the velocity at which the longer the duration of the time at VO2 max, the longer is the off-transient phase of oxygen uptake kinetics. It may be possible that at vdelta50 there is not an accumulated oxygen deficit during the plateau of VO2 at VO2 max and that the duration of the time at VO2 max during the exhaustive runs at vdelta100, could be too short to induce an accumulating oxygen deficit affecting the oxygen recovery.

  20. Microstructures and thermochromic characteristics of VO2/AZO composite films

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Li, Yi; Yuan, Wenrui; Fang, Baoying; Wang, Xiaohua; Hao, Rulong; Wu, Zhengyi; Xu, Tingting; Jiang, Wei; Chen, Peizu

    2016-05-01

    A vanadium dioxide (VO2) thin film was fabricated on a ZnO doped with Al (AZO) conductive glass by magnetron sputtering at room temperature followed by annealing under air atmosphere. The microstructures and optical properties of the thin film were studied. The results showed that the VO2/AZO composite film was poly-crystalline and the AZO layer did not change the preferred growth orientation of VO2. Compared to the VO2 film fabricated on soda-lime glass substrate through the same process and condition, the phase transition temperature of the VO2/AZO composite film was decreased by about 25 °C, thermal hysteresis width narrowed to 6 °C, the visible light transmittance was over 50%, the infrared transmittances before and after phase transition were 21% and 55%, respectively at 1500 nm.

  1. Heteroepitaxial VO2 thin films on GaN: Structure and metal-insulator transition characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, You; Ramanathan, Shriram

    2012-10-01

    Monolithic integration of correlated oxide and nitride semiconductors may open up new opportunities in solid-state electronics and opto-electronics that combine desirable functional properties of both classes of materials. Here, we report on epitaxial growth and phase transition-related electrical properties of vanadium dioxide (VO2) thin films on GaN epitaxial layers on c-sapphire. The epitaxial relation is determined to be (010)vo2‖(0001)GaN‖(0001)A12O3 and [100]vo2‖[1¯21¯0]A12O3 from x-ray diffraction. VO2 heteroepitaxial growth and lattice mismatch are analyzed by comparing the GaN basal plane (0001) with the almost close packed corrugated oxygen plane in vanadium dioxide and an experimental stereographic projection describing the orientation relationship is established. X-ray photoelectron spectroscopy suggests a slightly oxygen rich composition at the surface, while Raman scattering measurements suggests that the quality of GaN layer is not significantly degraded by the high-temperature deposition of VO2. Electrical characterization of VO2 films on GaN indicates that the resistance changes by about four orders of magnitude upon heating, similar to epitaxial VO2 films grown directly on c-sapphire. It is shown that the metal-insulator transition could also be voltage-triggered at room temperature and the transition threshold voltage scaling variation with temperature is analyzed in the framework of a current-driven Joule heating model. The ability to synthesize high quality correlated oxide films on GaN with sharp phase transition could enable new directions in semiconductor-photonic integrated devices.

  2. VO2@RER1.0: a novel submaximal cardiopulmonary exercise index.

    PubMed

    Chin, Clifford; Kazmucha, Jeffrey; Kim, Nancy; Suryani, Reny; Olson, Inger

    2010-01-01

    Maximal oxygen consumption (VO2max) is the "gold standard" by which to assess functional capacity; however, it is effort dependent. VO2@RER1.0 is defined when VO2 = VCO2. Between December 22, 1997 and November 9, 2004, 305 pediatric subjects underwent cycle ergometer cardiopulmonary exercise testing, exercised to exhaustion, and reached a peak respiratory exchange ratio > or = 1.10. Group 1 subjects achieved a peak VO2 > or = 80% of predicted VO2max; group 2 subjects achieved a peak VO2 < or = 60% of predicted VO2max; and group 3 subjects achieved a peak VO2 between 61 and 79% of predicted VO2max. Linear regression analysis was performed for VO2@RER1.0 as a function of predicted VO2 for group 1 subjects. A -2 SD regression line and equation was created. VO2@RER1.0 data from groups 2 and 3 were plotted onto the normative graph. Contingency table and relative-risk analysis showed that an abnormal VO2@RER1.0 predicted an abnormal peak VO2(positive-predictive value 83%, negative-predictive value 85%, sensitivity 84%, and specificity 84%). VO2@RER1.0 is a highly sensitive, specific, and predictive submaximal index of functional capacity. This submaximal index is easy to identify without subjectivity. This index may aid in the evaluation of subjects who cannot exercise to maximal parameters.

  3. Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials.

    PubMed

    Milanović, Zoran; Sporiš, Goran; Weston, Matthew

    2015-10-01

    Enhancing cardiovascular fitness can lead to substantial health benefits. High-intensity interval training (HIT) is an efficient way to develop cardiovascular fitness, yet comparisons between this type of training and traditional endurance training are equivocal. Our objective was to meta-analyse the effects of endurance training and HIT on the maximal oxygen consumption (VO2max) of healthy, young to middle-aged adults. Six electronic databases were searched (MEDLINE, PubMed, SPORTDiscus, Web of Science, CINAHL and Google Scholar) for original research articles. A search was conducted and search terms included 'high intensity', 'HIT', 'sprint interval training', 'endurance training', 'peak oxygen uptake', and 'VO2max'. Inclusion criteria were controlled trials, healthy adults aged 18-45 years, training duration ≥2 weeks, VO2max assessed pre- and post-training. Twenty-eight studies met the inclusion criteria and were included in the meta-analysis. This resulted in 723 participants with a mean ± standard deviation (SD) age and initial fitness of 25.1 ± 5 years and 40.8 ± 7.9 mL·kg(-1)·min(-1), respectively. We made probabilistic magnitude-based inferences for meta-analysed effects based on standardised thresholds for small, moderate and large changes (0.2, 0.6 and 1.2, respectively) derived from between-subject SDs for baseline VO2max. The meta-analysed effect of endurance training on VO2max was a possibly large beneficial effect (4.9 mL·kg(-1)·min(-1); 95 % confidence limits ±1.4 mL·kg(-1)·min(-1)), when compared with no-exercise controls. A possibly moderate additional increase was observed for typically younger subjects (2.4 mL·kg(-1)·min(-1); ±2.1 mL·kg(-1)·min(-1)) and interventions of longer duration (2.2 mL·kg(-1)·min(-1); ±3.0 mL·kg(-1)·min(-1)), and a small additional improvement for subjects with lower baseline fitness (1.4 mL·kg(-1)·min(-1); ±2.0 mL·kg(-1)·min(-1)). When compared with no-exercise controls

  4. Flexible thermochromic window based on hybridized VO2/graphene.

    PubMed

    Kim, Hyeongkeun; Kim, Yena; Kim, Keun Soo; Jeong, Hu Young; Jang, A-Rang; Han, Seung Ho; Yoon, Dae Ho; Suh, Kwang S; Shin, Hyeon Suk; Kim, TaeYoung; Yang, Woo Seok

    2013-07-23

    Large-scale integration of vanadium dioxide (VO2) on mechanically flexible substrates is critical to the realization of flexible smart window films that can respond to environmental temperatures to modulate light transmittance. Until now, the formation of highly crystalline and stoichiometric VO2 on flexible substrate has not been demonstrated due to the high-temperature condition for VO2 growth. Here, we demonstrate a VO2-based thermochromic film with unprecedented mechanical flexibility by employing graphene as a versatile platform for VO2. The graphene effectively functions as an atomically thin, flexible, yet robust support which enables the formation of stoichiometric VO2 crystals with temperature-driven phase transition characteristics. The graphene-supported VO2 was capable of being transferred to a plastic substrate, forming a new type of flexible thermochromic film. The flexible VO2 films were then integrated into the mock-up house, exhibiting its efficient operation to reduce the in-house temperature under infrared irradiation. These results provide important progress for the fabrication of flexible thermochromic films for energy-saving windows.

  5. Sol-gel preparation and characterization of SiO2 coated VO2 films with enhanced transmittance and high thermochromic performance

    NASA Astrophysics Data System (ADS)

    Li, Dezeng; Shan, Yongkui; Huang, Fuqiang; Ding, Shangjun

    2014-10-01

    Vanadium dioxide (VO2) films prepared at low-temperature with a low cost are considerable for energy-saving applications. Here, SiO2 coated VO2 films with clearly enhanced visible transmittance by introducing antireflection coatings (ARCs) and excellent thermochromic performance were present. The VO2 films have been prepared via a stable and low-cost sol-gel synthesis route using vanadium pentaoxide powder as precursor, and their structural, morphological, optical and electrical properties and thermochromic performance were systemically characterized. The resistance of VO2 films varies by 4 orders of magnitude and the transmittance changes from 11.8% to 69.3% at 2500 nm while no significant deviation appears in the visible region during metal-insulator transition (MIT). Nanoporous SiO2 coating with good optical transparency was coated on the surface of VO2 film via sol-gel dip-coating technique to enhance its optical transmittance, and the visible transmittance is increased by 14.6% due to the significantly decreased reflectance. The critical transition temperature (63 °C) and infrared switching properties of VO2 films are not much deteriorated by applying SiO2 layer. The synergistic effect of antireflection and thermochromism on SiO2 coated VO2 films was investigated.

  6. Influence of work-interval intensity and duration on time spent at a high percentage of VO2max during intermittent supramaximal exercise.

    PubMed

    Wakefield, Benjamin R; Glaister, Mark

    2009-12-01

    The purpose of this study was to examine the effect of work-interval duration (WID) and intensity on the time spent at, or above, 95% VO2max (T95 VO2max) during intermittent bouts of supramaximal exercise. Over a 5-week period, 7 physically active men with a mean (+/-SD) age, height, body mass, and VO2max of 22 +/- 5 years, 181.5 +/- 5.6 cm, 86.4 +/- 11.4 kg, and 51.5 +/- 1.5 ml.kg-1.min-1, respectively, attended 7 testing sessions. After completing a submaximal incremental test on a treadmill to identify individual oxygen uptake/running velocity relationships, subjects completed a maximal incremental test to exhaustion to VO2max and subsequently (from the aforementioned relationship) the minimum velocity required to elicit VO2max (vVO2max). In a random order, subjects then carried out 3 intermittent runs to exhaustion at both 105% and 115% vVO2max. Each test used a different WID (20 s, 25 s, or 30 s) interspersed with 20-second passive recovery periods. Results revealed no significant difference in T95 vVO2max for intermittent runs at 105% versus 115% vVO2max (p = 0.142). There was, however, a significant effect (p < 0.001) of WID on T95 VO2max, with WIDs of 30 seconds enabling more time relative to WIDs of 20 seconds (p = 0.018) and 25 seconds (p = 0.009). Moreover, there was an interaction between intensity and duration such that the effect of WID was magnified at the lower exercise intensity (p = 0.046). In conclusion, despite a number of limitations, the results of this investigation suggest that exercise intensities of approximately 105% vVO2max combined with WIDs greater than 25 seconds provide the best way of optimizing T95 VO2max when using fixed 20-second stationary rest periods.

  7. Improving the electrocatalytic performance of carbon nanotubes for VO2+/VO2+ redox reaction by KOH activation

    NASA Astrophysics Data System (ADS)

    Dai, Lei; Jiang, Yingqiao; Meng, Wei; Zhou, Huizhu; Wang, Ling; He, Zhangxing

    2017-04-01

    In this paper, carbon nanotubes (CNTs) was activated by KOH treatment at high temperature and investigated as catalyst for VO2+/VO2+ redox reaction for vanadium redox flow battery (VRFB). X-ray photoelectron spectroscopy results suggest that the oxygen-containing groups can be introduced on CNTs by KOH activation. The mass transfer of vanadium ions can be accelerated by chemical etching by KOH activation and improved wettability due to the introduction of hydrophilic groups. The electrochemical properties of VO2+/VO2+ redox reaction can be enhanced by introduced oxygen-containing groups as active sites. The sample treated at 900 °C with KOH/CNTs mass ratio of 3:1 (CNTs-3) exhibits the highest electrocatalytic activity for VO2+/VO2+ redox reaction. The cell using CNTs-3 as positive catalyst demonstrates the smallest electrochemical polarization, the highest capacity and efficiency among the samples. Using KOH-activated CNTs-3 can increase the average energy efficiency of the cell by 4.4%. This work suggests that KOH-activated CNTs is a low-cost, efficient and promising catalyst for VO2+/VO2+ redox reaction for VRFB system.

  8. High temperature coefficient of resistance of low-temperature-grown VO2 films on TiO2-buffered SiO2/Si (100) substrates

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kenichi; Shibuya, Keisuke; Suzuki, Megumi; Wado, Hiroyuki; Sawa, Akihito

    2015-08-01

    The introduction of a TiO2 buffer layer significantly improved the temperature coefficient of resistance (TCR), a measure of the sharpness of the metal-insulator transition, for films of VO2 grown on SiO2/Si (100) substrates at growth temperatures below 670 K. X-ray diffraction and Raman scattering measurements revealed that polycrystalline VO2 films were formed on the TiO2-buffered substrates at low temperatures below 600 K, whereas amorphous films were formed at these temperatures on SiO2/Si (100) substrates without a TiO2 buffer layer. Electron microscopy studies confirmed that the TiO2 buffer layer enhanced the grain growth of VO2 films at low growth temperatures. The VO2 films grown at 600 K on TiO2-buffered substrates showed a large TCR of more than 80%/K as a result of the improved crystallinity and grain size of the VO2 films. Our results provide an effective approach toward the integration of VO2-based devices onto Si platforms at process temperatures below 670 K.

  9. Metal-insulator transition of valence-controlled VO2 thin film prepared by RF magnetron sputtering using oxygen radical

    NASA Astrophysics Data System (ADS)

    Suetsugu, Takaaki; Shimazu, Yuichi; Tsuchiya, Takashi; Kobayashi, Masaki; Minohara, Makoto; Sakai, Enju; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru

    2016-06-01

    We have prepared b-axis-oriented VO2 thin films by RF magnetron sputtering using oxygen radicals as the reactive gas. The VO2 thin films consist of a mixed-valence V3+/V4+ state formed by oxygen vacancies. The V3+ ratio strongly depends on the film thickness and the oxygen partial pressure of the radical gun during deposition. The lattice constant of the b-axis increases and the metal-insulator transition (MIT) temperature decreases with decreasing V3+ ratio, although the VO2 thin films with a high V3+ ratio of 42% do not exhibit MIT. The bandwidths and spectral weights of V 3d a1g and \\text{e}\\text{g}σ bands at around the Fermi level, which correspond to the insulating phase at 300 K, are smaller in the VO2 thin films with a low V3+ ratio. These results indicate that the control of the mixed-valence V3+/V4+ state is important for the MIT of b-axis-oriented VO2 thin films.

  10. Infrared Response and Optoelectronic Memory Device Fabrication Based on Epitaxial VO2 Film.

    PubMed

    Fan, Lele; Chen, Yuliang; Liu, Qianghu; Chen, Shi; Zhu, Lei; Meng, Qiangqiang; Wang, Baolin; Zhang, Qinfang; Ren, Hui; Zou, Chongwen

    2016-12-07

    In this work, high-quality VO2 epitaxial films were prepared on high-conductivity n-GaN (0001) crystal substrates via an oxide molecular beam epitaxy method. By fabricating a two-terminal VO2/GaN film device, we observed that the infrared transmittance and resistance of VO2 films could be dynamically controlled by an external bias voltage. Based on the hysteretic switching effect of VO2 in infrared range, an optoelectronic memory device was achieved. This memory device was operated under the "electrical writing-optical reading" mode, which shows promising applications in VO2-based optoelectronic device in the future.

  11. The preparation of a plasmonically resonant VO2 thermochromic pigment

    NASA Astrophysics Data System (ADS)

    Bai, Huaping; Cortie, Michael B.; Maaroof, Abbas I.; Dowd, Annette; Kealley, Catherine; Smith, Geoffrey B.

    2009-02-01

    Vanadium dioxide (VO2) undergoes a reversible metal-insulator transition, normally at ~68 °C. While the properties of continuous semi-transparent coatings of VO2 are well known, there is far less information available concerning the potential use of discrete VO2 nanoparticles as a thermochromic pigment in opaque coatings. Individual VO2 nanoparticles undergo a localized plasmon resonance with near-infrared light at about 1100 nm and this resonance can be switched on and off by simply varying the temperature of the system. Therefore, incorporation of VO2 nanoparticles into a coating system imbues the coating with the ability to self-adaptively modulate its own absorptive efficiency in the near-infrared. Here we examine the magnitude and control of this phenomenon. Prototype coatings are described, made using VO2 powder produced by an improved process. The materials are characterized using calorimetry, x-ray diffraction, high-resolution scanning electron microscopy, transmission electron microscopy, and by measurement of optical properties.

  12. Thermochromic VO2 on Zinnwaldite Mica by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Mathevula, L.; Ngom, B. D.; Kotsedi, L.; Sechogela, P.; Doyle, T. B.; Ghouti, M.; Maaza, M.

    2014-09-01

    VO2 thin films have been deposited by pulsed laser deposition on Zinnwaldite Mica substrates. The crystal structure, chemical composition, morphology were determined and the semiconductor/metal transition (SMT) properties of the deposited films were investigated. Without any post annealing, the films exhibit a textured nature with a VO2 (0 1 1) preferred crystallographic orientation and an elevated thermal variation of the electric resistance ratio RS/RM through the SMT at T ≈ 68 °C of the order of 104 and a narrow ∼7 °C hysteresis. In addition, the growth of the VO2 crystallites seem to be governed likely by a Volmer-Weber or Stranski-Krastanov mechanisms and certainly not a Frank-van Der Merwe process.

  13. Effects of Zirconium Ions Doping on the Structural and Thermochromic Properties of VO2 Thin Films

    NASA Astrophysics Data System (ADS)

    Li, Yuanbao; Liu, Juncheng; Wang, Danping; Dang, Yuanyuan

    2017-07-01

    As an inorganic functional material, VO2 thin films are expected to be used for smart windows. However, these films are not conducive to practical applications when the phase transition temperature (Tc) of the VO2 is approximately 68°C, which is greater than room temperature. To decrease Tc, the effect of Zr4+ doping on the structure and properties of VO2 films were investigated. The films were prepared using a sol-gel process, spin-coating on quartz glasses, and annealing at 525°C in a tube furnace within a nitrogen atmosphere. The results demonstrate that these films have a highly preferential crystalline orientation on the substrate; however, the primary two x-ray diffraction pattern peaks shift slightly toward the small angle, and when 7 at.% Zr4+ was doped in the VO2 film, the deviation angle was 0.16°, and the crystallite size was approximately 98 nm. A large number of grains were found on the surface of the pure VO2 films, but all the Zr4+ doped films had a layered structure, and the thickness of the films was approximately 200 nm. The Tc of these films was characterized using differential scanning calorimetry, and the luminous and solar transmittance was characterized using a UV-Vis-NIR spectrophotometer, which demonstrated that the effect of Zr4+ doping decreased Tc by approximately 1°C per 1 at.% on average, and the Tc of the 7 at.% film was slightly greater than that of the 5 at.% film, the phase transition temperature of which was 61.4°C. The transmittance decreased as the doping concentration increased, and 1 at.% Zr4+ doping increased the luminous regulation efficiency (ΔT lum) and solar modulation efficiency (ΔT sol). The ΔT lum of the pure VO2 film and the 1 at.% Zr4+-doped VO2 films was 10.9% and 11.2%, and ΔT sol was 14.4 and 15.2%, respectively.

  14. Scaling behavior of VO2peak in trained wheelchair athletes.

    PubMed

    Goosey-Tolfrey, Victoria L; Batterham, Alan M; Tolfrey, Keith

    2003-12-01

    To examine the scaling behavior of peak oxygen uptake (VO2peak) in wheelchair athletes, adjusting for known covariates. Body mass, VO2peak, and an estimate of adiposity (sum of four skinfolds) were determined in a sample of 45 highly trained wheelchair basketball and racing athletes. The participants were classified as possessing either "high" or "low" trunk stability and balance using recognized sporting classifications. A wheelchair ergometer was used to obtain the VO2peak measurements. The relationship between VO2peak and body mass was obtained via a nonlinear allometric model with the sum of four skinfolds, trunk stability and balance, and chronological age entered as covariates. The point estimate exponent for body mass was 0.82 (95% CI, 0.54-1.10). After controlling for the influence of body mass, adiposity, and age, the wheelchair athletes with greater trunk stability and balance had on average an 11% greater VO2peak. The regression model explained 54% of the sample variance in VO2peak. The obtained mass exponent of 0.82 is congruent with that predicted from the multiple-causes allometric cascade model and consideration of the physiological characteristics of spinal cord injured athletes. To compare the body size-independent VO2peak values of athletes within the study sample, the mass exponent of 0.82 may be adopted (i.e., mL x kg(-0.82) x min(-1)). The uncertainty in the point estimate, reflected in the relatively wide 95% CI, highlights the need for further research with larger samples to increase the precision of estimation.

  15. Maximal endurance time at VO2max.

    PubMed

    Morton, R H; Billat, V

    2000-08-01

    There has been significant recent interest in the minimal running velocity which elicits VO2max. There also exists a maximal velocity, beyond which the subject becomes exhausted before VO2max is reached. Between these limits, there must be some velocity that permits maximum endurance at VO2max, and this parameter has also been of recent interest. This study was undertaken to model the system and investigate these parameters. We model the bioenergetic process based on a two-component (aerobic and anaerobic) energy system, a two-component (fast and slow) oxygen uptake system, and a linear control system for maximal attainable velocity resulting from declining anaerobic reserves as exercise proceeds. Ten male subjects each undertook four trials in random order, running until exhaustion at velocities corresponding to 90, 100, 120, and 140% of the minimum velocity estimated as being required to elicit their individual VO2max. The model development produces a skewed curve for endurance time at VO2max, with a single maximum. This curve has been successfully fitted to endurance data collected from all 10 subjects (R2 = 0.821, P < 0.001). For this group of subjects, the maximal endurance time at VO2max can be achieved running at a pace corresponding to 88% of the minimal velocity, which elicits VO2max as measured in an incremental running test. Average maximal endurance at VO2max is predicted to be 603 s in a total endurance time of 1024 s at this velocity. Endurance time at VO2max can be realistically modeled by a curve, which permits estimation of several parameters of interest; such as the minimal running velocity sufficient to elicit VO2max, and that velocity for which endurance at VO2max is the longest.

  16. Preparation and Characterization of VO 2 Nanopowders

    NASA Astrophysics Data System (ADS)

    Zheng, Chenmou; Zhang, Xinmin; Zhang, Jianhui; Liao, Kairong

    2001-02-01

    VO2 powders with sizes of <30 nm were successfully synthesized by pyrolysis of the precursor, [NH4]5[(VO)6(CO3)4(OH)9]·10H2O. The effects of various pyrolysis conditions on VO2 stoichiometries and crystal states were investigated in detail. The results of IR measurements show that for the stoichiometric VO2, from micro- to nanocrystals and to amorphous state, the absorptions shifted to lower wavenumbers, the numbers of bands decreased gradually, and the widths of the bands broadened. Moreover, the IR spectra of nanocrystals were obviously different from those of microcrystals and amorphism. In comparison with stoichiometric VO2 crystals, the IR absorptions of oxygen-rich VO2 crystals clearly were blue shift, and those of oxygen-deficient VO2 crystals lightly red shift. The heats and temperatures of phase transition from VO1.96 to VO2.07 were determined. The results indicate that the phase transition temperature of VO2.02 is 70.1°C and has the maximum phase transition heat.

  17. Thermochromic characteristics of Ti-doped VO2 thin film

    NASA Astrophysics Data System (ADS)

    Lee, Hwasoo; Ko, Kyung Hyun; Choi, Jun Oh

    2014-03-01

    Utilizing metal-to-insulator transition (MIT) properties of V-oxide film, stable VO2 phase is necessary. In sputtering deposition of VO2, simple target preparation and high deposition rate are recommendable. For this, VO2 film was deposited on quartz substrate by RF magnetron sputter system under low working pressure using V2O5 target. Due to the lower sputtering yield of oxygen compared to vanadium, oxygen ion contents is usually deficient from that of target. So, the reduction of V ions was a result of charge compensation with the oxygen ions. Under lower working pressure, deposition rate become higher so that this deficiency is getting larger to cause further reduction to destabilize VO2. Preventing this, titanium oxide co-deposition was suggested to enrich oxygen source. When TiO2 was used, Ti ion has stable +4 charge state so that extra oxygen sputtered prevents V ion reduction below +4 state. But, in case of TiO, Ti ions were oxidized from +2 to +3 and +4 state and V ions with less oxidation potential should be reduced to +3 or so. Pure VO2 film had MIT at 66°C and large resistivity ratio of 4 orders of magnitude from 30°C to 90°C. Under low working pressure, (V2O5 + TiO2) system yield fairly good films, while films with poor or absence of MIT were produced with TiO case.

  18. Biology of VO2 max: looking under the physiology lamp.

    PubMed

    Lundby, C; Montero, D; Joyner, M

    2016-11-07

    In this review, we argue that several key features of maximal oxygen uptake (VO2 max) should underpin discussions about the biological and reductionist determinants of its interindividual variability: (i) training-induced increases in VO2 max are largely facilitated by expansion of red blood cell volume and an associated improvement in stroke volume, which also adapts independent of changes in red blood cell volume. These general concepts are also informed by cross-sectional studies in athletes that have very high values for VO2 max. Therefore, (ii) variations in VO2 max improvements with exercise training are also likely related to variations in these physiological determinants. (iii) All previously untrained individuals will respond to endurance exercise training in terms of improvements in VO2 max provided the stimulus exceeds a certain volume and/or intensity. Thus, genetic analysis and/or reductionist studies performed to understand or predict such variations might focus specifically on DNA variants or other molecular phenomena of relevance to these physiological pathways.

  19. Phonons and the metal-insulator transition in VO2

    NASA Astrophysics Data System (ADS)

    Chang, Sung; Alatas, A.

    2005-03-01

    VO2 undergoes a metal-insulator transition (MIT) at TC= 340 K, which is accompanied by a structural phase transition from a high temperature rutile phase to a low temperature monoclinic phase. Although VO2 has been studied extensively for over 40 years, a clear understanding of the origin of the phase transition has not been forthcoming. Still at issue is the relative importance of electron-lattice and electron-electron interactions as driving mechanisms for the MIT. Here, we report the phonon dispersion of VO2, measured along the rutile γ-R direction using high resolution inelastic X-ray scattering. Unusual phonon behavior at the R point, as the MIT is approached, suggests significant electron-phonon coupling.

  20. Optimization of VO2 nanowire polymer composite thermochromic films by optical simulation

    NASA Astrophysics Data System (ADS)

    Naoi, Yuki; Amano, Jun

    2016-12-01

    Thermochromic films with high efficiency, transparency, and flexibility are highly desirable for energy-efficient smart window films. Vanadium oxide (VO2)-nanoparticle-embedded flexible polymer composite films are the most promising thermochromic films because of the sharp phase transition of insulating to metallic phases of VO2 at 68 °C with visible transparency and a large change in transmittance at near-infrared wavelengths before and after the metal-insulator phase transition. This paper describes the simulation of high-efficiency thermochromic polymer composite films embedded with VO2 nanoparticles of various sizes to investigate the optimum VO2 nanowire size and length.

  1. The effects of modified exponential tapering technique on perceived exertion, heart rate, time trial performance, VO2max and power output among highly trained junior cyclists.

    PubMed

    Ishak, Asmadi; Hashim, Hairul A; Krasilshchikov, Oleksandr

    2016-09-01

    The present study investigated the effects of a 2-week modified exponential taper on physiological adaptation and time trial performance among junior cyclists. Participants (N.=27) with the mean age of 16.95±0.8 years, height of 165.6±6.1 cm and weight of 54.19±8.1 kg were matched into either modified exponential taper (N.=7), normal exponential taper (N.=7), or control (N.=7) groups using their initial VO2max values. Both experimental groups followed a 12-week progressive endurance training program and subsequently, a 2-week tapering phase. A simulated 20-km time trial performance along with VO2max, power output, heart rate and rating of perceived exertion were measured at baseline, pre and post-taper. One way ANOVA was used to analyze the difference between groups before the start of the intervention while mixed factorial ANOVA was used to analyze the difference between groups across measurement sessions. When homogeneity assumption was violated, the Greenhouse-Geisser Value was used for the corrected values of the degrees of freedom for the within subject factor the analysis. Significant interactions between experimental groups and testing sessions were found in VO2max (F=6.67, df=4, P<0.05), power output (F=5.02, df=4, P<0.05), heart rate (F=10.87, df=2.51, P<0.05) rating of perceived exertion (F=13.04, df=4, P<0.05) and 20KM time trial (F=4.64, df=2.63, P<0.05). Post-hoc analysis revealed that both types of taper exhibited positive effects compared to the non-taper condition in the measured performance markers at post-taper while no different were found between the two taper groups. It was concluded that both taper protocols successfully inducing physiological adaptations among the junior cyclists by reducing the volume and maintaining the intensity of training.

  2. Thermochromic VO2 nanorods made by sputter deposition: Growth conditions and optical modeling

    NASA Astrophysics Data System (ADS)

    Li, Shu-Yi; Namura, Kyoko; Suzuki, Motofumi; Niklasson, Gunnar A.; Granqvist, Claes G.

    2013-07-01

    Reactive dc magnetron sputtering onto glass-based substrates yielded deposits of thermochromic VO2 with well-developed nanorods and nanowires. Their formation was promoted by high substrate temperature (above ˜500 °C), sufficient film thickness, proper inlet of the reactive gas, dispersed gold "seeds," and pronounced substrate roughness. Rutherford back scattering ascertained mass thicknesses, scanning electron microscopy depicted the nanostructures, and glancing incidence X-ray diffraction proved that single-phase VO2 was normally formed. Spectrophotometric measurements of total and diffuse transmittance and reflectance on VO2 thin films, at room temperature and ˜100 °C, allowed us to determine complex dielectric functions below and above the "critical" temperature for thermochromic switching (˜68 °C). These data were then used in computations based on the Bruggeman effective medium theory applied to randomly oriented prolate spheroidal structural units to derive the optical properties of the deposits. Experimental and computed data on spectral absorptance were found to be in good qualitative agreement.

  3. Tunable VO2/Au Hyperbolic Metamaterial

    DTIC Science & Technology

    2016-02-12

    United States Government.   Tunable VO2/Au hyperbolic metamaterial S. Prayakarao1, B. Mendoza2,3, A. Devine2,3, C. Kyaw2, R. B. Van Dover2, V...can be used as a tunable component of an active metamaterial . The lamellar metamaterial studied in this work is composed of subwavelength VO2 and Au...Au lamellar metamaterial stacks have been fabricated and studied in the electrical conductivity and optical (transmission and reflection

  4. Persistent electrochemical performance in epitaxial VO2(B)

    DOE PAGES

    Lee, Shinbuhm; Sun, Xiao -Guang; Lubimtsev, Andrew A.; ...

    2017-03-07

    Discovering high-performance energy storage materials is indispensable for renewable energy, electric vehicle performance, and mobile computing. Owing to the open atomic framework and good room temperature conductivity, bronze-phase vanadium dioxide [VO2(B)] has been regarded as a highly promising electrode material for Li ion batteries. However, previous attempts were unsuccessful to show the desired cycling performance and capacity without chemical modification. Here, we show with epitaxial VO2(B) films that one can accomplish the theoretical limit for capacity with persistent charging–discharging cyclability owing to the high structural stability and unique open pathways for Li ion conduction. Atomic-scale characterization by scanning transmission electronmore » microscopy and density functional theory calculations also reveal that the unique open pathways in VO2(B) provide the most stable sites for Li adsorption and diffusion. Furthermore, this work ultimately demonstrates that VO2(B) is a highly promising energy storage material and has no intrinsic hindrance in achieving superior cyclability with a very high power and capacity in a Li-ion conductor.« less

  5. Persistent Electrochemical Performance in Epitaxial VO2(B).

    PubMed

    Lee, Shinbuhm; Sun, Xiao-Guang; Lubimtsev, Andrew A; Gao, Xiang; Ganesh, Panchapakesan; Ward, Thomas Z; Eres, Gyula; Chisholm, Matthew F; Dai, Sheng; Lee, Ho Nyung

    2017-04-12

    Discovering high-performance energy storage materials is indispensable for renewable energy, electric vehicle performance, and mobile computing. Owing to the open atomic framework and good room temperature conductivity, bronze-phase vanadium dioxide [VO2(B)] has been regarded as a highly promising electrode material for Li ion batteries. However, previous attempts were unsuccessful to show the desired cycling performance and capacity without chemical modification. Here, we show with epitaxial VO2(B) films that one can accomplish the theoretical limit for capacity with persistent charging-discharging cyclability owing to the high structural stability and unique open pathways for Li ion conduction. Atomic-scale characterization by scanning transmission electron microscopy and density functional theory calculations also reveal that the unique open pathways in VO2(B) provide the most stable sites for Li adsorption and diffusion. Thus, this work ultimately demonstrates that VO2(B) is a highly promising energy storage material and has no intrinsic hindrance in achieving superior cyclability with a very high power and capacity in a Li-ion conductor.

  6. Laser processing of VO2 thin films for THz devices and metamaterials

    NASA Astrophysics Data System (ADS)

    Charipar, Nicholas A.; Charipar, Kristin M.; Kim, Heungsoo; Mathews, Scott A.; Breckenfeld, Eric; Auyeung, Raymond C. Y.; Piqué, Alberto

    2017-02-01

    Vanadium dioxide (VO2) undergoes a metal-insulator transition (MIT) at 68°C, at which point its electrical conductivity changes by several orders of magnitude. This extremely fast transition (Δt < 100 fs) can be induced thermally, mechanically, electrically, or optically. The combination of fast switching times and response to a broad range of external stimuli make VO2 an ideal material for a variety of novel devices and sensors. While the MIT in VO2 has been exploited for a variety of microwave/terahertz applications (i.e. tunable filters and modulators), very few devices exploiting the fast switching time of VO2 have been reported. The electrical properties of thin film VO2 (conductivity, carrier concentration, switching speed, etc.) are highly dependent on growth and post-processing conditions. The optimization of these conditions is therefore critical to the design and fabrication of VO2 devices. This paper will report the effects of various pulsed laser deposition (PLD) growth conditions on the metal-insulator transition in thin film VO2. In particular, we report the effect of PLD growth conditions on the stress/strain state of the VO2 layer, and the subsequent change in electrical properties. Finally, results from fabricated VO2 devices (THz emitters and THz modulators) will be presented.

  7. Direct and continuous synthesis of VO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Powell, M. J.; Marchand, P.; Denis, C. J.; Bear, J. C.; Darr, J. A.; Parkin, I. P.

    2015-11-01

    Monoclinic VO2 nanoparticles are of interest due to the material's thermochromic properties, however, direct synthesis routes to VO2 nanoparticles are often inaccessible due to the high synthesis temperatures or long reaction times required. Herein, we present a two-step synthesis route for the preparation of monoclinic VO2 nanoparticles using Continuous Hydrothermal Flow Synthesis (CHFS) followed by a short post heat treatment step. A range of particle sizes, dependent on synthesis conditions, were produced from 50 to 200 nm by varying reaction temperatures and the residence times in the process. The nanoparticles were characterised by powder X-ray diffraction, Raman and UV/Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The nanoparticles were highly crystalline with rod and sphere-like morphologies present in TEM micrographs, with the size of both the rod and spherical particles being highly dependent on both reaction temperature and residence time. SEM micrographs showed the surface of the powders produced from the CHFS process to be highly uniform. The samples were given a short post synthesis heat treatment to ensure that they were phase pure monoclinic VO2, which led to them exhibiting a large and reversible switch in optical properties (at near-IR wavelengths), which suggests that if such materials can be incorporated into coatings or in composites, they could be used for fenestration in architectural applications.

  8. Microstructure and Transport properties of epitaxial VO2 thin films on TiO2 substrates

    NASA Astrophysics Data System (ADS)

    Lu, Jiwei

    2008-10-01

    Vanadium oxides are paradigms of strongly correlated oxides and have attracted attention because of the metal insulator transitions (MIT) that several of the oxides and sub-oxides exhibit. In particular, VO2 has a metal--semiconductor transition at 340 K. This transition in VO2 combines the properties of a pure Mott Hubbard electronic transition with those of a Peierls structural transition. The Mott transition is responsible for the extreme speed of the optical switching that has been observed (faster than 100 fs). Understanding this transition and how to control it remains a challenge for both theory and experimental physics. We used a novel deposition technique, Reactive Bias Target Ion Beam Deposition, to grow 40 nm epitaxial VO2 thin films on rutile TiO2 substrates with various crystal orientations. X-ray diffraction (XRD) was used to explore the epitaxy of VO2 and we found that all VO2 thin films on TiO2 substrates showed tetragonal symmetry at room temperature due to the constrain from rutile substrates. We also characterized the metal-insulator transition of VO2 films as the function of the crystal orientation of rutile TiO2. We also characterized the anisotropy of VO2 thin films. In collaboration with Kevin West and Stuart Wolf, University of Virginia.

  9. Reliability of treadmill measures and criteria to determine VO2max in prepubertal girls.

    PubMed

    Figueroa-Colon, R; Hunter, G R; Mayo, M S; Aldridge, R A; Goran, M I; Weinsier, R L

    2000-04-01

    The main objective of this study was to determine the reliability of measuring treadmill exercise economy (VO2submax) and the maximal oxygen uptake (VO2max) in prepubertal girls tested twice, 6 wk apart. We also wanted to examine the percentage of young girls who were able to reach the criteria for achieving VO2max and to describe methods that would allow a high proportion of young children to achieve criteria for reaching a true VO2max. We studied 61 normal-weight, prepubertal girls with a mean (+/- SD) age 7.3+/-1.3 yr (range 4.8 to 10.3 yr). VO2submax was determined while walking for 4 min at 2.5 mph with 0% grade. VO2max was measured during a progressive, all-out, continuous treadmill test using standardized procedures and criteria. Heart rate (HR) was measured using a Polar monitor. Respiratory rate (RR), respiratory exchange ratio (RER), ventilation (V), and VO2 were measured using a Sensormedics metabolic monitor. There were no significant differences between visits I and 2 in mean HR, RR, RER, V, VO2submax (421 vs 422 mL x min(-1), respectively), and VO2max (1036 vs 1049 mL x min(-1), respectively). Intra-individual coefficients of variation (CV) between visits 1 and 2 for submaximal tests were: HR = 5.1%, RR = 12.4%, RER = 7.2%, V = 12.5%, and VO2 = 12.4%. Intra-individual CVs for the maximum tests were: HRmax = 2.1%, RRmax = 10.8%, RERmax = 5.3%, Vmax = 11.7%, and VO2max = 7.5%. A high proportion of the girls reached criteria for VO2max [RER> 1.00, HR>85% of age predicted maximum, and plateauing of VO2max] in both visits: 99% reached one of three criteria, 92% reached two of three criteria, and 70% reached all three criteria. Twenty girls [mean age 7.2+/-1.2 yr] reached at least two criteria in both visits, whereas 32 girls [mean (+/- SD) age 8.6+/-1.0 yr] reached three criteria in both visits. Exercise measurements using treadmill testing were reliable in healthy, normal-weight, prepubertal girls. Older girls when compared to the younger girls were able

  10. Characterization of nanostructured VO2 thin films grown by magnetron controlled sputtering deposition and post annealing method.

    PubMed

    Chen, Sihai; Lai, Jianjun; Dai, Jun; Ma, Hong; Wang, Hongchen; Yi, Xinjian

    2009-12-21

    By magnetron controlled sputtering system, a new nanostructured metastable monoclinic phase VO2 (B) thin film has been fabricated. The testing result shows that this nanostructured VO2 (B) thin film has high temperature coefficient of resistance (TCR) of -7%/K. Scanning electron microscopy measurement shows that the average grain diameter of the VO2 (B) crystallite is between 100 and 250 nm. After post annealed, VO2 (B) crystallite is changed into monoclinic (M) phase VO2 (M) crystallite with the average grain diameter between 20 and 50 nm. A set up of testing the thin film switching time is established. The test result shows the switching time is about 50 ms. With the nanostructured VO2 (B) and VO2 (M) thin films, optical switches and high sensitivity detectors will be presented.

  11. Is peak VO2 a maximal index of children's aerobic fitness?

    PubMed

    Armstrong, N; Welsman, J; Winsley, R

    1996-07-01

    A levelling of oxygen uptake (VO2 plateau) at high exercise intensities is conventionally used as the criterion for establishing VO2max during progressive, incremental exercise testing. Only a minority of children, however, demonstrate a VO2 plateau during exercise to voluntary exhaustion. This study was therefore designed to investigate whether a VO2 plateau is required before peak VO2 can be considered a maximal index of children's aerobic fitness. Eighteen girls and 17 boys (age 9.9 +/- 0.4 yrs) carried out three treadmill tests to exhaustion one week apart. The first test comprised a discontinuous, incremental protocol to voluntary exhaustion. In test two each child warmed up and then ran to exhaustion at the same belt speed but on a gradient 2.5% greater than that which had produced an exhaustive effort on the first test. The third test was conducted similarly but the treadmill gradient was raised to 5% greater than that which had produced an exhaustive effort on the first test. Seven girls and 6 boys demonstrated a VO2 plateau (< or = 2 ml.kg-1.min-7) on the first test but no significant differences in either anthropometrical or peak physiological data were detected between those who demonstrated a plateau and those who did not. Mean peak VO2 values during tests two and three (supramaximal tests) did not increase significantly above that achieved on test one although indicators of an increased anaerobic contribution were significantly higher in both supramaximal tests. These findings indicate that peak VO2 in test one was a maximal value despite the absence of a VO2 plateau. The requirement of a VO2 plateau before peak VO2 can be regarded as a maximal index of young children's aerobic fitness is therefore untenable.

  12. Identifying the active site in nitrogen-doped graphene for the VO2+/VO2(+) redox reaction.

    PubMed

    Jin, Jutao; Fu, Xiaogang; Liu, Qiao; Liu, Yanru; Wei, Zhiyang; Niu, Kexing; Zhang, Junyan

    2013-06-25

    Nitrogen-doped graphene sheets (NGS), synthesized by annealing graphite oxide (GO) with urea at 700-1050 °C, were studied as positive electrodes in a vanadium redox flow battery. The NGS, in particular annealed at 900 °C, exhibited excellent catalytic performance in terms of electron transfer (ET) resistance (4.74 ± 0.51 and 7.27 ± 0.42 Ω for the anodic process and cathodic process, respectively) and reversibility (ΔE = 100 mV, Ipa/Ipc = 1.38 at a scan rate of 50 mV s(-1)). Detailed research confirms that not the nitrogen doping level but the nitrogen type in the graphene sheets determines the catalytic activity. Among four types of nitrogen species doped into the graphene lattice including pyridinic-N, pyrrolic-N, quaternary nitrogen, and oxidic-N, quaternary nitrogen is verified as a catalytic active center for the [VO](2+)/[VO2](+) couple reaction. A mechanism is proposed to explain the electrocatalytic performance of NGS for the [VO](2+)/[VO2](+) couple reaction. The possible formation of a N-V transitional bonding state, which facilitates the ET between the outer electrode and reactant ions, is a key step for its high catalytic activity.

  13. n-VO2/p-GaN based nitride-oxide heterostructure with various thickness of VO2 layer grown by MBE

    NASA Astrophysics Data System (ADS)

    Wang, Minhuan; Bian, Jiming; Sun, Hongjun; Liu, Weifeng; Zhang, Yuzhi; Luo, Yingmin

    2016-12-01

    High quality VO2 films with precisely controlled thickness were grown on p-GaN/sapphire substrates by oxide molecular beam epitaxy (O-MBE). Results indicated that a distinct reversible semiconductor-to-metal (SMT) phase transition was observed for all the samples in the temperature dependent electrical resistance measurement, and the influence of VO2 layer thickness on the SMT properties of the as-grown n-VO2/p-GaN based nitride-oxide heterostructure was investigated. Meanwhile, the clear rectifying transport characteristics originated from the n-VO2/p-GaN interface were demonstrated before and after SMT of the VO2 over layer, which were attributed to the p-n junction behavior and Schottky contact character, respectively. Moreover, the X-ray photoelectron spectroscopy (XPS) analyses confirmed the valence state of vanadium (V) in VO2 films was principally composed of V4+ with trace amount of V5+. The design and modulation of the n-VO2/p-GaN based heterostructure devices will benefit significantly from these achievements.

  14. Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition

    NASA Astrophysics Data System (ADS)

    Jung, Dae Ho; So, Hyeon Seob; Ko, Kun Hee; Park, Jun Woo; Lee, Hosun; Nguyen, Trang Thi Thu; Yoon, Seokhyun

    2016-12-01

    VO2 thin films were grown on a-, c-, m-, and r-plane sapphire and SiO2/Si substrates under identical conditions by using RF sputtering deposition from a VO2 target. The structural and the morphological properties of all VO2 films were investigated. The grain sizes of the VO2 films varied between 268 nm and 355 nm depending on the substrate's orientation. The electrical and the optical properties of all VO2 thin films were examined in detail. The metal-insulator transition temperature (TMI) varied with the substrate's orientation. The (200)/(bar 211 )-oriented VO2 films on the a-plane sapphire showed the lowest TMI of about 329.3 K (56.3 °C) while the (020)/(002)-VO2 films on the c-plane sapphire displayed the highest TMI of about 339.6 K (66.6 °C). The VO2 films showed reversible changes in the resistivity as large as 1.19 × 105 and a hysteresis of 2 K upon traversing the transition temperature. The variations observed in the TMI with respect to the substrate's orientation were due to changes in the lattice strain and the grain size distribution. Raman spectroscopy showed that metal (rutile) - insulator (monoclinic) transitions occurred via the M2 phase for VO2 films on the c-plane substrate rather than the direct M1 to rutile transition. The shifts in the phonon frequencies of the VO2 film grown on various sapphire substrates were explained in terms of the strain along the V-V atomic bond direction (cR). Our work shows a possible correlation between the transition parameters ( e.g., TMI, sharpness, and hysteresis width) and the width ( σ) of the grain size distribution. It also shows a possible correlation between the TMI and the resistivities at the insulating and the metallic phases for VO2 films grown on various sapphire substrates.

  15. Epitaxial growth of higher transition-temperature VO2 films on AlN/Si

    NASA Astrophysics Data System (ADS)

    Slusar, Tetiana; Cho, Jin-Cheol; Kim, Bong-Jun; Yun, Sun Jin; Kim, Hyun-Tak

    2016-02-01

    We report the epitaxial growth and the mechanism of a higher temperature insulator-to-metal-transition (IMT) of vanadium dioxide (VO2) thin films synthesized on aluminum nitride (AlN)/Si (111) substrates by a pulsed-laser-deposition method; the IMT temperature is TIMT ≈ 350 K. X-ray diffractometer and high resolution transmission electron microscope data show that the epitaxial relationship of VO2 and AlN is VO2 (010) ‖ AlN (0001) with VO2 [101] ‖ AlN [ 2 1 ¯ 1 ¯ 0 ] zone axes, which results in a substrate-induced tensile strain along the in-plane a and c axes of the insulating monoclinic VO2. This strain stabilizes the insulating phase of VO2 and raises TIMT for 10 K higher than TIMT single crystal ≈ 340 K in a bulk VO2 single crystal. Near TIMT, a resistance change of about four orders is observed in a thick film of ˜130 nm. The VO2/AlN/Si heterostructures are promising for the development of integrated IMT-Si technology, including thermal switchers, transistors, and other applications.

  16. Control of Structural and Electrical Transitions of VO2 Thin Films.

    PubMed

    Moatti, Adele; Sachan, Ritesh; Prater, John; Narayan, Jay

    2017-07-19

    Unstrained and defect-free VO2 single crystals undergo structural (from high-temperature tetragonal to low-temperature monoclinic phase) and electronic phase transitions simultaneously. In thin films, however, in the presence of unrelaxed strains and defects, structural (Peierls) and electronic (Mott) transitions are affected differently, and are separated. In this paper, we have studied the temperature dependence of structural and electrical transitions in epitaxially grown vanadium dioxide films on (0001) sapphire substrates. These results are discussed using a combined kinetics and thermodynamics approach, where the velocity of phase transformation is controlled largely by kinetics, and the formation of intermediate phases is governed by thermodynamic considerations. We have grown (020) VO2 on (0001) sapphire with two (001) and (100) in-plane orientations rotated by 122°. The (100)-oriented crystallites are fully relaxed by the paradigm of domain-matching epitaxy, whereas (001) crystallites are not relaxed and exhibit the formation of a few atomic layers of thin interfacial V2O3. We have studied the structural (Peierls) transition by temperature-dependent in situ X-ray diffraction measurements, and electronic (Mott) transition by electrical resistance measurements. A delay of 3 °C is found between the onset of structural (76 °C) and electrical (73 °C) transitions in the heating cycle. This temporal lag in the transition is attributed to the residual strain existing in the VO2 crystallites. With this study, we suggest that the control of structural and electrical transitions is possible by varying the transition activation barrier for atomic jumps through the strain engineering.

  17. VO2 and VCO2 variabilities through indirect calorimetry instrumentation.

    PubMed

    Cadena-Méndez, Miguel; Escalante-Ramírez, Boris; Azpiroz-Leehan, Joaquín; Infante-Vázquez, Oscar

    2013-01-01

    The aim of this paper is to understand how to measure the VO2 and VCO2 variabilities in indirect calorimetry (IC) since we believe they can explain the high variation in the resting energy expenditure (REE) estimation. We propose that variabilities should be separately measured from the VO2 and VCO2 averages to understand technological differences among metabolic monitors when they estimate the REE. To prove this hypothesis the mixing chamber (MC) and the breath-by-breath (BbB) techniques measured the VO2 and VCO2 averages and their variabilities. Variances and power spectrum energies in the 0-0.5 Hertz band were measured to establish technique differences in steady and non-steady state. A hybrid calorimeter with both IC techniques studied a population of 15 volunteers that underwent the clino-orthostatic maneuver in order to produce the two physiological stages. The results showed that inter-individual VO2 and VCO2 variabilities measured as variances were negligible using the MC while variabilities measured as spectral energies using the BbB underwent 71 and 56% (p < 0.05), increase respectively. Additionally, the energy analysis showed an unexpected cyclic rhythm at 0.025 Hertz only during the orthostatic stage, which is new physiological information, not reported previusly. The VO2 and VCO2 inter-individual averages increased to 63 and 39% by the MC (p < 0.05) and 32 and 40% using the BbB (p < 0.1), respectively, without noticeable statistical differences among techniques. The conclusions are: (a) metabolic monitors should simultaneously include the MC and the BbB techniques to correctly interpret the steady or non-steady state variabilities effect in the REE estimation, (b) the MC is the appropriate technique to compute averages since it behaves as a low-pass filter that minimizes variances, (c) the BbB is the ideal technique to measure the variabilities since it can work as a high-pass filter to generate discrete time series able to accomplish

  18. Time to Exhaustion at the VO2max Velocity in Swimming: A Review

    PubMed Central

    Fernandes, Ricardo J.; Vilas-Boas, J. Paulo

    2012-01-01

    The aim of this study was to present a review on the time to exhaustion at the minimum swimming velocity corresponding to maximal oxygen consumption (TLim-vVO2max). This parameter is critical both for the aerobic power and the lactate tolerance bioenergetical training intensity zones, being fundamental to characterize it, and to point out its main determinants. The few number of studies conducted in this topic observed that swimmers were able to maintain an exercise intensity corresponding to maximal aerobic power during 215 to 260 s (elite swimmers), 230 to 260 s (high level swimmers) and 310 to 325 s (low level swimmers), and no differences between genders were reported. TLim-vVO2max main bioenergetic and functional determinants were swimming economy and VO2 slow component (direct relationship), and vVO2max, velocity at anaerobic threshold and blood lactate production (inverse relationship); when more homogeneous groups of swimmers were analysed, the inverse correlation value between TLim-vVO2max and vVO2max was not so evident. In general, TLim-vVO2max was not related to VO2max. TLim-vVO2max seems also to be influenced by stroking parameters, with a direct relationship to stroke length and stroke index, and an inverse correlation with stroke rate. Assessing TLim-vVO2max, together with the anaerobic threshold and the biomechanical general parameters, will allow a larger spectrum of testing protocols application, helping to build more objective and efficient training programs. PMID:23486651

  19. Time to Exhaustion at the VO2max Velocity in Swimming: A Review.

    PubMed

    Fernandes, Ricardo J; Vilas-Boas, J Paulo

    2012-05-01

    The aim of this study was to present a review on the time to exhaustion at the minimum swimming velocity corresponding to maximal oxygen consumption (TLim-vVO2max). This parameter is critical both for the aerobic power and the lactate tolerance bioenergetical training intensity zones, being fundamental to characterize it, and to point out its main determinants. The few number of studies conducted in this topic observed that swimmers were able to maintain an exercise intensity corresponding to maximal aerobic power during 215 to 260 s (elite swimmers), 230 to 260 s (high level swimmers) and 310 to 325 s (low level swimmers), and no differences between genders were reported. TLim-vVO2max main bioenergetic and functional determinants were swimming economy and VO2 slow component (direct relationship), and vVO2max, velocity at anaerobic threshold and blood lactate production (inverse relationship); when more homogeneous groups of swimmers were analysed, the inverse correlation value between TLim-vVO2max and vVO2max was not so evident. In general, TLim-vVO2max was not related to VO2max. TLim-vVO2max seems also to be influenced by stroking parameters, with a direct relationship to stroke length and stroke index, and an inverse correlation with stroke rate. Assessing TLim-vVO2max, together with the anaerobic threshold and the biomechanical general parameters, will allow a larger spectrum of testing protocols application, helping to build more objective and efficient training programs.

  20. Silica-shell encapsulation and adhesion of VO2 nanowires to glass substrates: integrating solution-derived VO2 nanowires within thermally responsive coatings

    NASA Astrophysics Data System (ADS)

    Pelcher, Kate E.; Crawley, Matthew R.; Banerjee, Sarbajit

    2014-09-01

    The binary vanadium oxide VO2 undergoes a reversible insulator—metal phase transition in response to increasing temperature accompanied by an orders of magnitude alteration of optical transmittance; the low-temperature monoclinic phase of VO2 is infrared-transmissive, whereas the high-temperature rutile phase is infrared-reflective. This remarkable property portends applications in thermally responsive spectral mirrors that can modulate infrared transmittance as a function of temperature. Using a modified Stöber process, we demonstrate the constitution of conformal SiO2 shells around the VO2 nanowires. The SiO2 shells enhance the robustness of the VO2 nanowires towards thermal oxidation; the thickness of the shells is observed to depend on the reaction time. Notably, the deposition of conformal shells does not deleteriously impact the metal—insulator transitions of the VO2 nanowire cores. A modification of this approach allows for the VO2 nanowires to be embedded within a SiO2 matrix bonded to glass. The applied coatings are strongly adhered to glass as evaluated using standardized ASTM methods. The coatings exhibit promising thermochromic response and attenuate transmission of near-infrared radiation with increasing temperature.

  1. Naturally formed ultrathin V2O5 heteroepitaxial layer on VO2/sapphire(001) film

    NASA Astrophysics Data System (ADS)

    Littlejohn, Aaron J.; Yang, Yunbo; Lu, Zonghuan; Shin, Eunsung; Pan, KuanChang; Subramanyam, Guru; Vasilyev, Vladimir; Leedy, Kevin; Quach, Tony; Lu, Toh-Ming; Wang, Gwo-Ching

    2017-10-01

    Vanadium dioxide (VO2) and vanadium pentoxide (V2O5) thin films change their properties in response to external stimuli such as photons, temperature, electric field and magnetic field and have applications in electronics, optical devices, and sensors. Due to the multiple valence states of V and non-stoichiometry in thin films, it is challenging to grow epitaxial, single-phase V-oxide on a substrate, or a heterostructure of two epitaxial V-oxides. We report the formation of a heterostructure consisting of a few nm thick ultrathin V2O5 epitaxial layer on pulsed laser deposited tens of nm thick epitaxial VO2 thin films grown on single crystal Al2O3(001) substrates without post annealing of the VO2 film. The simultaneous observation of the ultrathin epitaxial V2O5 layer and VO2 epitaxial film is only possible by our unique reflection high energy electron diffraction pole figure analysis. The out-of-plane and in-plane epitaxial relationships are V2O5[100]||VO2[010]||Al2O3[001] and V2O5[03 2 bar]||VO2[100]||Al2O3[1 1 bar0], respectively. The existence of the V2O5 layer on the surface of the VO2 film is also supported by X-ray photoelectron spectroscopy and Raman spectroscopy.

  2. Is time limit at the minimum swimming velocity of VO2 max influenced by stroking parameters?

    PubMed

    Fernandes, Ricardo J; Marinho, Daniel A; Barbosa, Tiago M; Vilas-Boas, J Paulo

    2006-08-01

    The aim of this study was to observe the relationship between time limit at the minimum velocity that elicits maximal oxygen consumption (TLim-v VO2 max) and stroke rate, stroke length, and stroke index. 13 men and 10 women, highly trained swimmers, performed an intermittent incremental test for v VO2 max assessment and an all-out swim to estimate TLim-v VO2 max. The mean +/- SD TLim-v VO2 max, v VO2 max, stroke rate, stroke length, and stroke index values were 233.36 +/- 53.92 sec., 1.40 +/- .06 meter/sec., 35.58 +/- 2.89 cycles/min., 2.39 +/- .22 meter/cycle, and 3.36 +/- .41 meter2/(cycle x sec.), respectively. The correlation between TLim-v VO2 max and stroke rate was -.51 (p < .01), and values for TLim-v VO2 max with stroke length (r = .52, p < .01) and stroke index (r = .45, p < .05). These results seem to suggest that technical skill is a key factor in typical efforts requiring prolonged aerobic power.

  3. A theoretical analysis of factors determining VO2 MAX at sea level and altitude.

    PubMed

    Wagner, P D

    1996-12-01

    When maximal VO2 (VO2 MAX) is limited by O2 supply, it is generally thought that cardiac output (QT) is mostly responsible, but other O2 transport conductances [ventilation (VA); [Hb]; pulmonary (DLO2) and muscle (DMO2) diffusion capacities] may also influence VO2 MAX. A numerical analysis interactively linking the lungs, circulation and muscles was designed to compare the influences of each conductance component on VO2 MAX at three altitudes: PB = 760, 464 and 253 Torr. For any given set of conductances the analysis simultaneously solved six equations for alveolar, arterial, and venous PO2 and PcO2. The equations represent pulmonary mass balance, pulmonary diffusion, and muscle diffusion for both gases. At PB = 760, [Hb], DLO2 and DMO2 were as influential as QT in limiting VO2 MAX. With increasing altitude, the influence of QT and [Hb] fell while that of VA, DLO2 and DMO2 progressively increased until at PB = 253, VO2 MAX was independent of QT and [Hb]. Neither the fall in maximal QT nor rise in [Hb] with chronic hypoxia therefore appear to affect VO2 MAX. However, high values of ventilation, DLO2 and DMO2 appear to be advantageous for exercise at altitude.

  4. Terbium-Doped VO2 Thin Films: Reduced Phase Transition Temperature and Largely Enhanced Luminous Transmittance.

    PubMed

    Wang, Ning; Duchamp, Martial; Dunin-Borkowski, Rafal E; Liu, Shiyu; Zeng, XianTing; Cao, Xun; Long, Yi

    2016-01-26

    Vanadium dioxide (VO2) is a well-known thermochromic material with large IR modulating ability, promising for energy-saving smart windows. The main drawbacks of VO2 are its high phase transition temperature (τ(c) = 68°C), low luminous transmission (T(lum)), and weak solar modulating ability (ΔT(sol)). In this paper, the terbium cation (Tb(3+)) doping was first reported to reduce τ(c) and increase T(lum) of VO2 thin films. Compared with pristine VO2, 2 at. % doping level gives both enhanced T(lum) and ΔT(sol) from 45.8% to 54.0% and 7.7% to 8.3%, respectively. The T(lum) increases with continuous Tb(3+) doping and reaches 79.4% at 6 at. % doping level, representing ∼73.4% relative increment compared with pure VO2. This has surpassed the best reported doped VO2 thin films. The enhanced thermochromic properties is meaningful for smart window applications of VO2 materials.

  5. Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping.

    PubMed

    Wegkamp, Daniel; Herzog, Marc; Xian, Lede; Gatti, Matteo; Cudazzo, Pierluigi; McGahan, Christina L; Marvel, Robert E; Haglund, Richard F; Rubio, Angel; Wolf, Martin; Stähler, Julia

    2014-11-21

    Using femtosecond time-resolved photoelectron spectroscopy we demonstrate that photoexcitation transforms monoclinic VO2 quasi-instantaneously into a metal. Thereby, we exclude an 80 fs structural bottleneck for the photoinduced electronic phase transition of VO2. First-principles many-body perturbation theory calculations reveal a high sensitivity of the VO2 band gap to variations of the dynamically screened Coulomb interaction, supporting a fully electronically driven isostructural insulator-to-metal transition. We thus conclude that the ultrafast band structure renormalization is caused by photoexcitation of carriers from localized V 3d valence states, strongly changing the screening before significant hot-carrier relaxation or ionic motion has occurred.

  6. Synthesis and Electrochemical Properties of Nano-VO2 (B).

    PubMed

    Yang, Yun; Lu, Yong; Wang, Wei; Feng, Chuanqi; Yang, Shuijin

    2016-03-01

    The nano-VO2 (B) has been self-assembly synthesized by hydrothermal method using different templates, which may give them some interesting properties. The as-prepared samples were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the samples were investigated. The results show that the hexadecyltrimethyl ammonium bromide (CTAB) (soft template) was used to obtain the VO2 (B1) nanobelts. The flake graphite (hard template) was taken to get the VO2 (B2) nanosheets. The VO2 (B1) nanobelts have higher initial capacity to compare with VO2 (B2). But the VO2 (B2) nanosheets showed better cycling performance than that of VO2 (B1) nanobelts. The nano VO2 (B2) is a promising anode material for lithium ion battery application.

  7. .VO2max is not altered by self-pacing during incremental exercise.

    PubMed

    Chidnok, Weerapong; Dimenna, Fred J; Bailey, Stephen J; Burnley, Mark; Wilkerson, Daryl P; Vanhatalo, Anni; Jones, Andrew M

    2013-02-01

    We tested the hypothesis that incremental cycling to exhaustion that is paced using clamps of the rating of perceived exertion (RPE) elicits higher .VO2max values compared to a conventional ramp incremental protocol when test duration is matched. Seven males completed three incremental tests to exhaustion to measure .VO2max. The incremental protocols were of similar duration and included: a ramp test at 30 W min(-1) with constant cadence (RAMP1); a ramp test at 30 W min(-1) with cadence free to fluctuate according to subject preference (RAMP2); and a self-paced incremental test in which the power output was selected by the subject according to prescribed increments in RPE (SPT). The subjects also completed a .VO2max 'verification' test at a fixed high-intensity power output and a 3-min all-out test. No difference was found for .VO2max between the incremental protocols (RAMP1 = 4.33 ± 0.60 L min(-1); RAMP2 = 4.31 ± 0.62 L min(-1); SPT = 4.36 ± 0.59 L min(-1); P > 0.05) nor between the incremental protocols and the peak.VO2max measured during the 3-min all-out test (4.33 ± 0.68 L min(-1)) or the .VO2max measured in the verification test (4.32 ± 0.69 L min(-1)). The integrated electromyogram, blood lactate concentration, heart rate and minute ventilation at exhaustion were not different (P > 0.05) between the incremental protocols. In conclusion, when test duration is matched, SPT does not elicit a higher .VO2max compared to conventional incremental protocols. The striking similarity of .VO2max measured across an array of exercise protocols indicates that there are physiological limits to the attainment of .VO2max that cannot be exceeded by self-pacing.

  8. Estimated V(O2)max from the rockport walk test on a nonmotorized curved treadmill.

    PubMed

    Seneli, Rhiannon M; Ebersole, Kyle T; OʼConnor, Kristian M; Snyder, Ann C

    2013-12-01

    The Rockport Walk Test (RWT) is a 1-mile walk used to estimate the maximal volume of oxygen uptake (V(O2)max). The purpose of this study was to validate the RWT on a nonmotorized curved treadmill (CT). Twenty-three healthy adults (10 females; 19-44 years old) participated. One trial of the RWT was performed on a measured indoor track (RWTO) and another on the CT (RWTC) on different days in randomized order. Heart rate (HR) and completion time were used to calculate V(O2)max using 6 different general and gender specific equations from previous research. Subjects also performed a treadmill graded exercise test (GXT), which was used as the criterion measure for V(O2)max. Completion times and HR between the 2 RWT were compared using dependent t-tests. Estimated V(O2)max values were compared between the RWTC, RWTO, and GXT through repeated measures analysis of variance, Pearson's correlations (r), and Bland-Altman's plots. There was no difference between completion times for the RWTO and RWTC but HRs were significantly higher with RWTC. When the same equation was applied to the RWTO and RWTC, there were no similar results. All V(O2)max estimations were different from observed V(O2)max except for the estimation from the relative general Kline et al. equation on the RWTO. Despite high correlations (r = 0.75-0.91), the RWTC underestimated V(O2)max. The RWTC underestimates V(O2)max but may be beneficial if a new equation were created specifically for the CT. With appropriate equations for the CT, the RWTC would provide an alternate form of V(O2)max testing.

  9. Lithium-inserted vanadium dioxide (LixVO2) thin films

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad S. R.

    1996-04-01

    Thermochromic switching between a low-temperature and high-temperature less transparent state is possible in thin films based on vanadium dioxide (VO2). The critical temperature Tc at which the transition takes place in VO2 is on the order of 68 degrees Celsius which can be depressed towards a comfortable temperature by several techniques, including dopants. Dopants can be inserted by electrochemical means. This work is an exploratory study of the electrochromism of LixVO2 with a view to 'smart window' applications. Thin films of LixVO2 (0 less than or equal to x less than or equal to 0.43) were made by reactive sputtering and annealing electrolyte of LiClO4 and propylene carbonate. A maximum lithium content of x equals 0.43 was accomplished. Optical spectral response at wavelength pertinent to solar radiation was reported. Lithium insertion increased the transmittance gradually and reversibly i.e. LixVO2 showed electrochromism and bleached under Li insertion. LixVO2 also showed thermochroism, although to a smaller degree than VO2 and was most transparent at low temperature. Temperature- dependent electrical conductivity and thermoelectric power measurements were also performed. A conductivity transition by approximately 3 orders of magnitude was seen at approximately 60 degrees Celsius in VO2. This transition decreased in proportion with the amount of Li intercalation and was less than one order of magnitude in Li0.43VO2. Lithiation also decreased Tc by a few degrees Celsius. The thermoelectric power showed a well defined increase when Tc was exceeded.

  10. VO2 max in an Indian population: a study to understand the role of factors determining VO2 max.

    PubMed

    Nitin, Y M; Sucharita, S; Madhura, M; Thomas, T; Sandhya, T A

    2013-01-01

    VO2 max is the maximum amount of oxygen a person can consume and the value does not change despite an increase in workload. There is lack of data evaluating the impact of factors, which could affect VO2 max measurement, particularly in Indian population. The objectives of the present study were (i) to estimate VO2 max in a young healthy Indian population and to compare it with available prediction equations for Indian population (ii) to correlate time to achieve VO2 max with the relative VO2 max (iii) to assess the factors affecting the time to achieve VO2 max measurement (body composition and physical activity level). Twenty healthy adult males (18-30 years) underwent detailed anthropometry, physical activity level and modified Bruce protocol for VO2 max assessment. Breath by breath VO2, VCO2, oxygen saturation, heart rate, blood pressure were measured continuously and following exercise protocol. There was an internal validity between the estimated VO2 max and the maximum heart rate (MHR) (r = 0.51, P < 0.05). Respiratory rate and tidal volume significantly correlated with VO2 max P < 0.01). Linear regression analysis indicated physical activity level (PAL) was a strong predictor of time to reach VO2 max. Out of the 3 prediction equations computed to estimate VO2 max, 2 equations significantly overestimated VO2 max. In Conclusion, physical activity level emerged to be a strong predictor of time to VO2 max. Time to achieve VO2 max is an important factor to be considered when determining VO2 max. There was an overestimation in the VO2 max values derived from predicted equations.

  11. Time at or near VO2max during continuous and intermittent running. A review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max.

    PubMed

    Midgley, A W; Mc Naughton, L R

    2006-03-01

    Several authors have suggested that training at or near VO2max (i.e. > or = 95% VO2max) is the most effective training intensity to enhance VO2max and that for highly trained endurance athletes, training at or near VO2max may be necessary to increase it further. Consequently, there is an interest in characterising training protocols that allow the longest time at or near VO2max (T@VO2max). Intermittent running protocols have been found to be more effective than continuous protocols for increasing T@VO2max. Intermittent protocols can be manipulated by altering the warm-up intensity and timing, work and relief interval velocity and duration, amplitude, interval number per set, and the number of sets performed. To increase T@VO2max it is recommended that work interval intensity should generally range between 90% and 105% vVO2max and relief interval intensity between 50% vVO2max and the lactate threshold velocity. Work and relief interval durations should be between 15 and 30 seconds. The warm-up period prior to the intermittent protocol should be about 10 to 15 minutes in duration at 1 or 2 km x h(-1) below the lactate threshold velocity, with no gap between the warm-up and the intermittent protocol. When designing intermittent training protocols for the enhancement of VO2max, the simultaneous enhancement of other physiological performance determinants should also be considered. Further experimental research is required to identify the specific physiological responses and adaptations to various intermittent running protocols that are designed to elicit the longest time at or near VO2max, before recommendations can be given to competitive endurance runners.

  12. Role of thermal strain in the metal-insulator and structural phase transition of epitaxial VO2 films

    NASA Astrophysics Data System (ADS)

    Théry, V.; Boulle, A.; Crunteanu, A.; Orlianges, J. C.; Beaumont, A.; Mayet, R.; Mennai, A.; Cosset, F.; Bessaudou, A.; Fabert, M.

    2016-05-01

    The metal-insulator switching characteristics of VO2 play a crucial role in the performances of VO2-based devices. In this paper we study high-quality (010)-oriented epitaxial films grown on (001) sapphire substrates by means of electron-beam evaporation and investigate the role of interface defects and thermal strain on the parallel evolution of the metal-insulator transition (MIT) and structural phase transition (SPT) between the monoclinic (insulator) and rutile (metal) phases. It is demonstrated that the highly-mismatched VO2/Al2O3 interface promotes a domain-matching epitaxial growth process where the film grows in a strain-relaxed state and the lattice distortions are confined at the interface in regions with limited spatial extent. Upon cooling down from the growth temperature, tensile strain is stored in the films as a consequence of the thermal expansion mismatch between VO2 and Al2O3 . The thinnest films exhibit the highest level of tensile strain in the interfacial plane resulting in a shift of both the MIT and the SPT temperatures towards higher values, pointing to a stabilization of the monoclinic/insulating phase. Concomitantly, the electrical switching characteristics are altered (lower resistivity ratio and broader transition) as a result of the presence of structural defects located at the interface. The SPT exhibits a similar evolution with, additionally, a broader hysteresis due to the formation of an intermediate, strain-stabilized phase in the M1-R transition. Films with thickness ranging between 100-300 nm undergo a partial strain relaxation and exhibit the best performances, with a sharp (10°C temperature range) and narrow (hysteresis <4°C) MIT extending over more than four orders of magnitude in resistivity (6 ×104 ).

  13. Patterns of Senescence in Human Cardiovascular Fitness: VO2max in Subsistence and Industrialized Populations

    PubMed Central

    Pisor, Anne C.; Gurven, Michael; Blackwell, Aaron D.; Kaplan, Hillard; Yetish, Gandhi

    2014-01-01

    Objectives This study explores whether cardiovascular fitness levels and senescent decline are similar in the Tsimane of Bolivia and Canadians, as well as other subsistence and industrialized populations. Among Tsimane, we examine whether morbidity predicts lower levels and faster decline of cardiovascular fitness, or whether their lifestyle (e.g., high physical activity) promotes high levels and slow decline. Alternatively, high activity levels and morbidity might counterbalance such that Tsimane fitness levels and decline are similar to those in industrialized populations. Methods Maximal oxygen uptake (VO2max) was estimated using a step test heart rate method for 701 participants. We compared these estimates to the Canadian Health Measures Survey and previous studies in industrialized and subsistence populations. We evaluated whether health indicators and proxies for market integration were associated with VO2max levels and rate of decline for the Tsimane. Results The Tsimane have significantly higher levels of VO2max and slower rates of decline than Canadians; initial evidence suggests differences in VO2max levels between other subsistence and industrialized populations. Low hemoglobin predicts low VO2max for Tsimane women while helminth infection predicts high VO2max for Tsimane men, though results might be specific to the VO2max scaling parameter used. No variables tested interact with age to moderate decline. Conclusions The Tsimane demonstrate higher levels of cardiovascular fitness than industrialized populations, but levels similar to other subsistence populations. The high VO2max of Tsimane is consistent with their high physical activity and few indicators of cardiovascular disease, measured in previous studies. PMID:24022886

  14. Size and composition-controlled fabrication of VO2 nanocrystals by terminated cluster growth

    SciTech Connect

    Anders, Andre; Slack, Jonathan

    2013-05-14

    A physical vapor deposition-based route for the fabrication of VO2 nanoparticles is demonstrated, consisting of reactive sputtering and vapor condensation at elevated pressures. The oxidation of vanadium atoms is an efficient heterogeneous nucleation method, leading to high nanoparticle throughtput. Fine control of the nanoparticle size and composition is obtained. Post growth annealing leads to crystalline VO2 nanoparticles with optimum thermocromic and plasmonic properties.

  15. Effect of protocol on determination of velocity at VO2 max and on its time to exhaustion.

    PubMed

    Billat, V L; Hill, D W; Pinoteau, J; Petit, B; Koralsztein, J P

    1996-01-01

    The velocity associated with the achievement of VO2 max during an incremental treadmill test (v VO2 max) has been reported to be an indicator of performance in middle distance running events. Previous study has shown the reproducibility of the time to exhaustion (time limit: tlim) at v VO2 max performed by well-trained males in the same condition at one week of interval (Billat et al., 1994b). It is essential in studies involving tlim at v VO2 max that the v VO2 max be precisely determined, or else the measured tlim will be meaningless. The purpose of this study was to examine the influence of the stage duration and velocity incrementation on the velocity at VO2 max and, consequently, on the two times to exhaustion (tlim) associated with the two v VO2 max generated by the two protocols. v VO2 max was determined in 15 trained male endurance athletes as the lowest speed at which VO2 max was attained in speed-incremented 0%-slope treadmill tests. For one test, increments were 1.0 km.h-1 and stages were 2 min in duration; for the other test, increments were 0.5 km.h-1 and stages were 1 min in duration. Results of paired means t-tests revealed no difference in v VO2 max obtained using the two protocols. v VO2 max was 20.7 +/- 1.0 km.h-1 with the 1.0 km.h-1 x 2 min protocol and 20.8 +/- 0.9 km.h-1 with the 0.5 km.h-1 x 1 min protocol. In addition, VO2, VCO2, VE, VE/VO2 and respiratory exchange ratio at the submaximal intensities that were common to both protocols (e.g., 17.0 km.h-1, 18.0 km.h-1, 19.0 km.h-1, 20.0 km.h-1) did not differ. Times to exhaustion at the two v VO2 max demonstrated a high degree of inter-individual variability (coefficients of variation were 35% and 45%) but did not differ (345 +/- 120 s versus 373 +/- 169 s). These results demonstrated that small changes in protocol have no significant impact on the value of v VO2 max and in consequence on tlim v VO2 max.

  16. Roles of grain boundaries on the semiconductor to metal phase transition of VO2 thin films

    NASA Astrophysics Data System (ADS)

    Jian, Jie; Zhang, Wenrui; Jacob, Clement; Chen, Aiping; Wang, Han; Huang, Jijie; Wang, Haiyan

    2015-09-01

    Vanadium dioxide (VO2) thin films with controlled grain sizes are deposited on amorphous glass substrates by pulsed laser deposition. The grain boundaries (GBs) are found as the dominating defects in the thin films. The semiconductor to metal transition (SMT) properties of VO2 thin films are characterized and correlated to the GB density. The VO2 films with lower GB density exhibit a sharper SMT with a larger transition amplitude. A high resolution TEM study at GB area reveals the disordered atomic structures along the boundaries and the distorted crystal lattices near the boundaries. The VO2 SMT amplitude and sharpness could be directly related to these defects at and near the boundaries.

  17. Epitaxial growth and electronic structure of oxyhydride SrVO2H thin films

    NASA Astrophysics Data System (ADS)

    Katayama, Tsukasa; Chikamatsu, Akira; Yamada, Keisuke; Shigematsu, Kei; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya

    2016-08-01

    Oxyhydride SrVO2H epitaxial thin films were fabricated on SrTiO3 substrates via topotactic hydridation of oxide SrVO3 films using CaH2. Structural and composition analyses suggested that the SrVO2H film possessed one-dimensionally ordered V-H--V bonds along the out-of-plane direction. The synthesis temperature could be lowered by reducing the film thickness, and the SrVO2H film was reversible to SrVO3 by oxidation through annealing in air. Photoemission and X-ray absorption spectroscopy measurements revealed the V3+ valence state in the SrVO2H film, indicating that the hydrogen existed as hydride. Furthermore, the electronic density of states was highly suppressed at the Fermi energy, consistent with the prediction that tetragonal distortion induces metal to insulation transition.

  18. Modification of Mott phase transition characteristics in VO2@TiO2 core/shell nanostructures by misfit-strained heteroepitaxy.

    PubMed

    Li, Yamei; Ji, Shidong; Gao, Yanfeng; Luo, Hongjie; Jin, Ping

    2013-07-24

    Vanadium dioxide (VO2) is a key material for thermochromic smart windows that can respond to environmental temperature and modulate near-infrared irradiation by changing from a transparent state at low temperature to a more reflective state at high temperature, while maintaining visible transmittance. Here, we demonstrate for the first time that the Mott phase transition characteristics in VO2 nanoparticles can be remarkably modified by misfit strains occurring at the epitaxial interface between VO2 and the anatase TiO2 of VO2/TiO2 core-shell particles. The heteroepitaxial growth of the as-synthesized particles followed an unprecedented orientation relationship, and an epitaxial growth mechanism is proposed to explain this behavior. A relatively small theoretical coherent misfit (3-11%) and a moderate heating rate (20 °C·min(-1)) in the preparation of the core-shell structure were critically important from the thermodynamic and kinetic perspectives, respectively. The misfit-induced interfacial strain along the uniaxial cR axis increased the transition temperatures, especially on the cooling portion of the heating-cooling cycle, leading to a notably reduced transition hysteresis loop width (from 23.5 to 12.0 °C). Moreover, the optical band gap was also engineered by the interfacial effect. Such a reduced hysteresis showed a benefit for enhancing a rapid response for energy saving thermochromic smart windows.

  19. No Effect of Acute and 6-Day Nitrate Supplementation on VO2 and Time-Trial Performance in Highly Trained Cyclists.

    PubMed

    Nyakayiru, Jean M; Jonvik, Kristin L; Pinckaers, Philippe J M; Senden, Joan; van Loon, Luc J C; Verdijk, Lex B

    2017-02-01

    While the majority of studies reporting ergogenic effects of dietary nitrate have used a multiday supplementation protocol, some studies suggest that a single dose of dietary nitrate before exercise can also improve subsequent performance. We aimed to compare the impact of acute and 6-day sodium nitrate supplementation on oxygen uptake (V̇O2) and time-trial performance in trained cyclists. Using a randomized, double-blind, cross-over design, 17 male cyclists (25 ± 4 y, V̇O2peak 65 ± 4 ml·kg(-1)·min(-1), Wmax 411 ± 35 W) were subjected to 3 different trials; 5 days placebo and 1 day sodium nitrate supplementation (1-DAY); 6 days sodium nitrate supplementation (6-DAY); 6 days placebo supplementation (PLA). Nitrate was administered as 1097 mg sodium nitrate providing 800 mg (~12.9 mmol) nitrate per day. Three hours after ingestion of the last supplemental bolus, indirect calorimetry was performed while subjects performed 30 min of exercise at 45% Wmax and 30 min at 65% Wmax on a cycle ergometer, followed by a 10 km time-trial. Immediately before exercise, plasma [nitrate] and [nitrite] increased to a similar extent during the 6-DAY and 1-DAY trial, but not with PLA (plasma nitrite: 501 ± 205, 553 ± 278, and 239 ± 74 nM, respectively; p < .001). No differences were observed between interventions in V̇O2 during submaximal exercise, or in time to complete the time-trial (6-DAY: 1004 ± 61, 1-DAY: 1022 ± 72, PLA: 1017 ± 71 s; p = .28). We conclude that both acute and 6-days of sodium nitrate supplementation do not alter V̇O2 during submaximal exercise or improve time-trial performance in highly trained cyclists, despite increasing plasma [nitrate] and [nitrite].

  20. Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Yoon, Hyojin; Choi, Minseok; Lim, Tae-Won; Kwon, Hyunah; Ihm, Kyuwook; Kim, Jong Kyu; Choi, Si-Young; Son, Junwoo

    2016-10-01

    Hydrogen, the smallest and the lightest atomic element, is reversibly incorporated into interstitial sites in vanadium dioxide (VO2), a correlated oxide with a 3d1 electronic configuration, and induces electronic phase modulation. It is widely reported that low hydrogen concentrations stabilize the metallic phase, but the understanding of hydrogen in the high doping regime is limited. Here, we demonstrate that as many as two hydrogen atoms can be incorporated into each VO2 unit cell, and that hydrogen is reversibly absorbed into, and released from, VO2 without destroying its lattice framework. This hydrogenation process allows us to elucidate electronic phase modulation of vanadium oxyhydride, demonstrating two-step insulator (VO2)-metal (HxVO2)-insulator (HVO2) phase modulation during inter-integer d-band filling. Our finding suggests the possibility of reversible and dynamic control of topotactic phase modulation in VO2 and opens up the potential application in proton-based Mottronics and novel hydrogen storage.

  1. VO2 estimation using 6-axis motion sensor with sports activity classification.

    PubMed

    Nagata, Takashi; Nakamura, Naoteru; Miyatake, Masato; Yuuki, Akira; Yomo, Hiroyuki; Kawabata, Takashi; Hara, Shinsuke

    2016-08-01

    In this paper, we focus on oxygen consumption (VO2) estimation using 6-axis motion sensor (3-axis accelerometer and 3-axis gyroscope) for people playing sports with diverse intensities. The VO2 estimated with a small motion sensor can be used to calculate the energy expenditure, however, its accuracy depends on the intensities of various types of activities. In order to achieve high accuracy over a wide range of intensities, we employ an estimation framework that first classifies activities with a simple machine-learning based classification algorithm. We prepare different coefficients of linear regression model for different types of activities, which are determined with training data obtained by experiments. The best-suited model is used for each type of activity when VO2 is estimated. The accuracy of the employed framework depends on the trade-off between the degradation due to classification errors and improvement brought by applying separate, optimum model to VO2 estimation. Taking this trade-off into account, we evaluate the accuracy of the employed estimation framework by using a set of experimental data consisting of VO2 and motion data of people with a wide range of intensities of exercises, which were measured by a VO2 meter and motion sensor, respectively. Our numerical results show that the employed framework can improve the estimation accuracy in comparison to a reference method that uses a common regression model for all types of activities.

  2. Inverse relationship between VO2max and economy/efficiency in world-class cyclists.

    PubMed

    Lucía, Alejandro; Hoyos, Jesus; Pérez, Margarita; Santalla, Alfredo; Chicharro, José L

    2002-12-01

    To determine the relationship that exists between VO2max and cycling economy/efficiency during intense, submaximal exercise in world-class road professional cyclists. METHODS Each of 11 male cyclists (26+/-1 yr (mean +/- SEM); VO2max: 72.0 +/- 1.8 mL x kg(-1) x min(-1)) performed: 1) a ramp test for O2max determination and 2) a constant-load test of 20-min duration at the power output eliciting 80% of subjects' VO2max during the previous ramp test (mean power output of 385 +/- 7 W). Cycling economy (CE) and gross mechanical efficiency (GE) were calculated during the constant-load tests. CE and GE averaged 85.2 +/- 2.3 W x L(-1) x min(-1) and 24.5 +/- 0.7%, respectively. An inverse, significant correlation was found between 1) VO2max (mL x kg(-0.32) x min(-1)) and both CE (r = -0.71; P = 0.01) and GE (-0.72; P = 0.01), and 2) VO2max (mL x kg(-1) x min(-1)) and both CE (r = -0.65; P = 0.03) and GE (-0.64; P = 0.03). A high CE/GE seems to compensate for a relatively low VO2max in professional cyclists.

  3. Transmission of reactive pulsed laser deposited VO2 films in the THz domain

    NASA Astrophysics Data System (ADS)

    Émond, Nicolas; Hendaoui, Ali; Ibrahim, Akram; Al-Naib, Ibraheem; Ozaki, Tsuneyuki; Chaker, Mohamed

    2016-08-01

    This work reports on the characteristics of the insulator-to-metal transition (IMT) of reactive pulsed laser deposited vanadium dioxide (VO2) films in the terahertz (THz) frequency range, namely the transition temperature TIMT, the amplitude contrast of the THz transmission over the IMT ΔA, the transition sharpness ΔT and the hysteresis width ΔH. XRD analysis shows the sole formation of VO2 monoclinic structure with an enhancement of (011) preferential orientation when varying the O2 pressure (PO2) during the deposition process from 2 to 25 mTorr. THz transmission measurements as a function of temperature reveal that VO2 films obtained at low PO2 exhibit low TIMT, large ΔA, and narrow ΔH. Increasing PO2 results in VO2 films with higher TIMT, smaller ΔA, broader ΔH and asymmetric hysteresis loop. The good control of the VO2 IMT features in the THz domain could be further exploited for the development of advanced smart devices, such as ultrafast switches, modulators, memories and sensors.

  4. Ultrafast dynamics during the photoinduced phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Wegkamp, Daniel; Stähler, Julia

    2015-12-01

    The phase transition of VO2 from a monoclinic insulator to a rutile metal, which occurs thermally at TC = 340 K, can also be driven by strong photoexcitation. The ultrafast dynamics during this photoinduced phase transition (PIPT) have attracted great scientific attention for decades, as this approach promises to answer the question of whether the insulator-to-metal (IMT) transition is caused by electronic or crystallographic processes through disentanglement of the different contributions in the time domain. We review our recent results achieved by femtosecond time-resolved photoelectron, optical, and coherent phonon spectroscopy and discuss them within the framework of a selection of latest, complementary studies of the ultrafast PIPT in VO2. We show that the population change of electrons and holes caused by photoexcitation launches a highly non-equilibrium plasma phase characterized by enhanced screening due to quasi-free carriers and followed by two branches of non-equilibrium dynamics: (i) an instantaneous (within the time resolution) collapse of the insulating gap that precedes charge carrier relaxation and significant ionic motion and (ii) an instantaneous lattice potential symmetry change that represents the onset of the crystallographic phase transition through ionic motion on longer timescales. We discuss the interconnection between these two non-thermal pathways with particular focus on the meaning of the critical fluence of the PIPT in different types of experiments. Based on this, we conclude that the PIPT threshold identified in optical experiments is most probably determined by the excitation density required to drive the lattice potential change rather than the IMT. These considerations suggest that the IMT can be driven by weaker excitation, predicting a transiently metallic, monoclinic state of VO2 that is not stabilized by the non-thermal structural transition and, thus, decays on ultrafast timescales.

  5. Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows.

    PubMed

    Li, Ming; Magdassi, Shlomo; Gao, Yanfeng; Long, Yi

    2017-09-01

    Vanadium dioxide (VO2 ) is a widely studied inorganic phase change material, which has a reversible phase transition from semiconducting monoclinic to metallic rutile phase at a critical temperature of τc ≈ 68 °C. The abrupt decrease of infrared transmittance in the metallic phase makes VO2 a potential candidate for thermochromic energy efficient windows to cut down building energy consumption. However, there are three long-standing issues that hindered its application in energy efficient windows: high τc , low luminous transmittance (Tlum ), and undesirable solar modulation ability (ΔTsol ). Many approaches, including nano-thermochromism, porous films, biomimetic surface reconstruction, gridded structures, antireflective overcoatings, etc, have been proposed to tackle these issues. The first approach-nano-thermochromism-which is to integrate VO2 nanoparticles in a transparent matrix, outperforms the rest; while the thermochromic performance is determined by particle size, stoichiometry, and crystallinity. A hydrothermal method is the most common method to fabricate high-quality VO2 nanoparticles, and has its own advantages of large-scale synthesis and precise phase control of VO2 . This Review focuses on hydrothermal synthesis, physical properties of VO2 polymorphs, and their transformation to thermochromic VO2 (M), and discusses the advantages, challenges, and prospects of VO2 (M) in energy-efficient smart windows application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Tuning the work function of VO2(1 0 0) surface by Ag adsorption and incorporation: Insights from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Chen, Lanli; Wang, Xiaofang; Shi, Siqi; Cui, Yuanyuan; Luo, Hongjie; Gao, Yanfeng

    2016-03-01

    VO2 is an attractive material for application to thermochromic optoelectronic devices such as smart windows, and Ag/VO2 double-layered structure can effectively decrease the phase transition temperature (Tc) of VO2 thin film, which is very important for practical application of VO2. Previous works has shown that the decrease in phase transition temperature (Tc) seems to be relevant with the work function of VO2 in Ag/VO2 double-layered thin film, although the underlying mechanism of tuning its Tc by Ag incorporation and adsorption on the VO2(1 0 0) surface has been rarely investigated. Our first-principles calculations reveal that the adsorption of Ag atoms on the VO2(1 0 0) surface rather than incorporation of Ag exhibits a lower work function, which is ascribed to an integrated effect of charge transfer from Ag to VO2(1 0 0) surface and enhanced surface dipole moment. The results suggest that the decrease in work function of VO2 with Ag adsorption favors the reduction in Tc. The current findings are helpful to understand the fundamental mechanism for yielding high-efficiency VO2-based optoelectronic devices.

  7. The effects of uphill vs. level-grade high-intensity interval training on VO2max, Vmax, V(LT), and Tmax in well-trained distance runners.

    PubMed

    Ferley, Derek D; Osborn, Roy W; Vukovich, Matthew D

    2013-06-01

    Uphill running represents a frequently used and often prescribed training tactic in the development of competitive distance runners but remains largely uninvestigated and unsubstantiated as a training modality. The purpose of this investigation included documenting the effects of uphill interval training compared with level-grade interval training on maximal oxygen consumption (VO2max), the running speed associated with VO2max (Vmax), the running speed associated with lactate threshold (V(LT)), and the duration for which Vmax can be sustained (Tmax) in well-trained distance runners. Thirty-two well-trained distance runners (age, 27.4 ± 3.8 years; body mass, 64.8 ± 8.9 kg; height, 173.6 ± 6.4 cm; and VO2max, 60.9 ± 8.5 ml·min(-1)·kg(-1)) received assignment to an uphill interval training group (G(Hill) = 12), level-grade interval training group (G(Flat) = 12), or control group (G(Con) = 8). G(Hill) and G(Flat) completed 12 interval and 12 continuous running sessions over 6 weeks, whereas G(Con) maintained their normal training routine. Pre- and posttest measures of VO2max, Vmax, V(LT), and Tmax were used to assess performance. A 3 × 2 repeated measures analysis of variance was performed for each dependent variable and revealed a significant difference in Tmax in both G(Hill) and G(Flat) (p < 0.05). With regard to running performance, the results indicate that both uphill and level-grade interval training can induce significant improvements in a run-to-exhaustion test in well-trained runners at the speed associated with VO2max but that traditional level-grade training produces greater gains.

  8. A simple and low-cost combustion method to prepare monoclinic VO2 with superior thermochromic properties

    NASA Astrophysics Data System (ADS)

    Cao, Ziyi; Xiao, Xiudi; Lu, Xuanming; Zhan, Yongjun; Cheng, Haoliang; Xu, Gang

    2016-12-01

    In this approach, the VO2 nanoparticles have been successfully fabricated via combusting the low-cost precursor solution consisted of NH4VO3, C2H6O2 and C2H5OH. By the XRD, TEM and XPS analysis, it can be found that the synthetic monoclinic VO2 is single crystal and no impurity is defined. After dispersing the VO2 nanoparticles into the polymer, the solar modulation of VO2-based composite film is up to 12.5% with luminous transmission and haze around 62.2% and 0.5%, respectively. In other words, the composite films show high performance of thermochromic properties. This could open an efficient way to fabricate low-cost and large-scale VO2 (M) nanoparticles and thermochromic films.

  9. A simple and low-cost combustion method to prepare monoclinic VO2 with superior thermochromic properties

    PubMed Central

    Cao, Ziyi; Xiao, Xiudi; Lu, Xuanming; Zhan, Yongjun; Cheng, Haoliang; Xu, Gang

    2016-01-01

    In this approach, the VO2 nanoparticles have been successfully fabricated via combusting the low-cost precursor solution consisted of NH4VO3, C2H6O2 and C2H5OH. By the XRD, TEM and XPS analysis, it can be found that the synthetic monoclinic VO2 is single crystal and no impurity is defined. After dispersing the VO2 nanoparticles into the polymer, the solar modulation of VO2-based composite film is up to 12.5% with luminous transmission and haze around 62.2% and 0.5%, respectively. In other words, the composite films show high performance of thermochromic properties. This could open an efficient way to fabricate low-cost and large-scale VO2 (M) nanoparticles and thermochromic films. PMID:27976748

  10. A simple and low-cost combustion method to prepare monoclinic VO2 with superior thermochromic properties.

    PubMed

    Cao, Ziyi; Xiao, Xiudi; Lu, Xuanming; Zhan, Yongjun; Cheng, Haoliang; Xu, Gang

    2016-12-15

    In this approach, the VO2 nanoparticles have been successfully fabricated via combusting the low-cost precursor solution consisted of NH4VO3, C2H6O2 and C2H5OH. By the XRD, TEM and XPS analysis, it can be found that the synthetic monoclinic VO2 is single crystal and no impurity is defined. After dispersing the VO2 nanoparticles into the polymer, the solar modulation of VO2-based composite film is up to 12.5% with luminous transmission and haze around 62.2% and 0.5%, respectively. In other words, the composite films show high performance of thermochromic properties. This could open an efficient way to fabricate low-cost and large-scale VO2 (M) nanoparticles and thermochromic films.

  11. Hydrogen-doping induced reduction in the phase transition temperature of VO2: a first-principles study.

    PubMed

    Cui, Yuanyuan; Shi, Siqi; Chen, Lanli; Luo, Hongjie; Gao, Yanfeng

    2015-08-28

    VO2 is a promising thermochromic material that can intelligently control the transmittance of sunlight in the near-infrared region in response to temperature change, although the high phase transition temperature (Tc) of 340 K restricts its wide application. Our first-principles calculations show that hydrogen is an efficient dopant which can stabilize the metallic VO2 phase at ambient temperature through reducing Tc by 38 K/at% H. The reduction in Tc is coupled with the changes in atomic and electronic structures, i.e., the V-V chains feature the dimerization characteristics in H-doped VO2(R) and the V-O bonds become less ionic due to the formation of a typical H-O covalent bond. In addition, hydrogen-doped VO2 is more sensitive to external strain as compared with pure VO2, implying that Tc can be further regulated through a combination of H-doping and strain.

  12. VO2 nanorods for efficient performance in thermal fluids and sensors

    NASA Astrophysics Data System (ADS)

    Dey, Kajal Kumar; Bhatnagar, Divyanshu; Srivastava, Avanish Kumar; Wan, Meher; Singh, Satyendra; Yadav, Raja Ram; Yadav, Bal Chandra; Deepa, Melepurath

    2015-03-01

    VO2 (B) nanorods with average width ranging between 50-100 nm are synthesized via a hydrothermal method and the post hydrothermal treatment drying temperature is found to be influential in their overall phase and growth morphology evolution. The nanorods with unusually high optical bandgap for a VO2 material are effective in enhancing the thermal performance of ethylene glycol nanofluids over a wide temperature range as is indicated by the temperature dependent thermal conductivity measurements. Humidity and LPG sensors fabricated using the VO2 (B) nanorods bear testament to their efficient sensing performance, which can be partially attributed to the mesoporous nature of the nanorods.VO2 (B) nanorods with average width ranging between 50-100 nm are synthesized via a hydrothermal method and the post hydrothermal treatment drying temperature is found to be influential in their overall phase and growth morphology evolution. The nanorods with unusually high optical bandgap for a VO2 material are effective in enhancing the thermal performance of ethylene glycol nanofluids over a wide temperature range as is indicated by the temperature dependent thermal conductivity measurements. Humidity and LPG sensors fabricated using the VO2 (B) nanorods bear testament to their efficient sensing performance, which can be partially attributed to the mesoporous nature of the nanorods. Electronic supplementary information (ESI) available: Plots representing the actual ratio Knf/KEG (Knf is the thermal conductivity of the nanofluid and KEG being thermal conductivity of the base fluid) across the entire experimental temperature range of 20 to 80 °C, table representing a comparison of performance of the VO2 sensor towards different gases. See DOI: 10.1039/c4nr06032f

  13. Electrical Switching in Semiconductor-Metal Self-Assembled VO2 Disordered Metamaterial Coatings

    PubMed Central

    Kumar, Sunil; Maury, Francis; Bahlawane, Naoufal

    2016-01-01

    As a strongly correlated metal oxide, VO2 inspires several highly technological applications. The challenging reliable wafer-scale synthesis of high quality polycrystalline VO2 coatings is demonstrated on 4” Si taking advantage of the oxidative sintering of chemically vapor deposited VO2 films. This approach results in films with a semiconductor-metal transition (SMT) quality approaching that of the epitaxial counterpart. SMT occurs with an abrupt electrical resistivity change exceeding three orders of magnitude with a narrow hysteresis width. Spatially resolved infrared and Raman analyses evidence the self-assembly of VO2 disordered metamaterial, compresing monoclinic (M1 and M2) and rutile (R) domains, at the transition temperature region. The M2 mediation of the M1-R transition is spatially confined and related to the localized strain-stabilization of the M2 phase. The presence of the M2 phase is supposed to play a role as a minor semiconducting phase far above the SMT temperature. In terms of application, we show that the VO2 disordered self-assembly of M and R phases is highly stable and can be thermally triggered with high precision using short heating or cooling pulses with adjusted strengths. Such a control enables an accurate and tunable thermal control of the electrical switching. PMID:27883052

  14. Electrical Switching in Semiconductor-Metal Self-Assembled VO2 Disordered Metamaterial Coatings

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Maury, Francis; Bahlawane, Naoufal

    2016-11-01

    As a strongly correlated metal oxide, VO2 inspires several highly technological applications. The challenging reliable wafer-scale synthesis of high quality polycrystalline VO2 coatings is demonstrated on 4” Si taking advantage of the oxidative sintering of chemically vapor deposited VO2 films. This approach results in films with a semiconductor-metal transition (SMT) quality approaching that of the epitaxial counterpart. SMT occurs with an abrupt electrical resistivity change exceeding three orders of magnitude with a narrow hysteresis width. Spatially resolved infrared and Raman analyses evidence the self-assembly of VO2 disordered metamaterial, compresing monoclinic (M1 and M2) and rutile (R) domains, at the transition temperature region. The M2 mediation of the M1-R transition is spatially confined and related to the localized strain-stabilization of the M2 phase. The presence of the M2 phase is supposed to play a role as a minor semiconducting phase far above the SMT temperature. In terms of application, we show that the VO2 disordered self-assembly of M and R phases is highly stable and can be thermally triggered with high precision using short heating or cooling pulses with adjusted strengths. Such a control enables an accurate and tunable thermal control of the electrical switching.

  15. Associations between VO2max and vitality in older workers: a cross-sectional study

    PubMed Central

    2010-01-01

    Background To prevent early exit from work, it is important to study which factors contribute to healthy ageing. One concept that is assumed to be closely related to, and therefore may influence healthy ageing, is vitality. Vitality consists of both a mental and a physical component, and is characterised by a perceived high energy level, decreased feelings of fatigue, and feeling fit. Since VO2max gives an indication of one's aerobic fitness, which can be improved by increased levels of physical activity, and because feeling fit is one of the main characteristics of vitality, it is hypothesised that VO2max is related to vitality. Therefore, the aim of this study was to investigate the associations between VO2max and vitality. Methods In 427 older workers (aged 45 + years) participating in the Vital@Work study, VO2max was estimated at baseline using the 2-km UKK walk test. Vitality was measured by both the UWES Vitality Scale and the RAND-36 Vitality Scale. Associations were analysed using linear regression analyses. Results The linear regression models, adjusted for age, showed a significant association between VO2max and vitality measured with the RAND-36 Vitality Scale (β = 0.446; 95% CI: 0.220-0.673). There was no significant association between VO2max and vitality measured with the UWES (β = -0.006; 95% CI:-0.017 - 0.006), after adjusting for age, gender and chronic disease status. Conclusions VO2max was associated with a general measure of vitality (measured with the RAND-36 Vitality Scale), but not with occupational health related vitality (measured with the UWES Vitality Scale). The idea that physical exercise can be used as an effective tool for improving vitality was supported in this study. Trial registration NTR1240 PMID:21062484

  16. Effects of electrical stimulation on VO2 kinetics and delta efficiency in healthy young men

    PubMed Central

    Perez, M; Lucia, A; Santalla, A; Chicharro, J

    2003-01-01

    Objective: To determine the effects of electrical stimulation (ES) on oxygen uptake (VO2) kinetics and delta efficiency (DE) during gradual exercise. The hypothesis was that ES would attenuate the VO2-workload relation and improve DE. Methods: Fifteen healthy, untrained men (mean (SD) age 22 (5) years) were selected. Ten were electrostimulated on both quadriceps muscles with a frequency of 45–60 Hz, with 12 seconds of stimulation followed by eight seconds recovery for a total of 30 minutes a day, three days a week for six weeks. The remaining five subjects were assigned to a control group. A standardised exercise test on a cycle ergometer (ramp protocol, workload increases of 20 W/min) was performed by each subject before and after the experimental period. The slope of the VO2-power output (W) relation (ΔVO2/ΔW) and DE were calculated in each subject at moderate to high intensities (above the ventilatory threshold—that is, from 50–60% to 100% VO2max). Results: The mean (SEM) values for ΔVO2/ΔW and DE had significantly decreased and increased respectively after the six week ES programme (p<0.05; 9.8 (0.2) v 8.6 (0.5) ml O2/W/min respectively and 27.7 (0.9) v 31.5 (1.4)% respectively). Conclusions: ES could be used as a supplementary tool to improve two of the main determinants of endurance capacity, namely VO2 kinetics and work efficiency. PMID:12663356

  17. VO2 kinetics during heavy and severe exercise in swimming.

    PubMed

    Pessoa Filho, D M; Alves, F B; Reis, J F; Greco, C C; Denadai, B S

    2012-09-01

    The purpose of this study was to describe the VO2 kinetics above and below respiratory compensation point (RCP) during swimming. After determination of the gas-exchange threshold (GET), RCP and VO(2max), 9 well-trained swimmers (21.0 ± 7.1 year, VO(2max)=57.9 ± 5.1 ml.kg (- 1).min (- 1)), completed a series of "square-wave" swimming transitions to a speed corresponding to 2.5% below (S - 2.5%) and 2.5% above (S+2.5%) the speed observed at RCP for the determination of pulmonary VO2 kinetics. The trial below (~2.7%) and above RCP (~2%) was performed at 1.28 ± 0.05 m.s (- 1) (76.5 ± 6.3% VO(2max)) and 1.34 0.05 m.s (- 1) (91.3 ± 4.0% VO(2max)), respectively. The time constant of the primary component was not different between the trials below (17.8 ± 5.9 s) and above RCP (16.5 ± 5.1 s). The amplitude of the VO(2)slow component was similar between the exercise intensities performed around RCP (S - 2.5%=329.2 ± 152.6 ml.min (- 1) vs. S+2.5%=313.7 ± 285.2 ml.min (- 1)), but VO(2max) was attained only during trial performed above RCP (S-2.5%=91.4 ± 5.9% VO(2max) vs. S+2.5%=103.0 ± 8.2% VO(2max)). Thus, similar to the critical power during cycling exercise, the RCP appears to represent a physiological boundary that dictates whether VO(2) kinetics is characteristic of heavy- or severe-intensity exercise during swimming. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Electronic structure and insulating gap in epitaxial VO2 polymorphs

    DOE PAGES

    Lee, Shinbuhm; Meyer, Tricia L.; Sohn, Changhee; ...

    2015-12-24

    Here, determining the origin of the insulating gap in the monoclinic VO2(M1) is a long-standing issue. The difficulty of this study arises from the simultaneous occurrence of structural and electronic transitions upon thermal cycling. Here, we compare the electronic structure of the M1 phase with that of single crystalline insulating VO2(A) and VO2(B) thin films to better understand the insulating phase of VO2. As these A and B phases do not undergo a structural transition upon thermal cycling, we comparatively study the origin of the gap opening in the insulating VO2 phases. By x-ray absorption and optical spectroscopy, we findmore » that the shift of unoccupied t2g orbitals away from the Fermi level is a common feature, which plays an important role for the insulating behavior in VO2 polymorphs. The distinct splitting of the half-filled t2g orbital is observed only in the M1 phase, widening the bandgap up to ~0.6 eV. Our approach of comparing all three insulating VO2 phases provides insight into a better understanding of the electronic structure and the origin of the insulating gap in VO2.« less

  19. Leg strength and the VO2 max of older men.

    PubMed

    Lovell, D; Cuneo, R; Delphinus, E; Gass, G

    2011-04-01

    The purpose of the study was to determine if leg strength limits VO2 max and the ability to reach a plateau during VO2 max test in older men during cycle ergometry. Men aged 70-80 years were randomly selected into a strength training (ST, n=12) 3 times weekly for 16 weeks, followed by 4 weeks detraining or a non-training control group (C, n=12). Leg strength and VO2 max were assessed every 4 weeks for 20 weeks; body composition and cardiac function were assessed before and after 16 weeks training and after 4 weeks detraining. Leg strength, upper leg muscle mass (ULMM), arterial-venous O2 difference (a-v O2 difference) and VO2 max increased in the ST group (95±0.6%, 7±0.7%. 6.2±0.5% and 8±0.8%, respectively; P<0.05) after 16 weeks training. After 4 weeks detraining, gains in ULMM (50%) and strength (75%) were retained, but VO2 max and a-v O2 difference returned to pre-training levels. There was no change in the ability of the participants to reach a plateau during VO2 max testing over the 20-week study. These findings indicate that leg strength may not limit either VO2 max or the ability to plateau during VO2 max tests in older men during cycle ergometry.

  20. Growth and characterization of VO2/p-GaN/sapphire heterostructure with phase transition properties

    NASA Astrophysics Data System (ADS)

    Bian, Jiming; Wang, Minhuan; Miao, Lihua; Li, Xiaoxuan; Luo, Yingmin; Zhang, Dong; Zhang, Yuzhi

    2015-12-01

    High quality pure phase VO2 films were deposited on p-GaN/sapphire substrates by pulsed laser deposition (PLD). A well-defined interface with dense and uniform morphology was observed in the as-grown VO2/p-GaN/sapphire heterostructure. The X-ray photoelectron spectroscopy (XPS) analyses confirmed the valence state of vanadium (V) in VO2 films was principally composed of V4+ with trace amount of V5+, no other valence state of V was detected. Meanwhile, a distinct reversible semiconductor-to-metal (SMT) phase transition with resistance change up to nearly three orders of magnitude was observed in the temperature dependent electrical resistance measurement, which was comparable to the high quality VO2 film grown directly on sapphire substrates. Our present findings will give a deeper insight into the physical mechanism behind the exotic characteristics of VO2/p-GaN heterostructure, and further motivate research in novel devices with combined functional properties of both correlated oxide and wide bandgap nitride semiconductors.

  1. Reproducibility of maximum aerobic power (VO2max) among soccer players using a modified heck protocol.

    PubMed

    Santos-Silva, Paulo Roberto; Fonseca, Alfredo José; Castro, Anita Weigand de; Greve, Júlia Maria D'Andréa; Hernandez, Arnaldo José

    2007-08-01

    To determine the degree of reproducibility of maximum oxygen consumption (VO2max) among soccer players, using a modified Heck protocol. 2 evaluations with an interval of 15 days between them were performed on 11 male soccer players. All the players were at a high performance level; they were training for an average of 10 hours per week, totaling 5 times a week. When they were evaluated, they were in the middle of the competitive season, playing 1 match per week. The soccer players were evaluated on an ergometric treadmill with velocity increments of 1.2 km.h-1 every 2 minutes and a fixed inclination of 3% during the test. VO2max was measured directly using a breath-by-breath metabolic gas analyzer. The maximum running speed and VO2max attained in the 2 tests were, respectively: (15.6 +/- 1.1 vs. 15.7 +/- 1.2 km.h-1; [P = .78]) and (54.5 +/- 3.9 vs. 55.2 +/- 4.4 ml.kg-1.min-1; [P = .88]). There was high and significant correlation of VO2max between the 2 tests with a 15-day interval between them [r = 0.97; P < .001]. The modified Heck protocol was reproducible, and the 15-day interval between the ergospirometric testing was insufficient to significantly modify the soccer players' VO2max values.

  2. Epitaxial VO2 thin-film-based radio-frequency switches with electrical activation

    NASA Astrophysics Data System (ADS)

    Lee, Jaeseong; Lee, Daesu; Cho, Sang June; Seo, Jung-Hun; Liu, Dong; Eom, Chang-Beom; Ma, Zhenqiang

    2017-09-01

    Vanadium dioxide (VO2) is a correlated material exhibiting a sharp insulator-to-metal phase transition (IMT) caused by temperature change and/or bias voltage. We report on the demonstration of electrically triggered radio-frequency (RF) switches based on epitaxial VO2 thin films. The highly epitaxial VO2 and SnO2 template layer was grown on a (001) TiO2 substrate by pulsed laser deposition (PLD). A resistance change of the VO2 thin films of four orders of magnitude was achieved with a relatively low threshold voltage, as low as 13 V, for an IMT phase transition. VO2 RF switches also showed high-frequency responses of insertion losses of -3 dB at the on-state and return losses of -4.3 dB at the off-state over 27 GHz. Furthermore, an intrinsic cutoff frequency of 17.4 THz was estimated for the RF switches. The study on electrical IMT dynamics revealed a phase transition time of 840 ns.

  3. A new submaximal cycle ergometer test for prediction of VO2max.

    PubMed

    Ekblom-Bak, E; Björkman, F; Hellenius, M-L; Ekblom, B

    2014-04-01

    Maximal oxygen uptake (VO2max) is an important, independent predictor of cardiovascular health and mortality. Despite this, it is rarely measured in clinical practice. The aim of this study was to create and evaluate a submaximal cycle ergometry test based on change in heart rate (HR) between a lower standard work rate and an individually chosen higher work rate. In a mixed population (n = 143) with regard to sex (55% women), age (21-65 years), and activity status (inactive to highly active), a model included change in HR per unit change in power, sex, and age for the best estimate of VO2max. The association between estimated and observed VO2max for the mixed sample was r = 0.91, standard error of estimate = 0.302 L/min, and mean measured VO2max = 3.23 L/min. The corresponding coefficient of variation was 9.3%, a significantly improved precision compared with one of the most commonly used submaximal exercise tests, the Åstrand test, which in the present study was estimated to be 18.1%. Test-retest reliability analysis over 1 week revealed no mean difference in the estimated VO2max (-0.02 L/min, 95% confidence interval: -0.07-0.03). The new test is low-risk, easily administered, and valid for a wide capacity range, and is therefore suitable in situations as health evaluations in the general population.

  4. The phase transition of W-doped VO2 nanoparticles synthesized by an improved thermolysis method.

    PubMed

    Hou, Jiwei; Zhang, Jianwu; Wang, Zhongping; Zhang, Zengming; Ding, Zejun

    2013-02-01

    High-quality thermochromic monoclinic VO2(M) and series of W-doped V(1-x)W(x)O2(M) nanoparticles were successfully synthesized by an improved thermolysis method. The products were investigated using X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) technologies. The measurement of DSC revealed that the metal-insulator phase transition (MIT) of 2.0% W-doped VO2 sample occurred at 25.6 degrees C, which was much lower than the MIT of host VO2(M) nanoparticles at 67.6 degrees C. The results showed that the proportion of the transmittance of tetragonal phase reached only about 29% of that of monoclinic phase for 0.5% W-doped VO2 at the wavenumber 900 cm(-1), which indicated W-doped VO2(M) was an intelligent window and optical switch materials.

  5. Nanoporous thermochromic VO(2) films with low optical constants, enhanced luminous transmittance and thermochromic properties.

    PubMed

    Kang, Litao; Gao, Yanfeng; Luo, Hongjie; Chen, Zhang; Du, Jin; Zhang, Zongtao

    2011-02-01

    Nanoporous thermochromic VO(2) films with low optical constants and tunable thicknesses have been prepared by polymer-assisted deposition. The film porosity and thickness change the interference relationship of light reflected from the film-substrate and the air-film interfaces, strongly influencing the optical properties of these VO(2) films. Our optimized single-layered VO(2) films exhibit high integrated luminous transmittance (T(lum,l) = 43.3%, T(lum,h) = 39.9%) and solar modulation (ΔT(sol) = 14.1%, from T(sol,l) = 42.9% to T(sol,h) = 28.8%), which are comparable to those of five-layered TiO(2)/VO(2)/TiO(2)/VO(2)/TiO(2) films (T(lum,l) = 45%, T(lum,h) = 42% and ΔT(sol) = 12%, from T(sol,l) = 52% to T(sol,h) = 40%, from Phys. Status Solidi A2009, 206, 2155-2160.). Optical calculations suggest that the performance could be further improved by increasing the porosity.

  6. Coupling effect between the structure and surface characteristics of electrospun carbon nanofibres on the electrochemical activity towards the VO2(+)/VO(2+) redox couple.

    PubMed

    Wei, Guanjie; Gao, Zhenguo; Wei, Zengfu; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei

    2015-08-21

    In order to investigate the structure-function relationship of electrospun carbon nanofibres (ECNFs), polyacrylonitrile (PAN)-based electrospun carbon webs (ECWs) have been developed, consisting of ECNFs carbonized over the temperature range of 1000-1500 °C in a nitrogen atmosphere. The surface morphology, microstructure, composition, electrical conductivity and hydrophilicity of the ECNFs have been characterized. The electrochemical activity of the ECNFs towards the VO2(+)/VO(2+) redox reaction has been measured by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It is worth noting that the electrochemical performance of the ECNFs decreases firstly and then rises gradually with the increase in carbonization temperature, and a carbonization temperature of about 1300 °C is the turning point. This unusual phenomenon might be attributed to the coupling effect between the surface and structure characteristics of the ECNFs towards the VO2(+)/VO(2+) redox couple. The surface composition plays a leading role in the electrochemical activity of ECNFs carbonized over the temperature range of 1000-1300 °C; however, the edge planes of graphite crystallites which form during the high temperature range from 1300-1500 °C then become the dominant factor. Therefore, the electrochemical activity decreases with the reduction of functional groups on the surface from carbonization at 1000-1300 °C, and then increases with the addition of the edge planes of graphite crystallites from carbonization at 1300-1500 °C.

  7. Low-temperature fabrication of VO2 thin film on ITO glass with a Mott transition

    NASA Astrophysics Data System (ADS)

    Lin, Tiegui; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen

    2016-09-01

    Polycrystalline Vanadium dioxide (VO2) thin film can be fabricated on glass substrates by high power impulse magnetron sputtering at a relative high temperature. In order to apply an effective bias voltage on substrate and control the energy of the ions impinged to the substrate, conductive indium-tin oxide (ITO) glass was used as the substrate. UV-visible-near IR transmittance spectra and X-ray diffraction (XRD) patterns of the as-deposited films exhibited that M-VO2 thin film with a metal-insulator transition temperature of 37∘C was fabricated successfully at 300∘C with a bias voltage of -200V, and the calculated average crystalline size of this film was about 12nm. XRD patterns at varied temperatures showed that the structural change of MIT of the VO2 thin film was suppressed during the phase transition process, and a pure Mott transition was obtained.

  8. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition

    PubMed Central

    Lv, T. T.; Li, Y. X.; Ma, H. F.; Zhu, Z.; Li, Z. P.; Guan, C. Y.; Shi, J. H.; Zhang, H.; Cui, T. J.

    2016-01-01

    Polarization manipulations of electromagnetic waves can be obtained by chiral and anisotropic metamaterials routinely, but the dynamic and high-efficiency modulations of chiral properties still remain challenging at the terahertz range. Here, we theoretically demonstrate a new scheme for realizing thermal-controlled chirality using a hybrid terahertz metamaterial with embedded vanadium dioxide (VO2) films. The phase transition of VO2 films in 90° twisted E-shaped resonators enables high-efficiency thermal modulation of linear polarization conversion. The asymmetric transmission of linearly polarized wave and circular dichroism simultaneously exhibit a pronounced switching effect dictated by temperature-controlled conductivity of VO2 inclusions. The proposed hybrid metamaterial design opens exciting possibilities to achieve dynamic modulation of terahertz waves and further develop tunable terahertz polarization devices. PMID:27000427

  9. Factors determining the time course of VO2(max) decay during bedrest: implications for VO2(max) limitation.

    PubMed

    Capelli, C; Antonutto, G; Kenfack, M Azabji; Cautero, M; Lador, F; Moia, C; Tam, E; Ferretti, G

    2006-09-01

    The aim of this study was to characterize the time course of maximal oxygen consumption VO2(max) changes during bedrests longer than 30 days, on the hypothesis that the decrease in VO2(max) tends to asymptote. On a total of 26 subjects who participated in one of three bedrest campaigns without countermeasures, lasting 14, 42 and 90 days, respectively, VO2(max) maximal cardiac output (Qmax) and maximal systemic O2 delivery (QaO2max) were measured. After all periods of HDT, VO2max, Qmax, and QaO2max were significantly lower than before. The VO2max decreased less than qmax after the two shortest bedrests, but its per cent decay was about 10% larger than that of Qmax after 90-day bedrest. The VO2max decrease after 90-day bedrest was larger than after 42- and 14-day bedrests, where it was similar. The Qmax and QaO2max declines after 90-day bedrest was equal to those after 14- and 42-day bedrest. The average daily rates of the VO2max, Qmax, and QaO2max decay during bedrest were less if the bedrest duration were longer, with the exception of that of VO2max in the longest bedrest. The asymptotic VO2max decay demonstrates the possibility that humans could keep working effectively even after an extremely long time in microgravity. Two components in the VO2max decrease were identified, which we postulate were related to cardiovascular deconditioning and to impairment of peripheral gas exchanges due to a possible muscle function deterioration.

  10. Durability of VO2-based thin films at elevated temperature: Towards thermochromic fenestration

    NASA Astrophysics Data System (ADS)

    Ji, Yu-Xia; Niklasson, Gunnar A.; Granqvist, Claes G.

    2014-11-01

    An explorative study was performed on sputter-deposited thermochromic VO2 films with top coatings of Al oxide and Al nitride. The films were exposed to dry air at a high temperature. Bare 80-nm-thick VO2 films rapidly converted to non-thermochromic V2O5 under the chosen conditions. Al oxide top coatings protected the underlying VO2 films and, expectedly, increased film thickness yielded improved protection. Specifically, it was found that a 30-nm-thick sputter-deposited Al oxide top coating delayed the oxidation by more than one day upon heating at 300°C. The results demonstrate the importance of protective layers in thermochromic windows for practical application.

  11. Field Effect and Strongly Localized Carriers in the Metal-Insulator Transition Material VO(2).

    PubMed

    Martens, K; Jeong, J W; Aetukuri, N; Rettner, C; Shukla, N; Freeman, E; Esfahani, D N; Peeters, F M; Topuria, T; Rice, P M; Volodin, A; Douhard, B; Vandervorst, W; Samant, M G; Datta, S; Parkin, S S P

    2015-11-06

    The intrinsic field effect, the change in surface conductance with an applied transverse electric field, of prototypal strongly correlated VO(2) has remained elusive. Here we report its measurement enabled by epitaxial VO(2) and atomic layer deposited high-κ dielectrics. Oxygen migration, joule heating, and the linked field-induced phase transition are precluded. The field effect can be understood in terms of field-induced carriers with densities up to ∼5×10(13)  cm(-2) which are trongly localized, as shown by their low, thermally activated mobility (∼1×10(-3)  cm(2)/V s at 300 K). These carriers show behavior consistent with that of Holstein polarons and strongly impact the (opto)electronics of VO(2).

  12. Fabrication of VO2-based multilayer structure with variable emittance

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Cao, Yunzhen; Zhang, Yuzhi; Yan, Lu; Li, Ying

    2015-07-01

    VO2 film holds promise for smart radiation device (SRD) use because of its infrared reflection change through the semiconductor-to-metal transition (SMT). In present study, a multilayer structure which consisted of VO2 layer, HfO2 layer and Ag layer was fabricated to achieve variable emittance based on the principle of reflection filter and SMT of VO2. It was found that with optimal 50 nm-thick VO2 layer, emittance of the multilayer structure could reversibly change from 0.13 at 30 °C to 0.68 at 80 °C with emittance variability of 0.55. Emittance hysteresis loop with transition temperature (Tc) of 58 °C and narrow width of 4 °C was obtained. Finally, multilayer structures with W-doped VO2 films were deposited and transition temperature decreased from 58 to 5 °C as W doping concentration increased from 0% to 3%, with Tc decreasing efficiency of -17.2 °C/at%. However, W doping also led to increased low temperature infrared absorption of VO2 film, which resulted in decreased emittance variability for the multilayer structure, from 0.55 to 0.37 as the W doping concentration in VO2 layer increase from 0% to 3%.

  13. DC sputtered W-doped VO2 thermochromic thin films for smart windows with active solar control.

    PubMed

    Batista, C; Ribeiro, R; Carneiro, J; Teixeira, V

    2009-07-01

    Doped VO2 thin films, with different W at.% and consequent dissimilar transition temperatures, were successfully deposited onto SiO2-coated float-glass substrates by reactive direct current (DC) magnetron sputtering. Structural analyses have shown, for undoped films, single phase VO2(M) films with c-axis (002) direction as the preferred crystal orientation. The addition of tungsten into the VO2 solid solution favored the crystallization in the (011) direction which became dominant above a critical level of dopant concentration. The surface morphology of pure VO2 films revealed elongated grains oriented within the film plane. The doped films evidenced an increased tendency to be oriented out of the film plane which has resulted in increased roughness levels. The doping methodology associated with optimized processing conditions allowed the production of W-doped VO2 films with reduced transition temperatures, from 63 down to 28 degrees C, and maximum transmittances at the visible region ranging 40%. The relationship between tungsten content in the film and consequent transition temperature expressed a linear behavior.

  14. Assessment of anaerobic power to verify VO2max attainment.

    PubMed

    Astorino, Todd A; White, Ailish C

    2010-07-01

    Across various populations, verification testing is used to confirm VO(2)max attainment and has repeatedly shown similar VO(2)max values to those obtained from incremental exercise. Yet, many individuals show meaningful differences in VO(2)max between protocols, and an explanation for this is unknown. The aim of the study was to elucidate this phenomenon in 30 men and women of similar age, fitness, and physical activity using assessment of anaerobic power. On day 1, they completed the Wingate test, and returned at least 48 h later to complete incremental cycle ergometry followed by a verification protocol. During exercise, ventilation, pulmonary gas exchange data, and heart rate (HR) were continuously measured. Mean VO(2)max was similar (P > 0.05) between protocols (42.05 +/- 5.88 ml kg(-1) per min versus 42.03 +/- 5.75 ml kg(-1) per min, respectively), although seven subjects (23%) revealed a VO(2)max that was not 'verified' by the supramaximal protocol. Indices of power output and gas exchange data were similar (P > 0.05) between subjects who revealed a 'true' VO(2)max compared to those who did not, although peak and mean power was consistently higher in persons whose VO(2)max was not 'verified.' A previously established HRmax criterion for verification testing was not met in 17% of subjects. Additional study is merited to identify alternate determinants of VO(2)max, such as muscle activation via assessment of motor unit recruitment, and to investigate utility of verification testing to confirm VO(2)max attainment in elite athletes and the elderly.

  15. Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2

    NASA Astrophysics Data System (ADS)

    Wan, Meinan; Xiong, Mo; Li, Neng; Liu, Baoshun; Wang, Shuo; Ching, Wai-Yim; Zhao, Xiujian

    2017-07-01

    Research on monoclinic (M1) phase of VO2 has attracted a great of interest for smart coating applications due to its exceptional thermochromic property. Herein, we report the results using a novel approach to synthesize N-doped VO2(M1) thin films with high purity by heat treatment in NH3 atmosphere. The N dopant in the film can be regulated by varying NH3 concentration during the annealing process. We find that the N atoms are located at the interstitial sites or substitute oxygen atoms, and the V-N bonds in the VO2 thin films increase with NH3 concentration. The metal to insulator transition (MIT) temperature (τc,h) of the VO2 thin film is effectively reduced from 80.0 to 62.9 °C, while the solar modulation efficiency (ΔTsol) and the modulation efficiency at 2000 nm (ΔT2000nm) are 7.36% and 55.6% respectively. The band gap of N-doped VO2 thin films related to MIT (Eg1) is estimated to be as low as 0.18-0.25 eV whereas the band gap associated with the visible transparency (Eg2) is about 1.50-1.58 eV. Based on the highly accurate first-principles calculations, the Eg1 of VO2 (M1) is reduced after substituted or interstitial N-doping, while the Eg2 alters with the mode of N-doping, which is excellent agreement with experimental measurement.

  16. The reliability of aerobic capacity (VO2max) testing in adolescent girls.

    PubMed

    Pivarnik, J M; Dwyer, M C; Lauderdale, M A

    1996-09-01

    Despite the fact that our subjects were naive regarding the test procedures, it appears that aerobic fitness testing using an incremental treadmill protocol is extremely reliable in adolescent girls. In addition, day-to-day variability of VO2max in our subjects averaged less than 5%, which is similar to results obtained with adults (Katch, Sady, & Freedson, 1982). Finally, it was most encouraging to find that a single VO2max test trial resulted in high reliability coefficients. This finding should provide a great deal of confidence to investigators who are performing aerobic fitness tests on large numbers of subjects where multiple testing is neither practical nor cost-effective.

  17. Tailoring of Luminous Transmittance upon Switching for Thermochromic VO2 Films by Thickness Control

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Jin, Ping; Tazawa, Masato; Yoshimura, Kazuki

    2004-01-01

    The difference in luminous transmittance (Δ Tlum) upon switching of VO2 films strongly affects its solar controllability when used as a thermochromic window. It was found that Δ Tlum is controllable by film thickness. Optical calculation for a VO2 film on quartz glass revealed that the low-temperature semiconductor phase exhibits lower Tlum than the high-temperature metallic phase for thickness below 50 nm, while the relationship is reversed above 50 nm. The calculation was confirmed by film deposition and measurement. Maximum Δ Tlum is located near 80 nm. An enhanced Δ Tlum contributes largely to solar efficiency.

  18. EPR of Cu 2+ and VO 2+ in a cobalt saccharin complex, [Co(sac) 2(H 2O) 4]·2H 2O, single crystals

    NASA Astrophysics Data System (ADS)

    Yerli, Y.; Köksal, F.; Karadag, A.

    2003-09-01

    Cu 2+ and VO 2+ doped single crystals of [Co(sac) 2(H 2O) 4]·2H 2O (Cosacaqua) complex were investigated using EPR technique at ambient temperature. Detailed investigation of the EPR spectra indicated that the Cu 2+ and VO 2+ substitute the Co 2+. Two sites were observed for Cu 2+ and VO 2+. But each site of V 4+ corresponds two different orientations of VO 2+. The principal values of the g and the hyperfine tensors were obtained. The spectra indicate that the ground state for Cu 2+ is mainly 3 dx2- y2. The covalent bonding parameters for Cu 2+ and VO 2+ and Fermi contact terms were obtained.

  19. A quantitative study of the biotransformation of insulin-enhancing VO(2+) compounds.

    PubMed

    Sanna, Daniele; Buglyó, Péter; Micera, Giovanni; Garribba, Eugenio

    2010-08-01

    Potentiometric (pH titrations) and spectroscopic (electron paramagnetic resonance) methods have been used to determine the thermodynamic stability constants of the various VO(2+) complexes formed after the interaction of four insulin-enhancing vanadium compounds, [VO(6-mepic)(2)], cis-[VO(pic)(2)(H(2)O)], [VO(acac)(2)], and [VO(dhp)(2)], where 6-mepic, pic, acac, and dhp indicate the deprotonated forms of 6-methylpicolinic acid, picolinic acid, acetylacetone, and 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone, with high molecular mass [human serum apotransferrin (hTf) and human serum albumin (HSA)] and low molecular mass (lactate) components of blood serum. In particular, log beta values for the formation of (VO)hTf (13.0 +/- 0.5), (VO)(2)hTf (25.5 +/- 0.5), (VO)HSA (9.1 +/- 1.0), (VO) (2) (d) HSA (20.9 +/- 1.0), cis-VO(dhp)(2)(hTf) (25.5 +/- 0.6), cis-VO(dhp)(2)(HSA) (25.9 +/- 0.6), (VO)hTf(lact) (14.5 +/- 0.8), (VO)(2)hTf(lact)(2) (28.5 +/- 0.8), (VO)hTf(pic) (15.6 +/- 0.8), and (VO)(2)hTf(pic)(2) (30.4 +/- 0.8) were determined. The values of the stability constants were used to compare the calculated composition of ternary and quinary systems with that recently proposed by some of us through electron paramagnetic resonance and density functional theory methods (Sanna et al. in Inorg. Chem. 49:174-187, 2010) and to predict the distribution of VO(2+) ion in blood serum when one of the four insulin-enhancing vanadium compounds studied, [VO(carrier)(2)], is administered.

  20. Estimated Prestroke Peak VO2 Is Related to Circulating IGF-1 Levels During Acute Stroke.

    PubMed

    Mattlage, Anna E; Rippee, Michael A; Abraham, Michael G; Sandt, Janice; Billinger, Sandra A

    2017-01-01

    Background Insulin-like growth factor-1 (IGF-1) is neuroprotective after stroke and is regulated by insulin-like binding protein-3 (IGFBP-3). In healthy individuals, exercise and improved aerobic fitness (peak oxygen uptake; peak VO2) increases IGF-1 in circulation. Understanding the relationship between estimated prestroke aerobic fitness and IGF-1 and IGFBP-3 after stroke may provide insight into the benefits of exercise and aerobic fitness on stroke recovery. Objective The purpose of this study was to determine the relationship of IGF-1 and IGFBP-3 to estimated prestroke peak VO2 in individuals with acute stroke. We hypothesized that (1) estimated prestroke peak VO2 would be related to IGF-1 and IGFBP-3 and (2) individuals with higher than median IGF-1 levels will have higher estimated prestroke peak VO2 compared to those with lower than median levels. Methods Fifteen individuals with acute stroke had blood sampled within 72 hours of hospital admission. Prestroke peak VO2 was estimated using a nonexercise prediction equation. IGF-1 and IGFBP-3 levels were quantified using enzyme-linked immunoassay. Results Estimated prestroke peak VO2 was significantly related to circulating IGF-1 levels (r = .60; P = .02) but not IGFBP-3. Individuals with higher than median IGF-1 (117.9 ng/mL) had significantly better estimated aerobic fitness (32.4 ± 6.9 mL kg(-1) min(-1)) than those with lower than median IGF-1 (20.7 ± 7.8 mL kg(-1) min(-1); P = .03). Conclusions Improving aerobic fitness prior to stroke may be beneficial by increasing baseline IGF-1 levels. These results set the groundwork for future clinical trials to determine whether high IGF-1 and aerobic fitness are beneficial to stroke recovery by providing neuroprotection and improving function.

  1. Structure and enhanced thermochromic performance of low-temperature fabricated VO2/V2O3 thin film

    NASA Astrophysics Data System (ADS)

    Sun, Guangyao; Cao, Xun; Gao, Xiang; Long, Shiwei; Liang, Mengshi; Jin, Ping

    2016-10-01

    For VO2-based smart window manufacture, it is a long-standing demand for high-quality thin films deposited at low temperature. Here, the thermochromic films of VO2 were deposited by a magnetron sputtering method at a fairly low temperature of 250 °C without subsequent annealing by embedding a V2O3 interlayer. V2O3 acts as a seed layer to lower the depositing temperature and buffer layer to epitaxial grow VO2 film. The VO2/V2O3 films display high solar modulating ability and narrow hysteresis loop. Our data can serve as a promising point for industrial production with high degree of crystallinity at a low temperature.

  2. Structure and enhanced thermochromic performance of low-temperature fabricated VO2/V2O3 thin film

    DOE PAGES

    Sun, Guangyao; Cao, Xun; Gao, Xiang; ...

    2016-10-06

    For VO2-based smart window manufacture, it is a long-standing demand for high-quality thin films deposited at low temperature. In this paper, the thermochromic films of VO2 were deposited by a magnetron sputtering method at a fairly low temperature of 250 °C without subsequent annealing by embedding a V2O3 interlayer. V2O3 acts as a seed layer to lower the depositing temperature and buffer layer to epitaxial grow VO2 film. The VO2/V2O3 films display high solar modulating ability and narrow hysteresis loop. Finally, our data can serve as a promising point for industrial production with high degree of crystallinity at a lowmore » temperature.« less

  3. Seasonal variation of VO 2 max and the VO2-work rate relationship in elite Alpine skiers.

    PubMed

    Gross, Micah A; Breil, Fabio A; Lehmann, Andrea D; Hoppeler, Hans; Vogt, Michael

    2009-11-01

    Alpine ski performance relates closely to both anaerobic and aerobic capacities. During their competitive season, skiers greatly reduce endurance and weight training, and on-snow training becomes predominant. To typify this shift, we compared exhaustive ramp cycling and squat (SJ) and countermovement jumping (CMJ) performance in elite males before and after their competitive season. In postseason compared with preseason: 1) maximal oxygen uptake (VO 2 max) normalized to bodyweight was higher (55.2 +/- 5.2 vs 52.7 +/- 3.6 mL x kg(-1) x min(-1), P < 0.01), but corresponding work rate (W) was unchanged; 2) at ventilatory thresholds (VT), absolute and relative work rates were similar but heart rates were lower; 3) VO2/W slope was greater (9.59 +/- 0.6 vs 9.19 +/- 0.4 mL O2 x min(-1) x W(-1), P = 0.02), with similar flattening (P < 0.01) above V T1 at both time points; and 4) jump height was greater in SJ (47.4 +/- 4.4 vs 44.7 +/- 4.3 cm, P < 0.01) and CMJ (52.7 +/- 4.6 vs 50.4 +/- 5.0 cm, P < 0.01). We believe that aerobic capacity and leg power were constrained in preseason and that improvements primarily reflected an in-season recovery from a fatigued state, which was caused by incongruous preseason training. Residual adaptations to high-altitude exposure in preseason could have also affected the results. Nonetheless, modern alpine skiing seemingly provides an ample cardiovascular training stimulus for skiers to maintain their aerobic capacities during the racing season. We conclude that aerobic fitness and leg explosiveness can be maintained in-season but may be compromised by heavy or excessive preseason training. In addition, ramp test V O2/W slope analysis could be useful for monitoring both positive and negative responses to training.

  4. ESR spectra of VO2+ ions adsorbed on calcium phosphates.

    PubMed

    Oniki, T; Doi, Y

    1983-07-01

    The ESR spectra of oxovanadium(IV) ions, (VO2+), adsorbed on hydroxyapatite(OHAp), fluorhydroxyapatite(FHAp), Mg-containing tricalcium phosphate(Mg-TCP), .octacalcium phosphate (OCP), dicalcium phosphate dihydrate (DCPD), and amorphous calcium phosphate(ACP) were measured at room temperature. The ESR parameters of VO2+ adsorbed on these compounds were slightly different from one another and accordingly, the ESR technique by use of VO2+ was useful for an analysis of the calcium phosphates precipitated from supersaturated solutions. The ESR parameters of VO2+ adsorbed on ACP and Mg-TCP were found to be very similar to each other, suggesting that ACP and TCP resemble each other in the structure of their crystal surfaces.

  5. Depressed phase transition in solution-grown VO2 nanostructures.

    PubMed

    Whittaker, Luisa; Jaye, Cherno; Fu, Zugen; Fischer, Daniel A; Banerjee, Sarbajit

    2009-07-01

    The first-order metal-insulator phase transition in VO(2) is characterized by an ultrafast several-orders-of-magnitude change in electrical conductivity and optical transmittance, which makes this material an attractive candidate for the fabrication of optical limiting elements, thermochromic coatings, and Mott field-effect transistors. Here, we demonstrate that the phase-transition temperature and hysteresis can be tuned by scaling VO(2) to nanoscale dimensions. A simple hydrothermal protocol yields anisotropic free-standing single-crystalline VO(2) nanostructures with a phase-transition temperature depressed to as low as 32 degrees C from 67 degrees C in the bulk. The observations here point to the importance of carefully controlling the stoichiometry and dimensions of VO(2) nanostructures to tune the phase transition in this system.

  6. Interval training at 95% and 100% of the velocity at VO2 max: effects on aerobic physiological indexes and running performance.

    PubMed

    Denadai, Benedito S; Ortiz, Marcelo J; Greco, Camila C; de Mello, Marco T

    2006-12-01

    The objective of this study was to analyze the effect of two different high-intensity interval training (HIT) programs on selected aerobic physiological indices and 1500 and 5000 m running performance in well-trained runners. The following tests were completed (n=17): (i) incremental treadmill test to determine maximal oxygen uptake (VO2 max), running velocity associated with VO2 max (vVO2 max), and the velocity corresponding to 3.5 mmol/L of blood lactate concentration (vOBLA); (ii) submaximal constant-intensity test to determine running economy (RE); and (iii) 1500 and 5000 m time trials on a 400 m track. Runners were then randomized into 95% vVO2 max or 100% vVO2 max groups, and undertook a 4 week training program consisting of 2 HIT sessions (performed at 95% or 100% vVO2 max, respectively) and 4 submaximal run sessions per week. Runners were retested on all parameters at the completion of the training program. The VO2 max values were not different after training for both groups. There was a significant increase in post-training vVO2 max, RE, and 1500 m running performance in the 100% vVO2 max group. The vOBLA and 5000 m running performance were significantly higher after the training period for both groups. We conclude that vOBLA and 5000 m running performance can be significantly improved in well-trained runners using a 4 week training program consisting of 2 HIT sessions (performed at 95% or 100% vVO2 max) and 4 submaximal run sessions per week. However, the improvement in vVO2 max, RE, and 1500 m running performance seems to be dependent on the HIT program at 100% vVO2 max.

  7. Accuracy of VO2(max) prediction equations in older adults.

    PubMed

    Peterson, Matthew J; Pieper, Carl F; Morey, Miram C

    2003-01-01

    We explored the accuracy and bias of prediction equations (ACSM and Foster) in older, deconditioned men and women. We also examined the predictors of VO2(max) to further understand which variables affect respiratory fitness in the elderly. One hundred seventy-one community dwelling, men (72.6 +/- 4.8 yr) and women (71.0 +/- 5.1 yr) screened in a clinical trial were retrospectively examined. VO2(max) was measured using a standardized protocol with gas exchange measured. Measured VO2 (max) values were compared with prediction equations via mean difference analyses, and bias was explored using Bland-Altman analyses. Regression analysis determined significant predictors of measured VO2 (max). Alpha was PVO2 (max), 21.7 +/- 4.8 and 17.3 +/- 4.0, respectively. ACSM overestimated VO2 (max) in men and women, 26.3 +/- 8.2 and 20.9 +/- 7.3, respectively. By using Bland-Altman plots, ACSM showed significant overestimation bias in more fit women (r = 0.29), whereas Foster showed no estimation bias in either gender. Significant predictors of VO2 (max) were gender, BMI, age, treadmill grade, and speed, with an equation R(2) of 0.70. A measure of current activity levels did not make it into the final model ( P= 0.0505) but is worthy of future consideration using more sensitive measures than ours. ACSM is not appropriate for use when treadmill testing older adults. We believe the Foster equation's VO2 (max) prediction accuracy is acceptable, showing no bias along a continuum of aerobic capacity.

  8. Cardiovascular factors explain genetic background differences in VO2max.

    PubMed

    Roy, Jane L P; Hunter, Gary R; Fernandez, Jose R; McCarthy, John P; Larson-Meyer, D Enette; Blaudeau, Tamilane E; Newcomer, Bradley R

    2006-01-01

    The purpose of this study was to further explore factors that may be related to ethnic differences in the maximum rate at which an individual can consume oxygen (VO2max) between 20 African American (AA) and 30 European American (EA) sedentary women who were matched for body weight (kg) and fat-free mass (FFM). VO2max (l/min) was determined during a graded treadmill exercise test. Submaximal steady-state heart rate and submaximal VO2 were determined at a treadmill speed of 1.3 m/sec and a 2.5% grade. Hemoglobin (Hb) was determined by the cyanide method, muscle oxidative capacity by 31P magnetic resonance spectroscopy (ADP time constant), and FFM (kg) by dual-energy x-ray absorptiometry. Genetic classification was self-reported, and in a subset of the sample (N = 32), the determinants of ethnicity were measured by African genetic admixture. AA women had significantly reduced VO2max, Hb levels, and muscle oxidative capacity (longer ADP time constants, P < or = 0.05) than EA women. Submaximal oxygen pulse (O2Psubmax), ADP time constant, Hb, and ethnic background were all significantly related to VO2max (ml/kg/min and ml/kg FFM/min, all P < or = 0.01). By multiple regression modeling, Hb, O2Psubmax, muscle oxidative capacity, and ethnicity were found to explain 61% and 57% of the variance of VO2max in ml/kg/min and ml/kg FFM/min, respectively. Muscle oxidative capacity and O2Psubmax were both significantly and independently related to VO2max in all three models (P < or = 0.05), whereas Hb and ethnicity were not. These results suggest that mitochondrial muscle oxidative capacity and oxygen delivery capabilities, as determined by O2Psubmax, account for most if not all of the ethnic differences in VO2max.

  9. Enhanced optical response of hybridized VO2/graphene films

    NASA Astrophysics Data System (ADS)

    Kim, Hyeongkeun; Kim, Yena; Kim, Taeyoung; Jang, A.-Rang; Jeong, Hu Young; Han, Seung Ho; Yoon, Dae Ho; Shin, Hyeon Suk; Bae, Dong Jae; Kim, Keun Soo; Yang, Woo Seok

    2013-03-01

    Application of graphene as transparent electrodes is an active research area due to its excellent electrical and optical properties. Vanadium dioxide (VO2) is an attractive material since it is a thermochromic material that undergoes a structural phase transition when heat is applied. The phase transition results in the change of electrical and optical characteristics. We report optical characteristics of hybrid materials of graphene and VO2. We observed a 12% improvement in infrared transmittance with VO2 films deposited on graphene sapphire substrates compared to that of bare sapphire substrates. We also found that the phase transition temperature decreases as the number of graphene layers on the substrates increases. In the case of VO2 films on the substrate that was coated with four layers of graphene, the mean phase transition temperature was lowered to ~56 °C.Application of graphene as transparent electrodes is an active research area due to its excellent electrical and optical properties. Vanadium dioxide (VO2) is an attractive material since it is a thermochromic material that undergoes a structural phase transition when heat is applied. The phase transition results in the change of electrical and optical characteristics. We report optical characteristics of hybrid materials of graphene and VO2. We observed a 12% improvement in infrared transmittance with VO2 films deposited on graphene sapphire substrates compared to that of bare sapphire substrates. We also found that the phase transition temperature decreases as the number of graphene layers on the substrates increases. In the case of VO2 films on the substrate that was coated with four layers of graphene, the mean phase transition temperature was lowered to ~56 °C. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr34054f

  10. Interference systems for wideband mid-IR VO2 mirrors

    NASA Astrophysics Data System (ADS)

    Danilov, Oleg B.; Konovalova, O. P.; Sidorov, Aleksandr I.; Shaganov, Igor I.

    1999-01-01

    We performed the analyze of principles of wide-band VO2- mirrors creation for mid-IR (2.5 - 12 micrometers ) laser radiation control. It was shown, that the choice of interference system of VO2-mirror makes possible to extend region of maximum reflection change up to 1 - 2 (mu) . Calculations and experimental results are presented for mirrors with dR/d>0 and <0 with the change of reflection coefficient from 0.1 up to 94 - 98%.

  11. Structural and electrical properties of large area epitaxial VO2 films grown by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Théry, V.; Boulle, A.; Crunteanu, A.; Orlianges, J. C.; Beaumont, A.; Mayet, R.; Mennai, A.; Cosset, F.; Bessaudou, A.; Fabert, M.

    2017-02-01

    Large area (up to 4 squared inches) epitaxial VO2 films, with a uniform thickness and exhibiting an abrupt metal-insulator transition with a resistivity ratio as high as 2.85 × 10 4 , have been grown on (001)-oriented sapphire substrates by electron beam evaporation. The lattice distortions (mosaicity) and the level of strain in the films have been assessed by X-ray diffraction. It is demonstrated that the films grow in a domain-matching mode where the distortions are confined close to the interface which allows growth of high-quality materials despite the high film-substrate lattice mismatch. It is further shown that a post-deposition high-temperature oxygen annealing step is crucial to ensure the correct film stoichiometry and provide the best structural and electrical properties. Alternatively, it is possible to obtain high quality films with a RF discharge during deposition, which hence do not require the additional annealing step. Such films exhibit similar electrical properties and only slightly degraded structural properties.

  12. Percent utilization of VO2 max at 5-km competition velocity does not determine time performance at 5 km among elite distance runners.

    PubMed

    Støa, Eva Maria; Støren, Øyvind; Enoksen, Eystein; Ingjer, Frank

    2010-05-01

    The present study investigated to what extent maximum oxygen uptake (VO2 max) and fractional utilization (%VO2 max) in 5-km competition speed correlate with 5-km performance times among elite long distance runners. Eight elite long distance runners with 5-km performance times of 15.10 minutes ( +/- 32 seconds) were tested for VO2 max during an incremental protocol and for %VO2 max during an 8-minute treadmill test at the velocity representing their 5-km seasonal best performance time. There was no correlation between fractional utilization and 5-km performance. The study showed no significant difference between VO2 max obtained during an incremental VO2 max test and %VO2 max when running for 8 minutes at the runner's individual 5-km competition speed. The 5-km time was related to the runner's VO2 max even in a homogenous high-level performance group. In conclusion, the present study found no relationship between fractional utilization and 5-km performance time. Training aiming to increase %VO2 max may thus be of little or no importance in performance enhancement for competitions lasting up to approximately 20 minutes.

  13. Sequential electronic and structural transitions in VO2 observed using X-ray absorption spectromicroscopy.

    PubMed

    Kumar, Suhas; Strachan, John Paul; Pickett, Matthew D; Bratkovsky, Alexander; Nishi, Yoshio; Williams, R Stanley

    2014-11-26

    The popular dual electronic and structural transitions in VO2 are explored using X-ray absorption spectromicroscopy with high spatial and spectral resolutions. It is found that during both heating and cooling, the electronic transition always precedes the structural Peierls transition. Between the two transitions, there are intermediate states that are spectrally isolated here.

  14. Electric field induced metal-insulator transition in VO2 thin film based on FTO/VO2/FTO structure

    NASA Astrophysics Data System (ADS)

    Hao, Rulong; Li, Yi; Liu, Fei; Sun, Yao; Tang, Jiayin; Chen, Peizu; Jiang, Wei; Wu, Zhengyi; Xu, Tingting; Fang, Baoying

    2016-03-01

    A VO2 thin film has been prepared using a DC magnetron sputtering method and annealing on an F-doped SnO2 (FTO) conductive glass substrate. The FTO/VO2/FTO structure was fabricated using photolithography and a chemical etching process. The temperature dependence of the I-V hysteresis loop for the FTO/VO2/FTO structure has been analyzed. The threshold voltage decreases with increasing temperature, with a value of 9.2 V at 20 °C. The maximum transmission modulation value of the FTO/VO2/FTO structure is 31.4% under various temperatures and voltages. Optical modulation can be realized in the structure by applying an electric field.

  15. Fabrication of bristlegrass-like VO2 (B)-ZnO heteroarchitectures as anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Yining; Li, Wenjing; Ji, Shidong; Zhou, Huaijuan; Li, Rong; Li, Ning; Yao, Heliang; Cao, Xun; Jin, Ping

    2017-08-01

    Three-dimensional bristlegrass-like hierarchical VO2 (B)-ZnO heteroarchitectures with ZnO nanorods grown radially on VO2 (B) nanorods were successfully fabricated via a simple two-step synthesized method. When applied as an anode material for lithium-ion batteries, the VO2 (B)-ZnO hybrid electrode exhibited high reversible capacity and excellent recyclability, which could be originated from the unique hierarchical structure of the bristlegrass. After 80 cycles, the nanocomposite still maintained a higher reversible capacity of 329.4 mA h g-1 at a current density of 50 mA g-1. Therefore, the particular architecture of VO2 (B)-ZnO nanocomposite can be a promising candidate as the anode material in lithium-ion batteries.

  16. Orientational high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Kumar, Nitesh; Subramaniam, Anandh

    2014-12-01

    In high-entropy alloys (HEA), the configurational entropy arising from the presence of multiple elements, stabilizes a disordered solid solution in preference to the possible formation of compounds. In the current work, we identify cluster compounds (of the type AM4X8) as orientational analogues of HEA (as a first report on orientational high-entropy systems). In cluster compounds, orientational disorder increases the entropy and plays a role analogous to positional disorder in HEA. In the GaMo4S8 compound, at temperatures greater than 50 K, the entropic benefit more than makes up for the strain energy cost and stabilizes the disordered phase in preference to an orientationally ordered compound.

  17. Aerobic Fitness Level Typical of Elite Athletes is not Associated With Even Faster VO2 Kinetics During Cycling Exercise.

    PubMed

    Figueira, Tiago R; Caputo, Fabrizio; Machado, Carlos E P; Denadai, Benedito S

    2008-01-01

    The aim of this study was to address the question if the VO2 kinetics is further improved as the aerobic training status increases from trained to elite level athletes. Maximal oxygen uptake (VO2max), work-rate associated to VO2max (IVO2max) and VO2 kinetics of moderate (Mod) and maximal exercise (Max) were determined in fifty- five subjects. Then, they were assigned into three groups: low (LF), intermediate (IF) and high (HF) aerobic fitness level. In average, the VO2max of LF, IF and HF groups were, respectively, 36.0 ± 3.1, 51.1 ± 4.5 and 68.1 ± 3.9 ml·kg·min(-1) (p ≤ 0.05 among each other). VO2 kinetics mean response time of both exercise intensities were significantly faster (p ≤ 0.05) in HF (Mod, 27.5 ± 5.5 s; Max, 32.6 ± 8.3 s) and IF (Mod, 25.0 ± 3.1 s; Max, 42.6 ± 10.4 s) when compared to LF (Mod, 35.7 ± 7.9 s; Max: 57.8 ± 17.8 s). We can conclude that VO2 kinetics is improved as the fitness level is increased from low to intermediate but not further improved as the aerobic fitness level increases from intermediate to high. Key pointsCurrently, it is reasonable to believe that the rate-limiting step of VO2 kinetics depends on exercise intensity.The well known physiological adaptations induced by endurance training are likely the most extreme means to overcome rate-limiting steps determining VO2 kinetics across exercise intensities.However, exercise adaptation leading individuals to the high-end of aerobic fitness level range (VO2max > 65 ml.kg.min-1) is not able to further improve VO2 kinetics during both, moderate and maximal intensity exercise.

  18. VO2 kinetics and metabolic contributions whilst swimming at 95, 100, and 105% of the velocity at VO2max.

    PubMed

    Sousa, Ana C; Vilas-Boas, João P; Fernandes, Ricardo J

    2014-01-01

    A bioenergetical analysis of swimming at intensities near competitive distances is inexistent. It was aimed to compare the transient VO2 kinetics responses and metabolic contributions whilst swimming at different velocities around VO2max. 12 trained male swimmers performed (i) an incremental protocol to determine the velocity at VO2max (vVO2max) and (ii) three square wave exercises from rest to 95, 100, and 105% of vVO2max. VO2 was directly measured using a telemetric portable gas analyser and its kinetics analysed through a double-exponential model. Metabolic contributions were assessed through the sum of three energy components. No differences were observed in the fast component response (τ1--15, 18, and 16 s, A1--36, 34, and 37 mL · kg(-1) · min (-1), and Gain--32, 29, and 30 mL · min (-1) at 95, 100, and 105% of the vVO2max, resp.) but A2 was higher in 95 and 100% compared to 105% intensity (480.76 ± 247.01, 452.18 ± 217.04, and 147.04 ± 60.40 mL · min (-1), resp.). The aerobic energy contribution increased with the time sustained (83 ± 5, 74 ± 6, and 59 ± 7% for 95, 100, and 105%, resp.). The adjustment of the cardiovascular and/or pulmonary systems that determine O2 delivery and diffusion to the exercising muscles did not change with changing intensity, with the exception of VO2 slow component kinetics metabolic profiles.

  19. Effect of CO on VO2 of carotid body and chemoreception with and without Ca2+.

    PubMed

    Lahiri, S; Buerk, D G; Osanai, S; Mokashi, A; Chugh, D K

    1997-09-10

    This study was done using high PCO (> 500 Torr at PO2 of 120 Torr) in the carotid body perfusate in vitro, and recording simultaneously the activity of the whole carotid sinus nerve (CSN) and VO2 of the carotid body. In the cascade of excitation of CSN by high PCO in the dark [light eliminated the excitation; S. Lahiri, News Physiol. Sci. 9 (1992) 161-165], Ca2+ effects occur at the level of neurosecretion after the level of oxygen consumption, according to the following scheme: CO-hypoxia-->VO2 decrease-->K+ conductance decrease-->cell depolarization-->cytosolic Ca2+ rise-->neurosecretion-->neural discharge. Thus, a part of the hypothesis was that [Ca2+] decrease, being a downstream event, may not affect VO2 of the carotid body. Also, to determine to what extent the intracellular calcium stores contribute to cystolic [Ca2+] and chemosensory discharge with high PCO, we tested the effect of interruption of perfusate flow with medium nominally free of [Ca2+] on CSN excitation and VO2 of the carotid body with and without high PCO. High PCO in the dark decreased carotid body VO2, independent of [Ca2+]o. CSN excitation was always enhanced by high PCO, and its sensitivity to perfusate flow interruption. Also, nominally Ca(2+)-free solution increased the latency and decreased the rate of rise and peak activity of CSN during interruption of perfusate flow, but CO augmented the responses. This reversal effect by CO suggests that Ca2+ is released from intracellular stores, because CO has no other way to excite the chemoreceptors than by acting on the intracellular stores.

  20. A novel inorganic precipitation-peptization method for VO2 sol and VO2 nanoparticles preparation: Synthesis, characterization and mechanism.

    PubMed

    Li, Yao; Jiang, Peng; Xiang, Wei; Ran, Fanyong; Cao, Wenbin

    2016-01-15

    In this paper, a simple, safe and cost-saving precipitation-peptization method was proposed to prepare VO2 sol by using inorganic VOSO4-NH3⋅H2O-H2O2 reactants system in air under room temperature. In this process, VOSO4 was firstly precipitated to form VO(OH)2, then monometallic species of VO(O2)(OH)(-) were formed through the coordination between VO(OH)2 and H2O2. The rearrangement of VO(O2)(OH)(-) in a nonplanar pattern and intermolecular condensation reactions result in multinuclear species. Finally, VO2 sol is prepared through the condensation reactions between the multinuclear species. After drying the obtained sol at 40°C, VO2 xerogel exhibiting monoclinic crystal structure with the space group of C2/m was prepared. The crystal structure of VO2 nanoparticles was transferred to monoclinic crystal structure with the space group of P21/c (VO2(M)) by annealing the xerogel at 550°C. Both XRD and TEM analysis indicated that the nanoparticles possess good crystallinity with crystallite size of 34.5nm as estimated by Scherrer's method. These results suggest that the VO2 sol has been prepared successfully through the proposed simple method. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Metal-VO2 hybrid grating structure for a terahertz active switchable linear polarizer.

    PubMed

    Shin, Jun-Hwan; Moon, Kiwon; Lee, Eui Su; Lee, Il-Min; Park, Kyung Hyun

    2015-08-07

    An active terahertz (THz) wave hybrid grating structure of Au/Ti metallic grating on VO2/Al2O3 (0001) was fabricated and evaluated. In our structure, it is shown that the metallic gratings on the VO2 layer strengthen the metallic characteristics to enhance the contrast of the metallic and dielectric phases of a VO2-based device. Especially, the metal grating-induced optical conductivity of the device is greatly enhanced, three times more than that of a metallic phase of bare VO2 films in the 0.1-2.0 THz spectral range. As an illustrative example, we fabricated an actively on/off switchable THz linear polarizer. The fabricated device has shown commercially comparable values in degree of polarization (DOP) and extinction ratio (ER). A high value of 0.89 in the modulation depth (MD) for the transmission field amplitude, superior to other THz wave modulators, is achieved. The experimental results show that the fabricated device can be highly useful in many applications, including active THz linear polarizers, THz wave modulators and variable THz attenuators.

  2. The tetragonal-like to rutile structural phase transition in epitaxial VO2/TiO2 (001) thick films

    NASA Astrophysics Data System (ADS)

    Qiu, Hongbo; Yang, Memgmeng; Dong, Yongqi; Xu, Han; Hong, Bin; Gu, Yueliang; Yang, Yuanjun; Zou, Chongwen; Luo, Zhenlin; Gao, Chen

    2015-11-01

    A controllable metal-insulator transition (MIT) of VO2 has been highly desired due to its huge potential applications in memory storage, smart windows or optical switching devices. Recently, interfacial strain engineering has been recognized as an effective approach to tuning the MIT of epitaxial VO2 films. However, the strain-involved structural evolution during the MIT process is still not clear, which prevents comprehensively understanding and utilizing interfacial strain engineering in VO2 films. In this work, we have systematically studied the epitaxial VO2 thick films grown on TiO2 (001) single crystal substrate and the structural transition at the boundary of MIT region. By using in situ temperature-dependent high-resolution x-ray diffractions, a tetragonal-like (‘T-like’) to ‘rutile’ structural phase transition is identified during the MIT process. The room-temperature crystal phase of epitaxial VO2/TiO2(001) thick film is clarified to be tetragonal-like, neither strained-rutile phase nor monoclinic phase. The calculated atomic structure of this T-like phase VO2 resembles that of the M1 phase VO2, which has been verified by their similar Raman spectra. More, the crystal lattices of the coexisted phases in the MIT region were revealed in detail. The current findings will not only show some clues on the MIT mechanism study from the structural point of view, but also favor the interface engineering assisted VO2-based devices and applications in the future.

  3. Supramaximal testing to confirm attainment of VO2max in sedentary men and women.

    PubMed

    Astorino, T A; White, A C; Dalleck, L C

    2009-04-01

    Supramaximal testing is widely used to verify VO2max attainment, yet its efficacy in sedentary subjects is unknown. The aim of the study was to test this hypothesis in men and women completing maximal cycle ergometry. Fifteen sedentary subjects (age=22.4+/-3.9 year) completed incremental exercise, and returned at least 24 h later to complete constant load exercise at 105% peak work rate (Wmax). Another group of nine sedentary men and women (age=21.8+/-5 year) completed supramaximal exercise at 115% Wmax 1-1.5 h after incremental exercise. During exercise, gas exchange data and heart rate (HR) were continuously obtained. VO2max was similar (p>0.05) between incremental and supramaximal exercise in subjects in the first (32.32+/-4.81 mL/kg/min vs. 31.80+/-5.35 mL/kg/min) and second subset (40.63+/-3.61 mL/kg/min vs. 41.66+/-5.55 mL/kg/min). Maximal HR was lower (p<0.05) with supramaximal exercise, yet respiratory exchange ratio was higher (p<0.05). Test-retest reliability (r=0.81-0.89, p<0.05) for VO2max was high during repeated bouts of supramaximal testing. Findings support use of this protocol to confirm VO2max attainment in healthy, sedentary men and women completing incremental cycle ergometry.

  4. Controlling the Temperature and Speed of the Phase Transition of VO2 Microcrystals

    DOE PAGES

    Yoon, Joonseok; Kim, Howon; Chen, Xian; ...

    2015-12-29

    Here, we investigated the control of two important parameters of vanadium dioxide (VO2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition by usingmore » the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less

  5. Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, Benqin; Tao, Haizheng; Zhao, Xiujian

    2016-03-01

    As a well-developed industrial fabricating method, magnetron sputtering technique has its distinct advantages for the large-scale production. In order to investigate the effect of buffer layer on the formation and thermochromic performances of VO2 films, using RF magnetron sputtering method, we fabricated three kinds of buffer layers SiO2, TiO2 and SnO2 on soda lime float-glass. Then according to the reactive DC magnetron sputtering method, VO2 films were deposited. Due to the restriction of heat treatment temperature when using soda lime float-glass as substrates, dense rutile phase TiO2 cannot be formed, leading to the formation of vanadium oxide compounds containing Na ions. When using SnO2 as buffer layer, we found that relatively high pure VO2 can be deposited more easily. In addition, compared with the effect of SiO2 buffer layer, we observed an enhanced visible transparency, a decreased infrared emissivity, which should be mainly originated from the modified morphology and/or the hetero-structured VO2/SnO2 interface.

  6. Pulsed laser-deposited VO2 thin films on Pt layers

    NASA Astrophysics Data System (ADS)

    Sakai, Joe; Zaghrioui, Mustapha; Ta Phuoc, Vinh; Roger, Sylvain; Autret-Lambert, Cécile; Okimura, Kunio

    2013-03-01

    VO2 films were deposited on Pt (111)/TiO2/SiO2/Si (001) substrates by means of a pulsed laser deposition technique. An x-ray diffraction peak at 2θ = 39.9° was deconvoluted into two pseudo-Voigt profiles of Pt (111) and VOx-originated components. The VOx diffraction peak was more obvious in a VOx/Pt (111)/Al2O3 (0001) sample, having a narrower width compared with a VO2/Al2O3 (0001) sample. Temperature-controlled Raman spectroscopy for the VOx/Pt/TiO2/SiO2/Si sample has revealed the monoclinic VO2 phase at low temperature and the structural phase transition at about 72 °C in a heating process. The electronic conductive nature at the high temperature phase was confirmed by near normal incidence infrared reflectivity measurements. Out-of-plane current-voltage characteristics showed an electric field-induced resistance switching at a voltage as low as 0.2 V for a 50 nm-thick film. A survey of present and previous results suggests an experimental law that the transition voltage of VO2 is proportional to the square root of the electrodes distance.

  7. Electrically controllable terahertz square-loop metamaterial based on VO2 thin film

    NASA Astrophysics Data System (ADS)

    Shin, Jun-Hwan; Park, Kyung Hyun; Ryu, Han-Cheol

    2016-05-01

    An electrically controllable square-loop metamaterial based on vanadium dioxide (VO2) thin film was proposed in the terahertz frequency regime. The square-loop shaped metamaterial was adopted to perform roles not only as a resonator but also as a micro-heater for the electrical control of the VO2. A dual-resonant square-loop structure was designed to realize band-pass characteristics in the desired frequency band. The measured Q-factors of the basic and scaled-down metamaterials fabricated on VO2 thin films were 2.22 and 1.61 at the center frequencies of 0.44 and 1.14 THz in the passbands, respectively. The transmittances of the proposed metamaterial were successfully controlled by applying a bias voltage without an external heater. The measured transmittance on-off ratios of the metamaterials were over 40 at the center frequencies in the passbands. In the future, electrically controllable terahertz metamaterial based on VO2 metamaterial could be employed as high-performance active filters or sensors.

  8. N-doped graphene-VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery.

    PubMed

    Nethravathi, C; Rajamathi, Catherine R; Rajamathi, Michael; Gautam, Ujjal K; Wang, Xi; Golberg, Dmitri; Bando, Yoshio

    2013-04-10

    Recently, we have shown that the graphene-VO2(B) nanotube hybrid is a promising lithium ion battery cathode material (Nethravathi et al. Carbon, 2012, 50, 4839-4846). Though the observed capacity of this material was quite satisfactory, the rate capability was not. To improve the rate capability we wanted to prepare a graphene-VO2(B) hybrid in which the VO2(B) would be built on 2D nanosheets that would enable better electrode-electrolyte contact. Such a material, a N-doped graphene-VO2(B) nanosheet-built 3D flower hybrid, is fabricated by a single-step hydrothermal reaction within a mixture of ammonium vanadate and colloidal dispersion of graphite oxide. The 3D VO2(B) flowers which are uniformly distributed on N-doped graphene are composed of ultrathin 2D nanosheets. When used in lithium ion batteries, this material exhibits a large capacity, high rate capability, and excellent cycling stability. The enhanced performance results from its unique features: excellent electronic conductivity associated with the N-doped graphene, short transportation length for lithium ions related to ultrathin nanosheets, and improved charge transfer due to the anchoring of the VO2(B) flowers to N-doped graphene.

  9. Shape-controlled synthesis and influence of W doping and oxygen nonstoichiometry on the phase transition of VO2

    PubMed Central

    Chen, Ru; Miao, Lei; Liu, Chengyan; Zhou, Jianhua; Cheng, Haoliang; Asaka, Toru; Iwamoto, Yuji; Tanemura, Sakae

    2015-01-01

    Monoclinic VO2(M) in nanostructure is a prototype material for interpreting correlation effects in solids with fully reversible phase transition and for the advanced applications to smart devices. Here, we report a facile one-step hydrothermal method for the controlled growth of single crystalline VO2(M/R) nanorods. Through tuning the hydrothermal temperature, duration of the hydrothermal time and W-doped level, single crystalline VO2(M/R) nanorods with controlled aspect ratio can be synthesized in large quantities, and the crucial parameter for the shape-controlled synthesis is the W-doped content. The dopant greatly promotes the preferential growth of (110) to form pure phase VO2(R) nanorods with high aspect ratio for the W-doped level = 2.0 at% sample. The shape-controlled process of VO2(M/R) nanorods upon W-doping are systematically studied. Moreover, the phase transition temperature (Tc) of VO2 depending on oxygen nonstoichiometry is investigated in detail. PMID:26373612

  10. Difference in Physiological Components of VO2 Max During Incremental and Constant Exercise Protocols for the Cardiopulmonary Exercise Test.

    PubMed

    Yamamoto, Junshiro; Harada, Tetsuya; Okada, Akinori; Maemura, Yuko; Yamamoto, Misaki; Tabira, Kazuyuki

    2014-08-01

    [Purpose] VO2 is expressed as the product of cardiac output and O2 extraction by the Fick equation. During the incremental exercise test and constant high-intensity exercise test, VO2 results in the attainment of maximal O2 uptake at exhaustion. However, the differences in the physiological components, cardiac output and muscle O2 extraction, have not been fully elucidated. We tested the hypothesis that constant exercise would result in higher O2 extraction than incremental exercise at exhaustion. [Subjects] Twenty-five subjects performed incremental exercise and constant exercise at 80% of their peak work rate. [Methods] Ventilatory, cardiovascular, and muscle oxygenation responses were measured using a gas analyzer, Finapres, and near-infrared spectroscopy, respectively. [Results] VO2 was not significantly different between the incremental exercise and constant exercise. However, cardiac output and muscle O2 saturation were significantly lower for the constant exercise than the incremental exercise at the end of exercise. [Conclusion] These findings indicate that if both tests produce a similar VO2 value, the VO2 in incremental exercise would have a higher ratio of cardiac output than constant exercise, and VO2 in constant exercise would have a higher ratio of O2 extraction than incremental exercise at the end of exercise.

  11. The Effect of Habitual Smoking on VO2max

    NASA Technical Reports Server (NTRS)

    Wier, Larry T.; Suminski, Richard R.; Poston, Walker S.; Randles, Anthony M.; Arenare, Brian; Jackson, Andrew S.

    2008-01-01

    VO2max is associated with many factors, including age, gender, physical activity, and body composition. It is popularly believed that habitual smoking lowers aerobic fitness. PURPOSE: to determine the effect of habitual smoking on VO2max after controlling for age, gender, activity and BMI. METHODS: 2374 men and 375 women employed at the NASA/Johnson Space Center were measured for VO2max by indirect calorimetry (RER>=1.1), activity by the 11 point (0-10) NASA Physical Activity Status Scale (PASS), BMI and smoking pack-yrs (packs day*y of smoking). Age was recorded in years and gender was coded as M=1, W=0. Pack.y was made a categorical variable consisting of four levels as follows: Never Smoked (0), Light (1-10), Regular (11-20), Heavy (>20). Group differences were verified by ANOVA. A General Linear Models (GLM) was used to develop two models to examine the relationship of smoking behavior on VO2max. GLM #1(without smoking) determined the combined effects of age, gender, PASS and BMI on VO2max. GLM #2 (with smoking) determined the added effects of smoking (pack.y groupings) on VO2max after controlling for age, gender, PASS and BMI. Constant errors (CE) were calculated to compare the accuracy of the two models for estimating the VO2max of the smoking subgroups. RESULTS: ANOVA affirmed the mean VO2max of each pack.y grouping decreased significantly (p<0.01) as the level of smoking exposure increased. GLM #1 showed that age, gender, PASS and BMI were independently related with VO2max (R2 = 0.642, SEE = 4.90, p<0.001). The added pack.y variables in GLM #2 were statistically significant (R2 change = 0.7%, p<0.01). Post hoc analysis showed that compared to Never Smoked, the effects on VO2max from Light and Regular smoking habits were -0.83 and -0.85 ml.kg- 1.min-1 respectively (p<0.05). The effect of Heavy smoking on VO2max was -2.56 ml.kg- 1.min-1 (p<0.001). The CE s of each smoking group in GLM #2 was smaller than the CE s of the smoking group counterparts in GLM #1

  12. Time at VO2max during intermittent treadmill running: test protocol dependent or methodological artefact?

    PubMed

    Midgley, A W; McNaughton, L R; Carroll, S

    2007-11-01

    Effects of methodological differences on the determination of time at VO (2max) (t (VO2max)) during intermittent treadmill running were investigated. Subjects performed three incremental tests to volitional exhaustion: a continuous protocol with 1-min stages (Cont-INC ([1-min])), and two discontinuous protocols of 2-min (Dis-INC ([2-min])) and 3-min (Dis-INC ([3-min])) stage durations. For each test, VO (2max) and the running velocity associated with V.O (2max) (vVO (2max)) were determined. On a fourth visit, subjects performed an intermittent test with 30-s work and relief intervals run at 105 % and 60 %, respectively, of the vV. (2max) determined during Cont-INC ((1-min)). The t (VO2max) during the intermittent test was determined using three different criteria: VO (2) data points > or = 100 % VO (2max) determined in Cont-INC ((1-min)) (t (VO2max[100 %])), > or = 95 % VO (2max) (t (VO2max[95 %])) and > or = VO (2max) minus 2.1 ml . kg (-1) . min (-1) (t (VO2max[- 2.1])). The V.O (2max) means (SD) for Cont-INC ((1-min)), Dis-INC ((2-min)) and Dis-INC ((3-min)) were 4093 (538), 4096 (516), and 3980 (488) mL . min (-1), respectively. The t (VO2max) means (SD) were: t (VO2max(100 %)) 163 (227) s, t (VO2max(95 %)) 418 (439) s, and t (VO2max(- 2.1)) 358 (395) s. All differences in t (V.O2max) were significantly different (p < 0.05). Differences in t (VO2max) due to using V.O (2max) values derived from using different V.O (2) time-averages were significantly different (p < 0.05). Methodological differences should be considered during interpretation of previous studies.

  13. Reproducibility of an incremental treadmill VO(2)max test with gas exchange analysis for runners.

    PubMed

    Lourenço, Thiago Fernando; Martins, Luiz Eduardo Barreto; Tessutti, Lucas Samuel; Brenzikofer, Rene; Macedo, Denise Vaz

    2011-07-01

    The evaluation of performance through the application of adequate physical tests during a sportive season may be a useful tool to evaluate training adaptations and determine training intensities. For runners, treadmill incremental VO(2)max tests with gas exchange analysis have been widely used to determine maximal and submaximal parameters such as the ventilatory threshold (VT) and respiratory compensation point (RCP) running speed. However, these tests often differ in methodological characteristics (e.g., stage duration, grade, and speed increment size), and few studies have examined the reproducibility of their protocol. Therefore, the aim of this study was to verify the reproducibility and determine the running speeds related to maximal and submaximal parameters of a specific incremental maximum effort treadmill protocol for amateur runners. Eleven amateur male runners underwent 4 repetitions of the protocol (25-second stages, each increasing by 0.3 km·h in running speed while the treadmill grade remained fixed at 1%) after 3 minutes of warm-up at 8-8.5 km·h. We found no significant differences in any of the analyzed parameters, including VT, RCP, and VO(2)max during the 4 repetitions (p > 0.05). Further, the results related to running speed showed high within-subject reproducibility (coefficient of variation < 5.2%). The typical error (TE) values for running speed related to VT (TE = 0.62 km·h), RCP (TE = 0.35 km·h), and VO(2)max (TE = 0.43 km·h) indicated high sensitivity and reproducibility of this protocol. We conclude that this VO(2)max protocol facilitates a clear determination of the running speeds related to VT, RCP, and VO(2)max and has the potential to enable the evaluation of small training effects on maximal and submaximal parameters.

  14. Accuracy of peak VO2 assessments in career firefighters

    PubMed Central

    2011-01-01

    Background Sudden cardiac death is the leading cause of on-duty death in United States firefighters. Accurately assessing cardiopulmonary capacity is critical to preventing, or reducing, cardiovascular events in this population. Methods A total of 83 male firefighters performed Wellness-Fitness Initiative (WFI) maximal exercise treadmill tests and direct peak VO2 assessments to volitional fatigue. Of the 83, 63 completed WFI sub-maximal exercise treadmill tests for comparison to directly measured peak VO2 and historical estimations. Results Maximal heart rates were overestimated by the traditional 220-age equation by about 5 beats per minute (p < .001). Peak VO2 was overestimated by the WFI maximal exercise treadmill and the historical WFI sub-maximal estimation by ~ 1MET and ~ 2 METs, respectively (p < 0.001). The revised 2008 WFI sub-maximal treadmill estimation was found to accurately estimate peak VO2 when compared to directly measured peak VO2. Conclusion Accurate assessment of cardiopulmonary capacity is critical in determining appropriate duty assignments, and identification of potential cardiovascular problems, for firefighters. Estimation of cardiopulmonary fitness improves using the revised 2008 WFI sub-maximal equation. PMID:21943154

  15. Submaximal treadmill test predicts VO2max in overweight children.

    PubMed

    Nemeth, Blaise A; Carrel, Aaron L; Eickhoff, Jens; Clark, R Randall; Peterson, Susan E; Allen, David B

    2009-05-01

    To demonstrate the ability of a submaximal test to predict VO(2max) in overweight children. A total of 130 children, 11 to 14 years old, with body mass index >85 percentile for age and sex performed a submaximal walking test. VO(2max) was measured by using open circuit spirometry during a graded exercise test to volitional fatigue. An equation to predict VO(2max) was modeled by using the variables of sex, weight (kg), height (cm), heart rate (HR) after 4 minutes during the submaximal test (4minHR), HR difference (4minHR - resting HR), and submaximal treadmill speed (miles per hour [mph]) in 75% of the subjects. Validation was performed by using the remaining 25% of subjects. A total of 113 subjects achieved a maximal effort and was used in the statistical analysis. Development and validation groups were similar in all aspects. On validation, the mean square error was 241.06 with the predicted VO(2max) within 10% of the observed value in 67% of subjects. VO(2max) was accurately predicted in this cohort of overweight children by using a submaximal, treadmill-based testing protocol.

  16. Coherently Coupled ZnO and VO2 Interface studied by Photoluminescence and electrical transport across a phase transition

    NASA Astrophysics Data System (ADS)

    Srivastava, Amar; Saha, S.; Annadi, A.; Zhao, Y. L.; Gopinadhan, K.; Wang, X.; Naomi, N.; Liu, Z. Q.; Dhar, S.; Herng, T. S.; Nina, Bao; Ariando, -; Ding, Jun; Venkatesan, T.

    2012-02-01

    In this work we report a study of a coherently coupled interface consisting of a ZnO layer grown on top of an oriented VO2 layer on sapphire by photoluminescence and electrical transport measurements across the VO2 metal insulator phase transition (MIT). The photoluminescence of the ZnO layer showed a broad hysteresis induced by the phase transition of VO2 while the width of the electrical hysteresis was narrow and unaffected by the over layer. The enhanced width of the PL hysteresis was due to the formation of defects during the MIT as evidenced by a broad hysteresis in the opposite direction to that of the band edge PL in the defect luminescense. Unlike VO2 the defects in ZnO did not fully recover across the phase transition. From the defect luminescence data, oxygen interstitials were found to be the predominant defects in ZnO mediated by the strain from the VO2 phase transition. Such coherently coupled interfaces could be of use in characterizing the stability of a variety of interfaces and also for novel device application.

  17. Phase transition in bulk single crystals and thin films of VO2 by nanoscale infrared spectroscopy and imaging

    DOE PAGES

    Liu, Mengkun; Sternbach, Aaron J.; Wagner, Martin; ...

    2015-06-29

    We have systematically studied a variety of vanadium dioxide (VO2) crystalline forms, including bulk single crystals and oriented thin films, using infrared (IR) near-field spectroscopic imaging techniques. By measuring the IR spectroscopic responses of electrons and phonons in VO2 with sub-grain-size spatial resolution (~20nm), we show that epitaxial strain in VO2 thin films not only triggers spontaneous local phase separations, but leads to intermediate electronic and lattice states that are intrinsically different from those found in bulk. Generalized rules of strain- and symmetry-dependent mesoscopic phase inhomogeneity are also discussed. Furthermore, these results set the stage for a comprehensive understanding ofmore » complex energy landscapes that may not be readily determined by macroscopic approaches.« less

  18. Metal-semiconductor phase transition of order arrays of VO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Lopez, Rene; Suh, Jae; Feldman, Leonard; Haglund, Richard

    2004-03-01

    The study of solid-state phase transitions at nanometer length scales provides new insights into the effects of material size on the mechanisms of structural transformations. Such research also opens the door to new applications, either because materials properties are modified as a function of particle size, or because the nanoparticles interact with a surrounding matrix material, or with each other. In this paper, we describe the formation of vanadium dioxide nanoparticles in silicon substrates by pulsed laser deposition of ion beam lithographically selected sites and thermal processing. We observe the collective behavior of 50 nm diameter VO2 oblate nanoparticles, 10 nm high, and ordered in square arrays with arbitrary lattice constant. The metal-semiconductor-transition of the VO2 precipitates shows different features in each lattice spacing substrate. The materials are characterized by electron microscopy, x-ray diffraction, Rutherford backscattering. The features of the phase transition are studied via infrared optical spectroscopy. Of particular interest are the enhanced scattering and the surface plasmon resonance when the particles reach the metallic state. This resonance amplifies the optical contrast in the range of near-infrared optical communication wavelengths and it is altered by the particle-particle coupling as in the case of noble metals. In addition the VO2 nanoparticles exhibit sharp transitions with up to 50 K of hysteresis, one of the largest values ever reported for this transition. The optical properties of the VO2 nanoarrays are correlated with the size of the precipitates and their inter-particle distance. Nonlinear and ultra fast optical measurements have shown that the transition is the fastest known solid-solid transformation. The VO2 nanoparticles show the same bulk property, transforming in times shorter than 150 fs. This makes them remarkable candidates for ultrafast optical and electronic switching applications.

  19. Earbud-Based Sensor for the Assessment of Energy Expenditure, Heart Rate, and VO2max

    PubMed Central

    LeBoeuf, Steven F.; Aumer, Michael E.; Kraus, William E.; Johnson, Johanna L.; Duscha, Brian

    2014-01-01

    Introduction/Purpose The goal of this program was to determine the feasibility of a novel noninvasive, highly miniaturized optomechanical earbud sensor for accurately estimating total energy expenditure (TEE) and maximum oxygen consumption (VO2max). The optomechanical sensor module, small enough to fit inside commercial audio earbuds, was previously developed to provide a seamless way to measure blood flow information during daily life activities. The sensor module was configured to continuously measure physiological information via photoplethysmography (PPG) and physical activity information via accelerometry. This information was digitized and sent to a microprocessor where digital signal processing (DSP) algorithms extract physiological metrics in real-time. These metrics were streamed wirelessly from the earbud to a computer. Methods In this study, 23 subjects of multiple physical habitus were divided into a training group of 14 subjects and a validation group of 9 subjects. Each subject underwent the same exercise measurement protocol consisting of treadmill-based cardiopulmonary exercise (CPX) testing to reach VO2max. Benchmark sensors included a 12-lead electrocardiography (ECG) sensor for measuring heart rate, a calibrated treadmill for measuring distance and speed, and a gas-exchange analysis instrument for measuring TEE and VO2max. The earbud sensor was the device under test (DUT). Benchmark and DUT data collected from the 14-person training dataset study were integrated into a preconceived statistical model for correlating benchmark data with earbud sensor data. Coefficients were optimized, and the optimized model was validated in the 9-person validation dataset. Results It was observed that the earbud sensor estimated TEE and VO2max with mean ± SD percent estimation errors of −0.7 ± 7.4% and −3.2 ± 7.3% respectively. Conclusion The earbud sensor can accurately estimate TEE and VO2max during CPX testing. PMID:24743110

  20. Earbud-based sensor for the assessment of energy expenditure, HR, and VO2max.

    PubMed

    Leboeuf, Steven Francis; Aumer, Michael E; Kraus, William E; Johnson, Johanna L; Duscha, Brian

    2014-01-01

    The goal of this program was to determine the feasibility of a novel noninvasive, highly miniaturized optomechanical earbud sensor for accurately estimating total energy expenditure (TEE) and maximum oxygen consumption (VO2max). The optomechanical sensor module, small enough to fit inside commercial audio earbuds, was previously developed to provide a seamless way to measure blood flow information during daily life activities. The sensor module was configured to continuously measure physiological information via photoplethysmography and physical activity information via accelerometry. This information was digitized and sent to a microprocessor where digital signal-processing algorithms extract physiological metrics in real time. These metrics were streamed wirelessly from the earbud to a computer. In this study, 23 subjects of multiple physical habitus were divided into a training group of 14 subjects and a validation group of 9 subjects. Each subject underwent the same exercise measurement protocol consisting of treadmill-based cardiopulmonary exercise testing to reach VO2max. Benchmark sensors included a 12-lead ECG sensor for measuring HR, a calibrated treadmill for measuring distance and speed, and a gas-exchange analysis instrument for measuring TEE and VO2max. The earbud sensor was the device under test. Benchmark and device under test data collected from the 14-person training data set study were integrated into a preconceived statistical model for correlating benchmark data with earbud sensor data. Coefficients were optimized, and the optimized model was validated in the 9-person validation data set. It was observed that the earbud sensor estimated TEE and VO2max with mean ± SD percent estimation errors of -0.7 ± 7.4% and -3.2 ± 7.3%, respectively. The earbud sensor can accurately estimate TEE and VO2max during cardiopulmonary exercise testing.

  1. Group training in adolescent runners: influence on VO2max and 5-km race performance.

    PubMed

    Loprinzi, Paul D; Cardinal, Bradley J; Karp, Jason R; Brodowicz, Gary R

    2011-10-01

    The aims of this study were to (a) examine the interrelationships between training intensity, VO2max, and race performance in adolescent crosscountry runners and (b) determine if adolescent runners participating in a group crosscountry training program differ in the amount of training time at various intensities. In this study, 7 adolescent runners performed a laboratory-based VO2max test before and after a 9-week high-school crosscountry season. Heart rate (HR) and ventilatory threshold (VT) were used to identify 3 training zones for each runner based on the HR at ventilator threshold (HR(VT)): zone 1: >15 b·min(-1) below HR(VT); zone 2: between zone 1 and HR(VT); zone 3: >HR(VT). During each training session throughout the season, HR was measured to quantify the amount of training time in each of these 3 intensity zones. Results showed that the time in each of the 3 zones was not significantly associated with 5-km race performance. Zone 3 training time was positively associated with postseason VO2max (r = 0.73, p = 0.06); VO2max was significantly inversely associated with 5-km race performance (r = -0.77, p = 0.04). Each week, the amount of training time at, above, and below the VT was significantly different among the participants even though the training prescription for the group was standardized. The results suggest that, among adolescent crosscountry runners, training above the VT may be important in increasing VO2max and ultimately, race performance. Given the between-participant differences in the amount of training time in each HR zone, coaches should apply individual, rather than group, training programs.

  2. Adaptation of the growing lung to increased VO2. I. IDPN as inducer of hyperactivity.

    PubMed

    Burri, P H; Gehr, P; Müller, K; Weibel, E R

    1976-10-01

    This paper is the first part of a study aiming to further analyse the hypothesis that in growing animals an increased VO2 due to a high physical activity leads to a quantitative adaptation of the gas exchange apparatus. Trying to avoid the tedious treadmill exercises we tested the applicability of the drug IDPN (imino-beta,beta'-dipropionitrile) as an inducer of increased VO2. Three intraperitoneal injections of IDPN permanently transform normal white mice into 'waltzing mice'. In our experiments ten male mice were injected with IDPN at the age of 20, 21 and 23 days. A control group was simultaneously injected with saline. The typical 'IDPN' hyperkinetic syndrome' appeared within five days from the first injection. The treated mice lost weight and grew at a slower rate than the controls. Their physical activity, as measured by Animex activity meters, was about twice that of the controls and was accompanied by a 50% increase in specific VO2 (VO2/body weight). At the age of about 4 months all animals were killed, their lungs fixed by intratracheal instillation of glutaraldehyde for a complete morphometric analysis. The body weights and the weights of heart, liver, kidneys, viscera, skin and carcass as well as the skin surface area were determined. IDPN mice were significantly lighter than the controls (-16%). All the other parameters cited above were reduced in about the same proportions, so that, when related to body weight, no significant changes could be detected. Specific lung volumes (VL/body weight) of IDPN mice were however up by 23%. These findings confirm that IDPN treatment represents a suitable way to increase VO2 in mice and may therefore allow to avoid more cumbersome methods of enforced exercise. The complete morphometric analysis will be published in a following paper.

  3. Photoluminescence of monolayer transition metal dichalcogenides integrated with VO2

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chuan; DeLello, Kursti; Zhang, Hai-Tian; Zhang, Kehao; Lin, Zhong; Terrones, Mauricio; Engel-Herbert, Roman; Robinson, Joshua A.

    2016-12-01

    Integrating a phase transition material with two-dimensional semiconductors can provide a route towards tunable opto-electronic metamaterials. Here, we integrate monolayer transition metal dichalcogenides with vanadium dioxide (VO2) thin films grown via molecular beam epitaxy to form a 2D/3D heterostructure. Vanadium dioxide undergoes an insulator-to-metal transition at 60-70 °C, which changes the band alignment between MoS2 and VO2 from a semiconductor-insulator junction to a semiconductor-metal junction. By switching VO2 between insulating and metallic phases, the modulation of photoluminescence emission in the 2D semiconductors was observed. This study demonstrates the feasibility to combine TMDs and functional oxides to create unconventional hybrid optoelectronic properties derived from 2D semiconductors that are linked to functional properties of oxides through proximity coupling.

  4. Manipulation of avalanche characteristics in nanoscaled VO2 devices

    NASA Astrophysics Data System (ADS)

    Wang, Siming; West, Kevin G.; Schuller, Ivan K.

    2011-03-01

    The temperature driven metal insulator transition (MIT) in nanoscaled VO2 devices occurs through a series of resistance jumps ranging over two decades in magnitude. A power law distribution of the jump sizes, demonstrates that the transition is caused by avalanches across the percolation transition. We investigate the effect of a DC write current on the intrinsic behavior of the MIT transition in nanoscaled VO2 devices. We find an increase in the maximum resistance jump size by as much as a factor of 10x after application of a DC write current at room temperature. Interestingly, we find no significant changes in the exponent of the power law distribution as a function of an applied DC write current. The observations suggest that the DC current changes the intrinsic properties of the VO2 thin film and may be related to spatial confinement which leads to an increase in the maximum resistance jump size. Work supported by US-DOE.

  5. Dynamics of photothermally driven VO2-coated microcantilevers

    NASA Astrophysics Data System (ADS)

    Cabrera, Rafmag; Merced, Emmanuelle; Sepúlveda, Nelson; Fernández, Félix E.

    2011-11-01

    The dynamic response of VO2-coated silicon microcantilevers thermally driven over the film's insulator-to-metal transition was studied using laser light pulses directly incident on the cantilevers. The measured photothermal response revealed very high curvature changes of approximately 2500 m-1 up to pulse frequencies greater than 100 Hz and readily observable vibrations up to frequencies of a few kHz with no amplitude degradation after tens of thousands of pulses. Maximum tip amplitudes for 300-μm-long, 1-μm-thick cantilevers used in these experiments were nearly 120 μm and correspondingly less for 2-μm-thick cantilevers. The main mechanism limiting oscillation amplitude was found to be heat transport response during heating and cooling, which depends mainly on thermal conduction through the cantilever itself to the massive anchor and chip body, which acted as a heat sink at room temperature. For the laser-driven oscillations studied, damping by the surrounding air is unimportant in the range of frequencies probed. Large-curvature response is expected to extend to higher pulse frequencies for cantilevers with smaller dimensions.

  6. Accuracy of the VO2peak prediction equation in firefighters

    PubMed Central

    2014-01-01

    Background A leading contributing factor to firefighter injury and death is lack of fitness. Therefore, the Fire Service Joint Labor Management Wellness-Fitness Initiative (WFI) was established that includes a focus on providing fitness assessments to all fire service personnel. The current fitness assessment includes a submaximal exercise test protocol and associated prediction equation to predict individual VO2peak as a measure of fitness. There is limited information on the accuracy, precision, and sources of error of this prediction equation. This study replicated previous research by validating the accuracy of the WFI VO2peak prediction equation for a group of firefighters and further examining potential sources of error for an individual firefighters’ assessment. Methods The sample consisted of 22 firefighters who completed a maximal exercise test protocol similar to the WFI submaximal protocol, but the test was terminated when firefighters reached a maximal level of exertion (i.e., measured VO2peak). We then calculated the predicted VO2peak based on the WFI prediction equation along with individual firefighters’ body mass index (BMI) and 85% of maximum heart rate. The data were analyzed using paired samples t-tests in SPSS v. 21.0. Results The difference between predicted and measured VO2peak was -0.77 ± 8.35 mL•kg-1•min-1. However, there was a weak, statistically non-significant association between measured VO2peak and predicted VO2peak (R2 = 0.09, F(1,21) = 2.05, p = 0.17). The intraclass correlation coefficient (ICC = 0.215, p > 0.05) and Pearson (r = 0.31, p = 0.17) and Spearman (ρ = 0.28, p = 0.21) correlation coefficients were small. The standard error of the estimate (SEE) was 8.5 mL•kg-1•min-1. Further, both age and baseline fitness level were associated with increased inaccuracy of the prediction equation. Conclusions We provide data on the inaccuracy and sources of error for the WFI VO2peak

  7. Optical diffraction in ordered VO2 nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Lopez, Rene; Feldman, Leonard; Haglund, Richard

    2006-03-01

    The potential of oxide electronic materials as multifunctional building blocks is one of the driving concepts of the field. In this presentation, we show how nanostructured particle arrays with long-range order can be used to modulate an optical response through exploiting the metal-insulator transition of vanadium dioxide. Arrays of VO2 nanoparticles with long-range order were fabricated by pulsed laser deposition in an arbitrary pattern defined by focused ion-beam lithography. The interaction of light with the nanoparticles is controlled by the nanoparticle size, spacing and geometrical arrangement and by switching between the metallic and semiconducting phases of VO2. In addition to the near-infrared surface plasmon response observed in previous VO2 studies, the VO2 nanoparticle arrays exhibit size-dependent optical resonances in the visible region that likewise show an enhanced optical contrast between the semiconducting and metallic phases. The collective optical response as a function of temperature gives rise to an enhanced scattering state during the evolving phase transition, while the incoherent coupling between the nanoparticles produces an order-disorder-order transition.

  8. A minimal model for the structural energetics of VO2

    NASA Astrophysics Data System (ADS)

    Kim, Chanul; Marianetti, Chris; The Marianetti Group Team

    Resolving the structural, magnetic, and electronic structure of VO2 from the first-principles of quantum mechanics is still a forefront problem despite decades of attention. Hybrid functionals have been shown to qualitatively ruin the structural energetics. While density functional theory (DFT) combined with cluster extensions of dynamical mean-field theory (DMFT) have demonstrated promising results in terms of the electronic properties, structural phase stability has not yet been addressed. In order to capture the basic physics of the structural transition, we propose a minimal model of VO2 based on the one dimensional Peierls-Hubbard model and parameterize this based on DFT calculations of VO2. The total energy versus dimerization in the minimal mode is then solved numerically exactly using density matrix renormalization group (DMRG) and compared to the Hartree-Fock solution. We demonstrate that the Hartree-Fock solution exhibits the same pathologies as DFT+U, and spin density functional theory for that matter, while the DMRG solution is consistent with experimental observation. Our results demonstrate the critical role of non-locality in the total energy, and this will need to be accounted for to obtain a complete description of VO2 from first-principles. The authors acknowledge support from FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  9. Validity of 3 protocols for verifying VO2 max.

    PubMed

    Kirkeberg, J M; Dalleck, L C; Kamphoff, C S; Pettitt, R W

    2011-04-01

    The verification bout has emerged as a technique for confirming 'true' VO2 max; however, validity during a single visit is unknown. We evaluated 3 different GXT durations with severe intensity verification bouts. On 3 separate days, in counterbalanced order, 12 recreational-trained men completed short (9±1 min), middle (11±1 min), and long (13±2 min) duration GXTs followed by exhaustive, sine wave verification bouts during the same visit. Intensities for verification were set at speeds equivalent to 2-stages minus end-GXT speed. No differences (p<0.05) in VO2 max (mL/kg/min) were observed between short (49.1), middle (48.2), and long (48.8) protocols. In addition, no differences in verification bout duration occurred between protocols (3±1 min). Validity of VO2 max was strongest for the middle duration protocol (ICC α=0.97; typical error=1 mL/kg/min; CV=2%). A small, but significantly higher HR (max) (∼1-2 bpm) was observed for the long protocol. Maximum respiratory exchange ratios were inconsistent (ICC α ranged 0.58-0.68). Our findings indicate GXT-verification bout testing during a single visit is a valid means of measuring 'true' VO2 max. The 10 min target for GXT duration was the optimum.

  10. Matching of Male and Female Subjects Using VO2 Max.

    ERIC Educational Resources Information Center

    Cureton, Kirk J.

    1981-01-01

    The increasing use of various VO2 max expressions as test measures is a problem because the magnitude of sex difference varies considerably with each expression. A valid match of male and female test subjects would consider physical activity history and the amount of endurance exercise done in the previous year. (Author/FG)

  11. VO2 prediction and cardiorespiratory responses during underwater treadmill exercise.

    PubMed

    Greene, Nicholas P; Greene, Elizabeth S; Carbuhn, Aaron F; Green, John S; Crouse, Stephen F

    2011-06-01

    We compared cardiorespiratory responses to exercise on an underwater treadmill (UTM) and land treadmill (LTM) and derived an equation to estimate oxygen consumption (VO2) during UTM exercise. Fifty-five men and women completed one LTM and five UTM exercise sessions on separate days. The UTM sessions consisted of chest-deep immersion, with 0, 25, 50, 75, and 100% water-jet resistance. All session treadmill velocities increased every 3 min from 53.6 to 187.8 m x min(-1). Cardiorespiratory responses were similar between LTM and UTM when jet resistance for UTM was 50%. Using multiple regression analysis, weight-relative VO2 could be estimated as: VO2 (mLO2 c kg(-1) x min(-1)) = 0.19248 x height (cm) + 0.17422 x jet resistance (% max) + 0.14092 x velocity (m x min(-1)) -0.12794 x weight (kg)-27.82849, R2 = .82. Our data indicate that similar LTM and UTM cardiorespiratory responses are achievable, and we provide a reasonable estimate of UTM VO2.

  12. Effects of three warm-up regimens of equal distance on VO2 kinetics during supramaximal exercise in Thoroughbred horses.

    PubMed

    Mukai, K; Hiraga, A; Takahashi, T; Ohmura, H; Jones, J H

    2010-11-01

    Several studies have indicated that even low-intensity warm-up increases O(2) transport kinetics and that high-intensity warm-up may not be needed in horses. However, conventional warm-up exercise for Thoroughbred races is more intense than those utilised in previous studies of equine warm-up responses. To test the hypothesis that warm-up exercise at different intensities alters the kinetics and total contribution of aerobic power to total metabolic power in subsequent supramaximal (sprint) exercise in Thoroughbred horses. Nine well-trained Thoroughbreds ran until fatigue at 115% of maximal oxygen consumption (VO2max) 10 min after warming-up under each of 3 protocols of equal running distance: 400 s at 30% VO2max (LoWU), 200 s at 60% VO2max (MoWU) and 120 s at 100% VO2max (HiWU). Variables measured during exercise were rates of O(2) and CO(2) consumption/production (VO2,VO2), respiratory exchange ratio (RER), heart rate, blood lactate concentration and accumulation rate and blood gas variables. VO2 was significantly higher in HiWU than in LoWU at the onset of the sprint exercise and HR was significantly higher in HiWU than in LoWU throughout the sprint. Accumulation of blood lactate, RER, P(a)CO(2) and PvCO2 in the first 60 s were significantly lower in HiWU than in LoWU and MoWU. There were no significant differences in stroke volume, run time or arterial-mixed venous O(2) concentration. These results suggest HiWU accelerates kinetics and reduces reliance on net anaerobic power compared with LoWU at the onset of the subsequent sprint. © 2010 EVJ Ltd.

  13. Influence of doping with alkaline earth metals on the optical properties of thermochromic VO2

    NASA Astrophysics Data System (ADS)

    Dietrich, Marc K.; Kramm, Benedikt G.; Becker, Martin; Meyer, Bruno K.; Polity, Angelika; Klar, Peter J.

    2015-05-01

    Thin films of doped VO2 were deposited, analyzed, and optimized with regard to their solar energy transmittance (Tsol) and visible/luminous light transmittance (Tlum) which are important parameters in the context of smart window applications in buildings. The doping with alkaline earth metals (AEM) like Mg, Ca, Sr, or Ba increased both Tsol and Tlum due to a bandgap widening and an associated absorption edge blue-shift. Thereby, the brown-yellowish color impression of pure VO2 thin films, which is one major hindrance limiting the usage of VO2 as thermochromic window coating, was overcome. Transparent thin films with excellent switching behavior were prepared by sputtering. Highly doped V1-xMexO2 (Me = Ca, Sr, Ba) kept its excellent thermochromic switching behavior up to x(Me) = Me/(Me + V) = 10 at. % doping level, while the optical bandgap energy was increased from 1.64 eV for undoped VO2 to 2.38 eV for x(Mg) = 7.7 at. %, 1.85 eV for x(Ca) = 7.4 at. %, 1.84 eV for x(Sr) = 6.4 at. % and 1.70 eV for x(Ba) = 6.8 at. %, as well as the absorption edge is blue shifted by increasing AEM contents. Also, the critical temperature ϑc, at which the semiconductor-to-metal transition (SMT) occurs, was decreased by AEM doping, which amounted to about -0.5 K/at. % for all AEM on average. The critical temperature was determined by transmittance-temperature hysteresis measurements. Furthermore, Tsol and Tlum were calculated and were found to be significantly enhanced by AEM doping. Tlum increased from 32.0% in undoped VO2 to 43.4% in VO2 doped with 6.4 at. % Sr. Similar improvements were found for other AEM. The modulation of the solar energy transmittance ΔTsol, which is the difference of the Tsol values in the low and high temperature phase, was almost constant or even slightly increased when the doping level was increased up to about 10 at. % Ca, Sr, or Ba.

  14. Spanish genetic admixture is associated with larger V(O2) max decrement from sea level to 4338 m in Peruvian Quechua.

    PubMed

    Brutsaert, Tom D; Parra, Esteban J; Shriver, Mark D; Gamboa, Alfredo; Palacios, Jose-Antonio; Rivera, Maria; Rodriguez, Ivette; León-Velarde, Fabiola

    2003-08-01

    Quechua in the Andes may be genetically adapted to altitude and able to resist decrements in maximal O2 consumption in hypoxia (DeltaVo2 max). This hypothesis was tested via repeated measures of Vo2 max (sea level vs. 4338 m) in 30 men of mixed Spanish and Quechua origins. Individual genetic admixture level (%Spanish ancestry) was estimated by using ancestry-informative DNA markers. Genetic admixture explained a significant proportion of the variability in DeltaVo2 max after control for covariate effects, including sea level Vo2 max and the decrement in arterial O2 saturation measured at Vo2 max (DeltaSpO2 max) (R2 for admixture and covariate effects approximately 0.80). The genetic effect reflected a main effect of admixture on DeltaVo2 max (P = 0.041) and an interaction between admixture and DeltaSpO2 max (P = 0.018). Admixture predicted DeltaVo2 max only in subjects with a large DeltaSpO2 max (P = 0.031). In such subjects, DeltaVo2 max was 12-18% larger in a subgroup of subjects with high vs. low Spanish ancestry, with least squares mean values (+/-SE) of 739 +/- 71 vs. 606 +/- 68 ml/min, respectively. A trend for interaction (P = 0.095) was also noted between admixture and the decrease in ventilatory threshold at 4338 m. As previously, admixture predicted DeltaVo2 max only in subjects with a large decrease in ventilatory threshold. These findings suggest that the genetic effect on DeltaVo2 max depends on a subject's aerobic fitness. Genetic effects may be more important (or easier to detect) in athletic subjects who are more likely to show gas-exchange impairment during exercise. The results of this study are consistent with the evolutionary hypothesis and point to a better gas-exchange system in Quechua.

  15. Can We Confidently Study VO2 Kinetics in Young People?

    PubMed Central

    Fawkner, Samantha G.; Armstrong, Neil

    2007-01-01

    The study of VO2 kinetics offers the potential to non-invasively examine the cardiorespiratory and metabolic response to dynamic exercise and limitations to every day physical activity. Its non-invasive nature makes it hugely attractive for use with young people, both healthy and those with disease, and yet the literature, whilst growing with respect to adults, remains confined to a cluster of studies with these special populations. It is most likely that this is partly due to the methodological difficulties involved in studying VO2 kinetics in young people which are not present, or present to a lesser degree, with adults. This article reviews these methodological issues, and explains the main procedures that might be used to overcome them. Key pointsThe VO2 kinetic response to exercise represents the combined efficiency of the cardiovascular, pulmonary and metabolic systems, and an accurate assessment of the response potentially provides a great deal of useful information via non-invasive methodology.An accurate assessment of the VO2 kinetic response is however inherently difficult with children and especially those with reduced exercise tolerance, due primarily to the apparent breath-by-breath noise which masks the true underlying physiological response, and the small amplitudes of the response signal.Despite this, it is possible to assess and quantify the VO2 kinetic response with children if appropriate steps are taken to apply carefully selected methodologies and report response variables with confidence intervals. In this way, both the researcher and the reader can be confident that the data reported is meaningful. PMID:24149413

  16. Enhanced Visible Transmittance of Thermochromic VO2 Thin Films by SiO2 Passivation Layer and Their Optical Characterization

    PubMed Central

    Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo

    2016-01-01

    This paper presents the preparation of high-quality vanadium dioxide (VO2) thermochromic thin films with enhanced visible transmittance (Tvis) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO2 thin films with high Tvis and excellent optical switching efficiency (Eos) were successfully prepared by employing SiO2 as a passivation layer. After SiO2 deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO2 coating, the phase transition temperature (Tc) of the prepared films was not affected. Compared with pristine VO2, the total layer thickness after SiO2 coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO2 thin films showed a higher Tvis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of Tvis while maintaining high Eos is meaningful for VO2-based smart window applications. PMID:28773679

  17. Predicting VO2max with an objectively measured physical activity in Japanese women.

    PubMed

    Cao, Zhen-Bo; Miyatake, Nobuyuki; Higuchi, Mitsuru; Miyachi, Motohiko; Ishikawa-Takata, Kazuko; Tabata, Izumi

    2010-01-01

    To investigate the use of the accelerometer-determined physical activity (PA) intensity variables as the objective PA variables for estimating VO2max in Japanese adult women. The subjects of this study were 148 Japanese women aged 20 to 69 yr. Maximal oxygen uptake (VO2max) was measured with a maximal incremental test on a bicycle ergometer. Daily step counts (SC) and the amount spent in moderate to vigorous PA (MVPA) and vigorous PA (VPA) were measured using accelerometer-based activity monitors for 7 consecutive days. Using data of age, SC, MVPA, or VPA, and either body mass index (BMI) or waist circumference (WC), the nonexercise VO2max prediction models were derived as BMI models(MVPA), WC models(MVPA), BMI models(VPA), and WC models(VPA), and cross-validated by using two separate cross-validation procedures. SC, MVPA, and VPA were significantly related to VO2max (r = 0.43, r = 0.52, and r = 0.58, respectively). The multiple correlation coefficients for the BMI and WC models(MVAP) were 0.83 and 0.85, respectively, and for the BMI and WC models(VPA), they were 0.85 and 0.86, respectively. The SEE was 3.3 and 3.1 mL x kg(-1) x min(-1) for the BMI and WC models(MVPA), respectively, and it was 3.1 and 3.0 mL x kg(-1) x min(-1) for the BMI and WC models(VPA), respectively. All regression models demonstrated a high level of cross-validity supported by the minor shrinkage of the coefficient of determination and the increment of SEE in the predicted residual sum of squares procedure, and by small constant errors for the subgroups of age, SC, and VO2max between 25 and 35 mL x kg(-1) x min(-1). This study demonstrated that multiple regression models using data of MVPA or VPA were useful in predicting VO2max for Japanese adult women.

  18. Efficiency of Photocarrier Injection in a VO2/TiO2:Nb Heterostructure

    NASA Astrophysics Data System (ADS)

    Hiroi, Zenji; Yamauchi, Tohru; Muraoka, Yuji; Muramatsu, Takaki; Yamaura, Jun-Ichi

    2003-12-01

    The efficiency of photocarrier injection in a VO2/TiO2:Nb heterostructure is studied by measuring I-V characteristics at room temperature under ultraviolet light irradiation. It is revealed that photogenerated hole carriers in the TiO2:Nb substrate are injected and accumulated in the VO2 film by the photovoltaic effect. The surface charge density is controlled successfully in a wide range of 109-1013 cm-2 as a function of light irradiance. The maximum hole density of 9× 1018 cm-3 is attained at a light irradiance of 133 mW/cm2, which is estimated by assuming the uniform distribution of holes in the film. It is suggested that high efficiency can be achieved by utilizing the large dielectric constant of titanium oxide substrates.

  19. [Effect of 4 weeks of training on the limit time at VO2 max].

    PubMed

    Heubert, Richard; Bocquet, Valéry; Koralsztein, Jean Pierre; Billat, Véronique

    2003-10-01

    The purpose of this study was to examine the effect of 4 weeks training in running on the time spent at VO2max (tlim VO2max). Eight athletes carried out, before and after an aerobic training, an incremental and five exhaustive tests at 90, 95, 100, 115% vVO2max and at the critical power at VO2max (CV'; slope of the linear relation between the tlim VO2max and the distance limit at VO2max). This training did not significantly improve VO2max (p = 0.17) or tlim VO2max (p = 0.72). However, the "tlim VO2max-intensity" curve was shifted toward the right, meaning that the athlete had to run at a higher intensity after training to obtain the same tlim VO2max. Tlim VO2max at CV' before training was significantly higher than tlim VO2max at 90, 95, 100, and 115% vVO2max (p < 0.05). This training increased CV' in absolute value (13.9 +/- 1.3 vs. 14.9 +/- 1.2 km.h-1, p < 0.05; n = 6) but not in relative value (86 +/- 4 vs. 86 +/- 5% vVO2max; p = 0.9). In conclusion, in spite of the shift of the "tlim VO2max-intensity" curve, tlim VO2max was not significantly increased by this training. Furthermore, CV' allowed subjects to spend the longest time of exercise at VO2max during a continuous exercise with constant speed, but CV', expressed in % vVO2max, did not improve with this training.

  20. Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition

    NASA Astrophysics Data System (ADS)

    Yang, Mengmeng; Yang, Yuanjun; Bin Hong; Wang, Liangxin; Hu, Kai; Dong, Yongqi; Xu, Han; Huang, Haoliang; Zhao, Jiangtao; Chen, Haiping; Song, Li; Ju, Huanxin; Zhu, Junfa; Bao, Jun; Li, Xiaoguang; Gu, Yueliang; Yang, Tieying; Gao, Xingyu; Luo, Zhenlin; Gao, Chen

    2016-03-01

    Mechanism of metal-insulator transition (MIT) in strained VO2 thin films is very complicated and incompletely understood despite three scenarios with potential explanations including electronic correlation (Mott mechanism), structural transformation (Peierls theory) and collaborative Mott-Peierls transition. Herein, we have decoupled coactions of structural and electronic phase transitions across the MIT by implementing epitaxial strain on 13-nm-thick (001)-VO2 films in comparison to thicker films. The structural evolution during MIT characterized by temperature-dependent synchrotron radiation high-resolution X-ray diffraction reciprocal space mapping and Raman spectroscopy suggested that the structural phase transition in the temperature range of vicinity of the MIT is suppressed by epitaxial strain. Furthermore, temperature-dependent Ultraviolet Photoelectron Spectroscopy (UPS) revealed the changes in electron occupancy near the Fermi energy EF of V 3d orbital, implying that the electronic transition triggers the MIT in the strained films. Thus the MIT in the bi-axially strained VO2 thin films should be only driven by electronic transition without assistance of structural phase transition. Density functional theoretical calculations further confirmed that the tetragonal phase across the MIT can be both in insulating and metallic states in the strained (001)-VO2/TiO2 thin films. This work offers a better understanding of the mechanism of MIT in the strained VO2 films.

  1. Comprehensive studies of interfacial strain and oxygen vacancy on metal-insulator transition of VO2 film

    NASA Astrophysics Data System (ADS)

    Fan, L. L.; Chen, S.; Liao, G. M.; Chen, Y. L.; Ren, H.; Zou, C. W.

    2016-06-01

    As a typical strong correlation material, vanadium dioxide (VO2) has attracted wide interest due to its particular metal-insulator transition (MIT) property. However, the relatively high critical temperature (T c) of ~68 °C seriously hinders its practical applications. Thus modulating the phase transition process and decreasing the T c close to room temperature have been hot topics for VO2 study. In the current work, we conducted a multi-approach strategy to control the phase transition of VO2 films, including the interfacial tensile/compressive strain and oxygen vacancies. A synchrotron radiation reciprocal space mapping technique was used to directly record the interfacial strain evolution and variations of lattice parameters. The effects of interfacial strain and oxygen vacancies in the MIT process were systematically investigated based on band structure and d-orbital electron occupation. It was suggested that the MIT behavior can be modulated through the combined effects of the interfacial strain and oxygen vacancies, achieving the distinct phase transition close to room temperature. The current findings not only provide better understanding for strain engineering and oxygen vacancies controlling phase transition behavior, but also supply a combined way to control the phase transition of VO2 film, which is essential for VO2 film based device applications in the future.

  2. First-principles investigation on solar radiation shielding performance of rutile VO2 filters for smart windows

    NASA Astrophysics Data System (ADS)

    Xiao, Lihua; Su, Yuchang; Qiu, Wei; Ran, Jingyu; Liu, Yike; Wu, Jianming; Lu, Fanghai; Shao, Fang; Peng, Ping

    2016-11-01

    Vanadium dioxide (VO2) undergoing reversible metal-insulator phase transition could allow for the formation of an efficient thermochromic material for smart windows. However, solar radiation shielding performance is determined by transparent rutile VO2 filters, and the puzzling metal-insulator transition mechanism makes it challenging to explain the origin of the coexistence of strong near infrared absorption with high optical transparency. The band structure, the density of states, and the optical properties of rutile VO2 were calculated using the first-principles calculations. The calculated results of the structural and optical properties are in good agreement with the previously reported experimental findings. The calculated dielectric functions, electron energy-loss function and solar radiation shielding performance of the rutile VO2 filters indicate that rutile VO2 is a promising near-infrared absorption/reflectance material with the near-infrared radiation insulating abilities and a visible light transmittance. These properties arise from plasma oscillation and a collective oscillation (volume plasmons) of carrier electrons.

  3. Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition

    PubMed Central

    Yang, Mengmeng; Yang, Yuanjun; Bin Hong; Wang, Liangxin; Hu, Kai; Dong, Yongqi; Xu, Han; Huang, Haoliang; Zhao, Jiangtao; Chen, Haiping; Song, Li; Ju, Huanxin; Zhu, Junfa; Bao, Jun; Li, Xiaoguang; Gu, Yueliang; Yang, Tieying; Gao, Xingyu; Luo, Zhenlin; Gao, Chen

    2016-01-01

    Mechanism of metal-insulator transition (MIT) in strained VO2 thin films is very complicated and incompletely understood despite three scenarios with potential explanations including electronic correlation (Mott mechanism), structural transformation (Peierls theory) and collaborative Mott-Peierls transition. Herein, we have decoupled coactions of structural and electronic phase transitions across the MIT by implementing epitaxial strain on 13-nm-thick (001)-VO2 films in comparison to thicker films. The structural evolution during MIT characterized by temperature-dependent synchrotron radiation high-resolution X-ray diffraction reciprocal space mapping and Raman spectroscopy suggested that the structural phase transition in the temperature range of vicinity of the MIT is suppressed by epitaxial strain. Furthermore, temperature-dependent Ultraviolet Photoelectron Spectroscopy (UPS) revealed the changes in electron occupancy near the Fermi energy EF of V 3d orbital, implying that the electronic transition triggers the MIT in the strained films. Thus the MIT in the bi-axially strained VO2 thin films should be only driven by electronic transition without assistance of structural phase transition. Density functional theoretical calculations further confirmed that the tetragonal phase across the MIT can be both in insulating and metallic states in the strained (001)-VO2/TiO2 thin films. This work offers a better understanding of the mechanism of MIT in the strained VO2 films. PMID:26975328

  4. Exploring the interplay between the motivational climate and goal orientation in predicting maximal oxygen uptake.

    PubMed

    Buch, Robert; Nerstad, Christina G L; Aandstad, Anders; Säfvenbom, Reidar

    2016-01-01

    Drawing upon achievement goal theory, this study explored the interplay between the perceived motivational climate, achievement goals and objective measurements of maximal oxygen uptake (VO2max). The results of a study of 123 individuals from three Norwegian military academies revealed that under the condition of a high-performance orientation there is a stronger positive relationship between performance climate and VO2max for individuals reporting a low (rather than high)-mastery orientation. Furthermore, we found that for individuals with a high-mastery orientation there is a stronger positive relationship between mastery climate and VO2max for individuals reporting a low (rather than high)-performance orientation. These findings contribute to achievement goal theory by providing support for an interactionist person-environment fit perspective. Implications for future research and practice are discussed.

  5. The Structural Basis of Action of Vanadyl (VO2+) Chelates in Cells

    PubMed Central

    Makinen, Marvin W.; Salehitazangi, Marzieh

    2014-01-01

    Much emphasis has been given to vanadium compounds as potential therapeutic reagents for the treatment of diabetes mellitus. Thus far, no vanadium compound has proven efficacious for long-term treatment of this disease in humans. Therefore, in review of the research literature, our goal has been to identify properties of vanadium compounds that are likely to favor physiological and biochemical compatibility for further development as therapeutic reagents. We have, therefore, limited our review to those vanadium compounds that have been used in both in vivo experiments with small, laboratory animals and in in vitro studies with primary or cultured cell systems and for which pharmacokinetic and pharmacodynamics results have been reported, including vanadium tissue content, vanadium and ligand lifetime in the bloodstream, structure in solution, and interaction with serum transport proteins. Only vanadyl (VO2+) chelates fulfill these requirements despite the large variety of vanadium compounds of different oxidation states, ligand structure, and coordination geometry synthesized as potential therapeutic agents. Extensive review of research results obtained with use of organic VO2+-chelates shows that the vanadyl chelate bis(acetylacetonato)oxidovanadium(IV) [hereafter abbreviated as VO(acac)2], exhibits the greatest capacity to enhance insulin receptor kinase activity in cells compared to other organic VO2+-chelates, is associated with a dose-dependent capacity to lower plasma glucose in diabetic laboratory animals, and exhibits a sufficiently long lifetime in the blood stream to allow correlation of its dose-dependent action with blood vanadium content. The properties underlying this behavior appear to be its high stability and capacity to remain intact upon binding to serum albumin. We relate the capacity to remain intact upon binding to serum albumin to the requirement to undergo transcytosis through the vascular endothelium to gain access to target tissues in the

  6. VO2 thermochromic smart window for energy savings and generation

    PubMed Central

    Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling

    2013-01-01

    The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner. PMID:24157625

  7. VO2 thermochromic smart window for energy savings and generation

    NASA Astrophysics Data System (ADS)

    Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling

    2013-10-01

    The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner.

  8. Reducing orbital occupancy in VO2 suppresses Mott physics while Peierls distortions persist

    NASA Astrophysics Data System (ADS)

    Quackenbush, Nicholas F.; Paik, Hanjong; Holtz, Megan E.; Wahila, Matthew J.; Moyer, Jarrett A.; Barthel, Stefan; Wehling, Tim O.; Arena, Dario A.; Woicik, Joseph C.; Muller, David A.; Schlom, Darrell G.; Piper, Louis F. J.

    2017-08-01

    The characteristics of the cooperative Mott-Peierls metal-insulator transition (MIT) of VO2 can be altered by employing epitaxial strain. While the most commonly used substrate for this purpose is isostructural rutile TiO2, thin films often suffer from interdiffusion of Ti ions near the interface. Exploiting this phenomena, we investigate the nature of interfacial V4 +/Ti4 + cation intermixing and its effects on the MIT using scanning transmission electron microscopy with electron energy loss spectroscopy (STEM-EELS), soft x-ray absorption spectroscopy (XAS), and hard x-ray photoelectron spectroscopy (HAXPES), along with supporting density functional theory (DFT) calculations. We find that the reduced orbital occupancy in highly Ti incorporated VO2 is responsible for suppressing the MIT. Interdiffused films are found to be metallic at all measured temperatures, despite a resolute dimerization inferred from x-ray absorption data at lower temperatures. Our results demonstrate that the Mott physics can be suppressed in doped VO2, while a lattice dimerization remains thermodynamically favorable.

  9. Tuning phase transition temperature of VO2 thin films by annealing atmosphere

    NASA Astrophysics Data System (ADS)

    Liu, Xingxing; Wang, Shao-Wei; Chen, Feiliang; Yu, Liming; Chen, Xiaoshuang

    2015-07-01

    A simple new way to tune the optical phase transition temperature of VO2 films was proposed by only controlling the pressure of oxygen during the annealing process. Vanadium films were deposited on glass by a large-scale magnetron sputtering coating system and then annealed in appropriate oxygen atmosphere to form the VO2 films. The infrared transmission change (at 2400 nm) is as high as 58% for the VO2 thin film on the glass substrate, which is very good for tuning infrared radiation and energy saving as smart windows. The phase transition temperature of the films can be easily tuned from an intrinsic temperature to 44.7 °C and 40.2 °C on glass and sapphire by annealing oxygen pressure, respectively. The mechanism is: V3+ ions form in the film when under anaerobic conditions, which can interrupt the V4+ chain and reduce the phase transition temperature. The existence of V3+ ions has been observed by x-ray photoelectron spectroscopy (XPS) experiments as proof.

  10. Resistance noise at the metal-insulator transition in thermochromic VO2 films

    NASA Astrophysics Data System (ADS)

    Topalian, Zareh; Li, Shu-Yi; Niklasson, Gunnar A.; Granqvist, Claes G.; Kish, Laszlo B.

    2015-01-01

    Thermochromic VO2 films were prepared by reactive DC magnetron sputtering onto heated sapphire substrates and were used to make 100-nm-thick samples that were 10 μm wide and 100 μm long. The resistance of these samples changed by a factor ˜2000 in the 50 < Ts < 70 °C range of temperature Ts around the "critical" temperature Tc between a low-temperature semiconducting phase and a high-temperature metallic-like phase of VO2. Power density spectra S(f) were extracted for resistance noise around Tc and demonstrated unambiguous 1/f behavior. Data on S(10 Hz)/Rs2 scaled as Rsx, where Rs is sample resistance; the noise exponent x was -2.6 for Ts < Tc and +2.6 for Ts > Tc. These exponents can be reconciled with the Pennetta-Trefán-Reggiani theory [Pennetta et al., Phys. Rev. Lett. 85, 5238 (2000)] for lattice percolation with switching disorder ensuing from random defect generation and healing in steady state. Our work hence highlights the dynamic features of the percolating semiconducting and metallic-like regions around Tc in thermochromic VO2 films.

  11. Influence of grain size on transition temperature of thermochromic VO2

    NASA Astrophysics Data System (ADS)

    Miller, Mark J.; Wang, Junlan

    2015-01-01

    Vanadium(IV) oxide (VO2) is a unique material that undergoes a reversible phase transformation around 68 °C. The material could potentially be used as an energy-efficient coating for windows since its reflectance in the infrared (IR) increases significantly more than in the visible region. Currently, VO2 is limited by a transition temperature ( τ c ) that is too high, luminous transmittance that is too low or both. In this study, a transition temperature of 45 °C is achieved for a reactively sputtered, undoped film by restricting grain size to approximately 30 nm. It is concluded that a higher density of grain boundaries (smaller grain size) provides a greater number of nucleating defects which in turn reduces τ c . Similarly, a higher density of grain boundaries may reduce the hysteresis width (difference between transition temperatures in heating and cooling). Also in this study, a new set of optical performance metrics is proposed in which the solar spectrum is divided into the ultraviolet (UV), visible and near infrared (NIR) regions. This approach is more closely aligned with the goals of limiting UV, allowing luminous and modulating NIR transmission. Using these metrics, the optical properties of the low- τ c sample were: 2% UV transmittance, 47% luminous transmittance, and 23% NIR modulation (decrease from 43 to 33%). This study demonstrates that the grain size of VO2 should be viewed as an important parameter for controlling the transition temperature of the material.

  12. VO2 Reserve vs. Heart Rate Reserve During Moderate Intensity Treadmill Exercise

    PubMed Central

    SOLHEIM, TANNER J.; KELLER, BRAD G.; FOUNTAINE, CHARLES J.

    2014-01-01

    VO2 and heart rate (HR) are widely used when determining appropriate training intensities for clinical, healthy, and athletic populations. It has been shown that if the % reserve (%R) is used, rather than % of max, HR and VO2 can be used interchangeably to accurately prescribe exercise intensities. Thus, heart rate reserve (HRR) can be prescribed if VO2 reserve (VO2R) is known. Therefore, the purpose of this study was to compare VO2 R and HRR during moderate intensity exercise (50%R). Physically active college students performed a maximal treadmill test to exhaustion. During which VO2 and HR were monitored to determine max values. Upon completion of the maximal test, calculations were made to determine the % grade expected to yield approximately 50% of the subjects VO2R. Subjects then returned to complete the submaximal test (50%R) at least two days later. The %VO2R and %HRR were calculated and compared to the predicted value as well as to each other. Statistical analysis revealed that VO2 at 50%R was significantly greater than the actual VO2 achieved, p < .001. Conversely, the mean predicted HR at 50%R was significantly less than the actual HR achieved, p < .001. In conclusion, this study indicated that VO2 could be more accurately predicted than HR during moderate intensity exercise. The weak correlation between VO2R and HRR indicates that caution should be used when relying on a HR to determine VO2. PMID:27182409

  13. Relationship between body and leg VO2 during maximal cycle ergometry

    NASA Technical Reports Server (NTRS)

    Knight, D. R.; Poole, D. C.; Schaffartzik, W.; Guy, H. J.; Prediletto, R.; Hogan, M. C.; Wagner, P. D.

    1992-01-01

    It is not known whether the asymptotic behavior of whole body O2 consumption (VO2) at maximal work rates (WR) is explained by similar behavior of VO2 in the exercising legs. To resolve this question, simultaneous measurements of body and leg VO2 were made at submaximal and maximal levels of effort breathing normoxic and hypoxic gases in seven trained male cyclists (maximal VO2, 64.7 +/- 2.7 ml O2.min-1.kg-1), each of whom demonstrated a reproducible VO2-WR asymptote during fatiguing incremental cycle ergometry. Left leg blood flow was measured by constant-infusion thermodilution, and total leg VO2 was calculated as the product of twice leg flow and radial arterial-femoral venous O2 concentration difference. The VO2-WR relationships determined at submaximal WR's were extrapolated to maximal WR as a basis for assessing the body and leg VO2 responses. The differences between measured and extrapolated maximal VO2 were 235 +/- 45 (body) and 203 +/- 70 (leg) ml O2/min (not significantly different). Plateauing of leg VO2 was associated with, and explained by, plateauing of both leg blood flow and O2 extraction and hence of leg VO2. We conclude that the asymptotic behavior of whole body VO2 at maximal WRs is a direct reflection of the VO2 profile at the exercising legs.

  14. Relationship between body and leg VO2 during maximal cycle ergometry

    NASA Technical Reports Server (NTRS)

    Knight, D. R.; Poole, D. C.; Schaffartzik, W.; Guy, H. J.; Prediletto, R.; Hogan, M. C.; Wagner, P. D.

    1992-01-01

    It is not known whether the asymptotic behavior of whole body O2 consumption (VO2) at maximal work rates (WR) is explained by similar behavior of VO2 in the exercising legs. To resolve this question, simultaneous measurements of body and leg VO2 were made at submaximal and maximal levels of effort breathing normoxic and hypoxic gases in seven trained male cyclists (maximal VO2, 64.7 +/- 2.7 ml O2.min-1.kg-1), each of whom demonstrated a reproducible VO2-WR asymptote during fatiguing incremental cycle ergometry. Left leg blood flow was measured by constant-infusion thermodilution, and total leg VO2 was calculated as the product of twice leg flow and radial arterial-femoral venous O2 concentration difference. The VO2-WR relationships determined at submaximal WR's were extrapolated to maximal WR as a basis for assessing the body and leg VO2 responses. The differences between measured and extrapolated maximal VO2 were 235 +/- 45 (body) and 203 +/- 70 (leg) ml O2/min (not significantly different). Plateauing of leg VO2 was associated with, and explained by, plateauing of both leg blood flow and O2 extraction and hence of leg VO2. We conclude that the asymptotic behavior of whole body VO2 at maximal WRs is a direct reflection of the VO2 profile at the exercising legs.

  15. VO2 Reserve vs. Heart Rate Reserve During Moderate Intensity Treadmill Exercise.

    PubMed

    Solheim, Tanner J; Keller, Brad G; Fountaine, Charles J

    VO2 and heart rate (HR) are widely used when determining appropriate training intensities for clinical, healthy, and athletic populations. It has been shown that if the % reserve (%R) is used, rather than % of max, HR and VO2 can be used interchangeably to accurately prescribe exercise intensities. Thus, heart rate reserve (HRR) can be prescribed if VO2 reserve (VO2R) is known. Therefore, the purpose of this study was to compare VO2 R and HRR during moderate intensity exercise (50%R). Physically active college students performed a maximal treadmill test to exhaustion. During which VO2 and HR were monitored to determine max values. Upon completion of the maximal test, calculations were made to determine the % grade expected to yield approximately 50% of the subjects VO2R. Subjects then returned to complete the submaximal test (50%R) at least two days later. The %VO2R and %HRR were calculated and compared to the predicted value as well as to each other. Statistical analysis revealed that VO2 at 50%R was significantly greater than the actual VO2 achieved, p < .001. Conversely, the mean predicted HR at 50%R was significantly less than the actual HR achieved, p < .001. In conclusion, this study indicated that VO2 could be more accurately predicted than HR during moderate intensity exercise. The weak correlation between VO2R and HRR indicates that caution should be used when relying on a HR to determine VO2.

  16. A novel terahertz device with multi-function of polarization and switch based on phase transition of VO2

    NASA Astrophysics Data System (ADS)

    Gu, Wen-hao; Chang, Sheng-jiang; Fan, Fei

    2016-11-01

    A terahertz (THz) polarizer and switch structure is proposed based on the phase transition of vanadium dioxide (VO2). When VO2 is in the insulation phase, the resonance frequencies of the proposed structure are 1.49 THz and 1.22 THz for the x- and y-polarization, respectively. It can perform as a THz polarizer with extinction ratios of 52.5 dB and 17 dB for the y- and x-polarization, respectively; When VO2 transforms into metallic phase, the resonance frequency for x-polarization wave shifts from 1.49 THz to 1.22 THz, while that remains still for the y-polarization component. It means that the structure can work as a polarization-dependent THz switch with a high extinction ratio of 32 dB.

  17. The Effects of Vanadium Pentoxide to Oxalic Acid Ratio and Different Atmospheres on the Formation of VO2 Nanopowders Synthesized via Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Vostakola, Mohsen Fallah; Yekta, Bijan Eftekhari; Mirkazemi, Seyed Mohammad

    2017-08-01

    Thermochromic VO2 nanopowders were synthesized via the sol-gel method through mixing oxalic acid and vanadium pentoxide in ethanol. We investigated the effect of oxalic acid to vanadium pentoxide ratio on the formation of final product and found that excessive oxalic acid reduced the final product from VO2 to V2O3. Because decreasing the oxalic acid to vanadium pentoxide ratio is a time-consuming process, oxygen was introduced by using a low-porosity alumina tube. The heat treatment was performed inside an electrical tube furnace and in a variety of atmospheres, including pure nitrogen (99.999% purity) and nitrogen containing 5 vol.%, 10 vol.%, and 15 vol.% hydrogen. According to x-ray diffraction (XRD) results, the appropriate atmosphere for synthesizing VO2 nanopowder was the one which contained 10 vol.% hydrogen. In order to decrease the transition temperature in VO2 from 63.5°C to room temperature, W6+ doping was done by adding different amounts of tungstic acid sol to vanadium sol precursor. Differential scanning calorimetry (DSC) results showed that W6+ reduced the transition temperature of VO2 approximately 23°C/wt.%. Lattice straining estimated from XRD results confirmed that VO2 was doped. XRD results at 25°C and 100°C along with DSC results indicated that VO2 was transformed from a low-temperature monoclinic phase to a high-temperature rutile one along this temperature interval.

  18. Running on a lower-body positive pressure treadmill: VO2max, respiratory response, and vertical ground reaction force.

    PubMed

    Raffalt, Peter C; Hovgaard-Hansen, Line; Jensen, Bente Rona

    2013-06-01

    This study investigated maximal oxygen consumption (VO2max) and time to exhaustion while running on a lower-body positive pressure treadmill (LBPPT) at normal body weight (BW) as well as how BW support affects respiratory responses, ground reaction forces, and stride characteristics. Twelve runners performed VO2max tests on a regular treadmill and an LBPPT. Furthermore, they performed steady-state running (10km/hr, 14 km/hr, and 18 km/hr) and high-speed running (20km/hr and 22 km/hr) at four different BWs on the LBPPT. VO2, heart rate, ventilation, and breathing frequency as well as vertical ground reaction force (vGRF) and stride characteristics were measured. VO2max could be obtained on both treadmills, although time to exhaustion was 34.5% longer on the LBPPT. VO2, ventilation, and heart rate decreased linearly with increasing BW support at steady-state running, while breathing rate remained unaffected by increasing BW support. Ground reaction force was markedly reduced with increasing BW support. The contact time decreased and flight time increased with increasing BW support. The step frequency decreased and step length increased to some extent with increasing BW support. VO2max can be achieved on an LBPPT at 100% BW with an incline-running protocol. The LBPPT is a suitable training device for athletes and allows training at high running speeds and high aerobic stimuli with the benefit of low vGRF and a near-normal movement pattern, although manipulation of gravitational weight causes some adaptations in locomotion.

  19. Estimation of VO2 Max: A Comparative Analysis of Five Exercise Tests.

    ERIC Educational Resources Information Center

    Zwiren, Linda D.; And Others

    1991-01-01

    Thirty-eight healthy females measured maximal oxygen uptake (VO2max) on the cycle ergometer and treadmill to compare five exercise tests (run, walk, step, and two tests using heart-rate response on the bicycle ergometer) in predicting VO2max. Results indicate that walk and run tests are satisfactory predictors of VO2max in 30- to 39-year-old…

  20. Estimation of VO2 Max: A Comparative Analysis of Five Exercise Tests.

    ERIC Educational Resources Information Center

    Zwiren, Linda D.; And Others

    1991-01-01

    Thirty-eight healthy females measured maximal oxygen uptake (VO2max) on the cycle ergometer and treadmill to compare five exercise tests (run, walk, step, and two tests using heart-rate response on the bicycle ergometer) in predicting VO2max. Results indicate that walk and run tests are satisfactory predictors of VO2max in 30- to 39-year-old…

  1. Graphene‐Nanowall‐Decorated Carbon Felt with Excellent Electrochemical Activity Toward VO2 +/VO2+ Couple for All Vanadium Redox Flow Battery

    PubMed Central

    Li, Wenyue; Zhang, Zhenyu; Bian, Haidong; Ng, Tsz‐Wai

    2015-01-01

    3D graphene‐nanowall‐decorated carbon felts (CF) are synthesized via an in situ microwave plasma enhanced chemical vapor deposition method and used as positive electrode for vanadium redox flow battery (VRFB). The carbon fibers in CF are successfully wrapped by vertically grown graphene nanowalls, which not only increase the electrode specific area, but also expose a high density of sharp graphene edges with good catalytic activities to the vanadium ions. As a result, the VRFB with this novel electrode shows three times higher reaction rate toward VO2 +/VO2+ redox couple and 11% increased energy efficiency over VRFB with an unmodified CF electrode. Moreover, this designed architecture shows excellent stability in the battery operation. After 100 charging–discharging cycles, the electrode not only shows no observable morphology change, it can also be reused in another battery and practical with the same performance. It is believed that this novel structure including the synthesis procedure will provide a new developing direction for the VRFB electrode. PMID:27774399

  2. Graphene-Nanowall-Decorated Carbon Felt with Excellent Electrochemical Activity Toward VO2(+)/VO(2+) Couple for All Vanadium Redox Flow Battery.

    PubMed

    Li, Wenyue; Zhang, Zhenyu; Tang, Yongbing; Bian, Haidong; Ng, Tsz-Wai; Zhang, Wenjun; Lee, Chun-Sing

    2016-04-01

    3D graphene-nanowall-decorated carbon felts (CF) are synthesized via an in situ microwave plasma enhanced chemical vapor deposition method and used as positive electrode for vanadium redox flow battery (VRFB). The carbon fibers in CF are successfully wrapped by vertically grown graphene nanowalls, which not only increase the electrode specific area, but also expose a high density of sharp graphene edges with good catalytic activities to the vanadium ions. As a result, the VRFB with this novel electrode shows three times higher reaction rate toward VO2(+)/VO(2+) redox couple and 11% increased energy efficiency over VRFB with an unmodified CF electrode. Moreover, this designed architecture shows excellent stability in the battery operation. After 100 charging-discharging cycles, the electrode not only shows no observable morphology change, it can also be reused in another battery and practical with the same performance. It is believed that this novel structure including the synthesis procedure will provide a new developing direction for the VRFB electrode.

  3. Porous carbon derived from disposable shaddock peel as an excellent catalyst toward VO2+/VO2+ couple for vanadium redox battery

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, Z. A.; Wu, X. W.; Yuan, X. H.; Hu, J. P.; Zhou, Q. M.; Liu, Z. H.; Wu, Y. P.

    2015-12-01

    Functional porous carbon (PC) derived from bio-friendly shaddock peel has been firstly explored as catalyst for vanadium redox flow battery (VRB). The prepared PC is micro-mesoporous with high BET surface area of 882.7 m2 g-1, has some surface oxygen-containing functional groups, and is doped with N and P heteroatoms. These three factors greatly favor the electrochemical reactions of VO2+/VO2+ on the PC modified glass carbon (PC-GC). Compared with the naked GC and graphite modified GC, the PC-GC presents a lower peak separation (66 mV), higher anodic current density (17.1 mA cm-2) and cathodic current density (15.0 mA cm-2). The VRB using PC modified graphite felt (GF) as positive electrode demonstrates an enhanced voltage efficiency of 82.7% at the current density of 60 mA cm-2, and a better rate performance than that from the virginal GF.

  4. Impact of Body Composition and Vo2 Max on the Competitive Success in Top-Level Handball Players.

    PubMed

    Ilic, Vladimir; Ranisavljev, Igor; Stefanovic, Dorde; Ivanovic, Vuk; Mrdakovic, Vladimir

    2015-09-01

    The purpose of the study was to determine the morphological and functional characteristics of 32 Serbian national U20 handball players (age 20.43 +/- 1.16 y; training experience 8.12 +/- 1.89 y) before European championship in Switzerland (2006) and to determinate their impact on competitive performance and outstanding success achieved. The results show that wing players differ from other players in morphological characteristics. Values for body height, weight, BMI, muscle mass and fat mass were significantly lower compared to the other playing positions. Extremely low values of maximal oxygen uptake (VO2 max) were measured in all players (ranged from 2.68 to 4.66 l x min(-1)). Pivots had the highest VO2 max in absolute values (3.76 l x min(-1)), and wing players in relative terms (40.83 ml x kg(-1) x min(-1)). Handball is characterized by high intensity intermittent play, followed by a number of walking breaks and quick substitutions. This makes possible to retain high playing intensity during whole match, because players can be given rest periods whenever needed. This will result in a high intensity game that does not necessarily require high VO2 max. Competitive success in modern top-level handball might be more reliant on optimal tactical preparation than on the body composition and VO2 max of an individual athlete.

  5. K3VO2(V2As2O12)

    PubMed Central

    Ezzine, Safa; Zid, Mohamed Faouzi; Driss, Ahmed

    2009-01-01

    A new potassium vanadium arsenate, tripotassium trivanadium bis­(arsenate) hexa­oxide, K3VO2(V2As2O12), was synthesized by a solid-state reaction at 743 K. The structure is built up from VO5 pyramids, VO4 tetra­hedra (.m. symmetry) and AsO4 tetra­hedra linked together by corner-sharing to form a three-dimensional framework. The two crystallographically independent K+ cations, one of which has .m. symmetry, are located in the inter­connected tunnels running along the a and b directions. PMID:21583723

  6. Phase Transformation of VO2 Nanoparticles Assisted by Microwave Heating

    PubMed Central

    Sikong, Lek.

    2014-01-01

    The microwave assisted synthesis nowadays attracts a great deal of attention. Monoclinic phase VO2 (M) was prepared from NH4VO3 and H2C2O4 · 2H2O by a rapid microwave assisted technique. The synthesis parameters, microwave irradiation time, microwave power, and calcinations temperature were systematically varied and their influences on the structure and morphology were evaluated. The microwave power level has been carried out in range 180–600 W. TEM analysis demonstrated nanosized samples. The structural and morphological properties were measured using XRD, TEM, and thermal analyses. The variations of vanadium phase led to thermochromic properties. PMID:24688438

  7. Thermochromic light scattering from particulate VO2 layers

    NASA Astrophysics Data System (ADS)

    Montero, José; Ji, Yu-Xia; Granqvist, Claes G.; Niklasson, Gunnar A.

    2016-02-01

    Particulate layers of thermochromic (TC) VO2 were made by reactive DC magnetron sputtering of vanadium onto In2O3:Sn-coated glass. The deposits were characterized by scanning electron microscopy, atomic force microscopy, and X-ray diffraction. Specular and diffuse optical transmittance and reflectance were recorded in the 300-2500-nm wavelength range and displayed pronounced TC effects. These properties could be reconciled with a semi-quantitative model based on Lorentz-Mie theory applied to the distribution of particle sizes and accounting for particle shapes by the Grenfell-Warren approach with equal-volume-to-area spheres.

  8. Decoupling of structural and electronic phase transitions in VO2.

    PubMed

    Tao, Zhensheng; Han, Tzong-Ru T; Mahanti, Subhendra D; Duxbury, Phillip M; Yuan, Fei; Ruan, Chong-Yu; Wang, Kevin; Wu, Junqiao

    2012-10-19

    Using optical, TEM, and ultrafast electron diffraction experiments we find that single crystal VO(2) microbeams gently placed on insulating substrates or metal grids exhibit different behaviors, with structural and metal-insulator transitions occurring at the same temperature for insulating substrates, while for metal substrates a new monoclinic metal phase lies between the insulating monoclinic phase and the metallic rutile phase. The structural and electronic phase transitions in these experiments are strongly first order and we discuss their origins in the context of current understanding of multiorbital splitting, strong correlation effects, and structural distortions that act cooperatively in this system.

  9. Localized phase change of VO2 films grown by atomic-layer deposition on InAlN/AlN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Downey, Brian P.; Wheeler, Virginia D.; Meyer, David J.

    2017-06-01

    We demonstrate the thermally actuated phase change of VO2 films formed by atomic layer deposition and subsequent thermal annealing on InAlN/AlN/GaN heterostructures. To locally raise the device temperature above the VO2 semiconductor-metal transition temperature, a two-dimensional electron gas formed within the InAlN/AlN/GaN heterostructure was used as an integrated resistive heater. An ON/OFF resistance ratio of nearly 103 was achieved for 50 nm VO2 films over a temperature range of 25 to 105 °C. The time required to switch the VO2 film from high- to low-resistance states was shown to depend on the applied heater power, with sub-microsecond transition times achieved.

  10. "Tailored" submaximal step test for VO2max prediction in healthy older adults.

    PubMed

    Pogliaghi, Silvia; Bellotti, Cecilia; Paterson, Donald H

    2014-04-01

    The authors developed and validated a "tailored" version of the Astrand-Rhyming step test (tA-R) and a new equation for VO2max prediction in older adults (OA). Sixty subjects (age 68 ± 4 yr, 30 male, 30 female) performed their tA-R step test (5-min, 30-cm step, tailored stepping rate) and an incremental cycling test to exhaustion. VO2max was (a) predicted using the standard A-R equation (predicted VO2max), (b) predicted based on the authors' new multiple linear equation (equation VO2max), and (c) directly measured by incremental cycling test (direct VO2max). Agreement among values of VO2max was evaluated by Bland-Altman analysis. The predicted VO2max was not significantly different from the direct VO2max, yet with relatively large imprecision. The equation VO2max allowed more precise as well as accurate predictions of VO2max compared with standard A-R prediction. The "tailored" version of the Astrand-Rhyming step test and the new prediction equation appear suitable for a rapid (5-min), safe (submaximal), accurate, and precise VO2max prediction in healthy OA.

  11. Facile fabrication of infrared photodetector using metastable vanadium dioxide VO2 (B) nanorod networks

    NASA Astrophysics Data System (ADS)

    Hou, Jiwei; Wang, Beibei; Ding, Zejun; Dai, Rucheng; Wang, Zhongping; Zhang, Zengming; Zhang, Jianwu

    2017-08-01

    Photodetectors find important military and civilian applications, commonly requiring expensive components and exhibiting complex designs. Herein, we report a simple and cost-effective infrared photodetector fabricated using metastable vanadium dioxide VO2 (B) nanorod (NR) networks and exhibiting high photosensitivity, stability, and reproducibility under ambient conditions. We discuss electron transfer processes in NR networks and elucidate the mechanisms of photocurrent generation as well as performance-affecting factors, revealing that the fabricated device can be used as a high-performance infrared light photodetector.

  12. Improving the Accuracy of Predicting Maximal Oxygen Consumption (VO2pk)

    NASA Technical Reports Server (NTRS)

    Downs, Meghan E.; Lee, Stuart M. C.; Ploutz-Snyder, Lori; Feiveson, Alan

    2016-01-01

    Maximal oxygen (VO2pk) is the maximum amount of oxygen that the body can use during intense exercise and is used for benchmarking endurance exercise capacity. The most accurate method to determineVO2pk requires continuous measurements of ventilation and gas exchange during an exercise test to maximal effort, which necessitates expensive equipment, a trained staff, and time to set-up the equipment. For astronauts, accurate VO2pk measures are important to assess mission critical task performance capabilities and to prescribe exercise intensities to optimize performance. Currently, astronauts perform submaximal exercise tests during flight to predict VO2pk; however, while submaximal VO2pk prediction equations provide reliable estimates of mean VO2pk for populations, they can be unacceptably inaccurate for a given individual. The error in current predictions and logistical limitations of measuring VO2pk, particularly during spaceflight, highlights the need for improved estimation methods.

  13. Thermochromic films of VO2:W for smart solar energy applications

    NASA Astrophysics Data System (ADS)

    Paone, A.; Joly, M.; Sanjines, R.; Romanyuk, A.; Scartezzini, J.-L.; Schüler, A.

    2009-08-01

    Overheating is a common problem both with the use of active and passive solar energy in thermal solar energy systems and in highly glazed buildings. In solar thermal collectors, the elevated temperatures occurring during stagnation result in reduced lifetime of the collector materials. Highly glazed building facades provide high solar gains in winter, but imply in most cases high energy needs for air conditioning in summer. A solution to such problems might be provided by "smart" thermochromic coatings. A durable inorganic thermochromic material is vanadium dioxide. At 68°C, VO2 undergoes a reversible crystal structural phase transition accompanied by a strong variation in optical properties. By doping the material with tungsten, it is possible to lower the transition temperature making it suitable as a window coating. In order to simulate the optical behaviour of multilayered solar coatings, precise knowledge on the optical material properties is necessary. Experimental data reported in the literature are rare and controversial. We determined the complex dielectric function for VO2:W by spectroscopic UV-VIS-NIR ellipsometry above and below the transition temperature and subsequent point-by-point analysis of the ellipsometric psi/delta data. For a validation, the solar reflectance, absorptance and transmittance were measured by spectrophotometry in the visible range and in the near infrared range up to 2500 nm. The experimental reflectance spectra have been compared with the computer simulations based on the determined optical material properties. Finally, we collected optical data in a more extended wavelength range by digital infrared imaging to detect the switch in thermal emissivity of VO2:W at around 45°C.

  14. A simple model implementation to measure breath by breath the VO2 and VCO2 by the indirect calorimetry technique.

    PubMed

    Cadena, M; Sacristan, E; Infante, O; Rodriguez, F; Escalante, B; Pérez, P; Azpiroz, J

    2006-01-01

    This paper proposes a discrete random time series modeling for the VO2 and VCO2 measurement in the indirect calorimetry technique (ICT). Mathematical equations are developed in order to establish clear differences between the breath-by-breath and mixing chamber measurement based calorimeters. This simple model offers not only a physiological ICT definition approach but also defines the idea of VO2 and VCO2 short-term variability information for research. The preliminary results show a new physiological information when a computer oriented algorithm model implementation was applied to a data acquisition system in order to obtain the power spectrum analysis from a typical observation subject submitted to the clino-ortho maneuver.

  15. Electrochemical Synthesis of Amorphous VO2 Colloids and Their Rapid Thermal Transforming to VO2 (M) Nanoparticles with Good Thermochromic Performance.

    PubMed

    Wu, Hao; Li, Ming; Zhong, Li; Luo, Yuan Yuan; Li, Guang Hai

    2016-12-05

    Amorphous VO2 (a-VO2 ) colloids were synthesized by electrochemical anodic oxidation of metallic vanadium. It was found that the a-VO2 colloids have a cotton-like morphology composed of very small clusters, and that the crystallization temperature of the a-VO2 colloids can be adjusted either by the electrolyte of the anodic oxidation or/and the dispersion agent of the colloids. VO2 (M) nanoparticles (NPs) (and a NP film) with an average size of about 50 nm can be obtained by a rapid thermal annealing of the a-VO2 colloids at 310 °C under air, which is beneficial for practical applications. The VO2 (M) NP film shows an obvious metal-semiconductor transition with a resistance less than 10 Ω in the metallic state. An integral visible transmittance of 40.7 %, a solar transmittance modulation of 9.4 %, and a resistance modulation in the order of 5×10(4) were realized in the VO2 (M) NP film.

  16. The Effect of CeO2 Antireflection Layer on the Optical Properties of Thermochromic VO2 Film for Smart Window System

    NASA Astrophysics Data System (ADS)

    Koo, Hyun; Shin, Dongmin; Bae, Sung-Hwan; Ko, Kyeong-Eun; Chang, Se-Hong; Park, Chan

    2013-11-01

    CeO2-VO2 bilayer structure was fabricated to investigate the effect of depositing CeO2 film on the optical properties of VO2 film for smart window application. CeO2 was employed as an antireflection (AR) layer material of VO2 film because of its advantages which include high transparency in the visible-near infrared range and high refractive index. All the films were deposited on soda-lime glass substrate by pulsed laser deposition method. Optical calculations were carried out using transfer-matrix method for the purpose of designing CeO2-VO2 bilayer structure with enhanced integrated luminous transmittance (T lum) and switching efficiency (ΔT sol). The optical constants of VO2 and CeO2 films needed for the optical calculation were measured by spectroscopic ellipsometer. The curve of T lum the shape of which depends on the thickness of CeO2 layer, was calculated in each VO2 sample, which showed two maxima. The samples were divided into two groups; one for the highest enhancement of T lum and the other for balanced enhancement between T lum and ΔT sol. The sample with the structure of ~60 nm CeO2 AR layer on 39-nm thick VO2 film showed large increase of T lum (~27%) with ΔT sol of ~5%, which is the largest increase in T lum reported so far. Two samples in the other group showed the balanced enhancement in T lum (~57, ~50%) and ΔT sol (~9, ~10.5%). The effect of CeO2 AR layer on the optical properties of VO2 film was confirmed with the optical calculation and the experimental results. CeO2-VO2 bilayer structure showed notable improvement of optical properties compared to the single VO2 film, indicating that CeO2 layer can be effectively used as the antireflection layer while working as a protective layer that can prevent the oxidation of VO2 layer as well.

  17. Fitness self-perception and Vo2max in firefighters.

    PubMed

    Peate, W F; Lundergan, Linda; Johnson, Jerry J

    2002-06-01

    Firefighters work at maximal levels of exertion. Fitness for such duty requires adequate aerobic capacity (maximum oxygen consumption [Vo2max]). Aerobic fitness can both improve a worker's ability to perform and offer resistance to cardiopulmonary conditions. Inactive firefighters have a 90% greater risk of myocardial infarction than those who are aerobically fit. Participants (101 firefighters) completed a questionnaire that asked them to rank their fitness level from 0 to 7; e.g., Level 0 was low fitness: "I avoid walking or exertion, e.g., always use elevator, drive whenever possible." The level of activity rating increased to Level 7: "I run over 10 miles per week or spend 3 hours per week in comparable physical activity." Each participant then completed two measures of Vo2max: a 5-minute step test and a submaximal treadmill test. There was no association between the firefighters' self-perception of their level of fitness and their aerobic capacity as measured by either step test or submaximal treadmill. Because of the critical job demands of firefighting and the negative consequences of inadequate fitness and aerobic capacity, periodic aerobic capacity testing with individualized exercise prescriptions and work--community support may be advisable for all active-duty firefighters.

  18. Elevated transition temperature in Ge doped VO2 thin films

    NASA Astrophysics Data System (ADS)

    Krammer, Anna; Magrez, Arnaud; Vitale, Wolfgang A.; Mocny, Piotr; Jeanneret, Patrick; Guibert, Edouard; Whitlow, Harry J.; Ionescu, Adrian M.; Schüler, Andreas

    2017-07-01

    Thermochromic GexV1-xO2+y thin films have been deposited on Si (100) substrates by means of reactive magnetron sputtering. The films were then characterized by Rutherford backscattering spectrometry (RBS), four-point probe electrical resistivity measurements, X-ray diffraction, and atomic force microscopy. From the temperature dependent resistivity measurements, the effect of Ge doping on the semiconductor-to-metal phase transition in vanadium oxide thin films was investigated. The transition temperature was shown to increase significantly upon Ge doping (˜95 °C), while the hysteresis width and resistivity contrast gradually decreased. The precise Ge concentration and the film thickness have been determined by RBS. The crystallinity of phase-pure VO2 monoclinic films was confirmed by XRD. These findings make the use of vanadium dioxide thin films in solar and electronic device applications—where higher critical temperatures than 68 °C of pristine VO2 are needed—a viable and promising solution.

  19. Concurrent validity of the non-exercise based VO2max prediction equation using percentage body fat as a variable in asian Indian adults

    PubMed Central

    2012-01-01

    Background Aerobic capacity (VO2max) is highly dependent upon body composition of an individual and body composition varies with ethnicity. The purpose of this study was to check the concurrent validity of the non-exercise prediction equation developed by Jackson and colleagues (1990) using percentage body fat as a variable in Asian Indian adults. Methods One hundred twenty college-aged participants (60 male, 60 female, mean age 22.02 ± 2.29 yrs) successfully completed a maximal graded exercise test (GXT) on a motorized treadmill to assess VO2max. VO2max was then estimated by the non-exercise prediction equation developed by Jackson and colleagues (1990) using percentage body fat. Percentage body fat was calculated by three different models (Sandhu et al’s fat mass equation, Durnin-womersley’s 4 site percentage body fat and Jackson & Pollock’s 4 site percentage body fat) and was used in the above equation. The results of VO2max obtained using “gold standard” treadmill methods were then compared with the three results of VO2max obtained by Jackson et al’s equation (using three different models to calculate percentage body fat) and it was determined which equation is best suited to determine percentage body fat and in turn VO2 max for Indian population. Results Jackson et al’s prediction equation overpredicts VO2max in Asian Indian subjects who have a lower VO2max (33.41 ± 14.39 ml/kg/min) than those reported in other age matched populations. percentage body fats calculated by the three equations were significantly different and the correlation coefficient (r) between VO2max calculated by Jackson and colleagues (1990) using Sandhu et al’s equation for percentage body fat with VO2 max calculated using treadmill (gold standard) (r = .817) was found slightly more significantly correlated than the other two equations and was not statistically different from the measured value. Conclusions This study proves that VO2max equation using

  20. Challenging a dogma of exercise physiology: does an incremental exercise test for valid VO 2 max determination really need to last between 8 and 12 minutes?

    PubMed

    Midgley, Adrian W; Bentley, David J; Luttikholt, Hans; McNaughton, Lars R; Millet, Gregoire P

    2008-01-01

    A widely cited recommendation is that to elicit valid maximal oxygen uptake (VO(2 max)) values, incremental exercise tests should last between 8 and 12 minutes. However, this recommendation originated from the findings of a single experimental study conducted by Buchfuhrer et al. in 1983. Although this study is an important contribution to scientific knowledge, it should not be viewed as sufficient evidence to support the recommendation for eliciting valid VO(2 max) values. At least eight studies have reported that durations as short as 5 minutes and as long as 26 minutes elicit VO(2 max) values similar to those derived from tests of 8-12 minutes' duration. Two studies reported that the shorter test protocols elicited significantly higher VO(2 max) values in untrained men and women. In three studies that reported significantly higher VO(2 max) values determined during tests of 8-12 minutes than during more prolonged tests, the prolonged tests were associated with maximal treadmill grades of 20-25%, compared with 6-10% in the shorter tests. Therefore, intolerable treadmill grades, rather than the prolonged test duration, may have limited the ability to elicit VO(2 max). In view of the available evidence, test administrators, reviewers and journal editors should not view 8-12 minutes' duration for incremental exercise tests as obligatory for valid VO(2 max) determination. Current evidence suggests that to elicit valid VO(2 max) values, cycle ergometer tests should last between 7 and 26 minutes and treadmill tests between 5 and 26 minutes. This is dependent on the qualification that short tests are preceded by an adequate warm-up and that treadmill grades do not exceed 15%. Current research is too limited to indicate appropriate test duration ranges for discontinuous test protocols, or protocols incorporating high treadmill grades.

  1. Preparation and modification of VO2 thin film on R-sapphire substrate by rapid thermal process

    NASA Astrophysics Data System (ADS)

    Zhu, Nai-Wei; Hu, Ming; Xia, Xiao-Xu; Wei, Xiao-Ying; Liang, Ji-Ran

    2014-04-01

    The VO2 thin film with high performance of metal-insulator transition (MIT) is prepared on R-sapphire substrate for the first time by magnetron sputtering with rapid thermal process (RTP). The electrical characteristic and THz transmittance of MIT in VO2 film are studied by four-point probe method and THz time domain spectrum (THz-TDS). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and search engine marketing (SEM) are employed to analyze the crystalline structure, valence state, surface morphology of the film. Results indicate that the properties of VO2 film which is oxidized from the metal vanadium film in oxygen atmosphere are improved with a follow-up RTP modification in nitrogen atmosphere. The crystallization and components of VO2 film are improved and the film becomes compact and uniform. A better phase transition performance is shown that the resistance changes nearly 3 orders of magnitude with a 2-°C hysteresis width and the THz transmittances are reduced by 64% and 60% in thermal and optical excitation respectively.

  2. Electrolysis-induced protonation of VO2 thin film transistor for the metal-insulator phase modulation

    NASA Astrophysics Data System (ADS)

    Katase, Takayoshi; Endo, Kenji; Ohta, Hiromichi

    2016-02-01

    Compared to state-of-the-art modulation techniques, protonation is the most ideal to control the electrical and optical properties of transition metal oxides (TMOs) due to its intrinsic non-volatile operation. However, the protonation of TMOs is not typically utilized for solid-state devices because of imperative high-temperature annealing treatment in hydrogen source. Although one solution for room temperature (RT) protonation of TMOs is liquid-phase electrochemistry, it is unsuited for practical purposes due to liquid-leakage problem. Herein we demonstrate solid-state RT-protonation of vanadium dioxide (VO2), which is a well-known thermochromic TMO. We fabricated the three terminal thin-film-transistor structure on an insulating VO2 film using a water-infiltrated nanoporous glass, which serves as a solid electrolyte. For gate voltage application, water electrolysis and protonation/deprotonation of VO2 film surface occurred, leading to reversible metal-insulator phase conversion of ~11-nm-thick VO2 layer. The protonation was clearly accompanied by the structural change from an insulating monoclinic to a metallic tetragonal phase. Present results offer a new route for the development of electro-optically active solid-state devices with TMO materials by engineering RT protonation.

  3. Band dispersion near the Fermi level for VO2 thin films grown on TiO2 (001) substrates

    NASA Astrophysics Data System (ADS)

    Saeki, K.; Wakita, T.; Muraoka, Y.; Hirai, M.; Yokoya, T.; Eguchi, R.; Shin, S.

    2009-09-01

    We have performed angle-resolved photoemission spectroscopy (ARPES) measurements of VO2 using epitaxial thin films and observed the band dispersion near the Fermi level (EF) for this compound. The VO2 thin films have been grown on TiO2 (001) single-crystal substrates using pulsed laser deposition. The films exhibit a first-order metal-insulator transition (MIT) at 305 K. In the ARPES spectra of the metallic phase for the films, the O2p band shows highly dispersive features in the binding-energy range of 3-8 eV along the Γ-Z direction. Also, the V3d state shows two dispersive bands around the Γ point near EF , indicative of two electron pockets centered at the Γ point. Both electron pockets have an occupied bandwidth of about 0.4 eV. Assuming the parabolic energy bands around the Γ point, the effective-mass ratios of the two electron pockets are estimated to be about 0.2 and 1. The present work indicates that the ARPES measurements using epitaxial thin films are promising for determining the band structure of VO2 and thus would play a crucial role to elucidate the mechanism of the MIT in VO2 .

  4. Optical Switching in VO2 films by below-gap excitation

    SciTech Connect

    Dipartimento di Fisica, Universita?di Brescia, Italy; Universite du Quebec, INRS energie et materiaux, Varennes, Quebec; Department of Physics. Clarendon Laboratory, University of Oxford, UK; Department of Physics, University of Tokyo; Institute of Physics, University of Tsukuba, Ibaraki, Japan; Cavalleri, Andrea; Rini, Matteo; Giannetti, Claudio; Fourmaux, Sylvain; Wall, Simon; Hao, Zhao; Parmigiani, Fulvio; Fujimori, Atsushi; Onoda, Masashige; Kieffer, Jean-Claude; Schoenlein, Robert W.; Cavalleri, Andrea

    2008-03-14

    We study the photo-induced insulator-metal transition in VO2, correlating threshold and dynamic evolution with excitation wavelength. In high-quality single crystal samples, we find that switching can only be induced with photon energies above the 670-meV gap. This contrasts with the case of polycrystalline films, where formation of the metallic state can also be triggered with photon energies as low as 180 meV, well below the bandgap. Perfection of this process may be conducive to novel schemes for optical switches, limiters and detectors, operating at room temperature in the mid-IR.

  5. Erythropoietin elevates VO2,max but not voluntary wheel running in mice.

    PubMed

    Kolb, E M; Kelly, S A; Middleton, K M; Sermsakdi, L S; Chappell, M A; Garland, T

    2010-02-01

    Voluntary activity is a complex trait, comprising both behavioral (motivation, reward) and anatomical/physiological (ability) elements. In the present study, oxygen transport was investigated as a possible limitation to further increases in running by four replicate lines of mice that have been selectively bred for high voluntary wheel running and have reached an apparent selection limit. To increase oxygen transport capacity, erythrocyte density was elevated by the administration of an erythropoietin (EPO) analogue. Mice were given two EPO injections, two days apart, at one of two dose levels (100 or 300 microg kg(-1)). Hemoglobin concentration ([Hb]), maximal aerobic capacity during forced treadmill exercise (VO2,max) and voluntary wheel running were measured. [Hb] did not differ between high runner (HR) and non-selected control (C) lines without EPO treatment. Both doses of EPO significantly (P<0.0001) increased [Hb] as compared with sham-injected animals, with no difference in [Hb] between the 100 microg kg(-1) and 300 microg kg(-1) dose levels (overall mean of 4.5 g dl(-1) increase). EPO treatment significantly increased VO2,max by approximately 5% in both the HR and C lines, with no dosexline type interaction. However, wheel running (revolutions per day) did not increase with EPO treatment in either the HR or C lines, and in fact significantly decreased at the higher dose in both line types. These results suggest that neither [Hb] per se nor VO2,max is limiting voluntary wheel running in the HR lines. Moreover, we hypothesize that the decrease in wheel running at the higher dose of EPO may reflect direct action on the reward pathway of the brain.

  6. Time limit and time at VO2max' during a continuous and an intermittent run.

    PubMed

    Demarie, S; Koralsztein, J P; Billat, V

    2000-06-01

    The purpose of this study was to verify, by track field tests, whether sub-elite runners (n=15) could (i) reach their VO2max while running at v50%delta, i.e. midway between the speed associated with lactate threshold (vLAT) and that associated with maximal aerobic power (vVO2max), and (ii) if an intermittent exercise provokes a maximal and/or supra maximal oxygen consumption longer than a continuous one. Within three days, subjects underwent a multistage incremental test during which their vVO2max and vLAT were determined; they then performed two additional testing sessions, where continuous and intermittent running exercises at v50%delta were performed up to exhaustion. Subject's gas exchange and heart rate were continuously recorded by means of a telemetric apparatus. Blood samples were taken from fingertip and analysed for blood lactate concentration. In the continuous and the intermittent tests peak VO2 exceeded VO2max values, as determined during the incremental test. However in the intermittent exercise, peak VO2, time to exhaustion and time at VO2max reached significantly higher values, while blood lactate accumulation showed significantly lower values than in the continuous one. The v50%delta is sufficient to stimulate VO2max in both intermittent and continuous running. The intermittent exercise results better than the continuous one in increasing maximal aerobic power, allowing longer time at VO2max and obtaining higher peak VO2 with lower lactate accumulation.

  7. Pulmonary and leg VO2 during submaximal exercise: implications for muscular efficiency

    NASA Technical Reports Server (NTRS)

    Poole, D. C.; Gaesser, G. A.; Hogan, M. C.; Knight, D. R.; Wagner, P. D.

    1992-01-01

    Insights into muscle energetics during exercise (e.g., muscular efficiency) are often inferred from measurements of pulmonary gas exchange. This procedure presupposes that changes of pulmonary O2 (VO2) associated with increases of external work reflect accurately the increased muscle VO2. The present investigation addressed this issue directly by making simultaneous determinations of pulmonary and leg VO2 over a range of work rates calculated to elicit 20-90% of maximum VO2 on the basis of prior incremental (25 or 30 W/min) cycle ergometry. VO2 for both legs was calculated as the product of twice one-leg blood flow (constant-infusion thermodilution) and arteriovenous O2 content difference across the leg. Measurements were made 3-5 min after each work rate imposition to avoid incorporation of the VO2 slow component above the lactate threshold. For all 17 subjects, the slope of pulmonary VO2 (9.9 +/- 0.2 ml O2.W-1.min-1) was not different (P greater than 0.05) from that for leg VO2 (9.2 +/- 0.6 ml O2.W-1.min-1). Estimation of "delta" efficiency (i.e., delta work accomplished divided by delta energy expended, calculated from slope of VO2 vs. work rate and a caloric equivalent for O2 of 4.985 cal/ml) using pulmonary VO2 measurements (29.1 +/- 0.6%) was likewise not significantly different (P greater than 0.05) from that made using leg VO2 measurements (33.7 +/- 2.4%). These data suggest that the net VO2 cost of metabolic "support" processes outside the exercising legs changes little over a relatively broad range of exercise intensities. Thus, under the conditions of this investigation, changes of VO2 measured from expired gas reflected closely those occurring within the exercising legs.

  8. Indirect estimation of VO2max in athletes by ACSM's equation: valid or not?

    PubMed

    Koutlianos, N; Dimitros, E; Metaxas, T; Cansiz, M; Deligiannis, As; Kouidi, E

    2013-04-01

    The purpose of this study was to assess the indirect calculation of VO2max using ACSM's equation for Bruce protocol in athletes of different sports and to compare with the directly measured; secondly to develop regression models predicting VO2 max in athletes. Fifty five male athletes of national and international level (mean age 28.3 ± 5.6 yrs) performed graded exercise test with direct measurement of VO2 through ergospirometric device. Moreover, 3 equations were used for the indirect calculation of VO2max: a) VO2max= (0.2 · Speed) + (0.9 · Speed · Grade) + 3.5 (ACSM running equation), b) regression analysis model using enter method and c) stepwise method based on the measured data of VO2. Age, BMI, speed, grade and exercise time were used as independent variables. Regression analysis using enter method yielded the equation (R=.64, standard error of estimation [SEE] = 6.11): VO2max (ml·kg(-1)·min(-1)) = 58.443 - (0.215 · age) - (0.632 · BMI) - (68.639 · grade) + (1.579 · time) while stepwise method (R = .61, SEE = 6.18) led to: VO2max (ml·kg(-1)·min(-1)) = 33.971 - (0.291 · age) + (1.481 · time). The calculated values of VO2max from these regression models did not differ significantly from the measured VO2max (p>.05). On the contrary, VO2max calculated from the ACSM's running equation was significantly higher from the actually measured value by 14.6% (p <.05). In conclusion, it seems that ACSM's equation is not capable of accurately predicting VO2max in athletes aged 18-37 years using Bruce protocol. Only the regression models were correlated moderately with the actually measured values of VO2max.

  9. Indirect estimation of VO2max in athletes by ACSM’s equation: valid or not?

    PubMed Central

    Koutlianos, N; Dimitros, E; Metaxas, T; Cansiz, M; Deligiannis, AS; Kouidi, E

    2013-01-01

    Aim: The purpose of this study was to assess the indirect calculation of VO2max using ACSM’s equation for Bruce protocol in athletes of different sports and to compare with the directly measured; secondly to develop regression models predicting VO2 max in athletes. Methods: Fifty five male athletes of national and international level (mean age 28.3 ± 5.6 yrs) performed graded exercise test with direct measurement of VO2 through ergospirometric device. Moreover, 3 equations were used for the indirect calculation of VO2max: a) VO2max= (0.2 · Speed) + (0.9 · Speed · Grade) + 3.5 (ACSM running equation), b) regression analysis model using enter method and c) stepwise method based on the measured data of VO2. Age, BMI, speed, grade and exercise time were used as independent variables. Results: Regression analysis using enter method yielded the equation (R=.64, standard error of estimation [SEE] = 6.11): VO2max (ml·kg-1·min-1) = 58.443 - (0.215 · age) - (0.632 · BMI) - (68.639 · grade) + (1.579 · time) while stepwise method (R = .61, SEE = 6.18) led to: VO2max (ml·kg-1·min-1) = 33.971 - (0.291 · age) + (1.481 · time). The calculated values of VO2max from these regression models did not differ significantly from the measured VO2max (p>.05). On the contrary, VO2max calculated from the ACSM’s running equation was significantly higher from the actually measured value by 14.6% (p <.05). Conclusions: In conclusion, it seems that ACSM’s equation is not capable of accurately predicting VO2max in athletes aged 18-37 years using Bruce protocol. Only the regression models were correlated moderately with the actually measured values of VO2max. PMID:24376318

  10. Pulmonary and leg VO2 during submaximal exercise: implications for muscular efficiency

    NASA Technical Reports Server (NTRS)

    Poole, D. C.; Gaesser, G. A.; Hogan, M. C.; Knight, D. R.; Wagner, P. D.

    1992-01-01

    Insights into muscle energetics during exercise (e.g., muscular efficiency) are often inferred from measurements of pulmonary gas exchange. This procedure presupposes that changes of pulmonary O2 (VO2) associated with increases of external work reflect accurately the increased muscle VO2. The present investigation addressed this issue directly by making simultaneous determinations of pulmonary and leg VO2 over a range of work rates calculated to elicit 20-90% of maximum VO2 on the basis of prior incremental (25 or 30 W/min) cycle ergometry. VO2 for both legs was calculated as the product of twice one-leg blood flow (constant-infusion thermodilution) and arteriovenous O2 content difference across the leg. Measurements were made 3-5 min after each work rate imposition to avoid incorporation of the VO2 slow component above the lactate threshold. For all 17 subjects, the slope of pulmonary VO2 (9.9 +/- 0.2 ml O2.W-1.min-1) was not different (P greater than 0.05) from that for leg VO2 (9.2 +/- 0.6 ml O2.W-1.min-1). Estimation of "delta" efficiency (i.e., delta work accomplished divided by delta energy expended, calculated from slope of VO2 vs. work rate and a caloric equivalent for O2 of 4.985 cal/ml) using pulmonary VO2 measurements (29.1 +/- 0.6%) was likewise not significantly different (P greater than 0.05) from that made using leg VO2 measurements (33.7 +/- 2.4%). These data suggest that the net VO2 cost of metabolic "support" processes outside the exercising legs changes little over a relatively broad range of exercise intensities. Thus, under the conditions of this investigation, changes of VO2 measured from expired gas reflected closely those occurring within the exercising legs.

  11. Advancements in Optical Properties of Thermochromic VO 2 Films through Experimental and Numerical Investigations

    NASA Astrophysics Data System (ADS)

    Miller, Mark J.

    The Department of Energy reports that buildings consume more than 40% of primary energy in the U.S. and that this trend will continue for the foreseeable future. Furthermore, windows constitute a major path for energy losses from buildings and therefore also present a significant opportunity for efficiency improvement and waste reduction. With this in mind, the work in this dissertation is focused on improving the control of solar and thermal radiation through windows. These radiation spectra can be controlled independently because they peak at different wavelengths due to the much higher temperature (5500 °C) of the Sun compared to objects on Earth (25 °C). In this work, a thermochromic material is utilized to control solar irradiance and a low-emissive (low-E) material is used to control thermal radiation. Thermochromic materials possess optical properties that change in response to temperature and low-E coatings are reflective in the mid-infrared (thermal) region. VO 2 is an exciting candidate for thermochromic coatings because its transmittance in the visible region is relatively constant, but its reflectance in the IR increases significantly with temperature. The main technical issues limiting VO2 are luminous transmittance (Tlum) that is too low and a transition temperature (tauc) that is too high. For the low-E coating, (SnO2)x(In 2O3)1-x (ITO glass) was chosen because it has both high luminous transmittance and low emissivity. In this dissertation it is shown that tauc of VO2 can be lowered from 50 to 45 °C by reducing the grain size of the film from 70 to 31 nm. In the area of luminous transmittance, TiO2 is investigated as an anti-reflective coating which can be used to increase Tlum. Later in this work, it is demonstrated that the energy efficiency gained through VO2 can be further improved by combining it with a low-E coating. The multilayer design combines anti-reflection in the visible region, thermochromism the near-IR and low emissivity in the

  12. Semiconductor to Metal Transition Characteristics of VO2/NiO Epitaxial Heterostructures Integrated with Si(100)

    NASA Astrophysics Data System (ADS)

    Molaei, Roya

    The novel functionalities of Vanadium dioxide (VO2), such as, several orders of magnitude transition in resistivity and IR transmittance, provide the exciting opportunity for the development of next generation memory, sensor, and field-effect based devices. A critical issue in the development of practical devices based on metal oxides is the integration of high quality epitaxial oxide thin films with the existing silicon technology which is based on silicon (100) substrates. However, silicon is not suitable for epitaxial growth of oxides owing to its tendency to readily form an amorphous oxide layer or silicide at the film-substrate interface. The oxide films deposited directly on silicon exhibit poor crystallinity and are not suitable for device applications. To overcome this challenge, appropriate substrate templates must be developed for the growth of oxide thin films on silicon substrates. The primary objective of this dissertation was to develop an integration methodology of VO2 with Si (100) substrates so they could be used in "smart" sensor type of devices along with other multifunctional devices on the same silicon chip. This was achieved by using a NiO/c- YSZ template layer deposited in situ. It will be shown that if the deposition conditions are controlled properly. This approach was used to integrate VO 2 thin films with Si (100) substrates using pulsed laser deposition (PLD) technique. The deposition methodology of integrating VO2 thin films on silicon using various other template layers will also be discussed. Detailed epitaxial relationship of NiO/c-YSZ/Si(100) heterostructures as a template to growth of VO2 as well as were studied. We also were able to create a p-n junction within a single NiO epilayer through subsequent nanosecond laser annealing, as well as established a structure-property correlation in NiO/c-YSZ/Si(100) thin film epitaxial heterostructures with especial emphasis on the stoichiometry and crystallographic characteristics. Ni

  13. Nanoscale probing of electronic band gap and topography of VO2 thin film surfaces by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Yin, W.; Wolf, S.; Ko, C.; Ramanathan, S.; Reinke, P.

    2011-01-01

    The metal-insulator transition (MIT) in vanadium dioxide in the vicinity of room temperature makes it one of the most interesting materials for novel switching device applications. It is therefore essential to have a fundamental understanding of the VO2 surface when it is incorporated into multilayer structures or nanodevices. This study focuses on the surface modification of VO2 in response to the thermal treatment during phase transition. Vacuum annealing at temperatures in the vicinity of the MIT triggers a partial reduction in the surface, and thus initiates a chemical phase transition. Scanning tunneling microscopy and spectroscopy are used to investigate the electronic properties and surface structure of the VO2 thin film on (0001) sapphire substrates. Band gap maps with a high spatial resolution and single point spectroscopy I-V curves are measured as the sample is cycled through the MIT, and thus provide a direct observation of the surface phase transition at the nanoscale. The VO2 surface exhibits a homogeneous insulating behavior with a typical band gap of ˜0.5 eV at room temperature, and the surface becomes more metallic and spatially inhomogeneous in conductivity during MIT, and wide range of surface oxides can be identified. The surface still remains partially metallic after cooling down from a long period anneal, and such irreversible surface electrical change is attributed to the loss of oxygen. The location of metallic islands after thermal cycling is strongly coupled to the topography of the film, and relaxation processes and continued modification of the spatial distribution of the metallic regions are recognized on a longer timescale. The impact of film morphology, strain, surface chemistry, and structural phase transition on the electronic characteristics of VO2 surfaces are discussed.

  14. Hydrogen diffusion and stabilization in single-crystal VO2 micro/nanobeams by direct atomic hydrogenation.

    PubMed

    Lin, Jian; Ji, Heng; Swift, Michael W; Hardy, Will J; Peng, Zhiwei; Fan, Xiujun; Nevidomskyy, Andriy H; Tour, James M; Natelson, Douglas

    2014-09-10

    We report measurements of the diffusion of atomic hydrogen in single crystalline VO2 micro/nanobeams by direct exposure to atomic hydrogen, without catalyst. The atomic hydrogen is generated by a hot filament, and the doping process takes place at moderate temperature (373 K). Undoped VO2 has a metal-to-insulator phase transition at ∼340 K between a high-temperature, rutile, metallic phase and a low-temperature, monoclinic, insulating phase with a resistance exhibiting a semiconductor-like temperature dependence. Atomic hydrogenation results in stabilization of the metallic phase of VO2 micro/nanobeams down to 2 K, the lowest point we could reach in our measurement setup. Optical characterization shows that hydrogen atoms prefer to diffuse along the c axis of rutile (a axis of monoclinic) VO2, along the oxygen "channels". Based on observing the movement of the hydrogen diffusion front in single crystalline VO2 beams, we estimate the diffusion constant for hydrogen along the c axis of the rutile phase to be 6.7 × 10(-10) cm(2)/s at approximately 373 K, exceeding the value in isostructural TiO2 by ∼38×. Moreover, we find that the diffusion constant along the c axis of the rutile phase exceeds that along the equivalent a axis of the monoclinic phase by at least 3 orders of magnitude. This remarkable change in kinetics must originate from the distortion of the "channels" when the unit cell doubles along this direction upon cooling into the monoclinic structure. Ab initio calculation results are in good agreement with the experimental trends in the relative kinetics of the two phases. This raises the possibility of a switchable membrane for hydrogen transport.

  15. A bioinspired solution for spectrally selective thermochromic VO2 coated intelligent glazing.

    PubMed

    Taylor, Alaric; Parkin, Ivan; Noor, Nuruzzaman; Tummeltshammer, Clemens; Brown, Mark S; Papakonstantinou, Ioannis

    2013-09-09

    We present a novel approach towards achieving high visible transmittance for vanadium dioxide (VO(2)) coated surfaces whilst maintaining the solar energy transmittance modulation required for smart-window applications. Our method deviates from conventional approaches and utilizes subwavelength surface structures, based upon those present on the eyeballs of moths, that are engineered to exhibit broadband, polarization insensitive and wide-angle antireflection properties. The moth-eye functionalised surface is expected to benefit from simultaneous super-hydrophobic properties that enable the window to self-clean. We develop a set of design rules for the moth-eye surface nanostructures and, following this, numerically optimize their dimensions using parameter search algorithms implemented through a series of Finite Difference Time Domain (FDTD) simulations. We select six high-performing cases for presentation, all of which have a periodicity of 130 nm and aspect ratios between 1.9 and 8.8. Based upon our calculations the selected cases modulate the solar energy transmittance by as much as 23.1% whilst maintaining high visible transmittance of up to 70.3%. The performance metrics of the windows presented in this paper are the highest calculated for VO(2) based smart-windows.

  16. Muscle synergies during incremental rowing VO2max test of collegiate rowers and untrained subjects.

    PubMed

    Shaharudin, Shazlin; Agrawal, Sunil

    2016-09-01

    The purpose of this study was to evaluate the muscle synergies during incremental rowing VO2 max Test of collegiate rowers and untrained subjects. As a power endurance sport, high aerobic capacity was one of the determinants of rowing performance. The modulation of muscle recruitment patterns following specific physiological demands was an indication of the robustness of muscle synergies composition which was overlooked in previous studies. Ten male collegiate rowers and physically active untrained subjects were recruited. Muscle synergies were extracted from 16 rowing-specific muscles using Principal Component Analysis with varimax rotation. Incremental rowing VO2 max Test was performed on slides ergometer (SE). Rowing performance and physiological variables were analyzed. Rowers exerted greater power output, more energy expenditure and better rowing economy compared to untrained subjects. Rowers preferred to row slower with longer strokes compared to the untrained subjects. Three muscle synergies with high indices of similarity of waveform patterns were extracted in both groups. Significant association was found between muscle synergies and rowing economy. The findings of this study showed that muscle synergies were robust during aerobic-dominant activity for collegiate rowers and untrained subjects. Rowers and coaches could utilize the findings by emphasizing on muscle coordination training, which may enhance the rowing economy.

  17. Monitoring changes in VO2max via the Polar FT40 in female collegiate soccer players.

    PubMed

    Esco, Michael R; Snarr, Ronald L; Williford, Hank N

    2014-01-01

    This study was conducted to determine if the Polar FT40 could accurately track changes in maximal oxygen consumption (VO2max) in a group of female soccer players. Predicted VO2max (pVO2max) via the Polar FT40 and observed VO2max (aVO2max) from a maximal exercise test on a treadmill were determined for members of a collegiate soccer team (n = 20) before and following an 8-week endurance training protocol. Predicted (VO2max and aVO2max measures were compared at baseline and within 1 week post-training. Change values (i.e., the difference between pre to post) for each variable were also determined and compared. There was a significant difference in aVO2max (pre = 43.6 ± 2.4 ml · kg · min(-1), post = 46.2 ± 2.4 ml · kg · min(-1), P < 0.001) and pVO2max (pre = 47.3 ± 5.3 ml · kg · min(-1), post = 49.7 ± 6.2 ml · kg · min(-1), P = 0.009) following training. However, predicted values were significantly greater at each time point compared to observed values (P < 0.001 at pre and P = 0.008 at post). Furthermore, there was a weak correlation between the change in aVO2max and the change in pVO2max (r = 0.18, P = 0.45). The Polar FT40 does not appear to be a valid method for predicting changes in individual VO2max following 8 weeks of endurance training in female collegiate soccer players.

  18. EPR study of VO2+ doped glycine zinc sulphate single crystal

    NASA Astrophysics Data System (ADS)

    Prabakaran, R.; Subramanian, P.

    2015-06-01

    Single crystals Of GZS:VO2+ were grown by slow evaporation of solvent at room temperature. The EPR study was carried out at room temperature. Single crystal rotations in each of the three mutually orthogonal planes indicate single site occupation of VO2+ in the lattice. g and A tensors were calculated from the recorded EPR spectra. The principal values of g and A indicates existence of rhombic symmetry around the VO2+ ion. From the direction cosines of the g and A tensors, the locations of VO2+ in the lattice have been identified as substitutional site.

  19. Temperature-agile and structure-tunable optical properties of VO2/Ag thin films

    NASA Astrophysics Data System (ADS)

    Zhang, X. R.; Wang, W.; Zhao, Y.; Hu, X.; Reinhardt, K.; Knize, R. J.; Lu, Yalin

    2012-12-01

    By integrating together VO2's unique near-room-temperature (RT) semiconductor-metal (S-M) phase transition with a thin silver (Ag) layer's plasmonic properties, VO2/Ag multilayers could present a much enhanced optical transmission change when increasing the temperature from RT to over VO2's S-M phase-transition temperature. Changing VO2 and Ag layer thicknesses can also significantly tune their transmission and absorption properties, which could lead to a few useful designs in optoelectronic and energy-saving industries.

  20. Effects of body mass on exercise efficiency and VO2 during steady-state cycling.

    PubMed

    Berry, M J; Storsteen, J A; Woodard, C M

    1993-09-01

    Oxygen uptake (VO2) and exercise efficiency during cycle ergometer exercise are considered to be independent of body mass. To determine the validity of this assumption, 50 females ranging in body mass from 41.5-98.9 kg exercised on a cycle ergometer with no load at 60 rpm and at 25, 50, 75, and 100 W at 60 and 90 rpm. Gross VO2 and efficiency, net VO2 and efficiency, work VO2 and efficiency, and delta efficiency were computed. Gross and net VO2 were significantly and positively correlated with body mass at all work rates and pedal frequencies. Gross efficiency was significantly and negatively correlated with body mass at all work rates and pedal frequencies. Work VO2 and body mass were not significantly correlated. The correlations between work and delta efficiency and body mass were not significant. Since body mass was found to be significantly correlated with gross VO2, the following equation was developed using stepwise multiple regression to predict gross VO2: VO2 (ml.min-1) = 10.9 (work rate, W) + 8.2 (pedal rate, rpm) + 8.3 (body mass, kg) - 559.6. These data suggest that body mass should be considered when estimating the oxygen uptake during cycle ergometer exercise.

  1. Laser-processing of VO2 thin films synthesized by polymer-assisted-deposition

    NASA Astrophysics Data System (ADS)

    Breckenfeld, Eric; Kim, Heungsoo; Gorzkowski, Edward P.; Sutto, Thomas E.; Piqué, Alberto

    2017-03-01

    We investigate a novel route for synthesis and laser-sintering of VO2 thin films via solution-based polymer-assisted-deposition (PAD). By replacing the traditional solvent for PAD (water) with propylene glycol, we are able to control the viscosity and improve the environmental stability of the precursor. The solution stability and ability to control the viscosity makes for an ideal solution to pattern simple or complex shapes via direct-write methods. We demonstrate the potential of our precursor for printing applications by combining PAD with laser induced forward transfer (LIFT). We also demonstrate large-area film synthesis on 4 in. diameter glass wafers. By varying the annealing temperature, we identify the optimal synthesis conditions, obtaining optical transmittance changes of 60% at a 2500 nm wavelength and a two-order-of-magnitude semiconductor-to-metal transition. We go on to demonstrate two routes for improved semiconductor-to-metal characteristics. The first method uses a multi-coating process to produce denser films with large particles. The second method uses a pulsed-UV-laser sintering step in films annealed at low temperatures (<450° C) to promote particle growth and improve the semiconductor-to-metal transition. By comparing the hysteresis width and semiconductor-to-metal transition magnitude in these samples, we demonstrate that both methods yield high quality VO2 with a three-order-of-magnitude transition.

  2. Increase of Structural Phase Transition Temperature with Cr doping in Cr:VO2 Thin Films

    NASA Astrophysics Data System (ADS)

    Brown, B. L.; Lee, Mark; Clem, P.; Nordquist, C. D.; Jordan, T. S.; Wolfley, S. L.; Leonhardt, D.; Custer, J. A.

    2013-03-01

    Bulk crystal VO2 has a well-known structural phase transition near Tc = 68 °C that separates a low-temperature insulating phase from a high-temperature metallic phase with several orders-of-magnitude resistance contrast between the two phases. We report electrical and optical studies of the effect of Cr doping on the Tc in Cr:VO2 thin films. Resistivity, Hall effect, and infrared reflectivity all show that Cr doping systematically increases Tc from 50 °C up to ~ 75 °C at 11% Cr with similar transition width and hysteresis from DC to infrared, but the effect appears to saturate. At the same time, there is a modest decrease in resistance contrast. We will discuss possible effects of both carrier density and scattering changes across Tc on the resistance. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Utility of a Non-Exercise VO2max Prediction Model for Designing Ramp Test Protocols.

    PubMed

    Cunha, F A; Midgley, A; Montenegro, R; Vasconcellos, F; Farinatti, P

    2015-10-01

    This study investigated the validity of determining the final work rates of cycling and walking ramp-incremented maximal cardiopulmonary exercise tests (CPETs) using a non-exercise model to predict maximal oxygen uptake VO2max and the American College of Sports Medicine ACSM's metabolic equations. The validity of using this methodology to elicit the recommended test duration of between 8 and 12 min was then evaluated. First, 83 subjects visited the laboratory once to perform a cycling (n=49) or walking (n=34) CPET to investigate the validity of the methodology. Second, 25 subjects (cycling group: n=13; walking group: n=12) performed a CPET on 2 separate days to test the reliability of CPET outcomes. Observed VO2max was 1.0 ml·kg(-1)·min(-1) lower than predicted in the cycling CPET (P=0.001) and 1.4 ml·kg(-1)·min(-1) lower in the walking CPET (P=0.001). Only one of the 133 conducted CPETs was outside the test duration range of 8-12 min. Test-retest reliability was high for all CPET outcomes, with intraclass correlation coefficients of 0.90 to 0.99. In conclusion, the non-exercise model is a valid and reliable method for establishing the final work rate of cycling and walking CPETs for eliciting test durations of between 8 and 12 min.

  4. Electrode Reaction Mechanism of Ag2VO2PO4 Cathode

    DOE PAGES

    Zhang, Ruibo; Abtew, Tesfaye A.; Quackenbush, Nicholas F.; ...

    2016-05-09

    In this study, the high capacity of primary lithium-ion cathode Ag2VO2PO4 is facilitated by both displacement and insertion reaction mechanisms. Whether the Ag extrusion (specifically, Ag reduction with Ag metal displaced from the host crystal) and V reduction are sequential or concurrent remains unclear. A microscopic description of the reaction mechanism is required for developing design rules for new multimechanism cathodes, combining both displacement and insertion reactions. However, the amorphization of Ag2VO2PO4 during lithiation makes the investigation of the electrode reaction mechanism difficult with conventional characterization tools. For addressing this issue, a combination of local probes of pair-distribution function andmore » X-ray spectroscopy were used to obtain a description of the discharge reaction. We determine that the initial reaction is dominated by silver extrusion with vanadium playing a supporting role. In addition, once sufficient Ag has been displaced, the residual Ag+ in the host can no longer stabilize the host structure and V–O environment (i.e., onset of amorphization). After amorphization, silver extrusion continues but the vanadium reduction dominates the reaction. As a result, the crossover from primarily silver reduction displacement to vanadium reduction is facilitated by the amorphization that makes vanadium reduction increasingly more favorable.« less

  5. VO2 Kinetics and Metabolic Contributions Whilst Swimming at 95, 100, and 105% of the Velocity at VO2 max

    PubMed Central

    Sousa, Ana C.; Vilas-Boas, João P.; Fernandes, Ricardo J.

    2014-01-01

    A bioenergetical analysis of swimming at intensities near competitive distances is inexistent. It was aimed to compare the transient VO2 kinetics responses and metabolic contributions whilst swimming at different velocities around VO2max⁡. 12 trained male swimmers performed (i) an incremental protocol to determine the velocity at VO2max⁡ (vVO2max⁡) and (ii) three square wave exercises from rest to 95, 100, and 105% of vVO2max⁡. VO2 was directly measured using a telemetric portable gas analyser and its kinetics analysed through a double-exponential model. Metabolic contributions were assessed through the sum of three energy components. No differences were observed in the fast component response (τ1—15, 18, and 16 s, A1—36, 34, and 37 mL · kg−1 · min⁡−1, and Gain—32, 29, and 30 mL · min⁡−1 at 95, 100, and 105% of the vVO2max⁡, resp.) but A2 was higher in 95 and 100% compared to 105% intensity (480.76 ± 247.01, 452.18 ± 217.04, and 147.04 ± 60.40 mL · min⁡−1, resp.). The aerobic energy contribution increased with the time sustained (83 ± 5, 74 ± 6, and 59 ± 7% for 95, 100, and 105%, resp.). The adjustment of the cardiovascular and/or pulmonary systems that determine O2 delivery and diffusion to the exercising muscles did not change with changing intensity, with the exception of VO2 slow component kinetics metabolic profiles. PMID:25045690

  6. Low-temperature CVD synthesis of patterned core-shell VO2@ZnO nanotetrapods and enhanced temperature-dependent field-emission properties

    NASA Astrophysics Data System (ADS)

    Yin, Haihong; Yu, Ke; Song, Changqing; Wang, Zhiliang; Zhu, Ziqiang

    2014-09-01

    VO2 nanostructures are attractive materials because of their reversible metal-insulator transition (MIT) and wide applications in devices. When they are used as field emitters, a new type of temperature-controlled field emission device can be fabricated. Vapor transport methods used to synthesize traditional VO2 nanostructures are energy-intensive, low yield, and produce simple morphology (quasi-1D) that exhibits substrate clamping; thus they are not suitable for field emission applications. To overcome these limitations, ZnO nanotetrapods were used as templates, and patterned core-shell VO2@ZnO nanotetrapods were successfully grown on an ITO/glass substrate via a low-temperature CVD synthesis. SEM, TEM, EDX, XPS analyses and X-ray diffraction revealed that the cores and shells of these nanotetrapods were single crystal wurtzite-type ZnO and polycrystalline VO2, respectively. The VO2@ZnO nanotetrapods show strongly MIT-related FE properties, the emission current density at low temperature is significantly enhanced in comparison with pure VO2 nanostructures, and the emission current density increased by about 20 times as the ambient temperature increased from 25 to 105 °C at a fixed field of 5 V μm-1. Although the VO2@ZnO nanotetrapods show a worse FE performance at low temperatures compared with pure ZnO nanotetrapods, the FE performance was substantially improved at high temperatures, which was attributed to the MIT-related band bending near the interface and the abrupt resistance change across the MIT.

  7. The effect of trial familiarisation on the validity and reproducibility of a field-based self-paced VO2max test.

    PubMed

    Lim, W; Lambrick, D; Mauger, A R; Woolley, B; Faulkner, J

    2016-09-01

    The self-paced maximal oxygen uptake (VO2max) test (SPV), which is based on the Borg 6-20 Ratings of Perceived Exertion (RPE) scale, allows participants to self-regulate their exercise intensity during a closed-loop incremental maximal exercise test. As previous research has assessed the utility of the SPV test within laboratory conditions, the purpose to this study was to assess the effect of trial familiarisation on the validity and reproducibility of a field-based, SPV test. In a cross-sectional study, fifteen men completed one laboratory-based graded exercise test (GXT) and three field-based SPV tests. The GXT was continuous and incremental until the attainment of VO2max. The SPV, which was completed on an outdoor 400m athletic track, consisted of five x 2 min perceptually-regulated (RPE11, 13, 15, 17 and 20) stages of incremental exercise. There were no differences in the VO2max reported between the GXT (63.5±10.1 ml·kg(-1)·min(-1)) and each SPV test (65.5±8.7, 65.4±7.0 and 66.7±7.7 ml·kg(-1)·min(-1) for SPV1, SPV2 and SPV3, respectively; P>.05). Similar findings were observed when comparing VO2max between SPV tests (P>.05). High intraclass correlation coefficients were reported between the GXT and the SPV, and between each SPV test (≥.80). Although participants ran faster and further during SPV3, a similar pacing strategy was implemented during all tests. This study demonstrated that a field-based SPV is a valid and reliable VO2max test. As trial familiarisation did not moderate VO2max values from the SPV, the application of a single SPV test is an appropriate stand-alone protocol for gauging VO2max.

  8. Low-temperature CVD synthesis of patterned core-shell VO2@ZnO nanotetrapods and enhanced temperature-dependent field-emission properties.

    PubMed

    Yin, Haihong; Yu, Ke; Song, Changqing; Wang, Zhiliang; Zhu, Ziqiang

    2014-10-21

    VO2 nanostructures are attractive materials because of their reversible metal-insulator transition (MIT) and wide applications in devices. When they are used as field emitters, a new type of temperature-controlled field emission device can be fabricated. Vapor transport methods used to synthesize traditional VO2 nanostructures are energy-intensive, low yield, and produce simple morphology (quasi-1D) that exhibits substrate clamping; thus they are not suitable for field emission applications. To overcome these limitations, ZnO nanotetrapods were used as templates, and patterned core-shell VO2@ZnO nanotetrapods were successfully grown on an ITO/glass substrate via a low-temperature CVD synthesis. SEM, TEM, EDX, XPS analyses and X-ray diffraction revealed that the cores and shells of these nanotetrapods were single crystal wurtzite-type ZnO and polycrystalline VO2, respectively. The VO2@ZnO nanotetrapods show strongly MIT-related FE properties, the emission current density at low temperature is significantly enhanced in comparison with pure VO2 nanostructures, and the emission current density increased by about 20 times as the ambient temperature increased from 25 to 105 °C at a fixed field of 5 V μm(-1). Although the VO2@ZnO nanotetrapods show a worse FE performance at low temperatures compared with pure ZnO nanotetrapods, the FE performance was substantially improved at high temperatures, which was attributed to the MIT-related band bending near the interface and the abrupt resistance change across the MIT.

  9. Validity of VO2max equations for aerobically trained males and females.

    PubMed

    Malek, Moh H; Berger, Dale E; Housh, Terry J; Coburn, Jared W; Beck, Travis W

    2004-08-01

    The purpose of this investigation was to cross-validate existing VO2max prediction equations on samples of aerobically trained males and females. A total of 142 aerobically trained males (mean +/- SD; 39.0 +/- 11.1 yr, N = 93) and females (39.7 +/- 10.1 yr, N = 49) performed a maximal incremental test to determine actual VO2max on a cycle ergometer. The predicted VO2max values from 18 equations (nine for each gender) were compared with actual VO2max by examining the constant error (CE), standard error of estimate (SEE), correlation coefficient (r), and total error (TE). The results of this investigation indicated that all of the equations resulted in significant (P < 0.006) CE values ranging from -216 to 1415 mL x min(-1) for the males and 132 to 1037 mL x min(-1) for the females. In addition the SEE, r, and TE values ranged from 266 to 609 mL x min(-1), 0.36 to 0.88, and 317 to 1535 mL x min(-1), respectively. Furthermore, the lowest TE values for the males and females represented 10% and 12% of the mean actual VO2max values, respectively. The results of the analysis indicated that the two equations using age, body weight, and the power output achieved at VO2 as predictor variables had the lowest SEE (7.7-9.8% of actual VO2max) and TE (10-12% of actual VO2max) values and are recommended for estimating VO2max in aerobically trained males and females. The magnitude of the TE values (>or= 20% of actual VO2max) associated with the remaining 16 equations, however, were too large to be of practical value for estimating VO2max.

  10. A Study of VO2 Max and Body Fat Percentage in Female Athletes

    PubMed Central

    Bute, Smita S; Deshmukh, P.R

    2014-01-01

    Introduction: Aerobic capacity of athletes is an important element of success in sports achievements. It is generally considered the best indicator of cardio respiratory endurance and athletic fitness. Body fat percentage affects VO2 max and thus the cardiovascular status of the athletes. The present study was undertaken to assess the VO2 max and body fat percentage in athletes. The secondary objective of the study was to study the relationship between VO2 max and body fat percentage. Materials and Methods: Twenty five female athletes of age group 17-22years were selected for the study. VO2 max was determined by Queen’s college step test and body fat percentage by skin fold calipers. The VO2 max and body fat percentage were determined in non athletes of same age group for comparison. The statistical analysis was done by Student’s t-test and Pearson correlation test. Observation and Results: The mean VO2 max in athletic group was 39.62 ± 2.80 ml/kg/min. In non-athletic group, VO2 max was 23.54 ± 3.26 ml/kg/min. The mean body fat percentage in athletes was 24.11 ± 1.83% and in non-athletes it was 29.31 ± 3.86%.The difference in VO2 max and body fat percentage was statistically significant in our study. The VO2 max and body fat percentage in both the groups showed negative correlation by Pearson test but, was not statistically significant. Conclusion: The present study showed a statistically significant higher VO2 max in female athletes. The study showed a negative correlation between VO2 max and body fat percentage but was not statistically significant. PMID:25653935

  11. The Effect of Aging on Relationships between Lean Body Mass and VO2max in Rowers

    PubMed Central

    Kim, Chul-Ho

    2016-01-01

    Aging is associated with a fall in maximal aerobic capacity as well as with a decline in lean body mass. The purpose of the study was to investigate the influence of aging on the relationship between aerobic capacity and lean body mass in subjects that chronically train both their upper and lower bodies. Eleven older rowers (58±5 yrs) and 11 younger rowers (27±4 yrs) participated in the study. Prior to the VO2max testing, subjects underwent a dual energy X-ray absorptiometry scan to estimate total lean body mass. Subsequently, VO2max was quantified during a maximal exercise test on a rowing ergometer as well as a semi-recumbent cycle ergometer. The test protocol included a pre-exercise stage followed by incremental exercise until VO2max was reached. The order of exercise modes was randomized and there was a wash-out period between the two tests. Oxygen uptake was obtained via a breath-by-breath metabolic cart (Vmax™ Encore, San Diego, CA). Rowing VO2max was higher than cycling VO2max in both groups (p<0.05). Older subjects had less of an increase in VO2max from cycling to rowing (p<0.05). There was a significant relationship between muscle mass and VO2max for both groups (p<0.05). After correcting for muscle mass, the difference in cycling VO2max between groups disappeared (p>0.05), however, older subjects still demonstrated a lower rowing VO2max relative to younger subjects (p<0.05). Muscle mass is associated with the VO2max obtained, however, it appears that VO2max in older subjects may be less influenced by muscle mass than in younger subjects. PMID:27479009

  12. A longitudinal assessment of change in VO2max and maximal heart rate in master athletes.

    PubMed

    Hawkins, S A; Marcell, T J; Victoria Jaque, S; Wiswell, R A

    2001-10-01

    The purpose of this study was to determine the longitudinal change in VO2max and HRmax in male and female master endurance runners and to compare these changes based upon gender, age, and change in training volume. Eighty-six male (53.9 +/- 1.1 yr) and 49 female (49.1 +/- 1.2 yr) master endurance runners were tested an average of 8.5 yr apart. Subjects were grouped by age at first visit, change in VO2max, and change in training volume. Measurements included body composition by hydrostatic weighing, maximal exercise testing on a treadmill, and training history by questionnaire. Data were analyzed by ANOVA and multiple regression. VO2max and HRmax declined significantly regardless of gender or age group (P < 0.05). The rate of change in VO2max by age group ranged from -1% to -4.6% per year for men and -0.5% to 2.4% per year for women. Men with the greatest loss in VO2max had the greatest loss in LBM (-2.8 +/- 0.7 kg), whereas women with the greatest loss in VO2max demonstrated the greatest change in training volume (-24.1 +/- 3.0 km.wk-1). Additionally, women with the greatest loss in VO2max (-9.6 +/- 2.6 mL.kg-1.min-1) did not replace estrogen after menopause independent of age. HRmax change did not differ by VO2max change or training volume change in either gender. In conclusion, these data suggest that VO2max declines in male and female master athletes at a rate similar to or greater than that expected in sedentary older adults. Additionally, these data suggest that maintenance of LBM and VO2max were associated in men, whereas in women, estrogen replacement and maintenance of training volume were associated with maintained VO2max.

  13. The Effect of Aging on Relationships between Lean Body Mass and VO2max in Rowers.

    PubMed

    Kim, Chul-Ho; Wheatley, Courtney M; Behnia, Mehrdad; Johnson, Bruce D

    2016-01-01

    Aging is associated with a fall in maximal aerobic capacity as well as with a decline in lean body mass. The purpose of the study was to investigate the influence of aging on the relationship between aerobic capacity and lean body mass in subjects that chronically train both their upper and lower bodies. Eleven older rowers (58±5 yrs) and 11 younger rowers (27±4 yrs) participated in the study. Prior to the VO2max testing, subjects underwent a dual energy X-ray absorptiometry scan to estimate total lean body mass. Subsequently, VO2max was quantified during a maximal exercise test on a rowing ergometer as well as a semi-recumbent cycle ergometer. The test protocol included a pre-exercise stage followed by incremental exercise until VO2max was reached. The order of exercise modes was randomized and there was a wash-out period between the two tests. Oxygen uptake was obtained via a breath-by-breath metabolic cart (Vmax™ Encore, San Diego, CA). Rowing VO2max was higher than cycling VO2max in both groups (p<0.05). Older subjects had less of an increase in VO2max from cycling to rowing (p<0.05). There was a significant relationship between muscle mass and VO2max for both groups (p<0.05). After correcting for muscle mass, the difference in cycling VO2max between groups disappeared (p>0.05), however, older subjects still demonstrated a lower rowing VO2max relative to younger subjects (p<0.05). Muscle mass is associated with the VO2max obtained, however, it appears that VO2max in older subjects may be less influenced by muscle mass than in younger subjects.

  14. Removing the thermal component from heart rate provides an accurate VO2 estimation in forest work.

    PubMed

    Dubé, Philippe-Antoine; Imbeau, Daniel; Dubeau, Denise; Lebel, Luc; Kolus, Ahmet

    2016-05-01

    Heart rate (HR) was monitored continuously in 41 forest workers performing brushcutting or tree planting work. 10-min seated rest periods were imposed during the workday to estimate the HR thermal component (ΔHRT) per Vogt et al. (1970, 1973). VO2 was measured using a portable gas analyzer during a morning submaximal step-test conducted at the work site, during a work bout over the course of the day (range: 9-74 min), and during an ensuing 10-min rest pause taken at the worksite. The VO2 estimated, from measured HR and from corrected HR (thermal component removed), were compared to VO2 measured during work and rest. Varied levels of HR thermal component (ΔHRTavg range: 0-38 bpm) originating from a wide range of ambient thermal conditions, thermal clothing insulation worn, and physical load exerted during work were observed. Using raw HR significantly overestimated measured work VO2 by 30% on average (range: 1%-64%). 74% of VO2 prediction error variance was explained by the HR thermal component. VO2 estimated from corrected HR, was not statistically different from measured VO2. Work VO2 can be estimated accurately in the presence of thermal stress using Vogt et al.'s method, which can be implemented easily by the practitioner with inexpensive instruments.

  15. Effect of Toe Clips During Bicycle Ergometry on VO2 max.

    ERIC Educational Resources Information Center

    Moffat, Roger S.; Sparling, Phillip B.

    1985-01-01

    Eight men participated in three randomized maximal oxygen uptake tests to investigate the hypothesis that the use of toe clips on bicycle ergometers produced a higher VO2 max. No significant difference in mean VO2 max or performance time was observed. (Author/MT)

  16. A new non-exercise-based Vo2max prediction equation for aerobically trained men.

    PubMed

    Malek, Moh H; Housh, Terry J; Berger, Dale E; Coburn, Jared W; Beck, Travis W

    2005-08-01

    The purposes of the present study were to (a) modify previously published Vo(2)max equations using the constant error (CE = mean difference between actual and predicted Vo(2)max) values from Malek et al. (28); (b) cross-validate the modified equations to determine their accuracy for estimating Vo(2)max in aerobically trained men; (c) derive a new non- exercise-based equation for estimating Vo(2)max in aerobically trained men if the modified equations are not found to be accurate; and (d) cross-validate the new Vo(2)max equation using the predicted residual sum of squares (PRESS) statistic and an independent sample of aerobically trained men. One hundred and fifty-two aerobically trained men (Vo(2)max mean +/- SD = 4,154 +/- 629 ml.min(-1)) performed a maximal incremental test on a cycle ergometer to determine actual Vo(2)max. An aerobically trained man was defined as someone who had participated in continuous aerobic exercise 3 or more sessions per week for a minimum of 1 hour per session for at least the past 18 months. Nine previously published Vo(2)max equations were modified for use with aerobically trained men. The predicted Vo(2)max values from the 9 modified equations were compared to actual Vo(2)max by examining the CE, standard error of estimate (SEE), validity coefficient (r), and total error (TE). Cross-validation of the modified non-exercise-based equations on a random subsample of 50 subjects resulted in a %TE > or = 13% of the mean of actual Vo(2)max. Therefore, the following non-exercise-based Vo(2)max equation was derived from a random subsample of 112 subjects: Vo(2)max (ml.min(-1)) = 27.387(weight in kg) + 26.634(height in cm) - 27.572(age in years) + 26.161(h.wk(-1) of training) + 114.904(intensity of training using the Borg 6-20 scale) + 506.752(natural log of years of training) - 4,609.791 (R = 0.82, R(2) adjusted = 0.65, and SEE = 378 ml.min(-1)). Cross-validation of this equation on the remaining sample of 40 subjects resulted in a %TE of 10

  17. Impact of the external resistance on the switching power consumption in VO2 nano gap junctions

    NASA Astrophysics Data System (ADS)

    Sánchez, L.; Rosa, A.; Griol, A.; Gutierrez, A.; Homm, P.; Van Bilzen, B.; Menghini, M.; Locquet, J. P.; Sanchis, P.

    2017-07-01

    The influence of an external resistance on the performance of VO2 nanogap junctions is analyzed and experimentally characterized. The current-voltage response shows the reversible metal-insulator transition typical of VO2 based devices. When reaching the metallic state, the current through the VO2 junction is abruptly increased, which may result in electrical contact damage. Therefore, an external resistance in series with the VO2 junction is usually employed to limit the maximum current through the device. Our results indicate that the external resistance plays a key role in the switching power consumption showing an optimum value, which depends on the dimensions of the VO2 junction. In such a way, power consumption reductions up to 90% have been demonstrated by selecting the optimum external resistance value.

  18. Changes in body temperature influence the scaling of VO2max and aerobic scope in mammals.

    PubMed

    Gillooly, James F; Allen, Andrew P

    2007-02-22

    Debate on the mechanism(s) responsible for the scaling of metabolic rate with body size in mammals has focused on why the maximum metabolic rate (VO2max ) appears to scale more steeply with body size than the basal metabolic rate (BMR). Consequently, metabolic scope, defined as VO2max/BMR, systematically increases with body size. These observations have led some to suggest that VO2max, and BMR are controlled by fundamentally different processes, and to discount the generality of models that predict a single power-law scaling exponent for the size dependence of the metabolic rate. We present a model that predicts a steeper size dependence for VO2max than BMR based on the observation that changes in muscle temperature from rest to maximal activity are greater in larger mammals. Empirical data support the model's prediction. This model thus provides a potential theoretical and mechanistic link between BMR and VO2 max.

  19. Thermochromic properties of VO2 thin film on SiNx buffered glass substrate

    NASA Astrophysics Data System (ADS)

    Koo, Hyun; You, HyunWoo; Ko, Kyeong-Eun; Kwon, O.-Jong; Chang, Se-Hong; Park, Chan

    2013-07-01

    VO2 thin films were deposited on soda lime glass substrates with silicon nitride sodium-diffusion barrier layer as diffusion barrier, in order to investigate the effect of sodium ion diffusion on the formation of VO2. SiNx layers with thicknesses over 30 nm were found to successfully prevent sodium ion diffusion in VO2 thin film and also contribute to the formation of VO2 thin film, which was confirmed by XRD spectra and XPS measurements. The change of infrared transmittance at 2500 nm wavelength with temperature change from room temperature to 80 °C was increased significantly, and the optical hysteresis width of the sample decreased by almost 6 K as well. The results suggest that applying diffusion barrier can improve the thermochromic properties of the VO2 films for energy-saving smart coatings, and silicon nitride can be one of the effective materials to prevent sodium ion diffusion.

  20. High Resolution Orientation Imaging Microscopy

    DTIC Science & Technology

    2012-05-02

    Functions, ICCES 2010, Las Vegas. 17. David Fullwood, Brent Adams, Mike Miles, Stuart Rogers, Ali Khosravani, Raj Mishra, Design for Ductility : Defect... Pseudo -Symmetries by High Resolution EBSD Methods, MS&T. 2009: Pittsburgh. 27. Oliver Johnson, Calvin Gardner, David Fullwood, Brent Adams, George...applied to strain measurements ................................... 6 2.3 Recovery of Lattice Tetragonality and Pseudo -Symmetry Resolution

  1. Optical and electrical studies of possible VO2 thin film nanostructures grown using laser ablated V2O5

    NASA Astrophysics Data System (ADS)

    Zinzuvadiya, Sushant; Joshi, U. S.

    2017-05-01

    The metal insulator transition (MIT) has been a focus of study for many years to researchers as the results are expected to help its future device applications in electronics. VO2 in its pure crystalline phase exhibit reversible MIT at about 68 °C, making it promising for memory based devices. Due to the multivalent nature of vanadium, synthesis of stoichiometric VO2 is a challenge. In this communication, we report the results of electrical and surface structural studies of Vanadium Oxide thin film nanostructures. The films were prepared using Pulsed Laser Deposition (PLD) Technique on quartz substrates. XRD revealed single orthorhombic phase. A smooth surface topography showing 58 nm average grain size with highly mono-dispersed grain distribution as studied by Atomic Force Microscopy (AFM). The temperatures dependant resistance measurements exhibited a clear and reversible MIT near 280° C. The band-gap was estimated to be 3.5 eV using the UV-Vis. spectroscopy.

  2. VO2+-hydroxyapatite complexes as models for vanadyl coordination to phosphate in bone

    NASA Astrophysics Data System (ADS)

    Dikanov, Sergei A.; Liboiron, Barry D.; Orvig, Chris

    2013-10-01

    We describe a 1D and 2D electron spin echo envelope modulation investigation of VO2+ adsorbed on hydroxyapatite (HA) at different concentrations and compare with VO2+-triphosphate (TPH) complexes studied previously in detail, in an effort to provide more insight into the structure of VO2+ coordination in bone. Structures of this interaction are important because of the role of bone in the long-term storage of administered vanadium, and the likely role of bone in the steady-state release of vanadium leading to the chronic insulin-enhancing anti-diabetic effects of vanadyl complexes. Three similar sets of cross-peaks from phosphorus nuclei observed in the 31P hyperfine sublevel correlation (HYSCORE) spectra of VO2+-HA, VO2+-TPH and VO2+-bone suggest a common tridentate binding motif for triphosphate moieties to the vanadyl ion. The similarities between the systems present the possibility that in vivo vanadyl coordination in bone is relatively uniform. Experiments with HA samples containing different amounts of adsorbed VO2+ demonstrate additional peculiarities of the ion-adsorbent interaction which can be expected in vivo. The HYSCORE spectra of HA samples show varying relative intensities of 31P lines from phosphate ligands and 1H lines, especially lines from protons of coordinated water molecules. This result suggests that the number of equatorial phosphate ligands in HA could be different depending on the water content of the sample and the VO2+ concentration; complexes of different structures probably contribute to the spectra of VO2+-HA. Similar behaviour can also be expected in vivo during VO2+ accumulation in bones.

  3. Porous silicon-VO2 based hybrids as possible optical temperature sensor: Wavelength-dependent optical switching from visible to near-infrared range

    NASA Astrophysics Data System (ADS)

    Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.; Campos, J.; Basurto, M. A.; Jiménez Sandoval, S.; Agarwal, V.

    2015-10-01

    Morphological properties of thermochromic VO2—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO2 as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO2(M) to a high-temperature tetragonal rutile VO2(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching with temperature. As compared to VO2 film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.

  4. Two-Dimensional SiO2/VO2 Photonic Crystals with Statically Visible and Dynamically Infrared Modulated for Smart Window Deployment.

    PubMed

    Ke, Yujie; Balin, Igal; Wang, Ning; Lu, Qi; Tok, Alfred Iing Yoong; White, Timothy J; Magdassi, Shlomo; Abdulhalim, Ibrahim; Long, Yi

    2016-12-07

    Two-dimensional (2D) photonic structures, widely used for generating photonic band gaps (PBG) in a variety of materials, are for the first time integrated with the temperature-dependent phase change of vanadium dioxide (VO2). VO2 possesses thermochromic properties, whose potential remains unrealized due to an undesirable yellow-brown color. Here, a SiO2/VO2 core/shell 2D photonic crystal is demonstrated to exhibit static visible light tunability and dynamic near-infrared (NIR) modulation. Three-dimensional (3D) finite difference time domain (FDTD) simulations predict that the transmittance can be tuned across the visible spectrum, while maintaining good solar regulation efficiency (ΔTsol = 11.0%) and high solar transmittance (Tlum = 49.6%). Experiments show that the color changes of VO2 films are accompanied by NIR modulation. This work presents a novel way to manipulate VO2 photonic structures to modulate light transmission as a function of wavelength at different temperatures.

  5. Reduction of [VO2(ma)2]- and [VO2(ema)2]- by ascorbic acid and glutathione: kinetic studies of pro-drugs for the enhancement of insulin action.

    PubMed

    Song, Bin; Aebischer, Nicolas; Orvig, Chris

    2002-03-25

    To shed light on the role of V(V) complexes as pro-drugs for their V(IV) analogues, the kinetics of the reduction reactions of [VO2(ma)2]- or [VO2(ema)2]- (Hma = maltol, Hema = ethylmaltol), with ascorbic acid or glutathione, have been studied in aqueous solution by spectrophotometric and magnetic resonance methods. EPR and 51V NMR studies suggested that the vanadium(V) in each complex was reduced to vanadium(IV) during the reactions. All the reactions studied showed first-order kinetics when the concentration of ascorbic acid or glutathione was in large excess and the observed first-order rate constants have a linear relationship with the concentrations of reductant (ascorbic acid or glutathione). Potentiometric results revealed that the most important species in the neutral pH range is [VO2(L)2]- for the V(V) system where L is either ma- or ema-. An acid dependence mechanism was proposed from kinetic studies with varying pH and varying maltol concentration. The good fits of the second order rate constant versus pH or the total concentration of maltol, and the good agreement of the constants obtained between fittings, strongly supported the mechanism. Under the same conditions, the reaction rate of [VO2(ma)2]- with glutathione is about 2000 times slower than that of [VO2(ma)2]- with ascorbic acid, but an acid dependence mechanism can also be used to explain the results for the reduction with glutathione. Replacing the methyl group in maltol with an ethyl group has little influence on the reduction rate with ascorbic acid, and the kinetics are the same no matter whether [VO2(ma)2]- or [VO2(ema)2]- is reduced.

  6. Li/Ag2VO2PO4 batteries: the roles of composite electrode constituents on electrochemistry

    DOE PAGES

    Bock, David C.; Bruck, Andrea M.; Pelliccione, Christopher J.; ...

    2016-11-01

    In this study, we utilize silver vanadium phosphorous oxide, Ag2VO2PO4, as a model system to systematically study the impact of the constituents of a composite electrode, including polymeric and conductive additives, on electrochemistry. Notably, although highly resistive, this bimetallic cathode can be discharged as a pure electroactive material in the absence of a conductive additive as it generates an in situ conductive matrix via a reduction displacement reaction resulting in the formation of silver metal nanoparticles. Also, three different electrode compositions were investigated: Ag2VO2PO4 only, Ag2VO2PO44 with binder, and Ag2VO2PO4 with binder and carbon. Constant current discharge, pulse testing andmore » impedance spectroscopy measurements were used to characterize the electrochemical properties of the electrodes as a function of depth of discharge. In situ EDXRD was used to spatially resolve the discharge progression within the cathode by following the formation of Ag0. Ex situ XRD and EXAFS modeling were used to quantify the amount of Ag0 formed. Results indicate that the metal center reduced (V5+ or Ag+) was highly dependent on composite composition (presence of PTFE, carbon), depth of discharge (Ag0 nanoparticle formation), and spatial location within the cathode. The addition of a binder was found to increase cell polarization, and the percolation network provided by the carbon in the presence of PTFE was further increased with reduction and formation of Ag0. Lastly, this study provides insight into the factors controlling the electrochemistry of resistive active materials in composite electrodes.« less

  7. Revealing mechanism responsible for structural reversibility of single-crystal VO2 nanorods upon lithiation/delithiation

    DOE PAGES

    Liu, Qi; Tan, Guoqiang; Wang, Peng; ...

    2017-04-17

    A pure phase of VO2(B) nanorods have been synthesized through an energy-efficient microwave hydrothermal reaction and used as cathode materials of lithium ion batteries, which exhibit promising specific capacity (e.g., 130 mA h g-1 even after 100 charge/discharge cycles) and rate capacity (e.g., ~130 mA h g-1 at a high current of 400 mA g-1). The excellent cyclability originates from the structural reversibility of VO2(B) upon lithiation/delithiation that is confirmed by the in situ high-energy synchrotron X-ray diffraction (HEXRD) and in situ x-ray adsorption near-edge spectroscopy (XANES) of the VO2 nanorods in operating battery cells. As a result, the real-timemore » results reveal that discharge forces lithium ions to insert firstly into the tunnels with the largest size along b direction followed by the second largest tunnels along c direction, which is completely reversible in the charge process.« less

  8. Effects of training on muscle O2 transport at VO2max

    NASA Technical Reports Server (NTRS)

    Roca, J.; Agusti, A. G.; Alonso, A.; Poole, D. C.; Viegas, C.; Barbera, J. A.; Rodriguez-Roisin, R.; Ferrer, A.; Wagner, P. D.

    1992-01-01

    To quantify the relative contributions of convective and peripheral diffusive components of O2 transport to the increase in leg O2 uptake (VO2leg) at maximum O2 uptake (VO2max) after 9 wk of endurance training, 12 sedentary subjects (age 21.8 +/- 3.4 yr, VO2max 36.9 +/- 5.9 ml.min-1.kg-1) were studied. VO2max, leg blood flow (Qleg), and arterial and femoral venous PO2, and thus VO2leg, were measured while the subjects breathed room air, 15% O2, and 12% O2. The sequence of the three inspirates was balanced. After training, VO2max and VO2leg increased at each inspired O2 concentration [FIO2; mean over the 3 FIO2 values 25.2 +/- 17.8 and 36.5 +/- 33% (SD), respectively]. Before training, VO2leg and mean capillary PO2 were linearly related through the origin during hypoxia but not during room air breathing, suggesting that, at 21% O2, VO2max was not limited by O2 supply. After training, VO2leg and mean capillary PO2 at each FIO2 fell along a straight line with zero intercept, just as in athletes (Roca et al. J. Appl. Physiol. 67: 291-299, 1989). Calculated muscle O2 diffusing capacity (DO2) rose 34% while Qleg increased 19%. The relatively greater rise in DO2 increased the DO2/Qleg, which led to 9.9% greater O2 extraction. By numerical analysis, the increase in Qleg alone (constant DO2) would have raised VO2leg by 35 ml/min (mean), but that of DO2 (constant Qleg) would have increased VO2leg by 85 ml/min, more than twice as much. The sum of these individual effects (120 ml/min) was less (P = 0.013) than the observed rise of 164 ml/min (mean). This synergism (explained by the increase in DO2/Qleg) seems to be an important contribution to increases in VO2max with training.

  9. Effects of training on muscle O2 transport at VO2max

    NASA Technical Reports Server (NTRS)

    Roca, J.; Agusti, A. G.; Alonso, A.; Poole, D. C.; Viegas, C.; Barbera, J. A.; Rodriguez-Roisin, R.; Ferrer, A.; Wagner, P. D.

    1992-01-01

    To quantify the relative contributions of convective and peripheral diffusive components of O2 transport to the increase in leg O2 uptake (VO2leg) at maximum O2 uptake (VO2max) after 9 wk of endurance training, 12 sedentary subjects (age 21.8 +/- 3.4 yr, VO2max 36.9 +/- 5.9 ml.min-1.kg-1) were studied. VO2max, leg blood flow (Qleg), and arterial and femoral venous PO2, and thus VO2leg, were measured while the subjects breathed room air, 15% O2, and 12% O2. The sequence of the three inspirates was balanced. After training, VO2max and VO2leg increased at each inspired O2 concentration [FIO2; mean over the 3 FIO2 values 25.2 +/- 17.8 and 36.5 +/- 33% (SD), respectively]. Before training, VO2leg and mean capillary PO2 were linearly related through the origin during hypoxia but not during room air breathing, suggesting that, at 21% O2, VO2max was not limited by O2 supply. After training, VO2leg and mean capillary PO2 at each FIO2 fell along a straight line with zero intercept, just as in athletes (Roca et al. J. Appl. Physiol. 67: 291-299, 1989). Calculated muscle O2 diffusing capacity (DO2) rose 34% while Qleg increased 19%. The relatively greater rise in DO2 increased the DO2/Qleg, which led to 9.9% greater O2 extraction. By numerical analysis, the increase in Qleg alone (constant DO2) would have raised VO2leg by 35 ml/min (mean), but that of DO2 (constant Qleg) would have increased VO2leg by 85 ml/min, more than twice as much. The sum of these individual effects (120 ml/min) was less (P = 0.013) than the observed rise of 164 ml/min (mean). This synergism (explained by the increase in DO2/Qleg) seems to be an important contribution to increases in VO2max with training.

  10. Evidence of O2 supply-dependent VO2 max in the exercise-trained human quadriceps.

    PubMed

    Richardson, R S; Grassi, B; Gavin, T P; Haseler, L J; Tagore, K; Roca, J; Wagner, P D

    1999-03-01

    Maximal O2 delivery and O2 uptake (VO2) per 100 g of active muscle mass are far greater during knee extensor (KE) than during cycle exercise: 73 and 60 ml. min-1. 100 g-1 (2.4 kg of muscle) (R. S. Richardson, D. R. Knight, D. C. Poole, S. S. Kurdak, M. C. Hogan, B. Grassi, and P. D. Wagner. Am. J. Physiol. 268 (Heart Circ. Physiol. 37): H1453-H1461, 1995) and 28 and 25 ml. min-1. 100 g-1 (7.5 kg of muscle) (D. R. Knight, W. Schaffartzik, H. J. Guy, R. Predilleto, M. C. Hogan, and P. D. Wagner. J. Appl. Physiol. 75: 2586-2593, 1993), respectively. Although this is evidence of muscle O2 supply dependence in itself, it raises the following question: With such high O2 delivery in KE, are the quadriceps still O2 supply dependent at maximal exercise? To answer this question, seven trained subjects performed maximum KE exercise in hypoxia [0.12 inspired O2 fraction (FIO2)], normoxia (0.21 FIO2), and hyperoxia (1.0 FIO2) in a balanced order. The protocol (after warm-up) was a square wave to a previously determined maximum work rate followed by incremental stages to ensure that a true maximum was achieved under each condition. Direct measures of arterial and venous blood O2 concentration in combination with a thermodilution blood flow technique allowed the determination of O2 delivery and muscle VO2. Maximal O2 delivery increased with inspired O2: 1.3 +/- 0.1, 1.6 +/- 0.2, and 1.9 +/- 0.2 l/min at 0.12, 0.21, and 1.0 FIO2, respectively (P < 0.05). Maximal work rate was affected by variations in inspired O2 (-25 and +14% at 0.12 and 1.0 FIO2, respectively, compared with normoxia, P < 0.05) as was maximal VO2 (VO2 max): 1.04 +/- 0.13, 1. 24 +/- 0.16, and 1.45 +/- 0.19 l/min at 0.12, 0.21, and 1.0 FIO2, respectively (P < 0.05). Calculated mean capillary PO2 also varied with FIO2 (28.3 +/- 1.0, 34.8 +/- 2.0, and 40.7 +/- 1.9 Torr at 0.12, 0.21, and 1.0 FIO2, respectively, P < 0.05) and was proportionally related to changes in VO2 max, supporting our previous finding that a

  11. Intensity-dependent tolerance to exercise after attaining V(O2) max in humans.

    PubMed

    Coats, Edward M; Rossiter, Harry B; Day, James R; Miura, Akira; Fukuba, Yoshiyuki; Whipp, Brian J

    2003-08-01

    The tolerable duration of high-intensity, constant-load cycle ergometry is a hyperbolic function of power, with an asymptote termed critical power (CP) and a curvature constant (W') with units of work. It has been suggested that continued exercise after exhaustion may only be performed below CP, where predominantly aerobic energy transfer can occur and W' can be partially replenished. To test this hypothesis, six volunteers each performed cycle-ergometer exercise with breath-by-breath determination of ventilatory and pulmonary gas exchange variables. Initially, four exercise tests to exhaustion were made: 1). a ramp-incremental and 2). three high-intensity constant-load bouts at different work rates, to estimate lactate (theta(L)) and CP thresholds, W', and maximum oxygen uptake (Vo2 max). Subsequently, subjects cycled to the limit of tolerance (for approximately 360 s) on three occasions, each followed by a work rate reduction to 1). 110% CP, 2). 90% CP, and 3). 80% theta(L) for a 20-min target. W' averaged 20.9 +/- 2.35 kJ or 246 +/- 30 J/kg. After initial fatigue, 110% CP was tolerated for only 30 +/- 12 s. Each subject completed 20 min at 80% theta(L), but only two sustained 20 min at 90% CP; the remaining four subjects fatigued at 577 +/- 306 s, with oxygen consumption at 89 +/- 8% Vo2 max. The results support the suggestion that replenishing W' after fatigue necessitates a sub-CP work rate. The variation in subjects' responses during 90% CP was unexpected but consistent with mechanisms such as reduced CP consequent to prior high-intensity exercise, variation in lactate handling, and/or regional depletion of energy substrates, e.g., muscle glycogen.

  12. Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-min; Li, Yi; Zhang, Jiao; Huang, Ya-qin; Li, Zheng-peng; Pei, Jiang-heng; Fang, Bao-ying; Wang, Xiao-hua; Xiao, Han

    2017-09-01

    A tunable metamaterial absorber with a W/VO2 square lattice nanostructure is designed and fabricated. With the excitation of plasma resonance, the tunable mechanism is achieved by the phase transition of vanadium dioxide. The optimal parameters are analyzed by using a finite difference time domain simulation method. The close-to-one absorption peak occurs around a wavelength of 5.28 µm, at which the difference of absorption between high and low temperatures is 89.74%. The findings also show that the absorber is polarization-independent and exhibits wide-angle absorption. The experimental results are in good agreement with the simulation. The results of this study show great potential for the application of energy and sensing metamaterial absorbers.

  13. Curvilinear VO(2):power output relationship in a ramp test in professional cyclists: possible association with blood hemoglobin concentration.

    PubMed

    Lucía, Alejandro; Hoyos, Jesús; Santalla, Alfredo; Pérez, Margarita; Chicharro, José L

    2002-02-01

    The purpose of this study was to determine (1) if there exists an additional, nonlinear increase (DeltaVO(2)) in the oxygen uptake observed (VO2 (obs)) at the maximal power output reached during a ramp cycle ergometer test and that expected (VO2 (exp)) from the linear relationship between VO(2) and power output below the lactate threshold (LT) in professional riders, and (2) the relationship between DeltaVO(2) and possible explanatory mechanisms. Each of 12 professional cyclists (25 +/- 1 years; VO(2 max): 71.3 +/- 1.2 ml x kg(-1) x min(-1)) performed a ramp test until exhaustion (power output increases of 25 W x min(-1)) during which several gas-exchange and blood variables were measured (including lactate, HCO(3)(-) and K(+)). VO(2) was linearly related to power output until the LT in all subjects. Afterward, a nonlinear deflection was observed in the VO(2):power output relationship (DeltaVO(2) = 2492 +/- 55 ml x min(-1) and p < 0.05 for VO2 (obs) vs. VO2 (exp)). A significant negative correlation was encountered between DeltaVO(2) and resting hemoglobin levels before the tests (r = 20.61; p < 0.05). In conclusion, professional cyclists exhibit an attenuation of the VO(2) rise above the LT.

  14. Dual-Phase Transformation: Spontaneous Self-Template Surface-Patterning Strategy for Ultra-transparent VO2 Solar Modulating Coatings.

    PubMed

    Liu, Minsu; Su, Bin; Kaneti, Yusuf V; Chen, Zhang; Tang, Yue; Yuan, Yuan; Gao, Yanfeng; Jiang, Lei; Jiang, Xuchuan; Yu, Aibing

    2017-01-24

    Dual-phase transformation has been developed as a template-free surface patterning technique in this study. Ordered VO2 honeycomb structures with a complex hierarchy have been fabricated via this method, and the microstructures of the obtained VO2(M) coatings are tunable by tailoring the pertinent variables. The VO2(M) honeycomb-structured coatings have excellent visible light transmittance at 700 nm (Tvis) up to 95.4% with decent solar modulating ability (ΔTsol) of 5.5%, creating the potential as ultratransparent smart solar modulating coatings. Its excellent performance has been confirmed by a proof-of-principle demonstration. The dual-phase transformation technique has dramatically simplified the conventional colloidal lithography technique as a scalable surface patterning technique for achieving high-performance metal oxide coatings with diverse applications, such as catalysis, sensing, optics, electronics, and superwettable materials.

  15. New intelligent multifunctional SiO2/VO2 composite films with enhanced infrared light regulation performance, solar modulation capability, and superhydrophobicity

    PubMed Central

    Wang, Chao; Zhao, Li; Liang, Zihui; Dong, Binghai; Wan, Li; Wang, Shimin

    2017-01-01

    Abstract Highly transparent, energy-saving, and superhydrophobic nanostructured SiO2/VO2 composite films have been fabricated using a sol–gel method. These composite films are composed of an underlying infrared (IR)-regulating VO2 layer and a top protective layer that consists of SiO2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO2 layer. The transmittance of the composite films in visible region (T lum) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO2 films and tungsten-doped VO2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO2/VO2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW.cm−2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications. PMID:28970866

  16. Prediction of VO2max with daily step counts for Japanese adult women.

    PubMed

    Cao, Zhen-Bo; Miyatake, Nobuyuki; Higuchi, Mitsuru; Ishikawa-Takata, Kazuko; Miyachi, Motohiko; Tabata, Izumi

    2009-01-01

    The purpose of the study was to develop a new non-exercise VO(2max) prediction model using a physical activity (PA) variable determined by pedometer-determined step counts (SC, steps day(-1)) in Japanese women aged 20-69 years old. Eighty-seven and 102 subjects were used to develop the prediction model, and to validate the new model, respectively. VO(2max) was measured using a maximal incremental test on a bicycle ergometer. SC was significantly related to VO(2max) (partial correlation coefficient r = 0.40, P < 0.001) after adjusting for BMI (kg m(-2)) and age (years). When the new prediction equation developed by multiple regression to estimate VO(2max) from age, BMI, and SC (R = 0.71, SEE = 5.3 ml kg(-1) min(-1), P < 0.001) was applied to the Validation group, predicted VO(2max) correlated well with measured VO(2max) (r = 0.81, P < 0.001), suggesting that SC is a useful PA variable for non-exercise prediction of VO(2max) in Japanese women.

  17. Daily pattern of %VO2max and heart rates in normal and undernourished school children.

    PubMed

    Spurr, G B; Reina, J C

    1990-10-01

    The pattern of usage of the VO2max, expressed as %VO2max during ordinary school days, with minute-by-minute heart rate recording, was studied in 106 boys and 83 girls, 6-16 yr of age divided into three age groups (6-8, 10-12, and 14-16 yr), living under economically deprived conditions in Colombia and classified as nutritionally normal or marginally malnourished. In a 12-h period, the 12 groups of children spent, on the average, 7-10 h at less than 30% VO2max, 1.5-4 h at 30-50% VO2max, and an accumulated time of 20-60 min above 50% VO2max. The latter occurred in short bursts rather than during sustained periods. There was a statistically significant but small decrease (approximately -3%) in the average 12 h %VO2max with age but no effects of sex or nutritional status. The overall average was about 25% VO2max in all groups. The data may suggest the existence of the regulation of physical activity to some level easily sustainable for long periods. Expressing the data as 30 min averages during 5 h of school and 5 h of free-time activity allows for the possibility of seeing group differences during shorter periods of time. This may prove useful in exercise training programs and studies of effort in the workplace.

  18. The heart rate VO2 relationship of aerobic dance: a comparison of target heart rate methods.

    PubMed

    Scharff-Olson, M; Williford, H N; Smith, F H

    1992-12-01

    The purpose of this study was to examine the relationship between heart rate (HR) and oxygen consumption (VO2) for aerobic dance exercise. Therefore, eleven females completed 20 minutes of aerobic dance with continuous monitoring of HR and VO2. These physiological responses were analyzed with correlation/regression techniques. The results showed that for aerobic dance to produce a response in excess of 50% of VO2 max, the target HR must be approximately 80% of the age-predicted HR max or greater. In contrast, previously reported data for treadmill running shows that 50% of VO2 max is achieved at approximately 65% of age-predicted HR max in females. The maximum heart rate reserve (Karvonen) method was also found to underestimate the actual VO2 of AD. With the Karvonen method, the target heart rate must approximate 65% of maximum HR reserve in order to elicit a VO2 response which is representative of 50% of VO2 max. These data support recent research which illustrates that target heart rate prescriptions derived from treadmill testing may fail to accurately place AD participants in the recommended training zone.

  19. Expression of VO2peak in Children and Youth, with Special Reference to Allometric Scaling.

    PubMed

    Loftin, Mark; Sothern, Melinda; Abe, Takashi; Bonis, Marc

    2016-10-01

    The aim of this review was to highlight research that has focused on examining expressions of peak oxygen uptake (VO2peak) in children and youth, with special reference to allometric scaling. VO2peak is considered the highest VO2 during an increasing workload treadmill or bicycle ergometer test until volitional termination. We have reviewed scholarly works identified from PubMed, One Search, EBSCOhost and Google Scholar that examined VO2peak in absolute units (L·min(-1)), relative units [body mass, fat-free mass (FFM)], and allometric expressions [mass, height, lean body mass (LBM) or LBM of the legs raised to a power function] through July 2015. Often, the objective of measuring VO2peak is to evaluate cardiorespiratory function and fitness level. Since body size (body mass and height) frequently vary greatly in children and youth, expressing VO2peak in dimensionless units is often inappropriate for comparative or explanatory purposes. Consequently, expressing VO2peak in allometric units has gained increased research attention over the past 2 decades. In our review, scaling mass was the most frequent variable employed, with coefficients ranging from approximately 0.30 to over 1.0. The wide variance is probably due to several factors, including mass, height, LBM, sex, age, physical training, and small sample size. In summary, we recommend that since skeletal muscle is paramount for human locomotion, an allometric expression of VO2peak relative to LBM is the best expression of VO2peak in children and youth.

  20. Prediction of VO2max from a new field test based on portable indirect calorimetry.

    PubMed

    Flouris, Andreas D; Metsios, Giorgos S; Famisis, Konstantinos; Geladas, Nikos; Koutedakis, Yiannis

    2010-01-01

    We assessed the validity and reliability of the new 15m square shuttle run test (SST) for predicting laboratory treadmill test (TT) maximal oxygen uptake (VO(2 max)) compared to the 20 m multistage shuttle run test (MST) in 45 adult males. Thirty participants performed a TT and a SST once to develop a VO( 2max) prediction model. The remaining 15 participants performed the TT and MST once and the SST twice for cross-validation purposes. Throughout testing V O(2max) was determined via portable indirect calorimetry while blood lactate concentration was assessed at the fifth recovery minute. Comparisons of TT V O(2 max) (51.3+/-3.1 ml kg(-1)min(-1)) with SST measured (51.2+/-3.2 ml kg(-1)min(-1)) and predicted (50.9+/-3.3 ml kg(-1)min(-1)) V O(2 max) showed no differences while TT blood lactate was higher compared to SST (10.3+/-1.7 mmol vs. 9.7+/-1.7 mmol, respectively). In contrast, MST measured (53.4+/-3.5 ml kg(-1)min(-1)) and predicted (57.0+/-4.5 ml kg(-1)min(-1)) V O(2 max) and blood lactate (11.2+/-2.0 mmol) were significantly higher compared to TT. No test-retest differences were detected for SST measured and predicted V O(2 max) and blood lactate. It is concluded that the SST is a highly valid and reliable predictive test for V O(2 max). Copyright (c) 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Synthesis and field emission property of VO 2 nanorods with a body-centered-cubic structure

    NASA Astrophysics Data System (ADS)

    Wang, Yuquan; Zhang, Zhengjun

    2009-02-01

    Films consisting of vertically aligned VO 2 nanorods were prepared on planar silicon substrate by thermally heating a sheet of vanadium in a rough vacuum. These nanorods were found to be of a body-centered-cubic (BCC) structure with a lattice constant of 0.94 nm, which was not observed before for VO 2. Due to their sharp tip of the nanometer scale, the BCC VO 2 nanorods exhibited excellent field emission properties, which make them possible candidate materials for applications in field emission devices.

  2. Influence of Prior Exercise on VO2 Kinetics Subsequent Exhaustive Rowing Performance

    PubMed Central

    Sousa, Ana; Ribeiro, João; Sousa, Marisa; Vilas-Boas, João Paulo; Fernandes, Ricardo J.

    2014-01-01

    Prior exercise has the potential to enhance subsequent performance by accelerating the oxygen uptake (VO2) kinetics. The present study investigated the effects of two different intensities of prior exercise on pulmonary VO2 kinetics and exercise time during subsequent exhaustive rowing exercise. It was hypothesized that in prior heavy, but not prior moderate exercise condition, overall VO2 kinetics would be faster and the VO2 primary amplitude would be higher, leading to longer exercise time at VO2max. Six subjects (mean ± SD; age: 22.9±4.5 yr; height: 181.2±7.1 cm and body mass: 75.5±3.4 kg) completed square-wave transitions to 100% of VO2max from three different conditions: without prior exercise, with prior moderate and heavy exercise. VO2 was measured using a telemetric portable gas analyser (K4b2, Cosmed, Rome, Italy) and the data were modelled using either mono or double exponential fittings. The use of prior moderate exercise resulted in a faster VO2 pulmonary kinetics response (τ1 = 13.41±3.96 s), an improved performance in the time to exhaustion (238.8±50.2 s) and similar blood lactate concentrations ([La−]) values (11.8±1.7 mmol.L−1) compared to the condition without prior exercise (16.0±5.56 s, 215.3±60.1 s and 10.7±1.2 mmol.L−1, for τ1, time sustained at VO2max and [La−], respectively). Performance of prior heavy exercise, although useful in accelerating the VO2 pulmonary kinetics response during a subsequent time to exhaustion exercise (τ1 = 9.18±1.60 s), resulted in a shorter time sustained at VO2max (155.5±46.0 s), while [La−] was similar (13.5±1.7 mmol.L−1) compared to the other two conditions. Although both prior moderate and heavy exercise resulted in a faster pulmonary VO2 kinetics response, only prior moderate exercise lead to improved rowing performance. PMID:24404156

  3. Prior Knowledge of Trial Number Influences the Incidence of Plateau at VO2max.

    PubMed

    Gordon, Dan; Caddy, Oliver; Merzbach, Viviane; Gernigon, Marie; Baker, James; Scruton, Adrian; Keiller, Don; Barnes, Richard

    2015-03-01

    The purpose of this study was to assess the VO2max plateau response at VO2max during a series of pre-determined trials. Ten male well-trained athletes (age, 23.0 ± 3.2; height, 183.3 ± 5.5 cm; mass 77.5 ± 11.1 Kg; VO2max 66.5 ± 5.0 ml(.)kg(-1,)min(-1)), but who were VO2max testing naïve and with prior-knowledge of trial number completed four incremental tests to volitional exhaustion, separated by ~72-h for the determination of VO2max and gas exchange threshold. Throughout all trials VO2max was recorded on a breath-by-breath basis using a pre-calibrated metabolic cart, using a plateau criterion of Δ VO2 ≤1.5 ml(.)kg(-1.)min(-1) over the final 2 consecutive 30 s sampling periods. A significant difference was observed between trial-1 and trial-4 for plateau incidence (p = 0.0285) rising from 20% in trial-1 to a 70% response rate in trial-4. Furthermore a significant difference was observed for VO2dif (difference between criterion value and Δ VO2) in trial-1, 1.02 ± 1.69 ml(.)kg(-1.)min(-1) (p = 0.038), with non-significant differences observed for all other trials, despite a non-significant difference for VO2max across all trials (p > 0.05). Finally, a significant difference was observed for effort perception (RPE) at volitional exhaustion between trial-1 (17.7 ± 1.3) and trial-4 (19.0 ± 1.4) (p = 0.0052). These data indicate that prior-knowledge of trial number can influence the manifestation of the VO2 plateau in a group of well-trained male athletes, thereby suggesting that a form of effort control is established in order to preserve the finite anaerobic capacity. Key pointsIn well-trained athletes the incidence of plateau at VO2max increases in conjunction with an increase in trial number and the associated sensations of pain and fatigue.By informing the participant of the number of trials to be completed a closed-loop condition is developed whereby effort in all trials is compared to a perceptually developed template.Closed-loop condition leads to a

  4. Sport-specific fitness testing differentiates professional from amateur soccer players where VO2max and VO2 kinetics do not.

    PubMed

    Wells, C M; Edwards, A M; Winter, E M; Fysh, M L; Drust, B

    2012-06-01

    The purpose of this study was to identify if sport-specific and cardiopulmonary exercise testing differentiated professional from amateur soccer players. Thirty six men comprising 18 professional (mean±s: age 23.2±2.4 years) and 18 amateur (mean±SD: age 21.1±1.6 years) soccer players participated and performed four tests on separate occasions: 1) a graded exercise test to determine VO2max; 2) four exercise transients from walking to 80%Δ for the determination of VO2 kinetics; 3) the Yo-Yo Intermittent Recovery Test level 2 (Yo-Yo IR2) and 4) a repeated sprint test (RST). The players did not differ in VO2max (professional 56.5±2.9 mL.kg-1.min-1; amateur 55.7±3.5 mL.kg-1.min-1: P=0.484) or VO2 kinetic fundamental measures (τ1 onset, professional 24.5±3.2 s; amateur 24.0±1.8 s: τ1 cessation, professional 28.7±2.8 s; amateur 29.3±3.5 s: P=0.923). However, the amateurs were outperformed in the Yo-Yo IR2 (Professional 966±153 m; Amateur 840±156 m) (P=0.034) and RST (best time, professional 6.46±0.27 s; amateur 6.84±0.24 s, P=0.012). Performance indices derived from field-based sport-specific performance tests identified significant differences between professional and amateur players (P<0.05). However, neither tests of VO2 kinetics nor VO2max differentiated between groups, suggesting laboratory tests of cardiorespiratory parameters are probably less consequential to soccer than sport-specific field-based observations.

  5. Evaluation of the American College of Sports Medicine submaximal treadmill running test for predicting VO2max.

    PubMed

    Marsh, Clare E

    2012-02-01

    The purpose of this study was to assess the validity of the American College of Sports Medicine's (ACSM's) submaximal treadmill running test in predicting VO2max. Twenty-one moderately well-trained men aged 18-34 years performed 1 maximal treadmill test to determine maximal oxygen uptake (M VO2max) and 2 submaximal treadmill tests using 4 stages of continuous submaximal exercise. Estimated VO2max was predicted by extrapolation to age-predicted maximal heart rate (HRmax) and calculated in 2 ways: using data from all submaximal stages between 110 b·min(-1) and 85% HRmax (P VO2max-All), and using data from the last 2 stages only (P VO2max-2). The measured VO2max was overestimated by 3% on average for the group but was not significantly different to predicted VO2max (1-way analysis of variance [ANOVA] p = 0.695; M VO2max = 53.01 ± 5.38; P VO2max-All = 54.27 ± 7.16; P VO2max-2 = 54.99 ± 7.69 ml·kg(-1)·min(-1)), although M VO2max was not overestimated in all the participants--it was underestimated in 30% of observations. Pearson's correlation, standard error of estimate (SEE), and total error (E) between measured and predicted VO2max were r = 0.646, 4.35, 4.08 ml·kg(-1)·min(-1) (P VO2max-All) and r = 0.642, 4.21, 3.98 ml·kg(-1)·min(-1) (P VO2max-2) indicating that the accuracy in prediction (error) was very similar whether using P VO2max-All or P VO2max-2, with up to 70% of the participants predicted scores within 1 SEE (∼4 ml·kg(-1)·min(-1)) of M VO2max. In conclusion, the ACSM equation provides a reasonably good estimation of VO2max with no difference in predictive accuracy between P VO2max-2 and P VO2max-All, and hence, either approach may be equally useful in tracking an individual's aerobic fitness over time. However, if a precise knowledge of VO2max is required, then it is recommended that this be measured directly.

  6. Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Rampelberg, Geert; Schaekers, Marc; Martens, Koen; Xie, Qi; Deduytsche, Davy; De Schutter, Bob; Blasco, Nicolas; Kittl, Jorge; Detavernier, Christophe

    2011-04-01

    Thin films of vanadium dioxide (VO2) have been grown by a low temperature atomic layer deposition process at 150 °C using tetrakis[ethylmethylamino]vanadium as a vanadium source and ozone as reactant gas. Films deposited on SiO2 were amorphous, but during a thermal treatment at 450 °C tetragonal VO2(R) was formed. During in situ x-ray diffraction measurements, the semiconductor-metal transition was observed as a reversible transition between VO2(M1) and VO2(R) near 67 °C. Correlated with this phase change, a reversible change in resistivity was observed of more than two orders of magnitude for a film of 42 nm thickness.

  7. Synthesis and characterization of VO2+ doped ZnO-CdS composite nanopowder

    NASA Astrophysics Data System (ADS)

    Thirumala Rao, G.; Babu, B.; Joyce Stella, R.; Pushpa Manjari, V.; Venkata Reddy, Ch.; Shim, Jaesool; Ravikumar, R. V. S. S. N.

    2015-02-01

    VO2+ doped ZnO-CdS composite nanopowder has been synthesized by chemical precipitation method. The prepared sample has been characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, photoluminescence (PL), optical absorption and EPR spectroscopy. From XRD pattern, average crystallite size is about 18 nm. SEM and TEM images showed sphere like structures. FT-IR spectrum indicates the presence of fundamental modes of ZnO, CdS and other functional groups. The PL spectrum of VO2+ doped ZnO-CdS composite nanopowder exhibits UV, blue and green emissions. Optical and EPR studies revealed the tetragonal compressed octahedral site symmetry for VO2+ ions. The bonding between VO2+ and its ligands is ionic.

  8. Predicting maximal aerobic capacity (VO2max) from the critical velocity test in female collegiate rowers.

    PubMed

    Kendall, Kristina L; Fukuda, David H; Smith, Abbie E; Cramer, Joel T; Stout, Jeffrey R

    2012-03-01

    The objective of this study was to examine the relationship between the critical velocity (CV) test and maximal oxygen consumption (VO2max) and develop a regression equation to predict VO2max based on the CV test in female collegiate rowers. Thirty-five female (mean ± SD; age, 19.38 ± 1.3 years; height, 170.27 ± 6.07 cm; body mass, 69.58 ± 0.3 1 kg) collegiate rowers performed 2 incremental VO2max tests to volitional exhaustion on a Concept II Model D rowing ergometer to determine VO2max. After a 72-hour rest period, each rower completed 4 time trials at varying distances for the determination of CV and anaerobic rowing capacity (ARC). A positive correlation was observed between CV and absolute VO2max (r = 0.775, p < 0.001) and ARC and absolute VO2max (r = 0.414, p = 0.040). Based on the significant correlation analysis, a linear regression equation was developed to predict the absolute VO2max from CV and ARC (absolute VO2max = 1.579[CV] + 0.008[ARC] - 3.838; standard error of the estimate [SEE] = 0.192 L·min(-1)). Cross validation analyses were performed using an independent sample of 10 rowers. There was no significant difference between the mean predicted VO2max (3.02 L·min(-1)) and the observed VO2max (3.10 L·min(-1)). The constant error, SEE and validity coefficient (r) were 0.076 L·min(-1), 0.144 L·min(-1), and 0.72, respectively. The total error value was 0.155 L·min(-1). The positive relationship between CV, ARC, and VO2max suggests that the CV test may be a practical alternative to measuring the maximal oxygen uptake in the absence of a metabolic cart. Additional studies are needed to validate the regression equation using a larger sample size and different populations (junior- and senior-level female rowers) and to determine the accuracy of the equation in tracking changes after a training intervention.

  9. Resistance modulation in VO2 nanowires induced by an electric field via air-gap gates

    NASA Astrophysics Data System (ADS)

    Kanki, Teruo; Chikanari, Masashi; Wei, Tingting; Tanaka, Hidekazu; The Institute of Scientific; Industrial Research Team

    Vanadium dioxide (VO2) shows huge resistance change with metal-insulator transition (MIT) at around room temperature. Controlling of the MIT by applying an electric field is a topical ongoing research toward the realization of Mott transistor. In this study, we have successfully switched channel resistance of VO2 nano-wire channels by a pure electrostatic field effect using a side-gate-type field-effect transistor (SG-FET) viaair gap and found that single crystalline VO2 nanowires and the channels with narrower width enhance transport modulation rate. The rate of change in resistance ((R0-R)/R, where R0 and R is the resistance of VO2 channel with off state and on state gate voltage (VG) , respectively) was 0.42 % at VG = 30 V in in-plane poly-crystalline VO2 channels on Al2O3(0001) substrates, while the rate in single crystalline channels on TiO2 (001) substrates was 3.84 %, which was 9 times higher than that using the poly-crystalline channels. With reducing wire width from 3000 nm to 400 nm of VO2 on TiO2 (001) substrate, furthermore, resistance modulation ratio enhanced from 0.67 % to 3.84 %. This change can not be explained by a simple free-electron model. In this presentation, we will compare the electronic properties between in-plane polycrystalline VO2 on Al2O3 (0001) and single crystalline VO2 on TiO2 (001) substrates, and show experimental data in detail..

  10. Which are the best VO2 sampling intervals to characterize low to severe swimming intensities?

    PubMed

    de Jesus, K; Guidetti, L; de Jesus, K; Vilas-Boas, J P; Baldari, C; Fernandes, R J

    2014-11-01

    Cardiorespiratory response in swimming has been used to better understand aerobic performance, especially by assessing oxygen uptake (VO2). The current study aimed to compare different VO2 time-averaging intervals throughout low to severe swimming intensities, hypothesizing that VO2 values are similar for different time averages at low to moderate and heavy swimming intensities, but not for the severe domain. 20 male trained swimmers completed an incremental protocol of 7×200 m until exhaustion (0.05 m/s increments and 30 s intervals). VO2 was measured by a portable gas analyser connected to a snorkel system. 6 time average intervals (breath-by-breath, 5, 10, 15, 20 and 30 s) were compared for all the protocol steps. Breath-by-breath and 5 s average exhibited higher VO2 values than averages≥10 s for all swimming intensities (P≤0.02; partial η(2)≤0.28). VO2 values did not differ between 10, 15, 20 and 30 s averages throughout the incremental protocol (P>0.05; partial η(2)≤0.05). Furthermore, 10 and 15 s averages showed the lowest VO2 mean difference (0.19 mL( · )kg(-1 · )min(-1)). For the 6 time average intervals analysed, 10 and 15 s averages were those that showed the lowest changes on VO2 values. We recommended the use of 10 and 15 s time averaging intervals to determine relevant respiratory gas exchange parameters along a large spectrum of swimming intensities. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Effects of muscle electrical stimulation on peak VO2 in cardiac transplant patients.

    PubMed

    Vaquero, A F; Chicharro, J L; Gil, L; Ruiz, M P; Sánchez, V; Lucía, A; Urrea, S; Gómez, M A

    1998-07-01

    Peak oxygen consumption (peak VO2) has become a critical component in the evaluation of heart transplant recipients (HTR). In these patients, peak VO2 remains low after cardiac transplantation mainly because of persisting peripheral limitations in the working muscles. Muscular electrical stimulation, on the other hand, has been shown to enhance the oxidative capacity of healthy muscle. It was the purpose of our investigation to study the effects of ES on the peak VO2 of HTR. Fourteen (11 males and 3 females) HTR (age: 57+/-7yr, mean +/- SD; height: 163+/-7 cm, weight: 70.5+/-8.6 kg) were selected as subjects and each of them was randomly assigned to one of two groups: (a) group EXP (n = 7), receiving electrical stimulation on both quadriceps muscles during a period of 8 weeks, and (b) group CONT (n = 7), not receiving electrical stimulation. Before (PRE) and after (POST) the aforementioned 8-week period, respectively, all the subjects performed a cardiopulmonary exercise test (ramp protocol) on a cycle ergometer for peak VO2 determination. PRE values of peak VO2 were similar in both groups (17.1+/-2.0 vs 16.9+/-3.8ml x kg(-1) x min(-1) in EXP and CONT, respectively). However, peak values of VO2 significantly increased in EXP (p < 0.05) after the period of electrical stimulation (POST peak VO2: 18.7+/-2.0ml x kg(-1)), whereas no change was observed in CONT (POST peak VO2: 16.2+/-3.2 ml x kg(-1) x min(-1)). In conclusion, electrical stimulation could therefore be used to improve the functional capacity of HTR, and might be included in the rehabilitation programs of this population group.

  12. Familial resemblance for VO2max in the sedentary state: the HERITAGE family study.

    PubMed

    Bouchard, C; Daw, E W; Rice, T; Pérusse, L; Gagnon, J; Province, M A; Leon, A S; Rao, D C; Skinner, J S; Wilmore, J H

    1998-02-01

    This study investigates the familial resemblance of maximal oxygen uptake (VO2max) based on data from 86 nuclear families of Caucasian descent participating in the HERITAGE Family Study. In the current study, VO2max was measured twice on a cycle ergometer in 429 sedentary individuals (170 parents and 259 of their offspring), aged between 16 and 65 yr. The VO2max was adjusted by regression procedures for the effects of 1) age and sex; 2) age, sex, and body mass; and 3) age, sex, body mass, fat mass, and fat-free mass, as determined by underwater weighing. Evidence for significant familial resemblance was observed for each of the three VO2max phenotypes. Spouse, sibling, and parent-offspring correlations were significant, suggesting that both genetic and environmental factors contribute to the familial resemblance for VO2max. Maximal heritability estimates were at least 50%, a value inflated to an undetermined degree by nongenetic factors. The hypothesis of maternal inheritance, with the father's contribution being environmental, was also found to fit the data with estimates of maternal heritability, potentially associated in part with mitochondrial inheritance, reaching about 30%. These results suggest that genetic and nongenetic factors as well as maternal influences contribute to the familial aggregation of VO2max in sedentary individuals.

  13. Angiogenesis in Skeletal Muscle Precede Improvements in Peak VO2 in Peripheral Artery Disease Patients

    PubMed Central

    Duscha, Brian D.; Robbins, Jennifer L.; Jones, William S.; Kraus, William E.; Lye, R. John; Sanders, John M.; Allen, Jason D.; Regensteiner, Judith G.; Hiatt, William R.; Annex, Brian H.

    2011-01-01

    Objective PAD is characterized by impaired blood flow to the lower extremities, causing claudication and exercise intolerance. The mechanism(s) by which exercise training improves functional capacity is not understood. This study tested the hypothesis that in peripheral artery disease (PAD) patients who undergo supervised exercise training, increases in capillary density (CD) in calf muscle take place before improvements in peak oxygen uptake (VO2). Methods and Results 35 PAD patients were randomized to 12 weeks of directly-supervised or home–based exercise training. Peak VO2 testing and gastrocnemius muscle biopsies were performed at baseline and after training. Capillary density (endothelial cells/mm2) was measured using immunofluorescence staining. After 3 weeks of directly-supervised training, patients had an increase in CD (216±66 vs 284±77, p<0.01) but no increase in peak VO2. However after 12 weeks, peak VO2 increased (15.3±2.8 vs 16.8±3.8, p<0.01), while in muscle CD remained increased over baseline but there were no changes in markers of oxidative capacity. Within subjects, CD was related to peak VO2 before and after directly-supervised training. Conclusions Changes in capillary density in ischemic muscle with training may modulate the response to training and those changes precede the increase in VO2. PMID:21868709

  14. Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows.

    PubMed

    Batista, Carlos; Ribeiro, Ricardo M; Teixeira, Vasco

    2011-04-07

    Thermochromic VO2 thin films have successfully been grown on SiO2-coated float glass by reactive DC and pulsed-DC magnetron sputtering. The influence of substitutional doping of V by higher valence cations, such as W, Mo, and Nb, and respective contents on the crystal structure of VO2 is evaluated. Moreover, the effectiveness of each dopant element on the reduction of the intrinsic transition temperature and infrared modulation efficiency of VO2 is discussed. In summary, all the dopant elements--regardless of the concentration, within the studied range-- formed a solid solution with VO2, which was the only compound observed by X-ray diffractometry. Nb showed a clear detrimental effect on the crystal structure of VO2. The undoped films presented a marked thermochromic behavior, specially the one prepared by pulsed-DC sputtering. The dopants effectively decreased the transition of VO2 to the proximity of room temperature. However, the IR modulation efficiency is markedly affected as a consequence of the increased metallic character of the semiconducting phase. Tungsten proved to be the most effective element on the reduction of the semiconducting-metal transition temperature, while Mo and Nb showed similar results with the latter being detrimental to the thermochromism.

  15. Verification Testing to Confirm VO2max in Altitude-Residing, Endurance-Trained Runners.

    PubMed

    Weatherwax, R M; Richardson, T B; Beltz, N M; Nolan, P B; Dalleck, L

    2016-06-01

    We sought to explore the utility of the verification trial to confirm individual attainment of 'true' VO2max in altitude-residing, endurance-trained runners during treadmill exercise. 24 elite endurance-trained men and women runners (age=21.5±3.3 yr, ht=174.8±9.3 cm, body mass=60.5±6.7 kg, PR 800 m 127.5±13.1 s) completed a graded exercise test (GXT) trial (VO2max=60.0±5.8 mL·kg(-1)·min(-1)), and returned 20 min after incremental exercise to complete a verification trial (VO2max=59.6±5.7 mL·kg(-1)·min(-1)) of constant load, supramaximal exercise. The incidence of 'true' VO2max confirmation using the verification trial was 24/24 (100%) with all participants revealing differences in VO2max≤3% (the technical error of our equipment) between the GXT and verification trials. These findings support use of the verification trial to confirm VO2max attainment in altitude-residing, endurance-trained runners. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Comparison of intensities and rest periods for VO2max verification testing procedures.

    PubMed

    Nolan, P B; Beaven, M L; Dalleck, L

    2014-11-01

    We sought to determine the incidence of 'true' VO2max confirmation with the verification procedure across different protocols. 12 active participants (men n=6, women n=6) performed in random order 4 different maximal graded exercises tests (GXT) and verification bout protocols on 4 separate days. Conditions for the rest period and verification bout intensity were: A - 105% intensity, 20 min rest; B - 105% intensity, 60 min rest; C - 115% intensity, 20 min rest; D - 115% intensity, 60 min rest. VO2max confirmation (difference between peak VO2 GXT and verification trial<±3%) using the verification trial was 12/12 (100%), 12/12 (100%), 8/12 (66.70%), and 7/12 (58.33%) for protocols A, B, C, and D. There was a significant (p<0.05) effect of verification intensity on VO2max confirmation across all exercise test conditions (intensity effect within recovery 20 min (χ(2) (1)=4.800, p<0.05), intensity effect within recovery 60 min (χ(2) (1)=6.316, p<0.05)). No significant effect was found for incidence of VO2max confirmation with different rest periods. We recommend the use of 105% of the maximal GXT workload and 20 min rest periods when using verification trials to confirm VO2max in normally active populations. © Georg Thieme Verlag KG Stuttgart · New York.

  17. The relationship among HRpeak, RERpeak, and VO2peak during treadmill testing in girls.

    PubMed

    Peyer, Karissa; Pivarnik, James M; Coe, Dawn Podulka

    2011-12-01

    Clear criteria for maximal oxygen consumption (VO2max) determination in youth are not available, and no studies have examined this issue in girls. Our purpose was to determine whether different peak heart rate (HRpeak) and peak respiratory exchange ratio (RERpeak) cut points affect girls' (N = 453; M age = 13.3 years, SD = .1) VO2max during a maximal treadmill test. A multivariate analysis of variance revealed VO2max (ml kg(-1) min(-1) differed significantly among HRpeak, 180-189 b min(-1) = 34 (SD = .8), 190-194 bmin(-1) = 35 (SD = .9), 195-199 b min(-1) = 38 (SD = .8), 200-204 b min(-1) = 40 ml kg1 x min(-1) (SD = .8), and > or = 205 bmin(-1) = 42 ml kg1 x min(-1) (SD = .7) but not RERpeak. In studies where evidence of a VO2 plateau was examined, peak oxygen consumption (VO2peak) did not differ between plateau and no-plateau groups. Although our results suggest the association between lower VO2peak and lower peak heart rate is a true cardiovascular limit to aerobic energy production, we cannot rule out participant effort.

  18. VO(2max) and Microgravity Exposure: Convective versus Diffusive O(2) Transport.

    PubMed

    Ade, Carl J; Broxterman, Ryan M; Barstow, Thomas J

    2015-07-01

    Exposure to a microgravity environment decreases the maximal rate of O2 uptake (VO(2max)) in healthy individuals returning to a gravitational environment. The magnitude of this decrease in VO(2max) is, in part, dependent on the duration of microgravity exposure, such that long exposure may result in up to a 38% decrease in VO(2max). This review identifies the components within the O(2) transport pathway that determine the decrease in postmicrogravity VO(2max) and highlights the potential contributing physiological mechanisms. A retrospective analysis revealed that the decline in VO(2max) is initially mediated by a decrease in convective and diffusive O(2) transport that occurs as the duration of microgravity exposure is extended. Mechanistically, the attenuation of O(2) transport is the combined result of a deconditioning across multiple organ systems including decreases in total blood volume, red blood cell mass, cardiac function and mass, vascular function, skeletal muscle mass, and, potentially, capillary hemodynamics, which become evident during exercise upon re-exposure to the head-to-foot gravitational forces of upright posture on Earth. In summary, VO(2max) is determined by the integration of central and peripheral O(2) transport mechanisms, which, if not maintained during microgravity, will have a substantial long-term detrimental impact on space mission performance and astronaut health.

  19. Comparison of VO2max in obese and non-obese young Indian population.

    PubMed

    Patkar, Kshitija Umesh; Joshi, Anjali S

    2011-01-01

    Incidence of obesity in early life is increasing nowadays because of faulty food habits and lack of exercise. This study was aimed to find out whether obesity affects cardiorespiratory efficiency of young adults. As VO2max is the most accepted indicator of cardiorespiratory efficiency it was compared in 30 obese and 30 non-obese subjects aged around 18-20 years. VO2mx was estimated by Queen's college step test. Various other parameters measured and calculated are weight, height, BMI, skin fold thickness, percentage body fat, lean body mass, fat mass. The results showed that cardiorespiratory efficiency (absolute VO2max & VO2max/kg lean body mass) was not affected (P > 0.05) in obese group in both sexes. Ability to do exhausting work (VO2max/kg body weight) was less in obese group (P = 0.001) compared to non-obese group & in obese males (P < 0.01) as compared to non-obese males. Percentage body fat (r = -0.416), triceps skin fold thickness (r = -0.427) and calf skin fold thickness (r = -0.381) strongly correlate to VO2max/kg body weight. Therefore the exercise programs can be best designed to increase caloric expenditure and thus to decrease body fat rather than to improve aerobic fitness.

  20. Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows

    NASA Astrophysics Data System (ADS)

    Batista, Carlos; Ribeiro, Ricardo M.; Teixeira, Vasco

    2011-12-01

    Thermochromic VO2 thin films have successfully been grown on SiO2-coated float glass by reactive DC and pulsed-DC magnetron sputtering. The influence of substitutional doping of V by higher valence cations, such as W, Mo, and Nb, and respective contents on the crystal structure of VO2 is evaluated. Moreover, the effectiveness of each dopant element on the reduction of the intrinsic transition temperature and infrared modulation efficiency of VO2 is discussed. In summary, all the dopant elements--regardless of the concentration, within the studied range-- formed a solid solution with VO2, which was the only compound observed by X-ray diffractometry. Nb showed a clear detrimental effect on the crystal structure of VO2. The undoped films presented a marked thermochromic behavior, specially the one prepared by pulsed-DC sputtering. The dopants effectively decreased the transition of VO2 to the proximity of room temperature. However, the IR modulation efficiency is markedly affected as a consequence of the increased metallic character of the semiconducting phase. Tungsten proved to be the most effective element on the reduction of the semiconducting-metal transition temperature, while Mo and Nb showed similar results with the latter being detrimental to the thermochromism.

  1. Properties of VO2 Films Sputter-Deposited from V2O5 Target

    NASA Astrophysics Data System (ADS)

    Tsai, Kuang-Yue; Chin, Tsung-Shune; Shieh, Han-Ping D.

    2003-07-01

    Rutile VO2 is a thermochromic material that exhibits a reversible metal-insulator phase transition upon thermal cycling. A new deposition process of rutile VO2 from a V2O5 target was developed using reactive oxygen instead of hydrogen. Adjusting the substrate temperature and the oxygen flow ratio changes the compositions and phases of the as-deposited films into rutile VO2 under optimum deposition conditions on the Si and thick glass substrates. Crystalline phases analyzed by X-ray diffraction shows the relationship among V4O9, V6O13, and VO2 films prepared under different deposition conditions. Analysis by AFM shows that VO2 films grown at higher substrate temperatures have larger grain size. The optical switching property of VO2 was measured at a wavelength of 1.5 μm and transition temperature around 45°C was also measured. Inhomogeneity and the strained structure of the film are suggested to be the reasons of transition temperature lower than typical reported value because the impurity in the target is too low to be detected quantatively by ICP.

  2. Block training periodization in alpine skiing: effects of 11-day HIT on VO2max and performance.

    PubMed

    Breil, Fabio A; Weber, Simone N; Koller, Stefan; Hoppeler, Hans; Vogt, Michael

    2010-08-01

    Attempting to achieve the high diversity of training goals in modern competitive alpine skiing simultaneously can be difficult and may lead to compromised overall adaptation. Therefore, we investigated the effect of block training periodization on maximal oxygen consumption (VO2max) and parameters of exercise performance in elite junior alpine skiers. Six female and 15 male athletes were assigned to high-intensity interval (IT, N = 13) or control training groups (CT, N = 8). IT performed 15 high-intensity aerobic interval (HIT) sessions in 11 days. Sessions were 4 x 4 min at 90-95% of maximal heart rate separated by 3-min recovery periods. CT continued their conventionally mixed training, containing endurance and strength sessions. Before and 7 days after training, subjects performed a ramp incremental test followed by a high-intensity time-to-exhaustion (tlim) test both on a cycle ergometer, a 90-s high-box jump test as well as countermovement (CMJ) and squat jumps (SJ) on a force plate. IT significantly improved relative VO2max by 6.0% (P < 0.01; male +7.5%, female +2.1%), relative peak power output by 5.5% (P < 0.01) and power output at ventilatory threshold 2 by 9.6% (P < 0.01). No changes occurred for these measures in CT. tlim remained unchanged in both groups. High-box jump performance was significantly improved in males of IT only (4.9%, P < 0.05). Jump peak power (CMJ -4.8%, SJ -4.1%; P < 0.01), but not height decreased in IT only. For competitive alpine skiers, block periodization of HIT offers a promising way to efficiently improve VO2max and performance. Compromised explosive jump performance might be associated with persisting muscle fatigue.

  3. Continuous Tuning of Phase Transition Temperature in VO2 Thin Films on c-Cut Sapphire Substrates via Strain Variation.

    PubMed

    Jian, Jie; Wang, Xuejing; Li, Leigang; Fan, Meng; Zhang, Wenrui; Huang, Jijie; Qi, Zhimin; Wang, Haiyan

    2017-02-15

    Vanadium dioxide (VO2) thin films with controlled thicknesses are deposited on c-cut sapphire substrates with Al-doped ZnO (AZO) buffer layers by pulsed laser deposition. The surface roughness of AZO buffer layers is varied by controlling oxygen pressure during growth. The strain in the VO2 lattice is found to be dependent on the VO2 thickness and the VO2/AZO interface roughness. The semiconductor-to-metal transition (SMT) properties of VO2 thin films are characterized and the transition temperature (Tc) is successfully tuned by the VO2 thickness as well as the VO2/AZO interface roughness. It shows that the Tc of VO2 decreases with the decrease of film thickness or VO2/AZO interface roughness. Other SMT properties of the VO2 films are maintained during the Tc tuning. The results suggest that the strain tuning induced by AZO buffer provides an effective approach for tuning Tc of VO2 continuously.

  4. Validation of a Ramp Running Protocol for Determination of the True VO2max in Mice

    PubMed Central

    Ayachi, Mohamed; Niel, Romain; Momken, Iman; Billat, Véronique L.; Mille-Hamard, Laurence

    2016-01-01

    In the field of comparative physiology, it remains to be established whether the concept of VO2max is valid in the mouse and, if so, how this value can be accurately determined. In humans, VO2max is generally considered to correspond to the plateau observed when VO2 no longer rises with an increase in workload. In contrast, the concept of VO2peak tends to be used in murine studies. The objectives of the present study were to determine whether (i) a continuous ramp protocol yielded a higher VO2peak than a stepwise, incremental protocol, and (ii) the VO2peak measured in the ramp protocol corresponded to VO2max. The three protocols (based on intensity-controlled treadmill running until exhaustion with eight female FVB/N mice) were performed in random order: (a) an incremental protocol that begins at 10 m.min−1 speed and increases by 3 m.min−1 every 3 min. (b) a ramp protocol with slow acceleration (3 m.min−2), and (c) a ramp protocol with fast acceleration (12 m.min−2). Each protocol was performed with two slopes (0 and 25°). Hence, each mouse performed six exercise tests. We found that the value of VO2peak was protocol-dependent (p < 0.05) and was highest (59.0 ml.kg 0.75.min−1) for the 3 m.min−2 0° ramp protocol. In the latter, the presence of a VO2max plateau was associated with the fulfillment of two secondary criteria (a blood lactate concentration >8 mmol.l−1 and a respiratory exchange ratio >1). The total duration of the 3 m.min−2 0° ramp protocol was shorter than that of the incremental protocol. Taken as a whole, our results suggest that VO2max in the mouse is best determined by applying a ramp exercise protocol with slow acceleration and no treadmill slope. PMID:27621709

  5. Validation of a Ramp Running Protocol for Determination of the True VO2max in Mice.

    PubMed

    Ayachi, Mohamed; Niel, Romain; Momken, Iman; Billat, Véronique L; Mille-Hamard, Laurence

    2016-01-01

    In the field of comparative physiology, it remains to be established whether the concept of VO2max is valid in the mouse and, if so, how this value can be accurately determined. In humans, VO2max is generally considered to correspond to the plateau observed when VO2 no longer rises with an increase in workload. In contrast, the concept of VO2peak tends to be used in murine studies. The objectives of the present study were to determine whether (i) a continuous ramp protocol yielded a higher VO2peak than a stepwise, incremental protocol, and (ii) the VO2peak measured in the ramp protocol corresponded to VO2max. The three protocols (based on intensity-controlled treadmill running until exhaustion with eight female FVB/N mice) were performed in random order: (a) an incremental protocol that begins at 10 m.min(-1) speed and increases by 3 m.min(-1) every 3 min. (b) a ramp protocol with slow acceleration (3 m.min(-2)), and (c) a ramp protocol with fast acceleration (12 m.min(-2)). Each protocol was performed with two slopes (0 and 25°). Hence, each mouse performed six exercise tests. We found that the value of VO2peak was protocol-dependent (p < 0.05) and was highest (59.0 ml.kg (0.75).min(-1)) for the 3 m.min(-2) 0° ramp protocol. In the latter, the presence of a VO2max plateau was associated with the fulfillment of two secondary criteria (a blood lactate concentration >8 mmol.l(-1) and a respiratory exchange ratio >1). The total duration of the 3 m.min(-2) 0° ramp protocol was shorter than that of the incremental protocol. Taken as a whole, our results suggest that VO2max in the mouse is best determined by applying a ramp exercise protocol with slow acceleration and no treadmill slope.

  6. Effects of specific muscle training on VO2 on-response and early blood lactate.

    PubMed

    Cerretelli, P; Pendergast, D; Paganelli, W C; Rennie, D W

    1979-10-01

    The relationship between half time of the O2 uptake on-response (t1/2 VO2on, seconds) and early blood lactate accumulation (delta Lab, mmol.1(-1) at the onset of submaximal arm and/or leg exercise was the object of a cross-sectional study of sedentary subjects (S,n = 3), and kayakers (K, n = 8), and of a longitudinal study on 11 untrained subjects of specific arm vs. leg training. In supine arm cranking (W = 125 watts) S had an average t1/2 VO2on of 82 s and a delta Aab of 9.2 mmol.1(-1) compared to 47 +/- 7 s and 4 +/- 1.4 mmol.1(-1), respectively, for K. In longitudinal trainees shorter t1/2 VO2on was accompanied by lower Lab for the trained limbs. Specific limb conditioning in swimmers and runners resulted in shorter t1/2 VO2on. A linear relationship was observed between delta Lab and t1/2 VO2on having an intercept on the time axis at congruent to 20 s and a slope proportional to muscle mass. Trained muscles were grouped closest to the intercept indicating local acceleration of the rate of O2 transfer approaching the t1/2 VO2on for isolated perfused muscle at the onset of work. Since t1/2 VO2on, we conclude that factors distal to the capillary are specifically involved in the local training response.

  7. Markers of inflammation are inversely associated with VO2 max in asymptomatic men.

    PubMed

    Kullo, Iftikhar J; Khaleghi, Mahyar; Hensrud, Donald D

    2007-04-01

    We investigated whether markers of inflammation, including a cytokine (IL-6), acute-phase reactants [C-reactive protein (CRP) and fibrinogen], and white blood cell (WBC) count are associated with maximal O(2) consumption (Vo(2 max)) in men without coronary heart disease (CHD). In asymptomatic men (n = 172, 51 +/- 9.3 yr old), Vo(2 max) was measured during a symptom-limited graded treadmill exercise test. Physical activity level was assessed by a standardized questionnaire. IL-6 and CRP were measured by immunoassays, fibrinogen by the Clauss method, and WBC count with a Coulter counter. IL-6 and CRP were logarithmically transformed to reduce skewness. Multivariable regression was used to assess whether markers of inflammation were associated with Vo(2 max) after adjustment for age, body mass index, CHD risk factors, and lifestyle variables (physical activity level, percent body fat, and alcohol intake). Vo(2 max) was 34.5 ml.kg(-1).min(-1) (SD 6.1). Log IL-6 (r = -0.38, P < 0.001), log CRP (r = -0.40, P < 0.001), fibrinogen (r = -0.42, P < 0.001), and WBC count (r = -0.22, P = 0.004) were each correlated with Vo(2 max). In separate multivariable linear regression models that adjusted for age, body mass index, CHD risk factors, and lifestyle variables, log IL-6 [beta-coeff = -1.66 +/- 0.63 (SE), P = 0.010], log CRP [beta-coeff = -0.99 +/- 0.33 (SE), P = 0.003], fibrinogen [beta-coeff = -1.51 +/- 0.44 (SE), P = 0.001], and WBC count [beta-coeff = -0.52 +/- 0.30 (SE), P = 0.088] were each inversely associated with Vo(2 max). In conclusion, higher circulating levels of IL-6, CRP, and fibrinogen are independently associated with lower Vo(2 max) in asymptomatic men.

  8. VO2 max is associated with ACE genotype in postmenopausal women.

    PubMed

    Hagberg, J M; Ferrell, R E; McCole, S D; Wilund, K R; Moore, G E

    1998-11-01

    Relationships have frequently been found between angiotensin-converting enzyme (ACE) genotype and various pathological and physiological cardiovascular outcomes and functions. Thus we sought to determine whether ACE genotype affected maximal O2 consumption (VO2 max) and maximal exercise hemodynamics in postmenopausal women with different habitual physical activity levels. Age, body composition, and habitual physical activity levels did not differ among ACE genotype groups. However, ACE insertion/insertion (II) genotype carriers had a 6.3 ml . kg-1 . min-1 higher VO2 max (P < 0.05) than the ACE deletion/deletion (DD) genotype group after accounting for the effect of physical activity levels. The ACE II genotype group also had a 3.3 ml . kg-1 . min-1 higher VO2 max (P < 0.05) than the ACE insertion/deletion (ID) genotype group. The ACE ID group tended to have a higher VO2 max than the DD genotype group, but the difference was not significant. ACE genotype accounted for 12% of the variation in VO2 max among women after accounting for the effect of habitual physical activity levels. The entire difference in VO2 max among ACE genotype groups was the result of differences in maximal arteriovenous O2 difference (a-vDO2). ACE genotype accounted for 17% of the variation in maximal a-vDO2 in these women. Maximal cardiac output index did not differ whatsoever among ACE genotype groups. Thus it appears that ACE genotype accounts for a significant portion of the interindividual differences in VO2 max among these women. However, this difference is the result of genotype-dependent differences in maximal a-vDO2 and not of maximal stroke volume and maximal cardiac output.

  9. Microwave-Assisted Synthesis of Silver Vanadium Phosphorus Oxide, Ag2VO2PO4 : Crystallite Size Control and Impact on Electrochemistry

    DOE PAGES

    Huang, Jianping; Marschilok, Amy C.; Takeuchi, Esther S.; ...

    2016-03-07

    We study silver vanadium phosphorus oxide, Ag2VO2PO4, that is a promising cathode material for Li batteries due in part to its large capacity and high current capability. Herein, a new synthesis of Ag2VO2PO4 based on microwave heating is presented, where the reaction time is reduced by approximately 100× relative to other reported methods, and the crystallite size is controlled via synthesis temperature, showing a linear correlation of crystallite size with temperature. Notably, under galvanostatic reduction, the Ag2VO2PO4 sample with the smallest crystallite size delivers the highest capacity and shows the highest loaded voltage. Further, pulse discharge tests show a significantmore » resistance decrease during the initial discharge coincident with the formation of Ag metal. Thus, the magnitude of the resistance decrease observed during pulse tests depends on the Ag2VO2PO4 crystallite size, with the largest resistance decrease observed for the smallest crystallite size. Additional electrochemical measurements indicate a quasi-reversible redox reaction involving Li+ insertion/deinsertion, with capacity fade due to structural changes associated with the discharge/charge process. In summary, this work demonstrates a faster synthetic approach for bimetallic polyanionic materials which also provides the opportunity for tuning of electrochemical properties through control of material physical properties such as crystallite size.« less

  10. Solution-Processed VO2-SiO2 Composite Films with Simultaneously Enhanced Luminous Transmittance, Solar Modulation Ability and Anti-Oxidation property

    PubMed Central

    Zhao, Lili; Miao, Lei; Liu, Chengyan; Li, Chao; Asaka, Toru; Kang, Yipu; Iwamoto, Yuji; Tanemura, Sakae; Gu, Hui; Su, Huirong

    2014-01-01

    Recently, researchers spare no efforts to fabricate desirable vanadium dioxide (VO2) film which provides simultaneously high luminous transmittance and outstanding solar modulation ability, yet progress towards the optimization of one aspect always comes at the expense of the other. Our research devotes to finding a reproducible economic solution-processed strategy for fabricating VO2-SiO2 composite films, with the aim of boosting the performance of both aspects. Compare to VO2 film, an improvement of 18.9% (from 29.6% to 48.5%) in the luminous transmittance as well as an increase of 6.0% (from 9.7% to 15.7%) in solar modulation efficiency is achieved when the molar ratio of Si/V attains 0.8. Based on the effective medium theory, we simulate the optical spectra of the composite films and the best thermochromic property is obtained when the filling factor attains 0.5, which is consistent with the experimental results. Meanwhile, the improvement of chemical stability for the composite film against oxidation has been confirmed. Tungsten is introduced to reduce the phase transition temperature to the ambient temperature, while maintain the thermochromism required for application as smart window. Our research set forth a new avenue in promoting practical applications of VO2-based thermochromic fenestration. PMID:25384345

  11. Formation mechanism of a microscale domain and effect on transport properties in strained VO2 thin films on TiO2(001)

    NASA Astrophysics Data System (ADS)

    Kawatani, Kenichi; Kanki, Teruo; Tanaka, Hidekazu

    2014-08-01

    We investigated film thickness dependence of domain size and transport property in VO2 thin films on rutile TiO2 (001) substrates and identified formation mechanism of the microscaled domain. It was found that domain size decreased with increasing film thickness and the domain boundary consisted of cracks and dislocations, clarified by high-resolution transmission electron microscopy. The detailed images showed, the tensile-strained VO2 lattices received by TiO2 (001) were partially relaxed around the cracks and dislocations. The relaxed lattice is likely to return the original metal-insulator transition temperature of 340 K, whereas the tensile-strained lattice has the transition at 300 K in a VO2/TiO2 (001) system. Thus, the mixed states of strained and relaxed crystal lattice and the increase in dislocation density in thicker films cause the overly broad resistance behavior against temperature. Furthermore, the origin of the dislocations and the thickness dependence of the domain size could be explained by the energy release of shear stress generated by competition between the pinning layers at near-interface VO2 layers holding the tetragonal structure and the near-surface layers separated from the substrate attempting the lattice transformation to a monoclinic structure. This understanding enables us to more precisely design the size and configuration of these domains and their transport properties.

  12. Solution-Processed VO2-SiO2 Composite Films with Simultaneously Enhanced Luminous Transmittance, Solar Modulation Ability and Anti-Oxidation property

    NASA Astrophysics Data System (ADS)

    Zhao, Lili; Miao, Lei; Liu, Chengyan; Li, Chao; Asaka, Toru; Kang, Yipu; Iwamoto, Yuji; Tanemura, Sakae; Gu, Hui; Su, Huirong

    2014-11-01

    Recently, researchers spare no efforts to fabricate desirable vanadium dioxide (VO2) film which provides simultaneously high luminous transmittance and outstanding solar modulation ability, yet progress towards the optimization of one aspect always comes at the expense of the other. Our research devotes to finding a reproducible economic solution-processed strategy for fabricating VO2-SiO2 composite films, with the aim of boosting the performance of both aspects. Compare to VO2 film, an improvement of 18.9% (from 29.6% to 48.5%) in the luminous transmittance as well as an increase of 6.0% (from 9.7% to 15.7%) in solar modulation efficiency is achieved when the molar ratio of Si/V attains 0.8. Based on the effective medium theory, we simulate the optical spectra of the composite films and the best thermochromic property is obtained when the filling factor attains 0.5, which is consistent with the experimental results. Meanwhile, the improvement of chemical stability for the composite film against oxidation has been confirmed. Tungsten is introduced to reduce the phase transition temperature to the ambient temperature, while maintain the thermochromism required for application as smart window. Our research set forth a new avenue in promoting practical applications of VO2-based thermochromic fenestration.

  13. Effects of exercise and group counselling on body composition and VO2max in overweight women with polycystic ovary syndrome.

    PubMed

    Roessler, Kirsten K; Birkebaek, Camilla; Ravn, Pernille; Andersen, Marianne S; Glintborg, Dorte

    2013-03-01

    Polycystic ovary syndrome (PCOS) is often associated with an increased waist circumference and with lower cardio-respiratory fitness as a consequence of obesity, which may be improved by physical activity. To investigate the effect of high-intensity aerobic training combined with group counselling sessions on anthropometry and cardio-respiratory fitness in women with PCOS. Seventeen sedentary, overweight women with PCOS were randomized in a cross-over design to 16 weeks of intervention: eight weeks high-intensity aerobic exercise was followed by eight weeks of group counselling (n = 8) or vice versa (n = 9). Fourteen of the women completed the tests. Waist circumference, body mass index and maximal aerobic capacity (VO(2max) ) were measured at baseline, cross-over and post-intervention. There was a decrease in waist circumference (119.9 vs. 106.5 cm) and body mass index (34.9 vs. 34.4 kg/m(2) ) and an increase in VO(2max) (2554.9 vs. 2807.9 mL/min) during the intervention period (t = 16 weeks, n = 14), all p < 0.05. Weight loss tended to be highest in the group which started with group counselling (2.9 vs. 0.6 kg, t = 16 weeks, n = 14, p = 0.055). Exercise in groups followed by counselling or vice versa had beneficial effects on waist circumference, weight, and VO(2max) in women with PCOS. Future studies should examine possible beneficial effects of combined group counselling and exercise on weight loss and adherence to exercise protocols among women with PCOS. © 2013 The Authors Acta Obstetricia et Gynecologica Scandinavica © 2013 Nordic Federation of Societies of Obstetrics and Gynecology.

  14. A comparison of time to exhaustion at VO2 max in élite cyclists, kayak paddlers, swimmers and runners.

    PubMed

    Billat, V; Faina, M; Sardella, F; Marini, C; Fanton, F; Lupo, S; Faccini, P; de Angelis, M; Koralsztein, J P; Dalmonte, A

    1996-02-01

    A recent study has shown the reproducibility of time to exhaustion (time limit: tlim) at the lowest velocity that elicits the maximal oxygen consumption (vVO2 max). The same study found an inverse relationship between this time to exhaustion at vVO2 max and vVO2 max among 38 élite long-distance runners (Billat et al. 1994b). The purpose of the present study was to compare the time to exhaustion at the power output (or velocity) at VO2 max for different values of VO2 max, depending on the type of exercise and not only on the aerobic capacity. The time of exhaustion at vVO2 max (tlim) has been measured among 41 élite (national level) sportsmen: 9 cyclists, 9 kayak paddlers, 9 swimmers and 14 runners using specific ergometers. Velocity or power at VO2 max (vVO2 max) was determined by continuous incremental testing. This protocol had steps of 2 min and increments of 50 W, 30 W, 0.05 m s-1 and 2 km-1 for cyclists, kayak paddlers, swimmers and runners, respectively. One week later, tlim was determined under the same conditions. After a warm-up of 10 min at 60% of their vVO2 max, subjects were concluded (in less than 45 s) to their vVO2 max and then had to sustain it as long as possible until exhaustion. Mean values of vVO2 max and tlim were respectively equal to 419 +/- 49 W (tlim = 222 +/- 91 s), 239 +/- 56 W (tlim = 376 +/- 134 s), 1.46 +/- 0.09 m s-1 (tlim = 287 +/- 160 s) and 22.4 +/- 0.8 km h-1 (tlim = 321 +/- 84 s), for cyclists, kayak paddlers, swimmers and runners. Time to exhaustion at vVO2 max was only significantly different between cycling and kayaking (ANOVA test, p < 0.05). Otherwise, VO2 max (expressed in ml min-1 kg-1) was significantly different between all sports except between cycling and running (p < 0.05). In this study, time to exhaustion at vVO2 max was also inversely related to VO2 max for the entire group of élite sportsmen (r = -0.320, p < 0.05, n = 41). The inverse relationship between VO2 max and tlim at vVO2 max has to be explained, it

  15. Use of a Nonexercise Estimate for Prestroke Peak Vo2 During the Acute Stroke Hospital Stay

    PubMed Central

    Mattlage, Anna E.; Redlin, Sara A.; Rosterman, Lee R.; Harn, Nick; Sisante, Jason-Flor V.; Abraham, Michael G.; Billinger, Sandra A.

    2016-01-01

    Purpose For individuals with acute stroke, it is difficult to conduct an exercise test to assess peak oxygen consumption (peak Vo2). Therefore, the purpose of this study was to use a clinically feasible tool for assessing prestroke peak Vo2 using a nonexercise estimation equation to test whether estimated prestroke peak Vo2 was related to the functional outcome measures at discharge from the hospital in individuals after an acute stroke. We hypothesized that the estimated prestroke peak Vo2 would be significantly related to discharge Physical Performance Test (PPT), 6-minute walk test (6MWT), and lower extremity Fugl-Meyer (LEFM) assessment. Methods Estimated prestroke peak Vo2 was calculated using a previously validated prediction equation using the following variables: body mass index, age, sex, resting heart rate, and a self-reported measure of physical activity. Outcome measures were assessed 4 days after enrollment or immediately before discharge (whichever occurred first). Results Thirty-four participants (mean age = 56.0, SD = 12.6 years; 20 men) with acute stroke were enrolled within 48 hours of admission. For all individuals, mean estimated prestroke peak Vo2 was 27.3 (SD = 7.4) mL·kg−1·min−1 and had a weak, nonsignificant relationship with the PPT (r = 0.19; P = .28), 6MWT (r = 0.10; P = .56), and LEFM (r = 0.32; P = .06). However, when considering sex, women, but not men, had a significant relationship with LEFM (r = 0.73; P = .005) and moderate but nonsignificant relationship with PPT (r = 0.53; P = .06) and 6MWT (r = 0.47; P = .10). Conclusions Within 48 hours of stroke admission, we were able to administer a nonexercise equation to estimate prestroke peak Vo2. For the entire sample, functional measures conducted at discharge were not related to estimated prestroke peak Vo2. However, when considering sex, the relationship between prestroke Vo2 and the functional measures was strengthened. PMID:27478424

  16. Service Oriented Architecture for High Level Applications

    SciTech Connect

    Chu, Chungming; Chevtsov, Sergei; Wu, Juhao; Shen, Guobao; /Brookhaven

    2012-06-28

    Standalone high level applications often suffer from poor performance and reliability due to lengthy initialization, heavy computation and rapid graphical update. Service-oriented architecture (SOA) is trying to separate the initialization and computation from applications and to distribute such work to various service providers. Heavy computation such as beam tracking will be done periodically on a dedicated server and data will be available to client applications at all time. Industrial standard service architecture can help to improve the performance, reliability and maintainability of the service. Robustness will also be improved by reducing the complexity of individual client applications.

  17. VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.

    PubMed

    Prakash, P Giri; Rao, J Lakshmana

    2005-09-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.

  18. Non-exercise estimation of VO2max using the International Physical Activity Questionnaire

    PubMed Central

    Schembre, Susan M.; Riebe, Deborah A.

    2011-01-01

    Non-exercise equations developed from self-reported physical activity can estimate maximal oxygen uptake (VO2max) as well as submaximal exercise testing. The International Physical Activity Questionnaire (IPAQ) is the most widely used and validated self-report measure of physical activity. This study aimed to develop and test a VO2max estimation equation derived from the IPAQ-Short Form (IPAQ-S). College-aged males and females (n = 80) completed the IPAQ-S and performed a maximal exercise test. The estimation equation was created with multivariate regression in a gender-balanced subsample of participants, equally representing five levels of fitness (n = 50) and validated in the remaining participants (n = 30). The resulting equation explained 43% of the variance in measured VO2max (SEE = 5.45 ml·kg-1·min-1). Estimated VO2max for 87% of individuals fell within acceptable limits of error observed with submaximal exercise testing (20% error). The IPAQ-S can be used to successfully estimate VO2max as well as submaximal exercise tests. Development of other population-specific estimation equations is warranted. PMID:21927551

  19. Echinacea purpurea supplementation does not enhance VO2max in distance runners.

    PubMed

    Baumann, Cory W; Bond, Kelsey L; Rupp, Jeffrey C; Ingalls, Christopher P; Doyle, J Andrew

    2014-05-01

    Oral supplementation of Echinacea purpurea (ECH) has been reported to increase levels of serum erythropoietin and as a result improve endurance performance in untrained subjects. The purpose of this study was to determine if ECH supplementation alters maximal oxygen uptake (VO2max) in trained endurance runners. Using a double-blind design, 16 trained endurance runners (9 ECH and 7 placebo [PLA]) supplemented with either 8,000 mg·d(-1) of ECH or wheat flour (PLA) for 6 weeks. Maximal aerobic treadmill tests and blood samples were measured before and after supplementation to determine VO2max, hematocrit (Hct), and hemoglobin (Hb). VO2max, Hct, and Hb did not differ between the ECH and PLA groups before or after supplementation. Furthermore, supplementation of ECH failed to improve VO2max (67.37 ± 4.62 vs. 67.23 ± 5.82 ml·kg(-1)·min(-1)), Hct (43.57 ± 2.38 vs. 42.85 ± 1.46%), or Hb (14.93 ± 1.27 vs. 15.55 ± 0.80 g·dL(-1)) from baseline measurements. Echinacea purpurea supplementation of 8,000 mg·d(-1) for 6 weeks failed to increase VO2max, Hct, or Hb in trained endurance runners and thus does not seem to influence physiological variables that affect distance running performance.

  20. Scaling of VO2max and its relationship with insulin resistance in children.

    PubMed

    Ahn, Bumsoo; McMurray, Robert; Harrell, Joanne

    2013-02-01

    The relationship between insulin resistance (HOMA-IR), percent body fat, and aerobic fitness (VO2max per unit fat free mass; mL/kgFFM/min) was examined in 1,710 children. Percent body fat was estimated from sum of skinfolds, and VO2max was estimated from submaximal cycle ergometer tests. Overnight fasting blood samples were obtained. VO2max (mL/kgFFM/min) and percent body fat were correlated with HOMA-IR (r = -0.076, p < .002; r = .420, p < .001, respectively); as was VO2max in units of mL/kg/min (r = -0.264, p < .001). When VO2max in mL/kg/min was used, a progressive increase in HOMA-IR was found with decreasing fitness (p < .05). However, when mL/kgFFM/min was used, HOMA-IR scores remained similar between moderate-fit and low-fit group. The stronger association between aerobic fitness (mL/kg/min) and HOMA-IR is partially due to the significant association of fat mass to HOMA-IR. Therefore, our recommendation is to express aerobic fitness in units of mL/kgFFM/min to eliminate the confounding factor of adiposity and better understand the influence of muscle on insulin resistance.

  1. Echinacea Purpurea Supplementation does not Enhance VO2max in Distance Runners.

    PubMed

    Baumann, Cory W; Bond, Kelsey L; Rupp, Jeffrey C; Ingalls, Christopher P; Doyle, J Andrew

    2013-11-20

    Oral supplementation of echinacea purpurea (ECH) has been reported to increase levels of serum erythropoietin (EPO) and as a result improve endurance performance in untrained subjects. The purpose of this study was to determine if ECH supplementation alters maximal oxygen uptake (VO2max) in trained endurance runners. Using a double-blind design, 16 trained endurance runners (9 ECH and 7 placebo-PLA) supplemented with either 8000 mg·d of ECH or wheat flour (PLA) for 6 weeks. Maximal aerobic treadmill tests and blood samples were measured before and after supplementation to determine VO2max, hematocrit (Hct) and hemoglobin (Hb). VO2max, Hct and Hb did not differ between the ECH and PLA group before or after supplementation. Furthermore, supplementation of ECH failed to improve VO2max (67.37 ± 4.62 vs. 67.23 ± 5.82 mL⋅kg⋅min), Hct (43.57 ± 2.38 vs. 42.85 ± 1.46%) or Hb (14.93 ± 1.27 vs. 15.55 ± .80 g·dL) from baseline measurements. Echinacea purpurea (ECH) supplementation of 8000 mg·d for 6 weeks failed to increase VO2max, Hct or Hb in trained endurance runners and thus does not appear to influence physiological variables that affect distance-running performance.

  2. Concentration Dependence of VO2+ Crossover of Nafion for Vanadium Redox Flow Batteries

    SciTech Connect

    Lawton, Jamie; Jones, Amanda; Zawodzinski, Thomas A

    2013-01-01

    The VO2+ crossover, or permeability, through Nafion in a vanadium redox flow battery (VRFB) was monitored as a function of sulfuric acid concentration and VO2+ concentration. A vanadium rich solution was flowed on one side of the membrane through a flow field while symmetrically on the other side a blank or vanadium deficit solution was flowed. The blank solution was flowed through an electron paramagnetic resonance (EPR) cavity and the VO2+ concentration was determined from the intensity of the EPR signal. Concentration values were fit using a solution of Fick s law that allows for the effect of concentration change on the vanadium rich side. The fits resulted in permeability values of VO2+ ions across the membrane. Viscosity measurements of many VO2+ and H2SO4 solutions were made at 30 60 C. These viscosity values were then used to determine the effect of the viscosity of the flowing solution on the permeability of the ion. 2013 The Electrochemical Society. [DOI: 10.1149/2.004306jes] All rights reserved.

  3. Epitaxial VO2 thin film-based radio-frequency switches with thermal activation

    NASA Astrophysics Data System (ADS)

    Lee, Jaeseong; Lee, Daesu; Cho, Sang June; Seo, Jung-Hun; Liu, Dong; Eom, Chang-Beom; Ma, Zhenqiang

    2017-08-01

    In this paper, we report on the demonstration of thermally triggered "normally ON" radio-frequency (RF) switches based on epitaxial vanadium dioxide (VO2) thin films with a SnO2 template on (001) TiO2 substrates. Fast insulator-to-metal phase transition of the epitaxial VO2 at a relatively low temperature allowed RF switches made of the VO2 to exhibit sharp changes in the RF insertion loss during cooling and heating at 60 °C and 66 °C, respectively. The change of RF insertion loss due to phase transition is greater than 15 dB. The VO2 RF switches also completed the transition of S21 within less than 3 °C and showed a low-loss operation frequency of up to 24.2 GHz with a low insertion loss of -1.36 dB and isolation of 17.56 dB at 12.03 GHz, respectively. The demonstration suggests that epitaxial VO2-based RF switches can be used in switching elements up to Ku-band RF circuits.

  4. Transport Anisotropy of Epitaxial VO2 films grown on (100) TiO2

    NASA Astrophysics Data System (ADS)

    Kittiwatanakul, Salinporn; Lu, Jiwei; Wolf, Stuart

    2011-03-01

    Vanadium dioxide (VO2) exhibits a metal semiconductor transition (MST) at 340 K. This transition is accompanied by the abrupt change in the electrical conductivity, optical transmittance and reflectance in infrared region, which can be used in the electronic devices such as temperature sensors and electric switches. In this study, Reactive Bias Target Ion Beam Deposition was used for epitaxial VO2 thin film growth on Ti O2 (100) substrates. The out-of-plane and the in-plane XRD scans have been performed to confirm the single phase VO2 and the epitaxial relationship between the film and the substrate. The hall bars along the in-plane c-axis and b-axis of R-VO2 were fabricated via the photolithographic process. It is found that the maximum conductivity was parallel to c-axis, while the minimum conductivity was parallel to b-axis. The conductivity anisotropy persisted through the metal semiconductor transition. The conductivity anisotropy ratio σc / σb was found to be ~ 16.2 at 300 K, much larger than that of single crystal VO2 . The temperature dependent anisotropy of the carrier concentration and the mobility is to be discussed.

  5. Comparison of the IPAQ-A and actigraph in relation to VO2max among European adolescents: the HELENA study.

    PubMed

    Ottevaere, Charlene; Huybrechts, Inge; De Bourdeaudhuij, Ilse; Sjöström, Michael; Ruiz, Jonatan R; Ortega, Francisco B; Hagströmer, Maria; Widhalm, Kurt; Molnár, Dénes; Moreno, Luis A; Beghin, Laurent; Kafatos, Anthony; Polito, Angela; Manios, Yannis; Mártinez-Gómez, David; De Henauw, Stefaan

    2011-07-01

    The purpose was to compare data obtained from a modified, long, self-administered version of the International Physical Activity Questionnaire (IPAQ-A) with objective data obtained in parallel from Actigraph accelerometers, and VO(2)max in adolescents. The study comprised a total of 2018 adolescents (46% male) from ten European cities participating in the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) study. Physical activity was assessed over seven consecutive days by accelerometry and expressed as min/day of moderate, vigorous, and moderate to vigorous (MVPA) physical activity (PA). PA was also assessed with the IPAQ-A. VO(2)max was estimated from a 20-m shuttle run test. Poor to fair correlations between the two methodologies were found for the whole study sample and when stratified by age and gender (r(s) = 0.08-0.26, p < 0.01). On average, the self-reported time spent in moderate PA was higher compared to the time measured with the accelerometer, while the differences between both instruments were less clear for vigorous intensity. Adolescents reporting high levels of PA (3rd tertile IPAQ-A) also showed higher levels of PA (accelerometers) in all the study variables (moderate, vigorous and MVPA), compared to adolescents reporting low PA (1st tertile IPAQ-A) (all p < 0.001). Both methods were moderately correlated with estimated VO(2)max. Within the HELENA-study, the IPAQ-A showed the modest comparability with the accelerometer data for assessing PA in each intensity level and was the highest for vigorous intensity. Both instruments are able to detect the adolescents with the highest cardio respiratory fitness, which are the most active adolescents. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  6. Relationship between percentage of VO2max and type of physical activity in obese and non-obese adolescents.

    PubMed

    Lazzer, S; Boirie, Y; Bitar, A; Petit, I; Meyer, M; Vermorel, M

    2005-03-01

    The objective of the present study was to determine oxygen uptake (VO(2)) and percentage of maximum oxygen uptake (%VO2max) in obese and non-obese adolescents during various activities in standardised conditions, and the corresponding %VO2max in free-living conditions. Twenty-seven obese and 50 non-obese adolescents aged 12 to 16 years participated in this study. Body composition was assessed by bioelectrical impedance analysis and dual energy X-ray absorptiometry (DXA), VO2max by treadmill tests, VO2 corresponding to various activities by whole body calorimetry, and time and % VO2max corresponding to various activities in free-living conditions using the heart-rate recording method and a physical activity diary. VO2max (l/min) was 27.4% higher in obese than in non-obese subjects (p<0.001), but not significantly different after adjustment for fat-free mass (FFM). In the whole body calorimeters, with the same activity program, % VO2max corresponding to sleep and sedentary activities were lower in obese than in non-obese girls (-15.1% and -12.3%, p<0.05), but not significantly different between obese and non-obese boys. However, walking at 4-5-6 km/h corresponded to 47-59% and 71% of VO2max, respectively, in obese, and 34-41% and 48% of VO2max in non-obese subjects (p<0.001). In free-living conditions, moderate physical activities and sports corresponded to 52% vs 35%, and 39% vs 51% of VO2max, respectively, in obese and non-obese adolescents. In standardised conditions %VO2max did not correspond to the same type of physical activity in obese compared to non-obese adolescents. Consequently, % VO2max is inadequate for comparing the types of physical activities of obese and non-obese adolescents in free-living conditions.

  7. Electronic, thermoelectric and optical properties of vanadium oxides: VO2, V2O3 and V2O 5

    NASA Astrophysics Data System (ADS)

    Lamsal, Chiranjivi

    Correlated electrons in vanadium oxides are responsible for their extreme sensitivity to external stimuli such as pressure, temperature or doping. As a result, several vanadium oxides undergo insulator-to-metal phase transition (IMT) accompanied by structural change. Unlike vanadium pentoxide (V2O5), vanadium dioxide (VO2) and vanadium sesquioxide (V2O3) show IMT in their bulk phases. In this study, we have performed one electron Kohn-Sham electronic band-structure calculations of VO2, V2O3 and V2O 5 in both metallic and insulating phases, implementing a full ab-initio simulation package based on Density Functional Theory (DFT), Plane Waves and Pseudopotentials (PPs). Electronic band structures are found to be influenced by crystal structure, crystal field splitting and strong hybridization between O2p and V3d bands. "Intermediate bands", with narrow band widths, lying just below the higher conduction bands, are observed in V2O 5 which play a critical role in optical and thermoelectric processes. Similar calculations are performed for both metallic and insulating phases of bulk VO2 and V2O3. Unlike in the metallic phase, bands corresponding to "valence electrons" considered in the PPs are found to be fully occupied in the insulating phases. Transport parameters such as Seebeck coefficient, electrical conductivity and thermal (electronic) conductivity are studied as a function of temperature at a fixed value of chemical potential close to the Fermi energy using Kohn-Sham band structure approach coupled with Boltzmann transport equations. Because of the layered structure and stability, only V2O5 shows significant thermoelectric properties. All the transport parameters have correctly depicted the highly anisotropic electrical conduction in V2O 5. Maxima and crossovers are also seen in the temperature dependent variation of Seebeck coefficient in V2O5, which can be consequences of "specific details" of the band structure and anisotropic electron-phonon interactions

  8. Mott-to-Goodenough insulator-insulator transition in LiVO2

    NASA Astrophysics Data System (ADS)

    Subedi, Alaska

    2017-06-01

    I critically examine Goodenough's explanation for the experimentally observed phase transition in LiVO2 using microscopic calculations based on density functional and dynamical mean field theories. The high-temperature rhombohedral phase exhibits both magnetic and dynamical instabilities. Allowing a magnetic solution for the rhombohedral structure does not open an insulating gap, and an explicit treatment of the on-site Coulomb U interaction is needed to stabilize an insulating rhombohedral phase. The non-spin-polarized phonon dispersions of the rhombohedral phase show two unstable phonon modes at the wave vector (1/3 ,-1/3 ,0 ) that corresponds to the experimentally observed trimer forming instability. A full relaxation of the supercell corresponding to this instability yields a nonmagnetic state containing V3 trimers. These results are consistent with Goodenough's suggestion that the high-temperature phase is in the localized-electron regime and the transition to the low-temperature phase in the itinerant-electron regime is driven by V-V covalency.

  9. Speeding of pulmonary VO2 on-kinetics by light-to-moderate-intensity aerobic exercise training in chronic heart failure: clinical and pathophysiological correlates.

    PubMed

    Mezzani, Alessandro; Grassi, Bruno; Jones, Andrew M; Giordano, Andrea; Corrà, Ugo; Porcelli, Simone; Della Bella, Silvia; Taddeo, Adriano; Giannuzzi, Pantaleo

    2013-09-01

    Pulmonary VO2 on-kinetics during light-to-moderate-intensity constant-work-rate exercise, an experimental model mirroring energetic transitions during daily activities, has been shown to speed up with aerobic exercise training (AET) in normal subjects, but scant data are available in chronic heart failure (CHF). Thirty CHF patients were randomized to 3 months of light-to-moderate-intensity AET (CHF-AET) or control (CHF-C). Baseline and end-protocol evaluations included i) one incremental cardiopulmonary exercise test with near infrared spectroscopy analysis of peak deoxygenated hemoglobin+myoglobin concentration changes (Δ[deoxy(Hb+Mb)]) in vastus lateralis muscle, ii) 8 light-to-moderate-intensity constant-work-rate exercise tests for VO2 on-kinetics phase I duration, phase II τ, and mean response time (MRT) assessment, and iii) circulating endothelial progenitor cell (EPC) measurement. Reference values were obtained in 7 age-matched normals (N). At end-protocol, phase I duration, phase II τ, and MRT were significantly reduced (-12%, -22%, and -19%, respectively) and peak VO2, peak Δ[deoxy(Hb+Mb)], and EPCs increased (9%, 20%, and 98%, respectively) in CHF-AET, but not in CHF-C. Peak Δ[deoxy(Hb+Mb)] and EPCs relative increase correlated significantly to that of peak VO2 (r=0.61 and 0.64, respectively, p<0.05). Light-to-moderate-intensity AET determined a near-normalization of pulmonary VO2 on-kinetics in CHF patients. Such a marked plasticity has important implications for AET intensity prescription, especially in patients more functionally limited and with high exercise-related risk. The AET-induced simultaneous improvement of phase I and phase II, associated with an increase of peak peripheral oxygen extraction and EPCs, supports microcirculatory O2 delivery impairment as a key factor determining exercise intolerance in CHF. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Dynamic Control of Light Emission Faster than the Lifetime Limit Using VO2 Phase-Change

    DTIC Science & Technology

    2015-10-22

    Y2O3 thin-film emitter, a TiO2 spacer layer, a VO2 layer and an Ag mirror. (Expressions for the LDOS in such a five-layer system are explicitly...emission as a function of the thicknesses of both VO2 and TiO2 layers, where M ¼ bMDmetal bMDinsulator and bMD denotes the Er3þ MD branching ratio for...DM TiO2 VO2 Ag Quartz Er 3 :Y 2 O 3 1,450 1,500 1,550 1,600 0 5 10 15 × 105 Wavelength (nm) In te ns ity ( a. u. ) 1,450 1,500 1,550 1,600 0 1 2 3 4

  11. Development of a branching submaximal treadmill test for predicting VO2max.

    PubMed

    Swank, A M; Serapiglia, L; Funk, D; Adams, K J; Durham, M; Berning, J M

    2001-08-01

    This study determined the reliability and validity of a branching treadmill protocol in predicting VO2max. Thirty-seven, apparently healthy individuals (19 women and 18 men); volunteered to participate. On 2 separate testing days, each subject underwent maximal exercise testing using the protocol developed. Stepwise regression analysis indicated that the percentage of age-predicted maximum heart rate (APMHR) achieved at stage 3, speed and grade at stage 3, and APMHR accounted for 89% of the variance in VO2max. The 4 predictor variables were statistically significant (p < 0.01), and the standard error of the estimate was 4.56 ml x kg(-1) min(-1). Results indicate that health and fitness professionals can incorporate this protocol into their practices for the purpose of predicting VO2max for their clients outside the laboratory environment. Furthermore, our results indicate that using the proposed regression model is reliable and has received preliminary construct validity support.

  12. Effects of simulated weightlessness and sympathectomy on maximum VO2 of male rats

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Stump, C. S.; Beaulieu, S. M.; Rahman, Z.; Sebastian, L. A.

    1989-01-01

    The effects of simulated weightlessness (hind-limb suspension) and chemical sympathectomy (by repeated injections with guanethidine sulfate) on the maximum oxygen consumption (VO2 max) of female rats were investigated in rats assigned for 14 days to one of three groups: a head-down hind-limb suspension, a horizontal suspension with hind limbs weight bearing, or the caged control. The VO2 max values were assessed by having rats run on a treadmill enclosed in an airtight chamber. The hind-limb-suspended sympathectomized rats were found to exhibit shorter run times and lower mechanical efficiencies, compared to their presuspension values or the values from saline-injected suspended controls. On the other hand, the suspended sympathectomized rats did not demonstrate a decrease in the VO2 max values that was observed in saline-injected controls.

  13. Direct observation of the M2 phase with its Mott transition in a VO2 film

    NASA Astrophysics Data System (ADS)

    Kim, Hoon; Slusar, Tetiana V.; Wulferding, Dirk; Yang, Ilkyu; Cho, Jin-Cheol; Lee, Minkyung; Choi, Hee Cheul; Jeong, Yoon Hee; Kim, Hyun-Tak; Kim, Jeehoon

    2016-12-01

    In VO2, the explicit origin of the insulator-to-metal transition is still disputable between Peierls and Mott insulators. Along with the controversy, its second monoclinic (M2) phase has received considerable attention due to the presence of electron correlation in undimerized vanadium ions. However, the origin of the M2 phase is still obscure. Here, we study a granular VO2 film using conductive atomic force microscopy and Raman scattering. Upon the structural transition from monoclinic to rutile, we observe directly an intermediate state showing the coexistence of monoclinic M1 and M2 phases. The conductivity near the grain boundary in this regime is six times larger than that of the grain core, producing a donut-like landscape. Our results reveal an intra-grain percolation process, indicating that VO2 with the M2 phase is a Mott insulator.

  14. Photoluminescence response of colloidal quantum dots on VO2 film across metal to insulator transition.

    PubMed

    Kuznetsov, Sergey N; Cheremisin, Alexander B; Stefanovich, Genrikh B

    2014-01-01

    We have proposed a method to probe metal to insulator transition in VO2 measuring photoluminescence response of colloidal quantum dots deposited on the VO2 film. In addition to linear luminescence intensity decrease with temperature that is well known for quantum dots, temperature ranges with enhanced photoluminescence changes have been found during phase transition in the oxide. Corresponding temperature derived from luminescence dependence on temperature closely correlates with that from resistance measurement during heating. The supporting reflectance data point out that photoluminescence response mimics a reflectance change in VO2 across metal to insulator transition. Time-resolved photoluminescence study did not reveal any significant change of luminescence lifetime of deposited quantum dots under metal to insulator transition. It is a strong argument in favor of the proposed explanation based on the reflectance data. 71.30. + h; 73.21.La; 78.47.jd.

  15. Negative capacitance switching via VO2 band gap engineering driven by electric field

    NASA Astrophysics Data System (ADS)

    He, Xinfeng; Xu, Jing; Xu, Xiaofeng; Gu, Congcong; Chen, Fei; Wu, Binhe; Wang, Chunrui; Xing, Huaizhong; Chen, Xiaoshuang; Chu, Junhao

    2015-03-01

    We report the negative capacitance behavior of an energy band gap modulation quantum well with a sandwich VO2 layer structure. The phase transition is probed by measuring its capacitance. With the help of theoretical calculations, it shows that the negative capacitance changes of the quantum well device come from VO2 band gap by continuously tuning the temperature or voltage. Experiments reveal that as the current remains small enough, joule heating can be ignored, and the insulator-metal transition of VO2 can be induced by the electric field. Our results open up possibilities for functional devices with phase transitions induced by external electric fields other than the heating or electricity-heat transition.

  16. Theoretical investigation of the optical and EPR parameters for VO 2+ion in some complexes

    NASA Astrophysics Data System (ADS)

    Kalfaoğlu, Emel; Karabulut, Bünyamin

    2012-04-01

    The molecular orbital coefficients and the EPR parameters of trisodium citrate dihydrate, sodium hydrogen oxalate monohydrate, potassium d-gluconate monohydrate and L-Alanine vanadyl complexes are calculated theoretically. Two d-d transition spectra and EPR parameters for the VO2+ complex are calculated theoretically by using crystal-field theory. The calculated g and A paramaters have indicated that paramagnetic center is axially symmetric. Having the relations of g∥A⊥ for VO2+ ions, it can be concluded that VO2+ ions are located in distorted octahedral sites (C4v) elongated along the z-axis and the ground state of the paramagnetic electron is dxy.

  17. Effects of simulated weightlessness and sympathectomy on maximum VO2 of male rats

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Stump, C. S.; Beaulieu, S. M.; Rahman, Z.; Sebastian, L. A.

    1989-01-01

    The effects of simulated weightlessness (hind-limb suspension) and chemical sympathectomy (by repeated injections with guanethidine sulfate) on the maximum oxygen consumption (VO2 max) of female rats were investigated in rats assigned for 14 days to one of three groups: a head-down hind-limb suspension, a horizontal suspension with hind limbs weight bearing, or the caged control. The VO2 max values were assessed by having rats run on a treadmill enclosed in an airtight chamber. The hind-limb-suspended sympathectomized rats were found to exhibit shorter run times and lower mechanical efficiencies, compared to their presuspension values or the values from saline-injected suspended controls. On the other hand, the suspended sympathectomized rats did not demonstrate a decrease in the VO2 max values that was observed in saline-injected controls.

  18. Enhanced luminous transmittance of thermochromic VO2 thin film patterned by SiO2 nanospheres

    NASA Astrophysics Data System (ADS)

    Zhou, Liwei; Liang, Jiran; Hu, Ming; Li, Peng; Song, Xiaolong; Zhao, Yirui; Qiang, Xiaoyong

    2017-05-01

    In this study, an ordered SiO2 nanosphere array coated with vanadium dioxide (VO2) has been fabricated to enhance transmittance with the potential application as an energy-efficient coating in the field of smart windows. SiO2 arrays were formed using the methods of self-assembly, and VO2 thin films were prepared by rapid thermal annealing (RTA) of sputtered vanadium films. VO2@SiO2 arrays were characterized by scanning electron microscopy, X-ray diffraction, a four-point probe, and UV-vis-NIR spectrophotometry. Compared with the planar films, the films deposited on 300 nm diameter SiO2 nanospheres can offer approximately 18% enhancement of luminous transmission (Tlum) because the diameter is smaller than the given wavelength and the protuberance of the surface array behaves as a gradation of refractive index producing antireflection. The solar regulation efficiency was not much deteriorated.

  19. Ultrafast nano-imagining of the photoinduced phase transition dynamics in VO2

    NASA Astrophysics Data System (ADS)

    Doenges, Sven A.; Khatib, Omar; O'Callahan, Brian T.; Atkin, Joanna M.; Park, Jae Hyung; Cobden, David H.; Raschke, Markus B.

    Many quantum phase transitions in correlated matter exhibit spatial inhomogeneities with expected yet unexplored effects on the associated ultrafast dynamics. Here we demonstrate the combination of ultrafast non-degenerate pump-probe spectroscopy with scattering scanning near-field optical microscopy (s-SNOM) for ultrafast nano-imaging. In a femtosecond near-field non-degenerate near-IR (NIR) pump and mid-IR (MIR) probe experiment, we study the photoinduced insulator-to-metal (IMT) transition in nominally homogeneous VO2 micro-crystals using far-from equilibrium excitation. We observe spatial heterogeneity on 50-100 nm length scales in the fluence dependent IMT dynamics, ranging from sub-100 fs to 1 ps. With pump fluences as high as nominally 10 mJ/cm2 we can reach distinct excitation and saturation regimes. These results suggest a large sensitivity of the IMT with respect to local variations in strain, doping, or defects difficult to discern microscopically.

  20. Wafer-scale growth of VO2 thin films using a combinatorial approach

    PubMed Central

    Zhang, Hai-Tian; Zhang, Lei; Mukherjee, Debangshu; Zheng, Yuan-Xia; Haislmaier, Ryan C.; Alem, Nasim; Engel-Herbert, Roman

    2015-01-01

    Transition metal oxides offer functional properties beyond conventional semiconductors. Bridging the gap between the fundamental research frontier in oxide electronics and their realization in commercial devices demands a wafer-scale growth approach for high-quality transition metal oxide thin films. Such a method requires excellent control over the transition metal valence state to avoid performance deterioration, which has been proved challenging. Here we present a scalable growth approach that enables a precise valence state control. By creating an oxygen activity gradient across the wafer, a continuous valence state library is established to directly identify the optimal growth condition. Single-crystalline VO2 thin films have been grown on wafer scale, exhibiting more than four orders of magnitude change in resistivity across the metal-to-insulator transition. It is demonstrated that ‘electronic grade' transition metal oxide films can be realized on a large scale using a combinatorial growth approach, which can be extended to other multivalent oxide systems. PMID:26450653

  1. Optical properties of correlated materials: Generalized Peierls approach and its application to VO2

    NASA Astrophysics Data System (ADS)

    Tomczak, Jan M.; Biermann, Silke

    2009-08-01

    The aim of this paper is to present a versatile scheme for the computation of optical properties of solids, with particular emphasis on realistic many-body calculations for correlated materials. Geared at the use with localized basis sets, we extend the commonly known lattice “Peierls substitution” approach to the case of multiatomic unit cells. We show in how far this generalization can be deployed as an approximation to the full Fermi-velocity matrix elements that enter the continuum description of the response of a solid to incident light. We further devise an upfolding scheme to incorporate optical transitions that involve high-energy orbitals that had been downfolded in the underlying many-body calculation of the electronic structure. As an application of the scheme, we present results on a material of longstanding interest, vanadium dioxide, VO2 . Using dynamical mean-field data of both, the metallic and the insulating phase, we calculate the corresponding optical conductivities, elucidate optical transitions and find good agreement with experimental results.

  2. Peak treadmill running velocity during the VO2 max test predicts running performance.

    PubMed

    Noakes, T D; Myburgh, K H; Schall, R

    1990-01-01

    Twenty specialist marathon runners and 23 specialist ultra-marathon runners underwent maximal exercise testing to determine the relative value of maximum oxygen consumption (VO2max), peak treadmill running velocity, running velocity at the lactate turnpoint, VO2 at 16 km h-1, % VO2max at 16 km h-1, and running time in other races, for predicting performance in races of 10-90 km. Race time at 10 or 21.1 km was the best predictor of performance at 42.2 km in specialist marathon runners and at 42.2 and 90 km in specialist ultra-marathon runners (r = 0.91-0.97). Peak treadmill running velocity was the best laboratory-measured predictor of performance (r = -0.88(-)-0.94) at all distances in ultra-marathon specialists and at all distances except 42.2 km in marathon specialists. Other predictive variables were running velocity at the lactate turnpoint (r = -0.80(-)-0.92); % VO2max at 16 km h-1 (r = 0.76-0.90) and VO2max (r = 0.55(-)-0.86). Peak blood lactate concentrations (r = 0.68-0.71) and VO2 at 16 km h-1 (r = 0.10-0.61) were less good predictors. These data indicate: (i) that in groups of trained long distance runners, the physiological factors that determine success in races of 10-90 km are the same; thus there may not be variables that predict success uniquely in either 10 km, marathon or ultra-marathon runners, and (ii) that peak treadmill running velocity is at least as good a predictor of running performance as is the lactate turnpoint. Factors that determine the peak treadmill running velocity are not known but are not likely to be related to maximum rates of muscle oxygen utilization.

  3. Induction of cyto-protective autophagy by paramontroseite VO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Miao, Yanyan; Zhang, Yunjiao; Liu, Liang; Lin, Jun; Yang, James Y.; Xie, Yi; Wen, Longping

    2013-04-01

    A variety of inorganic nanomaterials have been shown to induce autophagy, a cellular degradation process critical for the maintenance of cellular homeostasis. The overwhelming majority of autophagic responses elicited by nanomaterials were detrimental to cell fate and contributed to increased cell death. A widely held view is that the inorganic nanoparticles, when encapsulated and trapped by autophagosomes, may compromise the normal autophagic process due to the inability of the cells to degrade these materials and thus they manifest a detrimental effect on the well-being of a cell. Here we show that, contrary to this notion, nano-sized paramontroseite VO2 nanocrystals (P-VO2) induced cyto-protective, rather than death-promoting, autophagy in cultured HeLa cells. P-VO2 also caused up-regulation of heme oxygenase-1 (HO-1), a cellular protein with a demonstrated role in protecting cells against death under stress situations. The autophagy inhibitor 3-methyladenine significantly inhibited HO-1 up-regulation and increased the rate of cell death in cells treated with P-VO2, while the HO-1 inhibitor protoporphyrin IX zinc (II) (ZnPP) enhanced the occurrence of cell death in the P-VO2-treated cells while having no effect on the autophagic response induced by P-VO2. On the other hand, Y2O3 nanocrystals, a control nanomaterial, induced death-promoting autophagy without affecting the level of expression of HO-1, and the pro-death effect of the autophagy induced by Y2O3. Our results represent the first report on a novel nanomaterial-induced cyto-protective autophagy, probably through up-regulation of HO-1, and may point to new possibilities for exploiting nanomaterial-induced autophagy for therapeutic applications.

  4. Development of a rowing-specific VO2max field test.

    PubMed

    Huntsman, Heather D; DiPietro, Loretta; Drury, Daniel G; Miller, Todd A

    2011-06-01

    The purpose of this study was to develop an aerobic capacity test for rowers using minimal equipment that could be used in the field. Thirty rowers (15 men and 15 women) between the ages of 18 and 26 years were recruited on a volunteer basis from the District of Columbia metro area. The testing protocol consisted of a maximum of 7 2-minute stages on a rowing ergometer, separated by 30-second breaks where lactic acid concentrations were analyzed. Starting intensity for men was 200 W, although women started at 150 W, and each stage increased by 50 W. Expired gasses were collected during the test, and athletes were asked to row until maximal volition so that the directly measured VO2max could be compared to predicted values. Peak heart rates from each completed stage were plotted, and regression equations were calculated to predict VO2max. Separate regression equations were calculated for men and women. The predicted VO2max values were approximately 23 and 25% lower than what was actually achieved for men and women, respectively. Heart rate was a stronger correlate of VO2max in men compared with in women. Among men, we observed a moderate and statistically significant correlation (r = 0.55; p = 0.05), whereas among women, no such agreement was observed (r = -0.05; p > 0.85). The principle finding of this study was that the test was adequate in predicting VO2max in men but was inadequate in its prediction in women. With slight modifications to the testing protocol, stronger correlations and a more accurate prediction of VO2max is expected in men.

  5. Influences of chemical sympathectomy, demedullation, and hindlimb suspension on the VO2max of rats

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Stump, C. S.; Sebastian, L. A.; Tipton, C. M.

    1992-01-01

    Results from previous studies have shown that the reduction in maximal oxygen consumption (VO2max) with simulated microgravity is attenuated in chemically sympathectomized rats. To determine the contributions of the catecholamines from the adrenal medulla in this process, investigations were conducted with 65 saline injected (SAL) and chemically sympathectomized (SX) female rats that were either surgically demedullated (DM), or intact (IN). Microgravity conditions were simulated by head-down suspension (HDS) while controls were assigned to individual cages (CC). The experimental period was 14 d. The rats were tested for VO2max, treadmill run time (RT), and submaximal mechanical efficiency (ME) prior to suspension and on days 7 and 14. Saline injected rats that had intact adrenal medullas (SAL-IN) exhibited significantly reduced measures of VO2max after 7 and 14 d by 15% and 21%, respectively. No significant reduction in VO2max was observed with HDS in the SX-IN animals. Sympathectomized rats that were demedullated (SX-DM) also exhibited a significant reduction in VO2max (12%). In addition, HDS was associated with a marked and significant reduction in RT in all groups. ME for submaximal exercise was significantly reduced after HDS in SAL-IN rats but not in the SX-IN rats. SX-DM rats experienced significant reductions in ME similar in magnitude to the SAL-IN rats. These results confirm that chemical sympathectomy attenuates the expected decrease in VO2max with HDS and suggests that circulating epinephrine contributes to this response.

  6. Relationship between Maximal Oxygen Consumption (VO2max) and Home Range Area in Mammals.

    PubMed

    Albuquerque, Ralph L; Sanchez, Gabriela; Garland, Theodore

    2015-01-01

    Home range is defined as the area traversed during normal daily activities, such as foraging, avoiding predators, and social or antagonistic behaviors. All else being equal, larger home ranges should be associated with longer daily movement distances and/or higher average movement speeds. The maximal rate of oxygen consumption (VO2max) generally sets an upper limit to the intensity of work (e.g., speed of locomotion) that an animal can sustain without fatigue. Therefore, home range area and VO2max are predicted to evolve in concert (coadapt). We gathered literature data on home range and VO2max for 55 species of mammals. We computed residuals from log-log (allometric) regressions on body mass with two different regression models: ordinary least squares (OLS) and phylogenetic generalized least squares (PGLS). Residuals were weakly positively related for both the OLS (r = 0.278, one-tailed P < 0.05) and PGLS (r = 0.210, P > 0.05) regressions. For VO2max, the PGLS regression model had a slightly higher likelihood than the OLS model, but the situation was reversed for home range area. In addition, for both home range area and VO2max, models that fit better than either OLS or PGLS were obtained by modeling residual variation with the Ornstein-Uhlenbeck process to mimic stabilizing selection (RegOU), indicating that phylogenetic signal is present in both size-adjusted traits, consistent with findings of previous studies. (However, residuals from the RegOU models cannot be tested for correlation due to mathematical complexities.) We conclude that the best estimate of the residual correlation is probably somewhere between these two values reported above. Possible reasons for the low correlation between residual home range area and VO2max are discussed.

  7. Influences of chemical sympathectomy, demedullation, and hindlimb suspension on the VO2max of rats

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Stump, C. S.; Sebastian, L. A.; Tipton, C. M.

    1992-01-01

    Results from previous studies have shown that the reduction in maximal oxygen consumption (VO2max) with simulated microgravity is attenuated in chemically sympathectomized rats. To determine the contributions of the catecholamines from the adrenal medulla in this process, investigations were conducted with 65 saline injected (SAL) and chemically sympathectomized (SX) female rats that were either surgically demedullated (DM), or intact (IN). Microgravity conditions were simulated by head-down suspension (HDS) while controls were assigned to individual cages (CC). The experimental period was 14 d. The rats were tested for VO2max, treadmill run time (RT), and submaximal mechanical efficiency (ME) prior to suspension and on days 7 and 14. Saline injected rats that had intact adrenal medullas (SAL-IN) exhibited significantly reduced measures of VO2max after 7 and 14 d by 15% and 21%, respectively. No significant reduction in VO2max was observed with HDS in the SX-IN animals. Sympathectomized rats that were demedullated (SX-DM) also exhibited a significant reduction in VO2max (12%). In addition, HDS was associated with a marked and significant reduction in RT in all groups. ME for submaximal exercise was significantly reduced after HDS in SAL-IN rats but not in the SX-IN rats. SX-DM rats experienced significant reductions in ME similar in magnitude to the SAL-IN rats. These results confirm that chemical sympathectomy attenuates the expected decrease in VO2max with HDS and suggests that circulating epinephrine contributes to this response.

  8. Reliability of peak VO(2) and maximal cardiac output assessed using thoracic bioimpedance in children.

    PubMed

    Welsman, Joanne; Bywater, Katie; Farr, Colin; Welford, Deborah; Armstrong, Neil

    2005-06-01

    The purpose of this study was to evaluate the reliability of a thoracic electrical bioimpedance based device (PhysioFlow) for the determination of cardiac output and stroke volume during exercise at peak oxygen uptake (peak VO(2) in children. The reliability of peak VO(2) is also reported. Eleven boys and nine girls aged 10-11 years completed a cycle ergometer test to voluntary exhaustion on three occasions each 1 week apart. Peak VO(2) was determined and cardiac output and stroke volume at peak VO(2) were measured using a thoracic bioelectrical impedance device (PhysioFlow). The reliability of peak VO(2) cardiac output and stroke volume were determined initially from pairwise comparisons and subsequently across all three trials analysed together through calculation of typical error and intraclass correlation. The pairwise comparisons revealed no consistent bias across tests for all three measures and there was no evidence of non-uniform errors (heteroscedasticity). When three trials were analysed together typical error expressed as a coefficient of variation was 4.1% for peak VO(2) 9.3% for cardiac output and 9.3% for stroke volume. Results analysed by sex revealed no consistent differences. The PhysioFlow method allows non-invasive, beat-to-beat determination of cardiac output and stroke volume which is feasible for measurements during maximal exercise in children. The reliability of the PhysioFlow falls between that demonstrated for Doppler echocardiography (5%) and CO(2) rebreathing (12%) at maximal exercise but combines the significant advantages of portability, lower expense and requires less technical expertise to obtain reliable results.

  9. Prediction of VO2peak from the 20-m shuttle-run test in youth with Down syndrome.

    PubMed

    Agiovlasitis, Stamatis; Pitetti, Kenneth H; Guerra, Myriam; Fernhall, Bo

    2011-04-01

    This study examined whether 20-m shuttle-run performance, sex, body mass index (BMI), age, height, and weight are associated with peak oxygen uptake (VO2peak) in youth with Down syndrome (DS; n = 53; 25 women, age 8-20 years) and whether these variables can be used to develop an equation to predict VO2peak. BMI, 20-m shuttle-run performance, and sex were significantly associated with VO2peak in youth with DS, whereas age, height, and weight were not. A regression model included only shuttle-run performance as a significant predictor of VO2peak; however, the developed prediction equation had low individual predictability. Therefore, 20-m shuttle-run performance alone does not provide valid prediction of VO2peak in youth with DS. Sex, BMI, age, height, and weight do not improve the prediction of VO2peak.

  10. Hydrothermal synthesis of Mo-doped VO2/TiO2 composite nanocrystals with enhanced thermochromic performance.

    PubMed

    Li, Dengbing; Li, Ming; Pan, Jing; Luo, Yuanyuan; Wu, Hao; Zhang, Yunxia; Li, Guanghai

    2014-05-14

    This paper reports a one-step TiO2 seed-assistant hydrothermal synthesis of Mo-doped VO2(M)/TiO2 composite nanocrystals. It was found that excess Mo doping can promote formation of the VO2(M) phase, and rutile TiO2 seed is beneficial to morphology control, size reduction, and infrared modulation of Mo-doped VO2(M) nanocrystals. The Mo-doped VO2 nanocrystals epitaxially grow on TiO2 seeds and have a quasi-spherical shape with size down to 20 nm and a nearly 35% infrared modulation near room temperature. The findings of this work demonstrate important progress in the near-room-temperature thermochromic performance of VO2(M) nanomaterials, which will find potential application in constructing VO2(M) nanocrystal-based smart window coatings.

  11. Thermochromic VO2 thin films deposited by magnetron sputtering for smart window applications

    NASA Astrophysics Data System (ADS)

    Fortier, Jean-Philippe

    objectives in mind. To start, we had to find a first recipe to obtain our first samples of the material. Using the literature as a starting point, several samples were deposited by magnetron sputtering while improving certain deposition conditions as well as varying influential deposition parameters. Once the oxide obtained, it was necessary to optimize the parameters not only to render thermochromic coatings with the highest possible quality, but also to determine each parameter's sensitivity. Characterization techniques such as microscopy, spectroscopy, ellipsometry, scanning electron microscopy, atomic force microscopy, Raman spectroscopy, x-ray diffraction and finally, time-of-flight secondary ion mass spectrometry were used to analyze different aspects of our multiple samples. Indeed, to mention only the ix most relevant observations, we were able to confirm that the microstructure, composition, most relevant observations, we were able to confirm that the microstructure, composition, crystallinity and film thickness have a significant impact on the coating's thermochromic behavior as well as on its optical properties. As a result, the oxygen concentration and the thickness had to be optimized and the deposition temperature, maximized. Reactive poisoning of the sputtering target is also a phenomenon that needs to be considered during deposition. Then, our sputtering target and substrate cleaning procedures were improved following certain observations. VO2 was equally found to be sensitive to small temperature gradients in addition of being highly dependent upon high deposition temperatures. Finally, the use of different substrates has subsequently shown that the film composition and microstructure can be altered. After mastering the deposition of thin VO2 films, we explored another path that we found to be quite innovative. A relatively new deposition technique called HiPIMS was put to the test based on its new characteristics, leading to believe that it had the

  12. Microwave-assisted synthesis and electrochemical evaluation of VO2 (B) nanostructures

    DOE PAGES

    Ashton, Thomas E.; Borras, David Hevia; Iadecola, Antonella; ...

    2015-12-01

    Understanding how intercalation materials change during electrochemical operation is paramount to optimising their behaviour and function and in situ characterisation methods allow us to observe these changes without sample destruction. Here, we first report the improved intercalation properties of bronze phase vanadium dioxide VO2 (B) prepared by a microwave assisted route which exhibits a larger electrochemical capacity (232 mAh g-1) compared to VO2 (B) prepared by a solvothermal route (197 mAh g-1). These electrochemical differences have also been followed using in situ X-ray absorption spectroscopy allowing us to follow oxidation state changes as they occur during battery operation.

  13. Gas exchange threshold and VO2max testing for athletes: an update.

    PubMed

    Pettitt, Robert W; Clark, Ida E; Ebner, Stacy M; Sedgeman, Daniel T; Murray, Steven R

    2013-02-01

    Standardized graded exercise test (GXT) protocols are ineffective for testing endurance athletes. Scientists have called for the abandonment of traditional techniques for corroborating "true" maximum oxygen uptake (VO2max), as measured during a GXT. Instead, a new technique, the verification bout subsequent to the GXT, has emerged for establishing the "true" VO2max. The addition of the verification bout reframes how the GXT should be viewed. In this article, we summarize the methods for developing custom GXT protocols, identifying threshold and interpolating power or outdoor running velocity, and implicating the verification bout.

  14. ON-state evolution in lateral and vertical VO2 threshold switching devices

    NASA Astrophysics Data System (ADS)

    Li, Dasheng; Sharma, Abhishek A.; Shukla, Nikhil; Paik, Hanjong; Goodwill, Jonathan M.; Datta, Suman; Schlom, Darrell G.; Bain, James A.; Skowronski, Marek

    2017-10-01

    We report the results of finite element simulations of the ON state characteristic of VO2-based threshold switching devices and compare the results with experimental data. The model is based on thermally induced threshold switching (thermal runaway) and successfully reproduces the I–V characteristics showing the formation and growth of the conductive filament in the ON state. Furthermore, we compare the I–V characteristics for two VO2 films with different electrical conductivities in the insulating and metallic phases as well as those based on TaO x and NbO x functional layers.

  15. Frequency of the VO2max plateau phenomenon in world-class cyclists.

    PubMed

    Lucía, A; Rabadán, M; Hoyos, J; Hernández-Capilla, M; Pérez, M; San Juan, A F; Earnest, C P; Chicharro, J L

    2006-12-01

    We aimed to determine the frequency of the VO2max plateau phenomenon in top-level male professional road cyclists (n = 38; VO2max [mean +/- SD]: 73.5 +/- 5.5 ml.kg(-1).min(-1)) and in healthy, sedentary male controls (n = 37; VO2max: 42.7 +/- 5.6 ml.kg(-1).min(-1)). All subjects performed a continuous incremental cycle-ergometer test of 1-min workloads until exhaustion. Power output was increased from a starting value of 25 W (cyclists) or 20 W (controls) at the rate of 25 W.min(-1) (cyclists) or 20 W.min(-1) (controls) until volitional exhaustion. We measured gas-exchange and heart rate (HR) throughout the test. Blood concentrations of lactate (BLa) were measured at end-exercise in both groups. We defined maximal exercise exertion as the attainment of a respiratory exchange rate (RER) >or= 1.1; HR > 95 % age-predicted maximum; and BLa > 8 mmo.l(-1). The VO2max plateau phenomenon was defined as an increase in two or more consecutive 1-min mean VO2 values of less than 1.5 ml.kg(-1).min(-1). Most cyclists met our criteria for maximal exercise effort (RER > 1.1, 100 %; 95 % predicted maximal HR [HRmax], 82 %; BLa > 8 mmol.l(-1), 84 %). However, the proportion of cyclists attaining a V.O (2max) plateau was considerably lower, i.e., 47 %. The majority of controls met the criteria for maximal exercise effort (RER > 1.1, 100 %; predicted HRmax, 68 %; BLa > 8 mmol. l(-1), 73 %), but the proportion of these subjects with a VO2max plateau was only 24 % (significantly lower proportion than in cyclists [p < 0.05]). Scientists should consider 1) if typical criteria of attainment of maximal effort are sufficiently stringent, especially in elite endurance athletes; and 2) whether those humans exhibiting the VO2max plateau phenomenon are those who perform an absolute maximum effort or there are additional distinctive features associated with this phenomenon.

  16. Development of a submaximal test to predict elliptical cross-trainer VO2max.

    PubMed

    Dalleck, Lance C; Kravitz, Len; Robergs, Robert A

    2006-05-01

    The purpose of this study was to develop an equation to predict VO2max from a submaximal elliptical cross-trainer test. Fifty-four apparently healthy subjects (25 men and 29 women, mean +/- SD age: 29.5 +/- 7.1 years, height: 173.3 +/- 12.6 cm, weight: 72.3 +/- 7.9 kg, percent body fat: 17.3 +/- 5.0%, and elliptical cross-trainer VO2max: 43.9 +/- 7.2 ml x kg(-1) x min(-1)) participated in the study and were randomly assigned to an original sample group (n = 40) and a cross-validation group (n = 14). Each subject completed an elliptical cross-trainer submaximal (3 5-minute submaximal stages) and a VO2max test on the same day, with a 15-minute rest period in between. Stepwise multiple regression analyses were used to develop an equation for estimating elliptical cross-trainer VO2max from the data of the original sample group. The accuracy of the equation was tested by using data from the cross-validation group. Because there was no shrinkage in R2 between the original sample group and the cross-validation group, data were combined in the final prediction equation (R2 = 0.732, standard error of the estimate = 3.91 ml x kg(-1) x min(-1), p < 0.05): VO2max = 73.676 + 7.383(gender) - 0.317(weight) + 0.003957(age x cadence) - 0.006452(age x heart rate at stage 2). The correlation coefficient between the predicted and measured VO2max values was r = 0.86. Dependent t-tests resulted in no significant differences (p > 0.05) between predicted (43.8 ml x kg(-1) x min(-1)) and measured (43.9 ml x kg(-1) x min(-1)) VO2max measurements. Results indicate that the protocol and equation developed in the current study can be used by exercise professionals to provide acceptably accurate estimates of VO2max in non-laboratory-based settings.

  17. Preliminary investigation of energy comparation between gyroscope, electromyography and VO2 wearable sensors.

    PubMed

    Williams, Gareth; Saiyi Li; Pathirana, Pubudu N

    2016-08-01

    Building on previous experiments in the domain of energy expenditure estimation using wearable sensors, the measurements of energy ratios of a runner on a treadmill were analyzed to observe any commonalities between an inertia measurement unit and an electromyograph sensor. The subjects were equipped with a VO2 gas measurement device, an Inertial Measurement Unit (IMU) measuring gyroscopic activity and an electromyography (EMG) sensor network whilst running at 5 different speeds on a calibrated treadmill. The observed results established a co-linear relationship with the gyroscope based measurements, EMG based measurements with the VO2 measurements.

  18. The characteristics of semiconductor-to-metal transition in VO2 of different morphology

    NASA Astrophysics Data System (ADS)

    Petukhova, Yu V.; Osmolowskaya, O. M.; Osmolowsky, M. G.

    2015-11-01

    Vanadium dioxide nanoparticles (NPs) of different morphologies were obtained using the hydrothermal technique. Their shape and size were studied by SEM, XRD and SSA estimation. The functional properties, structural changes and thermal behavior of samples obtained were investigated to clarify the SMPT peculiarities. It is shown that the introduction of a doping element changes a mechanism of the nanoparticles growth and so that the SMPT becomes less expressed. The detailed study of SMPT in undoped VO2 showed the steps of the transition process. The testing of VO2 coating on glass for «smart» windows was successfully performed.

  19. ON-state evolution in lateral and vertical VO2 threshold switching devices.

    PubMed

    Li, Dasheng; Sharma, Abhishek A; Shukla, Nikhil; Paik, Hanjong; Goodwill, Jonathan M; Datta, Suman; Schlom, Darrell G; Bain, James A; Skowronski, Marek

    2017-10-06

    We report the results of finite element simulations of the ON state characteristic of VO2-based threshold switching devices and compare the results with experimental data. The model is based on thermally induced threshold switching (thermal runaway) and successfully reproduces the I-V characteristics showing the formation and growth of the conductive filament in the ON state. Furthermore, we compare the I-V characteristics for two VO2 films with different electrical conductivities in the insulating and metallic phases as well as those based on TaO x and NbO x functional layers.

  20. Direct correlation of structural and electrical properties of electron-doped individual VO2 nanowires on devised TEM grids

    NASA Astrophysics Data System (ADS)

    Jo, Y.-R.; Kim, M.-W.; Kim, B.-J.

    2016-10-01

    Nano-scale VO2 wires with controlled parameters such as electron-doping have attracted intense interest due to their capability of suppressing the temperature of the metal-insulator transition (MIT). However, because their diameters are smaller than the spatial resolutions of the conventional measuring equipment, the ability to perform a thorough examination of the wires has been hindered. Here, we report the fabrication of a transmission electron microscopy (TEM) grid with an optimum design of Si3N4 windows on which the photolithography for individual electron-doped VO2 nanowire devices can be safely accomplished, allowing the cross-examination of the structural and electrical properties. TEM dark-field imaging was used to quantitatively investigate the fractions of rutile and M1 phases, and their lattice alignments were observed using high-resolution TEM (HRTEM) with small area diffraction. Moreover, electron energy loss spectroscopy (EELS) revealed that the rutile domain would be created by the strain induced by oxygen vacancies. Importantly, we successfully tuned the transition temperature by changing the rutile fraction while maintaining a high level of resistivity change. The resistivity at room temperature linearly decreased with the rutile fraction, following a simple model. Furthermore, the T dependence of the threshold voltage can be attributed to the Joule heating, exhibiting an identical thermal dependence, irrespective of the rutile fraction.

  1. Effects of cross-training. Transfer of training effects on VO2max between cycling, running and swimming.

    PubMed

    Tanaka, H

    1994-11-01

    Cross-training is a widely used approach for structuring a training programme to improve competitive performance in a specific sport by training in a variety of sports. Despite numerous anecdotal reports claiming benefits for cross-training, very few scientific studies have investigated this particular type of training. It appears that some transfer of training effects on maximum oxygen uptake (VO2max) exists from one mode to another. The nonspecific training effects seem to be more noticeable when running is performed as a cross-training mode. Swim training, however, may result in minimum transfer of training effects on VO2max. Cross-training effects never exceed those induced by the sport-specific training mode. The principles of specificity of training tend to have greater significance, especially for highly trained athletes. For the general population, cross-training may be highly beneficial in terms of overall fitness. Similarly, cross-training may be an appropriate supplement during rehabilitation periods from physical injury and during periods of overtraining or psychological fatigue.

  2. Development of a prediction model to predict VO2(peak) in adolescent girls using the Bruce protocol to exhaustion.

    PubMed

    Marshall, Mallory R; Coe, Dawn P; Pivarnik, James M

    2014-06-01

    The purpose of this study was to develop a prediction model based on a submaximal workload during the Bruce treadmill protocol to estimate peak oxygen consumption (VO2(peak)) in adolescent girls. Adolescent girls (N = 116, M(age) = 13.2 +/- 2.0 years) performed a Bruce Treadmill Test to exhaustion. Expired respiratory gases and heart rate (HR) were collected and measured continuously via indirect calorimetry and telemetry. To be included in the analysis, each participant met 2 of 3 criteria: attain 95% of age-predicted HR(peak), respiratory exchange ratio > 1.05, or plateau of VO2. VO2 and HR at Stage 1 and Stage 2 of the Bruce test were entered into a regression model to predict VO2(peak). A regression model, constructed using the predicted sum of squares statistic, was developed using VO2 (VO(2)2) and HR (HR2) attained at the 2nd 3-min stage of the Bruce treadmill protocol: VO2(peak) = 46.77 - (0.2854155 x HR2) + (1.46732912 x VO(2)2). Actual average (+/- SD) VO2(peak) was 36.2 +/- 6.9 ml x kg(-1) x min(-1) (range = 22.9-55.9). Predicted VO2(peak) was 36.2 +/- 5.5 ml x kg(-1) x min(-1) (range = 24.3-56.2). The correlation between actual and predicted VO2(peak) was r = .80, standard error of estimate = 4.2 ml x kg(-1) x min(-1), with no bias relative to participant aerobic fitness. Based on this model, the VO2(peak) of healthy adolescent girls can be predicted within 4.2 ml x kg(-1) x min(-1) using submaximal Bruce data.

  3. A thermochromic low-emittance coating: Calculations for nanocomposites of In2O3:Sn and VO2

    NASA Astrophysics Data System (ADS)

    Li, S.-Y.; Niklasson, G. A.; Granqvist, C. G.

    2011-09-01

    Calculations based on the Bruggeman effective medium theory were applied to thin films comprising a heavily doped wide band gap semiconductor (specifically In2O3:Sn (ITO)) and VO2. Films with ˜20 vol. % of VO2 can combine a 10% thermochromic modulation of the solar energy throughput with a luminous transmittance of 50%-60% and low thermal emittance. The maximum thermochromic modulation is ˜13% and occurs at ˜35 vol. % VO2. Coatings of ITO-VO2 are of interest for energy efficient fenestration.

  4. Resistance switching of epitaxial VO2/Al2O3 heterostructure at room temperature induced by organic liquids

    NASA Astrophysics Data System (ADS)

    Yang, Mengmeng; Yang, Yuanjun; Hong, Bin; Huang, Haoliang; Hu, Sixia; Dong, Yongqi; Wang, Haibo; He, Hao; Zhao, Jiyin; Liu, Xuguang; Luo, Zhenlin; Li, Xiaoguang; Zhang, Haibin; Gao, Chen

    2015-03-01

    We studied using organic liquids (cyclohexane, n-butanol, and ethylene glycol) to modulate the transport properties at room temperature of an epitaxial VO2 film on a VO2/Al2O3 heterostructure. The resistance of the VO2 film increased when coated with cyclohexane or n-butanol, with maximum changes of 31% and 3.8%, respectively. In contrast, it decreased when coated with ethylene glycol, with a maximum change of -7.7%. In all cases, the resistance recovered to its original value after removing the organic liquid. This organic-liquid-induced reversible resistance switching suggests that VO2 films can be used as organic molecular sensors.

  5. Phase coexistence and pressure-temperature phase evolution of VO2(A ) nanorods near the semiconductor-semiconductor transition

    NASA Astrophysics Data System (ADS)

    Samanta, Sudeshna; Li, Quanjun; Cheng, Benyuan; Huang, Yanwei; Pei, Cuiying; Wang, Qinglin; Ma, Yanzhang; Wang, Lin

    2017-01-01

    A comprehensive understanding of the physical origins of the phase transition behaviors of transition metal oxides is still complex due to the interplay among competing interactions of comparable strengths tuning their nature. Widespread interest in such phase transitions has motivated explorations of nanocrystalline vanadium dioxide (VO2) in various forms and a long-running debate persists over the roles played by electron-electron correlation with lattice distortion. External stimuli like pressure and temperature have strong effects on the appearance, stability, and spacial distribution of the high-resistive (HR) and low-resistive (LR) phases accompanying their structural modification. Our comprehensive experiments establish the pressure-induced and thermally driven evolution of phase coexistence in VO2(A ) nanorods. Our experimental evidence supports coexisting HR and LR phases, where compression suppressed coexistence at ˜7 GPa, followed by a semiconductor-semiconductor transition at around ˜10 GPa with the absence of pressure-induced metallization. X-ray diffraction revealed lattice distortion with local microscopic strain inhomogeneity in the nanorods, without any discontinuity in the pressure-volume data. We further investigated the vibrational modes and relaxations of the samples related to their thermal expansions. We also found that the pressure-dependent hierarchy of microstructural densification contributed significantly to the resulting transport properties.

  6. Sex differences in the effects of 12 weeks sprint interval training on body fat mass and the rates of fatty acid oxidation and VO2max during exercise

    PubMed Central

    Bagley, Liam; Slevin, Mark; Bradburn, Steven; Liu, Donghui; Murgatroyd, Chris; Morrissey, George; Carroll, Michael; Piasecki, Mathew; Gilmore, William S; McPhee, Jamie S

    2016-01-01

    Background The purpose of this study was to examine whether very short duration, very high intensity sprint interval training (SIT) leads to loss of body fat mass in association with improvements to VO2max and fatty acid oxidation, and to assess the extent of sex dimorphism in these physiological responses. Methods A total of 24 men and 17 women (mean (SEM) age: 39 (±2) years; body mass index 24.6 (0.6)) completed measurements of the maximal rate of oxygen uptake (VO2max) and fatty acid oxidation (FATmax). Body fat and lean mass were measured by dual emission x-ray absorptiometry, and fasting blood lipid, glucose and insulin profiles were assessed before and after training. SIT consisted of 4×20 s sprints on a cycle ergometer at approximately 175% VO2max, three times per week for 12 weeks. Results Fat mass decreased by 1.0 kg, although men lost statistically significantly more fat than women both when expressed in Kg and as % body fat. VO2max increased by around 9%, but women improved VO2max significantly more than men. FATmax improved by around 13%, but fasting plasma glucose, insulin, total triglyceride, total cholesterol and high-density lipoprotein (HDL) did not change after training, while low-density lipoprotein decreased by 8% (p=0.028) and the HDL:Total Cholesterol ratio improved by 6%. There were no sex differences in these metabolic responses to training. Conclusions These results show lower body fat %, and higher rates of fatty acid oxidation and VO2max after 12 weeks of training for just 4 min per week. Notably, women improved VO2max more than men, while men lost more fat than women. PMID:27900150

  7. Ultrathin Films of VO2 on r-Cut Sapphire Achieved by Postdeposition Etching.

    PubMed

    Yamin, Tony; Wissberg, Shai; Cohen, Hagai; Cohen-Taguri, Gili; Sharoni, Amos

    2016-06-15

    The metal-insulator transition (MIT) properties of correlated oxides thin films, such as VO2, are dramatically affected by strain induced at the interface with the substrate, which usually changes with deposition thickness. For VO2 grown on r-cut sapphire, there is a minimum deposition thickness required for a significant MIT to appear, around 60 nm. We show that in these thicker films an interface layer develops, which accompanies the relaxation of film strain and enhanced electronic transition. If these interface dislocations are stable at room temperature, we conjectured, a new route opens to control thickness of VO2 films by postdeposition thinning of relaxed films, overcoming the need for thickness-dependent strain-engineered substrates. This is possible only if thinning does not alter the films' electronic properties. We find that wet etching in a dilute NaOH solution can effectively thin the VO2 films, which continue to show a significant MIT, even when etched to 10 nm, for which directly deposited films show nearly no transition. The structural and chemical composition were not modified by the etching, but the grain size and film roughness were, which modified the hysteresis width and magnitude of the MIT resistance change.

  8. Thermal conductivity of (VO2)1-xCux composites across the phase transition temperature

    NASA Astrophysics Data System (ADS)

    Dahal, Keshab; Zhang, Qian; He, Ran; Mishra, Ishwar Kumar; Ren, Zhifeng

    2017-04-01

    The thermal conductivity across the metal-insulator transition (MIT) of hot-pressed polycrystalline vanadium dioxide (VO2) samples is studied. The change in the total thermal conductivity (k) of hot-pressed VO2 is insignificant across the MIT temperature. By adding copper (Cu) to make (VO2)1-xCux composites with x from 0 to 0.5, we find an increase in the electrical conductivity from 4 × 104 S m-1 to 1 × 106 S m-1 at 120 °C, resulting in an electronic thermal conductivity increase from 0.38 W m-1 K-1 for x = 0 to 3.8 W m-1 K-1 for x = 0.3, which is a significant increase. However, the total thermal conductivity did not increase due to the decrease in the value of the Lorenz number by an order of magnitude than its standard value using the Wiedemann-Franz relationship. On the basis of our experimental result, an empirical model is proposed to explain the thermal conductivity behavior of all (VO2)1-xCux samples with different Cu concentrations.

  9. Thermally driven sign switch of static dielectric constant of VO2 thin film

    NASA Astrophysics Data System (ADS)

    Kana Kana, J. B.; Vignaud, G.; Gibaud, A.; Maaza, M.

    2016-04-01

    Smart multifunctional materials exhibiting phase transition and tunable optical and/electrical properties provide a new direction towards engineering switchable devices. Specifically, the reversible, tunable and sign switch dielectric constants via external temperature stimuli observed in vanadium dioxide (VO2) make it a candidate of choice for tunable and switchable technologies devices. Here we report new aspect of the metal-insulator transition (MIT) through the sign switch of the static dielectric constant εS of pure VO2. As it is shown, the static dielectric constant showed an abrupt change from positive at T < 70 °C to negative at T > 70 °C. εS > 0 confirms the insulating phase where charges are localized while εS < 0 confirms the metallic phase of VO2 where charges are delocalized. We report for the first time the tunability of the dielectric constant from a negative sign for the static dielectric constant of VO2 thin film rarely found in real physical systems. We also demonstrate the tunability and switchability of the real and imaginary part of the dielectric constant (ε) via external temperature stimuli. More specifically, the real (ε) and Imaginary (ε) showed an abrupt thermal hysteresis which clearly confirms the phase transition.

  10. Nano-optical investigations of the metal-insulator phase behavior of individual VO(2) microcrystals.

    PubMed

    Jones, Andrew C; Berweger, Samuel; Wei, Jiang; Cobden, David; Raschke, Markus B

    2010-05-12

    Despite the relatively simple stoichiometry and structure of VO(2), many questions regarding the nature of its famous metal-insulator transition (MIT) remain unresolved. This is in part due to the prevailing use of polycrystalline film samples and the limited spatial resolution in most studies, hindering access to and control of the complex phase behavior and its inevitable spatial inhomogeneities. Here, we investigate the MIT and associated nanodomain formation in individual VO(2) microcrystals subject to substrate stress. We employ symmetry-selective polarization Raman spectroscopy to identify crystals that are strain-stabilized in either the monoclinic M1 or M2 insulating phase at room-temperature. Raman measurements are further used to characterize the phase dependence on temperature, identifying the appearance of the M2 phase during the MIT. The associated formation and spatial evolution of rutile (R) metallic domains is studied with nanometer-scale spatial resolution using infrared scattering-scanning near-field optical microscopy (s-SNOM). We deduce that even for small crystals of VO(2), the MIT is influenced by the competition between the R, M1, and M2 crystal phases with their different lattice constants subjected to the external substrate-induced stress. The results have important implications for the interpretation of the investigations of conventional polycrystalline thin films where the mutual interaction of constituent crystallites may affect the nature of the MIT in VO(2).

  11. Ultrafast electron-lattice coupling dynamics in VO2 and V2O3 thin films

    NASA Astrophysics Data System (ADS)

    Abreu, Elsa; Gilbert Corder, Stephanie N.; Yun, Sun Jin; Wang, Siming; Ramírez, Juan Gabriel; West, Kevin; Zhang, Jingdi; Kittiwatanakul, Salinporn; Schuller, Ivan K.; Lu, Jiwei; Wolf, Stuart A.; Kim, Hyun-Tak; Liu, Mengkun; Averitt, Richard D.

    2017-09-01

    Ultrafast optical pump-optical probe and optical pump-terahertz probe spectroscopy were performed on vanadium dioxide (VO2) and vanadium sesquioxide (V2O3 ) thin films over a wide temperature range. A comparison of the experimental data from these two different techniques and two different vanadium oxides, in particular a comparison of the spectral weight oscillations generated by the photoinduced longitudinal acoustic modulation, reveals the strong electron-phonon coupling that exists in both materials. The low-energy Drude response of V2O3 appears more amenable than VO2 to ultrafast strain control. Additionally, our results provide a measurement of the temperature dependence of the sound velocity in both systems, revealing a four- to fivefold increase in VO2 and a three- to fivefold increase in V2O3 across the insulator-to-metal phase transition. Our data also confirm observations of strong damping and phonon anharmonicity in the metallic phase of VO2, and suggest that a similar phenomenon might be at play in the metallic phase of V2O3 . More generally, our simple table-top approach provides relevant and detailed information about dynamical lattice properties of vanadium oxides, paving the way to similar studies in other complex materials.

  12. Inelastic Neutron Scattering studies of pure and Mo doped VO2

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab; Granroth, Garrett E.; Yiu, Yuen; Aczel, Adam A.; Koleshnikov, Alexander I.; Luo, Huxia; Cava, Robert J.; Nagler, Stephen E.; Princeton University Collaboration; Sequoia Team

    2014-03-01

    For the last half-century VO2 has been viewed as an archetypal system for studying the metal-insulator transition (MIT). Moreover, there is currently intense interest in this material arising from its promising use in fast energy efficient electronic devices. There are key unresolved issues connected with the origin of the MIT, including the role of magnetism arising from the S =1/2 V4+ ions. It is known that below 340 K in undoped VO2 the V ions form structural dimers in the insulating M1 monoclinic phase. Here we report the results of new inelastic neutron scattering measurements of VO2 and V0.75Mo0.25O2. Using the SEQUOIA chopper spectrometer at the SNS possible lattice and magnetic excitations for energies up to 600 meV were investigated. We discuss the results in the context of current ideas concerning the MIT in VO2. The research at ORNL is supported by the DOE BES, Division of Scientific User Facilities. Work at Princeton University is supported by the DOE grant number DE-FG02-98ER45706.

  13. Coleman performs VO2 Max PFS Software Calibrations and Instrument Check

    NASA Image and Video Library

    2011-02-24

    ISS026-E-029180 (24 Feb. 2011) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, performs VO2max portable Pulmonary Function System (PFS) software calibrations and instrument check while using the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  14. Prediction VO2max during cycle ergometry based on submaximal ventilatory indicators.

    PubMed

    Nunes, Rodolfo Alkmim Moreira; Vale, Rodrigo Gomes de Souza; Simão, Roberto; de Salles, Belmiro Freitas; Reis, Victor Machado; Novaes, Jefferson da Silva; Miranda, Humberto; Rhea, Matthew R; Medeiros, Aldo da Cunha

    2009-09-01

    There are several equations to predict maximum oxygen consumption (VO2max) from ergometric test variables on different ergometers. However, a similar equation using ventilatory thresholds of ergospirometry in a submaximal test on a cycle ergometer is unavailable. The aim of the present study was to assess the accuracy of VO2max prediction models based on indicators of submaximal effort. Accordingly, 4,640 healthy, nonathlete women ages 20 years and older volunteered to be tested on a cycle ergometer using a maximum incremental protocol. The subjects were randomly assigned to 2 groups: group A (estimation) and group B (validation). From the independent variables of weight in kilograms, the second workload threshold (WT2), and heart rate of the second threshold (HRT2), it was possible to build a multiple linear regression model to predict maximal oxygen consumption (VO2max = 40.302 - 0.497 [Weight] - 0.001 [HRT2] + 0.239 [WT2] in mL O2/kg/min(-1); r = 0.995 and standard error of the estimate [SEE] = 0.68 mL O2/kg/min(-1)). The cross-validation method was used in group B with group A serving as the basis for building the model and the validation dataset. The results showed that, in healthy nonathlete women, it is possible to predict VO2max with a minimum of error (SEE = 1.00%) from submaximal indicators obtained in an incremental test.

  15. Periodic porous thermochromic VO2(M) films with enhanced visible transmittance.

    PubMed

    Zhou, Min; Bao, Jian; Tao, Minshan; Zhu, Rui; Lin, Yingting; Zhang, Xiaodong; Xie, Yi

    2013-07-11

    A periodic porous structure is introduced for the first time into a VO2(M) film to block only heat rather than light. The as-obtained 2D and 3D films show excellent visible transmittance and solar modulation efficiency.

  16. VO2 Max in Variable Type Exercise Among Well-Trained Upper Body Athletes.

    ERIC Educational Resources Information Center

    Seals, Douglas R.; Mullin, John P.

    1982-01-01

    The maximal oxygen consumption (VO2 max) of well-trained upper body athletes was compared to that of untrained individuals in four types of exercise: arm cranking, legs only cycling, graded treadmill running, and combined arm cranking and leg cycling. Results of the study showed that well-trained upper body athletes attained a significantly higher…

  17. Local temperature redistribution and structural transition during joule-heating-driven conductance switching in VO2.

    PubMed

    Kumar, Suhas; Pickett, Matthew D; Strachan, John Paul; Gibson, Gary; Nishi, Yoshio; Williams, R Stanley

    2013-11-13

    Joule-heating induced conductance-switching is studied in VO2 , a Mott insulator. Complementary in situ techniques including optical characterization, blackbody microscopy, scanning transmission X-ray microscopy (STXM) and numerical simulations are used. Abrupt redistribution in local temperature is shown to occur upon conductance-switching along with a structural phase transition, at the same current.

  18. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Kocer, Hasan; Butun, Serkan; Banar, Berker; Wang, Kevin; Tongay, Sefaatttin; Wu, Junqiao; Aydin, Koray

    2015-04-01

    Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO2) nanostructure arrays. Absorption intensity is tuned from 90% to 20% and 96% to 32% using hybrid gold-VO2 nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO2 (68 °C). Phase change materials such as VO2 deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity.

  19. VO2 Max in Variable Type Exercise Among Well-Trained Upper Body Athletes.

    ERIC Educational Resources Information Center

    Seals, Douglas R.; Mullin, John P.

    1982-01-01

    The maximal oxygen consumption (VO2 max) of well-trained upper body athletes was compared to that of untrained individuals in four types of exercise: arm cranking, legs only cycling, graded treadmill running, and combined arm cranking and leg cycling. Results of the study showed that well-trained upper body athletes attained a significantly higher…

  20. The reproducibility of VO2max, ventilatory, and lactate thresholds in elderly women.

    PubMed

    Foster, V L; Hume, G J; Dickinson, A L; Chatfield, S J; Byrnes, W C

    1986-08-01

    The reproducibility of VO2max, ventilatory, and lactate thresholds in elderly women. Med. Sci. Sports Exerc., Vol. 18, No. 4, pp. 425-430, 1986. This investigation examined the reproducibility of maximal (VO2max) and submaximal measures of fitness for elderly women. Eight subjects [age (yr): mean = 80.6 +/- 3.7; range = 73-86] volunteered to repeat three continuous, incremental maximal effort treadmill tests. Blood lactate determinations were made for each increment from blood samples taken from an indwelling venous catheter located in the back of the hand. Average VO2max values (ml X min-1 X kg X l-1) were 13.21 + 1.95 for test 1, 13.44 +/- 1.83 for test 2, and 13.62 + 2.95 for test 3. In all but one subject, a threshold was not definable by either ventilatory or lactate measurements. Maximal lactate values were low, with the average values for tests 1, 2, and 3 being 1.89, 1.46, and 1.86 mmol X l-1, respectively. The data demonstrates that VO2max is reproducible for older women and can, therefore, be used for fitness assessment and exercise prescription. The use of ventilatory or lactate thresholds as submaximal measures of fitness or as minimal intensities for exercise prescription was determined not to be applicable for women in the eighth and ninth decades of life.

  1. Contributions of Astronauts Aerobic Exercise Intensity and Time on Change in VO2peak during Spaceflight

    NASA Technical Reports Server (NTRS)

    Downs, Meghan E.; Buxton, Roxanne; Moore, Alan; Ploutz-Snyder, Robert; Ploutz-Snyder, Lori

    2014-01-01

    There is considerable variability among astronauts with respect to changes in maximal aerobic capacity (VO2peak) during International Space Station (ISS) missions, ranging from a 5% increase to 30% decline. Individual differences may be due to in-flight aerobic exercise time and intensity. PURPOSE: To evaluate the effects of in-flight aerobic exercise time and intensity on change in VO2peak during ISS missions. METHODS: Astronauts (N=11) performed peak cycle tests approx 60 days before flight (L-60), on flight day (FD) approx 14, and every approx 30 days thereafter. Metabolic gas analysis and heart rate (HR) were measured continuously during the test using the portable pulmonary function system. HR and duration of each in-flight cycle ergometer and treadmill (TM) session were recorded and averaged in time segments corresponding to each peak test. Mixed effects linear regression with exercise mode (TM or cycle) as a categorical variable was used to assess the contributions of exercise intensity (%time >70% peak HR or %time >90% peak HR) and time (min/wk), adjusted for body weight, on %change in VO2peak during the mission, and incorporating the repeated-measures experimental design. RESULTS: 110 observations were included in the model (4-6 peak cycle tests per astronaut, 2 exercise devices). VO2peak was reduced from preflight throughout the mission (FD14: 13+/-13% and FD 105: 8+/-10%). Exercise intensity (%peak HR: FD14=66+/-14; FD105=75+/-8) and time (min/wk: FD14=82+/-46; FD105=158+/-40) increased during flight. The models showed main effects for exercise time and intensity with no interactions between time, intensity, and device (70% peak HR: time [z-score=2.39; P=0.017], intensity [z-score=3.51; P=0.000]; 90% peak HR: time [zscore= 3.31; P=0.001], intensity [z-score=2.24; P=0.025]). CONCLUSION: Exercise time and intensity independently contribute to %change in VO2peak during ISS missions, indicating that there are minimal values for exercise time and intensity

  2. A comparison of two different shuttle run tests for the estimation of VO2max.

    PubMed

    Naughton, L M; Cooley, D; Kearney, V; Smith, S

    1996-06-01

    The aims of this experiment were twofold. The first was to determine whether there was a significant difference between two types of 20-m shuttle run test used to estimate VO2max, these being the Canadian version (CT) and the European versione (ET). The second aim was to determine which of the two tests best estimated direct VO2 measurement in our laboratory. To accomplish the first aim, 500 schoolchildren aged 12 to 16 years were randomly chosen from schools within Tasmania to undertake the two tests within seven days of each other. On the day of testing the children were assigned to one of the two tests and had no knowledge as to which test was being undertaken. Half of the children underwent the CT test first while the other half undertook the ET test first. Seven days after the first test was completed the appropriate second test was undertaken. The instructions to each child centred around the necessity to complete as many shuttles as possible staying in time with a pre-recorded signal. A relationship between the two sets of shuttle run data indicated that there was a significant correlation between the ET and CT, r = 0.834 (p < 0.0001). A Student's "t" test revealed that when the estimates of VO2max were compared however, there was a significant difference between the two tests (p < 0.0001). The ET estimated (Mean +/- SEM) VO2max at 34.9 +/- 0.45 ml.kg-1.min-1 whereas the CT estimated VO2max at 43.3 +/- 0.40 ml.kg-1.min-1. When this data was correlated, the co-efficient dropped to r = 0.761 which was still significant (p < 0.001). In order to accomplish the second aim, fifty children were chosen at random to undertake a VO2max test (DM) which was conducted via standard open circuit spirometry using a Quinton Metabolic Cart (QMC). The highest correlation was DM:ET being r = 0.93 whereas DM:CT was r = 0.87, both being significant at p < 0.001. When the data was compared there was a significant (p < 0.05) difference between DM and ET. DM measured VO2max as 37

  3. Is Recreational Soccer Effective for Improving VO2max A Systematic Review and Meta-Analysis.

    PubMed

    Milanović, Zoran; Pantelić, Saša; Čović, Nedim; Sporiš, Goran; Krustrup, Peter

    2015-09-01

    Soccer is the most popular sport worldwide, with a long history and currently more than 500 million active participants, of whom 300 million are registered football club members. On the basis of scientific findings showing positive fitness and health effects of recreational soccer, FIFA (Fédération Internationale de Football Association) introduced the slogan "Playing football for 45 min twice a week-best prevention of non-communicable diseases" in 2010. The objective of this paper was to perform a systematic review and meta-analysis of the literature to determine the effects of recreational soccer on maximal oxygen uptake (VO2max). Six electronic databases (MEDLINE, PubMed, SPORTDiscus, Web of Science, CINAHL and Google Scholar) were searched for original research articles. A manual search was performed to cover the areas of recreational soccer, recreational physical activity, recreational small-sided games and VO2max using the following key terms, either singly or in combination: recreational small-sided games, recreational football, recreational soccer, street football, street soccer, effect, maximal oxygen uptake, peak oxygen uptake, cardiorespiratory fitness, VO2max. The inclusion criteria were divided into four sections: type of study, type of participants, type of interventions and type of outcome measures. Probabilistic magnitude-based inferences for meta-analysed effects were based on standardised thresholds for small, moderate and large changes (0.2, 0.6 and 1.2, respectively) derived from between-subject standard deviations for baseline fitness. Seventeen studies met the inclusion criteria and were included in the systematic review and meta-analysis. Mean differences showed that VO2max increased by 3.51 mL/kg/min (95 % CI 3.07-4.15) over a recreational soccer training programme in comparison with other training models. The meta-analysed effects of recreational soccer on VO2max compared with the controls of no exercise, continuous running and strength

  4. Mediated proton transport through Nafion 117 membranes imbibed with varying concentrations of aqueous VOSO4 (VO2+) and NH4VO3 (VO2+) in 2 M H2SO4

    NASA Astrophysics Data System (ADS)

    Suarez, Sophia; Paterno, Domenec

    2016-11-01

    We performed an extensive study on Nafion 117 membrane imbibed with various concentrations of aqueous ammonium metavanadate (NH4VO3), and vanadyl sulfate (VOSO4), in 2 M H2SO4 over the temperature range of 20-100 °C, using 1H NMR and AC Impedance spectroscopies. The objective was to determine the effect of the tetravalent (VO2+) and pentavalent (VO2+) vanadium ions on the proton transport of Nafion 117.1H NMR chemical shift and linewidth data show greater short-range proton transport for the VO2+ imbibed membranes compared with the VO2+. However, the local environments seem to differ in that while the data for VO2+ imbibed membranes seem to follow more the trends observed for water hydrated Nafion 117, those for the VO2+ followed the trend of its aqueous bulk vanadium solvents, indicating that viscosity plays a larger role for the VO2+ imbibed membranes compared to the VO2+.

  5. Influence of simulated microgravity on the VO2 max of nontrained and trained rats

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Monnin, K. A.; Sebastian, L. A.; Tipton, C. M.

    1993-01-01

    Head-down suspension (HDS) of rats has evolved as a useful model for the simulation of a microgravity environment. Previous HDS experiments with rats have shown an impaired capacity to perform aerobic exercise as demonstrated by reductions in maximum oxygen consumption (VO2 max), treadmill run time (RT), and mechanical efficiency (ME) of treadmill running at submaximal conditions. To determine whether endurance training (TR) before HDS would modify exercise performance, male Sprague-Dawley rats were assigned to nontrained (NT) or TR groups for 6 wk and exposed to HDS or cage control (CC) conditions for 29 days. The rats were tested for VO2 max, RT, and ME before treatment and on days 7, 14, 21, and 28. In addition, water and electrolyte excretion was measured on days 1 and 21 of the experimental period. Before HDS, the TR rats had significantly higher measures of VO2 max (15%) and RT (22%) than the NT rats. On day 28, HDS was associated with significant reductions in absolute VO2 max (ml/min) in TR (-30%) and NT (-14%) rats. Relative VO2 max (ml.min-1.kg-1) was significantly reduced in TR (-15%) but not NT rats. Similar reductions in RT occurred in TR (-37%) and NT (-35%) rats by day 28. ME was reduced 22% in both TR and NT rats after 28 days of suspension. HDS elicited diuresis, natriuresis, and kaliuresis in TR rats after 21 days but not after 24 h. In contrast, HDS-NT rats exhibited no diuretic, natriuretic, or kaliuretic responses.(ABSTRACT TRUNCATED AT 250 WORDS).

  6. Bone mass in girls according to their BMI, VO2 max, hours and years of practice.

    PubMed

    Ubago-Guisado, Esther; Martinez-Rodriguez, Alejandro; Gallardo, Leonor; Sánchez-Sánchez, Javier

    2016-11-01

    The accumulation of bone mass during puberty is related with bone health in adulthood. This accumulation is influenced by diverse factors such as body mass index (BMI), maximal oxygen uptake (VO2 max), hours of training and years of sport practice. For this reason, the objective of this study is to analyse the influence of these variables on bone mass in young female athletes. The sample is formed of 120 healthy girls with ages between 9 and 13 (11.32 ± 1.6 years old), divided into two groups depending on their BMI, VO2 max, hours of training and years of sport practice. The participants completed a series of tests to evaluate level of sexual development, body composition (fat mass, lean mass and bone mass) and physical condition. The results show higher values of total lean mass, total fat mass and percentage of body fat in the groups with higher BMI in prepubertal girls and pubertal girls (p < .05). In relation to VO2 max, in the prepubertal group, girls with lower VO2 max had higher values of total fat mass (p < .05) and percentage of body fat (p < .05). In the pubertal group, girls with lower VO2 max also showed a higher total fat mass (p < .05). The studied variables account for a 85% and 75.4% of the variance of total bone mineral content and bone mineral density (BMD), respectively. In conclusion, the content and BMD are closely related with muscle mass and sports practice in young females. The amount of fat mass showed no association with bone mass and physical condition has an indirect relationship with bone development.

  7. The effects of exercise modality on the incidence of plateau at VO2max.

    PubMed

    Gordon, Dan; Mehter, Mashihullah; Gernigon, Marie; Caddy, Oliver; Keiller, Don; Barnes, Richard

    2012-09-01

    The purpose of this study was to determine the effect of exercise modality on the incidence of plateau at VO2max. Twelve recreationally active men (age, 21·7 ± 2·3 year; mass, 74·8 ± 6·5 kg; height, 177·6 ± 5·6 cm) completed four incremental tests to volitional exhaustion, of which two were completed on a treadmill (TRE) and two were completed using a cycle ergometer (CYC). The work rate employed for CYC was 1 W·2 s(-1) from an initial loading of 100 W with cadence being maintained at 60 rpm. For TRE, the workload (gradient) increased at a rate of 0·5% · 30 s(-1) while maintaining a constant running speed of 10 kph. Throughout all the trials, VO2 was determined on a breath-by-breath basis using a precalibrated metabolic cart. The criteria adopted for determination of a plateau was a Δ VO2 over the final two consecutive 30-s sampling periods of ≤50 ml · min(-1). Averaging across the two trials per each exercise modality showed a significant difference for plateau incidence between CYC (8%) and TRE (58%) (P = 0·017). This was aligned with a significant difference in the slope of the regression line during the final 60 s of the VO2max test, CYC (99·9 ± 49·7 ml · min(-1)) and TRE (49·6 ± 42·6 ml · min(-1)) (P = 0·017). Repeat measures ANOVA of these data suggests that plateau incidence rates at VO2max differ between treadmill- and cycle ergometry-based exercises. Future studies need to address whether these response rates are replicated in well-trained athletes.

  8. Influence of simulated microgravity on the VO2 max of nontrained and trained rats

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Monnin, K. A.; Sebastian, L. A.; Tipton, C. M.

    1993-01-01

    Head-down suspension (HDS) of rats has evolved as a useful model for the simulation of a microgravity environment. Previous HDS experiments with rats have shown an impaired capacity to perform aerobic exercise as demonstrated by reductions in maximum oxygen consumption (VO2 max), treadmill run time (RT), and mechanical efficiency (ME) of treadmill running at submaximal conditions. To determine whether endurance training (TR) before HDS would modify exercise performance, male Sprague-Dawley rats were assigned to nontrained (NT) or TR groups for 6 wk and exposed to HDS or cage control (CC) conditions for 29 days. The rats were tested for VO2 max, RT, and ME before treatment and on days 7, 14, 21, and 28. In addition, water and electrolyte excretion was measured on days 1 and 21 of the experimental period. Before HDS, the TR rats had significantly higher measures of VO2 max (15%) and RT (22%) than the NT rats. On day 28, HDS was associated with significant reductions in absolute VO2 max (ml/min) in TR (-30%) and NT (-14%) rats. Relative VO2 max (ml.min-1.kg-1) was significantly reduced in TR (-15%) but not NT rats. Similar reductions in RT occurred in TR (-37%) and NT (-35%) rats by day 28. ME was reduced 22% in both TR and NT rats after 28 days of suspension. HDS elicited diuresis, natriuresis, and kaliuresis in TR rats after 21 days but not after 24 h. In contrast, HDS-NT rats exhibited no diuretic, natriuretic, or kaliuretic responses.(ABSTRACT TRUNCATED AT 250 WORDS).

  9. Effect of repeated sodium phosphate loading on cycling time-trial performance and VO2peak.

    PubMed

    Brewer, Cameron P; Dawson, Brian; Wallman, Karen E; Guelfi, Kym J

    2013-04-01

    Research into supplementation with sodium phosphate has not investigated the effects of a repeated supplementation phase. Therefore, this study examined the potential additive effects of repeated sodium phosphate (SP) supplementation on cycling time-trial performance and peak oxygen uptake (VO2peak). Trained male cyclists (N = 9, M ± SD VO2peak = 65.2 ± 4.8 ml · kg-1 · min-1) completed baseline 1,000-kJ time-trial and VO2peak tests separated by 48 hr, then ingested either 50 mg · kg fat-free mass-1 · d-1 of tribasic SP or a combined glucose and NaCl placebo for 6 d before performing these tests again. A 14-d washout period separated the end of one loading phase and the start of the next, with 2 SP and 1 placebo phase completed in a counterbalanced order. Although time-trial performance (55.3-56.5 min) was shorter in SP1 and SP2 (~60-70 s), effect sizes and smallest-worthwhile-change values did not differ in comparison with baseline and placebo. However, mean power output was greater than placebo during time-trial performance at the 250-kJ and 500-kJ time points (p < .05) after the second SP phase. Furthermore, mean VO2peak values (p < .01) were greater after the SP1 (3.5-4.3%), with further improvements (p < .01) found in SP2 (7.1-7.7%), compared with baseline and placebo. In summary, repeated SP supplementation, ingested either 15 or 35 d after initial loading, can have an additive effect on VO2peak and possibly time-trial performance.

  10. Non-exercise VO2max estimation for physically active college students.

    PubMed

    George, J D; Stone, W J; Burkett, L N

    1997-03-01

    This study sought to develop a maximal oxygen consumption (VO2max) regression model derived strictly from self-reported non-exercise (N-EX) predictor variables. The VO2max (mean +/- SD; 44.05 +/- 6.6 ml.kg-1.min-1) of 100 physically active college students (50 females, 50 males), aged 18 to 29 yr, was measured using a treadmill protocol and open circuit calorimetry. Questionnaire-based predictor variables used in the N-EX regression model included (a) the subject's perceived functional ability (PFA) to walk, jog, or run given distances, (b) habitual physical activity (PA-R) data, (c) body mass index (BMI), and (d) gender. BMI (kg.m-2) was computed from self-reported body weight in pounds and self-reported body height in feet and inches. The questionnaire-based N-EX regression model (R = 0.85, SEE = 3.44 ml.kg-1.min-1) developed in this study exceeded the accuracy of previously developed N-EX regression models and is comparable to many exercise-based regression models in the literature. Cross-validation using PRESS (predicted residual sum of squares) statistics demonstrated minimal shrinkage (R = 0.84, SEE = 3.60 ml.kg-1.min-1) of the present regression model. The PFA data were useful in explaining observed VO2max variance (squared partial r2 = 0.155, P < 0.0001) and enhanced the ability of the N-EX regression model to accurately predict criterion VO2max. These results suggest that a questionnaire-based N-EX regression model provides a valid and convenient method for predicting VO2max in physically active college students.

  11. Controlled reactive HiPIMS—effective technique for low-temperature (300 °C) synthesis of VO2 films with semiconductor-to-metal transition

    NASA Astrophysics Data System (ADS)

    Vlček, J.; Kolenatý, D.; Houška, J.; Kozák, T.; Čerstvý, R.

    2017-09-01

    Reactive high-power impulse magnetron sputtering with a pulsed O2 flow control and to-substrate O2 injection into a high-density plasma in front of the sputtered vanadium target was used for low-temperature (300 °C) deposition of VO2 films with a pronounced semiconductor-to-metal transition onto conventional soda-lime glass substrates without any substrate bias voltage and without any interlayer. The depositions were performed using an unbalanced magnetron with a planar target of 50.8 mm diameter in argon-oxygen gas mixtures at the argon pressure of 1 Pa. The deposition-averaged target power density was close to 13 W cm-2 at a fixed duty cycle of 1% with a peak target power density up to 5 kW cm-2 during voltage pulses ranged from 40 µs to 100 µs. A high modulation of the transmittance at 2500 nm (between 51% and 8% at the film thickness of 88 nm) and the electrical resistivity (changed 350 times) at the transition temperature of 56-57 °C was achieved for the VO2 films synthesized using 50 µs voltage pulses when the crystallization of the thermochromic VO2(M1) phase was supported by the high-energy (up to 50 eV relative to ground potential) ions. Principles of this effective low-temperature deposition technique with a high application potential are presented.

  12. Successive orbital ordering transitions in NaVO_2

    SciTech Connect

    Klimczuk, Tomasz W; Mcqueen, T; Stephens, P W; Huang, Q; Ronning, Filip; Cava, R

    2008-01-01

    Temperature-dependent dc susceptibility, heat capacity, and x-ray and neutron diffraction measurements on powder samples of the layered triangular-lattice material NaY02 reveal two successive phase transitions. At high temperature the structure is rhomobohedral, with all six inplane V-V distances equivalent. At T = 98K, the system undergoes a second order phase transition to a monoclinic intermediate temperature phase in which the in-plane Y -Y distances separate into four short and two long bonds, corresponding to orbital ordering of one electron per y3+. Below T 93K, there is a first order phase transition to a low temperature monoclinic phase, in which there are four long and two short in-plane Y -Y distances, consistent with orbital ordering of two electrons per y 3+ on a triangular lattice. Long range magnetic ordering of 0.98(2),uB per y 3 + (3d2) sets in at the T 93K structural transition. The low temperature structure ofNa Y02 displays orbital ordering that, although predicted by first principle calculations, has not previously been observed in this class of materials.

  13. Lung function parameters improve prediction of VO2peak in an elderly population: The Generation 100 study

    PubMed Central

    Stensvold, Dorthe; Halvorsen, Thomas; Wisløff, Ulrik; Langhammer, Arnulf; Steinshamn, Sigurd

    2017-01-01

    Peak oxygen uptake (VO2peak) is an indicator of cardiovascular health and a useful tool for risk stratification. Direct measurement of VO2peak is resource-demanding and may be contraindicated. There exist several non-exercise models to estimate VO2peak that utilize easily obtainable health parameters, but none of them includes lung function measures or hemoglobin concentrations. We aimed to test whether addition of these parameters could improve prediction of VO2peak compared to an established model that includes age, waist circumference, self-reported physical activity and resting heart rate. We included 1431 subjects aged 69-77 years that completed a laboratory test of VO2peak, spirometry, and a gas diffusion test. Prediction models for VO2peak were developed with multiple linear regression, and goodness of fit was evaluated. Forced expiratory volume in one second (FEV1), diffusing capacity of the lung for carbon monoxide and blood hemoglobin concentration significantly improved the ability of the established model to predict VO2peak. The explained variance of the model increased from 31% to 48% for men and from 32% to 38% for women (p<0.001). FEV1, diffusing capacity of the lungs for carbon monoxide and hemoglobin concentration substantially improved the accuracy of VO2peak prediction when added to an established model in an elderly population. PMID:28319189

  14. Thermochromic VO2 thin films: solution-based processing, improved optical properties, and lowered phase transformation temperature.

    PubMed

    Zhang, Zongtao; Gao, Yanfeng; Chen, Zhang; Du, Jing; Cao, Chuanxiang; Kang, Litao; Luo, Hongjie

    2010-07-06

    This paper describes a solution-phase synthesis of high-quality vanadium dioxide thermochromic thin films. The films obtained showed excellent visible transparency and a large change in transmittance at near-infrared (NIR) wavelengths before and after the metal-insulator phase transition (MIPT). For a 59 nm thick single-layer VO(2) thin film, the integral values of visible transmittance (T(int)) for metallic (M) and semiconductive (S) states were 54.1% and 49.1%, respectively, while the NIR switching efficiencies (DeltaT) were as high as 50% at 2000 nm. Thinner films can provide much higher transmittance of visible light, but they suffer from an attenuation of the switching efficiency in the near-infrared region. By varying the film thickness, ultrahigh T(int) values of 75.2% and 75.7% for the M and S states, respectively, were obtained, while the DeltaT at 2000 nm remained high. These results represent the best data for VO(2) to date. Thicker films in an optimized range can give enhanced NIR switching efficiencies and excellent NIR blocking abilities; in a particularly impressive experiment, one film provided near-zero NIR transmittance in the switched state. The thickness-dependent performance suggests that VO(2) will be of great use in the objective-specific applications. The reflectance and emissivity at the wavelength range of 2.5-25 microm before and after the MIPT were dependent on the film thickness; large contrasts were observed for relatively thick films. This work also showed that the MIPT temperature can be reduced simply by selecting the annealing temperature that induces local nonstoichiometry; a MIPT temperature as low as 42.7 degrees C was obtained by annealing the film at 440 degrees C. These properties (the high visible transmittance, the large change in infrared transmittance, and the near room-temperature MIPT) suggest that the current method is a landmark in the development of this interesting material toward applications in energy-saving smart

  15. Effect of Al2O3 Buffer Layers on the Properties of Sputtered VO2 Thin Films

    NASA Astrophysics Data System (ADS)

    Zhang, Dainan; Wen, Tianlong; Xiong, Ying; Qiu, Donghong; Wen, Qiye

    2017-07-01

    VO2 thin films were grown on silicon substrates using Al2O3 thin films as the buffer layers. Compared with direct deposition on silicon, VO2 thin films deposited on Al2O3 buffer layers experience a significant improvement in their microstructures and physical properties. By optimizing the growth conditions, the resistance of VO2 thin films can change by four orders of magnitude with a reduced thermal hysteresis of 4 °C at the phase transition temperature. The electrically driven phase transformation was measured in Pt/Si/Al2O3/VO2/Au heterostructures. The introduction of a buffer layer reduces the leakage current and Joule heating during electrically driven phase transitions. The C- V measurement result indicates that the phase transformation of VO2 thin films can be induced by an electrical field.

  16. Avalanche breakdown and self-stabilization effects in electrically driven transition of carbon nanotube covered VO2 film

    NASA Astrophysics Data System (ADS)

    Chen, Yuliang; Chen, Shi; Liu, Qianghu; Ren, Hui; Zheng, Xusheng; Wang, Liangxin; Lu, Yuan; Song, Li; Zhang, Guobin; Zou, Chongwen

    2017-06-01

    Electrical-driven metal-insulator transition (MIT) is quite vital and widespread for both applications and MIT mechanism of VO2. In this report, we discussed the avalanche breakdown and self-stabilization effects behind the electrically driven phase transition in macro-scale carbon nanotube covered VO2 film to further understand the phase transition behaviors as well as explore promising electrical-driven VO2 devices. It was found that the Joule heat was the main source to trigger the phase transition of VO2 film. However, the time-dependent triggering routes were quite different, since the avalanche behavior was observed under the voltage-driven mode, while the gradual self-stabilization existed in the current-driven mode. The simulation results based on the proposed thermodynamics models were in good agreement with the experimental phenomena, which were basically originated from the intrinsic first-order phase transition properties of VO2 film.