Science.gov

Sample records for highly pathogenic h5ni

  1. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal... products from regions where any subtype of highly pathogenic avian influenza is considered to exist. The... vaccinated for certain types of avian influenza, or that have moved through regions where any subtype...

  2. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... importation of bird and poultry products from regions where any subtype of highly pathogenic avian influenza... poultry and birds that have been vaccinated for certain types of HPAI, or that have been moved through... into the United States of live birds, poultry, eggs for hatching, and bird and poultry products and...

  3. Current situation on highly pathogenic avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza is one of the most important diseases affecting the poultry industry worldwide. Avian influenza viruses can cause a range of clinical disease in poultry. Viruses that cause severe disease and mortality are referred to as highly pathogenic avian influenza (HPAI) viruses. The Asian ...

  4. Determinants of pathogenicity of H5N1 highly pathogenic avian influenza viruses in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ducks have been implicated in the dissemination and evolution of the H5N1 highly pathogenic avian influenza (HPAI) viruses. The pathogenicity of H5N1 HPAI viruses in domestic ducks has increased over time with some viruses producing 100% mortality in very short time. The determinants of pathogenic...

  5. USGS highly pathogenic avian influenza research strategy

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  6. Rapidly expanding range of highly pathogenic avian influenza viruses

    USGS Publications Warehouse

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  7. [Research on sterilization of pathogens by high electrostatic voltage method].

    PubMed

    Wang, X; Wu, Y; Ni, X; Xia, B; Xu, J; Du, Q

    1992-10-01

    An experimental research has been carried out on the sterilization of four kinds of pathogens by high electrostatic method along with an inquiry into the influence of voltage waveform and the treated time on sterilization. It is concluded that pathogens can be killed efficiently by corona discharge field.

  8. Rapidly Expanding Range of Highly Pathogenic Avian Influenza Viruses.

    PubMed

    Hall, Jeffrey S; Dusek, Robert J; Spackman, Erica

    2015-07-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus' propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  9. Highly pathogenic avian influenza virus among wild birds in Mongolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The central Asian country of Mongolia supports large populations of migratory water birds that migrate across much of Asia where highly pathogenic avian influenza (HPAI) virus subtype H5N1 is endemic. This, together with the near absence of domestic poultry, makes Mongolia an ideal location to unde...

  10. Rapidly expanding range of highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent introduction of highly pathogenic avian influenza virus (HPAIV) H5N8 into Europe and North America poses significant risks to poultry industries and wildlife populations and warrants continued and heightened vigilance. First discovered in South Korean poultry and wild birds in early 2014...

  11. Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens

    PubMed Central

    Read, Andrew F.; Baigent, Susan J.; Powers, Claire; Kgosana, Lydia B.; Blackwell, Luke; Smith, Lorraine P.; Kennedy, David A.; Walkden-Brown, Stephen W.; Nair, Venugopal K.

    2015-01-01

    Could some vaccines drive the evolution of more virulent pathogens? Conventional wisdom is that natural selection will remove highly lethal pathogens if host death greatly reduces transmission. Vaccines that keep hosts alive but still allow transmission could thus allow very virulent strains to circulate in a population. Here we show experimentally that immunization of chickens against Marek's disease virus enhances the fitness of more virulent strains, making it possible for hyperpathogenic strains to transmit. Immunity elicited by direct vaccination or by maternal vaccination prolongs host survival but does not prevent infection, viral replication or transmission, thus extending the infectious periods of strains otherwise too lethal to persist. Our data show that anti-disease vaccines that do not prevent transmission can create conditions that promote the emergence of pathogen strains that cause more severe disease in unvaccinated hosts. PMID:26214839

  12. Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses.

    PubMed

    Jiao, Peirong; Song, Hui; Liu, Xiaoke; Song, Yafen; Cui, Jin; Wu, Siyu; Ye, Jiaqi; Qu, Nanan; Zhang, Tiemin; Liao, Ming

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) was one of the most important avian diseases in poultry production of China, especially in Guangdong province. In recent years, new H5N1 highly pathogenic avian influenza viruses (HPAIV) still emerged constantly, although all poultry in China were immunized with H5N1 vaccinations compulsorily. To better understand the pathogenicity and transmission of dominant clades of the H5N1 HPAIVs in chicken from Guangdong in 2012, we chose a clade 7.2 avian influenza virus named A/Chicken/China/G2/2012(H5N1) (G2) and a clade 2.3.2.1 avian influenza virus named A/Duck/China/G3/2012(H5N1) (G3) in our study. Our results showed that the chickens inoculated with 10(3) EID50 of G2 or G3 viruses all died, and the titers of virus replication detected in several visceral organs were high but different. In the naive contact groups, virus shedding was not detected in G2 group and all chickens survived, but virus shedding was detected in G3 group and all chickens died. These results showed that the two clades of H5N1 HPAIVs had high pathogenicity in chickens and the contact transmission of them was different in chickens. The results of cross reactive HI assay showed that antigens of G2 and G3 were very different from those of current commercial vaccines isolates (Re-4, Re-6, and D7). And to evaluate the protective efficacy of three vaccines against most isolates form Guangdong belonging to clade 2.3.2.1 in 2012, G3 was chosen to challenge the three vaccines such as Re-4, Re-6, and D7. First, chickens were immunized with 0.3 ml Re-4, Re-6, and D7 inactivated vaccines by intramuscular injection, respectively, and then challenged with 10(6) EID50 of G3 on day 28 post-vaccination. The D7 vaccine had 100% protection against G3 for chickens, the Re-6 vaccine had 88.9%, and the Re-4 vaccine only had 66.7%. Our results suggested that the D7 vaccine could prevent and control H5N1 virus outbreaks more effectively in Guangdong. From the above, it was

  13. Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Jiao, Peirong; Song, Hui; Liu, Xiaoke; Song, Yafen; Cui, Jin; Wu, Siyu; Ye, Jiaqi; Qu, Nanan; Zhang, Tiemin; Liao, Ming

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) was one of the most important avian diseases in poultry production of China, especially in Guangdong province. In recent years, new H5N1 highly pathogenic avian influenza viruses (HPAIV) still emerged constantly, although all poultry in China were immunized with H5N1 vaccinations compulsorily. To better understand the pathogenicity and transmission of dominant clades of the H5N1 HPAIVs in chicken from Guangdong in 2012, we chose a clade 7.2 avian influenza virus named A/Chicken/China/G2/2012(H5N1) (G2) and a clade 2.3.2.1 avian influenza virus named A/Duck/China/G3/2012(H5N1) (G3) in our study. Our results showed that the chickens inoculated with 103 EID50 of G2 or G3 viruses all died, and the titers of virus replication detected in several visceral organs were high but different. In the naive contact groups, virus shedding was not detected in G2 group and all chickens survived, but virus shedding was detected in G3 group and all chickens died. These results showed that the two clades of H5N1 HPAIVs had high pathogenicity in chickens and the contact transmission of them was different in chickens. The results of cross reactive HI assay showed that antigens of G2 and G3 were very different from those of current commercial vaccines isolates (Re-4, Re-6, and D7). And to evaluate the protective efficacy of three vaccines against most isolates form Guangdong belonging to clade 2.3.2.1 in 2012, G3 was chosen to challenge the three vaccines such as Re-4, Re-6, and D7. First, chickens were immunized with 0.3 ml Re-4, Re-6, and D7 inactivated vaccines by intramuscular injection, respectively, and then challenged with 106 EID50 of G3 on day 28 post-vaccination. The D7 vaccine had 100% protection against G3 for chickens, the Re-6 vaccine had 88.9%, and the Re-4 vaccine only had 66.7%. Our results suggested that the D7 vaccine could prevent and control H5N1 virus outbreaks more effectively in Guangdong. From the above, it was

  14. Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae.

    PubMed

    Vyas, Ishan K; Jamerson, Melissa; Cabral, Guy A; Marciano-Cabral, Francine

    2015-01-01

    Naegleria fowleri, a free-living ameba, is the causative agent of Primary Amebic Meningoencephalitis. Highly pathogenic mouse-passaged amebae (Mp) and weakly pathogenic axenically grown (Ax) N. fowleri were examined for peptidase activity. Zymography and azocasein peptidase activity assays demonstrated that Mp and Ax N. fowleri exhibited a similar peptidase pattern. Prominent for whole cell lysates, membranes and conditioned medium (CM) from Mp and Ax amebae was the presence of an activity band of approximately 58 kDa that was sensitive to E64, a cysteine peptidase inhibitor. However, axenically grown N. fowleri demonstrated a high level of this peptidase activity in membrane preparations. The inhibitor E64 also reduced peptidase activity in ameba-CM consistent with the presence of secreted cysteine peptidases. Exposure of Mp amebae to E64 reduced their migration through matrigel that was used as an extracellular matrix, suggesting a role for cysteine peptidases in invasion of the central nervous system (CNS). The collective results suggest that the profile of peptidases is not a discriminative marker for distinguishing Mp from Ax N. fowleri. However, the presence of a prominent level of activity for cysteine peptidases in N. fowleri membranes and CM, suggests that these enzymes may serve to facilitate passage of the amebae into the CNS.

  15. High-level fluorescence labeling of gram-positive pathogens.

    PubMed

    Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara

    2011-01-01

    Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.

  16. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards.

    PubMed

    Pantin-Jackwood, Mary J; Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R; Suarez, David L; Stallknecht, David E; Swayne, David E

    2016-11-01

    Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses.

  17. Free-grazing ducks and highly pathogenic avian influenza, Thailand.

    PubMed

    Gilbert, Marius; Chaitaweesub, Prasit; Parakamawongsa, Tippawon; Premashthira, Sith; Tiensin, Thanawat; Kalpravidh, Wantanee; Wagner, Hans; Slingenbergh, Jan

    2006-02-01

    Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI outbreaks in relation to poultry, land use, and other anthropogenic variables from the start of the second epidemic wave (July 2004-May 2005). Results demonstrate a strong association between H5N1 virus in Thailand and abundance of free-grazing ducks and, to a lesser extent, native chickens, cocks, wetlands, and humans. Wetlands used for double-crop rice production, where free-grazing duck feed year round in rice paddies, appear to be a critical factor in HPAI persistence and spread. This finding could be important for other duck-producing regions in eastern and southeastern Asian countries affected by HPAI.

  18. Highly Pathogenic Avian Influenza H5N1, Thailand, 2004

    PubMed Central

    Chaitaweesub, Prasit; Songserm, Thaweesak; Chaisingh, Arunee; Hoonsuwan, Wirongrong; Buranathai, Chantanee; Parakamawongsa, Tippawon; Premashthira, Sith; Amonsin, Alongkorn; Gilbert, Marius; Nielen, Mirjam; Stegeman, Arjan

    2005-01-01

    In January 2004, highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first confirmed in poultry and humans in Thailand. Control measures, e.g., culling poultry flocks, restricting poultry movement, and improving hygiene, were implemented. Poultry populations in 1,417 villages in 60 of 76 provinces were affected in 2004. A total of 83% of infected flocks confirmed by laboratories were backyard chickens (56%) or ducks (27%). Outbreaks were concentrated in the Central, the southern part of the Northern, and Eastern Regions of Thailand, which are wetlands, water reservoirs, and dense poultry areas. More than 62 million birds were either killed by HPAI viruses or culled. H5N1 virus from poultry caused 17 human cases and 12 deaths in Thailand; a number of domestic cats, captive tigers, and leopards also died of the H5N1 virus. In 2005, the epidemic is ongoing in Thailand. PMID:16318716

  19. (Highly pathogenic) avian influenza as a zoonotic agent.

    PubMed

    Kalthoff, Donata; Globig, Anja; Beer, Martin

    2010-01-27

    Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential.

  20. Highly pathogenic avian influenza virus among wild birds in Mongolia.

    PubMed

    Gilbert, Martin; Jambal, Losolmaa; Karesh, William B; Fine, Amanda; Shiilegdamba, Enkhtuvshin; Dulam, Purevtseren; Sodnomdarjaa, Ruuragchaa; Ganzorig, Khuukhenbaatar; Batchuluun, Damdinjav; Tseveenmyadag, Natsagdorj; Bolortuya, Purevsuren; Cardona, Carol J; Leung, Connie Y H; Peiris, J S Malik; Spackman, Erica; Swayne, David E; Joly, Damien O

    2012-01-01

    Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005-2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study.

  1. Biological characteristics and pathogenicity of a highly pathogenic Shewanella marisflavi infected sea cucumber (Apostichopus uaponicus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shewanella marisflavi isolate AP629 was characterized as a novel pathogen of sea cucumber. The LD50 values (14 days) in sea cucumber and swordtail fish were 3.89 × 106 and 4.85 × 104 CFU g-1 body weight, respectively. Studies on S. marisflavi had been conducted, including morphology, physiological a...

  2. USGS role and response to highly pathogenic avian influenza

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  3. High doses of highly pathogenic avian influenza virus in chicken meat are required to infect ferrets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    H5N1 high pathogenicity avian influenza viruses (HPAIV) have caused natural and experimental infections in various animals through consumption of infected bird carcasses and meat. However, little is known about the quantity of virus required and if all HPAIV subtypes can cause infections following c...

  4. High prevalence of pathogenic Yersinia enterocolitica in pig cheeks.

    PubMed

    Laukkanen-Ninios, Riikka; Fredriksson-Ahomaa, Maria; Maijala, Riitta; Korkeala, Hannu

    2014-10-01

    Samples from pork cuts for minced meat and cheeks from processing plants and a slaughterhouse, and modified atmosphere (MA) packaged pork from retail were studied to estimate the prevalence of pathogenic, i.e. virulence plasmid bearing, Yersinia enterocolitica and Yersinia pseudotuberculosis in pork, as well as to quantify pathogenic Y. enterocolitica in pork cuts. Pathogenic (virF-positive) Y. enterocolitica was isolated from 17 pig cheeks (23%) but not from any of the MA-packaged 54 retail pork samples and only from one of the 155 pork cut (0.6%). Most (16/17) of the cheek samples were contaminated with pathogenic Y. enterocolitica 4/O:3 and one with bioserotype 2/O:9. No Y. pseudotuberculosis was isolated. The prevalence of pathogenic Y. enterocolitica was clearly higher (39%) in 155 pork cuts when studied with nested PCR targeting yadA on the virulence plasmid pYV although the contamination level was low varying between 0.1 and 1.6 MPN/g. Raw pork cuts and especially pig cheeks may serve as possible sources for yersiniosis caused by pathogenic Y. enterocolitica.

  5. Control strategies for highly pathogenic avian influenza: a global perspective.

    PubMed

    Lubroth, J

    2007-01-01

    Comprehensive programmes for the prevention, detection and control of highly pathogenic avian influenza (HPAI) require a national dimension and relevant national legislation in which veterinary services can conduct surveillance, competent diagnosis and rapid response. Avian influenza was controlled and prevented by vaccination long before the current H5N1 crisis. The use of vaccine cannot be separated from other essential elements of a vaccination campaign, which include education in poultry production practices, such as hygiene, all in-all out production concepts, separation of species, biosecurity (bio-exclusion to keep the disease out and biocontainment to keep the disease from spreading once suspected or detected), competence in giving the vaccine and the role of vaccination teams, post-vaccination monitoring to ensure efficacy and to detect the circulation of wild-type virus, surveillance and buffer zones in outbreak areas, and performance indicators to determine when vaccination can cease. Reporting of disease can be improved through well-structured, adequately financed veterinary services and also by fair compensation for producers who suffer financial loss. A rapid response to suspected cases of HPAI should be ensured in simulation exercises involving various sectors of the food production and marketing chain, policy-makers, official veterinary structures and other government personnel. As for other transboundary animal diseases, national approaches must be part of a regional strategy and regional networks for cooperation and information sharing, which in turn reflect global policies and international standards, such as the quality of vaccines, reporting obligations, humane interventions, cleaning and disinfection methods, restocking times, monitoring and safe trade.

  6. Highly pathogenic avian influenza challenge studies in waterfowl

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waterfowl are the natural hosts of avian influenza (AI) virus. The majority of AI viruses are classified as low pathogenicity (LP) based on their virulence in chickens, which are the reference species for pathotype testing and can be any of the 16 hemagglutinin subtypes (H1-16). Circulation of H5 ...

  7. Molecular inversion probe: a new tool for highly specific detection of plant pathogens.

    PubMed

    Lau, Han Yih; Palanisamy, Ramkumar; Trau, Matt; Botella, Jose R

    2014-01-01

    Highly specific detection methods, capable of reliably identifying plant pathogens are crucial in plant disease management strategies to reduce losses in agriculture by preventing the spread of diseases. We describe a novel molecular inversion probe (MIP) assay that can be potentially developed into a robust multiplex platform to detect and identify plant pathogens. A MIP has been designed for the plant pathogenic fungus Fusarium oxysporum f.sp. conglutinans and the proof of concept for the efficiency of this technology is provided. We demonstrate that this methodology can detect as little as 2.5 ng of pathogen DNA and is highly specific, being able to accurately differentiate Fusarium oxysporum f.sp. conglutinans from other fungal pathogens such as Botrytis cinerea and even pathogens of the same species such as Fusarium oxysporum f.sp. lycopersici. The MIP assay was able to detect the presence of the pathogen in infected Arabidopsis thaliana plants as soon as the tissues contained minimal amounts of pathogen. MIP methods are intrinsically highly multiplexable and future development of specific MIPs could lead to the establishment of a diagnostic method that could potentially screen infected plants for hundreds of pathogens in a single assay.

  8. Engineered nanoconstructs for the multiplexed and sensitive detection of high-risk pathogens

    NASA Astrophysics Data System (ADS)

    Seo, Youngmin; Kim, Ji-Eun; Jeong, Yoon; Lee, Kwan Hong; Hwang, Jangsun; Hong, Jongwook; Park, Hansoo; Choi, Jonghoon

    2016-01-01

    Many countries categorize the causative agents of severe infectious diseases as high-risk pathogens. Given their extreme infectivity and potential to be used as biological weapons, a rapid and sensitive method for detection of high-risk pathogens (e.g., Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Vaccinia virus) is highly desirable. Here, we report the construction of a novel detection platform comprising two units: (1) magnetic beads separately conjugated with multiple capturing antibodies against four different high-risk pathogens for simple and rapid isolation, and (2) genetically engineered apoferritin nanoparticles conjugated with multiple quantum dots and detection antibodies against four different high-risk pathogens for signal amplification. For each high-risk pathogen, we demonstrated at least 10-fold increase in sensitivity compared to traditional lateral flow devices that utilize enzyme-based detection methods. Multiplexed detection of high-risk pathogens in a sample was also successful by using the nanoconstructs harboring the dye molecules with fluorescence at different wavelengths. We ultimately envision the use of this novel nanoprobe detection platform in future applications that require highly sensitive on-site detection of high-risk pathogens.

  9. Highly Pathogenic New World and Old World Human Arenaviruses Induce Distinct Interferon Responses in Human Cells

    PubMed Central

    Huang, Cheng; Kolokoltsova, Olga A.; Yun, Nadezhda E.; Seregin, Alexey V.; Ronca, Shannon; Koma, Takaaki

    2015-01-01

    ABSTRACT The arenavirus family includes several important pathogens that cause severe and sometimes fatal diseases in humans. The highly pathogenic Old World (OW) arenavirus Lassa fever virus (LASV) is the causative agent of Lassa fever (LF) disease in humans. LASV infections in severe cases are generally immunosuppressive without stimulating interferon (IFN) induction, a proinflammatory response, or T cell activation. However, the host innate immune responses to highly pathogenic New World (NW) arenaviruses are not well understood. We have previously shown that the highly pathogenic NW arenavirus, Junin virus (JUNV), induced an IFN response in human A549 cells. Here, we report that Machupo virus (MACV), another highly pathogenic NW arenavirus, also induces an IFN response. Importantly, both pathogenic NW arenaviruses, in contrast to the OW highly pathogenic arenavirus LASV, readily elicited an IFN response in human primary dendritic cells and A549 cells. Coinfection experiments revealed that LASV could potently inhibit MACV-activated IFN responses even at 6 h after MACV infection, while the replication levels of MACV and LASV were not affected by virus coinfection. Our results clearly demonstrated that although all viruses studied herein are highly pathogenic to humans, the host IFN responses toward infections with the NW arenaviruses JUNV and MACV are quite different from responses to infections with the OW arenavirus LASV, a discovery that needs to be further investigated in relevant animal models. This finding might help us better understand various interplays between the host immune system and highly pathogenic arenaviruses as well as distinct mechanisms underlying viral pathogenesis. IMPORTANCE Infections of humans with the highly pathogenic OW LASV are accompanied by potent suppression of interferon or proinflammatory cytokine production. In contrast, infections with the highly pathogenic NW arenavirus JUNV are associated with high levels of IFNs and

  10. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    PubMed Central

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  11. Pathogenicity of the Korean H5N8 highly pathogenic avian influenza virus in commercial domestic poultry species.

    PubMed

    Lee, Dong-Hun; Kwon, Jung-Hoon; Noh, Jin-Yong; Park, Jae-Keun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Lee, Sang-Won; Song, Chang-Seon

    2016-01-01

    In 2014, the highly pathogenic avian influenza (HPAI) virus H5N8 triggered outbreaks in wild birds and poultry farms in South Korea. In the present study, we investigated the pathogenicity of the H5N8 HPAI virus, belonging to the clade 2.3.4.4, in different species of poultry. For this, we examined clinical signs and viral shedding levels following intranasal inoculation of the virus in 3-week-old commercial layer chickens and quails, 10-week-old Korean native chickens, and 8-week-old Muscovy ducks. Intranasal inoculation with 10(6.0) viruses at 50% egg-infective dose resulted in 100% mortality in the layer chickens (8/8) and quails (4/4), but 60% and 0% deaths in the Korean native chickens (3/5) and Muscovy ducks (0/4), respectively. In addition, transmission of the inoculated virus to contact-exposed birds was evident in all the species used in this study. Based on our results, we conclude that the H5N8 HPAI virus has lower pathogenicity and transmissibility in poultry species compared with previously reported H5N1 HPAI viruses.

  12. Characterization of H5N1 highly pathogenic mink influenza viruses in eastern China.

    PubMed

    Jiang, Wenming; Wang, Suchun; Zhang, Chuanmei; Li, Jinping; Hou, Guangyu; Peng, Cheng; Chen, Jiming; Shan, Hu

    2017-03-01

    Members of the H5 subtype of highly pathogenic avian influenza viruses pose a great threat to both poultry and humans with severe consequences for both industry and public health sectors. Here, we isolated and characterized two H5N1 highly pathogenic influenza viruses in deceased mink from eastern China. Phylogenetic analyses showed that the G15 and XB15 viruses belonged to clade 2.3.2.1b and 2.3.2.1e, respectively. Both of these viruses were highly pathogenic in chickens. They were also shown to exhibit moderate to high pathogenicity in mice without pre-adaptation. Further, the mink influenza viruses had severe antigenic drift with corresponding Re-6 vaccine and current vaccines may fail to confer protection against these H5N1 viruses in poultry.

  13. The role of C5a in acute lung injury induced by highly pathogenic viral infections

    PubMed Central

    Wang, Renxi; Xiao, He; Guo, Renfeng; Li, Yan; Shen, Beifen

    2015-01-01

    The complement system, an important part of innate immunity, plays a critical role in pathogen clearance. Unregulated complement activation is likely to play a crucial role in the pathogenesis of acute lung injury (ALI) induced by highly pathogenic virus including influenza A viruses H5N1, H7N9, and severe acute respiratory syndrome (SARS) coronavirus. In highly pathogenic virus-induced acute lung diseases, high levels of chemotactic and anaphylatoxic C5a were produced as a result of excessive complement activaiton. Overproduced C5a displays powerful biological activities in activation of phagocytic cells, generation of oxidants, and inflammatory sequelae named “cytokine storm”, and so on. Blockade of C5a signaling have been implicated in the treatment of ALI induced by highly pathogenic virus. Herein, we review the literature that links C5a and ALI, and review our understanding of the mechanisms by which C5a affects ALI during highly pathogenic viral infection. In particular, we discuss the potential of the blockade of C5a signaling to treat ALI induced by highly pathogenic viruses. PMID:26060601

  14. Differential immune response of mallard duck peripheral blood mononuclear cells to two highly pathogenic avian influenza H5N1 viruses with distinct pathogenicity in mallard ducks.

    PubMed

    Cui, Zhu; Hu, Jiao; He, Liang; Li, Qunhui; Gu, Min; Wang, Xiaoquan; Hu, Shunlin; Liu, Huimou; Liu, Wenbo; Liu, Xiaowen; Liu, Xiufan

    2014-02-01

    CK10 and GS10 are two H5N1 highly pathogenic influenza viruses of similar genetic background but differ in their pathogenicity in mallard ducks. CK10 is highly pathogenic whereas GS10 is low pathogenic. In this study, strong inflammatory response in terms of the expression level of several cytokines was observed in mallard duck peripheral blood mononuclear cells (PBMC) infected with CK10 while mild response was triggered in those by GS10 infection. Two remarkable and intense peaks of immune response were induced by CK10 infection within 24 hours (at 8 and 24 hours post infection, respectively) without reducing the virus replication. Our observations indicated that sustained and intense innate immune responses may be central to the high pathogenicity caused by CK10 in ducks.

  15. The multigenic nature of the differences in pathogenicity of H5N1 highly pathogenic avian influenza viruses in domestic ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Eurasian H5N1 highly pathogenic avian influenza (HPAI) viruses have evolved into many genetic lineages. The divergent strains that have arisen express distinct pathobiological features and increased virulence for many bird species including domestic waterfowl. The pathogenicity of H5N1 HPAI vi...

  16. Transcriptomic analysis reveals the potential of highly pathogenic PRRS virus to modulate immune system activation related to host-pathogen and damage associated signaling in infected porcine monocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the largest risks to the continued stability of the swine industry is by pathogens like porcine reproductive and respiratory syndrome virus (PRRSV) that can decimate production as it spreads among individuals. These infections can be low or highly pathogenic, and because it infects monocytic ...

  17. Variation in infectivity and adaptation of wild duck- and poultry-origin high pathogenicity and low pathogenicity avian influenza viruses for poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses vary in their adaptation which impacts transmission between and infection of different bird species. We determine the intranasal mean bird infectious doses (BID50) for 11 high pathogenicity (HP) AI viruses for layer type chickens (LC), and three low pathogenicity (LP) A...

  18. Pathogenesis of highly-pathogenic Asian PRRSV in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006, Chinese investigators reported a unique syndrome in growing swine that was highlighted by clinical signs of high fever, anorexia, listlessness, red discoloration of skin, respiratory distress and very high morbidity and mortality rates. Originally known as porcine high fever disease (PHFD),...

  19. Highly pathogenic avian influenza viruses and generation of novel reassortants,United States, 2014–2015

    USGS Publications Warehouse

    Dong-Hun Lee,; Justin Bahl,; Mia Kim Torchetti,; Mary Lea Killian,; Ip, Hon S.; David E Swayne,

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  20. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014–2015

    PubMed Central

    Lee, Dong-Hun; Bahl, Justin; Torchetti, Mia Kim; Killian, Mary Lea; Ip, Hon S.; DeLiberto, Thomas J.

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses. PMID:27314845

  1. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt

    PubMed Central

    Hagag, Ibrahim Thabet; Mansour, Shimaa M. G.; Zhang, Zerui; Ali, Ahmed A. H.; Ismaiel, El-Bakry M.; Salama, Ali A.; Cardona, Carol J.; Collins, James; Xing, Zheng

    2015-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis) for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA) and nonstructural proteins (NS) among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF) in the cleavage site in HA and glutamate at position 92 (D92E) in NS1. This is the first report of the pathogenicity of the HPAIVH5N

  2. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt.

    PubMed

    Hagag, Ibrahim Thabet; Mansour, Shimaa M G; Zhang, Zerui; Ali, Ahmed A H; Ismaiel, El-Bakry M; Salama, Ali A; Cardona, Carol J; Collins, James; Xing, Zheng

    2015-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis) for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA) and nonstructural proteins (NS) among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF) in the cleavage site in HA and glutamate at position 92 (D92E) in NS1. This is the first report of the pathogenicity of the HPAIVH5N

  3. High Temperature and Bacteriophages Can Indirectly Select for Bacterial Pathogenicity in Environmental Reservoirs

    PubMed Central

    Friman, Ville-Petri; Hiltunen, Teppo; Jalasvuori, Matti; Lindstedt, Carita; Laanto, Elina; Örmälä, Anni-Maria; Laakso, Jouni; Mappes, Johanna; Bamford, Jaana K. H.

    2011-01-01

    The coincidental evolution hypothesis predicts that traits connected to bacterial pathogenicity could be indirectly selected outside the host as a correlated response to abiotic environmental conditions or different biotic species interactions. To investigate this, an opportunistic bacterial pathogen, Serratia marcescens, was cultured in the absence and presence of the lytic bacteriophage PPV (Podoviridae) at 25°C and 37°C for four weeks (N = 5). At the end, we measured changes in bacterial phage-resistance and potential virulence traits, and determined the pathogenicity of all bacterial selection lines in the Parasemia plantaginis insect model in vivo. Selection at 37°C increased bacterial motility and pathogenicity but only in the absence of phages. Exposure to phages increased the phage-resistance of bacteria, and this was costly in terms of decreased maximum population size in the absence of phages. However, this small-magnitude growth cost was not greater with bacteria that had evolved in high temperature regime, and no trade-off was found between phage-resistance and growth rate. As a result, phages constrained the evolution of a temperature-mediated increase in bacterial pathogenicity presumably by preferably infecting the highly motile and virulent bacteria. In more general perspective, our results suggest that the traits connected to bacterial pathogenicity could be indirectly selected as a correlated response by abiotic and biotic factors in environmental reservoirs. PMID:21423610

  4. Making pathogens sociable: The emergence of high relatedness through limited host invasibility

    PubMed Central

    van Leeuwen, Edwin; O'Neill, Sarah; Matthews, Andrew; Raymond, Ben

    2015-01-01

    Cooperation depends upon high relatedness, the high genetic similarity of interacting partners relative to the wider population. For pathogenic bacteria, which show diverse cooperative traits, the population processes that determine relatedness are poorly understood. Here, we explore whether within-host dynamics can produce high relatedness in the insect pathogen Bacillus thuringiensis. We study the effects of host/pathogen interactions on relatedness via a model of host invasion and fit parameters to competition experiments with marked strains. We show that invasibility is a key parameter for determining relatedness and experimentally demonstrate the emergence of high relatedness from well-mixed inocula. We find that a single infection cycle results in a bottleneck with a similar level of relatedness to those previously reported in the field. The bottlenecks that are a product of widespread barriers to infection can therefore produce the population structure required for the evolution of cooperative virulence. PMID:26125685

  5. Broad-Range Survey of Tick-Borne Pathogens in Southern Germany Reveals a High Prevalence of Babesia microti and a Diversity of Other Tick-Borne Pathogens

    PubMed Central

    Crowder, Chris D.; Carolan, Heather E.; Rounds, Megan A.; Ecker, David J.; Haag, Heike; Mothes, Benedikt; Nolte, Oliver

    2014-01-01

    Abstract Ticks harbor numerous pathogens of significance to human and animal health. A better understanding of the pathogens carried by ticks in a given geographic area can alert health care providers of specific health risks leading to better diagnosis and treatments. In this study, we tested 226 Ixodes ricinis ticks from Southern Germany using a broad-range PCR and electrospray ionization mass spectrometry assay (PCR/ESI-MS) designed to identify tick-borne bacterial and protozoan pathogens in a single test. We found 21.2% of the ticks tested carried Borrelia burgdorferi sensu lato consisting of diverse genospecies; a surprisingly high percentage of ticks were infected with Babesia microti (3.5%). Other organisms found included Borrelia miyamotoi, Rickettsia helvetica, Rickettsia monacensis, and Anaplasma phagocytophilum. Of further significance was our finding that more than 7% of ticks were infected with more than one pathogen or putative pathogen. PMID:25072989

  6. Host immune responses of ducks infected with H5N1 highly pathogenic avian influenza viruses of different pathogenicities.

    PubMed

    Wei, Liangmeng; Jiao, Peirong; Song, Yafen; Cao, Lan; Yuan, Runyu; Gong, Lang; Cui, Jin; Zhang, Shuo; Qi, Wenbao; Yang, Su; Liao, Ming

    2013-10-25

    Our previous studies have illustrated three strains of duck-origin H5N1 highly pathogenic avian influenza viruses (HPAIVs) had varying levels of pathogenicity in ducks (Sun et al., 2011). However, the host immune response of ducks infected with those of H5N1 HPAIVs was unclear. Here, we compared viral distribution and mRNA expression of immune-related genes in ducks following infection with the two HPAIV (A/Duck/Guangdong/212/2004, DK212 and A/Duck/Guangdong/383/2008, DK383). DK383 could replicate in the tested tissue of ducks (brain, spleen, lungs, cloacal bursa, kidney, and pancreas) more rapid and efficiently than DK212 at 1 and 2 days post-inoculation. Quantitative real-time PCR analysis showed that the expression levels of TLR3, IL-6, IL-8, and MHC class II in brains were higher than those of respective genes in lungs during the early stage of post infection. Furthermore, the expression levels of IL-6 and IL-8 in the brain of ducks following infection with DK383 were remarkably higher than those of ducks infected with DK212, respectively. Our results suggest that the shift in the H5N1 HPAIVs to increased virulence in ducks may be associated with efficient and rapid replication of the virus, accompanied by early destruction of host immune responses. These data are helpful to understand the underlying mechanism of the different outcome of H5N1 HPAIVs infection in ducks.

  7. Bacillus cereus from the environment is genetically related to the highly pathogenic B. cereus in Zambia

    PubMed Central

    OGAWA, Hirohito; OHNUMA, Miyuki; SQUARRE, David; MWEENE, Aaron Simanyengwe; EZAKI, Takayuki; FUJIKURA, Daisuke; OHNISHI, Naomi; THOMAS, Yuka; HANG’OMBE, Bernard Mudenda; HIGASHI, Hideaki

    2015-01-01

    To follow-up anthrax in Zambia since the outbreak in 2011, we have collected samples from the environment and the carcasses of anthrax-suspected animals, and have tried to isolate Bacillus anthracis. In the process of identification of B. anthracis, we collected two isolates, of which colonies were similar to B. anthracis; however, from the results of identification using the molecular-based methods, two isolates were genetically related to the highly pathogenic B. cereus, of which clinical manifestation is severe and fatal (e.g., pneumonia). In this study, we showed the existence of bacteria suspected to be highly pathogenic B. cereus in Zambia, indicating the possibility of an outbreak caused by highly pathogenic B. cereus. PMID:25797134

  8. Bacillus cereus from the environment is genetically related to the highly pathogenic B. cereus in Zambia.

    PubMed

    Ogawa, Hirohito; Ohnuma, Miyuki; Squarre, David; Mweene, Aaron Simanyengwe; Ezaki, Takayuki; Fujikura, Daisuke; Ohnishi, Naomi; Thomas, Yuka; Hang'ombe, Bernard Mudenda; Higashi, Hideaki

    2015-08-01

    To follow-up anthrax in Zambia since the outbreak in 2011, we have collected samples from the environment and the carcasses of anthrax-suspected animals, and have tried to isolate Bacillus anthracis. In the process of identification of B. anthracis, we collected two isolates, of which colonies were similar to B. anthracis; however, from the results of identification using the molecular-based methods, two isolates were genetically related to the highly pathogenic B. cereus, of which clinical manifestation is severe and fatal (e.g., pneumonia). In this study, we showed the existence of bacteria suspected to be highly pathogenic B. cereus in Zambia, indicating the possibility of an outbreak caused by highly pathogenic B. cereus.

  9. Towards reliable multi-pathogen biosensors using high-dimensional encoding and decoding techniques

    NASA Astrophysics Data System (ADS)

    Chakrabartty, Shantanu; Liu, Yang

    2008-08-01

    Advances in micro-nano-biosensor fabrication are enabling technology that can integrate a large number of biological recognition elements within a single package. As a result, hundreds to millions of tests can be performed simultaneously and can facilitate rapid detection of multiple pathogens in a given sample. However, it is an open question as to how to exploit the high-dimensional nature of the multi-pathogen testing for improving the detection reliability a typical biosensor system. In this paper, we discuss two complementary high-dimensional encoding/decoding methods for improving the reliability of multi-pathogen detection. The first method uses a support vector machine (SVM) to learn the non-linear detection boundaries in the high-dimensional measurement space. The second method uses a forward error correcting (FEC) technique to synthetically introduce redundant patterns on the biosensor which can then be efficiently decoded. In this paper, experimental and simulation studies are based on a model conductimetric lateral flow immunoassay that uses antigen-antibody interaction in conjunction with a polyaniline transducer to detect presence or absence of pathogen in a given sample. Our results show that both SVM and FEC techniques can improve the detection performance by exploiting cross-reaction amongst multiple recognition sites on the biosensor. This is contrary to many existing methods used in pathogen detection technology where the main emphasis has been reducing the effects of cross-reaction and coupling instead of exploiting them as side information.

  10. False positives complicate ancient pathogen identifications using high-throughput shotgun sequencing

    PubMed Central

    2014-01-01

    Background Identification of historic pathogens is challenging since false positives and negatives are a serious risk. Environmental non-pathogenic contaminants are ubiquitous. Furthermore, public genetic databases contain limited information regarding these species. High-throughput sequencing may help reliably detect and identify historic pathogens. Results We shotgun-sequenced 8 16th-century Mixtec individuals from the site of Teposcolula Yucundaa (Oaxaca, Mexico) who are reported to have died from the huey cocoliztli (‘Great Pestilence’ in Nahautl), an unknown disease that decimated native Mexican populations during the Spanish colonial period, in order to identify the pathogen. Comparison of these sequences with those deriving from the surrounding soil and from 4 precontact individuals from the site found a wide variety of contaminant organisms that confounded analyses. Without the comparative sequence data from the precontact individuals and soil, false positives for Yersinia pestis and rickettsiosis could have been reported. Conclusions False positives and negatives remain problematic in ancient DNA analyses despite the application of high-throughput sequencing. Our results suggest that several studies claiming the discovery of ancient pathogens may need further verification. Additionally, true single molecule sequencing’s short read lengths, inability to sequence through DNA lesions, and limited ancient-DNA-specific technical development hinder its application to palaeopathology. PMID:24568097

  11. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used ...

  12. Update on H7N3 highly pathogenic avian influenza in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Jalisco, Mexico. This region is responsible for approximately 55% of the eggs produced in Mexico, and infection with this virus seve...

  13. Novel Reassortant Highly Pathogenic Avian Influenza (H5N8) Virus in Zoos, India.

    PubMed

    Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V; Tripathi, Sushil; Shukla, Shweta; Agarwal, Sonam; Dubey, Garima; Nagi, Raunaq Singh; Singh, Vijendra Pal; Tosh, Chakradhar

    2017-04-01

    Highly pathogenic avian influenza (H5N8) viruses were detected in waterfowl at 2 zoos in India in October 2016. Both viruses were different 7:1 reassortants of H5N8 viruses isolated in May 2016 from wild birds in the Russian Federation and China, suggesting virus spread during southward winter migration of birds.

  14. Inhibition of enteric pathogens using integrated high intensity 405 nm LED on the surface of almonds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The disinfecting properties of 405 nm light were investigated against Escherichia coli O157:H7, Salmonella, and their non-pathogenic surrogates inoculated onto the surface of almonds. High intensity monochromatic light was generated from an array of narrow-band 405 nm light emitting diodes (LED). Al...

  15. Highly pathogenic avian influenza virus and generation of novel reassortants, United States, 2014-2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North Americ...

  16. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014.

    PubMed

    Ip, Hon S; Torchetti, Mia Kim; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M

    2015-05-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  17. Current status and future needs in diagnostics and vaccines for high pathogenicity avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 1959, 31 epizootics of high pathogenicity avian influenza (HPAI) have occurred in birds. Rapid detection and accurate identification of HPAI has been critical to controlling such epizootics in poultry. Specific paradigms for the detection and diagnosis of avian influenza virus (AIV) in poultry...

  18. The role of vaccines and vaccination in high pathogenicity avian influenza control and eradication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty epizootics of high pathogenicity avian influenza (HPAI) have occurred in the world since influenza was identified as the etiology in 1955. Twenty-four of the epizootics were eradicated by using stamping-out programs composed of education, biosecurity, rapid diagnostics and surveillance, and ...

  19. Novel Eurasian highly pathogenic influenza A H5 viruses in wild birds, Washington, USA

    USGS Publications Warehouse

    Ip, Hon S.; Kim Torchetti, Mia; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G.; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara L.; Shearn-Bochsler, Valerie I.; Killian, Mary Lea; Pederson, Janice C.; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M.

    2015-01-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  20. Novel Reassortant Highly Pathogenic Avian Influenza (H5N8) Virus in Zoos, India

    PubMed Central

    Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V.; Tripathi, Sushil; Shukla, Shweta; Agarwal, Sonam; Dubey, Garima; Nagi, Raunaq Singh; Singh, Vijendra Pal

    2017-01-01

    Highly pathogenic avian influenza (H5N8) viruses were detected in waterfowl at 2 zoos in India in October 2016. Both viruses were different 7:1 reassortants of H5N8 viruses isolated in May 2016 from wild birds in the Russian Federation and China, suggesting virus spread during southward winter migration of birds. PMID:28117031

  1. Immediate early responses of avian tracheal epithelial cells to infection with highly pathogenic avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) avian influenza viruses (AIV) present an on going threat to the U.S. poultry industry. In order to develop new AIV control strategies it is necessary to understand the underlying mechanism of viral infection. Because the early events of AIV infection can occur on tracheal ep...

  2. Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Genetic reassortment of H5N1 highly pathogenic avian influenza viruses (HPAI) with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian ...

  3. Immediate early responses of avian tracheal epithelial cells to infection with highly pathogenic avian invluenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) avian influenza viruses (AIV) present an ongoing threat to the world poultry industry. In order to develop new AIV control strategies it is necessary to understand the underlying mechanism of viral infection at mucosal respiratory sites. Chicken and duck tracheal epithelial ...

  4. Chlorine inactivation of H5N1 highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two Asian strains of H5N1 highly pathogenic avian influenza virus were studied to determine their resistance to chlorination. Experiments were conducted at two pH levels (pH 7 and 8) at 5 C. CT (chlorine concentration x exposure time) values were calculated for different levels of inactivation. R...

  5. Global assessments of high pathogenicity avian influenza control, including vaccination programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There have been 32 epizootics of H5 or H7 high pathogenicity avian influenza (HPAI) from 1959 to early 2013. The largest has been the H5N1 HPAI which began in Guangdong China in 1996, and has affected over 250 million poultry and/or wild birds in 63 countries. For most countries, stamping-out progra...

  6. Highly pathogenic avian influenza (H5N1) outbreaks in wild birds and poultry, South Korea.

    PubMed

    Kim, Hye-Ryoung; Lee, Youn-Jeong; Park, Choi-Kyu; Oem, Jae-Ku; Lee, O-Soo; Kang, Hyun-Mi; Choi, Jun-Gu; Bae, You-Chan

    2012-03-01

    Highly pathogenic avian influenza (H5N1) among wild birds emerged simultaneously with outbreaks in domestic poultry in South Korea during November 2010-May 2011. Phylogenetic analysis showed that these viruses belonged to clade 2.3.2, as did viruses found in Mongolia, the People's Republic of China, and Russia in 2009 and 2010.

  7. Global expansion of high pathogenicity avian influenza: implications on prevention and control programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreas...

  8. Changing pathobiology of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic waterfowl

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Eurasian-African lineage of H5N1 highly pathogenic avian influenza (HPAI) viruses has evolved into many genetic lineages and multiple sublineages. The divergent strains that have arisen express distinct pathobiological features and increased virulence for many bird species including domestic wa...

  9. Airborne transmission of H5N1 high pathogenicity avian influenza viruses during simulated home slaughter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most H5N1 human infections have occurred following exposure to H5N1 high pathogenicity avian influenza (HPAI) virus-infected poultry, especially when poultry are home slaughtered or slaughtered in live poultry markets. Previous studies have demonstrated that slaughter of clade 1 isolate A/Vietnam/1...

  10. High pathogenicity avian influenza virus in the reproductive tract of chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection with high pathogenicity avian influenza virus (HPAIV) has been associated with a wide range of clinical manifestations in poultry including severe depression in egg production and isolation of HPAIV from eggs laid by infected hens. To evaluate the pathobiology in the reproductive tract of...

  11. Pathogenesis and transmission of highly pathogenic avian influenza H5Nx in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction Influenza A viruses (IAV) periodically transmit between pigs, people, and birds. If two IAV strains infect the same host, genes can reassort to generate progeny virus with potential to be more infectious or avoid immunity. Pigs pose a risk for such reassortment. Highly pathogenic avian ...

  12. Global expansion of high pathogenicity avian influenza: implications on prevention and control programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreasi...

  13. Photoluminescent lateral-flow immunoassay revealed by graphene oxide: highly sensitive paper-based pathogen detection.

    PubMed

    Morales-Narváez, Eden; Naghdi, Tina; Zor, Erhan; Merkoçi, Arben

    2015-08-18

    A paper-based lateral flow immunoassay for pathogen detection that avoids the use of secondary antibodies and is revealed by the photoluminescence quenching ability of graphene oxide is reported. Escherichia coli has been selected as a model pathogen. The proposed device is able to display a highly specific and sensitive performance with a limit of detection of 10 CFU mL(-1) in standard buffer and 100 CFU mL(-1) in bottled water and milk. This low-cost disposable and easy-to-use device will prove valuable for portable and automated diagnostics applications.

  14. Evaluation of batch and semicontinuous application of high hydrostatic pressure on foodborne pathogens in salsa.

    PubMed

    Raghubeer, E V; Dunne, C P; Farkas, D F; Ting, E Y

    2000-12-01

    The effects of high hydrostatic pressure (HPP; 545 MPa) on strains of Escherichia coli O157:H7, Listeria monocytogenes, enterotoxigenic Staphylococcus aureus, and nonpathogenic microorganisms were studied in tomato-based salsa. Products were evaluated for the survival of the inoculated pathogens following HPP treatment and after storage at 4 degrees C and 21 to 23 degrees C for up to 2 months. Inoculated samples without HPP treatment, stored under the same conditions, were also evaluated to determine the effects of the acid environment of salsa on the survival of inoculated strains. None of the inoculated pathogens were detected in the HPP-treated samples for all treatments throughout the storage period. Inoculated pathogens were detected in the non-HPP-treated samples stored at 4 degrees C after 1 month, with L. monocytogenes showing the highest level of survivors. In the non-HPP-treated samples stored at 21 to 23 degrees C, E. coli and S. aureus were not detected after 1 week, but L. monocytogenes was detected in low levels. Studies with nonpathogenic strains of the pathogens were conducted at Oregon State University using HPP treatments in a semicontinuous production system. The nonpathogenic microorganisms (E. coli, Listeria innocua, Listeria welshimeri, and nonenterotoxigenic S. aureus) were inoculated together into a feeder tank containing 100 liters of salsa. Microbiological results of samples collected before HPP treatment and from the aseptic filler were similar to those obtained for the pathogenic strains. No survivors were detected in any of the HPP-treated samples.

  15. Population biology of Gram-positive pathogens: high-risk clones for dissemination of antibiotic resistance

    PubMed Central

    Willems, Rob J. L.; Hanage, William P; Bessen, Debra E.; Feil, Edward J.

    2011-01-01

    Infections caused by multi-resistant Gram positive bacteria represent a major health burden in the community as well as in hospitalized patients. Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium are well-known pathogens of hospitalized patients, frequently linked with resistance against multiple antibiotics, compromising effective therapy. Streptococcus pneumoniae and Streptococcus pyogenes are important pathogens in the community and S. aureus has recently emerged as an important community-acquired pathogen. Population genetic studies reveal that recombination prevails as a driving force of genetic diversity in E. faecium, E. faecalis, S. pneumoniae, and S. pyogenes and thus, these species are weakly clonal. Although recombination has a relatively modest role driving the genetic variation of the core genome of S. aureus, the horizontal acquistion of resistance and virulence genes plays a key role in the emergence of new clinically relevant clones in this species. In this review we discuss the population genetics of E. faecium, E. faecalis, S. pneumoniae, S. pyogenes, and S. aureus. Knowledge of the population structure of these pathogens is not only highly relevant for (molecular) epidemiological research but also for identifying the genetic variation that underlies changes in clinical behaviour, to improve our understanding of the pathogenic behaviour of particular clones and to identify novel targets for vaccines or immunotherapy. PMID:21658083

  16. HIGH SENSITIVE PCR METHOD FOR DETECTION OF PATHOGENIC Leptospira spp. IN PARAFFIN-EMBEDDED TISSUES

    PubMed Central

    Noda, Angel Alberto; Rodríguez, Islay; Rodríguez, Yaindrys; Govín, Anamays; Fernández, Carmen; Obregón, Ana Margarita

    2014-01-01

    This study describes the development and application of a new PCR assay for the specific detection of pathogenic leptospires and its comparison with a previously reported PCR protocol. New primers were designed for PCR optimization and evaluation in artificially-infected paraffin-embedded tissues. PCR was then applied to post-mortem, paraffin-embedded samples, followed by amplicon sequencing. The PCR was more efficient than the reported protocol, allowing the amplification of expected DNA fragment from the artificially infected samples and from 44% of the post-mortem samples. The sequences of PCR amplicons from different patients showed >99% homology with pathogenic leptospires DNA sequences. The applicability of a highly sensitive and specific tool to screen histological specimens for the detection of pathogenic Leptospira spp. would facilitate a better assessment of the prevalence and epidemiology of leptospirosis, which constitutes a health problem in many countries. PMID:25229221

  17. High-Throughput Biosensors for Multiplexed Food-Borne Pathogen Detection

    NASA Astrophysics Data System (ADS)

    Gehring, Andrew G.; Tu, Shu-I.

    2011-07-01

    Incidental contamination of foods by pathogenic bacteria and/or their toxins is a serious threat to public health and the global economy. The presence of food-borne pathogens and toxins must be rapidly determined at various stages of food production, processing, and distribution. Producers, processors, regulators, retailers, and public health professionals need simple and cost-effective methods to detect different species or serotypes of bacteria and associated toxins in large numbers of food samples. This review addresses the desire to replace traditional microbiological plate culture with more timely and less cumbersome rapid, biosensor-based methods. Emphasis focuses on high-throughput, multiplexed techniques that allow for simultaneous testing of numerous samples, in rapid succession, for multiple food-borne analytes (primarily pathogenic bacteria and/or toxins).

  18. An H5N1 highly pathogenic avian influenza virus that invaded Japan through waterfowl migration.

    PubMed

    Kajihara, Masahiro; Matsuno, Keita; Simulundu, Edgar; Muramatsu, Mieko; Noyori, Osamu; Manzoor, Rashid; Nakayama, Eri; Igarashi, Manabu; Tomabechi, Daisuke; Yoshida, Reiko; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Ito, Kimihito; Kida, Hiroshi; Takada, Ayato

    2011-08-01

    In 2010, an H5N1 highly pathogenic avian influenza virus (HPAIV) was isolated from feces of apparently healthy ducks migrating southward in Hokkaido, the northernmost prefecture of Japan. The H5N1 HPAIVs were subsequently detected in domestic and wild birds at multiple sites corresponding to the flyway of the waterfowl having stopovers in the Japanese archipelago. The Hokkaido isolate was genetically nearly identical to H5N1 HPAIVs isolated from swans in the spring of 2009 and 2010 in Mongolia, but less pathogenic in experimentally infected ducks than the 2009 Mongolian isolate. These findings suggest that H5N1 HPAIVs with relatively mild pathogenicity might be selected and harbored in the waterfowl population during the 2009-2010 migration seasons. Our data provide "early warning" signals for preparedness against the unprecedented situation in which the waterfowl reservoirs serve as perpetual sources and disseminators of HPAIVs.

  19. Glycan-based high-affinity ligands for toxins and pathogen receptors.

    PubMed

    Kulkarni, Ashish A; Weiss, Alison A; Iyer, Suri S

    2010-03-01

    Glycans decorate over 95% of the mammalian cell surface in the form of glycolipids and glycoproteins. Several toxins and pathogens bind to these glycans to enter the cells. Understanding the fundamentals of the complex interplay between microbial pathogens and their glycan receptors at the molecular level could lead to the development of novel therapeutics and diagnostics. Using Shiga toxin and influenza virus as examples, we describe the complex biological interface between host glycans and these infectious agents, and recent strategies to develop glycan-based high-affinity ligands. These molecules are expected to ultimately be incorporated into diagnostics and therapeutics, and can be used as probes to study important biological processes. Additionally, by focusing on the specific glycans that microbial pathogens target, we can begin to decipher the "glycocode" and how these glycans participate in normal and aberrant cellular communication.

  20. Genomic reconnaissance of clinical isolates of emerging human pathogen Mycobacterium abscessus reveals high evolutionary potential

    PubMed Central

    Choo, Siew Woh; Wee, Wei Yee; Ngeow, Yun Fong; Mitchell, Wayne; Tan, Joon Liang; Wong, Guat Jah; Zhao, Yongbing; Xiao, Jingfa

    2014-01-01

    Mycobacterium abscessus (Ma) is an emerging human pathogen that causes both soft tissue infections and systemic disease. We present the first comparative whole-genome study of Ma strains isolated from patients of wide geographical origin. We found a high proportion of accessory strain-specific genes indicating an open, non-conservative pan-genome structure, and clear evidence of rapid phage-mediated evolution. Although we found fewer virulence factors in Ma compared to M. tuberculosis, our data indicated that Ma evolves rapidly and therefore should be monitored closely for the acquisition of more pathogenic traits. This comparative study provides a better understanding of Ma and forms the basis for future functional work on this important pathogen. PMID:24515248

  1. Profile and Fate of Bacterial Pathogens in Sewage Treatment Plants Revealed by High-Throughput Metagenomic Approach.

    PubMed

    Li, Bing; Ju, Feng; Cai, Lin; Zhang, Tong

    2015-09-01

    The broad-spectrum profile of bacterial pathogens and their fate in sewage treatment plants (STPs) were investigated using high-throughput sequencing based metagenomic approach. This novel approach could provide a united platform to standardize bacterial pathogen detection and realize direct comparison among different samples. Totally, 113 bacterial pathogen species were detected in eight samples including influent, effluent, activated sludge (AS), biofilm, and anaerobic digestion sludge with the abundances ranging from 0.000095% to 4.89%. Among these 113 bacterial pathogens, 79 species were reported in STPs for the first time. Specially, compared to AS in bulk mixed liquor, more pathogen species and higher total abundance were detected in upper foaming layer of AS. This suggests that the foaming layer of AS might impose more threat to onsite workers and citizens in the surrounding areas of STPs because pathogens in foaming layer are easily transferred into air and cause possible infections. The high removal efficiency (98.0%) of total bacterial pathogens suggests that AS treatment process is effective to remove most bacterial pathogens. Remarkable similarities of bacterial pathogen compositions between influent and human gut indicated that bacterial pathogen profiles in influents could well reflect the average bacterial pathogen communities of urban resident guts within the STP catchment area.

  2. Differences in pathogenicity of A/Duck/Vietnam/201/05 H5N1 highly pathogenic avian influenza virus reassortants in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to understand which viral genes contribute to the high virulence of A/Dk/Vietnam/201/05 H5N1 highly pathogenic avian influenza (HPAI) virus in ducks, we used reverse genetics to generate single-gene reassortant viruses with genes from A/Ck/Indonesia/7/03, a virus that produces mild disease ...

  3. Development of High Hydrostatic Pressure Applied in Pathogen Inactivation for Plasma

    PubMed Central

    Yang, Hong; Zhang, Xinmin; Chen, Limin; Wang, Jingxing

    2016-01-01

    High hydrostatic pressure has been used to inactivate pathogens in foods for decades. There is a great potential to adapt this technology to inactivate pathogens in plasma and derivatives. To better evaluate the potential of this method, pathogen inoculated plasma samples were pressurized under different pressure application modes and temperatures. The inactivation efficacy of pathogens and activities of plasma proteins were monitored after treatment. The CFUs of E.coli was examined as the indicator of the inactivation efficiency. The factor V and VIII were chosen as the indicator of the plasma function. Preliminary experiments identified optimized treatment conditions: 200-250MPa, with 5×1 minute multi-pulsed high pressure at near 0°C (ice-water bath). Under this conditions, the inactivation efficacy of EMCV was >8.5log. The CFUs of E. coli were reduced by 7.5log, B. cereus were 8log. However, PPV and S. aureus cannot be inactivated efficiently. The activities of factor II, VII, IX, X, XI, XII, fibrinogen, IgG, IgM stayed over 95% compared to untreated. Factor V and VIII activity was maintained at 46–63% and 77–82%, respectively. PMID:27561010

  4. High-throughput sequencing for the study of bacterial pathogen biology

    PubMed Central

    McAdam, Paul R; Richardson, Emily J; Fitzgerald, J Ross

    2014-01-01

    A revolution in sequencing technologies in recent years has led to dramatically increased throughput and reduced cost of bacterial genome sequencing. An increasing number of applications of the new technologies are providing broad insights into bacterial evolution, epidemiology, and pathogenesis. For example, the capacity to sequence large numbers of bacterial isolates is enabling high resolution phylogenetic analyses of bacterial populations leading to greatly enhanced understanding of the emergence, adaptation, and transmission of pathogenic clones. In addition, RNA-seq offers improved quantification and resolution for transcriptomic analysis, and the combination of high-throughput sequencing with transposon mutagenesis is a powerful approach for the identification of bacterial determinants required for survival in vivo. In this concise review we provide selected examples of how high throughput sequencing is being applied to understand the biology of bacterial pathogens, and discuss future technological advances likely to have a profound impact on the field. PMID:25033019

  5. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza ...

  6. Chinese and Vietnamese strains of HP-PRRSV cause different pathogenic outcomes in United States high health swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An infectious clone of a highly pathogenic PRRSV strain from Vietnam (rSRV07) was prepared, analyzed and compared to Chinese highly pathogenic PRRSV rJXwn06 and US Type 2 prototype VR-2332 in order to examine the effects of virus phenotype and genotype on growth in MARC-145 cells, as well as the imp...

  7. Research efforts to control highly pathogenic arenaviruses: a summary of the progress and gaps.

    PubMed

    Kerber, R; Reindl, S; Romanowski, V; Gómez, R M; Ogbaini-Emovon, E; Günther, S; ter Meulen, J

    2015-03-01

    Significant progress has been made in the past 10 years in unraveling the molecular biology of highly pathogenic arenaviruses that are endemic in several West African countries (Lassa fever virus) and in some regions of South America (Argentine and Bolivian hemorrhagic fever viruses). While this has resulted in proof-of-concept studies of novel vaccine candidates in non-human primates and in the discovery of several novel antiviral small molecule drug candidates, none of them has been tested in the clinic to date. The recent Ebola outbreak in West Africa has demonstrated very clearly that there is an urgent need to develop the prophylactic and therapeutic armamentarium against viral hemorrhagic fever viruses as part of a global preparedness for future epidemics. As it pertains to this goal, the present article summarizes the current knowledge of highly pathogenic arenaviruses and identifies opportunities for translational research.

  8. Wild bird surveillance for highly pathogenic avian influenza H5 in North America

    USGS Publications Warehouse

    Flint, Paul L.; Pearce, John M.; Franson, J. Christian; Derksen, Dirk V.

    2015-01-01

    It is unknown how the current Asian origin highly pathogenic avian influenza H5 viruses arrived, but these viruses are now poised to become endemic in North America. Wild birds harbor these viruses and have dispersed them at regional scales. What is unclear is how the viruses may be moving from the wild bird reservoir into poultry holdings. Active surveillance of live wild birds is likely the best way to determine the true distribution of these viruses. We also suggest that sampling be focused on regions with the greatest risk for poultry losses and attempt to define the mechanisms of transfer to enhance biosecurity. Responding to the recent outbreaks of highly pathogenic avian influenza in North America requires an efficient plan with clear objectives and potential management outcomes.

  9. Wild bird surveillance for highly pathogenic avian influenza H5 in North America.

    PubMed

    Flint, Paul L; Pearce, John M; Franson, J Christian; Derksen, Dirk V

    2015-09-28

    It is unknown how the current Asian origin highly pathogenic avian influenza H5 viruses arrived, but these viruses are now poised to become endemic in North America. Wild birds harbor these viruses and have dispersed them at regional scales. What is unclear is how the viruses may be moving from the wild bird reservoir into poultry holdings. Active surveillance of live wild birds is likely the best way to determine the true distribution of these viruses. We also suggest that sampling be focused on regions with the greatest risk for poultry losses and attempt to define the mechanisms of transfer to enhance biosecurity. Responding to the recent outbreaks of highly pathogenic avian influenza in North America requires an efficient plan with clear objectives and potential management outcomes.

  10. 2.1 Natural History of Highly Pathogenic Avian Influenza H5N1

    PubMed Central

    Sonnberg, Stephanie; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans. PMID:23735535

  11. Characterization of Highly Pathogenic Avian Influenza Virus A(H5N6), Japan, November 2016

    PubMed Central

    Okamatsu, Masatoshi; Ozawa, Makoto; Soda, Kosuke; Takakuwa, Hiroki; Haga, Atsushi; Hiono, Takahiro; Matsuu, Aya; Uchida, Yuko; Iwata, Ritsuko; Matsuno, Keita; Kuwahara, Masakazu; Yabuta, Toshiyo; Usui, Tatsufumi; Ito, Hiroshi; Onuma, Manabu; Saito, Takehiko; Otsuki, Koichi; Ito, Toshihiro; Kida, Hiroshi

    2017-01-01

    Highly pathogenic avian influenza viruses (HPAIVs) A(H5N6) were concurrently introduced into several distant regions of Japan in November 2016. These viruses were classified into the genetic clade 2.3.4.4c and were genetically closely related to H5N6 HPAIVs recently isolated in South Korea and China. In addition, these HPAIVs showed further antigenic drift. PMID:28322695

  12. Genetic characterization of highly pathogenic H5 influenza viruses from poultry in Taiwan, 2015.

    PubMed

    Huang, Pei-Yu; Lee, Chang-Chun David; Yip, Chun-Hung; Cheung, Chung-Lam; Yu, Guangchuang; Lam, Tommy Tsan-Yuk; Smith, David K; Zhu, Huachen; Guan, Yi

    2016-03-01

    Phylogenetic analysis of the highly pathogenic avian influenza (HPAI) H5 viruses causing recent outbreaks in Taiwan showed that they belonged to the Asian HPAI H5 lineage, clade 2.3.4.4 viruses, and were apparently introduced by migratory birds. These viruses reassorted with Eurasian influenza gene pool viruses and formed five genotypic variants. As Taiwan has a similar influenza ecosystem to southern China, the HPAI H5 lineage could become established and enzootic in the island.

  13. Highly pathogenic avian influenza A(H7N3) virus in poultry workers, Mexico, 2012.

    PubMed

    Lopez-Martinez, Irma; Balish, Amanda; Barrera-Badillo, Gisela; Jones, Joyce; Nuñez-García, Tatiana E; Jang, Yunho; Aparicio-Antonio, Rodrigo; Azziz-Baumgartner, Eduardo; Belser, Jessica A; Ramirez-Gonzalez, José E; Pedersen, Janice C; Ortiz-Alcantara, Joanna; Gonzalez-Duran, Elizabeth; Shu, Bo; Emery, Shannon L; Poh, Mee K; Reyes-Teran, Gustavo; Vazquez-Perez, Joel A; Avila-Rios, Santiago; Uyeki, Timothy; Lindstrom, Stephen; Villanueva, Julie; Tokars, Jerome; Ruiz-Matus, Cuitláhuac; Gonzalez-Roldan, Jesus F; Schmitt, Beverly; Klimov, Alexander; Cox, Nancy; Kuri-Morales, Pablo; Davis, C Todd; Diaz-Quiñonez, José Alberto

    2013-01-01

    We identified 2 poultry workers with conjunctivitis caused by highly pathogenic avian influenza A(H7N3) viruses in Jalisco, Mexico. Genomic and antigenic analyses of 1 isolate indicated relatedness to poultry and wild bird subtype H7N3 viruses from North America. This isolate had a multibasic cleavage site that might have been derived from recombination with host rRNA.

  14. Comparison of molecular classification and experimental pathogenicity for classification of low and high pathogenicity H5 and H7 avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza (HPAI) viruses, which have been restricted to H5 and H7 subtypes, have caused continuous outbreaks in the poultry industry with devastating economic losses and is a severe threat to public health. Genetic features and severity of the disease in poultry determine wh...

  15. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. To improve the control of this disease it’s necessary to better understand the pathog...

  16. A Sensitive High-Throughput Assay for Evaluating Host-Pathogen Interactions in Cryptococcus neoformans Infection

    PubMed Central

    Srikanta, Deepa; Yang, Meng; Williams, Matthew; Doering, Tamara L.

    2011-01-01

    Background Cryptococcus neoformans causes serious disease in immunocompromised individuals, leading to over 600,000 deaths per year worldwide. Part of this impact is due to the organism's ability to thwart what should be the mammalian hosts' first line of defense against cryptococcal infection: internalization by macrophages. Even when C. neoformans is engulfed by host phagocytes, it can survive and replicate within them rather than being destroyed; this ability is central in cryptococcal virulence. It is therefore critical to elucidate the interactions of this facultative intracellular pathogen with phagocytic cells of its mammalian host. Methodology/Principal Findings To accurately assess initial interactions between human phagocytic cells and fungi, we have developed a method using high-throughput microscopy to efficiently distinguish adherent and engulfed cryptococci and quantitate each population. This method offers significant advantages over currently available means of assaying host-fungal cell interactions, and remains statistically robust when implemented in an automated fashion appropriate for screening. It was used to demonstrate the sensitivity of human phagocytes to subtle changes in the cryptococcal capsule, a major virulence factor of this pathogen. Conclusions/Significance Our high-throughput method for characterizing interactions between C. neoformans and mammalian phagocytic cells offers a powerful tool for elucidating the relationship between these cell types during pathogenesis. This approach will be useful for screens of this organism and has potentially broad applications for investigating host-pathogen interactions. PMID:21829509

  17. International biosecurity symposium : securing high consequence pathogens and toxins : symposium summary.

    SciTech Connect

    Not Available

    2004-06-01

    The National Nuclear Security Administration (NNSA) Office of Nonproliferation Policy sponsored an international biosecurity symposium at Sandia National Laboratories (SNL). The event, entitled 'Securing High Consequence Pathogens and Toxins', took place from February 1 to February 6, 2004 and was hosted by Dr. Reynolds M. Salerno, Principal Member of the Technical Staff and Program Manager of the Biosecurity program at Sandia. Over 60 bioscience and policy experts from 14 countries gathered to discuss biosecurity, a strategy aimed at preventing the theft and sabotage of dangerous pathogens and toxins from bioscience facilities. Presentations delivered during the symposium were interspersed with targeted discussions that elucidated, among other things, the need for subsequent regional workshops on biosecurity, and a desire for additional work toward developing international biosecurity guidelines.

  18. Comparative Genomic Analysis Reveals a Possible Novel Non-Tuberculous Mycobacterium Species with High Pathogenic Potential

    PubMed Central

    Choo, Siew Woh; Dutta, Avirup; Wong, Guat Jah; Wee, Wei Yee; Ang, Mia Yang; Siow, Cheuk Chuen

    2016-01-01

    Mycobacteria have been reported to cause a wide range of human diseases. We present the first whole-genome study of a Non-Tuberculous Mycobacterium, Mycobacterium sp. UM_CSW (referred to hereafter as UM_CSW), isolated from a patient diagnosed with bronchiectasis. Our data suggest that this clinical isolate is likely a novel mycobacterial species, supported by clear evidence from molecular phylogenetic, comparative genomic, ANI and AAI analyses. UM_CSW is closely related to the Mycobacterium avium complex. While it has characteristic features of an environmental bacterium, it also shows a high pathogenic potential with the presence of a wide variety of putative genes related to bacterial virulence and shares very similar pathogenomic profiles with the known pathogenic mycobacterial species. Thus, we conclude that this possible novel Mycobacterium species should be tightly monitored for its possible causative role in human infections. PMID:27035710

  19. Surfaces Presenting α-Phenyl Mannoside Derivatives Enable Formation of Stable, High Coverage, Non-pathogenic Escherichia coli Biofilms against Pathogen Colonization.

    PubMed

    Zhu, Zhiling; Wang, Jun; Lopez, Analette I; Yu, Fei; Huang, Yongkai; Kumar, Amit; Li, Siheng; Zhang, Lijuan; Cai, Chengzhi

    2015-06-01

    Prevention of pathogenic colonization on medical devices over a long period of time remains a great challenge, especially in a high-nutrient environment that accelerates production of biomass leading to biofouling of the device. Since biofouling and the subsequent pathogen colonization is eventually inevitable, a new strategy using non-pathogenic bacteria as living guards against pathogenic colonization on medical devices has attracted increasing interest. Crucial to the success of this strategy is to pre-establish a high coverage and stable biofilm of benign bacteria on the surface. Silicone elastomers are one of the most widely used materials in biomedical devices. In this work, we modified silicone surfaces to promote formation of high coverage and stable biofilms by a non-pathogenic Escherichia coli strain 83972 with type 1 fimbriae (fim+) to interfere the colonization of an aggressive biofilm-forming, uropathogenic Enterococcus faecalis. Although it is well known that mannoside surfaces promote the initial adherence of fim+ E. coli through binding to the FimH receptor at the tip of the type 1 fimbriae, it is not clear whether the fast initial adherence could lead to a high coverage and stable protective biofilm. To explore the role of mannoside ligands, we synthesized a series of alkyl and aryl mannosides varied in structure and immobilized them on silicone surfaces pre-coated with poly(amidoamine) (PAMAM) dendrimer. We found that stable and densely packed benign E. coli biofilms were formed on the surfaces presenting biphenyl mannoside with the highest initial adherence of fim+ E. coli. These non-pathogenic biofilms prevented the colonization of E. faecalis for 11 days at a high concentration (10(8) CFU mL(-1), 100,000 times above the diagnostic threshold for urinary tract infection) in the nutrient-rich Lysogeny Broth (LB) media. The result shows a correlation among the initial adherence of fim+ E. coli 83972, the coverage and long-term stability of the

  20. Surfaces presenting α-phenyl mannoside derivatives enable formation of stable, high coverage, non-pathogenic Escherichia coli biofilms against pathogen colonization.

    PubMed

    Zhu, Zhiling; Wang, Jun; Lopez, Analette I; Yu, Fei; Huang, Yongkai; Kumar, Amit; Li, Siheng; Zhang, Lijuan; Cai, Chengzhi

    2015-06-01

    Prevention of pathogenic colonization on medical devices over a long period of time remains a great challenge, especially in a high-nutrient environment that accelerates the production of biomass leading to biofouling of the device. Since biofouling and the subsequent pathogen colonization is eventually inevitable, a new strategy using non-pathogenic bacteria as living guards against pathogenic colonization on medical devices has attracted increasing interest. Crucial to the success of this strategy is to pre-establish a high coverage and stable biofilm of benign bacteria on the surface. Silicone elastomers are one of the most widely used materials in biomedical devices. In this work, we modified silicone surfaces to promote formation of high coverage and stable biofilms by a non-pathogenic Escherichia coli strain 83972 with type 1 fimbriae (fim+) to interfere with the colonization of an aggressive biofilm-forming, uropathogenic Enterococcus faecalis. Although it is well known that mannoside surfaces promote the initial adherence of fim+ E. coli through binding to the FimH receptor at the tip of the type 1 fimbriae, it is not clear whether the fast initial adherence could lead to a high coverage and stable protective biofilm. To explore the role of mannoside ligands, we synthesized a series of alkyl and aryl mannosides varied in the structure and immobilized them on silicone surfaces pre-coated with a poly(amidoamine) (PAMAM) dendrimer. We found that stable and densely packed benign E. coli biofilms were formed on the surfaces presenting biphenyl mannoside with the highest initial adherence of fim+ E. coli. These non-pathogenic biofilms prevented the colonization of E. faecalis for 11 days at a high concentration (10(8) CFU mL(-1), 100,000 times above the diagnostic threshold for urinary tract infection) in the nutrient-rich Lysogeny Broth (LB) media. The result shows a correlation among the initial adherence of fim+ E. coli 83972, the coverage and long

  1. Characaterization of H5N1 highly pathogenic avian influenza viruses isolated from poultry in Pakistan 2006-2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nine avian influenza viruses (AIV), H5N1 subtype, were isolated from dead poultry in the Karachi region of Pakistan from 2006-2008. The intravenous pathogenicity indices and HA protein cleavage sites of all nine viruses were consistent with highly pathogenic AIV. Based on phylogenetic analysis of ...

  2. Survivability of Eurasian H5N1 highly pathogenic avian influenza viruses in water varies between strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic habitats play critical role in the transmission and maintenance of low pathogenic avian influenza (LPAI) viruses in wild waterfowl; however the importance of these environments in the ecology of H5N1 highly pathogenic avian influenza (HPAI) viruses is unknown. In laboratory-based studies, L...

  3. Experimental infection of mallard ducks with different subtype H5 and H7 highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of some Asian lineage H5N1 HPAIVs which can cause severe disease in ducks. With ...

  4. Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus.

    PubMed

    Kim, Young-Il; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Lim, Gyo-Jin; Kim, Eun-Ha; Yoon, Sun-Woo; Park, Su-Jin; Kim, Se Mi; Choi, Eun-Ji; Si, Young-Jae; Lee, Ok-Jun; Shim, Woo-Sub; Kim, Si-Wook; Mo, In-Pil; Bae, Yeonji; Lim, Yong Taik; Sung, Moon Hee; Kim, Chul-Joong; Webby, Richard J; Webster, Robert G; Choi, Young Ki

    2014-10-01

    The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome.

  5. Multiplexed Metagenomic Deep Sequencing To Analyze the Composition of High-Priority Pathogen Reagents

    PubMed Central

    Wilson, Michael R.; Stenglein, Mark D.; Olejnik, Judith; Rennick, Linda J.; Nambulli, Sham; Feldmann, Friederike; Duprex, W. Paul

    2016-01-01

    ABSTRACT Laboratories studying high-priority pathogens need comprehensive methods to confirm microbial species and strains while also detecting contamination. Metagenomic deep sequencing (MDS) inventories nucleic acids present in laboratory stocks, providing an unbiased assessment of pathogen identity, the extent of genomic variation, and the presence of contaminants. Double-stranded cDNA MDS libraries were constructed from RNA extracted from in vitro-passaged stocks of six viruses (La Crosse virus, Ebola virus, canine distemper virus, measles virus, human respiratory syncytial virus, and vesicular stomatitis virus). Each library was dual indexed and pooled for sequencing. A custom bioinformatics pipeline determined the organisms present in each sample in a blinded fashion. Single nucleotide variant (SNV) analysis identified viral isolates. We confirmed that (i) each sample contained the expected microbe, (ii) dual indexing of the samples minimized false assignments of individual sequences, (iii) multiple viral and bacterial contaminants were present, and (iv) SNV analysis of the viral genomes allowed precise identification of the viral isolates. MDS can be multiplexed to allow simultaneous and unbiased interrogation of mixed microbial cultures and (i) confirm pathogen identity, (ii) characterize the extent of genomic variation, (iii) confirm the cell line used for virus propagation, and (iv) assess for contaminating microbes. These assessments ensure the true composition of these high-priority reagents and generate a comprehensive database of microbial genomes studied in each facility. MDS can serve as an integral part of a pathogen-tracking program which in turn will enhance sample security and increase experimental rigor and precision. IMPORTANCE Both the integrity and reproducibility of experiments using select agents depend in large part on unbiased validation to ensure the correct identity and purity of the species in question. Metagenomic deep sequencing

  6. Characterization of a highly pathogenic molecular clone of feline immunodeficiency virus clade C.

    PubMed

    de Rozières, Sohela; Mathiason, Candace K; Rolston, Matthew R; Chatterji, Udayan; Hoover, Edward A; Elder, John H

    2004-09-01

    We have derived and characterized a highly pathogenic molecular isolate of feline immunodeficiency virus subtype C (FIV-C) CABCpady00C. Clone FIV-C36 was obtained by lambda cloning from cats that developed severe immunodeficiency disease when infected with CABCpady00C (Abbotsford, British Columbia, Canada). Clone FIV-C36 Env is 96% identical to the noninfectious FIV-C isolate sequence deposited in GenBank (FIV-Cgb; GenBank accession number AF474246) (A. Harmache et al.) but is much more divergent in Env when compared to the subgroup A clones Petaluma (34TF10) and FIV-PPR (76 and 78% divergence, respectively). Clone FIV-C36 was able to infect freshly isolated feline peripheral blood mononuclear cells and primary T-cell lines but failed to productively infect CrFK cells, as is typical of FIV field isolates. Two-week-old specific-pathogen-free cats infected with FIV-C36 tissue culture supernatant became PCR positive and developed severe acute immunodeficiency disease similar to that caused by the uncloned CABCpady00C parent. At 4 to 5 weeks postinfection (PI), 3 of 4 animals developed CD4(+)-T-cell depletion, fever, weight loss, diarrhea, and opportunistic infections, including ulcerative stomatitis and tonsillitis associated with abundant bacterial growth, pneumonia, and pyelonephritis, requiring euthanasia. Histopathology confirmed severe thymic and systemic lymphoid depletion. Interestingly, the dam also became infected with a high viral load at 5 weeks PI of the kittens and developed a similar disease syndrome, requiring euthanasia at 11 weeks PI of the kittens. This constitutes the first report of a replication-competent, infectious, and pathogenic molecular clone of FIV-C. Clone FIV-C36 will facilitate dissection of the pathogenic determinants of FIV.

  7. Unexpected Interfarm Transmission Dynamics during a Highly Pathogenic Avian Influenza Epidemic

    PubMed Central

    Tassoni, Luca; Milani, Adelaide; Hughes, Joseph; Salviato, Annalisa; Massi, Paola; Zamperin, Gianpiero; Bonfanti, Lebana; Marangon, Stefano; Cattoli, Giovanni; Monne, Isabella

    2016-01-01

    ABSTRACT Next-generation sequencing technology is now being increasingly applied to study the within- and between-host population dynamics of viruses. However, information on avian influenza virus evolution and transmission during a naturally occurring epidemic is still limited. Here, we use deep-sequencing data obtained from clinical samples collected from five industrial holdings and a backyard farm infected during the 2013 highly pathogenic avian influenza (HPAI) H7N7 epidemic in Italy to unravel (i) the epidemic virus population diversity, (ii) the evolution of virus pathogenicity, and (iii) the pathways of viral transmission between different holdings and sheds. We show a high level of genetic diversity of the HPAI H7N7 viruses within a single farm as a consequence of separate bottlenecks and founder effects. In particular, we identified the cocirculation in the index case of two viral strains showing a different insertion at the hemagglutinin cleavage site, as well as nine nucleotide differences at the consensus level and 92 minority variants. To assess interfarm transmission, we combined epidemiological and genetic data and identified the index case as the major source of the virus, suggesting the spread of different viral haplotypes from the index farm to the other industrial holdings, probably at different time points. Our results revealed interfarm transmission dynamics that the epidemiological data alone could not unravel and demonstrated that delay in the disease detection and stamping out was the major cause of the emergence and the spread of the HPAI strain. IMPORTANCE The within- and between-host evolutionary dynamics of a highly pathogenic avian influenza (HPAI) strain during a naturally occurring epidemic is currently poorly understood. Here, we perform for the first time an in-depth sequence analysis of all the samples collected during a HPAI epidemic and demonstrate the importance to complement outbreak investigations with genetic data to

  8. High-throughput Detection of Respiratory Pathogens in Animal Specimens by Nanoscale PCR.

    PubMed

    Goodman, Laura B; Anderson, Renee R; Slater, Marcia; Ortenberg, Elen; Renshaw, Randall W; Chilson, Brittany D; Laverack, Melissa A; Beeby, John S; Dubovi, Edward J; Glaser, Amy L

    2016-11-28

    Nanoliter scale real-time PCR uses spatial multiplexing to allow multiple assays to be run in parallel on a single plate without the typical drawbacks of combining reactions together. We designed and evaluated a panel based on this principle to rapidly identify the presence of common disease agents in dogs and horses with acute respiratory illness. This manuscript describes a nanoscale diagnostic PCR workflow for sample preparation, amplification, and analysis of target pathogen sequences, focusing on procedures that are different from microliter scale reactions. In the respiratory panel presented, 18 assays were each set up in triplicate, accommodating up to 48 samples per plate. A universal extraction and pre-amplification workflow was optimized for high-throughput sample preparation to accommodate multiple matrices and DNA and RNA based pathogens. Representative data are presented for one RNA target (influenza A matrix) and one DNA target (equine herpesvirus 1). The ability to quickly and accurately test for a comprehensive, syndrome-based group of pathogens is a valuable tool for improving efficiency and ergonomics of diagnostic testing and for acute respiratory disease diagnosis and management.

  9. Genetic Predisposition To Acquire a Polybasic Cleavage Site for Highly Pathogenic Avian Influenza Virus Hemagglutinin

    PubMed Central

    Nao, Naganori; Yamagishi, Junya; Miyamoto, Hiroko; Igarashi, Manabu; Manzoor, Rashid; Ohnuma, Aiko; Tsuda, Yoshimi; Furuyama, Wakako; Shigeno, Asako; Kajihara, Masahiro; Kishida, Noriko; Yoshida, Reiko

    2017-01-01

    ABSTRACT Highly pathogenic avian influenza viruses with H5 and H7 hemagglutinin (HA) subtypes evolve from low-pathogenic precursors through the acquisition of multiple basic amino acid residues at the HA cleavage site. Although this mechanism has been observed to occur naturally only in these HA subtypes, little is known about the genetic basis for the acquisition of the polybasic HA cleavage site. Here we show that consecutive adenine residues and a stem-loop structure, which are frequently found in the viral RNA region encoding amino acids around the cleavage site of low-pathogenic H5 and H7 viruses isolated from waterfowl reservoirs, are important for nucleotide insertions into this RNA region. A reporter assay to detect nontemplated nucleotide insertions and deep-sequencing analysis of viral RNAs revealed that an increased number of adenine residues and enlarged stem-loop structure in the RNA region accelerated the multiple adenine and/or guanine insertions required to create codons for basic amino acids. Interestingly, nucleotide insertions associated with the HA cleavage site motif were not observed principally in the viral RNA of other subtypes tested (H1, H2, H3, and H4). Our findings suggest that the RNA editing-like activity is the key mechanism for nucleotide insertions, providing a clue as to why the acquisition of the polybasic HA cleavage site is restricted to the particular HA subtypes. PMID:28196963

  10. Rapid screening for entry inhibitors of highly pathogenic viruses under low-level biocontainment.

    PubMed

    Talekar, Aparna; Pessi, Antonello; Glickman, Fraser; Sengupta, Uttara; Briese, Thomas; Whitt, Michael A; Mathieu, Cyrille; Horvat, Branka; Moscona, Anne; Porotto, Matteo

    2012-01-01

    Emerging viruses including Nipah, Hendra, Lujo, and Junin viruses have enormous potential to spread rapidly. Nipah virus, after emerging as a zoonosis, has also evolved the capacity for human-to-human transmission. Most of the diseases caused by these pathogens are untreatable and require high biocontainment conditions. Universal methods for rapidly identifying and screening candidate antivirals are urgently needed. We have developed a modular antiviral platform strategy that relies on simple bioinformatic and genetic information about each pathogen. Central to this platform is the use of envelope glycoprotein cDNAs to establish multi-cycle replication systems under BSL2 conditions for viral pathogens that normally require BSL3 and BSL4 facilities. We generated monoclonal antibodies against Nipah G by cDNA immunization in rats, and we showed that these antibodies neutralize both Nipah and Hendra live viruses. We then used these effective Henipavirus inhibitors to validate our screening strategy. Our proposed strategy should contribute to the response capability for emerging infectious diseases, providing a way to initiate antiviral development immediately upon identifying novel viruses.

  11. High-throughput Detection of Respiratory Pathogens in Animal Specimens by Nanoscale PCR

    PubMed Central

    Goodman, Laura B.; Anderson, Renee R.; Slater, Marcia; Ortenberg, Elen; Renshaw, Randall W.; Chilson, Brittany D.; Laverack, Melissa A.; Beeby, John S.; Dubovi, Edward J.; Glaser, Amy L.

    2016-01-01

    Nanoliter scale real-time PCR uses spatial multiplexing to allow multiple assays to be run in parallel on a single plate without the typical drawbacks of combining reactions together. We designed and evaluated a panel based on this principle to rapidly identify the presence of common disease agents in dogs and horses with acute respiratory illness. This manuscript describes a nanoscale diagnostic PCR workflow for sample preparation, amplification, and analysis of target pathogen sequences, focusing on procedures that are different from microliter scale reactions. In the respiratory panel presented, 18 assays were each set up in triplicate, accommodating up to 48 samples per plate. A universal extraction and pre-amplification workflow was optimized for high-throughput sample preparation to accommodate multiple matrices and DNA and RNA based pathogens. Representative data are presented for one RNA target (influenza A matrix) and one DNA target (equine herpesvirus 1). The ability to quickly and accurately test for a comprehensive, syndrome-based group of pathogens is a valuable tool for improving efficiency and ergonomics of diagnostic testing and for acute respiratory disease diagnosis and management. PMID:27929456

  12. Genesis and Dissemination of Highly Pathogenic H5N6 Avian Influenza Viruses.

    PubMed

    Yang, Lei; Zhu, Wenfei; Li, Xiaodan; Bo, Hong; Zhang, Ye; Zou, Shumei; Gao, Rongbao; Dong, Jie; Zhao, Xiang; Chen, Wenbing; Dong, Libo; Zou, Xiaohui; Xing, Yongcai; Wang, Dayan; Shu, Yuelong

    2017-03-01

    Clade 2.3.4.4 highly pathogenic avian influenza viruses (H5Nx) have spread from Asia to other parts of the world. Since 2014, human infections with clade 2.3.4.4 highly pathogenic avian influenza H5N6 viruses have been continuously reported in China. To investigate the genesis of the virus, we analyzed 123 H5 or N6 environmental viruses sampled from live-poultry markets or farms from 2012 to 2015 in Mainland China. Our results indicated that clade 2.3.4.4 H5N2/N6/N8 viruses shared the same hemagglutinin gene as originated in early 2009. From 2012 to 2015, the genesis of highly pathogenic avian influenza H5N6 viruses occurred via two independent pathways. Three major reassortant H5N6 viruses (reassortants A, B, and C) were generated. Internal genes of reassortant A and B viruses and reassortant C viruses derived from clade 2.3.2.1c H5N1 and H9N2 viruses, respectively. Many mammalian adaption mutations and antigenic variations were detected among the three reassortant viruses. Considering their wide circulation and dynamic reassortment in poultry, we highly recommend close monitoring of the viruses in poultry and humans. IMPORTANCE Since 2014, clade 2.3.4.4 highly pathogenic avian influenza (H5Nx) viruses have caused many outbreaks in both wild and domestic birds globally. Severe human cases with novel H5N6 viruses in this group were also reported in China in 2014 and 2015. To investigate the genesis of the genetic diversity of these H5N6 viruses, we sequenced 123 H5 or N6 environmental viruses sampled from 2012 to 2015 in China. Sequence analysis indicated that three major reassortants of these H5N6 viruses had been generated by two independent evolutionary pathways. The H5N6 reassortant viruses had been detected in most provinces of southern China and neighboring countries. Considering the mammalian adaption mutations and antigenic variation detected, the spread of these viruses should be monitored carefully due to their pandemic potential.

  13. Triblock copolymer matrix-based capillary electrophoretic microdevice for high-resolution multiplex pathogen detection.

    PubMed

    Kim, Se Jin; Shin, Gi Won; Choi, Seok Jin; Hwang, Hee Sung; Jung, Gyoo Yeol; Seo, Tae Seok

    2010-03-01

    Rapid and simple analysis for the multiple target pathogens is critical for patient management. CE-SSCP analysis on a microchip provides high speed, high sensitivity, and a portable genetic analysis platform in molecular diagnostic fields. The capability of separating ssDNA molecules in a capillary electrophoretic microchannel with high resolution is a critical issue to perform the precise interpretation in the electropherogram. In this study, we explored the potential of poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) (PEO-PPO-PEO) triblock copolymer as a sieving matrix for CE-SSCP analysis on a microdevice. To demonstrate the superior resolving power of PEO-PPO-PEO copolymers, 255-bp PCR amplicons obtained from 16S ribosomal RNA genes of four bacterial species, namely Proteus mirabilis, Haemophilus ducreyi, Pseudomonas aeruginosa, and Neisseria meningitidis, were analyzed in the PEO-PPO-PEO matrix in comparison with 5% linear polyacrylamide and commercial GeneScan gel. Due to enhanced dynamic coating and sieving ability, PEO-PPO-PEO copolymer displayed fourfold enhancement of resolving power in the CE-SSCP to separate same-sized DNA molecules. Fivefold input of genomic DNA of P. aeruginosa and/or N. meningitidis produced proportionally increased corresponding amplicon peaks, enabling correct quantitative analysis in the pathogen detection. Besides the high-resolution sieving capability, a facile loading and replenishment of gel in the microchannel due to thermally reversible gelation property makes PEO-PPO-PEO triblock copolymer an excellent matrix in the CE-SSCP analysis on the microdevice.

  14. Pathogenicity of H5N8 highly pathogenic avian influenza viruses isolated from a wild bird fecal specimen and a chicken in Japan in 2014.

    PubMed

    Tanikawa, Taichiro; Kanehira, Katsushi; Tsunekuni, Ryota; Uchida, Yuko; Takemae, Nobuhiro; Saito, Takehiko

    2016-04-01

    Poultry outbreaks caused by H5N8 highly pathogenic avian influenza viruses (HPAIVs) occurred in Japan between December 2014 and January 2015. During the same period; H5N8 HPAIVs were isolated from wild birds and the environment in Japan. The hemagglutinin (HA) genes of these isolates were found to belong to clade 2.3.4.4 and three sub-groups were distinguishable within this clade. All of the Japanese isolates from poultry outbreaks belonged to the same sub-group; whereas wild bird isolates belonged to the other sub-groups. To examine whether the difference in pathogenicity to chickens between isolates of different HA sub-groups of clade 2.3.4.4 could explain why the Japanese poultry outbreaks were only caused by a particular sub-group; pathogenicities of A/chicken/Miyazaki/7/2014 (Miyazaki2014; sub-group C) and A/duck/Chiba/26-372-48/2014 (Chiba2014; sub-group A) to chickens were compared and it was found that the lethality of Miyazaki2014 in chickens was lower than that of Chiba2014; according to the 50% chicken lethal dose. This indicated that differences in pathogenicity may not explain why the Japanese poultry outbreaks only involved group C isolates.

  15. Experimental vaccines against potentially pandemic and highly pathogenic avian influenza viruses

    PubMed Central

    Mooney, Alaina J; Tompkins, S Mark

    2013-01-01

    Influenza A viruses continue to emerge and re-emerge, causing outbreaks, epidemics and occasionally pandemics. While the influenza vaccines licensed for public use are generally effective against seasonal influenza, issues arise with production, immunogenicity, and efficacy in the case of vaccines against pandemic and emerging influenza viruses, and highly pathogenic avian influenza virus in particular. Thus, there is need of improved influenza vaccines and vaccination strategies. This review discusses advances in alternative influenza vaccines, touching briefly on licensed vaccines and vaccine antigens; then reviewing recombinant subunit vaccines, virus-like particle vaccines and DNA vaccines, with the main focus on virus-vectored vaccine approaches. PMID:23440999

  16. Toll-like receptor pre-stimulation protects mice against lethal infection with highly pathogenic influenza viruses.

    PubMed

    Shinya, Kyoko; Okamura, Tadashi; Sueta, Setsuko; Kasai, Noriyuki; Tanaka, Motoko; Ginting, Teridah E; Makino, Akiko; Eisfeld, Amie J; Kawaoka, Yoshihiro

    2011-03-04

    Since the beginning of the 20th century, humans have experienced four influenza pandemics, including the devastating 1918 'Spanish influenza'. Moreover, H5N1 highly pathogenic avian influenza (HPAI) viruses are currently spreading worldwide, although they are not yet efficiently transmitted among humans. While the threat of a global pandemic involving a highly pathogenic influenza virus strain looms large, our mechanisms to address such a catastrophe remain limited. Here, we show that pre-stimulation of Toll-like receptors (TLRs) 2 and 4 increased resistance against influenza viruses known to induce high pathogenicity in animal models. Our data emphasize the complexity of the host response against different influenza viruses, and suggest that TLR agonists might be utilized to protect against lethality associated with highly pathogenic influenza virus infection in humans.

  17. Prevention and control of highly pathogenic avian influenza with particular reference to H5N1.

    PubMed

    Capua, Ilaria; Cattoli, Giovanni

    2013-12-05

    Highly pathogenic avian influenza viruses of the H5N1 subtype emerged in Far East Asia in 1996 and spread in three continents in a period of 10 or less years. Before this event, avian influenza infections caused by highly pathogenic viruses had occurred in many different countries, causing minor or major outbreaks, and had always been eradicated. The unique features of these H5N1 viruses combined to the geographic characteristics of the area of emergence, including animal husbandry practices, has caused this subtype to become endemic in several Asian countries, as well as in Egypt. Our aim is to review the direct and indirect control strategies with the rationale for use, advantages and shortcomings - particularly resulting from practicalities linked to field application and economic constraints. Certainly, in low income countries which have applied vaccination, this has resulted in a failure to eradicate the infection. Although the number of infected countries has dropped from over 40 (2006) to under 10 (2012), the extensive circulation of H5N1 in areas with high poultry density still represents a risk for public and animal health.

  18. Newly Emergent Highly Pathogenic H5N9 Subtype Avian Influenza A Virus

    PubMed Central

    Yu, Yang; Wang, Xingbo; Jin, Tao; Wang, Hailong; Si, Weiying; Yang, Hui; Wu, Jiusheng; Yan, Yan; Liu, Guang; Sang, Xiaoyu; Wu, Xiaopeng; Gao, Yuwei; Xia, Xianzhu; Yu, Xinfen; Pan, Jingcao; Gao, George F.

    2015-01-01

    ABSTRACT The novel H7N9 avian influenza virus (AIV) was demonstrated to cause severe human respiratory infections in China. Here, we examined poultry specimens from live bird markets linked to human H7N9 infection in Hangzhou, China. Metagenomic sequencing revealed mixed subtypes (H5, H7, H9, N1, N2, and N9). Subsequently, AIV subtypes H5N9, H7N9, and H9N2 were isolated. Evolutionary analysis showed that the hemagglutinin gene of the novel H5N9 virus originated from A/Muscovy duck/Vietnam/LBM227/2012 (H5N1), which belongs to clade 2.3.2.1. The neuraminidase gene of the novel H5N9 virus originated from human-infective A/Hangzhou/1/2013 (H7N9). The six internal genes were similar to those of other H5N1, H7N9, and H9N2 virus strains. The virus harbored the PQRERRRKR/GL motif characteristic of highly pathogenic AIVs at the HA cleavage site. Receptor-binding experiments demonstrated that the virus binds α-2,3 sialic acid but not α-2,6 sialic acid. Identically, pathogenicity experiments also showed that the virus caused low mortality rates in mice. This newly isolated H5N9 virus is a highly pathogenic reassortant virus originating from H5N1, H7N9, and H9N2 subtypes. Live bird markets represent a potential transmission risk to public health and the poultry industry. IMPORTANCE This investigation confirms that the novel H5N9 subtype avian influenza A virus is a reassortant strain originating from H5N1, H7N9, and H9N2 subtypes and is totally different from the H5N9 viruses reported before. The novel H5N9 virus acquired a highly pathogenic H5 gene and an N9 gene from human-infecting subtype H7N9 but caused low mortality rates in mice. Whether this novel H5N9 virus will cause human infections from its avian host and become a pandemic subtype is not known yet. It is therefore imperative to assess the risk of emergence of this novel reassortant virus with potential transmissibility to public health. PMID:26085150

  19. The hidden face of academic researches on classified highly pathogenic microorganisms.

    PubMed

    Devaux, Christian A

    2015-01-01

    Highly pathogenic microorganisms and toxins are manipulated in academic laboratories for fundamental research purposes, diagnostics, drugs and vaccines development. Obviously, these infectious pathogens represent a potential risk for human and/or animal health and their accidental or intentional release (biosafety and biosecurity, respectively) is a major concern of governments. In the past decade, several incidents have occurred in laboratories and reported by media causing fear and raising a sense of suspicion against biologists. Some scientists have been ordered by US government to leave their laboratory for long periods of time following the occurrence of an incident involving infectious pathogens; in other cases laboratories have been shut down and universities have been forced to pay fines and incur a long-term ban on funding after gross negligence of biosafety/biosecurity procedures. Measures of criminal sanctions have also been taken to minimize the risk that such incidents can reoccur. As United States and many other countries, France has recently strengthened its legal measures for laboratories' protection. During the past two decades, France has adopted a series of specific restriction measures to better protect scientific discoveries with a potential economic/social impact and prevent their misuse by ill-intentioned people without affecting the progress of science through fundamental research. French legal regulations concerning scientific discoveries have progressively strengthened since 2001, until the publication in November 2011 of a decree concerning the "PPST" (for "Protection du Potentiel Scientifique et Technique de la nation", the protection of sensitive scientific data). Following the same logic of protection of sensitive scientific researches, regulations were also adopted in an order published in April 2012 concerning the biology and health field. The aim was to define the legal framework that precise the conditions for authorizing

  20. Development of a high- versus low-pathogenicity model of the free-living amoeba Naegleria fowleri.

    PubMed

    Burri, Denise C; Gottstein, Bruno; Zumkehr, Béatrice; Hemphill, Andrew; Schürch, Nadia; Wittwer, Matthias; Müller, Norbert

    2012-10-01

    Species in the genus Naegleria are free-living amoebae of the soil and warm fresh water. Although around 30 species have been recognized, Naegleria fowleri is the only one that causes primary amoebic meningoencephalitis (PAM) in humans. PAM is an acute and fast progressing disease affecting the central nervous system. Most of the patients die within 1-2 weeks of exposure to the infectious water source. The fact that N. fowleri causes such fast progressing and highly lethal infections has opened many questions regarding the relevant pathogenicity factors of the amoeba. In order to investigate the pathogenesis of N. fowleri under defined experimental conditions, we developed a novel high- versus low-pathogenicity model for this pathogen. We showed that the composition of the axenic growth media influenced growth behaviour and morphology, as well as in vitro cytotoxicity and in vivo pathogenicity of N. fowleri. Trophozoites maintained in Nelson's medium were highly pathogenic for mice, demonstrated rapid in vitro proliferation, characteristic expression of surface membrane vesicles and a small cell diameter, and killed target mouse fibroblasts by both contact-dependent and -independent destruction. In contrast, N. fowleri cultured in PYNFH medium exhibited a low pathogenicity, slower growth, increased cell size and contact-dependent target cell destruction. However, cultivation of the amoeba in PYNFH medium supplemented with liver hydrolysate (LH) resulted in trophozoites that were highly pathogenic in mice, and demonstrated an intermediate proliferation rate in vitro, diminished cell diameter and contact-dependent target cell destruction. Thus, in this model, the presence of LH resulted in increased proliferation of trophozoites in vitro and enhanced pathogenicity of N. fowleri in mice. However, neither in vitro cytotoxicity mechanisms nor the presence of membrane vesicles on the surface correlated with the pathologic potential of the amoeba. This indicated that the

  1. Incorporating risk communication into highly pathogenic avian influenza preparedness and response efforts.

    PubMed

    Voss, Shauna J; Malladi, Sasidhar; Sampedro, Fernando; Snider, Tim; Goldsmith, Timothy; Hueston, William D; Lauer, Dale C; Halvorson, David A

    2012-12-01

    A highly pathogenic avian influenza (HPAI) outbreak in the United States will initiate a federal emergency response effort that will consist of disease control and eradication efforts, including quarantine and movement control measures. These movement control measures will not only apply to live animals but also to animal products. However, with current egg industry "just-in-time" production practices, limited storage is available to hold eggs. As a result, stop movement orders can have significant unintended negative consequences, including severe disruptions to the food supply chain. Because stakeholders' perceptions of risk vary, waiting to initiate communication efforts until an HPAI event occurs can hinder disease control efforts, including the willingness of producers to comply with the response, and also can affect consumers' demand for the product. A public-private-academic partnership was formed to assess actual risks involved in the movement of egg industry products during an HPAI event through product specific, proactive risk assessments. The risk analysis process engaged a broad representation of stakeholders and promoted effective risk management and communication strategies before an HPAI outbreak event. This multidisciplinary team used the risk assessments in the development of the United States Department of Agriculture, Highly Pathogenic Avian Influenza Secure Egg Supply Plan, a comprehensive response plan that strives to maintain continuity of business. The collaborative approach that was used demonstrates how a proactive risk communication strategy that involves many different stakeholders can be valuable in the development of a foreign animal disease response plan and build working relationships, trust, and understanding.

  2. Epidemiology and ecology of highly pathogenic avian influenza with particular emphasis on South East Asia.

    PubMed

    Martin, V; Sims, L; Lubroth, J; Pfeiffer, D; Slingenbergh, J; Domenech, J

    2006-01-01

    Highly pathogenic avian influenza (HPAI) has been recognised as a serious viral disease of poultry since 1878. The number of recorded outbreaks of HPAI has increased globally in the past 10 years culminating in 2004 with the unprecedented outbreaks of H5N1 HPAI involving at least nine countries in East and South-East Asia. Apart from the geographical extent of these outbreaks and apparent rapid spread, this epidemic has a number of unique features, among which is the role that asymptomatic domestic waterfowl and more particularly free-ranging ducks play in the transmission of highly pathogenic H5N1. Field epidemiological studies have been conducted by the Food and Agriculture Organization and several collaborative centres to explore the factors that could have led to a change from infection to the emergence of widespread disease in 2003-2004 and 2005. Domestic waterfowl, specific farming practices and agro-ecological environments have been identified to play a key role in the occurrence, maintenance and spread of HPAI. Although there are some questions that remain unanswered regarding the origins of the 2004 outbreaks, the current understanding of the ecology and epidemiology of the disease should now lead to the development of adapted targeted surveillance studies and control strategies.

  3. Use of high-throughput mass spectrometry to elucidate host pathogen interactions in Salmonella

    SciTech Connect

    Rodland, Karin D.; Adkins, Joshua N.; Ansong, Charles; Chowdhury, Saiful M.; Manes, Nathan P.; Shi, Liang; Yoon, Hyunjin; Smith, Richard D.; Heffron, Fred

    2008-12-01

    Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis, and most important, from the standpoint of this review, much higher throughput allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host-pathogen interactions using Salmonella as a model system. This approach enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions, and new insights into virulence and expression of Salmonella proteins within host cell cells. One of the most significant findings is that a very high percentage of the all annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high throughput mass spectrometry provides a new view of pathogen-host interactions emphasizing the protein products and defining how protein interactions determine the outcome of infection.

  4. Use of high-throughput mass spectrometry to elucidate host-pathogen interactions in Salmonella

    SciTech Connect

    Rodland, Karin D.; Adkins, Joshua N.; Ansong, Charles; Chowdhury, Saiful M.; Manes, Nathan P.; Shi, Liang; Yoon, Hyunjin; Smith, Richard D.; Heffron, Fred

    2008-12-01

    New improvements to mass spectrometry include increased sensitivity, improvements in analyzing the collected data, and most important, from the standpoint of this review, a much higher throughput allowing analysis of many samples in a single day. This short review describes how host-pathogen interactions can be dissected by mass spectrometry using Salmonella as a model system. The approach allowed direct identification of the majority of annotate Salmonella proteins, how expression changed under various in vitro growth conditions, and how this relates to virulence and expression within host cell cells. One of the most significant findings is that a very high percentage of the all annotated genes (>20%) are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions suggesting additional functions of the regulator in coordinating virulence expression. Overall high throughput mass spectrometer provides a new view of pathogen-host interaction emphasizing the protein products and defining how protein interactions determine the outcome of infection.

  5. High mobility group (HMG-box) genes in the honeybee fungal pathogen Ascosphaera apis.

    PubMed

    Aronstein, K A; Murray, K D; de León, J H; Qin, X; Weinstock, G M

    2007-01-01

    The genome of the honeybee fungal pathogen Ascosphaera apis (Maassen) encodes three putative high mobility group (HMG-box) transcription factors. The predicted proteins (MAT1-2, STE11 and HTF), each of which contain a single strongly conserved HMG-box, exhibit high similarity to mating type proteins and STE11-like transcription factors previously identified in other ascomycete fungi, some of them important plant and human pathogens. In this study we characterized the A. apis HMG-box containing genes and analyzed the structure of the mating type locus (MAT1-2) and its flanking regions. The MAT1-2 locus contains a single gene encoding a protein with an HMG-box. We also have determined the transcriptional patterns of all three HMG-box containing genes in both mating type idiomorphs and discuss a potential role of these transcription factors in A. apis development and reproduction. A multiplex PCR method with primers amplifying mat1-2-1 and Ste11 gene fragments is described. This new method allows for identification of a single mating type idiomorph and might become an essential tool for applied and basic research of chalkbrood disease in honeybees.

  6. Human infection with highly pathogenic H5N1 influenza virus.

    PubMed

    Gambotto, Andrea; Barratt-Boyes, Simon M; de Jong, Menno D; Neumann, Gabriele; Kawaoka, Yoshihiro

    2008-04-26

    Highly pathogenic H5N1 influenza A viruses have spread relentlessly across the globe since 2003, and they are associated with widespread death in poultry, substantial economic loss to farmers, and reported infections of more than 300 people with a mortality rate of 60%. The high pathogenicity of H5N1 influenza viruses and their capacity for transmission from birds to human beings has raised worldwide concern about an impending human influenza pandemic similar to the notorious H1N1 Spanish influenza of 1918. Since many aspects of H5N1 influenza research are rapidly evolving, we aim in this Seminar to provide an up-to-date discussion on select topics of interest to influenza clinicians and researchers. We summarise the clinical features and diagnosis of infection and present therapeutic options for H5N1 infection of people. We also discuss ideas relating to virus transmission, host restriction, and pathogenesis. Finally, we discuss vaccine development in view of the probable importance of vaccination in pandemic control.

  7. Genetic Predisposition To Acquire a Polybasic Cleavage Site for Highly Pathogenic Avian Influenza Virus Hemagglutinin.

    PubMed

    Nao, Naganori; Yamagishi, Junya; Miyamoto, Hiroko; Igarashi, Manabu; Manzoor, Rashid; Ohnuma, Aiko; Tsuda, Yoshimi; Furuyama, Wakako; Shigeno, Asako; Kajihara, Masahiro; Kishida, Noriko; Yoshida, Reiko; Takada, Ayato

    2017-02-14

    Highly pathogenic avian influenza viruses with H5 and H7 hemagglutinin (HA) subtypes evolve from low-pathogenic precursors through the acquisition of multiple basic amino acid residues at the HA cleavage site. Although this mechanism has been observed to occur naturally only in these HA subtypes, little is known about the genetic basis for the acquisition of the polybasic HA cleavage site. Here we show that consecutive adenine residues and a stem-loop structure, which are frequently found in the viral RNA region encoding amino acids around the cleavage site of low-pathogenic H5 and H7 viruses isolated from waterfowl reservoirs, are important for nucleotide insertions into this RNA region. A reporter assay to detect nontemplated nucleotide insertions and deep-sequencing analysis of viral RNAs revealed that an increased number of adenine residues and enlarged stem-loop structure in the RNA region accelerated the multiple adenine and/or guanine insertions required to create codons for basic amino acids. Interestingly, nucleotide insertions associated with the HA cleavage site motif were not observed principally in the viral RNA of other subtypes tested (H1, H2, H3, and H4). Our findings suggest that the RNA editing-like activity is the key mechanism for nucleotide insertions, providing a clue as to why the acquisition of the polybasic HA cleavage site is restricted to the particular HA subtypes.IMPORTANCE Influenza A viruses are divided into subtypes based on the antigenicity of the viral surface glycoproteins hemagglutinin (HA) and neuraminidase. Of the 16 HA subtypes (H1 to -16) maintained in waterfowl reservoirs of influenza A viruses, H5 and H7 viruses often become highly pathogenic through the acquisition of multiple basic amino acid residues at the HA cleavage site. Although this mechanism has been known since the 1980s, the genetic basis for nucleotide insertions has remained unclear. This study shows the potential role of the viral RNA secondary structure for

  8. Low-pathogenic influenza A viruses in North American diving ducks contribute to the emergence of a novel highly pathogenic influenza A(H7N8) virus

    USGS Publications Warehouse

    Xu, Yifei; Ramey, Andrew M.; Bowman, Andrew S; DeLiberto, Thomas J.; Killian, Mary Lea; Krauss, Scott; Nolting, Jacqueline M.; Torchetti, Mia Kim; Reeves, Andrew B.; Webby, Richard J.; Stallknecht, David E.; Wan, Xiu-Feng

    2017-01-01

    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir.

  9. Model-based evaluation of highly and low pathogenic avian influenza dynamics in wild birds

    USGS Publications Warehouse

    Hénaux, Viviane; Samuel, Michael D.; Bunck, Christine M.

    2010-01-01

    There is growing interest in avian influenza (AI) epidemiology to predict disease risk in wild and domestic birds, and prevent transmission to humans. However, understanding the epidemic dynamics of highly pathogenic (HPAI) viruses remains challenging because they have rarely been detected in wild birds. We used modeling to integrate available scientific information from laboratory and field studies, evaluate AI dynamics in individual hosts and waterfowl populations, and identify key areas for future research. We developed a Susceptible-Exposed-Infectious-Recovered (SEIR) model and used published laboratory challenge studies to estimate epidemiological parameters (rate of infection, latency period, recovery and mortality rates), considering the importance of age classes, and virus pathogenicity. Infectious contact leads to infection and virus shedding within 1–2 days, followed by relatively slower period for recovery or mortality. We found a shorter infectious period for HPAI than low pathogenic (LP) AI, which may explain that HPAI has been much harder to detect than LPAI during surveillance programs. Our model predicted a rapid LPAI epidemic curve, with a median duration of infection of 50–60 days and no fatalities. In contrast, HPAI dynamics had lower prevalence and higher mortality, especially in young birds. Based on field data from LPAI studies, our model suggests to increase surveillance for HPAI in post-breeding areas, because the presence of immunologically naïve young birds is predicted to cause higher HPAI prevalence and bird losses during this season. Our results indicate a better understanding of the transmission, infection, and immunity-related processes is required to refine predictions of AI risk and spread, improve surveillance for HPAI in wild birds, and develop disease control strategies to reduce potential transmission to domestic birds and/or humans.

  10. Model-based evaluation of highly and low pathogenic avian influenza dynamics in wild birds.

    PubMed

    Hénaux, Viviane; Samuel, Michael D; Bunck, Christine M

    2010-06-23

    There is growing interest in avian influenza (AI) epidemiology to predict disease risk in wild and domestic birds, and prevent transmission to humans. However, understanding the epidemic dynamics of highly pathogenic (HPAI) viruses remains challenging because they have rarely been detected in wild birds. We used modeling to integrate available scientific information from laboratory and field studies, evaluate AI dynamics in individual hosts and waterfowl populations, and identify key areas for future research. We developed a Susceptible-Exposed-Infectious-Recovered (SEIR) model and used published laboratory challenge studies to estimate epidemiological parameters (rate of infection, latency period, recovery and mortality rates), considering the importance of age classes, and virus pathogenicity. Infectious contact leads to infection and virus shedding within 1-2 days, followed by relatively slower period for recovery or mortality. We found a shorter infectious period for HPAI than low pathogenic (LP) AI, which may explain that HPAI has been much harder to detect than LPAI during surveillance programs. Our model predicted a rapid LPAI epidemic curve, with a median duration of infection of 50-60 days and no fatalities. In contrast, HPAI dynamics had lower prevalence and higher mortality, especially in young birds. Based on field data from LPAI studies, our model suggests to increase surveillance for HPAI in post-breeding areas, because the presence of immunologically naïve young birds is predicted to cause higher HPAI prevalence and bird losses during this season. Our results indicate a better understanding of the transmission, infection, and immunity-related processes is required to refine predictions of AI risk and spread, improve surveillance for HPAI in wild birds, and develop disease control strategies to reduce potential transmission to domestic birds and/or humans.

  11. Genetic characterization and pathogenicity assessment of highly pathogenic H5N1 avian influenza viruses isolated from migratory wild birds in 2011, South Korea.

    PubMed

    Kwon, Hyeok-Il; Song, Min-Suk; Pascua, Philippe Noriel Q; Baek, Yun Hee; Lee, Jun Han; Hong, Seung-Pyo; Rho, Jong-Bok; Kim, Jeong-Ki; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2011-09-01

    The continued spread of a highly pathogenic avian influenza (HPAI) H5N1 virus among wild birds and poultry has posed a potential threat to human public health. In the present study, we report the isolation of HPAI H5N1 viruses (A/Md/Korea/W401/11 and A/Md/Korea/W404/11) from fecal samples of migratory birds. Genetic and phlyogenetic analyses demonstrated that these viruses are genetically identical possessing gene segments from avian virus origin and showing highest sequence similarities (as high as 99.8%) to A/Ws/Hokkaido/4/11 and 2009-2010 Mongolian-like clade 2.3.2 isolates rather than previous Korean H5N1 viruses. Both viruses possess the polybasic motif (QRERRRK/R) in HA but other genes did not bear additional virulence markers. Pathogenicity of A/Md/Korea/W401/11 was assessed and compared with a 2006 clade 2.2 HPAI H5N1 migratory bird isolate (A/EM/Korea/W149/06) in chickens, ducks, mice and ferrets. Experimental infection in these hosts showed that both viruses have high pathogenic potential in chickens (2.3-3.0 LD(50)s) and mice (3.3-3.9 LD(50)s), but A/Md/Korea/W401/11 was less pathogenic in duck and ferret models. Despite recovery of both infection viruses in the upper respiratory tract, efficient ferret-to-ferret transmission was not observed. These data suggest that the 2011 Korean HPAI wild bird H5N1 virus could replicate in mammalian hosts without pre-adaptation but could not sustain subsequent infection. This study highlights the role of migratory birds in the perpetuation and spread of HPAI H5N1 viruses in Far-East Asia. With the changing pathobiology caused by H5N1 viruses among wild and poultry birds, continued surveillance of influenza viruses among migratory bird species remains crucial for effective monitoring of high-pathogenicity or pandemic influenza viruses.

  12. High Throughput, Multiplexed Pathogen Detection Authenticates Plague Waves in Medieval Venice, Italy

    PubMed Central

    Tran, Thi-Nguyen-Ny; Signoli, Michel; Fozzati, Luigi; Aboudharam, Gérard; Raoult, Didier; Drancourt, Michel

    2011-01-01

    Background Historical records suggest that multiple burial sites from the 14th–16th centuries in Venice, Italy, were used during the Black Death and subsequent plague epidemics. Methodology/Principal Findings High throughput, multiplexed real-time PCR detected DNA of seven highly transmissible pathogens in 173 dental pulp specimens collected from 46 graves. Bartonella quintana DNA was identified in five (2.9%) samples, including three from the 16th century and two from the 15th century, and Yersinia pestis DNA was detected in three (1.7%) samples, including two from the 14th century and one from the 16th century. Partial glpD gene sequencing indicated that the detected Y. pestis was the Orientalis biotype. Conclusions These data document for the first time successive plague epidemics in the medieval European city where quarantine was first instituted in the 14th century. PMID:21423736

  13. Pseudotyping of vesicular stomatitis virus with the envelope glycoproteins of highly pathogenic avian influenza viruses.

    PubMed

    Zimmer, Gert; Locher, Samira; Berger Rentsch, Marianne; Halbherr, Stefan J

    2014-08-01

    Pseudotype viruses are useful for studying the envelope proteins of harmful viruses. This work describes the pseudotyping of vesicular stomatitis virus (VSV) with the envelope glycoproteins of highly pathogenic avian influenza viruses. VSV lacking the homotypic glycoprotein (G) gene (VSVΔG) was used to express haemagglutinin (HA), neuraminidase (NA) or the combination of both. Propagation-competent pseudotype viruses were only obtained when HA and NA were expressed from the same vector genome. Pseudotype viruses containing HA from different H5 clades were neutralized specifically by immune sera directed against the corresponding clade. Fast and sensitive reading of test results was achieved by vector-mediated expression of GFP. Pseudotype viruses expressing a mutant VSV matrix protein showed restricted spread in IFN-competent cells. This pseudotype system will facilitate the detection of neutralizing antibodies against virulent influenza viruses, circumventing the need for high-level biosafety containment.

  14. Purification, location, and immunological characterization of the iron-regulated high-molecular-weight proteins of the highly pathogenic yersiniae.

    PubMed Central

    Carniel, E; Antoine, J C; Guiyoule, A; Guiso, N; Mollaret, H H

    1989-01-01

    We have previously shown that under iron limitation, different Yersinia species synthesize new polypeptides. Two of them, the high-molecular-weight proteins (HMWPs), are expressed only by the highly pathogenic strains. In the present study, the HMWPs from Y. enterocolitica serovar O:8 were purified by gel filtration, and specific antibodies were obtained. Using these antibodies, we show that the two polypeptides were synthesized de novo during iron starvation and that they were found essentially in the bacterial outer membrane fractions, although the majority of the molecules were not exposed on the cell surface. We also demonstrate that the two proteins had common epitopes and that the HMWPs of the high-virulence-phenotype species Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica serovar O:8 (a strain different from the one used to purify the proteins) are antigenically related. The less pathogenic and nonpathogenic strains did not exhibit cross-reacting material, suggesting that these strains do not synthesize even an altered form of the HMWPs. Images PMID:2912898

  15. Low-molecular-mass thiol compounds from a free-living highly pathogenic amoeba, Naegleria fowleri.

    PubMed

    Ondarza, Raúl N; Iturbe, Angélica; Hernández, Eva; Hurtado, Gerardo

    2003-04-01

    Acid extracts labelled with the fluorescent reagent monobromobimane and separated by HPLC have enabled the detection of low-molecular-mass thiol compounds in Naegleria fowleri for the first time. The amounts detected are expressed in nmol/1 x 10(6) trophozoites cultivated at various stages of growth in the appropriate culture medium. N. fowleri is a highly pathogenic free-living amoeba, in which we found important thiol compounds, some of them in their reduced and oxidized forms. Unlike cysteine and glutathione, a number of these are not represented in normal human lymphocytes. Some of these thiol compounds from Naegleria must have their respective disulphide reductases, although the presence of thiol-disulphide exchange reactions must be considered. Ovothiol A, with antioxidant properties, is an example of a compound that is kept reduced by trypanothione in trypanosomatids, although no disulphide reductase for ovothiol A has yet been discovered. In our case we were unable to detect this biothiol in Naegleria. The presence of thiol compounds that seem to be particular to this pathogen and which are not present in human lymphocytes opens the possibility of searching for disulphide-reducing enzymes that can serve as drug targets.

  16. Rapid anti-pathogen response in ant societies relies on high genetic diversity

    PubMed Central

    Ugelvig, Line V.; Kronauer, Daniel J. C.; Schrempf, Alexandra; Heinze, Jürgen; Cremer, Sylvia

    2010-01-01

    Social organisms are constantly exposed to infectious agents via physical contact with conspecifics. While previous work has shown that disease susceptibility at the individual and group level is influenced by genetic diversity within and between group members, it remains poorly understood how group-level resistance to pathogens relates directly to individual physiology, defence behaviour and social interactions. We investigated the effects of high versus low genetic diversity on both the individual and collective disease defences in the ant Cardiocondyla obscurior. We compared the antiseptic behaviours (grooming and hygienic behaviour) of workers from genetically homogeneous and diverse colonies after exposure of their brood to the entomopathogenic fungus Metarhizium anisopliae. While workers from diverse colonies performed intensive allogrooming and quickly removed larvae covered with live fungal spores from the nest, workers from homogeneous colonies only removed sick larvae late after infection. This difference was not caused by a reduced repertoire of antiseptic behaviours or a generally decreased brood care activity in ants from homogeneous colonies. Our data instead suggest that reduced genetic diversity compromises the ability of Cardiocondyla colonies to quickly detect or react to the presence of pathogenic fungal spores before an infection is established, thereby affecting the dynamics of social immunity in the colony. PMID:20444720

  17. Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms.

    PubMed

    Ssematimba, Amos; Hagenaars, Thomas J; de Jong, Mart C M

    2012-01-01

    A quantitative understanding of the spread of contaminated farm dust between locations is a prerequisite for obtaining much-needed insight into one of the possible mechanisms of disease spread between farms. Here, we develop a model to calculate the quantity of contaminated farm-dust particles deposited at various locations downwind of a source farm and apply the model to assess the possible contribution of the wind-borne route to the transmission of Highly Pathogenic Avian Influenza virus (HPAI) during the 2003 epidemic in the Netherlands. The model is obtained from a Gaussian Plume Model by incorporating the dust deposition process, pathogen decay, and a model for the infection process on exposed farms. Using poultry- and avian influenza-specific parameter values we calculate the distance-dependent probability of between-farm transmission by this route. A comparison between the transmission risk pattern predicted by the model and the pattern observed during the 2003 epidemic reveals that the wind-borne route alone is insufficient to explain the observations although it could contribute substantially to the spread over short distance ranges, for example, explaining 24% of the transmission over distances up to 25 km.

  18. Pathogenicity of Genetically Similar, H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds

    PubMed Central

    Matsuu, Aya; Kobayashi, Tomoko; Patchimasiri, Tuangthong; Shiina, Takashi; Suzuki, Shingo; Chaichoune, Kridsada; Ratanakorn, Parntep; Hiromoto, Yasuaki; Abe, Haruka; Parchariyanon, Sujira; Saito, Takehiko

    2016-01-01

    Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV. PMID:27078641

  19. Emergence of a novel highly pathogenic porcine reproductive and respiratory syndrome virus in China.

    PubMed

    Liu, J-K; Zhou, X; Zhai, J-Q; Li, B; Wei, C-H; Dai, A-L; Yang, X-Y; Luo, M-L

    2017-02-14

    From 2014 to 2015, four novel highly pathogenic PRRS virus (HP-PRRSV) strains named 14LY01-FJ, 14LY02-FJ 15LY01-FJ, and 15LY02-FJ were isolated from high morbidity (100%) and mortality (40%-80%) in piglets and sows in Fujian Province. To further our knowledge about these novel virus strains, we characterized their complete genomes and determined their pathogenicity in piglets. Full-length genome sequencing analysis showed that these four isolates were closely related to type 2 (North American type, NA-type) isolates, with 88.1%-96.3% nucleotide similarity, but only 60.6%-60.8% homology to the Lelystad virus (LV) (European type, EU-type). The full length of the four isolates was determined to be 15017 or 15018 nucleotides (nt), excluding the poly(A) tail. Furthermore, the four isolates had three discontinuous deletions (aa 322-432, aa 483, and aa 504-522) within hypervariable region II (HV-II) of Nsp2, as compared to the reference strain VR-2332. This deletion pattern in the four isolates is consistent with strain MN184 and strain NADC30 isolated from America. Phylogenetic and molecular evolutionary analyses indicated that these virulent strains originated from a natural recombination event between the JXA1-like HP-PRRSV (JXA-1 is one of the earliest Chinese HP-PRRSV strains; sublineage 8.7) and the NADC30-like (lineage 1) PRRSV. Animal experiments demonstrated that these four strains caused significant weight loss and severe histopathological lung lesions as compared to the negative control group. High mortality rate (40% or 80%) was found in piglets infected with any one of the four strains, similar to that found with other Chinese HP-PRRSV strains. This study showed that the novel variant PRRSV was HP-PRRSV, and it is therefore critical to monitor PRRSV evolution in China and develop a method for controlling PRRS.

  20. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses

    PubMed Central

    BAATARTSOGT, Tugsbaatar; BUI, Vuong N.; TRINH, Dai Q.; YAMAGUCHI, Emi; GRONSANG, Dulyatad; THAMPAISARN, Rapeewan; OGAWA, Haruko; IMAI, Kunitoshi

    2016-01-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin–Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV. PMID:27193820

  1. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses.

    PubMed

    Baatartsogt, Tugsbaatar; Bui, Vuong N; Trinh, Dai Q; Yamaguchi, Emi; Gronsang, Dulyatad; Thampaisarn, Rapeewan; Ogawa, Haruko; Imai, Kunitoshi

    2016-10-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin-Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV.

  2. Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype

    PubMed Central

    Veits, Jutta; Weber, Siegfried; Stech, Olga; Breithaupt, Angele; Gräber, Marcus; Gohrbandt, Sandra; Bogs, Jessica; Hundt, Jana; Teifke, Jens P.; Mettenleiter, Thomas C.; Stech, Jürgen

    2012-01-01

    High-pathogenic avian influenza viruses (HPAIVs) evolve from low-pathogenic precursors specifying the HA serotypes H5 or H7 by acquisition of a polybasic HA cleavage site. As the reason for this serotype restriction has remained unclear, we aimed to distinguish between compatibility of a polybasic cleavage site with H5/H7 HA only and unique predisposition of these two serotypes for insertion mutations. To this end, we introduced a polybasic cleavage site into the HA of several low-pathogenic avian strains with serotypes H1, H2, H3, H4, H6, H8, H10, H11, H14, or H15, and rescued HA reassortants after cotransfection with the genes from either a low-pathogenic H9N2 or high-pathogenic H5N1 strain. Oculonasal inoculation with those reassortants resulted in varying pathogenicity in chicken. Recombinants containing the engineered H2, H4, H8, or H14 in the HPAIV background were lethal and exhibited i.v. pathogenicity indices of 2.79, 2.37, 2.85, and 2.61, respectively, equivalent to naturally occurring H5 or H7 HPAIV. Moreover, the H2, H4, and H8 reassortants were transmitted to some contact chickens. The H2 reassortant gained two mutations in the M2 proton channel gate region, which is affected in some HPAIVs of various origins. Taken together, in the presence of a polybasic HA cleavage site, non-H5/H7 HA can support a highly pathogenic phenotype in the appropriate viral background, indicating requirement for further adaptation. Therefore, the restriction of natural HPAIV to serotypes H5 and H7 is likely a result of their unique predisposition for acquisition of a polybasic HA cleavage site. PMID:22308331

  3. Innate immune response to arenaviral infection: a focus on the highly pathogenic New World hemorrhagic arenaviruses

    PubMed Central

    Koma, Takaaki; Huang, Cheng; Kolokoltsova, Olga A; Brasier, Allan R; Paessler, Slobodan

    2013-01-01

    Arenaviruses are enveloped, negative-stranded RNA viruses that belong to the family Arenaviridae. This diverse family can be further classified into OW (Old World) and NW (New World) arenaviruses based on their antigenicity, phylogeny, and geographical distribution. Many of the NW arenaviruses are highly pathogenic viruses that cause systemic human infections characterized by hemorrhagic fever and/or neurological manifestations, constituting public health problems in their endemic regions. NW arenavirus infection induces a variety of host innate immune responses, which could contribute to the viral pathogenesis and/or influence the final outcome of virus infection in vitro as well as in vivo. On the other hand, NW arenaviruses have also developed several strategies to counteract the host innate immune response. We will review current knowledge regarding the interplay between the host innate immune response and NW arenavirus infection in vitro and in vivo, with emphasis on viral-encoded proteins and their effect on the type I interferon response. PMID:24075870

  4. Innate immune response to arenaviral infection: a focus on the highly pathogenic New World hemorrhagic arenaviruses.

    PubMed

    Koma, Takaaki; Huang, Cheng; Kolokoltsova, Olga A; Brasier, Allan R; Paessler, Slobodan

    2013-12-13

    Arenaviruses are enveloped, negative-stranded RNA viruses that belong to the family Arenaviridae. This diverse family can be further classified into OW (Old World) and NW (New World) arenaviruses based on their antigenicity, phylogeny, and geographical distribution. Many of the NW arenaviruses are highly pathogenic viruses that cause systemic human infections characterized by hemorrhagic fever and/or neurological manifestations, constituting public health problems in their endemic regions. NW arenavirus infection induces a variety of host innate immune responses, which could contribute to the viral pathogenesis and/or influence the final outcome of virus infection in vitro and in vivo. On the other hand, NW arenaviruses have also developed several strategies to counteract the host innate immune response. We will review current knowledge regarding the interplay between the host innate immune response and NW arenavirus infection in vitro and in vivo, with emphasis on viral-encoded proteins and their effect on the type I interferon response.

  5. International standards and guidelines for vaccination of poultry against highly pathogenic avian influenza.

    PubMed

    Bruschke, C; Brückner, G; Vallat, B

    2007-01-01

    The current strain of highly pathogenic avian influenza (HPAI), H5N1, has caused an unprecedented situation, spreading over three continents, with severe economic and social consequences. The strategy of the World Organisation for Animal Health (OIE) focuses on the following key actions: early warning, early detection, rapid confirmation of suspected cases, rapid response and rapid and transparent notification. Vaccination is one means that can be used to control the virus. During the current H5N1 outbreak, the OIE received many requests from member countries for guidance in deciding whether to vaccinate and in the design of vaccination programmes. The OIE has published a general information document on vaccination against avian influenza and a document giving guidelines for decision-making, including a checklist of essentials for establishing a vaccination programme.

  6. An outbreak of highly pathogenic H5N1 avian influenza in Korea, 2008.

    PubMed

    Kim, Hye-Ryoung; Park, Choi-Kyu; Lee, Youn-Jeong; Woo, Gye-Hyeong; Lee, Kyoung-Ki; Oem, Jae-Ku; Kim, Seong-Hee; Jean, Young-Hwa; Bae, Yu-Chan; Yoon, Soon-Seek; Roh, In-Soon; Jeong, Ok-Mi; Kim, Ha-Young; Choi, Jeong-Soo; Byun, Jae-Won; Song, Yun-Kyung; Kwon, Jun-Hun; Joo, Yi-Seok

    2010-03-24

    In spite of intensive surveillance programs for the control of HPAI, an outbreak of highly pathogenic avian influenza (HPAI) H5N1 in Korea in April 2008 caused serious damage to poultry farms, as did previous outbreaks in 2003/2004 and 2006/2007. Six viruses were selected from the Korean 2008 isolates for genetic analysis, and all eight gene segments from each of the influenza viruses were sequenced. A phylogenetic analysis showed that all of the viruses were of the same virus type and that the hemagglutinin (HA) gene was clustered with that of clade 2.3.2 viruses. However, the internal and neuraminidase (NA) genes were closely related to those of the clade 2.3.4 viruses (recent human and bird isolates from Southeast Asia).

  7. High-pathogenicity avian influenza virus in the reproductive tract of chickens.

    PubMed

    Sá e Silva, M; Rissi, D R; Pantin-Jackwood, M; Swayne, D E

    2013-11-01

    Infection with high-pathogenicity avian influenza virus (HPAIV) has been associated with a wide range of clinical manifestations in poultry, including severe depression in egg production and isolation of HPAIV from eggs laid by infected hens. To evaluate the pathobiology in the reproductive tract of chickens, adult hens were inoculated intranasally with 3 HPAIV strains. All 3 strains induced lesions in the reproductive tract 36 to 72 hours after inoculation. Positive immunostaining was observed in all segments of the reproductive tract, occurring predominantly in stromal cells and superficial germinal epithelium of the ovary, in mucosal epithelial cells and less often glandular epithelium throughout the oviduct, and in vascular endothelium. This study generates important data and explains previously reported virus isolation from yolk, due to ovarian virus replication, and virus recovery from albumin, due to virus replication in epithelial cells in several segments of the oviduct.

  8. Genetic data provide evidence for wind-mediated transmission of highly pathogenic avian influenza.

    PubMed

    Ypma, Rolf J F; Jonges, Marcel; Bataille, Arnaud; Stegeman, Arjan; Koch, Guus; van Boven, Michiel; Koopmans, Marion; van Ballegooijen, W Marijn; Wallinga, Jacco

    2013-03-01

    Outbreaks of highly pathogenic avian influenza in poultry can cause severe economic damage and represent a public health threat. Development of efficient containment measures requires an understanding of how these influenza viruses are transmitted between farms. However, the actual mechanisms of interfarm transmission are largely unknown. Dispersal of infectious material by wind has been suggested, but never demonstrated, as a possible cause of transmission between farms. Here we provide statistical evidence that the direction of spread of avian influenza A(H7N7) is correlated with the direction of wind at date of infection. Using detailed genetic and epidemiological data, we found the direction of spread by reconstructing the transmission tree for a large outbreak in the Netherlands in 2003. We conservatively estimate the contribution of a possible wind-mediated mechanism to the total amount of spread during this outbreak to be around 18%.

  9. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.

    PubMed

    Hilgenfeld, Rolf; Peiris, Malik

    2013-10-01

    This article introduces a series of invited papers in Antiviral Research marking the 10th anniversary of the outbreak of severe acute respiratory syndrome (SARS), caused by a novel coronavirus that emerged in southern China in late 2002. Until that time, coronaviruses had not been recognized as agents causing severe disease in humans, hence, the emergence of the SARS-CoV came as a complete surprise. Research during the past ten years has revealed the existence of a diverse pool of coronaviruses circulating among various bat species and other animals, suggesting that further introductions of highly pathogenic coronaviruses into the human population are not merely probable, but inevitable. The recent emergence of another coronavirus causing severe disease, Middle East respiratory syndrome (MERS), in humans, has made it clear that coronaviruses pose a major threat to human health, and that more research is urgently needed to elucidate their replication mechanisms, identify potential drug targets, and develop effective countermeasures. In this series, experts in many different aspects of coronavirus replication and disease will provide authoritative, up-to-date reviews of the following topics: - clinical management and infection control of SARS; - reservoir hosts of coronaviruses; - receptor recognition and cross-species transmission of SARS-CoV; - SARS-CoV evasion of innate immune responses; - structures and functions of individual coronaviral proteins; - anti-coronavirus drug discovery and development; and - the public health legacy of the SARS outbreak. Each article will be identified in the last line of its abstract as belonging to the series "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses."

  10. Benefits of a European Project on Diagnostics of Highly Pathogenic Agents and Assessment of Potential “Dual Use” Issues

    PubMed Central

    Grunow, Roland; Ippolito, G.; Jacob, D.; Sauer, U.; Rohleder, A.; Di Caro, A.; Iacovino, R.

    2014-01-01

    Quality assurance exercises and networking on the detection of highly infectious pathogens (QUANDHIP) is a joint action initiative set up in 2011 that has successfully unified the primary objectives of the European Network on Highly Pathogenic Bacteria (ENHPB) and of P4-laboratories (ENP4-Lab) both of which aimed to improve the efficiency, effectiveness, and response capabilities of laboratories directed at protecting the health of European citizens against high consequence bacteria and viruses of significant public health concern. Both networks have established a common collaborative consortium of 37 nationally and internationally recognized institutions with laboratory facilities from 22 European countries. The specific objectives and achievements include the initiation and establishment of a recognized and acceptable quality assurance scheme, including practical external quality assurance exercises, comprising living agents, that aims to improve laboratory performance, accuracy, and detection capabilities in support of patient management and public health responses; recognized training schemes for diagnostics and handling of highly pathogenic agents; international repositories comprising highly pathogenic bacteria and viruses for the development of standardized reference material; a standardized and transparent Biosafety and Biosecurity strategy protecting healthcare personnel and the community in dealing with high consequence pathogens; the design and organization of response capabilities dealing with cross-border events with highly infectious pathogens including the consideration of diagnostic capabilities of individual European laboratories. The project tackled several sensitive issues regarding Biosafety, Biosecurity and “dual use” concerns. The article will give an overview of the project outcomes and discuss the assessment of potential “dual use” issues. PMID:25426479

  11. Genetic Characterization of Highly Pathogenic Avian Influenza (H5N8) Virus from Domestic Ducks, England, November 2014

    PubMed Central

    Banks, Jill; Marston, Denise A.; Ellis, Richard J.; Brookes, Sharon M.; Brown, Ian H.

    2015-01-01

    Genetic sequences of a highly pathogenic avian influenza (H5N8) virus in England have high homology to those detected in mainland Europe and Asia during 2014. Genetic characterization suggests this virus is an avian-adapted virus without specific affinity for zoonoses. Spatio-temporal detections of H5N8 imply a role for wild birds in virus spread. PMID:25898126

  12. Highly pathogenic H5N1 avian influenza viruses differentially affect gene expression in primary chicken embryo fibroblasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses cause severe clinical disease associated with high mortality in chickens and other gallinaceous species. However, the mechanism by which different strains of avian influenza viruses overcome host response in birds is still unclear. In the present study, ch...

  13. Critical pathogenic steps to high risk Helicobacter pylori gastritis and gastric carcinogenesis.

    PubMed

    Lee, Inchul

    2014-06-07

    Helicobacter pylori (H. pylori) gastritis may progress to high risk gastropathy and cancer. However, the pathological progression has not been characterized in detail. H. pylori induce persistent inflammatory infiltration. Neutrophils are unique in that they directly infiltrate into foveolar epithelium aiming the proliferative zone specifically. Neutrophilic proliferative zone foveolitis is a critical pathogenic step in H. pylori gastritis inducing intensive epithelial damage. Epithelial cells carrying accumulated genomic damage and mutations show the Malgun (clear) cell change, characterized by large clear nucleus and prominent nucleolus. Malgun cells further undergo atypical changes, showing nuclear folding, coarse chromatin, and multiple nucleoli. The atypical Malgun cell (AMC) change is a novel premalignant condition in high risk gastropathy, which may progress and undergo malignant transformation directly. The pathobiological significance of AMC in gastric carcinogenesis is reviewed. A new diagnosis system of gastritis is proposed based on the critical pathologic steps classifying low and high risk gastritis for separate treatment modality. It is suggested that the regulation of H. pylori-induced neutrophilic foveolitis might be a future therapeutic goal replacing bactericidal antibiotics approach.

  14. Critical pathogenic steps to high risk Helicobacter pylori gastritis and gastric carcinogenesis

    PubMed Central

    Lee, Inchul

    2014-01-01

    Helicobacter pylori (H. pylori) gastritis may progress to high risk gastropathy and cancer. However, the pathological progression has not been characterized in detail. H. pylori induce persistent inflammatory infiltration. Neutrophils are unique in that they directly infiltrate into foveolar epithelium aiming the proliferative zone specifically. Neutrophilic proliferative zone foveolitis is a critical pathogenic step in H. pylori gastritis inducing intensive epithelial damage. Epithelial cells carrying accumulated genomic damage and mutations show the Malgun (clear) cell change, characterized by large clear nucleus and prominent nucleolus. Malgun cells further undergo atypical changes, showing nuclear folding, coarse chromatin, and multiple nucleoli. The atypical Malgun cell (AMC) change is a novel premalignant condition in high risk gastropathy, which may progress and undergo malignant transformation directly. The pathobiological significance of AMC in gastric carcinogenesis is reviewed. A new diagnosis system of gastritis is proposed based on the critical pathologic steps classifying low and high risk gastritis for separate treatment modality. It is suggested that the regulation of H. pylori-induced neutrophilic foveolitis might be a future therapeutic goal replacing bactericidal antibiotics approach. PMID:24914362

  15. Characterizing ncRNAs in Human Pathogenic Protists Using High-Throughput Sequencing Technology

    PubMed Central

    Collins, Lesley Joan

    2011-01-01

    ncRNAs are key genes in many human diseases including cancer and viral infection, as well as providing critical functions in pathogenic organisms such as fungi, bacteria, viruses, and protists. Until now the identification and characterization of ncRNAs associated with disease has been slow or inaccurate requiring many years of testing to understand complicated RNA and protein gene relationships. High-throughput sequencing now offers the opportunity to characterize miRNAs, siRNAs, small nucleolar RNAs (snoRNAs), and long ncRNAs on a genomic scale, making it faster and easier to clarify how these ncRNAs contribute to the disease state. However, this technology is still relatively new, and ncRNA discovery is not an application of high priority for streamlined bioinformatics. Here we summarize background concepts and practical approaches for ncRNA analysis using high-throughput sequencing, and how it relates to understanding human disease. As a case study, we focus on the parasitic protists Giardia lamblia and Trichomonas vaginalis, where large evolutionary distance has meant difficulties in comparing ncRNAs with those from model eukaryotes. A combination of biological, computational, and sequencing approaches has enabled easier classification of ncRNA classes such as snoRNAs, but has also aided the identification of novel classes. It is hoped that a higher level of understanding of ncRNA expression and interaction may aid in the development of less harsh treatment for protist-based diseases. PMID:22303390

  16. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks

    PubMed Central

    2013-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations. PMID:23876184

  17. Comparative Respiratory Pathogenicity and Dynamic Tissue Distribution of Chinese Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus and its Attenuated Strain in Piglets.

    PubMed

    Liu, C; Zhang, W; Gong, W; Zhang, D; She, R; Xu, B; Ning, Y

    2015-07-01

    The outbreak of highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS) in 2006 devastated the Chinese swine industry. HP-PRRS virus is still the predominant strain in mainland China, rather than the classical PRRSV strain, and the attenuated live vaccine remains the preferred choice for protecting piglets against HP-PRRSV infection. To fully evaluate the safety of strain GDr180, the 180th attenuated virus of the HP-PRRSV strain GD, we used clinicopathological, microscopical, ultrastructural, serological and molecular biological methods to assess the different clinical manifestations and respiratory characteristics of piglets inoculated with HP-PRRSV strain GD or strain GDr180. The 5-week-old piglets inoculated with strain GD displayed marked clinical signs, including fever, anorexia, dyspnoea and tachypnoea. Significant interstitial pneumonia was present, characterized by thickened alveolar septa infiltrated with mononuclear cells and cell debris. However, the piglets inoculated with strain GDr180 and the negative control piglets showed neither clinical signs nor microscopical or ultrastructural lesions. Ultrastructural observation of the piglets' tracheas and examination of the dynamic tissue distributions of PRRSV strain GD and attenuated strain GDr180, by immunohistochemistry and fluorescence quantitative reverse transcription-polymerase chain reaction, confirmed significant differences in their pathogenicity and distribution in the respiratory systems of piglets. The differences in pathogenicity are attributable to the different severity of the pathological changes in the pigs inoculated with the two strains. Thus, the HP-PRRSV GDr180 strain is practically harmless to the respiratory systems of piglets and may be a safe candidate for inducing immunity against HP-PRRS.

  18. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks.

    PubMed

    Pantin-Jackwood, Mary; Swayne, David E; Smith, Diane; Shepherd, Eric

    2013-07-22

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations.

  19. Distribution and dynamics of risk factors associated with highly pathogenic avian influenza H5N1.

    PubMed

    Zhang, L; Guo, Z W; Bridge, E S; Li, Y M; Xiao, X M

    2013-11-01

    Within China's Poyang Lake region, close interactions between wild migratory birds and domestic poultry are common and provide an opportunity for the transmission and subsequent outbreaks of highly pathogenic avian influenza (HPAI) virus. We overlaid a series of ecological factors associated with HPAI to map the risk of HPAI in relation to natural and anthropogenic variables, and we identified two hotspots for potential HPAI outbreaks in the Poyang Lake region as well as three corridors connecting the two hotspot areas. In hotspot I, there is potential for migratory birds to bring new avian influenza (AI) strains that can reassort with existing strains to form new AI viruses. Hotspot II features high-density poultry production where outbreaks of endemic AI viruses are likely. The three communication corridors that link the two hotspots further promote HPAI H5N1 transmission and outbreaks and lead to the persistence of AI viruses in the Poyang Lake region. We speculate that the region's unevenly distributed poultry supply-and-demand system might be a key factor inducing HPAI H5N1 transmission and outbreaks in the Poyang Lake region.

  20. Updated values for molecular diagnosis for highly pathogenic avian influenza virus.

    PubMed

    Sakurai, Akira; Shibasaki, Futoshi

    2012-08-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 strain pose a pandemic threat. H5N1 strain virus is extremely lethal and contagious for poultry. Even though mortality is 59% in infected humans, these viruses do not spread efficiently between humans. In 1997, an outbreak of H5N1 strain with human cases occurred in Hong Kong. This event highlighted the need for rapid identification and subtyping of influenza A viruses (IAV), not only to facilitate surveillance of the pandemic potential of avian IAV, but also to improve the control and treatment of infected patients. Molecular diagnosis has played a key role in the detection and typing of IAV in recent years, spurred by rapid advances in technologies for detection and characterization of viral RNAs and proteins. Such technologies, which include immunochromatography, quantitative real-time PCR, super high-speed real-time PCR, and isothermal DNA amplification, are expected to contribute to faster and easier diagnosis and typing of IAV.

  1. Clinical Evaluation of the New High-Throughput Luminex NxTAG Respiratory Pathogen Panel Assay for Multiplex Respiratory Pathogen Detection

    PubMed Central

    Lam, Ho-Yin; Yip, Cyril C. Y.; Wong, Sally C. Y.; Chan, Jasper F. W.; Ma, Edmond S. K.; Cheng, Vincent C. C.; Tang, Bone S. F.

    2016-01-01

    A broad range of viral and bacterial pathogens can cause acute respiratory tract infection. For rapid detection of a broad respiratory pathogen spectrum, multiplex real-time PCR is ideal. This study evaluated the performance of the new Luminex NxTAG Respiratory Pathogen Panel (NxTAG-RPP) in comparison with the BioFire FilmArray Respiratory Panel (FA-RP) or singleplex real-time PCR as reference. A total of 284 clinical respiratory specimens and 3 influenza A/H7N9 viral culture samples were tested. All clinical specimens were processed and analyzed in parallel using NxTAG-RPP and the reference standard method. The H7N9 viral culture samples were tested using NxTAG-RPP only. Overall, the NxTAG-RPP demonstrated ≥93% sensitivity and specificity for all respiratory targets except human coronavirus OC43 (HCoV-OC43) and HCoV-HKU1. The H7N9 virus was detected by the influenza A virus matrix gene target, while other influenza A virus subtyping gene targets in the panel remained negative. Complete concordance between NxTAG-RPP and FA-RP was observed in 98.8% (318/322) of positive results (kappa = 0.92). Substantial agreement was found for most respiratory targets, but significant differences were observed in human metapneumovirus (P = 0.001) and parainfluenza virus type 3 (P = 0.031). NxTAG-RPP has a higher sample throughput than FA-RP (96 samples versus 1 sample per run) while the turnaround times for NxTAG-RPP and FA-RP were 5 h (up to 96 samples) and 1 h (for one sample), respectively. Overall, NxTAG-RPP demonstrated good diagnostic performance for most respiratory pathogens. The high sample throughput with reasonable turnaround time of this new assay makes it a suitable multiplex platform for routine screening of respiratory specimens in hospital-based laboratories. PMID:27122380

  2. Multiple reassortment events among highly pathogenic avian influenza A(H5N1) viruses detected in Bangladesh.

    PubMed

    Gerloff, Nancy A; Khan, Salah Uddin; Balish, Amanda; Shanta, Ireen S; Simpson, Natosha; Berman, Lashondra; Haider, Najmul; Poh, Mee Kian; Islam, Ausraful; Gurley, Emily; Hasnat, Md Abdul; Dey, T; Shu, Bo; Emery, Shannon; Lindstrom, Stephen; Haque, Ainul; Klimov, Alexander; Villanueva, Julie; Rahman, Mahmudur; Azziz-Baumgartner, Eduardo; Ziaur Rahman, Md; Luby, Stephen P; Zeidner, Nord; Donis, Ruben O; Sturm-Ramirez, Katharine; Davis, C Todd

    2014-02-01

    In Bangladesh, little is known about the genomic composition and antigenicity of highly pathogenic avian influenza A(H5N1) viruses, their geographic distribution, temporal patterns, or gene flow within the avian host population. Forty highly pathogenic avian influenza A(H5N1) viruses isolated from humans and poultry in Bangladesh between 2008 and 2012 were analyzed by full genome sequencing and antigenic characterization. The analysis included viruses collected from avian hosts and environmental sampling in live bird markets, backyard poultry flocks, outbreak investigations in wild birds or poultry and from three human cases. Phylogenetic analysis indicated that the ancestors of these viruses reassorted (1) with other gene lineages of the same clade, (2) between different clades and (3) with low pathogenicity avian influenza A virus subtypes. Bayesian estimates of the time of most recent common ancestry, combined with geographic information, provided evidence of probable routes and timelines of virus spread into and out of Bangladesh.

  3. Multiplex and quantitative pathogen detection with high-resolution capillary electrophoresis-based single-strand conformation polymorphism.

    PubMed

    Hwang, Hee Sung; Shin, Gi Won; Chung, Boram; Na, Jeongkyeong; Jung, Gyoo Yeol

    2013-01-01

    Among the molecular diagnostic methods for bacteria-induced diseases, capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP) combined with 16S rRNA gene-specific PCR has enormous potential because it can separate sequence variants using a simple procedure. However, conventional CE-SSCP systems have limited resolution and cannot separate most 16S rRNA gene-specific markers into separate peaks. A high-resolution CE-SSCP system that uses a poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer matrix was recently developed and shown to effectively separate highly similar PCR products. In this report, a protocol for the detection of 12 pathogenic bacteria is provided. Pathogen markers were amplified by PCR using universal primers and separated by CE-SSCP; each marker peak was well separated at baseline and showed a characteristic mobility, allowing the easy identification of the pathogens.

  4. Pathogenicity of an H5N1 highly pathogenic avian influenza virus isolated in the 2010-2011 winter in Japan to mandarin ducks.

    PubMed

    Soda, Kosuke; Usui, Tatsufumi; Uno, Yukiko; Yoneda, Kumiko; Yamaguchi, Tsuyoshi; Ito, Toshihiro

    2013-01-01

    Widespread outbreaks of highly pathogenic avian influenza (HPAI) caused by H5N1 viruses occurred in wild birds in Japan from 2010-2011. Forty out of 63 deceased wild birds belonged to the order Anseriformes, and mandarin duck was one of the dominant species. To estimate the risk of mandarin ducks as a source of virus infection in the environment, we examined the pathogenicity of a causal H5N1 HPAI virus to mandarin ducks. About half of the mandarin ducks died by inoculation with 10(7.0)TCID50 of A/mandarin duck/Miyazaki/22M807-1/2011 (H5N1). Viruses were mainly recovered from the trachea of the ducks sacrificed at three days post inoculation (d.p.i.). Viruses were recovered from the laryngopharyngeal swabs of the observation group until 5 d.p.i. In ducks that died at the late phase of infection, viruses were detected in the systemic organs, such as lung, kidney and colon. Together, these results showed that the H5N1 HPAI viruses, which belonged to clade 2.3.2.1 and are mainly circulating in East Asia, were lethal to mandarin ducks, indicating that mandarin ducks have the potential to disseminate the virus to other bird species. Therefore, wild birds should be kept out of poultry farms to prevent HPAI outbreaks in the future.

  5. Unraveling the Architecture and Structural Dynamics of Pathogens by High-Resolution in vitro Atomic Force Microscopy

    SciTech Connect

    Malkin, A J; Plomp, M; Leighton, T J; McPherson, A; Wheeler, K E

    2005-04-12

    Progress in structural biology very much depends upon the development of new high-resolution techniques and tools. Despite decades of study of viruses, bacteria and bacterial spores and their pressing importance in human medicine and biodefense, many of their structural properties are poorly understood. Thus, characterization and understanding of the architecture of protein surface and internal structures of pathogens is critical to elucidating mechanisms of disease, immune response, physicochemical properties, environmental resistance and development of countermeasures against bioterrorist agents. Furthermore, even though complete genome sequences are available for various pathogens, the structure-function relationships are not understood. Because of their lack of symmetry and heterogeneity, large human pathogens are often refractory to X-ray crystallographic analysis or reconstruction by cryo-electron microscopy (cryo-EM). An alternative high-resolution method to examine native structure of pathogens is atomic force microscopy (AFM), which allows direct visualization of macromolecular assemblies at near-molecular resolution. The capability to image single pathogen surfaces at nanometer scale in vitro would profoundly impact mechanistic and structural studies of pathogenesis, immunobiology, specific cellular processes, environmental dynamics and biotransformation.

  6. The Use of High Pressure Freezing and Freeze Substitution to Study Host-Pathogen Interactions in Fungal Diseases of Plants

    NASA Astrophysics Data System (ADS)

    Mims, C. W.; Celio, Gail J.; Richardson, Elizabeth A.

    2003-12-01

    This article reports on the use of high pressure freezing followed by freeze substitution (HPF/FS) to study ultrastructural details of host pathogen interactions in fungal diseases of plants. The specific host pathogen systems discussed here include a powdery mildew infection of poinsettia and rust infections of daylily and Indian strawberry. The three pathogens considered here all attack the leaves of their hosts and produce specialized hyphal branches known as haustoria that invade individual host cells without killing them. We found that HPF/FS provided excellent preservation of both haustoria and host cells for all three host pathogen systems. Preservation of fungal and host cell membranes was particularly good and greatly facilitated the detailed study of host pathogen interfaces. In some instances, HPF/FS provided information that was not available in samples prepared for study using conventional chemical fixation. On the other hand, we did encounter various problems associated with the use of HPF/FS. Examples included freeze damage of samples, inconsistency of fixation in different samples, separation of plant cell cytoplasm from cell walls, breakage of cell walls and membranes, and splitting of thin sections. However, we believe that the outstanding preservation of ultrastructural details afforded by HPF/FS significantly outweighs these problems and we highly recommend the use of this fixation protocol for future studies of fungal host-plant interactions.

  7. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses.

    PubMed

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik; Park, Hyun

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflective light collection module using a coumarin-derived dendrimer-based fluorescent lateral flow immunoassay. By application of an optimized bioconjugate, a smartphone-based diagnostic device had a two-fold higher detectability as compared to that of the table-top fluorescence strip reader for three different AI subtypes (H5N3, H7N1, and H9N2). Additionally, in a clinical study of H5N1-confirmed patients, the smartphone-based diagnostic device showed a sensitivity of 96.55% (28/29) [95% confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to 99.96). The measurement results from the distributed individual smartphones were wirelessly transmitted via short messaging service and collected by a centralized database system for further information processing and data mining. Smartphone-based diagnosis provided highly sensitive measurement results for H5N1 detection within 15 minutes. Because of its high sensitivity, portability and automatic reporting feature, the proposed device will enable agile identification of patients and efficient control of AI dissemination.

  8. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses

    PubMed Central

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik; Park, Hyun

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflective light collection module using a coumarin-derived dendrimer-based fluorescent lateral flow immunoassay. By application of an optimized bioconjugate, a smartphone-based diagnostic device had a two-fold higher detectability as compared to that of the table-top fluorescence strip reader for three different AI subtypes (H5N3, H7N1, and H9N2). Additionally, in a clinical study of H5N1-confirmed patients, the smartphone-based diagnostic device showed a sensitivity of 96.55% (28/29) [95% confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to 99.96). The measurement results from the distributed individual smartphones were wirelessly transmitted via short messaging service and collected by a centralized database system for further information processing and data mining. Smartphone-based diagnosis provided highly sensitive measurement results for H5N1 detection within 15 minutes. Because of its high sensitivity, portability and automatic reporting feature, the proposed device will enable agile identification of patients and efficient control of AI dissemination. PMID:26877781

  9. Identification of Highly Variable Supernumerary Chromosome Segments in an Asexual Pathogen

    PubMed Central

    Huang, Xiaoqiu; Das, Anindya; Sahu, Binod B.; Srivastava, Subodh K.; Leandro, Leonor F.; O’Donnell, Kerry; Bhattacharyya, Madan K.

    2016-01-01

    Supernumerary chromosome segments are known to harbor different transposons from their essential counterparts. The aim of this study was to investigate the role of transposons in the origin and evolution of supernumerary segments in the asexual fungal pathogen Fusarium virguliforme. We compared the genomes of 11 isolates comprising six Fusarium species that cause soybean sudden death syndrome (SDS) or bean root rot (BRR), and identified significant levels of genetic variation in A+T-rich repeat blocks of the essential chromosomes and in A+T-neutral regions of the supernumerary segments. The A+T-rich repeat blocks in the essential chromosomes were highly variable between F. virguliforme and non-F. virguliforme isolates, but were scarcely variable between F. virguliforme isolates. The A+T-neutral regions in the supernumerary segments, however, were highly variable between F. virguliforme isolates, with a statistically significant number (21 standard deviations above the mean) of single nucleotide polymorphisms (SNPs). And supernumerary sequence types and rearrangement patterns of some F. virguliforme isolates were present in an isolate of F. cuneirostrum but not in the other F. virguliforme isolates. The most variable and highly expressed region in the supernumerary segments contained an active DNA transposon that was a most conserved match between F. virguliforme and the unrelated fungus Tolypocladium inflatum. This transposon was absent from two of the F. virguliforme isolates. Furthermore, transposons in the supernumerary segments of some F. virguliforme isolates were present in non-F. virguliforme isolates, but were absent from the other F. virguliforme isolates. Two supernumerary P450 enzymes were 43% and 57% identical to their essential counterparts. This study has raised the possibility that transposons generate genetic variation in supernumerary chromosome segments by frequent horizontal transfer within and between closely related species. PMID:27341103

  10. Pathogenesis of highly pathogenic porcine reproductive and respiratory syndrome virus in Chinese Tibetan swine.

    PubMed

    Fan, Baochao; Zhang, Hongjian; Bai, Juan; Liu, Xing; Li, Yufeng; Wang, Xianwei; Jiang, Ping

    2016-10-01

    Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) was first characterized in 2006 in China, and it causes great economic losses to the Chinese swine production industry. A China Landrace pig, the Tibetan pig, which has striking phenotypic and physiological differences from lowland pigs, is mainly distributed in the Tibetan highlands of China. The susceptibility of the Tibetan pig to HP-PRRSV has not been reported. In this study, 15 4-week-old Tibetan piglets were divided into three groups, and their susceptibility to HP-PRRSV was examined in the highland region. Five pigs in group 1 were inoculated intranasally with HP-PRRSV strain BB0907. At 2days post-inoculation, five other pigs were introduced into this group and then removed to a separated room to serve as contact group 2. Meanwhile, five pigs in group 3 were mock infected and used as controls. The results showed that the pigs in the inoculated and contact groups showed high fevers and clear clinical signs, including depression, anorexia, lethargy, sticky eye secretions, and hind limb paralysis, with high mortality. The main symptom was interstitial pneumonia. Viremia appeared on days 4 to 14 post-infection. HP-PRRSV infection resulted in inflammatory responses within the first week of infection, as evidenced by the expression of tumor necrosis factor alpha, interleukin (IL)-1β, IL-6, and IL-10. All the data indicate that the Tibetan pig is susceptible to HP-PRRSV infection. Thus, it is necessary to investigate and prevent PRRSV infections in the highland region in China.

  11. Animal health policy principles for highly pathogenic avian influenza: shared experience from China and Canada.

    PubMed

    Stephen, C; Ninghui, L; Yeh, F; Zhang, L

    2011-08-01

    Animal health policy for highly pathogenic avian influenza (HPAI) must, for the time being, be based on expert opinion and shared international experience. We used the intellectual capital and knowledge of experienced Chinese and Canadian practitioners and policy makers to inform policy options for China and find shared policy elements applicable to both countries. No peer-reviewed comprehensive evaluations or systematic regulatory impact assessments of animal health policies were found. Sixteen guiding policy principles emerged from our thematic analysis of Chinese and Canadian policies. We provide a list of shared policy goals, targets and elements for HPAI preparedness, response and recovery. Policy elements clustered in a manner consistent with core public health competencies. Complex situations like HPAI require complex and adaptive policies, yet policies that cross jurisdictions and are fully integrated across agencies are rare. We encourage countries to develop or deploy capacity to undertake and publish regulatory impact assessments and policy evaluation to identify policy needs and provide a basis for evidence-based policy development.

  12. Optimal immunization cocktails can promote induction of broadly neutralizing Abs against highly mutable pathogens.

    PubMed

    Shaffer, J Scott; Moore, Penny L; Kardar, Mehran; Chakraborty, Arup K

    2016-10-24

    Strategies to elicit Abs that can neutralize diverse strains of a highly mutable pathogen are likely to result in a potent vaccine. Broadly neutralizing Abs (bnAbs) against HIV have been isolated from patients, proving that the human immune system can evolve them. Using computer simulations and theory, we study immunization with diverse mixtures of variant antigens (Ags). Our results show that particular choices for the number of variant Ags and the mutational distances separating them maximize the probability of inducing bnAbs. The variant Ags represent potentially conflicting selection forces that can frustrate the Darwinian evolutionary process of affinity maturation. An intermediate level of frustration maximizes the chance of evolving bnAbs. A simple model makes vivid the origin of this principle of optimal frustration. Our results, combined with past studies, suggest that an appropriately chosen permutation of immunization with an optimally designed mixture (using the principles that we describe) and sequential immunization with variant Ags that are separated by relatively large mutational distances may best promote the evolution of bnAbs.

  13. Scavenging ducks and transmission of highly pathogenic avian influenza, Java, Indonesia.

    PubMed

    Henning, Joerg; Wibawa, Hendra; Morton, John; Usman, Tri Bhakti; Junaidi, Akhmad; Meers, Joanne

    2010-08-01

    In Java, Indonesia, during March 2007-March 2008, 96 farms with scavenging ducks that were not vaccinated against highly pathogenic avian influenza (HPAI) were monitored bimonthly. Bird-level (prevalence among individual birds) H5 seroprevalence was 2.6% for ducks and 0.5% for chickens in contact with ducks. At least 1 seropositive bird was detected during 19.5% and 2.0% of duck- and chicken-flock visits, respectively. Duck flocks were 12.4x more likely than chicken flocks to have seropositive birds. During 21.4% of farm visits,

  14. Optimal immunization cocktails can promote induction of broadly neutralizing Abs against highly mutable pathogens

    PubMed Central

    Shaffer, J. Scott; Moore, Penny L.; Kardar, Mehran; Chakraborty, Arup K.

    2016-01-01

    Strategies to elicit Abs that can neutralize diverse strains of a highly mutable pathogen are likely to result in a potent vaccine. Broadly neutralizing Abs (bnAbs) against HIV have been isolated from patients, proving that the human immune system can evolve them. Using computer simulations and theory, we study immunization with diverse mixtures of variant antigens (Ags). Our results show that particular choices for the number of variant Ags and the mutational distances separating them maximize the probability of inducing bnAbs. The variant Ags represent potentially conflicting selection forces that can frustrate the Darwinian evolutionary process of affinity maturation. An intermediate level of frustration maximizes the chance of evolving bnAbs. A simple model makes vivid the origin of this principle of optimal frustration. Our results, combined with past studies, suggest that an appropriately chosen permutation of immunization with an optimally designed mixture (using the principles that we describe) and sequential immunization with variant Ags that are separated by relatively large mutational distances may best promote the evolution of bnAbs. PMID:27791170

  15. The avian and mammalian host range of highly pathogenic avian H5N1 influenza.

    PubMed

    Kaplan, Bryan S; Webby, Richard J

    2013-12-05

    Highly pathogenic H5N1 influenza viruses have been isolated from a number of avian and mammalian species. Despite intensive control measures the number of human and animal cases continues to increase. A more complete understanding of susceptible species and of contributing environmental and molecular factors is crucial if we are to slow the rate of new cases. H5N1 is currently endemic in domestic poultry in only a handful of countries with sporadic and unpredictable spread to other countries. Close contact of terrestrial bird or mammalian species with infected poultry/waterfowl or their biological products is the major route for interspecies transmission. Intra-species transmission of H5N1 in mammals, including humans, has taken place on a limited scale though it remains to be seen if this will change; recent laboratory studies suggest that it is indeed possible. Here we review the avian and mammalian species that are naturally susceptible to H5N1 infection and the molecular factors associated with its expanded host range.

  16. Yersinia High Pathogenicity Island genes modify the Escherichia coli primary metabolome independently of siderophore production

    PubMed Central

    Lv, Haitao; Henderson, Jeffrey P

    2013-01-01

    Bacterial siderophores may enhance pathogenicity by scavenging iron but their expression has been proposed to exert a substantial metabolic cost. Here we describe a combined metabolomic-genetic approach to determine how mutations affecting the virulence-associated siderophore yersiniabactin affect the Escherichia coli primary metabolome. Contrary to expectations, we did not find yersiniabactin biosynthesis to correspond to consistent metabolomic shifts. Instead, we found that targeted deletion of ybtU or ybtA, dissimilar genes with similar roles in regulating yersiniabactin expression, were associated with a specific shift in arginine pathway metabolites during growth in minimal media. This interaction was associated with high arginine levels in the model uropathogen Escherichia coli UTI89 compared to its ybtU and ybtA mutants and the K12 strain MG1655, which lacks yersiniabactin-associated genes. Because arginine is not a direct yersiniabactin biosynthetic substrate, these findings show that virulence-associated secondary metabolite systems may shape bacterial primary metabolism independently of substrate consumption. PMID:22035238

  17. Cockroaches as a Source of High Bacterial Pathogens with Multidrug Resistant Strains in Gondar Town, Ethiopia

    PubMed Central

    Huruy, Kahsay; Muluye, Dagnachew; Feleke, Tigist; G/Silassie, Fisha; Ayalew, Getenet; Nagappan, Raja

    2016-01-01

    Background. Cockroaches are source of bacterial infections and this study was aimed to assess bacterial isolates and their antimicrobial profiles from cockroaches in Gondar town, Ethiopia. Methods. A total of 60 cockroaches were collected from March 1 to May 30, 2014, in Gondar town. Bacterial species were isolated from external and internal parts of cockroaches. Disk diffusion method was used to determine antibiotic susceptibility patterns. Data were entered and analyzed by using SPSS version 20; P values <0.005 were considered as statistically significant. Results. Of 181 identified bacteria species, 110 (60.8%) and 71 (39.2%) were identified from external and internal parts of cockroaches, respectively. Klebsiella pneumoniae 32 (17.7%), Escherichia coli 29 (16%), and Citrobacter spp. 27 (15%) were the predominant isolates. High resistance rate was observed to cotrimoxazole, 60 (33.1%), and least resistance rate was noted to ciprofloxacin, 2 (1.1%). Additionally, 116 (64.1%) of the isolates were MDR strains; Salmonella spp. were the leading MDR isolates (100%) followed by Enterobacter (90.5%) and Shigella spp. (76.9%). Conclusion. Cockroaches are the potential source of bacteria pathogens with multidrug resistant strains and hence effective preventive and control measures are required to minimize cockroach related infections. PMID:27340653

  18. Cockroaches as a Source of High Bacterial Pathogens with Multidrug Resistant Strains in Gondar Town, Ethiopia.

    PubMed

    Moges, Feleke; Eshetie, Setegn; Endris, Mengistu; Huruy, Kahsay; Muluye, Dagnachew; Feleke, Tigist; G/Silassie, Fisha; Ayalew, Getenet; Nagappan, Raja

    2016-01-01

    Background. Cockroaches are source of bacterial infections and this study was aimed to assess bacterial isolates and their antimicrobial profiles from cockroaches in Gondar town, Ethiopia. Methods. A total of 60 cockroaches were collected from March 1 to May 30, 2014, in Gondar town. Bacterial species were isolated from external and internal parts of cockroaches. Disk diffusion method was used to determine antibiotic susceptibility patterns. Data were entered and analyzed by using SPSS version 20; P values <0.005 were considered as statistically significant. Results. Of 181 identified bacteria species, 110 (60.8%) and 71 (39.2%) were identified from external and internal parts of cockroaches, respectively. Klebsiella pneumoniae 32 (17.7%), Escherichia coli 29 (16%), and Citrobacter spp. 27 (15%) were the predominant isolates. High resistance rate was observed to cotrimoxazole, 60 (33.1%), and least resistance rate was noted to ciprofloxacin, 2 (1.1%). Additionally, 116 (64.1%) of the isolates were MDR strains; Salmonella spp. were the leading MDR isolates (100%) followed by Enterobacter (90.5%) and Shigella spp. (76.9%). Conclusion. Cockroaches are the potential source of bacteria pathogens with multidrug resistant strains and hence effective preventive and control measures are required to minimize cockroach related infections.

  19. The avian and mammalian host range of highly pathogenic avian H5N1 influenza

    PubMed Central

    Kaplan, Bryan S.; Webby, Richard J.

    2013-01-01

    Highly pathogenic H5N1 influenza viruses have been isolated from a number of avian and mammalian species. Despite intensive control measures the number of human and animal cases continues to increase. A more complete understanding of susceptible species and of contributing environmental and molecular factors is crucial if we are to slow the rate of new cases. H5N1 is currently endemic in domestic poultry in only a handful of countries with sporadic and unpredictable spread to other countries. Close contact of terrestrial bird or mammalian species with infected poultry/waterfowl or their biological products is the major route for interspecies transmission. Intra-species transmission of H5N1 in mammals, including humans, has taken place on a limited scale though it remains to be seen if this will change; recent laboratory studies suggest that it is indeed possible. Here we review the avian and mammalian species that are naturally susceptible to H5N1 infection and the molecular factors associated with its expanded host range. PMID:24025480

  20. Yersinia high pathogenicity island genes modify the Escherichia coli primary metabolome independently of siderophore production.

    PubMed

    Lv, Haitao; Henderson, Jeffrey P

    2011-12-02

    Bacterial siderophores may enhance pathogenicity by scavenging iron, but their expression has been proposed to exert a substantial metabolic cost. Here we describe a combined metabolomic-genetic approach to determine how mutations affecting the virulence-associated siderophore yersiniabactin affect the Escherichia coli primary metabolome. Contrary to expectations, we did not find yersiniabactin biosynthesis to correspond to consistent metabolomic shifts. Instead, we found that targeted deletion of ybtU or ybtA, dissimilar genes with similar roles in regulating yersiniabactin expression, were associated with a specific shift in arginine pathway metabolites during growth in minimal media. This interaction was associated with high arginine levels in the model uropathogen Escherichia coli UTI89 compared to its ybtU and ybtA mutants and the K12 strain MG1655, which lacks yersiniabactin-associated genes. Because arginine is not a direct yersiniabactin biosynthetic substrate, these findings show that virulence-associated secondary metabolite systems may shape bacterial primary metabolism independently of substrate consumption.

  1. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States

    PubMed Central

    Bevins, S. N.; Dusek, R. J.; White, C. L.; Gidlewski, T.; Bodenstein, B.; Mansfield, K. G.; DeBruyn, P.; Kraege, D.; Rowan, E.; Gillin, C.; Thomas, B.; Chandler, S.; Baroch, J.; Schmit, B.; Grady, M. J.; Miller, R. S.; Drew, M. L.; Stopak, S.; Zscheile, B.; Bennett, J.; Sengl, J.; Brady, Caroline; Ip, H. S.; Spackman, E.; Killian, M. L.; Torchetti, M. K.; Sleeman, J. M.; Deliberto, T. J.

    2016-01-01

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented. PMID:27381241

  2. Outbreaks of highly pathogenic Eurasian H5N8 avian influenza in two commercial poultry flocks in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In January 2015, a highly pathogenic Eurasian lineage H5N8 avian influenza (AI) virus was detected in a commercial meat turkey flock in Stanislaus County, California. Approximately 3 weeks later, a similar case was diagnosed in commercial chickens from a different company located in Kings County, C...

  3. Emergence of H5N1 high pathogenicity avian influenza strains in Indonesia that are resistant to vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines have been used to protect poultry in Asia against H5N1 high pathogenicity avian influenza (HPAI) since 2002. Reports of vaccine “failures” began to emerge in 2006 in Indonesia, with identification of clinical disease consistent with HPAI or isolation of H5N1 HPAIV in vaccinated flocks or in...

  4. Highly Pathogenic Avian Influenza A(H5N8) Virus in Wild Migratory Birds, Qinghai Lake, China.

    PubMed

    Li, Mingxin; Liu, Haizhou; Bi, Yuhai; Sun, Jianqing; Wong, Gary; Liu, Di; Li, Laixing; Liu, Juxiang; Chen, Quanjiao; Wang, Hanzhong; He, Yubang; Shi, Weifeng; Gao, George F; Chen, Jianjun

    2017-04-01

    In May 2016, a highly pathogenic avian influenza A(H5N8) virus strain caused deaths among 3 species of wild migratory birds in Qinghai Lake, China. Genetic analysis showed that the novel reassortant virus belongs to group B H5N8 viruses and that the reassortment events likely occurred in early 2016.

  5. Inhibition of enteric pathogens and surrogates using integrated, high intensity 405nm led light on the surface of almonds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The disinfecting properties of 405 nm light were investigated against Escherichia coli O157:H7, Salmonella, and their non-pathogenic surrogate bacteria on the surface of almonds. High intensity monochromatic blue light (MBL) was generated from an array of narrow-band 405 nm light-emitting diodes (LE...

  6. The pathobiology of highly pathogenic H5N2 avian influenza virus in Ruddy ducks and Lesser Scaup

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The susceptibility and pathogenesis of avian influenza virus (AIV) has not been characterized in numerous duck species, especially diving ducks, some of which migrate across the continental U.S. The pathobiology of highly pathogenic (HP) H5N2 AIV was characterized in two diving duck species, Ruddy ...

  7. Highly Pathogenic Avian Influenza A(H5N8) Virus in Wild Migratory Birds, Qinghai Lake, China

    PubMed Central

    Li, Mingxin; Liu, Haizhou; Bi, Yuhai; Sun, Jianqing; Wong, Gary; Liu, Di; Li, Laixing; Liu, Juxiang; Chen, Quanjiao; Wang, Hanzhong; He, Yubang; Shi, Weifeng; Gao, George F.

    2017-01-01

    In May 2016, a highly pathogenic avian influenza A(H5N8) virus strain caused deaths among 3 species of wild migratory birds in Qinghai Lake, China. Genetic analysis showed that the novel reassortant virus belongs to group B H5N8 viruses and that the reassortment events likely occurred in early 2016. PMID:28169827

  8. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States

    USGS Publications Warehouse

    Bevins, S.N.; Dusek, Robert J.; White, C. LeAnn; Gidlewski, Thomas; Bodenstein, B.; Mansfield, Kristin G.; DeBruyn, Paul; Kraege, Donald K.; Rowan, E.L.; Gillin, Colin; Thomas, B.; Chandler, S.; Baroch, J.; Schmit, B.; Grady, M. J.; Miller, R. S.; Drew, M.L.; Stopak, S.; Zscheile, B.; Bennett, J.; Sengl, J.; Brady, Caroline; Ip, Hon S.; Spackman, Erica; Killian, M. L.; Kim Torchetti, Mia; Sleeman, Jonathan M.; DeLiberto, T.J.

    2016-01-01

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented.

  9. Surveillance for highly pathogenic avian influenza virus in wild birds during outbreaks in domestic poultry, Minnesota, 2015

    USGS Publications Warehouse

    Jennelle, Christopher S.; Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul C.; Grear, Daniel A.; Ip, Hon S.; VanDalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To clarify the role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl.

  10. Microarray analysis following infection with highly pathogenic avian influenza H5N1 virus in naive and vaccinated SPF chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is a viral disease of poultry that remains a constant threat to commercial poultry throughout the world. Within the last few years, outbreaks of highly pathogenic avian influenza (HPAI) H5N1 have originated in Southeast Asia and spread to several European, Middle Eastern, and A...

  11. Early responses of chicken lungs and spleens to infection with highly pathogenic avian influenza virus using microarray analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within the last few years, outbreaks of highly pathogenic avian influenza (HPAI) have originated in Asia and spread through several Middle Eastern, African and European countries, resulting in one of the most serious animal disease incident in recent history. These outbreaks were characterized by t...

  12. The vOTU domain of highly-pathogenic porcine reproductive and respiratory syndrome virus displays a differential substrate preference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arterivirus genus member Porcine reproductive and respiratory syndrome virus (PRRSV) causes an economically devastating disease that presents global concerns to the pork industry, which have been exacerbated by the emergence of a highly pathogenic PRRSV strain (HP-PRRSV) in China and Southeast Asia....

  13. H5N1 subtype highly pathogenic avian influenza virus isolated from healthy mallard captured in South Korea.

    PubMed

    Kim, Hye-Ryoung; Kim, Bang-Sil; Bae, You-Chan; Moon, Oun-Kyoung; Oem, Jae-Ku; Kang, Hyun-Mi; Choi, Jun-Gu; Lee, O-Soo; Lee, Youn-Jeong

    2011-08-05

    On December 7, 2010, H5N1 highly pathogenic avian influenza virus was isolated from a healthy mallard captured at the Mankyung River in South Korea. Phylogenetic analysis showed that this virus was classified into clade 2.3.2 and closely related to H5N1 viruses isolated from wild birds in Mongolia, Russia and China in 2009 and 2010.

  14. NS1 gene truncations partially attenuate H5N1 highly pathogenic avian influenza viruses in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The polybasic amino acid sequence in the hemagglutinin (HA) protein of H5 and H7 avian influenza (AI) viruses determines the high pathogenicity (HP) phenotype in chickens. The NS1 protein plays an important role in blocking the induction of antiviral defenses and other regulatory functions and thus...

  15. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) viruses have caused widespread disease of poultry in Asia, Africa and the Middle East, and sporadic human infections. The guinea pig model has been used to study human H3N2 and H1N1 influenza viruses, but knowledge is lacking on H5N1 HPAI virus inf...

  16. High pathogenicity avian influenza outbreaks since 2008 except multi-continental panzootic of H5 Goose/Guangdong-lineage viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2008, seven countries from five continents have experienced highly pathogenic avian influenza (HPAI) outbreaks in poultry due to viruses unrelated to H5 Goose/Guangdong lineage viruses. These have covered a range of virus subtypes and affected different production species from chickens to ost...

  17. Efficacy of commercial vaccines in chickens and ducks against H5N1 highly pathogenic avian influenza viruses from Vietnam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and have spread to other regions of the world. Though attempts at eradication of the viruses during various outbreaks have been successful for short periods of time, new strains of H5N1 viruses continue to emerge...

  18. Lab-on-a-chip modules for detection of highly pathogenic bacteria: from sample preparation to detection

    NASA Astrophysics Data System (ADS)

    Julich, S.; Kopinč, R.; Hlawatsch, N.; Moche, C.; Lapanje, A.; Gärtner, C.; Tomaso, H.

    2014-05-01

    Lab-on-a-chip systems are innovative tools for the detection and identification of microbial pathogens in human and veterinary medicine. The major advantages are small sample volume and a compact design. Several fluidic modules have been developed to transform analytical procedures into miniaturized scale including sampling, sample preparation, target enrichment, and detection procedures. We present evaluation data for single modules that will be integrated in a chip system for the detection of pathogens. A microfluidic chip for purification of nucleic acids was established for cell lysis using magnetic beads. This assay was evaluated with spiked environmental aerosol and swab samples. Bacillus thuringiensis was used as simulant for Bacillus anthracis, which is closely related but non-pathogenic for humans. Stationary PCR and a flow-through PCR chip module were investigated for specific detection of six highly pathogenic bacteria. The conventional PCR assays could be transferred into miniaturized scale using the same temperature/time profile. We could demonstrate that the microfluidic chip modules are suitable for the respective purposes and are promising tools for the detection of bacterial pathogens. Future developments will focus on the integration of these separate modules to an entire lab-on-a-chip system.

  19. A cell-based high-throughput protocol to screen entry inhibitors of highly pathogenic viruses with Traditional Chinese Medicines.

    PubMed

    Yang, Yong; Cheng, Han; Yan, Hui; Wang, Peng-Zhan; Rong, Rong; Zhang, Ying-Ying; Zhang, Cheng-Bo; Du, Rui-Kun; Rong, Li-Jun

    2017-05-01

    Emerging viruses such as Ebola virus (EBOV), Lassa virus (LASV), and avian influenza virus H5N1 (AIV) are global health concerns. Since there is very limited options (either vaccine or specific therapy) approved for humans against these viruses, there is an urgent need to develop prophylactic and therapeutic treatments. Previously we reported a high-throughput screening (HTS) protocol to identify entry inhibitors for three highly pathogenic viruses (EBOV, LASV, and AIV) using a human immunodeficiency virus-based pseudotyping platform which allows us to perform the screening in a BSL-2 facility. In this report, we have adopted this screening protocol to evaluate traditional Chinese Medicines (TCMs) in an effort to discover entry inhibitors against these viruses. Here we show that extracts of the following Chinese medicinal herbs exhibit potent anti-Ebola viral activities: Gardenia jasminoides Ellis, Citrus aurantium L., Viola yedoensis Makino, Prunella vulgaris L., Coix lacryma-jobi L. var. mayuen (Roman.) Stapf, Pinellia ternata (Thunb.) Breit., and Morus alba L. This study represents a proof-of-principle investigation supporting the suitability of this assay for rapid screening TCMs and identifying putative entry inhibitors for these viruses. J. Med. Virol. 89:908-916, 2017. © 2016 Wiley Periodicals, Inc.

  20. Genetic evolution of H5 highly pathogenic avian influenza virus in domestic poultry in Vietnam between 2011 and 2013.

    PubMed

    Lee, Eun-Kyoung; Kang, Hyun-Mi; Kim, Kwang-Il; Choi, Jun-Gu; To, Thanh Long; Nguyen, Tho Dang; Song, Byung-Min; Jeong, Jipseol; Choi, Kang-Seuk; Kim, Ji-Ye; Lee, Hee-Soo; Lee, Youn-Jeong; Kim, Jae-Hong

    2015-04-01

    In spite of highly pathogenic avian influenza H5N1 vaccination campaigns for domestic poultry, H5N1 viruses continue to circulate in Vietnam. To estimate the prevalence of avian influenza virus in Vietnam, surveillance was conducted between November 2011 and February 2013. Genetic analysis of 312 highly pathogenic avian influenza H5 viruses isolated from poultry in Vietnam was conducted and possible genetic relationships with strains from neighboring countries were investigated. As previously reported, phylogenetic analysis of the avian influenza virus revealed two H5N1 HPAI clades that were circulating in Vietnam. Clade 1.1, related to Cambodian strains, was predominant in the southern provinces, while clade 2.3.2.1 viruses were predominant in the northern and central provinces. Sequence analysis revealed evidence of active genetic evolution. In the gene constellation of clade 2.3.2.1, genotypes A, B, and B(II) existed during the 2011/2012 winter season. In June 2012, new genotype C emerged by reassortment between genotype A and genotype B(II), and this genotype was predominant in 2013 in the northern and central provinces. Interestingly, enzootic Vietnamese clade 2.3.2.1C H5 virus subsequently reassorted with N2, which originated from wild birds, to generate H5N2 highly pathogenic avian influenza, which was isolated from duck in the northeast region. This investigation indicated that H5N1 outbreaks persist in Vietnam and cause genetic reassortment with circulating viruses. It is necessary to strengthen active influenza surveillance to eradicate highly pathogenic avian influenza viruses and sever the link between highly pathogenic avian influenza and other circulating influenza viruses.

  1. A microfluidics approach towards high-throughput pathogen removal from blood using margination

    PubMed Central

    Wei Hou, Han; Gan, Hiong Yap; Bhagat, Ali Asgar S.; Li, Leon D.; Lim, Chwee Teck; Han, Jongyoon

    2012-01-01

    Sepsis is an adverse systemic inflammatory response caused by microbial infection in blood. This paper reports a simple microfluidic approach for intrinsic, non-specific removal of both microbes and inflammatory cellular components (platelets and leukocytes) from whole blood, inspired by the invivo phenomenon of leukocyte margination. As blood flows through a narrow microchannel (20 × 20 µm), deformable red blood cells (RBCs) migrate axially to the channel centre, resulting in margination of other cell types (bacteria, platelets, and leukocytes) towards the channel sides. By using a simple cascaded channel design, the blood samples undergo a 2-stage bacteria removal in a single pass through the device, thereby allowing higher bacterial removal efficiency. As an application for sepsis treatment, we demonstrated separation of Escherichia coli and Saccharomyces cerevisiae spiked into whole blood, achieving high removal efficiencies of ∼80% and ∼90%, respectively. Inflammatory cellular components were also depleted by >80% in the filtered blood samples which could help to modulate the host inflammatory response and potentially serve as a blood cleansing method for sepsis treatment. The developed technique offers significant advantages including high throughput (∼1 ml/h per channel) and label-free separation which allows non-specific removal of any blood-borne pathogens (bacteria and fungi). The continuous processing and collection mode could potentially enable the return of filtered blood back to the patient directly, similar to a simple and complete dialysis circuit setup. Lastly, we designed and tested a larger filtration device consisting of 6 channels in parallel (∼6 ml/h) and obtained similar filtration performances. Further multiplexing is possible by increasing channel parallelization or device stacking to achieve higher throughput comparable to convectional blood dialysis systems used in clinical settings. PMID:22655023

  2. Characterization of highly pathogenic H5N1 avian influenza A viruses isolated from South Korea.

    PubMed

    Lee, Chang-Won; Suarez, David L; Tumpey, Terrence M; Sung, Haan-Woo; Kwon, Yong-Kuk; Lee, Youn-Jeong; Choi, Jun-Gu; Joh, Seong-Joon; Kim, Min-Chul; Lee, Eun-Kyoung; Park, Jong-Myung; Lu, Xiuhua; Katz, Jacqueline M; Spackman, Erica; Swayne, David E; Kim, Jae-Hong

    2005-03-01

    An unprecedented outbreak of H5N1 highly pathogenic avian influenza (HPAI) has been reported for poultry in eight different Asian countries, including South Korea, since December 2003. A phylogenetic analysis of the eight viral genes showed that the H5N1 poultry isolates from South Korea were of avian origin and contained the hemagglutinin and neuraminidase genes of the A/goose/Guangdong/1/96 (Gs/Gd) lineage. The current H5N1 strains in Asia, including the Korean isolates, share a gene constellation similar to that of the Penfold Park, Hong Kong, isolates from late 2002 and contain some molecular markers that seem to have been fixed in the Gs/Gd lineage virus since 2001. However, despite genetic similarities among recent H5N1 isolates, the topology of the phylogenetic tree clearly differentiates the Korean isolates from the Vietnamese and Thai isolates which have been reported to infect humans. A representative Korean isolate was inoculated into mice, with no mortality and no virus being isolated from the brain, although high titers of virus were observed in the lungs. The same isolate, however, caused systemic infections in chickens and quail and killed all of the birds within 2 and 4 days of intranasal inoculation, respectively. This isolate also replicated in multiple organs and tissues of ducks and caused some mortality. However, lower virus titers were observed in all corresponding tissues of ducks than in chicken and quail tissues, and the histological lesions were restricted to the respiratory tract. This study characterizes the molecular and biological properties of the H5N1 HPAI viruses from South Korea and emphasizes the need for comparative analyses of the H5N1 isolates from different countries to help elucidate the risk of a human pandemic from the strains of H5N1 HPAI currently circulating in Asia.

  3. Intersubtype Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail

    PubMed Central

    Nguyen, Tinh Huu; Than, Van Thai; Thanh, Hien Dang; Hung, Vu-Khac; Nguyen, Duc Tan; Kim, Wonyong

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses are considered a threat to national animal industries, causing production losses and high mortality in domestic poultry. In recent years, quail has become a popular terrestrial poultry species raised for production of meat and eggs in Asia. In this study, to better understand the roles of quail in H5N1 viral evolution, two H5N1-positive samples, designated A/quail/Vietnam/CVVI-49/2010 (CVVI-49/2010) and A/quail/Vietnam/CVVI-50/2014 (CVVI-50/2014), were isolated from quail during H5N1 outbreaks in Vietnam, and their whole genome were analyzed. The phylogenetic analysis reveals new evolutionary variation in the worldwide H5N1 viruses. The quail HA genes were clustered into clades 1.1.1 (CVVI-49/2010) and clade 2.3.2.1c (CVVI-50/2014), which may have evolved from viruses circulating from chickens and/or ducks in Cambodia, mainland of China, Taiwan, Indonesia, and South Korea in recent years. Interestingly, the M2 gene of the CVVI-49/2010 strain contained amino acid substitutions at position 26L-I and 31S-N that are related to amantadine-resistance. In particular, the CVVI-50/2014 strain revealed evidence of multiple intersubtype reassortment events between virus clades 2.3.2.1c, 2.3.2.1b, and 2.3.2.1a. Data from this study supports the possible role of quail as an important intermediate host in avian influenza virus evolution. Therefore, additional surveillance is needed to monitor these HPAI viruses both serologically and virologically in quail. PMID:26900963

  4. Macaque Proteome Response to Highly Pathogenic Avian Influenza and 1918 Reassortant Influenza Virus Infections▿ †

    PubMed Central

    Brown, Joseph N.; Palermo, Robert E.; Baskin, Carole R.; Gritsenko, Marina; Sabourin, Patrick J.; Long, James P.; Sabourin, Carol L.; Bielefeldt-Ohmann, Helle; García-Sastre, Adolfo; Albrecht, Randy; Tumpey, Terrence M.; Jacobs, Jon M.; Smith, Richard D.; Katze, Michael G.

    2010-01-01

    The host proteome response and molecular mechanisms that drive disease in vivo during infection by a human isolate of the highly pathogenic avian influenza virus (HPAI) and 1918 pandemic influenza virus remain poorly understood. This study presents a comprehensive characterization of the proteome response in cynomolgus macaque (Macaca fascicularis) lung tissue over 7 days of infection with HPAI (the most virulent), a reassortant virus containing 1918 hemagglutinin and neuraminidase surface proteins (intermediate virulence), or a human seasonal strain (least virulent). A high-sensitivity two-dimensional liquid chromatography-tandem mass spectroscopy strategy and functional network analysis were implemented to gain insight into response pathways activated in macaques during influenza virus infection. A macaque protein database was assembled and used in the identification of 35,239 unique peptide sequences corresponding to approximately 4,259 proteins. Quantitative analysis identified an increase in expression of 400 proteins during viral infection. The abundance levels of a subset of these 400 proteins produced strong correlations with disease progression observed in the macaques, distinguishing a “core” response to viral infection from a “high” response specific to severe disease. Proteome expression profiles revealed distinct temporal response kinetics between viral strains, with HPAI inducing the most rapid response. While proteins involved in the immune response, metabolism, and transport were increased rapidly in the lung by HPAI, the other viruses produced a delayed response, characterized by an increase in proteins involved in oxidative phosphorylation, RNA processing, and translation. Proteomic results were integrated with previous genomic and pathological analysis to characterize the dynamic nature of the influenza virus infection process. PMID:20844032

  5. Intersubtype Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail.

    PubMed

    Nguyen, Tinh Huu; Than, Van Thai; Thanh, Hien Dang; Hung, Vu-Khac; Nguyen, Duc Tan; Kim, Wonyong

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses are considered a threat to national animal industries, causing production losses and high mortality in domestic poultry. In recent years, quail has become a popular terrestrial poultry species raised for production of meat and eggs in Asia. In this study, to better understand the roles of quail in H5N1 viral evolution, two H5N1-positive samples, designated A/quail/Vietnam/CVVI-49/2010 (CVVI-49/2010) and A/quail/Vietnam/CVVI-50/2014 (CVVI-50/2014), were isolated from quail during H5N1 outbreaks in Vietnam, and their whole genome were analyzed. The phylogenetic analysis reveals new evolutionary variation in the worldwide H5N1 viruses. The quail HA genes were clustered into clades 1.1.1 (CVVI-49/2010) and clade 2.3.2.1c (CVVI-50/2014), which may have evolved from viruses circulating from chickens and/or ducks in Cambodia, mainland of China, Taiwan, Indonesia, and South Korea in recent years. Interestingly, the M2 gene of the CVVI-49/2010 strain contained amino acid substitutions at position 26L-I and 31S-N that are related to amantadine-resistance. In particular, the CVVI-50/2014 strain revealed evidence of multiple intersubtype reassortment events between virus clades 2.3.2.1c, 2.3.2.1b, and 2.3.2.1a. Data from this study supports the possible role of quail as an important intermediate host in avian influenza virus evolution. Therefore, additional surveillance is needed to monitor these HPAI viruses both serologically and virologically in quail.

  6. Immunostimulatory motifs enhance antiviral siRNAs targeting highly pathogenic avian influenza H5N1.

    PubMed

    Stewart, Cameron R; Karpala, Adam J; Lowther, Sue; Lowenthal, John W; Bean, Andrew G

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus is endemic in many regions around the world and remains a significant pandemic threat. To date H5N1 has claimed almost 300 human lives worldwide, with a mortality rate of 60% and has caused the death or culling of hundreds of millions of poultry since its initial outbreak in 1997. We have designed multi-functional RNA interference (RNAi)-based therapeutics targeting H5N1 that degrade viral mRNA via the RNAi pathway while at the same time augmenting the host antiviral response by inducing host type I interferon (IFN) production. Moreover, we have identified two factors critical for maximising the immunostimulatory properties of short interfering (si)RNAs in chicken cells (i) mode of synthesis and (ii) nucleoside sequence to augment the response to virus. The 5-bp nucleoside sequence 5'-UGUGU-3' is a key determinant in inducing high levels of expression of IFN-α, -β, -λ and interleukin 1-β in chicken cells. Positioning of this 5'-UGUGU-3' motif at the 5'-end of the sense strand of siRNAs, but not the 3'-end, resulted in a rapid and enhanced induction of type I IFN. An anti-H5N1 avian influenza siRNA directed against the PB1 gene (PB1-2257) tagged with 5'-UGUGU-3' induced type I IFN earlier and to a greater extent compared to a non-tagged PB1-2257. Tested against H5N1 in vitro, the tagged PB1-2257 was more effective than non-tagged PB1-2257. These data demonstrate the ability of an immunostimulatory motif to improve the performance of an RNAi-based antiviral, a finding that may influence the design of future RNAi-based anti-influenza therapeutics.

  7. Evolution of highly pathogenic avian H5N1 influenza viruses

    SciTech Connect

    Macken, Catherine A; Green, Margaret A

    2009-01-01

    Highly pathogenic avian H5N1 viruses have circulated in Southeast Asia for more than a decade, are now endemic in parts of this region, and have also spread to more than 60 countries on three continents. The evolution of these viruses is characterized by frequent reassortment events that have created a significant number of different genotypes, both transient and longer lasting. However, fundamental questions remain about the generation and perpetuation of this substantial genetic diversity. These gaps in understanding may, in part, be due to the difficulties of genotyping closely related viruses, and limitations in the size of the data sets used in analysis. Using our recently published novel genotyping procedure ('two-time test'), which is amenable to high throughput analysis and provides an increased level of resolution relative to previous analyses, we propose a detailed model for the evolution and diversification of avian H5N1 viruses. Our analysis suggests that (i) all current H5N1 genotypes are derived from a single, clearly defined sequence of initial reassortment events; (ii) reassortment of the polymerase and NP genes may have played an important role in avian H5N1 virus evolution; (iii) the current genotype Z viruses have diverged into three distinguishable sub-genotypes in the absence of reassortment; (iv) some potentially significant molecular changes appear to be correlated with particular genotypes (for example, reassortment of the internal genes is often paralleled by a change in the HA clade); and (v) as noted in earlier studies of avian influenza A virus evolution, novel segments are typically derived from different donors (i.e., there is no obvious pattern of gene linkage in reassortment). The model of avian H5N1 viral evolution by reassortment and mutation that emerges from our study provides a context within which significant amino acid changes may be revealed; it also may help in predicting the 'success' of newly emerging avian H5N1 viruses.

  8. Highly Pathogenic Influenza A(H5N1) Virus Survival in Complex Artificial Aquatic Biotopes

    PubMed Central

    Horm, Viseth Srey; Gutiérrez, Ramona A.; Nicholls, John M.; Buchy, Philippe

    2012-01-01

    Background Very little is known regarding the persistence of Highly Pathogenic Avian Influenza (HPAI) H5N1 viruses in aquatic environments in tropical countries, although environmental materials have been suggested to play a role as reservoirs and sources of transmission for H5N1 viruses. Methodology/Principal Findings The survival of HPAI H5N1 viruses in experimental aquatic biotopes (water, mud, aquatic flora and fauna) relevant to field conditions in Cambodia was investigated. Artificial aquatic biotopes, including simple ones containing only mud and water, and complex biotopes involving the presence of aquatic flora and fauna, were set up. They were experimentally contaminated with H5N1 virus. The persistence of HPAI H5N1 virus (local avian and human isolates) was determined by virus isolation in embryonated chicken eggs and by real-time reverse-polymerase chain reaction. Persistence of infectious virus did not exceed 4 days, and was only identified in rain water. No infectious virus particles were detected in pond and lake water or mud even when high inoculum doses were used. However, viral RNA persisted up to 20 days in rain water and 7 days in pond or lake water. Viral RNA was also detected in mud samples, up to 14 days post-contamination in several cases. Infectious virus and viral RNA was detected in few cases in the aquatic fauna and flora, especially in bivalves and labyrinth fish, although these organisms seemed to be mostly passive carriers of the virus rather than host allowing virus replication. Conclusions/Significance Although several factors for the survival and persistence of HPAI viruses in the environment are still to be elucidated, and are particularly hard to control in laboratory conditions, our results, along with previous data, support the idea that environmental surveillance is of major relevance for avian influenza control programs. PMID:22514622

  9. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl

    USGS Publications Warehouse

    Gaidet, N.; Cattoli, G.; Hammoumi, S.; Newman, S.H.; Hagemeijer, W.; Takekawa, J.Y.; Cappelle, J.; Dodman, T.; Joannis, T.; Gil, P.; Monne, I.; Fusaro, A.; Capua, I.; Manu, S.; Micheloni, P.; Ottosson, U.; Mshelbwala, J.H.; Lubroth, J.; Domenech, J.; Monicat, F.

    2008-01-01

    The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.

  10. Improved Detection of Respiratory Pathogens by Use of High-Quality Sputum with TaqMan Array Card Technology.

    PubMed

    Wolff, Bernard J; Bramley, Anna M; Thurman, Kathleen A; Whitney, Cynthia G; Whitaker, Brett; Self, Wesley H; Arnold, Sandra R; Trabue, Christopher; Wunderink, Richard G; McCullers, Jon; Edwards, Kathryn M; Jain, Seema; Winchell, Jonas M

    2017-01-01

    New diagnostic platforms often use nasopharyngeal or oropharyngeal (NP/OP) swabs for pathogen detection for patients hospitalized with community-acquired pneumonia (CAP). We applied multipathogen testing to high-quality sputum specimens to determine if more pathogens can be identified relative to NP/OP swabs. Children (<18 years old) and adults hospitalized with CAP were enrolled over 2.5 years through the Etiology of Pneumonia in the Community (EPIC) study. NP/OP specimens with matching high-quality sputum (defined as ≤10 epithelial cells/low-power field [lpf] and ≥25 white blood cells/lpf or a quality score [q-score] definition of 2+) were tested by TaqMan array card (TAC), a multipathogen real-time PCR detection platform. Among 236 patients with matched specimens, a higher proportion of sputum specimens had ≥1 pathogen detected compared with NP/OP specimens in children (93% versus 68%; P < 0.0001) and adults (88% versus 61%; P < 0.0001); for each pathogen targeted, crossing threshold (CT) values were earlier in sputum. Both bacterial (361 versus 294) and viral detections (245 versus 140) were more common in sputum versus NP/OP specimens, respectively, in both children and adults. When available, high-quality sputum may be useful for testing in hospitalized CAP patients.

  11. Assessment of national strategies for control of high-pathogenicity avian influenza and low-pathogenicity notifiable avian influenza in poultry, with emphasis on vaccines and vaccination.

    PubMed

    Swayne, D E; Pavade, G; Hamilton, K; Vallat, B; Miyagishima, K

    2011-12-01

    Twenty-nine distinct epizootics of high-pathogenicity avian influenza (HPAI) have occurred since 1959. The H5N1 HPAI panzootic affecting Asia, Africa and Eastern Europe has been the largest among these, affecting poultry and/or wild birds in 63 countries. A stamping-out programme achieved eradication in 24 of these epizootics (and is close to achieving eradication in the current H5N2 epizootic in South African ostriches), but vaccination was added to the control programmes in four epizootics when stamping out alone was not effective. During the 2002 to 2010 period, more than 113 billion doses of avian influenza (AI) vaccine were used in at-risk national poultry populations of over 131 billion birds. At two to three doses per bird for the 15 vaccinating countries, the average national vaccination coverage rate was 41.9% and the global AI vaccine coverage rate was 10.9% for all poultry. The highest national coverage rate was nearly 100% for poultry in Hong Kong and the lowest national coverage was less than 0.01% for poultry in Israel and The Netherlands. Inactivated AI vaccines accounted for 95.5% and live recombinant virus vaccines for 4.5% of the vaccines used. Most of these vaccines were used in the H5N1 HPAI panzootic, with more than 99% employed in the People's Republic of China, Egypt, Indonesia and Vietnam. Implementation of vaccination in these four countries occurred after H5N1 HPAI became enzootic in domestic poultry and vaccination did not result in the enzootic infections. Vaccine usage prevented clinical disease and mortality in chickens, and maintained rural livelihoods and food security during HPAI outbreaks. Low-pathogenicity notifiable avian influenza (LPNAI) became reportable to the World Organisation for Animal Health in 2006 because some H5 and H7 low-pathogenicity avian influenza (LPAI) viruses have the potential to mutate to HPAI viruses. Fewer outbreaks of LPNAI have been reported than of HPAI and only six countries used vaccine in control

  12. Highly Pathogenic Avian Influenza H5N1 in Mainland China.

    PubMed

    Li, Xin-Lou; Liu, Kun; Yao, Hong-Wu; Sun, Ye; Chen, Wan-Jun; Sun, Ruo-Xi; de Vlas, Sake J; Fang, Li-Qun; Cao, Wu-Chun

    2015-05-08

    Highly pathogenic avian influenza (HPAI) H5N1 has posed a significant threat to both humans and birds, and it has spanned large geographic areas and various ecological systems throughout Asia, Europe and Africa, but especially in mainland China. Great efforts in control and prevention of the disease, including universal vaccination campaigns in poultry and active serological and virological surveillance, have been undertaken in mainland China since the beginning of 2006. In this study, we aim to characterize the spatial and temporal patterns of HPAI H5N1, and identify influencing factors favoring the occurrence of HPAI H5N1 outbreaks in poultry in mainland China. Our study shows that HPAI H5N1 outbreaks took place sporadically after vaccination campaigns in poultry, and mostly occurred in the cold season. The positive tests in routine virological surveillance of HPAI H5N1 virus in chicken, duck, goose as well as environmental samples were mapped to display the potential risk distribution of the virus. Southern China had a higher positive rate than northern China, and positive samples were mostly detected from chickens in the north, while the majority were from duck in the south, and a negative correlation with monthly vaccination rates in domestic poultry was found (R = -0.19, p value = 0.005). Multivariate panel logistic regression identified vaccination rate, interaction between distance to the nearest city and national highway, interaction between distance to the nearest lake and wetland, and density of human population, as well as the autoregressive term in space and time as independent risk factors in the occurrence of HPAI H5N1 outbreaks, based on which a predicted risk map of the disease was derived. Our findings could provide new understanding of the distribution and transmission of HPAI H5N1 in mainland China and could be used to inform targeted surveillance and control efforts in both human and poultry populations to reduce the risk of future infections.

  13. DEPRESSION AS SICKNESS BEHAVIOR? A TEST OF THE HOST DEFENSE HYPOTHESIS IN A HIGH PATHOGEN POPULATION

    PubMed Central

    Stieglitz, Jonathan; Trumble, Benjamin C.; Thompson, Melissa Emery; Blackwell, Aaron D.; Kaplan, Hillard; Gurven, Michael

    2015-01-01

    Sadness is an emotion universally recognized across cultures, suggesting it plays an important functional role in regulating human behavior. Numerous adaptive explanations of persistent sadness interfering with daily functioning (hereafter “depression”) have been proposed, but most do not explain frequent bidirectional associations between depression and greater immune activation. Here we test several predictions of the host defense hypothesis, which posits that depression is part of a broader coordinated evolved response to infection or tissue injury (i.e. “sickness behavior”) that promotes energy conservation and reallocation to facilitate immune activation. In a high pathogen population of lean and relatively egalitarian Bolivian foragerhorticulturalists, we test whether depression and its symptoms are associated with greater baseline concentration of immune biomarkers reliably associated with depression in Western populations (i.e. tumor necrosis factor alpha [TNF-α], interleukin-1 beta [IL-1β], interleukin-6 [IL-6], and C-reactive protein [CRP]). We also test whether greater pro-inflammatory cytokine responses to ex vivo antigen stimulation are associated with depression and its symptoms, which is expected if depression facilitates immune activation. These predictions are largely supported in a sample of older adult Tsimane (mean±SD age=53.2±11.0, range=34-85, n=649) after adjusting for potential confounders. Emotional, cognitive and somatic symptoms of depression are each associated with greater immune activation, both at baseline and in response to ex vivo stimulation. The association between depression and greater immune activation is therefore not unique to Western populations. While our findings are not predicted by other adaptive hypotheses of depression, they are not incompatible with those hypotheses and future research is necessary to isolate and test competing predictions. PMID:26044086

  14. Mapping H5N1 highly pathogenic avian influenza risk in Southeast Asia

    PubMed Central

    Gilbert, Marius; Xiao, Xiangming; Pfeiffer, Dirk U.; Epprecht, M.; Boles, Stephen; Czarnecki, Christina; Chaitaweesub, Prasit; Kalpravidh, Wantanee; Minh, Phan Q.; Otte, M. J.; Martin, Vincent; Slingenbergh, Jan

    2008-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus that emerged in southern China in the mid-1990s has in recent years evolved into the first HPAI panzootic. In many countries where the virus was detected, the virus was successfully controlled, whereas other countries face periodic reoccurrence despite significant control efforts. A central question is to understand the factors favoring the continuing reoccurrence of the virus. The abundance of domestic ducks, in particular free-grazing ducks feeding in intensive rice cropping areas, has been identified as one such risk factor based on separate studies carried out in Thailand and Vietnam. In addition, recent extensive progress was made in the spatial prediction of rice cropping intensity obtained through satellite imagery processing. This article analyses the statistical association between the recorded HPAI H5N1 virus presence and a set of five key environmental variables comprising elevation, human population, chicken numbers, duck numbers, and rice cropping intensity for three synchronous epidemic waves in Thailand and Vietnam. A consistent pattern emerges suggesting risk to be associated with duck abundance, human population, and rice cropping intensity in contrast to a relatively low association with chicken numbers. A statistical risk model based on the second epidemic wave data in Thailand is found to maintain its predictive power when extrapolated to Vietnam, which supports its application to other countries with similar agro-ecological conditions such as Laos or Cambodia. The model's potential application to mapping HPAI H5N1 disease risk in Indonesia is discussed. PMID:18362346

  15. Highly Pathogenic Avian Influenza H5N1 in Mainland China

    PubMed Central

    Li, Xin-Lou; Liu, Kun; Yao, Hong-Wu; Sun, Ye; Chen, Wan-Jun; Sun, Ruo-Xi; de Vlas, Sake J.; Fang, Li-Qun; Cao, Wu-Chun

    2015-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 has posed a significant threat to both humans and birds, and it has spanned large geographic areas and various ecological systems throughout Asia, Europe and Africa, but especially in mainland China. Great efforts in control and prevention of the disease, including universal vaccination campaigns in poultry and active serological and virological surveillance, have been undertaken in mainland China since the beginning of 2006. In this study, we aim to characterize the spatial and temporal patterns of HPAI H5N1, and identify influencing factors favoring the occurrence of HPAI H5N1 outbreaks in poultry in mainland China. Our study shows that HPAI H5N1 outbreaks took place sporadically after vaccination campaigns in poultry, and mostly occurred in the cold season. The positive tests in routine virological surveillance of HPAI H5N1 virus in chicken, duck, goose as well as environmental samples were mapped to display the potential risk distribution of the virus. Southern China had a higher positive rate than northern China, and positive samples were mostly detected from chickens in the north, while the majority were from duck in the south, and a negative correlation with monthly vaccination rates in domestic poultry was found (R = −0.19, p value = 0.005). Multivariate panel logistic regression identified vaccination rate, interaction between distance to the nearest city and national highway, interaction between distance to the nearest lake and wetland, and density of human population, as well as the autoregressive term in space and time as independent risk factors in the occurrence of HPAI H5N1 outbreaks, based on which a predicted risk map of the disease was derived. Our findings could provide new understanding of the distribution and transmission of HPAI H5N1 in mainland China and could be used to inform targeted surveillance and control efforts in both human and poultry populations to reduce the risk of future infections

  16. Continuing Reassortant of H5N6 Subtype Highly Pathogenic Avian Influenza Virus in Guangdong

    PubMed Central

    Yuan, Runyu; Wang, Zheng; Kang, Yinfeng; Wu, Jie; Zou, Lirong; Liang, Lijun; Song, Yingchao; Zhang, Xin; Ni, Hanzhong; Lin, Jinyan; Ke, Changwen

    2016-01-01

    First identified in May 2014 in China's Sichuan Province, initial cases of H5N6 avian influenza virus (AIV) infection in humans raised great concerns about the virus's prevalence, origin, and development. To evaluate both AIV contamination in live poultry markets (LPMs) and the risk of AIV infection in humans, we have conducted surveillance of LPMs in Guangdong Province since 2013 as part of environmental sampling programs. With environmental samples associated with these LPMs, we performed genetic and phylogenetic analyses of 10 H5N6 AIVs isolated from different cities of Guangdong Province from different years. Results revealed that the H5N6 viruses were reassortants with hemagglutinin (HA) genes derived from clade 2.3.4.4 of H5-subtype AIV, yet neuraminidase (NA) genes derived from H6N6 AIV. Unlike the other seven H5N6 viruses isolated in first 7 months of 2014, all of which shared remarkable sequence similarity with the H5N1 AIV in all internal genes, the PB2 genes of GZ693, GZ670, and ZS558 more closely related to H6N6 AIV and the PB1 gene of GZ693 to the H3-subtype AIV. Phylogenetic analyses revealed that the environmental H5N6 AIV related closely to human H5N6 AIVs isolated in Guangdong. These results thus suggest that continued reassortment has enabled the emergence of a novel H5N6 virus in Guangdong, as well as highlight the potential risk of highly pathogenic H5N6 AIVs in the province. PMID:27148209

  17. Agents that activate the High Osmolarity Glycerol pathway as a means to combat pathogenic molds.

    PubMed

    Wiedemann, Annegret; Spadinger, Anja; Löwe, Axel; Seeger, Allison; Ebel, Frank

    2016-12-01

    Treatment of invasive fungal infections often fails due to the limited number of therapeutic options. In this study, we have analyzed the impact of agents activating the High Osmolarity Glycerol (HOG) pathway on molds that cause infections in humans and livestock. We found that agents like fludioxonil and iprodione, have a clear anti-fungal activity against pathogenic Aspergillus, Lichtheimia, Rhizopus and Scedosporium species. Only A. terreus turned out to be resistant to fludioxonil, even though it is sensitive to iprodione and able to adapt to hyperosmotic conditions. Moreover, the A. terreus tcsC gene can fully complement an A. fumigatus ΔtcsC mutant, thereby also restoring its sensitivity to fludioxonil. The particular phenotype of A. terreus is therefore likely to be independent of its TcsC kinase. In a second part of this study, we further explored the impact of fludioxonil using A. fumigatus as a model organism. When applied in concentrations of 1-2μg/ml, fludioxonil causes an immediate growth arrest and, after longer exposure, a quantitative killing. Hyphae respond to fludioxonil by the formation of new septa and closure of nearly all septal pores. Mitosis occurs in all compartments and is accompanied by a re-localization of the NimA kinase to the cytoplasm. In the swollen compartments, the massive extension of the cell wall triggers a substantial reorganization resulting in an enhanced incorporation of chitin and, most strikingly, a massive loss of galactomannan. Hence, HOG-activating agents have dramatic cell biological consequences and may represent a valuable, future element in the armory that can be used to combat mold infections.

  18. The pathogenic fungus Paracoccidioides brasiliensis exports extracellular vesicles containing highly immunogenic α-Galactosyl epitopes.

    PubMed

    Vallejo, Milene C; Matsuo, Alisson L; Ganiko, Luciane; Medeiros, Lia C Soares; Miranda, Kildare; Silva, Luiz S; Freymüller-Haapalainen, Edna; Sinigaglia-Coimbra, Rita; Almeida, Igor C; Puccia, Rosana

    2011-03-01

    Exosome-like vesicles containing virulence factors, enzymes, and antigens have recently been characterized in fungal pathogens, such as Cryptococcus neoformans and Histoplasma capsulatum. Here, we describe extracellular vesicles carrying highly immunogenic α-linked galactopyranosyl (α-Gal) epitopes in Paracoccidioides brasiliensis. P. brasiliensis is a dimorphic fungus that causes human paracoccidioidomycosis (PCM). For vesicle preparations, cell-free supernatant fluids from yeast cells cultivated in Ham's defined medium-glucose were concentrated in an Amicon ultrafiltration system and ultracentrifuged at 100,000 × g. P. brasiliensis antigens were present in preparations from phylogenetically distinct isolates Pb18 and Pb3, as observed in immunoblots revealed with sera from PCM patients. In an enzyme-linked immunosorbent assay (ELISA), vesicle components containing α-Gal epitopes reacted strongly with anti-α-Gal antibodies isolated from both Chagas' disease and PCM patients, with Marasmius oreades agglutinin (MOA) (a lectin that recognizes terminal α-Gal), but only faintly with natural anti-α-Gal. Reactivity was inhibited after treatment with α-galactosidase. Vesicle preparations analyzed by electron microscopy showed vesicular structures of 20 to 200 nm that were labeled both on the surface and in the lumen with MOA. In P. brasiliensis cells, components carrying α-Gal epitopes were found distributed on the cell wall, following a punctuated confocal pattern, and inside large intracellular vacuoles. Lipid-free vesicle fractions reacted with anti-α-Gal in ELISA only when not digested with α-galactosidase, while reactivity with glycoproteins was reduced after β-elimination, which is indicative of partial O-linked chain localization. Our findings open new areas to explore in terms of host-parasite relationships in PCM and the role played in vivo by vesicle components and α-galactosyl epitopes.

  19. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif

    PubMed Central

    Luczo, Jasmina M.; Stambas, John; Durr, Peter A.; Michalski, Wojtek P.

    2015-01-01

    Summary The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio‐economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host‐pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. PMID:26467906

  20. Global distribution patterns of highly pathogenic H5N1 avian influenza: environmental vs. socioeconomic factors.

    PubMed

    Chen, Youhua; Chen, You-Fang

    2014-01-01

    In this report, we quantitatively analyzed the essential ecological factors that were strongly correlated with the global outbreak of highly pathogenic H5N1 avian influenza. The ecological niche modeling (ENM) was used to reveal the potential outbreak hotspots of H5N1. A two-step modeling procedure has been proposed: we first used BioClim model to obtain the coarse suitable areas of H5N1, and then those suitable areas with very high probabilities were retained as the inputs of multiple-variable autologistic regression analysis (MAR) for model refinement. MAR was implemented taking spatial autocorrelation into account. The final performance of ENM was evaluated using the areas under the curve (AUC) of receiver-operating characteristic. In addition, principal component analysis (PCA) was employed to reveal the most important variables and relevant ecological gradients of H5N1 outbreak. Niche visualization was used to identify potential spreading trend of H5N1 along important ecological gradients. For the first time, we combined socioeconomic and environmental variables as joint predictors in developing ecological niche modeling. Environmental variables represented the natural element related to H5N1 outbreak, whereas socioeconomic ones represented the anthropogenic element. Our results indicated that: (1) the high-risk hotspots are mainly located in temperate zones (indicated by ENM)-correspondingly, we argued that the "ecoregions hypothesis" was reasonable to some extent; (2) evaporation, humidity, human population density, livestock population density were the first four important factors (in descending order) that were associated with the H5N1 global outbreak (indicated by PCA); (3) influenza had a tendency to expand into areas with low evaporation (indicated by niche visualization). In conclusion, our study substantiates that both the environmental and socioeconomic variables jointly determined the global spreading trend of H5N1, but environmental variables

  1. Intrinsically disordered protein from a pathogenic mesophile Mycobacterium tuberculosis adopts structured conformation at high temperature.

    PubMed

    Kumar, Niti; Shukla, Swati; Kumar, Sanjiv; Suryawanshi, Anju; Chaudhry, Uma; Ramachandran, Srinivasan; Maiti, Souvik

    2008-05-15

    Compared to eukaryotes, the occurrence of "intrinsically disordered" or "natively unfolded" proteins in prokaryotes has not been explored extensively. Here, we report the occurrence of an intrinsically disordered protein from the mesophilic human pathogen Mycobacterium tuberculosis. The Histidine-tagged recombinant Rv3221c biotin-binding protein is intrinsically disordered at ambient and physiological growth temperatures as revealed by circular dichroism and Fourier transform infrared (FTIR) spectroscopic studies. However, an increase in temperature induces a transition from disordered to structured state with a folding temperature of approximately 53 degrees C. Addition of a structure inducing solvent trifluoroethanol (TFE) causes the protein to fold at lower temperatures suggesting that TFE fosters hydrophobic interactions, which drives protein folding. Differential Scanning Calorimetry studies revealed that folding is endothermic and the transition from a disordered to structured state is continuous (higher-order), implying existence of intermediates during folding process. Secondary structure analysis revealed that the protein has propensity to form beta-sheets. This is in conformity with FTIR spectrum that showed an absorption peak at wave number of 1636 cm(-1), indicative of disordered beta-sheet conformation in the native state. These data suggest that although Rv3221c may be disordered under ambient or optimal growth temperature conditions, it has the potential to fold into ordered structure at high temperature driven by increased hydrophobic interactions. In contrast to the generally known behavior of other intrinsically disordered proteins folding at high temperature, Rv3221c does not appear to oligomerize or aggregate as revealed through numerous experiments including Congo red binding, Thioflavin T-binding, turbidity measurements, and examining molar ellipticity as a function of protein concentration. The amino acid composition of Rv3221c reveals that

  2. Custom database development and biomarker discovery methods for MALDI-TOF mass spectrometry-based identification of high-consequence bacterial pathogens.

    PubMed

    Tracz, Dobryan M; Tyler, Andrea D; Cunningham, Ian; Antonation, Kym S; Corbett, Cindi R

    2017-03-01

    A high-quality custom database of MALDI-TOF mass spectral profiles was developed with the goal of improving clinical diagnostic identification of high-consequence bacterial pathogens. A biomarker discovery method is presented for identifying and evaluating MALDI-TOF MS spectra to potentially differentiate biothreat bacteria from less-pathogenic near-neighbour species.

  3. Gene expression responses to highly pathogenic avian influenza H5N1 virus infections in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in host response to infection with avian influenza (AI) viruses were investigated by identifying genes differentially expressed in tissues of infected ducks. Clear differences in pathogenicity were observed among ducks inoculated with five H5N1 HPAI viruses. Virus titers in tissues cor...

  4. Identification of highly variable supernumerary chromosome segments in an asexual pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Supernumerary chromosome segments are known to harbor different transposons from their essential counterparts. The aim of this study was to investigate the role of transposons in the origin and evolution of supernumerary segments in the asexual fungal pathogen Fusariumvirguliforme. We compared the g...

  5. High levels of diversity and population structure in the potato late blight pathogen at the Mexico centre of origin.

    PubMed

    Wang, Jianan; Fernández-Pavía, Sylvia P; Larsen, Meredith M; Garay-Serrano, Edith; Gregorio-Cipriano, Rosario; Rodríguez-Alvarado, Gerardo; Grünwald, Niklaus J; Goss, Erica M

    2017-02-01

    Globally destructive crop pathogens often emerge by migrating out of their native ranges. These pathogens are often diverse at their centre of origin and may exhibit adaptive variation in the invaded range via multiple introductions from different source populations. However, source populations are generally unidentified or poorly studied compared to invasive populations. Phytophthora infestans, the causal agent of late blight, is one of the most costly pathogens of potato and tomato worldwide. Mexico is the centre of origin and diversity of P. infestans and migration events out of Mexico have enormously impacted disease dynamics in North America and Europe. The debate over the origin of the pathogen, and population studies of P. infestans in Mexico, has focused on the Toluca Valley, whereas neighbouring regions have been little studied. We examined the population structure of P. infestans across central Mexico, including samples from Michoacán, Tlaxcala and Toluca. We found high levels of diversity consistent with sexual reproduction in Michoacán and Tlaxcala and population subdivision that was strongly associated with geographic region. We determined that population structure in central Mexico has contributed to diversity in introduced populations based on relatedness of U.S. clonal lineages to Mexican isolates from different regions. Our results suggest that P. infestans exists as a metapopulation in central Mexico, and this population structure could be contributing to the repeated re-emergence of P. infestans in the United States and elsewhere.

  6. Expansion of Variant Diversity Associated with a High Prevalence of Pathogen Strain Superinfection under Conditions of Natural Transmission

    PubMed Central

    Ueti, Massaro W.; Tan, Yunbing; Broschat, Shira L.; Castañeda Ortiz, Elizabeth J.; Camacho-Nuez, Minerva; Mosqueda, Juan J.; Scoles, Glen A.; Grimes, Matthew; Brayton, Kelly A.

    2012-01-01

    Superinfection occurs when a second, genetically distinct pathogen strain infects a host that has already mounted an immune response to a primary strain. For antigenically variant pathogens, the primary strain itself expresses a broad diversity of variants over time. Thus, successful superinfection would require that the secondary strain express a unique set of variants. We tested this hypothesis under conditions of natural transmission in both temperate and tropical regions where, respectively, single-strain infections and strain superinfections of the tick-borne pathogen Anaplasma marginale predominate. Our conclusion that strain superinfection is associated with a significant increase in variant diversity is supported by progressive analysis of variant composition: (i) animals with naturally acquired superinfection had a statistically significantly greater number of unique variant sequences than animals either experimentally infected with single strains or infected with a single strain naturally, (ii) the greater number of unique sequences reflected a statistically significant increase in primary structural diversity in the superinfected animals, and (iii) the increase in primary structural diversity reflected increased combinations of the newly identified hypervariable microdomains. The role of population immunity in establishing temporal and spatial patterns of infection and disease has been well established. The results of the present study, which examined strain structure under conditions of natural transmission and population immunity, support that high levels of endemicity also drive pathogen divergence toward greater strain diversity. PMID:22585962

  7. Infectivity, transmission and pathogenicity of H5 highly pathogenic avian influenza clade 2.3.4.4 (H5N8 and H5N2) United States index viruses in Pekin ducks and Chinese geese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In late 2014, a H5N8 highly pathogenic avian influenza (HPAI) virus, clade 2.3.4.4, spread by migratory birds into North America mixing with low pathogenicity AI viruses to produce a H5N2 HPAI virus. The H5N8 and H5N2 HPAI viruses were detected initially in wild waterfowl and backyard birds, and lat...

  8. Ecological Determinants of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh

    PubMed Central

    Ahmed, Syed S. U.; Ersbøll, Annette K.; Biswas, Paritosh K.; Christensen, Jens P.; Hannan, Abu S. M. A.; Toft, Nils

    2012-01-01

    Background The agro-ecology and poultry husbandry of the south Asian and south-east Asian countries share common features, however, with noticeable differences. Hence, the ecological determinants associated with risk of highly pathogenic avian influenza (HPAI-H5N1) outbreaks are expected to differ between Bangladesh and e.g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling approaches for unmeasured spatially correlated variation. Methodology/Principal Findings An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007–2008, and 326 subdistricts with no outbreaks. The association between ecological determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1) an intrinsic conditional autoregressive (ICAR) model at subdistrict level considering their first order neighbors, and 2) a multilevel (ML) model with subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models. Conclusions/Significance The study identified a new set of ecological determinants related to river networks, migratory birds' staging areas and literacy rate in addition to already known risk factors, and clarified that the generalized concept of free grazing duck and

  9. Surveillance for Highly Pathogenic Avian Influenza Virus in Wild Birds during Outbreaks in Domestic Poultry, Minnesota, 2015

    PubMed Central

    Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul; Grear, Daniel A.; Ip, Hon S.; Vandalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To understand the potential role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl fecal samples. PMID:27064759

  10. Weak support for disappearance and restricted emergence/persistence of highly pathogenic influenza A in North American waterfowl

    USGS Publications Warehouse

    Ramey, Andy M.; Spackman, Erica; Kim Torchetti, Mia; DeLiberto, Thomas J.

    2016-01-01

    Krauss et al. (1) use lack of detection of highly pathogenic (HP) H5 clade 2.3.4.4 (henceforth "H5") influenza A viruses (IAVs) from >22,000 wild bird samples collected in North America in 2014–2015 to argue that HP H5 IAVs disappeared from waterfowl and that unresolved mechanisms restrict emergence and perpetuation of HP IAVs in natural reservoir species. Here we offer an alternative interpretation.

  11. Rapid Emergence of Highly Pathogenic Avian Influenza Subtypes from a Subtype H5N1 Hemagglutinin Variant.

    PubMed

    de Vries, Erik; Guo, Hongbo; Dai, Meiling; Rottier, Peter J M; van Kuppeveld, Frank J M; de Haan, Cornelis A M

    2015-05-01

    In 2014, novel highly pathogenic avian influenza A H5N2, H5N5, H5N6, and H5N8 viruses caused outbreaks in Asia, Europe, and North America. The H5 genes of these viruses form a monophyletic group that evolved from a clade 2.3.4 H5N1 variant. This rapid emergence of new H5Nx combinations is unprecedented in the H5N1 evolutionary history.

  12. Genetically Different Highly Pathogenic Avian Influenza A(H5N1) Viruses in West Africa, 2015

    PubMed Central

    Tassoni, Luca; Fusaro, Alice; Milani, Adelaide; Lemey, Philippe; Awuni, Joseph Adongo; Sedor, Victoria Bernice; Dogbey, Otilia; Commey, Abraham Nii Okai; Meseko, Clement; Joannis, Tony; Minoungou, Germaine L.; Ouattara, Lassina; Haido, Abdoul Malick; Cisse-Aman, Diarra; Couacy-Hymann, Emmanuel; Dauphin, Gwenaelle; Cattoli, Giovanni

    2016-01-01

    To trace the evolution of highly pathogenic influenza A(H5N1) virus in West Africa, we sequenced genomes of 43 viruses collected during 2015 from poultry and wild birds in 5 countries. We found 2 co-circulating genetic groups within clade 2.3.2.1c. Mutations that may increase adaptation to mammals raise concern over possible risk for humans. PMID:27389972

  13. High-Risk Enteric Pathogens Associated with HIV-Infection and HIV-Exposure in Kenyan Children with Acute Diarrhea

    PubMed Central

    PAVLINAC, PB; JOHN-STEWART, GC; NAULIKHA, JM; ONCHIRI, FM; DENNO, DM; ODUNDO, EA; SINGA, BO; RICHARDSON, BA; WALSON, JL

    2015-01-01

    Objective HIV-infection is an established risk for diarrheal severity, less is known about specific enteric pathogens associated with HIV status. We determined associations of selected enteric pathogens with HIV-infection and HIV-exposure among Kenyan children. Design Cross-sectional study among 6 months to 15 year olds presenting to two Western Kenya District hospitals with acute diarrhea between 2011–2013. Methods Stool was tested using standard bacterial culture and microscopy for ova and parasites. HIV testing was obtained on children and mothers. Enteric pathogen prevalence was compared between HIV-infected and HIV-uninfected children and between HIV-exposed uninfected (HEU) and HIV-unexposed. Unadjusted and adjusted prevalence ratios (PR) for selected pathogens by HIV-status were estimated using relative risk (RR) regression and P-values. Age, site, income, household crowding, water source/treatment, anthropometrics, cotrimoxazole use, and breastfeeding history were accounted for in multivariable models. Results Among 1,076 children, median age was 22 months (interquartile range: 11–42), 56 (5.2%) were HIV-infected, and 10.3%(105/1020) of HIV-uninfected children were HIV-exposed. The following organisms were most frequently isolated from stool: enteroaggregative Escherichia coli (13.3%), Giardia spp. (11.1%) Campylobacter (6.3%), enteropathogenic Escherichia coli (EPEC) (6.1%) and Cryptosporidium spp. (3.7%). Accounting for age, HIV-infection was associated with EPEC infection (PR: 3.70, P=0.002) while HIV-exposure was associated with Cryptosporidium among HIV-uninfected children (PR: 2.81, P=0.005). Conclusion EPEC and Cryptosporidium infections were more common in HIV-infected and HIV-exposed children, respectively. This could explain the increased mortality attributed to these pathogens in other studies. Interventions targeting EPEC and Cryptosporidium may reduce morbidity and mortality in high HIV-prevalence settings. PMID:25028987

  14. A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans

    PubMed Central

    Gomes, Ana C; Miranda, Isabel; Silva, Raquel M; Moura, Gabriela R; Thomas, Benjamin; Akoulitchev, Alexandre; Santos, Manuel AS

    2007-01-01

    Background Genetic code alterations have been reported in mitochondrial, prokaryotic, and eukaryotic cytoplasmic translation systems, but their evolution and how organisms cope and survive such dramatic genetic events are not understood. Results Here we used an unusual decoding of leucine CUG codons as serine in the main human fungal pathogen Candida albicans to elucidate the global impact of genetic code alterations on the proteome. We show that C. albicans decodes CUG codons ambiguously and tolerates partial reversion of their identity from serine back to leucine on a genome-wide scale. Conclusion Such codon ambiguity expands the proteome of this human pathogen exponentially and is used to generate important phenotypic diversity. This study highlights novel features of C. albicans biology and unanticipated roles for codon ambiguity in the evolution of the genetic code. PMID:17916231

  15. Proteogenomic analysis of pathogenic yeast Cryptococcus neoformans using high resolution mass spectrometry

    PubMed Central

    2014-01-01

    Background Cryptococcus neoformans, a basidiomycetous fungus of universal occurrence, is a significant opportunistic human pathogen causing meningitis. Owing to an increase in the number of immunosuppressed individuals along with emergence of drug-resistant strains, C. neoformans is gaining importance as a pathogen. Although, whole genome sequencing of three varieties of C. neoformans has been completed recently, no global proteomic studies have yet been reported. Results We performed a comprehensive proteomic analysis of C. neoformans var. grubii (Serotype A), which is the most virulent variety, in order to provide protein-level evidence for computationally predicted gene models and to refine the existing annotations. We confirmed the protein-coding potential of 3,674 genes from a total of 6,980 predicted protein-coding genes. We also identified 4 novel genes and corrected 104 predicted gene models. In addition, our studies led to the correction of translational start site, splice junctions and reading frame used for translation in a number of proteins. Finally, we validated a subset of our novel findings by RT-PCR and sequencing. Conclusions Proteogenomic investigation described here facilitated the validation and refinement of computationally derived gene models in the intron-rich genome of C. neoformans, an important fungal pathogen in humans. PMID:24484775

  16. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh.

    PubMed

    Haider, N; Sturm-Ramirez, K; Khan, S U; Rahman, M Z; Sarkar, S; Poh, M K; Shivaprasad, H L; Kalam, M A; Paul, S K; Karmakar, P C; Balish, A; Chakraborty, A; Mamun, A A; Mikolon, A B; Davis, C T; Rahman, M; Donis, R O; Heffelfinger, J D; Luby, S P; Zeidner, N

    2017-02-01

    Mortality in ducks and geese caused by highly pathogenic avian influenza A(H5N1) infection had not been previously identified in Bangladesh. In June-July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide appropriate

  17. Pathobiological Characterization of a Novel Reassortant Highly Pathogenic H5N1 Virus Isolated in British Columbia, Canada, 2015

    PubMed Central

    Berhane, Yohannes; Kobasa, Darwyn; Embury-Hyatt, Carissa; Pickering, Brad; Babiuk, Shawn; Joseph, Tomy; Bowes, Victoria; Suderman, Mathew; Leung, Anders; Cottam-Birt, Colleen; Hisanaga, Tamiko; Pasick, John

    2016-01-01

    In the current study, we describe the pathobiologic characteristics of a novel reassortant virus - A/chicken/BC/FAV-002/2015 (H5N1) belonging to clade 2.3.4.4 that was isolated from backyard chickens in British Columbia, Canada. Sequence analyses demonstrate PB1, PA, NA and NS gene segments were of North American lineage while PB2, HA, NP and M were derived from a Eurasian lineage H5N8 virus. This novel virus had a 19 amino acid deletion in the neuraminidase stalk. We evaluated the pathogenic potential of this isolate in various animal models. The virus was highly pathogenic to mice with a LD50 of 10 plaque forming units (PFU), but had limited tissue tropism. It caused only subclinical infection in pigs which did result in seroconversion. This virus was highly pathogenic to chickens, turkeys, juvenile Muscovy ducks (Cairnia moschata foma domestica) and adult Chinese geese (Anser cynoides domesticus) causing a systemic infection in all species. The virus was also efficiently transmitted and resulted in mortality in naïve contact ducks, geese and chickens. Our findings indicate that this novel H5N1 virus has a wide host range and enhanced surveillance of migratory waterfowl may be necessary in order to determine its potential to establish itself in the wild bird reservoir. PMID:26988892

  18. Low pathogenic avian influenza viruses in wild migratory waterfowl in a region of high poultry production, Delmarva, Maryland

    USGS Publications Warehouse

    Prosser, Diann J.; Densmore, Christine L.; Hindman, Larry J.; Iwanowicz, Deborah; Ottinger, Christopher A.; Iwanowicz, Luke R.; Driscoll, Cindy P.; Nagel, Jessica L.

    2017-01-01

    Migratory waterfowl are natural reservoirs for low pathogenic avian influenza viruses (AIVs) and may contribute to the long-distance dispersal of these pathogens as well as spillover into domestic bird populations. Surveillance for AIVs is critical to assessing risks for potential spread of these viruses among wild and domestic bird populations. The Delmarva Peninsula on the east coast of the United States is both a key convergence point for migratory Atlantic waterfowl populations and a region with high poultry production (>4,700 poultry meat facilities). Sampling of key migratory waterfowl species occurred at 20 locations throughout the Delmarva Peninsula in fall and winter of 2013–14. Samples were collected from 400 hunter-harvested or live-caught birds via cloacal and oropharyngeal swabs. Fourteen of the 400 (3.5%) birds sampled tested positive for the AIV matrix gene using real-time reverse transcriptase PCR, all from five dabbling duck species. Further characterization of the 14 viral isolates identified two hemagglutinin (H3 and H4) and four neuraminidase (N2, N6, N8, and N9) subtypes, which were consistent with isolates reported in the Influenza Research Database for this region. Three of 14 isolates contained multiple HA or NA subtypes. This study adds to the limited baseline information available for AIVs in migratory waterfowl populations on the Delmarva Peninsula, particularly prior to the highly pathogenic AIV A(H5N8) and A(H5N2) introductions to the United States in late 2014.

  19. Pathogenicity, sequence and phylogenetic analysis of Malaysian Chicken anaemia virus obtained after low and high passages in MSB-1 cells.

    PubMed

    Chowdhury, S M Z H; Omar, A R; Aini, I; Hair-Bejo, M; Jamaluddin, A A; Md-Zain, B M; Kono, Y

    2003-12-01

    Specific-pathogen-free (SPF) chickens inoculated with low passage Chicken anaemia virus (CAV), SMSC-1 and 3-1 isolates produced lesions suggestive of CAV infection. Repeated passages of the isolates in cell culture until passage 60 (P60) and passage 123 produced viruses that showed a significantly reduced level of pathogenicity in SPF chickens compared to the low passage isolates. Sequence comparison indicated that nucleotide changes in only the coding region of the P60 passage isolates were thought to contribute to virus attenuation. Phylogenetic analysis indicated that SMSC-1 and 3-1 were highly divergent, but their P60 passage derivatives shared significant homology to a Japanese isolate A2.

  20. Highly active modulators of indole signaling alter pathogenic behaviors in Gram-negative and Gram-positive bacteria.

    PubMed

    Minvielle, Marine J; Eguren, Kristen; Melander, Christian

    2013-12-16

    Indole is a universal signal that regulates various bacterial behaviors, such as biofilm formation and antibiotic resistance. To generate mechanistic probes of indole signaling and control indole-mediated pathogenic phenotypes in both Gram-positive and Gram-negative bacteria, we have investigated the use of desformylflustrabromine (dFBr) derivatives to generate highly active indole mimetics. We have developed non-microbicidal dFBr derivatives that are 27-2000 times more active than indole in modulating biofilm formation, motility, acid resistance, and antibiotic resistance. The activity of these analogues parallels indole, because they are dependent on temperature, the enzyme tryptophanase TnaA, and the transcriptional regulator SdiA. This investigation demonstrates that molecules based on the dFBr scaffold can alter pathogenic behaviors by mimicking indole-signaling pathways.

  1. Variation in protection by seven inactivated H5 vaccine strains against eight H5N1 high pathogenicity avian influenza viruses in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    H5N1 high pathogenicity avian influenza virus (HPAIV) is an important pathogen for poultry. Vaccines have assisted in control for poultry, and for human pandemic preparedness. However the genetic diversity and rapid antigenic drifting of the field viruses have led to inadequate protection. This s...

  2. A highly pathogenic avian influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrated increased replication and transmission in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the pathogenicity and transmissibility of a reverse-genetics derived highly pathogenic avian influenza (HPAI) H5N1 influenza A virus (IAV), A/Iraq/775/06, and a reassortant virus comprised of the HA and NA from A/Iraq/775/06 and the internal genes of a 2009 pandemic H1N1, A/N...

  3. Effect of age on pathogenesis and innate immune responses in Pekin ducks infected with different H5N1 highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks varies between different viruses and is affected by the age of the ducks, with younger ducks presenting more severe disease. In order to better understand the pathobiology of H5N1 HPAI in ducks, including t...

  4. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on specific pathogen free (SPF) birds immunized with 0.2 ...

  5. A high diversity of Eurasian lineage low pathogenicity avian influenza A viruses circulate among wild birds sampled in Egypt.

    PubMed

    Gerloff, Nancy A; Jones, Joyce; Simpson, Natosha; Balish, Amanda; Elbadry, Maha Adel; Baghat, Verina; Rusev, Ivan; de Mattos, Cecilia C; de Mattos, Carlos A; Zonkle, Luay Elsayed Ahmed; Kis, Zoltan; Davis, C Todd; Yingst, Sam; Cornelius, Claire; Soliman, Atef; Mohareb, Emad; Klimov, Alexander; Donis, Ruben O

    2013-01-01

    Surveillance for influenza A viruses in wild birds has increased substantially as part of efforts to control the global movement of highly pathogenic avian influenza A (H5N1) virus. Studies conducted in Egypt from 2003 to 2007 to monitor birds for H5N1 identified multiple subtypes of low pathogenicity avian influenza A viruses isolated primarily from migratory waterfowl collected in the Nile Delta. Phylogenetic analysis of 28 viral genomes was performed to estimate their nearest ancestors and identify possible reassortants. Migratory flyway patterns were included in the analysis to assess gene flow between overlapping flyways. Overall, the viruses were most closely related to Eurasian, African and/or Central Asian lineage low pathogenicity viruses and belonged to 15 different subtypes. A subset of the internal genes seemed to originate from specific flyways (Black Sea-Mediterranean, East African-West Asian). The remaining genes were derived from a mixture of viruses broadly distributed across as many as 4 different flyways suggesting the importance of the Nile Delta for virus dispersal. Molecular clock date estimates suggested that the time to the nearest common ancestor of all viruses analyzed ranged from 5 to 10 years, indicating frequent genetic exchange with viruses sampled elsewhere. The intersection of multiple migratory bird flyways and the resulting diversity of influenza virus gene lineages in the Nile Delta create conditions favoring reassortment, as evident from the gene constellations identified by this study. In conclusion, we present for the first time a comprehensive phylogenetic analysis of full genome sequences from low pathogenic avian influenza viruses circulating in Egypt, underscoring the significance of the region for viral reassortment and the potential emergence of novel avian influenza A viruses, as well as representing a highly diverse influenza A virus gene pool that merits continued monitoring.

  6. A High Diversity of Eurasian Lineage Low Pathogenicity Avian Influenza A Viruses Circulate among Wild Birds Sampled in Egypt

    PubMed Central

    Gerloff, Nancy A.; Jones, Joyce; Simpson, Natosha; Balish, Amanda; ElBadry, Maha Adel; Baghat, Verina; Rusev, Ivan; de Mattos, Cecilia C.; de Mattos, Carlos A.; Zonkle, Luay Elsayed Ahmed; Kis, Zoltan; Davis, C. Todd; Yingst, Sam; Cornelius, Claire; Soliman, Atef; Mohareb, Emad; Klimov, Alexander; Donis, Ruben O.

    2013-01-01

    Surveillance for influenza A viruses in wild birds has increased substantially as part of efforts to control the global movement of highly pathogenic avian influenza A (H5N1) virus. Studies conducted in Egypt from 2003 to 2007 to monitor birds for H5N1 identified multiple subtypes of low pathogenicity avian influenza A viruses isolated primarily from migratory waterfowl collected in the Nile Delta. Phylogenetic analysis of 28 viral genomes was performed to estimate their nearest ancestors and identify possible reassortants. Migratory flyway patterns were included in the analysis to assess gene flow between overlapping flyways. Overall, the viruses were most closely related to Eurasian, African and/or Central Asian lineage low pathogenicity viruses and belonged to 15 different subtypes. A subset of the internal genes seemed to originate from specific flyways (Black Sea-Mediterranean, East African-West Asian). The remaining genes were derived from a mixture of viruses broadly distributed across as many as 4 different flyways suggesting the importance of the Nile Delta for virus dispersal. Molecular clock date estimates suggested that the time to the nearest common ancestor of all viruses analyzed ranged from 5 to 10 years, indicating frequent genetic exchange with viruses sampled elsewhere. The intersection of multiple migratory bird flyways and the resulting diversity of influenza virus gene lineages in the Nile Delta create conditions favoring reassortment, as evident from the gene constellations identified by this study. In conclusion, we present for the first time a comprehensive phylogenetic analysis of full genome sequences from low pathogenic avian influenza viruses circulating in Egypt, underscoring the significance of the region for viral reassortment and the potential emergence of novel avian influenza A viruses, as well as representing a highly diverse influenza A virus gene pool that merits continued monitoring. PMID:23874653

  7. High-throughput detection of food-borne pathogenic bacteria using oligonucleotide microarray with quantum dots as fluorescent labels.

    PubMed

    Huang, Aihua; Qiu, Zhigang; Jin, Min; Shen, Zhiqiang; Chen, Zhaoli; Wang, Xinwei; Li, Jun-Wen

    2014-08-18

    Bacterial pathogens are mostly responsible for food-borne diseases, and there is still substantial room for improvement in the effective detection of these organisms. In the present study, we explored a new method to detect target pathogens easily and rapidly with high sensitivity and specificity. This method uses an oligonucleotide microarray combined with quantum dots as fluorescent labels. Oligonucleotide probes targeting the 16SrRNA gene were synthesized to create an oligonucleotide microarray. The PCR products labeled with biotin were subsequently hybridized using an oligonucleotide microarray. Following incubation with CdSe/ZnS quantum dots coated with streptavidin, fluorescent signals were detected with a PerkinElmer Gx Microarray Scanner. The results clearly showed specific hybridization profiles corresponding to the bacterial species assessed. Two hundred and sixteen strains of food-borne bacterial pathogens, including standard strains and isolated strains from food samples, were used to test the specificity, stability, and sensitivity of the microarray system. We found that the oligonucleotide microarray combined with quantum dots used as fluorescent labels can successfully discriminate the bacterial organisms at the genera or species level, with high specificity and stability as well as a sensitivity of 10 colony forming units (CFU)/mL of pure culture. We further tested 105 mock-contaminated food samples and achieved consistent results as those obtained from traditional biochemical methods. Together, these results indicate that the quantum dot-based oligonucleotide microarray has the potential to be a powerful tool in the detection and identification of pathogenic bacteria in foods.

  8. Origin and evolution of highly pathogenic H5N1 avian influenza in Asia.

    PubMed

    Sims, L D; Domenech, J; Benigno, C; Kahn, S; Kamata, A; Lubroth, J; Martin, V; Roeder, P

    2005-08-06

    Outbreaks of highly pathogenic avian influenza caused by H5N1 viruses were reported almost simultaneously in eight neighbouring Asian countries between December 2003 and January 2004, with a ninth reporting in August 2004, suggesting that the viruses had spread recently and rapidly. However, they had been detected widely in the region in domestic waterfowl and terrestrial poultry for several years before this, and the absence of widespread disease in the region before 2003, apart from localised outbreaks in the Hong Kong Special Autonomous Region (SAR), is perplexing. Possible explanations include limited virus excretion by domestic waterfowl infected with H5N1, the confusion of avian influenza with other serious endemic diseases, the unsanctioned use of vaccines, and the under-reporting of disease as a result of limited surveillance. There is some evidence that the excretion of the viruses by domestic ducks had increased by early 2004, and there is circumstantial evidence that they can be transmitted by wild birds. The migratory birds from which viruses have been isolated were usually sick or dead, suggesting that they would have had limited potential for carrying the viruses over long distances unless subclinical infections were prevalent. However, there is strong circumstantial evidence that wild birds can become infected from domestic poultry and potentially can exchange viruses when they share the same environment. Nevertheless, there is little reason to believe that wild birds have played a more significant role in spreading disease than trade through live bird markets and movement of domestic waterfowl. Asian H5N1 viruses were first detected in domestic geese in southern China in 1996. By 2000, their host range had extended to domestic ducks, which played a key role in the genesis of the 2003/04 outbreaks. The epidemic was not due to the introduction and spread of a single virus but was caused by multiple viruses which were genotypically linked to the Goose

  9. Rapid identification of bovine mastitis pathogens by high-resolution melt analysis of 16S rDNA sequences.

    PubMed

    Ajitkumar, Praseeda; Barkema, Herman W; De Buck, Jeroen

    2012-03-23

    Accurate identification of mastitis pathogens is often compromised when using conventional culture-based methods. Here, we report a novel, rapid assay tested for speciation of bacterial mastitis pathogens using high-resolution melt analysis (HRMA) of 16S rDNA sequences. Real-time PCR amplification of 16S rRNA gene fragment, spanning the variable region V5 and V6 was performed with a resulting amplicon of 290bp. First, a library was generated of melt curves of 9 common pathogens that are implicated in bovine mastitis. Six of the isolates, Escherichia coli, Streptococcus agalactiae, Klebsiella pneumoniae, Streptococcus uberis, Staphylococcus aureus and Mycoplasma bovis, were type strains while the other 3, Arcanobacterium pyogenes, Corynebacterium bovis and Streptococcus dysgalactiae, were bovine mastitis field isolates. Four of the type strains, E. coli, S. agalactiae, K. pneumoniae and S. aureus, were found to be of human origin, while the other 3 type strains were isolated from bovine infections. Secondly, the melt curves and corresponding amplicon sequences of A. pyogenes, E. coli, S. agalactiae, S. dysgalactiae, K. pneumoniae, S. uberis and S. aureus were compared with 10 bovine mastitis field isolates of each pathogen. Based on the distinct differences in melt curves and sequences between human and bovine isolates of E. coli and K. pneumoniae, it was deemed necessary to select a set of bovine strains for these pathogens to be used as reference strains in the HRMA. Next, the HRMA was validated by three interpreters analyzing the differential clustering pattern of melt curves of 60 bacterial cultures obtained from mastitis milk samples. The three test interpreters were blinded to the culture and sequencing results of the isolates. Overall accuracy of the validation assay was 95% as there was difficulty in identifying the streptococci due to heterogeneity observed in the PCR amplicons of S. uberis. The present study revealed that broad-range real-time PCR with

  10. A non-pathogenic and optically high concentrated (R,R)-2,3-butanediol biosynthesizing Klebsiella strain.

    PubMed

    Lee, Soojin; Kim, Borim; Yang, Jeongmo; Jeong, Daun; Park, Soohyun; Lee, Jinwon

    2015-09-10

    The objective of this work was to construct a non-pathogenic Klebsiella pneumonia strain that can produce optically high concentrated (R,R)-2,3-BDO. A K. pneumonia mutant lacking the pathogenic factor was used as the host strain. In order to construct a K. pneumonia strain that would biosynthesize high concentrated (R,R)-2,3-BDO, gene deletion and over-expression methods were combined; firstly, the 2,3-BDO dehydrogenase (budC) gene was deleted to re-direct utilization of the carbon source to (R,R)-2,3-BDO biosynthesis; secondly, the two glycerol dehydrogenase (GDH) enzymes in K. pneumonia (DhaD and GldA) were over-expressed to maximize (R,R)-2,3-BDO biosynthesis; and thirdly, the lactate dehydrogenase (ldhA) gene was deleted to minimize the accumulation of lactate. SGSB112, a non-pathogenic strain of K. pneumonia that can produce optically high concentrated (R,R)-2,3-BDO, was constructed as above. Approximately 36% of the carbon source was converted to (R,R)-2,3-BDO by SGSB112, achieving a production of 61gL(-1) (R,R)-2,3-BDO in a fed-batch fermentation. On the other hand, meso-2,3-BDO was produced 1.4gL(-1) and (S,S)-2,3-BDO was not detected. This study provides an insight into 2,3-BDO biosynthesis in K. pneumonia and demonstrates the achievement of high-yield production of optically high concentrated (R,R)-2,3-BDO through constructing a strain by genetic modification and metabolic engineering.

  11. Determining the Phylogenetic and Phylogeographic Origin of Highly Pathogenic Avian Influenza (H7N3) in Mexico

    PubMed Central

    Lu, Lu; Lycett, Samantha J.; Leigh Brown, Andrew J.

    2014-01-01

    Highly pathogenic (HP) avian influenza virus (AIV) H7N3 outbreaks occurred 3 times in the Americas in the past 10 years and caused severe economic loss in the affected regions. In June/July 2012, new HP H7N3 outbreaks occurred at commercial farms in Jalisco, Mexico. Outbreaks continued to be identified in neighbouring states in Mexico till August 2013. To explore the origin of this outbreak, time resolved phylogenetic trees were generated from the eight segments of full-length AIV sequences in North America using BEAST. Location, subtype, avian host species and pathogenicity were modelled as discrete traits upon the trees using continuous time Markov chains. A further joint analysis among segments was performed using a hierarchical phylogenetic model (HPM) which allowed trait rates (location, subtype, host species) to be jointly inferred across different segments. The complete spatial diffusion process was visualised through virtual globe software. Our result indicated the Mexico HP H7N3 originated from the large North America low pathogenicity AIV pool through complicated reassortment events. Different segments were contributed by wild waterfowl from different N. American flyways. Five of the eight segments (HA, NA, NP, M, NS) were introduced from wild birds migrating along the central North American flyway, and PB2, PB1 and PA were introduced via the western North American flyway. These results highlight a potential role for Mexico as a hotspot of virus reassortment as it is where wild birds from different migration routes mix during the winter. PMID:25226523

  12. Determining the phylogenetic and phylogeographic origin of highly pathogenic avian influenza (H7N3) in Mexico.

    PubMed

    Lu, Lu; Lycett, Samantha J; Leigh Brown, Andrew J

    2014-01-01

    Highly pathogenic (HP) avian influenza virus (AIV) H7N3 outbreaks occurred 3 times in the Americas in the past 10 years and caused severe economic loss in the affected regions. In June/July 2012, new HP H7N3 outbreaks occurred at commercial farms in Jalisco, Mexico. Outbreaks continued to be identified in neighbouring states in Mexico till August 2013. To explore the origin of this outbreak, time resolved phylogenetic trees were generated from the eight segments of full-length AIV sequences in North America using BEAST. Location, subtype, avian host species and pathogenicity were modelled as discrete traits upon the trees using continuous time Markov chains. A further joint analysis among segments was performed using a hierarchical phylogenetic model (HPM) which allowed trait rates (location, subtype, host species) to be jointly inferred across different segments. The complete spatial diffusion process was visualised through virtual globe software. Our result indicated the Mexico HP H7N3 originated from the large North America low pathogenicity AIV pool through complicated reassortment events. Different segments were contributed by wild waterfowl from different N. American flyways. Five of the eight segments (HA, NA, NP, M, NS) were introduced from wild birds migrating along the central North American flyway, and PB2, PB1 and PA were introduced via the western North American flyway. These results highlight a potential role for Mexico as a hotspot of virus reassortment as it is where wild birds from different migration routes mix during the winter.

  13. High-efficiency microarray of 3-D carbon MEMS electrodes for pathogen detection systems

    NASA Astrophysics Data System (ADS)

    Kassegne, Sam; Wondimu, Berhanu; Majzoub, Mohammad; Shin, Jiae

    2008-11-01

    Molecular diagnostic applications for pathogen detections require the ability to separate pathogens such as bacteria, viruses, etc., from a biological sample of blood or saliva. Over the past several years, conventional two-dimensional active microarrays have been used with success for the manipulation of biomolecules including DNA. However, they have a major drawback of inability to process relatively 'largevolume' samples useful in infectious disease diagnostics applications. This paper presents an active microarray of three-dimensional carbon electrodes that exploits electrokinetic forces for transport, accumulation, and hybridization of charged bio-molecules with an added advantage of large volume capability. Tall 3-dimensional carbon microelectrode posts are fabricated using C-MEMS (Carbon MEMS) technology that is emerging as a very exciting research area since carbon has fascinating physical, chemical, mechanical and electrical properties in addition to its low cost. The chip fabricated using CMEMS technology is packaged and its efficiency of separation and accumulation of charged particle established by manipulating negatively charged polycarboxylate 2 μm beads in 50 mM histidine buffer.

  14. Tracking the emerging human pathogen Pseudallescheria boydii by using highly specific monoclonal antibodies.

    PubMed

    Thornton, Christopher R

    2009-05-01

    Pseudallescheria boydii has long been known to cause white grain mycetoma in immunocompetent humans, but it has recently emerged as an opportunistic pathogen of humans, causing potentially fatal invasive infections in immunocompromised individuals and evacuees of natural disasters, such as tsunamis and hurricanes. The diagnosis of P. boydii is problematic since it exhibits morphological characteristics similar to those of other hyaline fungi that cause infectious diseases, such as Aspergillus fumigatus and Scedosporium prolificans. This paper describes the development of immunoglobulin M (IgM) and IgG1 kappa-light chain monoclonal antibodies (MAbs) specific to P. boydii and certain closely related fungi. The MAbs bind to an immunodominant carbohydrate epitope on an extracellular 120-kDa antigen present in the spore and hyphal cell walls of P. boydii and Scedosporium apiospermum. The MAbs do not react with S. prolificans, Scedosporium dehoogii, or a large number of clinically relevant fungi, including A. fumigatus, Candida albicans, Cryptococcus neoformans, Fusarium solani, and Rhizopus oryzae. The MAbs were used in immunofluorescence and double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) to accurately differentiate P. boydii from other infectious fungi and to track the pathogen in environmental samples. Specificity of the DAS-ELISA was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of environmental isolates.

  15. Genetic Characterization of Continually Evolving Highly Pathogenic H5N6 Influenza Viruses in China, 2012–2016

    PubMed Central

    Li, Meng; Zhao, Na; Luo, Jing; Li, Yuan; Chen, Lin; Ma, Jiajun; Zhao, Lin; Yuan, Guohui; Wang, Chengmin; Wang, Yutian; Liu, Yanhua; He, Hongxuan

    2017-01-01

    H5N6 is a highly pathogenic avian influenza (HPAI) and a zoonotic disease that causes recurring endemics in East Asia. At least 155 H5N6 outbreaks, including 15 human infections, have been reported in China. These repeated outbreaks have increased concern that the H5N6 virus may cross over to humans and cause a pandemic. In February, 2016, peafowls in a breeding farm exhibited a highly contagious disease. Post-mortem examinations, including RT-PCR, and virus isolation, confirmed that the highly pathogenic H5N6 influenza virus was the causative agent, and the strain was named A/Pavo Cristatus/Jiangxi/JA1/2016. In animal experiments, it exhibited high pathogenicity in chickens and an estimated median lethal dose in mice of ~104.3 TCID50. A phylogenetic analysis showed that JA1/2016 was clustered in H5 clade 2.3.4.4. FG594-like H5N6 virus from Guangdong Province was the probable predecessor of JA1/2016, and the estimated divergence time was June 2014. Furthermore, we found that H5N6 influenza viruses can be classified into the two following groups: Group 1 and Group 2. Group 2 influenza viruses have not been detected since the end of 2014, whereas Group 1 influenza viruses have continually evolved and reassorted with the “gene pool” circulating in south China, resulting in the rise of novel subtypes of this influenza virus. An increase in the number of its identified hosts, the expanding range of its distribution, and the continual evolution of H5N6 AIVs enhance the risk that an H5N6 virus may spread to other continents and cause a pandemic. PMID:28293218

  16. Protective immunity against H7N3 highly pathogenic avian influenza induced following inoculation of chickens with H7 low pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the poultry industry, live virus vaccines are used to induce immunity against numerous respiratory pathogens. These are typically lower virulent forms of virus which are limited in replication and pathology, but induce mucosal, humoral, and cellular immunity. Because of the potential for revers...

  17. Lactobacillus crispatus L1: high cell density cultivation and exopolysaccharide structure characterization to highlight potentially beneficial effects against vaginal pathogens

    PubMed Central

    2014-01-01

    Background Vaginal lactic acid bacteria defend the host against pathogens through a combination of competitive exclusion, competition for nutrients, production of antimicrobial substances and through the activation of the immune system. A new human isolate named Lactobacillus crispatus L1 was characterized in this work, and a preliminary evaluation of its probiotic potential is described together with a process to obtain a high productivity of viable biomass. Results In a simulated digestion process 1.8⋅1010 cells∙ml−1 survived the gastric environment with 80% viability, without being affected by small intestine juices. Experiments on six different C sources were performed to analyze growth and organic acids production and, glucose, provided the best performances. A microfiltration strategy was exploited to improve the cellular yield in 2 L-fermentation processes, reaching 27 g · l−1 of dry biomass. Moreover, L. crispatus L1 demonstrated a greater stability to high concentrations of lactic acid, compared to other lactobacilli. The specific L. crispatus L1 exopolysaccharide was purified from the fermentation broth and characterized by NMR showing structural features and similarity to exopolysaccharides produced by pathogenic strains. Live L. crispatus L1 cells strongly reduced adhesion of a yeast pathogenic strain, Candida albicans in particular, in adherence assays. Interestingly a higher expression of the human defensin HBD-2 was also observed in vaginal cells treated with the purified exopolysaccharide, indicating a possible correlation with C. albicans growth inhibition. Conclusions The paper describes the evaluation of L. crispatus L1 as potential vaginal probiotic and the fermentation processes to obtain high concentrations of viable cells. PMID:24884965

  18. Effect of High N-Acetylcysteine Concentrations on Antibiotic Activity against a Large Collection of Respiratory Pathogens

    PubMed Central

    Landini, Giulia; Di Maggio, Tiziana; Sergio, Francesco; Docquier, Jean-Denis; Rossolini, Gian Maria

    2016-01-01

    The effect of high N-acetylcysteine (NAC) concentrations (10 and 50 mM) on antibiotic activity against 40 strains of respiratory pathogens was investigated. NAC compromised the activity of carbapenems (of mostly imipenem and, to lesser extents, meropenem and ertapenem) in a dose-dependent fashion. We demonstrated chemical instability of carbapenems in the presence of NAC. With other antibiotics, 10 mM NAC had no major effects, while 50 mM NAC sporadically decreased (ceftriaxone and aminoglycosides) or increased (penicillins) antibiotic activity. PMID:27736757

  19. Human immunodeficiency virus associated spondyloarthropathy: pathogenic insights based on imaging findings and response to highly active antiretroviral treatment

    PubMed Central

    McGonagle, D; Reade, S; Marzo-Ortega, H; Gibbon, W; O'Connor, P; Morgan, A; Melsom, R; Morgan, E; Emery, P

    2001-01-01

    The pathogenesis of human immunodeficiency virus (HIV) associated spondyloarthropathy (SpA) is poorly understood. In this case report a patient is described with severe HIV associated reactive arthritis, who on magnetic resonance imaging and sonographic imaging of inflamed knees had extensive polyenthesitis and adjacent osteitis. The arthritis deteriorated despite conventional antirheumatic treatment, but improved dramatically after highly active antiretroviral treatment, which was accompanied by a significant rise in CD4 T lymphocyte counts. The implications of the localisation of pathology and effect of treatment for pathogenic models of SpA and rheumatoid arthritis in the setting of HIV infection are discussed.

 PMID:11406526

  20. Isolation and identification of highly pathogenic avian influenza virus subtype H5N1 from emus from the Ein Gedi oasis by the Dead Sea.

    PubMed

    Amnon, Inbar; Shkoda, Irina; Lapin, Ekaterina; Raibstein, Israel; Rosenbluth, Ezra; Nagar, Sagit; Perk, Shimon; Bellaiche, Michel; Davidson, Irit

    2011-09-01

    An avian influenza virus (AIV), A/Emu/Israel/552/2010/(H5N1), was isolated from a dead emu that was found in the Ein Gedi oasis near the Dead Sea. The virus molecular characterization was performed by reverse transcriptase-polymerase chain reaction (RT-PCR) and real-time RT-PCR using AIV subtype-specific primers. The virus was of high pathogenicity, according to its intravenous pathogenicity index of 2.85 and the nucleotide sequencing at the cleavage site of the hemagglutinin gene, GERRRKKR, which is typical for highly pathogenic chicken influenza A viruses.

  1. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015

    PubMed Central

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F.; Shi, Weifeng; Lei, Fumin

    2015-01-01

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health. PMID:26259704

  2. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015.

    PubMed

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F; Shi, Weifeng; Lei, Fumin

    2015-08-11

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health.

  3. H5-based DNA constructs derived from selected highly pathogenic H5N1 avian influenza virus induce high levels of humoral antibodies in Muscovy ducks against low pathogenic viruses

    PubMed Central

    2014-01-01

    Background H5 low pathogenic avian influenza virus (LPAIV) infection in domestic ducks is a major problem in duck producing countries. Their silent circulation is an ongoing source of potential highly pathogenic or zoonotic emerging strains. To prevent such events, vaccination of domestic ducks might be attempted but remains challenging. Currently licensed vector vaccines derived from H5N1 HPAIV possess clade 0, clade 2.2 or clade 2.3.4 HA sequences: selection of the best HA candidate inducing the largest cross protection is a key issue. For this purpose, DNA immunization of specific pathogen free Muscovy ducks was performed using different synthetic codon optimized (opt) or native HA genes from H5N2 LPAIV and several H5N1 HPAIV clade 2.1, 2.2.1 and 2.3.4. Humoral cross-immunity was assessed 3 weeks after boost by hemagglutination inhibition (HI) and virus neutralization (VN) against three French H5 LPAIV antigens. Findings Vaccination with LP H5N2 HA induced the highest VN antibody titre against the homologous antigen; however, the corresponding HI titre was lower and comparable to HI titres obtained after immunization with opt HA derived from clades 2.3.4 or 2.1. Compared to the other HPAIV-derived constructs, vaccination with clade 2.3.4 opt HA consistently induced the highest antibody titres in HI and VN, when tested against all three H5 LPAIV antigens and H5N2 LPAIV, respectively: differences in titres against this last strain were statistically significant. Conclusion The present study provides a standardized method to assess cross-immunity based on HA immunogenicity alone, and suggests that clade 2.3.4-derived recombinant vaccines might be the optimal candidates for further challenge testing to vaccinate domestic Muscovy ducks against H5 LPAIV. PMID:24762011

  4. Assessment of the Internal Genes of Influenza A (H7N9) Virus Contributing to High Pathogenicity in Mice

    PubMed Central

    Bi, Yuhai; Xie, Qing; Zhang, Shuang; Li, Yun; Xiao, Haixia; Jin, Tao; Zheng, Weinan; Li, Jing; Jia, Xiaojuan; Sun, Lei; Liu, Jinhua; Qin, Chuan

    2014-01-01

    ABSTRACT The recently identified H7N9 influenza A virus has caused severe economic losses and worldwide public concern. Genetic analysis indicates that its six internal genes all originated from H9N2 viruses. However, the H7N9 virus is more highly pathogenic in humans than H9N2, which suggests that the internal genes of H7N9 have mutated. To analyze which H7N9 virus internal genes contribute to its high pathogenicity, a series of reassortants was generated by reverse genetics, with each virus containing a single internal gene of the typical A/Anhui/1/2013 (H7N9) (AH-H7N9) virus in the genetic background of the A/chicken/Shandong/lx1023/2007 (H9N2) virus. The replication ability, polymerase activity, and pathogenicity of these viruses were then evaluated in vitro and in vivo. These recombinants displayed high genetic compatibility, and the H7N9-derived PB2, M, and NP genes were identified as the virulence genes for the reassortants in mice. Further investigation confirmed that the PB2 K627 residue is critical for the high pathogenicity of the H7N9 virus and the reassortant containing the H7N9-derived PB2 segment (H9N2-AH/PB2). Notably, the H7N9-derived PB2 gene displayed greater compatibility with the H9N2 genome than that of H7N9, endowing the H9N2-AH/PB2 reassortant with greater viability and virulence than the parental H7N9 virus. In addition, the H7N9 virus, with the exception of the H9N2 reassortants, could effectively replicate in human A549 cells. Our results indicate that PB2, M, and NP are the key virulence genes, together with the surface hemagglutinin (HA) and neuraminidase (NA) proteins, contributing to the high infectivity of the H7N9 virus in humans. IMPORTANCE To date, the novel H7N9 influenza A virus has caused 437 human infections, with approximately 30% mortality. Previous work has primarily focused on the two viral surface proteins, HA and NA, but the contribution of the six internal genes to the high pathogenicity of H7N9 has not been

  5. Pathogenicity and transmission of H5 highly pathogenic avian influenza clade 2.3.4.4 viruses (H5N8 and H5N2) in domestic waterfowl (Pekin ducks and Chinese geese)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic ducks and geese are common backyard poultry in many countries, frequently in contact with wild waterfowl, which are natural reservoirs of avian influenza viruses and have played a key role in the spread of Asian-lineage H5N1 highly pathogenic avian influenza (HPAI). In late 2014, a reassor...

  6. Differences in pathogenicity, response to vaccination, and innate immune responses in different types of ducks infected with a virulent H5N1 highly pathogenic avian influenza virus from Vietnam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild ducks are reservoirs of avian influenza viruses in nature, and usually don’t show signs of disease. However, some Asian lineage H5N1 highly pathogenic avian influenza (HPAI) viruses can cause disease and death in both wild and domestic ducks. The objective of this study was to compare the cli...

  7. A vaccine prepared from a non-pathogenic H5N1 influenza virus strain from the influenza virus library conferred protective immunity to chickens against the challenge with antigenically drifted highly pathogenic avian influenza virus.

    PubMed

    Samad, Rozanah Asmah Abdul; Nomura, Naoki; Tsuda, Yoshimi; Manzoor, Rashid; Kajihara, Masahiro; Tomabechi, Daisuke; Sasaki, Takashi; Kokumai, Norihide; Ohgitani, Toshiaki; Okamatsu, Masatoshi; Takada, Ayato; Sakoda, Yoshihiro; Kida, Hiroshi

    2011-02-01

    Inactivated influenza virus vaccine prepared from a non-pathogenic influenza virus strain A/duck/Hokkaido/Vac-1/2004 (H5N1) from the virus library conferred protective immunity to chickens against the challenge of antigenically drifted highly pathogenic avian influenza virus (HPAIV), A/whooper swan/Hokkaido/1/2008 (H5N1). The efficacy of the vaccine was comparable to that prepared from genetically modified HPAIV strain deltaRRRRK rg-A/ whooper swan/Mongolia/3/2005 (H5N1), which is more antigenically related to the challenge virus strain, in chickens.

  8. A high-flux isopore micro-fabricated membrane for effective concentration and recovering of waterborne pathogens.

    PubMed

    Warkiani, Majid Ebrahimi; Lou, Chao-Ping; Liu, Hao-Bing; Gong, Hai-Qing

    2012-08-01

    A high-flux metallic micro/nano-filtration membrane has been fabricated and validated for isolation of waterborne pathogens from drinking water. Obtained membrane with smooth surface and perfectly ordered pores was achieved by a high yield and cost effective multilevel lithography and electroplating technique. The micro-fabricated membrane was also strengthened with an integrated back-support, which can withstand a high pressure during filtration. The results of microfiltration tests with model particles revealed the superior performance of the micro-fabricated filter than current commercial filters in sample throughput, recovery ratio, and reusability. This study highlighted the potential application of micro-fabricated filer in rapid filtration and recovery of C. parvum oocysts for downstream analysis.

  9. Pathogen-free screening of bacteria-specific hybridomas for selecting high-quality monoclonal antibodies against pathogen bacteria as illustrated for Legionella pneumophila.

    PubMed

    Féraudet-Tarisse, Cécile; Vaisanen-Tunkelrott, Marja-Liisa; Moreau, Karine; Lamourette, Patricia; Créminon, Christophe; Volland, Hervé

    2013-05-31

    Antibodies are potent biological tools increasingly used as detection, diagnostic and therapeutic reagents. Many technological advances have optimized and facilitated production and screening of monoclonal antibodies. We report here an original method to screen for antibodies targeting biosafety level 2 or 3 pathogens without the fastidious handling inherent to pathogen use. A double ELISA screening was performed using as coated antigen transformed Escherichia coli expressing at its surface a protein specific to the pathogenic bacteria versus control untransformed E. coli. This method was applied to Legionella, using the surface-exposed Mip protein (macrophage infectivity potentiator). This screening proved to be an excellent means of selecting mAbs that bind Legionella pneumophila 1 surface-exposed Mip protein. This method also appears more biologically relevant than screening using the recombinant Mip protein alone and less tedious than a test performed directly on Legionella bacteria. We obtained 21 mAbs that bind strongly to L. pneumophila serogroups 1 to 13, and we validated their use in a rapid ELISA (performed in 4.5 h) and an immunochromatographic test (20 min).

  10. Combating highly resistant emerging pathogen Mycobacterium abscessus and Mycobacterium tuberculosis with novel salicylanilide esters and carbamates.

    PubMed

    Baranyai, Zsuzsa; Krátký, Martin; Vinšová, Jarmila; Szabó, Nóra; Senoner, Zsuzsanna; Horváti, Kata; Stolaříková, Jiřina; Dávid, Sándor; Bősze, Szilvia

    2015-08-28

    In the Mycobacterium genus over one hundred species are already described and new ones are periodically reported. Species that form colonies in a week are classified as rapid growers, those requiring longer periods (up to three months) are the mostly pathogenic slow growers. More recently, new emerging species have been identified to lengthen the list, all rapid growers. Of these, Mycobacterium abscessus is also an intracellular pathogen and it is the most chemotherapy-resistant rapid-growing mycobacterium. In addition, the cases of multidrug-resistant Mycobacterium tuberculosis infection are also increasing. Therefore there is an urgent need to find new active molecules against these threatening strains. Based on previous results, a series of salicylanilides, salicylanilide 5-chloropyrazinoates and carbamates was designed, synthesized and characterised. The compounds were evaluated for their in vitro activity on M. abscessus, susceptible M. tuberculosis H37Rv, multidrug-resistant (MDR) M. tuberculosis MDR A8, M. tuberculosis MDR 9449/2006 and on the extremely-resistant Praha 131 (XDR) strains. All derivatives exhibited a significant activity with minimum inhibitory concentrations (MICs) in the low micromolar range. Eight salicylanilide carbamates and two salicylanilide esters exhibited an excellent in vitro activity on M. abscessus with MICs from 0.2 to 2.1 μM, thus being more effective than ciprofloxacin and gentamicin. This finding is potentially promising, particularly, as M. abscessus is a threateningly chemotherapy-resistant species. M. tuberculosis H37Rv was inhibited with MICs from 0.2 μM, and eleven compounds have lower MICs than isoniazid. Salicylanilide esters and carbamates were found that they were effective also on MDR and XDR M. tuberculosis strains with MICs ≥1.0 μM. The in vitro cytotoxicity (IC50) was also determined on human MonoMac-6 cells, and selectivity index (SI) of the compounds was established. In general, salicylanilide

  11. Victims and vectors: highly pathogenic avian influenza H5N1 and the ecology of wild birds

    USGS Publications Warehouse

    Takekawa, John Y.; Prosser, Diann J.; Newman, Scott H.; Muzaffar, Sabir Bin; Hill, Nichola J.; Yan, Baoping; Xiao, Xiangming; Lei, Fumin; Li, Tianxian; Schwarzbach, Steven E.; Howell, Judd A.

    2010-01-01

    The emergence of highly pathogenic avian influenza (HPAI) viruses has raised concerns about the role of wild birds in the spread and persistence of the disease. In 2005, an outbreak of the highly pathogenic subtype H5N1 killed more than 6,000 wild waterbirds at Qinghai Lake, China. Outbreaks have continued to periodically occur in wild birds at Qinghai Lake and elsewhere in Central China and Mongolia. This region has few poultry but is a major migration and breeding area for waterbirds in the Central Asian Flyway, although relatively little is known about migratory movements of different species and connectivity of their wetland habitats. The scientific debate has focused on the role of waterbirds in the epidemiology, maintenance and spread of HPAI H5N1: to what extent are they victims affected by the disease, or vectors that have a role in disease transmission? In this review, we summarise the current knowledge of wild bird involvement in the ecology of HPAI H5N1. Specifically, we present details on: (1) origin of HPAI H5N1; (2) waterbirds as LPAI reservoirs and evolution into HPAI; (3) the role of waterbirds in virus spread and persistence; (4) key biogeographic regions of outbreak; and (5) applying an ecological research perspective to studying AIVs in wild waterbirds and their ecosystems.

  12. Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus

    PubMed Central

    Baskin, Carole R.; Bielefeldt-Ohmann, Helle; Tumpey, Terrence M.; Sabourin, Patrick J.; Long, James P.; García-Sastre, Adolfo; Tolnay, Airn-E.; Albrecht, Randy; Pyles, John A.; Olson, Pam H.; Aicher, Lauri D.; Rosenzweig, Elizabeth R.; Murali-Krishna, Kaja; Clark, Edward A.; Kotur, Mark S.; Fornek, Jamie L.; Proll, Sean; Palermo, Robert E.; Sabourin, Carol L.; Katze, Michael G.

    2009-01-01

    The mechanisms responsible for the virulence of the highly pathogenic avian influenza (HPAI) and of the 1918 pandemic influenza virus in humans remain poorly understood. To identify crucial components of the early host response during these infections by using both conventional and functional genomics tools, we studied 34 cynomolgus macaques (Macaca fascicularis) to compare a 2004 human H5N1 Vietnam isolate with 2 reassortant viruses possessing the 1918 hemagglutinin (HA) and neuraminidase (NA) surface proteins, known conveyors of virulence. One of the reassortants also contained the 1918 nonstructural (NS1) protein, an inhibitor of the host interferon response. Among these viruses, HPAI H5N1 was the most virulent. Within 24 h, the H5N1 virus produced severe bronchiolar and alveolar lesions. Notably, the H5N1 virus targeted type II pneumocytes throughout the 7-day infection, and induced the most dramatic and sustained expression of type I interferons and inflammatory and innate immune genes, as measured by genomic and protein assays. The H5N1 infection also resulted in prolonged margination of circulating T lymphocytes and notable apoptosis of activated dendritic cells in the lungs and draining lymph nodes early during infection. While both 1918 reassortant viruses also were highly pathogenic, the H5N1 virus was exceptional for the extent of tissue damage, cytokinemia, and interference with immune regulatory mechanisms, which may help explain the extreme virulence of HPAI viruses in humans. PMID:19218453

  13. Highly Pathogenic Influenza A(H5Nx) Viruses with Altered H5 Receptor-Binding Specificity

    PubMed Central

    Guo, Hongbo; de Vries, Erik; McBride, Ryan; Dekkers, Jojanneke; Peng, Wenjie; Bouwman, Kim M.; Nycholat, Corwin; Verheije, M. Helene; Paulson, James C.; van Kuppeveld, Frank J.M.

    2017-01-01

    Emergence and intercontinental spread of highly pathogenic avian influenza A(H5Nx) virus clade 2.3.4.4 is unprecedented. H5N8 and H5N2 viruses have caused major economic losses in the poultry industry in Europe and North America, and lethal human infections with H5N6 virus have occurred in Asia. Knowledge of the evolution of receptor-binding specificity of these viruses, which might affect host range, is urgently needed. We report that emergence of these viruses is accompanied by a change in receptor-binding specificity. In contrast to ancestral clade 2.3.4 H5 proteins, novel clade 2.3.4.4 H5 proteins bind to fucosylated sialosides because of substitutions K222Q and S227R, which are unique for highly pathogenic influenza virus H5 proteins. North American clade 2.3.4.4 virus isolates have retained only the K222Q substitution but still bind fucosylated sialosides. Altered receptor-binding specificity of virus clade 2.3.4.4 H5 proteins might have contributed to emergence and spread of H5Nx viruses. PMID:27869615

  14. Practices associated with Highly Pathogenic Avian Influenza spread in traditional poultry marketing chains: Social and economic perspectives.

    PubMed

    Paul, Mathilde; Baritaux, Virginie; Wongnarkpet, Sirichai; Poolkhet, Chaithep; Thanapongtharm, Weerapong; Roger, François; Bonnet, Pascal; Ducrot, Christian

    2013-04-01

    In developing countries, smallholder poultry production contributes to food security and poverty alleviation in rural areas. However, traditional poultry marketing chains have been threatened by the epidemics caused by the Highly Pathogenic Avian Influenza (H5N1) virus. The article presents a value chain analysis conducted on the traditional poultry marketing chain in the rural province of Phitsanulok, Thailand. The analysis is based on quantitative data collected on 470 backyard chicken farms, and on qualitative data collected on 28 poultry collectors, slaughterhouses and market retailers, using semi-structured interviews. The article examines the organization of poultry marketing chains in time and space, and shows how this may contribute to the spread of Highly Pathogenic Avian Influenza H5N1 in the small-scale poultry sector. The article also discusses the practices and strategies developed by value chain actors facing poultry mortality, with their economic and social determinants. More broadly, this study also illustrates how value chain analysis can contribute to a better understanding of the complex mechanisms associated with the spread of epidemics in rural communities.

  15. Highly pathogenic avian influenza virus subtype H5N1 in Mute swans in the Czech Republic.

    PubMed

    Nagy, Alexander; Machova, Jirina; Hornickova, Jitka; Tomci, Miroslav; Nagl, Ivan; Horyna, Bedrich; Holko, Ivan

    2007-02-25

    In order to determine the actual prevalence of avian influenza viruses (AIV) in wild birds in the Czech Republic extensive surveillance was carried out between January and April 2006. A total of 2101 samples representing 61 bird species were examined for the presence of influenza A by using PCR, sequencing and cultivation on chicken embryos. AIV subtype H5N1 was detected in 12 Mute swans (Cygnus olor). The viruses were determined as HPAI (highly pathogenic avian influenza) and the hemagglutinin sequence was closely similar to A/mallard/Italy/835/06 and A/turkey/Turkey/1194/05. Following the first H5N1 case, about 300 wild birds representing 33 species were collected from the outbreak region and tested for the presence of AIV without any positive result. This is the first report of highly pathogenic avian influenza subtype H5N1 in the Czech Republic. The potential role of swan as an effective vector of avian influenza virus is also discussed.

  16. Highly pathogenic H5N6 influenza A viruses recovered from wild birds in Guangdong, southern China, 2014–2015

    PubMed Central

    Kang, Yinfeng; Liu, Lu; Feng, Minsha; Yuan, Runyu; Huang, Can; Tan, Yangtong; Gao, Pei; Xiang, Dan; Zhao, Xiaqiong; Li, Yanling; Irwin, David M.; Shen, Yongyi; Ren, Tao

    2017-01-01

    Since 2013, highly pathogenic (HP) H5N6 influenza A viruses (IAVs) have emerged in poultry in Asia, especially Southeast Asia. These viruses have also caused sporadic infections in humans within the same geographic areas. Active IAV surveillance in wild birds sampled in Guangdong province, China from August 2014 through February 2015 resulted in the recovery of three H5N6 IAVs. These H5N6 IAV isolates possess the basic amino acid motif at the HA1-HA2 cleavage site that is associated with highly pathogenic IAVs infecting chickens. Noteworthy findings include: (1) the HP H5N6 IAV isolates were recovered from three species of apparently healthy wild birds (most other isolates of HP H5N6 IAV in Asia are recovered from dead wild birds or fecal samples in the environment) and (2) these isolates were apparently the first recoveries of HP H5N6 IAV for two of the three species thus expanding the demonstrated natural host range for these lineages of virus. This investigation provides additional insight into the natural history of HP H5N6 IAVs and identifies the occurrence of non-lethal, HP H5N6 IAV infections in wild birds thereby demonstrating the value of active IAV surveillance in wild birds. PMID:28294126

  17. The Emerging Duck Flavivirus Is Not Pathogenic for Primates and Is Highly Sensitive to Mammalian Interferon Antiviral Signaling

    PubMed Central

    Wang, Hong-Jiang; Li, Xiao-Feng; Liu, Long; Xu, Yan-Peng; Ye, Qing; Deng, Yong-Qiang; Huang, Xing-Yao; Zhao, Hui; Qin, E-De; Shi, Pei-Yong; Gao, George F.

    2016-01-01

    ABSTRACT Flaviviruses pose a significant threat to both animals and humans. Recently, a novel flavivirus, duck Tembusu virus (DTMUV), was identified to be the causative agent of a serious duck viral disease in Asia. Its rapid spread, expanding host range, and uncertain transmission routes have raised substantial concerns regarding its potential threats to nonavian hosts, including humans. Here, we demonstrate that DTMUV is not pathogenic for nonhuman primates and is highly sensitive to mammal type I interferon (IFN) signaling. In vitro assays demonstrated that DTMUV infected and replicated efficiently in various mammalian cell lines. Further tests in mice demonstrated high neurovirulence and the age-dependent neuroinvasiveness of the virus. In particular, the inoculation of DTMUV into rhesus monkeys did not result in either viremia or apparent clinical symptoms, although DTMUV-specific humoral immune responses were detected. Furthermore, we revealed that although avian IFN failed to inhibit DTMUV in avian cells, DTMUV was more sensitive to the antiviral effects of type I interferon than other known human-pathogenic flaviviruses. Knockout of the type I IFN receptor in mice caused apparent viremia, viscerotropic disease, and mortality, indicating a vital role of IFN signaling in protection against DTMUV infection. Collectively, we provide direct experimental evidence that this novel avian-origin DTMUV possesses a limited capability to establish infection in immunocompetent primates due to its decreased antagonistic activity in the mammal IFN system. Furthermore, our findings highlight the potential risk of DTMUV infection in immunocompromised individuals and warrant studies on the cross-species transmission and pathogenesis of this novel flavivirus. IMPORTANCE Mosquito-borne flaviviruses comprise a large group of pathogenic and nonpathogenic members. The pathogenic flaviviruses include dengue, West Nile, and Japanese encephalitis viruses, and the nonpathogenic

  18. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    SciTech Connect

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude; Wang, Yue; Liao, Guoyang

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  19. Evidence for the Convergence Model: The Emergence of Highly Pathogenic Avian Influenza (H5N1) in Viet Nam

    PubMed Central

    Saksena, Sumeet; Fox, Jefferson; Epprecht, Michael; Tran, Chinh C.; Nong, Duong H.; Spencer, James H.; Nguyen, Lam; Finucane, Melissa L.; Tran, Vien D.; Wilcox, Bruce A.

    2015-01-01

    Building on a series of ground breaking reviews that first defined and drew attention to emerging infectious diseases (EID), the ‘convergence model’ was proposed to explain the multifactorial causality of disease emergence. The model broadly hypothesizes disease emergence is driven by the co-incidence of genetic, physical environmental, ecological, and social factors. We developed and tested a model of the emergence of highly pathogenic avian influenza (HPAI) H5N1 based on suspected convergence factors that are mainly associated with land-use change. Building on previous geospatial statistical studies that identified natural and human risk factors associated with urbanization, we added new factors to test whether causal mechanisms and pathogenic landscapes could be more specifically identified. Our findings suggest that urbanization spatially combines risk factors to produce particular types of peri-urban landscapes with significantly higher HPAI H5N1 emergence risk. The work highlights that peri-urban areas of Viet Nam have higher levels of chicken densities, duck and geese flock size diversities, and fraction of land under rice or aquaculture than rural and urban areas. We also found that land-use diversity, a surrogate measure for potential mixing of host populations and other factors that likely influence viral transmission, significantly improves the model’s predictability. Similarly, landscapes where intensive and extensive forms of poultry production overlap were found at greater risk. These results support the convergence hypothesis in general and demonstrate the potential to improve EID prevention and control by combing geospatial monitoring of these factors along with pathogen surveillance programs. PMID:26398118

  20. Complete genome analysis of a highly pathogenic H5N1 influenza A virus isolated from a tiger in China.

    PubMed

    Mushtaq, Muhammad Hassan; Juan, Huang; Jiang, Ping; Li, Yufeng; Li, TianXian; Du, Yijun; Mukhtar, Muhammad Mahmood

    2008-01-01

    An influenza A virus (A/Tig/SH/01/2005 (H5N1) was isolated from lung tissue samples of a dead zoo tiger with respiratory disease in China in July 2005. Complete genome analysis indicated that the isolate was highly identical to an H5N1 virus isolated from a migratory duck at Poyang lake in China in that year. The genotype of the isolate was K,G,D,5J,F,1J,F,1E, and phylogenetically it was a clade 2.2 virus. Molecular characterization of all of the gene segments revealed characteristics of highly pathogenic influenza A viruses. These results may help to identify molecular determinants of virulence and highlight the necessity for continuous surveillance.

  1. Targeted surveillance for highly pathogenic avian influenza in migratory waterfowl across the conterminous United States: chapter 12

    USGS Publications Warehouse

    Farnsworth, Matthew L.; Kendall, William L.; Doherty, Paul F.; Miller, Ryan S.; White, Gary C.; Nichols, James D.; Burnham, Kenneth P.; Franklin, Alan B.; Majumdar, S.; Brenner, F.J.; Huffman, J.E.; McLean, R.G.; Panah, A.I.; Pietrobon, P.J.; Keeler, S.P.; Shive, S.

    2011-01-01

    Introduction of Asian strain H5N1 Highly Pathogenic avian influenca via waterfowl migration is one potential route of entry into the United States. In conjunction with state, tribe, and laboratory partners, the United States Department of Agriculture collected and tested 124,603 wild bird samples in 2006 as part of a national surveillance effort. A sampling plan was devised to increase the probability fo detecting Asian strain H5N1 at a national scale. Band recovery data were used to identify and prioritize sampling for wild migratory waterfowl, resulting in spatially targeted sampling recommendations focused on reads with high numbers of recoveries. We also compared the spatial and temporal distribution of the 2006 cloacal and fecal waterfowl sampling effort to the bird banding recovery data and found concordance between the two .Finally, we present improvements made to the 2007 fecal sampling component of the surveillance plan and suggest further improvements for future sampling.

  2. Effect of high hydrostatic pressure and pressure cycling on a pathogenic Salmonella enterica serovar cocktail inoculated into creamy peanut butter.

    PubMed

    D'Souza, Tanya; Karwe, Mukund; Schaffner, Donald W

    2012-01-01

    The ability of Salmonella enterica serovars to survive in high fat content, low water activity foods like peanut butter has been demonstrated by large foodborne illness outbreaks in recent years. This study investigates the potential of high hydrostatic pressure processing, including pressure cycling, to inactivate Salmonella inoculated into creamy peanut butter. A cocktail of pathogenic strains of Salmonella Enteritidis PT30, Salmonella Tennessee, Salmonella Oranienburg, Salmonella Anatum, Salmonella Enteritidis PT 9c, and Salmonella Montevideo obtained from peanut butter- and nut-related outbreaks was inoculated (10(6) to 10(7) CFU/g) into creamy peanut butter and high pressure processed under five different sets of conditions, which varied from 400 to 600 MPa and from 4 to 18 min. The log CFU reductions achieved varied from 1.6 to 1.9. Control experiments in which Salmonella was inoculated (10(9) CFU/g) into 0.1% peptone buffer and high pressure processed at 600 MPa for 18 min showed inactivation to below the detection limit of 100 CFU/g, confirming that high pressure processing is effective at destroying Salmonella in high-moisture environments. Pressure cycling under three sets of conditions consisting of pressures from 400 to 600 MPa, 3 to 10 pressure cycles, and hold times of 6 min for each cycle showed reductions similar to those seen in noncycling experiments. The results of our experiments suggest that the peanut butter food matrix facilitates the survival of Salmonella when exposed to high hydrostatic pressure processing.

  3. A novel hepcidin-like in turbot (Scophthalmus maximus L.) highly expressed after pathogen challenge but not after iron overload.

    PubMed

    Pereiro, P; Figueras, A; Novoa, B

    2012-05-01

    Hepcidins are antimicrobial peptides with an important role in the host innate immunity. Moreover, it has been reported that mammalian hepcidins present a dual-function being a key regulator in the iron homeostasis. Here, we describe the coding sequence of a novel hepcidin-like peptide in turbot, Scophthalmus maximus. This molecule presents several differences with regard to the previously characterized hepcidin in this flatfish species and it has not the hypothetical iron regulatory sequence Q-S/I-H-L/I-S/A-L in the N-terminal region. Therefore we propose the existence of at least two types of hepcidin in turbot. Moreover, results revealed a higher variability in the mRNA sequences of the novel hepcidin compared with the other form. Constitutive expression of turbot hepcidins (Hepcidin-1 and Hepcidin-2) was analyzed in several tissues and as expected, both molecules were highly represented in liver. On the other hand, the effect of three different stimuli (bacterial or viral infection and iron overloading) in the level of hepcidin mRNA was also examined and a differential response to pathogens and iron was observed. Whereas both hepcidins were affected by pathogen challenge, only Hepcidin-1 was up-regulated after iron overloading. Therefore, this and other evidences suggest that these peptides could be involved in different functions covering the dual role of mammalian hepcidins.

  4. Segmented continuous-flow multiplex polymerase chain reaction microfluidics for high-throughput and rapid foodborne pathogen detection.

    PubMed

    Shu, Bowen; Zhang, Chunsun; Xing, Da

    2014-05-15

    High-throughput and rapid identification of multiple foodborne bacterial pathogens is vital in global public health and food industry. To fulfill this need, we propose a segmented continuous-flow multiplex polymerase chain reaction (SCF-MPCR) on a spiral-channel microfluidic device. The device consists of a disposable polytetrafluoroethylene (PTFE) capillary microchannel coiled on three isothermal blocks. Within the channel, n segmented flow regimes are sequentially generated, and m-plex PCR is individually performed in each regime when each mixture is driven to pass three temperature zones, thus providing a rapid analysis throughput of m×n. To characterize the performance of the microfluidic device, continuous-flow multiplex PCR in a single segmented flow has been evaluated by investigating the effect of key reaction parameters, including annealing temperatures, flow rates, polymerase concentration and amount of input DNA. With the optimized parameters, the genomic DNAs from Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7 and Staphylococcus aureus could be amplified simultaneously in 19min, and the limit of detection was low, down to 10(2) copiesμL(-1). As proof of principle, the spiral-channel SCF-MPCR was applied to sequentially amplify four different bacterial pathogens from banana, milk, and sausage, displaying a throughput of 4×3 with no detectable cross-contamination.

  5. Isolation and identification of highly pathogenic avian influenza virus subtype H5N1 in peafowl (Pavo cristatus).

    PubMed

    Ismail, Mahmoud Moussa; Khan, Owais Ahmed; Cattoli, Giovanni; Lu, Huaguang

    2010-03-01

    An outbreak of highly pathogenic avian influenza (HPAI) virus subtype H5N1 was first diagnosed in a "backyard" flock of peafowl (Pavo cristatus) raised on palace premises in the Kingdom of Saudi Arabia in December 3, 2007. The flock consisted of 40 peafowl, and their ages ranged from 3 to 5 years old. Affected birds suffered from depression, anorexia, and white diarrhea. Four dead birds were submitted for HPAI diagnosis at the Central Veterinary Diagnostic Laboratory in Riyadh. Brain and liver tissues and tracheal and cloacal swabs were taken from the dead birds and processed for a real-time reverse transcriptase (RT)-PCR test and virus isolation in specific-pathogen-free embryonating chicken eggs. The H5N1 subtype of avian influenza virus was isolated from the four dead birds and identified by a real-time RT-PCR before and after egg inoculation. The virus isolates were characterized as HPAI H5N1 virus by sequencing analysis. Phylogenetic comparisons revealed that the H5N1 viruses isolated from peafowl belong to the genetic clade 2.2 according to the World Health Organization nomenclature. The peafowl H5N1 virus falls into 2.2.2 sublineage II and clusters with the H5N1 viruses isolated from poultry in Saudi Arabia in 2007-08.

  6. The Chinese highly pathogenic porcine reproductive and respiratory syndrome virus infection suppresses Th17 cells response in vivo.

    PubMed

    Zhang, Long; Zhou, Lei; Ge, Xinna; Guo, Xin; Han, Jun; Yang, Hanchun

    2016-06-30

    Porcine reproductive and respiratory syndrome virus (PRRSV) has been shown to immunomodulate innate and adaptive immunity of pigs. The Chinese highly pathogenic PRRSV (HP-PRRSV) infection causes severe bacterial secondary infection in pigs. However, the mechanism in relation to the bacterial secondary infection induced by HP-PRRSV remains unknown. In the present study, Th17 cells response in peripheral blood, lungs, spleens and lymph nodes of piglets were analyzed, and bacterial loads in lungs of piglets were examined upon HP-PRRSV infection. Meanwhile the changes of CD4(+) and CD8(+) T cells in peripheral blood of the inoculated piglets were analyzed. The results showed that HP-PRRSV-inoculated piglets exhibited a suppressed Th17 cells response in peripheral blood and a reduced number of Th17 cells in lungs, and higher bacterial loads in lungs, compared with low pathogenic PRRSV. Moreover, HP-PRRSV obviously resulted in severe depletion of porcine T cells in peripheral blood at the early stage of infection. These findings indicate that HP-PRRSV infection suppresses the response of Th17 cells that play an important role in combating bacterial infections, suggesting a possible correlation between the suppression of Th17 cells response in vivo and bacterial secondary infection induced by HP-PRRSV. Our present study adds a novel insight into better understanding of the pathogenesis of the Chinese HP-PRRSV.

  7. Highly pathogenic avian influenza H5N1 virus delays apoptotic responses via activation of STAT3.

    PubMed

    Hui, Kenrie P Y; Li, Hung Sing; Cheung, Man Chun; Chan, Renee W Y; Yuen, Kit M; Mok, Chris K P; Nicholls, John M; Peiris, J S Malik; Chan, Michael C W

    2016-06-27

    Highly pathogenic avian influenza (HPAI) H5N1 virus continues to pose pandemic threat, but there is a lack of understanding of its pathogenesis. We compared the apoptotic responses triggered by HPAI H5N1 and low pathogenic H1N1 viruses using physiologically relevant respiratory epithelial cells. We demonstrated that H5N1 viruses delayed apoptosis in primary human bronchial and alveolar epithelial cells (AECs) compared to H1N1 virus. Both caspase-8 and -9 were activated by H5N1 and H1N1 viruses in AECs, while H5N1 differentially up-regulated TRAIL. H5N1-induced apoptosis was reduced by TRAIL receptor silencing. More importantly, STAT3 knock-down increased apoptosis by H5N1 infection suggesting that H5N1 virus delays apoptosis through activation of STAT3. Taken together, we demonstrate that STAT3 is involved in H5N1-delayed apoptosis compared to H1N1. Since delay in apoptosis prolongs the duration of virus replication and production of pro-inflammatory cytokines and TRAIL from H5N1-infected cells, which contribute to orchestrate cytokine storm and tissue damage, our results suggest that STAT3 may play a previously unsuspected role in H5N1 pathogenesis.

  8. Genetic characterization of highly pathogenic H5N1 avian influenza virus from live migratory birds in Bangladesh.

    PubMed

    Parvin, Rokshana; Kamal, Abu H M; Haque, Md E; Chowdhury, Emdadul H; Giasuddin, Mohammed; Islam, Mohammad R; Vahlenkamp, Thomas W

    2014-12-01

    Since the first outbreak of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 in Bangladesh in 2007, the virus has been circulating among domestic poultry causing severe economic losses. To investigate the presence of HPAIV H5N1 in migratory birds and their potential role in virus spread, 205 pools of fecal samples from live migratory birds were analyzed. Here, the first virus isolation and genome characterization of two HPAIV H5N1 isolates from migratory birds (A/migratory bird/Bangladesh/P18/2010 and A/migratory bird/Bangladesh/P29/2010)are described. Full-length amplification, sequencing, and a comprehensive phylogenetic analysis were performed for HA, NA, M, NS, NP, PA, PB1, and PB2 gene segments. The selected migratory bird isolates belong to clade 2.3.2.1 along with recent Bangladeshi isolates from chickens, ducks, and crows which grouped in the same cluster with contemporary South and South-East Asian isolates. The studied isolates were genetically similar to other H5N1 isolates from different species within the respective clade although some unique amino acid substitutions were observed among them. Migratory birds remain a real threat for spreading pathogenic avian influenza viruses across the continent and introduction of new strains into Bangladesh.

  9. A Novel High-Affinity Sucrose Transporter Is Required for Virulence of the Plant Pathogen Ustilago maydis

    PubMed Central

    Goos, Sarah; Kämper, Jörg; Sauer, Norbert

    2010-01-01

    Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s) and the mode of uptake are largely unknown. Here, we present a novel, plasma membrane-localized sucrose transporter (Srt1) from the corn smut fungus Ustilago maydis and its characterization as a fungal virulence factor. Srt1 has an unusually high substrate affinity, is absolutely sucrose specific, and allows the direct utilization of sucrose at the plant/fungal interface without extracellular hydrolysis and, thus, without the production of extracellular monosaccharides known to elicit plant immune responses. srt1 is expressed exclusively during infection, and its deletion strongly reduces fungal virulence. This emphasizes the central role of this protein both for efficient carbon supply and for avoidance of apoplastic signals potentially recognized by the host. PMID:20161717

  10. Characterization of the H5N1 highly pathogenic avian influenza virus derived from wild pikas in China.

    PubMed

    Zhou, Jiyong; Sun, Wenbo; Wang, Junhua; Guo, Junqing; Yin, Wei; Wu, Nanping; Li, Lanjuan; Yan, Yan; Liao, Ming; Huang, Yu; Luo, Kaijian; Jiang, Xuetao; Chen, Hualan

    2009-09-01

    The highly pathogenic H5N1 avian influenza virus emerged from China in 1996 and has spread across Eurasia and Africa, with a continuous stream of new cases of human infection appearing since the first large-scale outbreak among migratory birds at Qinghai Lake. The role of wild birds, which are the natural reservoirs for the virus, in the epidemiology of the H5N1 virus has raised great public health concern, but their role in the spread of the virus within the natural ecosystem of free-ranging terrestrial wild mammals remains unclear. In this study, we investigated H5N1 virus infection in wild pikas in an attempt to trace the circulation of the virus. Seroepidemiological surveys confirmed a natural H5N1 virus infection of wild pikas in their native environment. The hemagglutination gene of the H5N1 virus isolated from pikas reveals two distinct evolutionary clades, a mixed/Vietnam H5N1 virus sublineage (MV-like pika virus) and a wild bird Qinghai (QH)-like H5N1 virus sublineage (QH-like pika virus). The amino acid residue (glutamic acid) at position 627 encoded by the PB2 gene of the MV-like pika virus was different from that of the QH-like pika virus; the residue of the MV-like pika virus was the same as that of the goose H5N1 virus (A/GS/Guangdong [GD]/1/96). Further, we discovered that in contrast to the MV-like pika virus, which is nonpathogenic to mice, the QH-like pika virus is highly pathogenic. To mimic the virus infection of pikas, we intranasally inoculated rabbits, a species closely related to pikas, with the H5N1 virus of pika origin. Our findings first demonstrate that wild pikas are mammalian hosts exposed to H5N1 subtype avian influenza viruses in the natural ecosystem and also imply a potential transmission of highly pathogenic avian influenza virus from wild mammals into domestic mammalian hosts and humans.

  11. Evaluation of a high-pathogenicity H5N1 avian influenza A virus isolated from duck meat.

    PubMed

    Tumpey, T M; Suarez, D L; Perkins, L E L; Senne, D A; Lee, J; Lee, Y J; Mo, I P; Sung, H W; Swayne, D E

    2003-01-01

    The introduction of an influenza A virus possessing a novel hemagglutinin (HA) into an immunologically naive human population has the potential to cause severe disease and death. Such was the case in 1997 in Hong Kong, where H5N1 influenza was transmitted to humans from infected poultry. Because H5N1 viruses are still isolated from domestic poultry in southern China, there needs to be continued surveillance of poultry and characterization of virus subtypes and variants. This study provides molecular characterization and evaluation of pathogenesis of a recent H5N1 virus isolated from duck meat that had been imported to South Korea from China. The HA gene of A/Duck/Anyang/AVL-1/01 (H5N1) isolate was found to be closely related to the Hong Kong/97 H5N1 viruses. This virus also contained multiple basic amino acids adjacent to the cleavage site between HA1 and HA2, characteristic of high-pathogenicity avian influenza viruses (HPAI). The pathogenesis of this virus was characterized in chickens, ducks, and mice. The DK/Anyang/AVL-1/01 isolate replicated well in all species and resulted in 100% and 22% lethality for chickens and mice, respectively. No clinical signs of disease were observed in DK/Anyang/AVL-1/01-inoculated ducks, but high titers of infectious virus could be detected in multiple tissues and oropharyngeal swabs. The presence of an H5N1 influenza virus in ducks bearing a HA gene that is highly similar to those of the pathogenic 1997 human/poultry H5N1 viruses raises the possibility of reintroduction of HPAI to chickens and humans.

  12. Enhancement of innate immunity with granulocyte colony-stimulating factor did not prevent disease in pigs infected with a highly pathogenic Chinese PRRSV strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chinese highly pathogenic PRRSV (HP-PRRSV) strain JXwn06 has been shown to produce high fevers, loss of body condition, respiratory distress and death in pigs. Necropsy reveals extensive interstitial pneumonia, multi-systemic pathology and a high occurrence of secondary bacterial infections. The ful...

  13. Supporting business continuity during a highly pathogenic avian influenza outbreak: a collaboration of industry, academia, and government.

    PubMed

    Hennessey, Morgan; Lee, Brendan; Goldsmith, Timothy; Halvorson, Dave; Hueston, William; McElroy, Kristina; Waters, Katherine

    2010-03-01

    Since 2006, a collaborative group of egg industry, state, federal, and academia representatives have worked to enhance preparedness in highly pathogenic avian influenza (HPAI) planning. The collaborative group has created a draft egg product movement protocol, which calls for realistic, science-based contingency plans, biosecurity assessments, commodity risk assessments, and real-time reverse transcriptase-PCR testing to support the continuity of egg operations while also preventing and eradicating an HPAI outbreak. The work done by this group serves as an example of how industry, government, and academia can work together to achieve better preparedness in the event of an animal health emergency. In addition, in the event of an HPAI outbreak in domestic poultry, U.S. consumers will be assured that their egg products come from healthy chickens.

  14. Implications of global and regional patterns of highly pathogenic avian influenza virus H5N1 clades for risk management.

    PubMed

    Pfeiffer, Dirk U; Otte, Martin J; Roland-Holst, David; Inui, Ken; Nguyen, Tung; Zilberman, David

    2011-12-01

    This paper analyses the publicly available data on the distribution and evolution of highly pathogenic avian influenza virus (HPAIV) H5N1 clades, whilst acknowledging the biases resulting from the non-random selection of isolates for gene sequencing. The data indicate molecular heterogeneity in the global distribution of HPAIV H5N1, in particular in different parts of East and Southeast Asia. Analysis of the temporal pattern of haemagglutinin clade data shows a progression from clade 0 (the 'dominant' clade between 1996 and 2002) to clade 1 (2003-2005) and then to clade 2.3.4 (2005 onwards). This process continuously produces variants, depending on the frequency of virus multiplication in the host population, which is influenced by geographical variation in poultry density, poultry production systems and also HPAI risk management measures such as vaccination. Increased multilateral collaboration needs to focus on developing enhanced disease surveillance and control targeted at evolutionary 'hotspots'.

  15. High-throughput screening of metal-N-heterocyclic carbene complexes against biofilm formation by pathogenic bacteria.

    PubMed

    Bernardi, Thierry; Badel, Stéphanie; Mayer, Pascal; Groelly, Jérome; de Frémont, Pierre; Jacques, Béatrice; Braunstein, Pierre; Teyssot, Marie-Laure; Gaulier, Christelle; Cisnetti, Federico; Gautier, Arnaud; Roland, Sylvain

    2014-06-01

    A set of molecules including a majority of metal-N-heterocyclic carbene (NHC) complexes (metal=Ag, Cu, and Au) and azolium salts were evaluated by high-throughput screening of their activity against biofilm formation associated with pathogenic bacteria. The anti-planktonic effects were compared in parallel. Representative biofilm-forming strains of various genera were selected (Listeria, Pseudomonas, Staphylococcus, and Escherichia). All the compounds were tested at 1 mg L(-1) by using the BioFilm Ring Test. An information score (IS, sum of the activities) and an activity score (AS, difference between anti-biofilm and anti-planktonic activity) were determined from normalized experimental values to classify the most active molecules against the panel of bacterial strains. With this method we identified lipophilic Ag(I) and Cu(I) complexes possessing aromatic groups on the NHC ligand as the most efficient at inhibiting biofilm formation.

  16. When private actors matter: Information-sharing network and surveillance of Highly Pathogenic Avian Influenza in Vietnam.

    PubMed

    Delabouglise, A; Dao, T H; Truong, D B; Nguyen, T T; Nguyen, N T X; Duboz, R; Fournié, G; Antoine-Moussiaux, N; Grosbois, V; Vu, D T; Le, T H; Nguyen, V K; Salem, G; Peyre, M

    2015-07-01

    The effectiveness of animal health surveillance systems depends on their capacity to gather sanitary information from the animal production sector. In order to assess this capacity we analyzed the flow of sanitary information regarding Highly Pathogenic Avian Influenza (HPAI) suspicions in poultry in Vietnam. Participatory methods were applied to assess the type of actors and likelihood of information sharing between actors in case of HPAI suspicion in poultry. While the reporting of HPAI suspicions is mandatory, private actors had more access to information than public actors. Actors of the upstream sector (medicine and feed sellers) played a key role in the diffusion of information. The central role of these actors and the influence of the information flow on the adoption by poultry production stakeholders of behaviors limiting (e.g. prevention measures) or promoting disease transmission (e.g. increased animal movements) should be accounted for in the design of surveillance and control programs.

  17. Insight into Alternative Approaches for Control of Avian Influenza in Poultry, with Emphasis on Highly Pathogenic H5N1

    PubMed Central

    Abdelwhab, E. M.; Hafez, Hafez M.

    2012-01-01

    Highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 causes a devastating disease in poultry but when it accidentally infects humans it can cause death. Therefore, decrease the incidence of H5N1 in humans needs to focus on prevention and control of poultry infections. Conventional control strategies in poultry based on surveillance, stamping out, movement restriction and enforcement of biosecurity measures did not prevent the virus spreading, particularly in developing countries. Several challenges limit efficiency of the vaccines to prevent outbreaks of HPAIV H5N1 in endemic countries. Alternative and complementary approaches to reduce the current burden of H5N1 epidemics in poultry should be encouraged. The use of antiviral chemotherapy and natural compounds, avian-cytokines, RNA interference, genetic breeding and/or development of transgenic poultry warrant further evaluation as integrated intervention strategies for control of HPAIV H5N1 in poultry. PMID:23202521

  18. Jasmonic Acid, Abscisic Acid, and Salicylic Acid Are Involved in the Phytoalexin Responses of Rice to Fusarium fujikuroi, a High Gibberellin Producer Pathogen.

    PubMed

    Siciliano, Ilenia; Amaral Carneiro, Greice; Spadaro, Davide; Garibaldi, Angelo; Gullino, Maria Lodovica

    2015-09-23

    Fusarium fujikuroi, the causal agent of bakanae disease, is the main seedborne pathogen on rice. To understand the basis of rice resistance, a quantitative method to simultaneously detect phytohormones and phytoalexins was developed by using HPLC-MS/MS. With this method dynamic profiles and possible interactions of defense-related phytohormones and phytoalexins were investigated on two rice cultivars, inoculated or not with F. fujikuroi. In the resistant cultivar Selenio, the presence of pathogen induced high production of phytoalexins, mainly sakuranetin, and symptoms of bakanae were not observed. On the contrary, in the susceptible genotype Dorella, the pathogen induced the production of gibberellin and abscisic acid and inhibited jasmonic acid production, phytoalexins were very low, and bakanae symptoms were observed. The results suggested that a wide range of secondary metabolites are involved in plant defense against pathogens and phytoalexin synthesis could be an important factor for rice resistance against bakanae disease.

  19. Surveillance for Eurasian-origin and intercontinental reassortant highly pathogenic influenza A viruses in Alaska, spring and summer 2015

    USGS Publications Warehouse

    Ramey, Andrew M.; Pearce, John M.; Reeves, Andrew B.; Poulson, Rebecca L.; Dobson, Jennifer; Lefferts, Brian; Spragens, Kyle A.; Stallknecht, David E.

    2016-01-01

    BackgroundEurasian-origin and intercontinental reassortant highly pathogenic (HP) influenza A viruses (IAVs) were first detected in North America in wild, captive, and domestic birds during November–December 2014. Detections of HP viruses in wild birds in the contiguous United States and southern Canadian provinces continued into winter and spring of 2015 raising concerns that migratory birds could potentially disperse viruses to more northerly breeding areas where they could be maintained to eventually seed future poultry outbreaks.ResultsWe sampled 1,129 wild birds on the Yukon-Kuskokwim Delta, Alaska, one of the largest breeding areas for waterfowl in North America, during spring and summer of 2015 to test for Eurasian lineage and intercontinental reassortant HP H5 IAVs and potential progeny viruses. We did not detect HP IAVs in our sample collection from western Alaska; however, we isolated five low pathogenic (LP) viruses. Four isolates were of the H6N1 (n = 2), H6N2, and H9N2 combined subtypes whereas the fifth isolate was a mixed infection that included H3 and N7 gene segments. Genetic characterization of these five LP IAVs isolated from cackling (Branta hutchinsii; n = 2) and greater white-fronted geese (Anser albifrons; n = 3), revealed three viral gene segments sharing high nucleotide identity with HP H5 viruses recently detected in North America. Additionally, one of the five isolates was comprised of multiple Eurasian lineage gene segments.ConclusionsOur results did not provide direct evidence for circulation of HP IAVs in the Yukon-Kuskokwim Delta region of Alaska during spring and summer of 2015. Prevalence and genetic characteristics of LP IAVs during the sampling period are concordant with previous findings of relatively low viral prevalence in geese during spring, non-detection of IAVs in geese during summer, and evidence for intercontinental exchange of viruses in western Alaska.

  20. Novel Reassortant H5N6 Influenza A Virus from the Lao People’s Democratic Republic Is Highly Pathogenic in Chickens

    PubMed Central

    Layton, Daniel S.; Phommachanh, Phouvong; Harper, Jennifer; Payne, Jean; Evans, Ryan M.; Valdeter, Stacey; Walker, Som; Harvey, Gemma; Shan, Songhua; Bruce, Matthew P.; Rootes, Christina L.; Gough, Tamara J.; Rohringer, Andreas; Peck, Grantley R.; Fardy, Sarah J.; Karpala, Adam J.; Johnson, Dayna; Wang, Jianning; Douangngeun, Bounlom; Morrissy, Christopher; Wong, Frank Y. K.; Bean, Andrew G. D.; Bingham, John; Williams, David T.

    2016-01-01

    Avian influenza viruses of H5 subtype can cause highly pathogenic disease in poultry. In March 2014, a new reassortant H5N6 subtype highly pathogenic avian influenza virus emerged in Lao People’s Democratic Republic. We have assessed the pathogenicity, pathobiology and immunological responses associated with this virus in chickens. Infection caused moderate to advanced disease in 6 of 6 chickens within 48 h of mucosal inoculation. High virus titers were observed in blood and tissues (kidney, spleen, liver, duodenum, heart, brain and lung) taken at euthanasia. Viral antigen was detected in endothelium, neurons, myocardium, lymphoid tissues and other cell types. Pro-inflammatory cytokines were elevated compared to non-infected birds. Our study confirmed that this new H5N6 reassortant is highly pathogenic, causing disease in chickens similar to that of Asian H5N1 viruses, and demonstrated the ability of such clade 2.3.4-origin H5 viruses to reassort with non-N1 subtype viruses while maintaining a fit and infectious phenotype. Recent detection of influenza H5N6 poultry infections in Lao PDR, China and Viet Nam, as well as six fatal human infections in China, demonstrate that these emergent highly pathogenic H5N6 viruses may be widely established in several countries and represent an emerging threat to poultry and human populations. PMID:27631618

  1. The performance characteristics of lateral flow devices with 2 strains of highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lateral flow devices (LFD) are commercially available and provide a fast, highly specific, on-site test for avian influenza. Because of the low analytic sensitivity of LFD tests at low virus concentrations, targeted sampling of sick and dead birds has been proposed in order to increase detection pr...

  2. Expression of interferon gamma by a highly virulent Newcastle disease virus decreases its pathogenicity in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection of chickens with highly virulent NDV results in rapid death, which is preceded by increased expression of interferon gamma (IFN-g) in target tissues. IFN-g is a cytokine that has pleiotropic biological effects including intrinsic antiviral activity and immunomodulatory effects. Here we a...

  3. Spatio-temporal epidemiology of highly pathogenic avian influenza (subtype H5N1) in poultry in eastern India.

    PubMed

    Dhingra, Madhur S; Dissanayake, Ravi; Negi, Ajender Bhagat; Oberoi, Mohinder; Castellan, David; Thrusfield, Michael; Linard, Catherine; Gilbert, Marius

    2014-10-01

    In India, majority outbreaks of highly pathogenic avian influenza (HPAI) H5N1 have occurred in eastern states of West Bengal, Assam and Tripura. This study aimed to identify disease clusters and risk factors of HPAI H5N1 in these states, for targeted surveillance and disease control. A spatial scan statistic identified two significant disease clusters in West Bengal and Assam, occurring during January and November-December 2008, respectively. Key risk factors were identified at sub-district level using bootstrapped logistic regression and boosted regression trees model. With both methods, HPAI H5N1 outbreaks in backyard poultry were associated with accessibility in terms of time taken to access a city with >50,000 persons, human population density and duck density (P<0.005). In addition, areas at lower elevation were also identified as high risk by BRT model. It is recommended that risk-based surveillance should be implemented in high duck density areas and all live-bird markets in high-throughput locations.

  4. X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus

    SciTech Connect

    Bornholdt, Zachary A.; Prasad, B.V. Venkataram

    2009-04-08

    The recent emergence of highly pathogenic avian (H5N1) influenza viruses, their epizootic and panzootic nature, and their association with lethal human infections have raised significant global health concerns. Several studies have underlined the importance of non-structural protein NS1 in the increased pathogenicity and virulence of these strains. NS1, which consists of two domains - a double-stranded RNA (dsRNA) binding domain and the effector domain, separated through a linker - is an antagonist of antiviral type-I interferon response in the host. Here we report the X-ray structure of the full-length NS1 from an H5N1 strain (A/Vietnam/1203/2004) that was associated with 60% of human deaths in an outbreak in Vietnam. Compared to the individually determined structures of the RNA binding domain and the effector domain from non-H5N1 strains, the RNA binding domain within H5N1 NS1 exhibits modest structural changes, while the H5N1 effector domain shows significant alteration, particularly in the dimeric interface. Although both domains in the full-length NS1 individually participate in dimeric interactions, an unexpected finding is that these interactions result in the formation of a chain of NS1 molecules instead of distinct dimeric units. Three such chains in the crystal interact with one another extensively to form a tubular organization of similar dimensions to that observed in the cryo-electron microscopy images of NS1 in the presence of dsRNA. The tubular oligomeric organization of NS1, in which residues implicated in dsRNA binding face a 20-{angstrom}-wide central tunnel, provides a plausible mechanism for how NS1 sequesters varying lengths of dsRNA, to counter cellular antiviral dsRNA response pathways, while simultaneously interacting with other cellular ligands during an infection.

  5. Pathogenesis of highly pathogenic avian influenza A virus (H7N1) infection in chickens inoculated with three different doses.

    PubMed

    Chaves, Aida J; Busquets, Nuria; Campos, Naiana; Ramis, Antonio; Dolz, Roser; Rivas, Raquel; Valle, Rosa; Abad, F Xavier; Darji, Ayub; Majo, Natalia

    2011-04-01

    To study the pathogenesis of a H7N1 highly pathogenic avian influenza virus strain, specific pathogen free chickens were inoculated with decreasing concentrations of virus: 10(5.5) median embryo lethal dose (ELD(50)) (G1), 10(3.5) ELD(50) (G2) and 10(1.5) ELD(50) (G3). Disease progression was monitored over a period of 16 days and sequential necropsies and tissue samples were collected for histological and immunohistochemical examination. Viral RNA loads were also quantified in different tissues, blood, oropharyngeal swabs, and cloacal swabs using quantitative real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). Clinical signs of depression, apathy, listlessness, huddling and ruffled feathers were recorded in G1 and a few G2 birds, whilst neurological signs were only observed in chickens inoculated with the highest dose. Gross lesions of haemorrhages were observed in the unfeathered skin of the comb and legs, and skeletal muscle, lung, pancreas and kidneys of birds inoculated with 10(5.5) ELD(50) and 10(3.5) ELD(50) doses. Microscopic lesions and viral antigen were demonstrated in cells of the nasal cavity, lung, heart, skeletal muscle, brain, spinal cord, gastrointestinal tract, pancreas, liver, bone marrow, thymus, bursa of Fabricius, spleen, kidney, adrenal gland and skin. Viral RNA was detected by RT-qPCR in kidney, lung, intestine, and brain samples of G1 and G2 birds. However, in birds infected with the lowest dose, viral RNA was detected only in brain and lung samples in low amounts at 5 and 7 days post infection. Interestingly, viral shedding was observed in oropharyngeal and cloacal swabs with proportionate decrease with the inoculation dose. We conclude that although an adequate infectious dose is critical in reproducing the clinical infection, chickens exposed to lower doses can be infected and shed virus representing a risk for the dissemination of the viral agent.

  6. Spatial Modeling of Wild Bird Risk Factors for Highly Pathogenic A(H5N1) Avian Influenza Virus Transmission.

    PubMed

    Prosser, Diann J; Hungerford, Laura L; Erwin, R Michael; Ottinger, Mary Ann; Takekawa, John Y; Newman, Scott H; Xiao, Xiangming; Ellis, Erle C

    2016-05-01

    One of the longest-persisting avian influenza viruses in history, highly pathogenic avian influenza virus (HPAIV) A(H5N1), continues to evolve after 18 yr, advancing the threat of a global pandemic. Wild waterfowl (family Anatidae) are reported as secondary transmitters of HPAIV and primary reservoirs for low-pathogenic avian influenza viruses, yet spatial inputs for disease risk modeling for this group have been lacking. Using geographic information software and Monte Carlo simulations, we developed geospatial indices of waterfowl abundance at 1 and 30 km resolutions and for the breeding and wintering seasons for China, the epicenter of H5N1. Two spatial layers were developed: cumulative waterfowl abundance (WAB), a measure of predicted abundance across species, and cumulative abundance weighted by H5N1 prevalence (WPR), whereby abundance for each species was adjusted based on prevalence values and then totaled across species. Spatial patterns of the model output differed between seasons, with higher WAB and WPR in the northern and western regions of China for the breeding season and in the southeast for the wintering season. Uncertainty measures indicated highest error in southeastern China for both WAB and WPR. We also explored the effect of resampling waterfowl layers from 1 to 30 km resolution for multiscale risk modeling. Results indicated low average difference (less than 0.16 and 0.01 standard deviations for WAB and WPR, respectively), with greatest differences in the north for the breeding season and southeast for the wintering season. This work provides the first geospatial models of waterfowl abundance available for China. The indices provide important inputs for modeling disease transmission risk at the interface of poultry and wild birds. These models are easily adaptable, have broad utility to both disease and conservation needs, and will be available to the scientific community for advanced modeling applications.

  7. High-affinity, noninhibitory pathogenic C1 domain antibodies are present in patients with hemophilia A and inhibitors

    PubMed Central

    Batsuli, Glaivy; Deng, Wei; Healey, John F.; Parker, Ernest T.; Baldwin, W. Hunter; Cox, Courtney; Nguyen, Brenda; Kahle, Joerg; Königs, Christoph; Li, Renhao; Lollar, Pete

    2016-01-01

    Inhibitor formation in hemophilia A is the most feared treatment-related complication of factor VIII (fVIII) therapy. Most inhibitor patients with hemophilia A develop antibodies against the fVIII A2 and C2 domains. Recent evidence demonstrates that the C1 domain contributes to the inhibitor response. Inhibitory anti-C1 monoclonal antibodies (mAbs) have been identified that bind to putative phospholipid and von Willebrand factor (VWF) binding epitopes and block endocytosis of fVIII by antigen presenting cells. We now demonstrate by competitive enzyme-linked immunosorbent assay and hydrogen-deuterium exchange mass spectrometry that 7 of 9 anti-human C1 mAbs tested recognize an epitope distinct from the C1 phospholipid binding site. These mAbs, designated group A, display high binding affinities for fVIII, weakly inhibit fVIII procoagulant activity, poorly inhibit fVIII binding to phospholipid, and exhibit heterogeneity with respect to blocking fVIII binding to VWF. Another mAb, designated group B, inhibits fVIII procoagulant activity, fVIII binding to VWF and phospholipid, fVIIIa incorporation into the intrinsic Xase complex, thrombin generation in plasma, and fVIII uptake by dendritic cells. Group A and B epitopes are distinct from the epitope recognized by the canonical, human-derived inhibitory anti-C1 mAb, KM33, whose epitope overlaps both groups A and B. Antibodies recognizing group A and B epitopes are present in inhibitor plasmas from patients with hemophilia A. Additionally, group A and B mAbs increase fVIII clearance and are pathogenic in a hemophilia A mouse tail snip bleeding model. Group A anti-C1 mAbs represent the first identification of pathogenic, weakly inhibitory antibodies that increase fVIII clearance. PMID:27381905

  8. Detection of H5 and H7 highly pathogenic avian influenza virus with lateral flow devices: performance with healthy, sick and dead chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid detection of highly pathogenic avian influenza virus (HPAIV) in the field is critical for effective disease control and to differentiate it from other diseases, such as Newcastle disease. Lateral flow devices (LFD) are commercially available and provide a fast, highly specific, on-site test fo...

  9. High levels of diversity and population structure in the potato late blight pathogen at the Mexico centre of origin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Globally destructive crop pathogens emerge by migrating out of their native ranges. These pathogens are often diverse at their center of origin, and may exhibit adaptive variation in the invaded range via multiple introductions from different source populations. However, source populations are gener...

  10. PB1-F2 Attenuates Virulence of Highly Pathogenic Avian H5N1 Influenza Virus in Chickens

    PubMed Central

    Leymarie, Olivier; Embury-Hyatt, Carissa; Chevalier, Christophe; Jouneau, Luc; Moroldo, Marco; Da Costa, Bruno; Berhane, Yohannes; Delmas, Bernard

    2014-01-01

    Highly pathogenic avian influenza virus (HPAIV) is a permanent threat due to its capacity to cross species barriers and generate severe infections and high mortality in humans. Recent findings have highlighted the potential role of PB1-F2, a small accessory influenza protein, in the pathogenesis process mediated by HPAIV in mammals. In this study, using a recombinant H5N1 HPAIV (wt) and its PB1-F2-deleted mutant (ΔF2), we studied the effects of PB1-F2 in a chicken model. Unexpectedly, when using low inoculation dose we observed that the wt-infected chickens had a higher survival rate than the ΔF2-infected chickens, a feature that contrasts with what is usually observed in mammals. High inoculation dose had similar mortality rate for both viruses, and comparison of the bio-distribution of the two viruses indicated that the expression of PB1-F2 allows a better spreading of the virus within chicken embryos. Transcriptomic profiles of lungs and blood cells were characterized at two days post-infection in chickens inoculated with the wild type (wt) or the ΔF2 mutant viruses. In lungs, the expression of PB1-F2 during the infection induced pathways related to calcium signaling and repressed a large panel of immunological functions. In blood cells, PB1-F2 was associated with a gene signature specific for mitochondrial dysfunction and down-modulated leucocytes activation. Finally we compared the effect of PB1-F2 in lungs of chickens and mice. We identified that gene signature associated to tissue damages is a PB1-F2 feature shared by the two species; by contrast, the early inhibition of immune response mediated by PB1-F2 observed in chickens is not seen in mice. In summary, our data suggest that PB1-F2 expression deeply affect the immune response in chickens in a way that may attenuate pathogenicity at low infection dose, a feature differing from what was previously observed in mammal species. PMID:24959667

  11. Living with avian FLU--Persistence of the H5N1 highly pathogenic avian influenza virus in Egypt.

    PubMed

    Njabo, Kevin Yana; Zanontian, Linda; Sheta, Basma N; Samy, Ahmed; Galal, Shereen; Schoenberg, Frederic Paik; Smith, Thomas B

    2016-05-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) continues to cause mortality in poultry and threaten human health at a panzootic scale in Egypt since it was reported in 2006. While the early focus has been in Asia, recent evidence suggests that Egypt is an emerging epicenter for the disease. Despite control measures, epizootic transmission of the disease continues. Here, we investigate the persistence of HPAIV across wild passerine birds and domestic poultry between 2009 and 2012 and the potential risk for continuous viral transmission in Egypt. We use a new weighted cross J-function to investigate the degree and spatial temporal nature of the clustering between sightings of infected birds of different types, and the risk of infection associated with direct contact with infected birds. While we found no infection in wild birds, outbreaks occurred year round between 2009 and 2012, with a positive interaction between chickens and ducks. The disease was more present in the years 2010 and 2011 coinciding with the political unrest in the country. Egypt thus continues to experience endemic outbreaks of avian influenza HPAIV in poultry and an increased potential risk of infection to other species including humans. With the current trends, the elimination of the HPAIV infection is highly unlikely without a complete revamp of current policies. The application of spatial statistics techniques to these types of data may help us to understand the characteristics of the disease and may subsequently allow practitioners to explore possible preventive solutions.

  12. Assessing the risk of highly pathogenic avian influenza H5N1 transmission through poultry movements in Bali, Indonesia.

    PubMed

    Roche, Sharon E; Cogger, Naomi; Garner, M Graeme; Putra, Anak Agung Gde; Toribio, Jenny-Ann L M L

    2014-03-01

    Indonesia continues to report the highest number of human and poultry cases of highly pathogenic avian influenza H5N1. The disease is considered to be endemic on the island of Bali. Live bird markets are integral in the poultry supply chain on Bali and are important, nutritionally and culturally, for the rural and urban human populations. Due to the lack of biosecurity practiced along the supply chain from producer to live bird markets, there is a need to understand the risks associated with the spread of H5N1 through live bird movements for effective control. Resources to control H5N1 in Indonesia are very limited and cost effective strategies are needed. We assessed the probability a live bird market is infected through live poultry movements and assessed the effects of implementing two simple and low cost control measures on this risk. Results suggest there is a high risk a live bird market is infected (0.78), and risk mitigation strategies such as detecting and removing infected poultry from markets reduce this risk somewhat (range 0.67-0.76). The study demonstrates the key role live poultry movements play in transmitting H5N1 and the need to implement a variety of control measures to reduce disease spread.

  13. The spread of highly pathogenic avian influenza (subtype H5N1) clades in Bangladesh, 2010 and 2011.

    PubMed

    Osmani, Muzaffar G; Ward, Michael P; Giasuddin, Md; Islam, Md Rafiqul; Kalam, Abul

    2014-04-01

    Since the global spread of highly pathogenic avian influenza H5N1 during 2005-2006, control programs have been successfully implemented in most affected countries. HPAI H5N1 was first reported in Bangladesh in 2007, and since then 546 outbreaks have been reported to the OIE. The disease has apparently become endemic in Bangladesh. Spatio-temporal information on 177 outbreaks of HPAI H5N1 occurring between February 2010 and April 2011 in Bangladesh, and 37 of these outbreaks in which isolated H5N1 viruses were phylogenetically characterized to clade, were analyzed. Three clades were identified, 2.2 (21 cases), 2.3.4 (2 cases) and 2.3.2.1 (14 cases). Clade 2.2 was identified throughout the time period and was widely distributed in a southeast-northwest orientation. Clade 2.3.2.1 appeared later and was generally confined to central Bangladesh in a north-south orientation. Based on a direction test, clade 2.2 viruses spread in a southeast-to-northwest direction, whereas clade 2.3.2.1 spread west-to-east. The magnitude of spread of clade 2.3.2.1 was greater relative to clade 2.2 (angular concentration 0.2765 versus 0.1860). In both cases, the first outbreak(s) were identified as early outliers, but in addition, early outbreaks (one each) of clade 2.2 were also identified in central Bangladesh and in northwest Bangladesh, a considerable distance apart. The spread of highly pathogenic avian influenza H5N1 in Bangladesh is characterized by reported long-distance translocation events. This poses a challenge to disease control efforts. Increased enforcement of biosecurity and stronger control of movements between affected farms and susceptible farms, and better surveillance and reporting, is needed. Although the movement of poultry and equipment appears to be a more likely explanation for the patterns identified, the relative contribution of trade and the market chain versus wild birds in spreading the disease needs further investigation.

  14. Expression of interferon gamma by a highly virulent strain of Newcastle disease virus decreases its pathogenicity in chickens.

    PubMed

    Susta, Leonardo; Cornax, Ingrid; Diel, Diego G; Garcia, Stivalis Cardenas; Miller, Patti J; Liu, Xiufan; Hu, Shunlin; Brown, Corrie C; Afonso, Claudio L

    2013-01-01

    The role of interferon gamma (IFN-γ) expression during Newcastle disease virus (NDV) infection in chickens is unknown. Infection of chickens with highly virulent NDV results in rapid death, which is preceded by increased expression of IFN-γ in target tissues. IFN-γ is a cytokine that has pleiotropic biological effects including intrinsic antiviral activity and immunomodulatory effects that may increase morbidity and mortality during infections. To better understand how IFN-γ contributes to NDV pathogenesis, the coding sequence of the chicken IFN-γ gene was inserted in the genome of the virulent NDV strain ZJ1 (rZJ1-IFNγ), and the effects of high levels of IFN-γ expression during infection were determined in vivo and in vitro. IFN-γ expression did not significantly affect NDV replication in fibroblast or in macrophage cell lines. However, it affected the pathogenesis of rZJ1-IFNγ in vivo. Relative to the virus expressing the green fluorescent protein (rZJ1-GFP) or lacking the IFN-γ insert (rZJ1-rev), expression of IFN-γ by rZJ1-IFNγ produced a marked decrease of pathogenicity in 4-week-old chickens, as evidenced by lack of mortality, decreased disease severity, virus shedding, and antigen distribution. These results suggest that early expression of IFN-γ had a significant protective role against the effects of highly virulent NDV infection in chickens, and further suggests that the level and timing of expression of this cytokine may be critical for the disease outcome. This is the first description of an in vivo attenuation of a highly virulent NDV by avian cytokines, and shows the feasibility to use NDV for cytokine delivery in chicken organs. This approach may facilitate the study of the role of other avian cytokines on the pathogenesis of NDV.

  15. Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge.

    PubMed

    Mann, Alex J; Noulin, Nicolas; Catchpole, Andrew; Stittelaar, Koert J; de Waal, Leon; Veldhuis Kroeze, Edwin J B; Hinchcliffe, Michael; Smith, Alan; Montomoli, Emanuele; Piccirella, Simona; Osterhaus, Albert D M E; Knight, Alastair; Oxford, John S; Lapini, Giulia; Cox, Rebecca; Lambkin-Williams, Rob

    2014-01-01

    We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN) adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI) intratracheal and intranasal challenge in a ferret model. Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments) or intranasally (CSN adjuvanted and placebo treatments only) with clade 1 HPAI A/Vietnam/1194/2004 (H5N1) virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings. In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals. This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant mortality and

  16. Surveillance for highly pathogenic H5 avian influenza virus in synanthropic wildlife associated with poultry farms during an acute outbreak

    PubMed Central

    Shriner, Susan A.; Root, J. Jeffrey; Lutman, Mark W.; Kloft, Jason M.; VanDalen, Kaci K.; Sullivan, Heather J.; White, Timothy S.; Milleson, Michael P.; Hairston, Jerry L.; Chandler, Shannon C.; Wolf, Paul C.; Turnage, Clinton T.; McCluskey, Brian J.; Vincent, Amy L.; Torchetti, Mia K.; Gidlewski, Thomas; DeLiberto, Thomas J.

    2016-01-01

    In November 2014, a Eurasian strain H5N8 highly pathogenic avian influenza virus was detected in poultry in Canada. Introduced viruses were soon detected in the United States and within six months had spread to 21 states with more than 48 million poultry affected. In an effort to study potential mechanisms of spread of the Eurasian H5 virus, the United States Department of Agriculture coordinated several epidemiologic investigations at poultry farms. As part of those efforts, we sampled synanthropic birds and mammals at five infected and five uninfected poultry farms in northwest Iowa for exposure to avian influenza viruses. Across all farms, we collected 2,627 samples from 648 individual birds and mammals. House mice were the most common mammal species captured while house sparrows, European starlings, rock pigeons, swallows, and American robins were the most commonly captured birds. A single European starling was positive for Eurasian H5 viral RNA and seropositive for antibodies reactive to the Eurasian H5 virus. Two American robins were also seropositive. No mammal species showed evidence of infection. These results indicate synanthropic species merit further scrutiny to better understand potential biosecurity risks. We propose a set of management practices aimed at reducing wildlife incursions. PMID:27812044

  17. Highly pathogenic avian influenza (H7N7): vaccination of zoo birds and transmission to non-poultry species.

    PubMed

    Philippa, Joost D W; Munster, Vincent J; Bolhuis, Hester van; Bestebroer, Theo M; Schaftenaar, Willem; Beyer, Walter E P; Fouchier, Ron A M; Kuiken, Thijs; Osterhaus, Albert D M E

    2005-12-30

    In 2003 an outbreak of highly pathogenic avian influenza virus (H7N7) struck poultry in The Netherlands. A European Commission directive made vaccination of valuable species in zoo collections possible under strict conditions. We determined pre- and post-vaccination antibody titres in 211 birds by haemagglutination inhibition test as a measure of vaccine efficacy. After booster vaccination, 81.5% of vaccinated birds developed a titre of > or =40, while overall geometric mean titre (GMT) was 190 (95% CI: 144-251). Birds of the orders Anseriformes, Galliformes and Phoenicopteriformes showed higher GMT, and larger percentages developed titres > or =40 than those of the other orders. Antibody response decreased with increasing mean body weight in birds > or =1.5 kg body weight. In the vicinity of the outbreak, H7N7 was detected by RT-PCR in wild species (mallards and mute swans) kept in captivity together with infected poultry, illustrating the potential threat of transmission from poultry into other avian species, and the importance of protecting valuable avian species by means of vaccination.

  18. No evidence of infection or exposure to Highly Pathogenic Avian Influenzas in peridomestic wildlife on an affected poultry facility

    USGS Publications Warehouse

    Grear, Daniel A.; Dusek, Robert J.; Walsh, Daniel P.; Hall, Jeffrey S.

    2017-01-01

    We evaluated the potential transmission of avian influenza viruses (AIV) in wildlife species in three settings in association with an outbreak at a poultry facility: 1) small birds and small mammals on a poultry facility that was affected with highly pathogenic AIV (HPAIV) in April 2015; 2) small birds and small mammals on a nearby poultry facility that was unaffected by HPAIV; and 3) small birds, small mammals, and waterfowl in a nearby natural area. We live-captured small birds and small mammals and collected samples from hunter-harvested waterfowl to test for active viral shedding and evidence of exposure (serum antibody) to AIV and the H5N2 HPAIV that affected the poultry facility. We detected no evidence of shedding or specific antibody to AIV in small mammals and small birds 5 mo after depopulation of the poultry. We detected viral shedding and exposure to AIV in waterfowl and estimated approximately 15% viral shedding and 60% antibody prevalence. In waterfowl, we did not detect shedding or exposure to the HPAIV that affected the poultry facility. We also conducted camera trapping around poultry carcass depopulation composting barns and found regular visitation by four species of medium-sized mammals. We provide preliminary data suggesting that peridomestic wildlife were not an important factor in the transmission of AIV during the poultry outbreak, nor did small birds and mammals in natural wetland settings show wide evidence of AIV shedding or exposure, despite the opportunity for exposure.

  19. Vaccination of gallinaceous poultry for H5N1 highly pathogenic avian influenza: current questions and new technology.

    PubMed

    Spackman, Erica; Swayne, David E

    2013-12-05

    Vaccination of poultry for avian influenza virus (AIV) is a complex topic as there are numerous technical, logistic and regulatory aspects which must be considered. Historically, control of high pathogenicity (HP) AIV infection in poultry has been accomplished by eradication and stamping out when outbreaks occur locally. Since the H5N1 HPAIV from Asia has spread and become enzootic, vaccination has been used on a long-term basis by some countries to control the virus, other countries have used it temporarily to aid eradication efforts, while others have not used it at all. Currently, H5N1 HPAIV is considered enzootic in China, Egypt, Viet Nam, India, Bangladesh and Indonesia. All but Bangladesh and India have instituted vaccination programs for poultry. Importantly, the specifics of these programs differ to accommodate different situations, resources, and industry structure in each country. The current vaccines most commonly used are inactivated whole virus vaccines, but vectored vaccine use is increasing. Numerous technical improvements to these platforms and novel vaccine platforms for H5N1 vaccines have been reported, but most are not ready to be implemented in the field.

  20. Comprehensive analysis of antibody recognition in convalescent humans from highly pathogenic avian influenza H5N1 infection.

    PubMed

    Zuo, Teng; Sun, Jianfeng; Wang, Guiqin; Jiang, Liwei; Zuo, Yanan; Li, Danyang; Shi, Xuanling; Liu, Xi; Fan, Shilong; Ren, Huanhuan; Hu, Hongxing; Sun, Lina; Zhou, Boping; Liang, Mifang; Zhou, Paul; Wang, Xinquan; Zhang, Linqi

    2015-12-04

    Understanding the mechanism of protective antibody recognition against highly pathogenic avian influenza A virus H5N1 in humans is critical for the development of effective therapies and vaccines. Here we report the crystal structure of three H5-specific human monoclonal antibodies bound to the globular head of hemagglutinin (HA) with distinct epitope specificities, neutralization potencies and breadth. A structural and functional analysis of these epitopes combined with those reported elsewhere identifies four major vulnerable sites on the globular head of H5N1 HA. Chimeric and vulnerable site-specific mutant pseudoviruses are generated to delineate broad neutralization specificities of convalescent sera from two individuals who recovered from the infection with H5N1 virus. Our results show that the four vulnerable sites on the globular head rather than the stem region are the major neutralizing targets, suggesting that during natural H5N1 infection neutralizing antibodies against the globular head work in concert to provide protective antibody-mediated immunity.

  1. Re-emergence of amantadine-resistant variants among highly pathogenic avian influenza H5N1 viruses in Egypt.

    PubMed

    El-Shesheny, Rabeh; Bagato, Ola; Kandeil, Ahmed; Mostafa, Ahmed; Mahmoud, Sara H; Hassanneen, Hamdi M; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2016-12-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus continues to undergo substantial evolution. Emergence of antiviral resistance among H5N1 avian influenza viruses is a major challenge in the control of pandemic influenza. Numerous studies have focused on the genetic and evolutionary dynamics of the hemagglutinin and neuraminidase genes; however, studies on the susceptibility of HPAI H5N1 viruses to amantadine and genetic diversity of the matrix (M) gene are limited. Accordingly, we studied the amantadine susceptibility of the HPAI H5N1 viruses isolated in Egypt during 2006-2015 based on genotypic and phenotypic characteristics. We analyzed data on 253 virus sequences and constructed a phylogenetic tree to calculate selective pressures on sites in the M2 gene associated with amantadine-resistance among different clades. Selection pressure was identified in the transmembrane domain of M2 gene at positions 27 and 31. Amantadine-resistant variants emerged in 2007 but were not circulating between 2012 and 2014. By 2015, amantadine-resistant HPAI H5N1 viruses re-emerged. This may be associated with the uncontrolled prescription of amantadine for prophylaxis and control of avian influenza infections in the poultry farm sector in Egypt. More epidemiological research is required to verify this observation.

  2. Pathobiology of highly pathogenic avian influenza virus H5N2 infection in juvenile ostriches from South Africa.

    PubMed

    Howerth, Elizabeth W; Olivier, Adriaan; França, Monique; Stallknecht, David E; Gers, Sophette

    2012-12-01

    In 2011, over 35,000 ostriches were slaughtered in the Oudtshoorn district of the Western Cape province of South Africa following the diagnosis of highly pathogenic avian influenza virus H5N2. We describe the pathology and virus distribution via immunohistochemistry in juvenile birds that died rapidly in this outbreak after showing signs of depression and weakness. Associated sialic acid (SA) receptor distribution in uninfected birds is also described. At necropsy, enlarged spleens, swollen livers, and generalized congestion were noted. Birds not succumbing to acute influenza infection often became cachectic with serous atrophy of fat, airsacculitis, and secondary infections. Necrotizing hepatitis, splenitis, and airsacculitis were prominent histopathologic findings. Virus was detected via immunohistochemistry in abundance in the liver and spleen but also in the air sac and gastrointestinal tract. Infected cells included epithelium, endothelium, macrophages, circulating leukocytes, and smooth muscle of a variety of organs and vessel walls. Analysis of SA receptor distribution in uninfected juvenile ostriches via lectin binding showed abundant expression of SAalpha2,3Gal (avian type) and little or no expression of SAalpha2,6Gal (human type) in the gastrointestinal and respiratory tracts, as well as leukocytes in the spleen and endothelial cells in all organs, which correlated with H5N2 antigen distribution in these tissues.

  3. Antigenic analysis of highly pathogenic avian influenza virus H5N1 sublineages co-circulating in Egypt.

    PubMed

    Watanabe, Yohei; Ibrahim, Madiha S; Ellakany, Hany F; Kawashita, Norihito; Daidoji, Tomo; Takagi, Tatsuya; Yasunaga, Teruo; Nakaya, Takaaki; Ikuta, Kazuyoshi

    2012-10-01

    Highly pathogenic avian influenza virus H5N1 has spread across Eurasia and Africa, and outbreaks are now endemic in several countries, including Indonesia, Vietnam and Egypt. Continuous circulation of H5N1 virus in Egypt, from a single infected source, has led to significant genetic diversification with phylogenetically separable sublineages, providing an opportunity to study the impact of genetic evolution on viral phenotypic variation. In this study, we analysed the phylogeny of H5 haemagglutinin (HA) genes in influenza viruses isolated in Egypt from 2006 to 2011 and investigated the effect of conserved amino acid mutations in the HA genes in each of the sublineages on their antigenicity. The analysis showed that viruses in at least four sublineages still persisted in poultry in Egypt as of 2011. Using reverse genetics to generate HA-reassortment viruses with specific HA mutations, we found antigenic drift in the HA in two influenza virus sublineages, compared with the other currently co-circulating influenza virus sublineages in Egypt. Moreover, the two sublineages with significant antigenic drift were antigenically distinguishable. Our findings suggested that phylogenetically divergent H5N1 viruses, which were not antigenically cross-reactive, were co-circulating in Egypt, indicating that there was a problem in using a single influenza virus strain as seed virus to produce influenza virus vaccine in Egypt and providing data for designing more efficacious control strategies in H5N1-endemic areas.

  4. Genetic characterization of highly pathogenic avian influenza H5N1 viruses isolated from naturally infected pigeons in Egypt.

    PubMed

    Elgendy, Emad Mohamed; Watanabe, Yohei; Daidoji, Tomo; Arai, Yasuha; Ikuta, Kazuyoshi; Ibrahim, Madiha Salah; Nakaya, Takaaki

    2016-12-01

    Avian influenza viruses impose serious public health burdens with significant mortality and morbidity not only in poultry but also in humans. While poultry susceptibility to avian influenza virus infection is well characterized, pigeons have been thought to have low susceptibility to these viruses. However, recent studies reported natural pigeon infections with highly pathogenic avian influenza H5N1 viruses. In Egypt, which is one of the H5N1 endemic areas for birds, pigeons are raised in towers built on farms in backyards and on house roofs, providing a potential risk for virus transmission from pigeons to humans. In this study, we performed genetic analysis of two H5N1 virus strains that were isolated from naturally infected pigeons in Egypt. Genetic and phylogenetic analyses showed that these viruses originated from Egyptian H5N1 viruses that were circulating in chickens or ducks. Several unique mutations, not reported before in any Egyptian isolates, were detected in the internal genes (i.e., polymerase residues PB1-V3D, PB1-K363R, PA-A369V, and PA-V602I; nucleoprotein residue NP-R38K; and nonstructural protein residues NS1-D120N and NS2-F55C). Our findings suggested that pigeons are naturally infected with H5N1 virus and can be a potential reservoir for transmission to humans, and showed the importance of genetic analysis of H5N1 internal genes.

  5. High-virulence CMY-2- and CTX-M-2-producing avian pathogenic Escherichia coli strains isolated from commercial turkeys.

    PubMed

    da Silva, Ketrin Cristina; Cunha, Marcos Paulo Vieira; Cerdeira, Louise; de Oliveira, Maria Gabriela Xavier; de Oliveira, Mirela Caroline Vilela; Gomes, Cleise Ribeiro; Lincopan, Nilton; Knöbl, Terezinha; Moreno, Andrea Micke

    2017-01-01

    This study reports the high-virulence phylogenetic backgrounds of CMY-2- and CTX-M-2-producing avian pathogenic Escherichia coli strains isolated from turkeys sent to slaughter and condemned by airsacculitis in Brazil. Among 300 air sac samples, seven E. coli strains produced plasmid-mediated CMY-2-type AmpC, of which three carried also the blaCTX-M-2 Extended Spectrum Beta-Lactamase encoding gene. Interestingly, the transfer of the blaCMY-2 gene was positive for three E. coli strains, being associated with the presence of IncI1 plasmids. The complete sequence of the representative pJB10 plasmid revealed that the blaCMY-2 gene was within a transposon-like element in the classical genetic environment consisting of tnpA-blaCMY-2-blc-sugE structure. This plasmid with 94-kb belonged to the sequence type (ST) 12 among IncI1 plasmids, which has been associated with the worldwide spread of blaCMY-2 among Salmonella enterica and E. coli. Furthermore, to the best of our knowledge, this is the first complete sequence of a CMY-2-encoding plasmid derived from an Escherichia coli isolated from food-producing animals in Latin America.

  6. Propagation of field highly pathogenic porcine reproductive and respiratory syndrome virus in MARC-145 cells is promoted by cell apoptosis.

    PubMed

    Ge, Mengyun; Zhang, Yi; Liu, Ying; Liu, Tao; Zeng, Fanya

    2016-02-02

    Infection of porcine reproductive and respiratory syndrome virus (PRRSV) induces cell apoptosis both in vivo and in vitro. However, the correlation between host cell apoptosis and PRRSV replication is unclear. Here, the promotion of PRRSV propagation by cell apoptosis in MARC-145 cells was reported. The observation on propagation of field highly pathogenic PRRSV (HP-PRRSV) in MARC-145 cells showed that infection of overgrown MARC-145 cells obviously elevated virus production and cell apoptosis was triggered in these cells before virus inoculation. The investigation on propagation of field HP-PRRSV in apoptosis induced MARC-145 cells displayed that induction of apoptosis further increased the virus production and a vigorous viral RNA replication accompanied by fast virus release in these cells was detected in the initial 24h post infection. In addition, when field HP-PRRSV was serially passed in drug-treated MARC-145 cells, the progeny viruses kept a stable viral titer and infectivity to its native target cells in the tested generations. In summary, these findings demonstrated that apoptotic MARC-145 cells were more susceptible to field HP-PRRSV and propagation of the virus was promoted by effective replication and cell-to-cell transmission of the virus in these cells.

  7. Human infection with a highly pathogenic avian influenza A (H5N6) virus in Yunnan province, China.

    PubMed

    Xu, Wen; Li, Hong; Jiang, Li

    2016-01-01

    Highly pathogenic avian influenza A H5N6 virus has caused four human infections in China. This study reports the preliminary findings of the first known human case of H5N6 in Yunnan province. The patient initially developed symptoms of sore throat and coughing on 27 January 2015. The disease rapidly progressed to severe pneumonia, multiple organ dysfunctions and acute respiratory distress syndrome and the patient died on 6 February. Virological analysis determined that the virus belonged to H5 clade 2.3.4.4 and it has obtained partial ability for mammalian adaptation and amantadine resistance. Environmental investigation found H5 in 63% of the samples including poultry faeces, tissues, cage surface swabs and sewage from local live poultry markets by real-time RT-PCR. These findings suggest that the expanding and enhancing of surveillance in both avian and humans are necessary to monitor the evolution of H5 influenza virus and to facilitate early detection of suspected cases.

  8. Comprehensive analysis of antibody recognition in convalescent humans from highly pathogenic avian influenza H5N1 infection

    PubMed Central

    Zuo, Teng; Sun, Jianfeng; Wang, Guiqin; Jiang, Liwei; Zuo, Yanan; Li, Danyang; Shi, Xuanling; Liu, Xi; Fan, Shilong; Ren, Huanhuan; Hu, Hongxing; Sun, Lina; Zhou, Boping; Liang, Mifang; Zhou, Paul; Wang, Xinquan; Zhang, Linqi

    2015-01-01

    Understanding the mechanism of protective antibody recognition against highly pathogenic avian influenza A virus H5N1 in humans is critical for the development of effective therapies and vaccines. Here we report the crystal structure of three H5-specific human monoclonal antibodies bound to the globular head of hemagglutinin (HA) with distinct epitope specificities, neutralization potencies and breadth. A structural and functional analysis of these epitopes combined with those reported elsewhere identifies four major vulnerable sites on the globular head of H5N1 HA. Chimeric and vulnerable site-specific mutant pseudoviruses are generated to delineate broad neutralization specificities of convalescent sera from two individuals who recovered from the infection with H5N1 virus. Our results show that the four vulnerable sites on the globular head rather than the stem region are the major neutralizing targets, suggesting that during natural H5N1 infection neutralizing antibodies against the globular head work in concert to provide protective antibody-mediated immunity. PMID:26635249

  9. Multichannel oscillatory-flow multiplex PCR microfluidics for high-throughput and fast detection of foodborne bacterial pathogens.

    PubMed

    Zhang, Chunsun; Wang, Haiying; Xing, Da

    2011-10-01

    In the field of continuous-flow PCR, the amplification throughput in a single reaction solution is low and the single-plex PCR is often used. In this work, we reported a flow-based multiplex PCR microfluidic system capable of performing high-throughput and fast DNA amplification for detection of foodborne bacterial pathogens. As a demonstration, the mixture of DNA targets associated with three different foodborne pathogens was included in a single PCR solution. Then, the solution flowed through microchannels incorporated onto three temperature zones in an oscillatory manner. The effect factors of this oscillatory-flow multiplex PCR thermocycling have been demonstrated, including effects of polymerase concentration, cycling times, number of cycles, and DNA template concentration. The experimental results have shown that the oscillatory-flow multiplex PCR, with a volume of only 5 μl, could be completed in about 13 min after 35 cycles (25 cycles) at 100 μl/min (70 μl/min), which is about one-sixth of the time required on the conventional machine (70 min). By using the presently designed DNA sample model, the minimum target concentration that could be detected at 30 μl/min was 9.8 × 10(-2) ng/μl (278-bp, S. enterica), 11.2 × 10(-2) ng/μl (168-bp, E. coli O157: H7), and 2.88 × 10(-2) ng/μl (106-bp, L. monocytogenes), which corresponds to approximately 3.72 × 10(4) copies/μl, 3.58 × 10(4) copies/μl, and 1.79 × 10(4) copies/μl, respectively. This level of speed and sensitivity is comparable to that achievable in most other continuous-flow PCR systems. In addition, the four individual channels were used to achieve multi-target PCR analysis of three different DNA samples from different food sources in parallel, thereby achieving another level of multiplexing.

  10. Partial heterologous protection by low pathogenic H9N2 virus against natural H9N2-PB1 gene reassortant highly pathogenic H5N1 virus in chickens.

    PubMed

    Dash, Sandeep Kumar; Kumar, Manoj; Kataria, Jag Mohan; Nagarajan, Shanmugasundaram; Tosh, Chakradhar; Murugkar, Harshad V; Kulkarni, Diwakar D

    2016-06-01

    Low pathogenic avian influenza H9N2 and highly pathogenic avian influenza H5N1 viruses continue to co-circulate in chickens. Prior infection with low pathogenic avian influenza can modulate the outcome of H5N1 infection. In India, low pathogenic H9N2 and highly pathogenic H5N1 avian influenza viruses are co-circulating in poultry. Herein, by using chickens with prior infection of A/chicken/India/04TI05/2012 (H9N2) virus we explored the outcome of infection with H5N1 virus A/turkey/India/10CA03/2012 natural PB1 gene reassortant from H9N2. Four groups (E1-E4) of SPF chickens (n = 6) prior inoculated with 10(6) EID50 of H9N2 virus were challenged with 10(6) EID50 of H5N1 natural reassortant (PB1-H9N2) virus at days 1 (group E1); 3 (group E2); 7 (group E3) and 14 (group E4) post H9N2 inoculation. The survival percentage in groups E1-E4 was 0, 100, 66.6 and 50%, respectively. Virus shedding periods for groups E1-E4 were 3, 4, 7 and 9 days, respectively post H5N1 challenge. Birds of group E1 and E2 were shedding both H9N2 and H5N1 viruses and mean viral RNA copy number was higher in oropharyngeal swabs than cloacal swabs. In group, E3 and E4 birds excreted only H5N1 virus and mean viral RNA copy number was higher in most cloacal swabs than oral swabs. These results indicate that prior infection with H9N2 virus could protect from lethal challenge of reassortant H5N1 virus as early as with three days prior H9N2 inoculation and protection decreased in groups E3 and E4 as time elapsed. However, prior infection with H9N2 did not prevent infection with H5N1 virus and birds continue to excrete virus in oropharyngeal and cloacal swabs. Amino acid substitution K368E was found in HA gene of excreted H5N1 virus of group E3. Hence, concurrent infection can also cause emergence of viruses with mutations leading to virus evolution. The results of this study are important for the surveillance and epidemiological data analysis where both H9N2 and H5N1 viruses are co-circulating.

  11. Lemna (duckweed) expressed hemagglutinin from avian influenza H5N1 protects chickens against H5N1 high pathogenicity avian influenza virus challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last two decades, transgenic plants have been explored as safe and cost effective alternative expression platforms for producing recombinant proteins. In this study, a synthetic hemagglutinin (HA) gene from the high pathogenicity avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1)...

  12. Determination of efficacious vaccine seed strains for use against Egyptian H5N1 highly pathogenic avian influenza viruses through antigenic cartography and in vivo challenge studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2006, there have been reported outbreaks of H5N1 highly pathogenic avian influenza (HPAI) in vaccinated chickens in Africa and Asia. This study provides experimental data for selection of efficacious H5N1 vaccine seed strains against recently circulating strains of H5N1 HPAI viruses in Egypt....

  13. Risk reduction modeling of high pathogenicity avian influenza virus titers in non-pasteurized liquid egg obtained from infected but undetected chicken flocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control of highly pathogenic avian influenza (HPAI) has traditionally involved the establishment of disease containment zones, where poultry products are only permitted to move from within a containment area under permit. Non-pasteurized liquid egg (NPLE) is one such commodity for which movements ma...

  14. H5N2 highly pathogenic avian influenza viruses from the US 2014-2015 outbreak have an unusually long pre-clinical period in turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From December 2014 through June 2015, the US experienced the most costly highly pathogenic avian influenza (HPAI) outbreak to date. Most cases in commercial poultry were caused by an H5N2 strain which was a reassortant with 5 Eurasian lineage genes, including a clade 2.3.4.4 goose/Guangdong/1996 lin...

  15. Experimental infection with low and high pathogenicity H7N3 Chilean avian influenza viruses in Chiloe Wigeon (Anas sibilatrix) and Cinnamon Teal (Anas cyanoptera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, H5N1 high pathogenicity avian influenza (HPAI) viruses have been associated with natural, lethal infections in wild aquatic birds which have been reproduced experimentally. Some aquatic bird species have been suggested as potential transporters of H5N1 HPAI virus via migration. However, ...

  16. Role of immune-related host gene responses in the pathobiology of H5N1 highly pathogenic avian influenza in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Asian highly pathogenic avian influenza (HPAI) H5N1 viruses have changed from producing mild respiratory infections in ducks to some strains causing severe disease and mortality. In this study we examined host response to infection with HPAI H5N1 viruses in ducks. With the use of a whole genom...

  17. Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    H5N2 highly pathogenic avian influenza (HPAI) viruses caused a severe poultry outbreak in the United States (U.S.) during 2015. In order to examine changes in adaptation of this viral lineage, the infectivity, transmission and pathogenesis of poultry H5N2 viruses was investigated in chickens and mal...

  18. Comparison of potency required for protection against H7N3 or H5N1 highly pathogenic avian influenza following vaccination and challenge with homologous virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of H5 and H7 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to food supplies and animal/human health. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for pro...

  19. Negative data provide weak support for disappearance and restricted emergence/persistence of highly pathogenic influenza A viruses in North American waterfowl

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In their recent paper, Krauss et al. use lack of detection of highly pathogenic (HP) H5 clade 2.3.4.4 (henceforth ‘H5’) influenza A viruses (IAVs) from >22,000 wild bird samples collected in North America (NA) in 2014–2015 to argue that HP H5 IAVs disappeared from waterfowl and that unresolved mecha...

  20. Highly Pathogenic Avian Influenza A(H5N8) Viruses Reintroduced into South Korea by Migratory Waterfowl, 2014-2015.

    PubMed

    Kwon, Jung-Hoon; Lee, Dong-Hun; Swayne, David E; Noh, Jin-Yong; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Hong, Woo-Tack; Jeong, Jei-Hyun; Jeong, Sol; Gwon, Gyeong-Bin; Song, Chang-Seon

    2016-03-01

    Highly pathogenic avian influenza A(H5N8) viruses were isolated from migratory waterfowl in South Korea during fall 2014-winter 2015, a recurrence after initial introduction in winter 2014. These reappeared viruses were phylogenetically distinct from isolates circulating in poultry farms in South Korea.

  1. Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A(H5N1) viruses in ferrets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A (H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, num...

  2. Vaccine protection of turkeys against H5N1 highly pathogenic avian influenza virus with a recombinant HVT expressing the hemagglutinin gene of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of H5 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to animal health and food supplies. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for protection varies...

  3. Potency, efficacy, and antigenic mapping of H7 avian influenza virus vaccines against the 2012 H7N3 highly pathogenic avian influenza virus from Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the spring of 2012 an outbreak of H7N3 highly pathogenic (HP) avian influenza virus (AIV) occurred in poultry in Mexico. Vaccination was implemented as a control measure along with increased biosecurity and surveillance. At that time there was no commercially available H7 AIV vaccine in North Ame...

  4. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infections with Avian influenza viruses (AIV) of low and high pathogenicity (LP and HP), and Newcastle disease virus (NDV) are commonly reported in domestic ducks in parts of the world. However, it’s not clear if co-infections with these viruses affect the severity of the diseases they produce, the ...

  5. Infectious and lethal doses of H5N1 highly pathogenic avian influenza virus for house sparrows (Passer domesticus) and rock pigeons (Columbia livia)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Terrestrial wild birds commonly associated with poultry farms have the potential to contribute to the spread of H5N1 highly pathogenic avian influenza virus within or between poultry facilities or between domesticated and wild bird populations. This potential, however, varies between species and is...

  6. Live bird markets of Bangladesh: H9N2 viruses and the near absence of highly pathogenic H5N1 influenza.

    PubMed

    Negovetich, Nicholas J; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Alam, S M Rabiul; Hasan, Kamrul; Seiler, Patrick; Ferguson, Angie; Friedman, Kim; Barman, Subrata; Franks, John; Turner, Jasmine; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2011-04-26

    Avian influenza surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the live-bird markets are presented. Prevalence of influenza infection in the birds of the live bird markets is 23.0%, which is similar to that in poultry markets in other countries. Nearly all of the isolates (94%) were of the non-pathogenic H9N2 subtype, but viruses of the H1N2, H1N3, H3N6, H4N2, H5N1, and H10N7 subtypes were also observed. The highly pathogenic H5N1-subtype virus was observed at extremely low prevalence in the surveillance samples (0.08%), and we suggest that the current risk of infection for humans in the retail poultry markets in Bangladesh is negligible. However, the high prevalence of the H9 subtype and its potential for interaction with the highly pathogenic H5N1-subtype, i.e., reassortment and attenuation of host morbidity, highlight the importance of active surveillance of the poultry markets.

  7. Protection of poultry against the 2012 Mexican H7N3 highly pathogenic avian influenza virus with inactivated H7 avian influenza vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In June of 2012, an outbreak of highly pathogenic avian influenza (HPAI) H7N3 was reported poultry in Jalisco, Mexico. Since that time the virus has spread to the surrounding States of Guanajuato and Aguascalientes and new outbreaks continue to be reported. To date more than 25 million birds have di...

  8. Variability in pathobiology of South Korean H5N1 high-pathogenicity avian influenza virus infection for 5 species of migratory waterfowl

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biological outcome of H5N1 high pathogenicity avian influenza (HPAI) virus infection in wild waterfowl is poorly understood. This study examined infectivity and pathobiology of A/chicken/Korea/IS/06 (H5N1) HPAI virus infection in Mute swans (Cygnus olor), Greylag geese (Anser anser), Ruddy Sheld...

  9. Susceptibility of five migratory aquatic birds to H5N1 highly pathogenic avian influenza virus (A/Chicken/Korea/IS/06)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is not known which migratory aquatic species are important in spreading H5N1 highly pathogenic avian influenza (HPAI) viruses, and the pathobiology of infections by such viruses. The objective of this investigation was to assess the susceptibility of Mute swans (Cygnus olor), Greylag geese (Anse...

  10. Assessment of reduced vaccine dose on efficacy of an inactivated avian influenza vaccine against an H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) vaccines have emerged to be a viable emergency tool for use in a comprehensive strategy for dealing with high pathogenicity (HP) AI in developed countries. However, the available doses of inactivated AI vaccine are limited to national vaccine banks and inventory stocks of some ...

  11. Protection against H7N3 high pathogenicity avian influenza in chickens immunized with a recombinant fowlpox and an inactivated avian influenza vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beginning on June 2012, an H7N3 highly pathogenic avian influenza (HPAI) epizootic was reported in the State of Jalisco (Mexico), with some 22.4 million chickens that died, were slaughtered on affected farms or were preemptively culled on neighboring farms. In the current study, layer chickens were ...

  12. Reduction of high pathogenicity avian influenza virus in eggs from chickens once or twice vaccinated with an oil-emulsified inactivated H5 avian influenza vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The negative impact of high pathogenicity avian influenza virus (HPAIV) infection on egg production and deposition of virus in eggs, as well as any protective effect of vaccination, is unknown. Individually housed non-vaccinated, sham-vaccinated and inactivated H5N9 vaccinated once or twice adult Wh...

  13. Effect of Infection with a Mesogenic Strain of Newcastle Disease Virus on Infection with Highly Pathogenic Avian Influenza Virus in Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known on the interactions between avian influenza virus (AIV) and Newcastle disease virus (NDV) when coinfecting the same poultry host. In a previous study we found that infection of chickens with a mesogenic strain of NDV (mNDV) can reduce highly pathogenic AIV (HPAIV) replication, clinic...

  14. Highly pathogenic avian influenza A(H5N8) viruses reintroduced into South Korea by migratory waterfowl, 2014–2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza A(H5N8) viruses were isolated from migratory waterfowl in South Korea during all 2014–winter 2015, a recurrence after initial introduction in winter 2014. These reappeared viruses were phylogenetically distinct from isolates circulating in poultry farms in South Kor...

  15. A computationally optimized broadly reactive H5 hemagglutinin vaccine provides protection against homologous and heterologous H5N1 highly pathogenic avian influenza virus infection in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since its emergence in 1996 in China, H5N1 highly pathogenic avian influenza (HPAI) virus has continuously evolved into different genetic clades that have created challenges to maintaining antigenically relevant H5N1 vaccine seeds. Therefore, a universal (multi-hemagglutinin [HA] subtype) or more c...

  16. Efficacy of commercial vaccines in protecting chickens and ducks against H5N1 highly pathogenic avian influenza viruses from Vietnam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and have spread to other regions of the world. Though attempts at eradication of the viruses during various outbreaks have been successful for short periods of time, new strains of H5N1 viruses continue to emerge...

  17. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza virus (HPAIV) infections in chickens produce a negative impact on egg production, and virus is deposited on surface and internal contents of eggs. Previously, vaccination maintained egg production and reduced egg contamination when challenged with a North American H...

  18. Suboptimal protection against H5N1 highly pathogenic avian influenza viruses from Vietnam in ducks vaccinated with commercial poultry vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and other regions of the world. Vaccination is used as part of H5N1 HPAI control programs in many countries; however, eradication of the disease has not been possible due to the emergence and spread of new viruses...

  19. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pathogenicity avian influenza virus (HPAIV) infections in chickens decrease egg production and eggs that are laid contain HPAIV. Vaccination once or twice was examined as a way to protect chickens from Vietnamese H5N1 HPAIV. Eighty-three percent of hens without vaccination died within 3 days ...

  20. High-throughput DNA microarray detection of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley, Nepal.

    PubMed

    Inoue, Daisuke; Hinoura, Takuji; Suzuki, Noriko; Pang, Junqin; Malla, Rabin; Shrestha, Sadhana; Chapagain, Saroj Kumar; Matsuzawa, Hiroaki; Nakamura, Takashi; Tanaka, Yasuhiro; Ike, Michihiko; Nishida, Kei; Sei, Kazunari

    2015-01-01

    Because of heavy dependence on groundwater for drinking water and other domestic use, microbial contamination of groundwater is a serious problem in the Kathmandu Valley, Nepal. This study investigated comprehensively the occurrence of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley by applying DNA microarray analysis targeting 941 pathogenic bacterial species/groups. Water quality measurements found significant coliform (fecal) contamination in 10 of the 11 investigated groundwater samples and significant nitrogen contamination in some samples. The results of DNA microarray analysis revealed the presence of 1-37 pathogen species/groups, including 1-27 biosafety level 2 ones, in 9 of the 11 groundwater samples. While the detected pathogens included several feces- and animal-related ones, those belonging to Legionella and Arthrobacter, which were considered not to be directly associated with feces, were detected prevalently. This study could provide a rough picture of overall pathogenic bacterial contamination in the Kathmandu Valley, and demonstrated the usefulness of DNA microarray analysis as a comprehensive screening tool of a wide variety of pathogenic bacteria.

  1. Migration of Whooper Swans and Outbreaks of Highly Pathogenic Avian Influenza H5N1 Virus in Eastern Asia

    PubMed Central

    Newman, Scott H.; Iverson, Samuel A.; Takekawa, John Y.; Gilbert, Martin; Prosser, Diann J.; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003–2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds. PMID:19479053

  2. Experimental infection and comparative genomic analysis of a highly pathogenic PRRSV-HBR strain at different passage levels.

    PubMed

    Wei, Yanwu; Li, Shengbin; Huang, Liping; Tang, Qinghai; Liu, Jianbo; Liu, Dan; Wang, Yiping; Wu, Hongli; Liu, Changming

    2013-10-25

    A highly pathogenic strain of porcine reproductive and respiratory syndrome virus (PRRSV-HBR) was passaged on Marc-145 cells for 125 passages. In order to elucidate the change in virulence of PRRSV-HBR strain during the process of passage in vitro, swine infection experiment was performed with the viruses of low (F5 and F10) and high passage (F125). In addition, to identify the mutations related to the change in virulence of PRRSV-HBR strain, we compared and analyzed the genomic sequences of the F5, F10 and F125 of the strain. The virulence of F125 was significantly lower than that of F5 in the virus-infected pigs. In comparison with F5 and F125, there were 45 amino acids (aa) mutations and a deletion of 2 continuous aa by means of the virus genome sequence analysis. For these mutations, 33 aa (73.3%) occurred in the viral nonstructural proteins and the other 12 aa (26.7%) were contained in the viral structural proteins. Of the mutations, only 15 aa (33.3%) appeared in F10 and 30 aa (66.7%) occurred during passage from F10 to F125. The data showed that the latter 30 aa mutations were probably associated with attenuation of PRRSV-HBR strain, and that the change in virulence of the virus was determined by multiple alterations both in the structural and nonstructural genes. The virulence of PRRSV-HBR strain was remarkably attenuated after serial passages, and it can be used as vaccine candidate for control of the PRRS.

  3. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in Eastern Asia

    USGS Publications Warehouse

    Newman, Scott H.; Iverson, Samuel A.; Takekawa, John Y.; Gilbert, Martin; Prosser, Diann J.; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  4. Antigenic characterization of H5N1 highly pathogenic avian influenza viruses isolated from poultry in India, 2006-2015.

    PubMed

    Bhat, Sudipta; Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V; Kalaiyarasu, Semmannan; Venkatesh, Govindarajulu; Tosh, Chakradhar

    2017-02-01

    Highly pathogenic avian influenza (HPAI) is a major health concern worldwide. In this study, we focused on antigenic analysis of HPAI H5N1 viruses isolated from poultry in India between 2006 and 2015 comprising 25 isolates from four phylogenetic clades 2.2 (1 isolate), 2.2.2.1 (1 isolate), 2.3.2.1a (17 isolates) and 2.3.2.1c (6 isolates). Seven H5N1 isolates from all four clades were selected for production of chicken antiserum, and antigenic analysis was carried out by hemagglutination inhibition (HI) assay. HI data indicated antigenic divergence (6-21 fold reduction in cross-reactivity) between the two recently emerged clades 2.3.2.1a and 2.3.2.1c. These two clades are highly divergent (21-128 fold reduction in HI titre) from the earlier clades 2.2 /2.2.2.1 isolated in India. However, a maximum of 2-fold and 4-fold reduction in cross-reactivity was observed within the isolates of homologous clades 2.3.2.1c and 2.3.2.1a, respectively. The molecular basis of inter-clade antigenic divergence was examined in the haemagglutinin (HA) antigenic sites of the H5N1 virus. Amino acid changes at 8 HA antigenic sites were observed between clades 2.3.2.1a and 2.3.2.1c, whereas 20-23 substitutions were observed between clades 2.3.2.1a/2.3.2.1c and 2.2/2.2.2.1. Therefore, a systematic analysis of antigenic drift of the contemporary field isolates is a pre-requisite for determining the suitable strain(s) for vaccine candidature.

  5. Divergence in substrate specificity by the vOTU domain of various strains of highly-pathogenic PRRSV and the implications to pathogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine reproductive and respiratory syndrome virus (PRRSV) is widespread with a high variation in sequence and virulence among the divergent strains and causes an economically destructive disease. A viral ovarian domain protease (vOTU) has been previously identified within the nonstructural protein...

  6. A quantitative assessment of the risk for highly pathogenic avian influenza introduction into Spain via legal trade of live poultry.

    PubMed

    Sánchez-Vizcaíno, Fernando; Perez, Andrés; Lainez, Manuel; Sánchez-Vizcaíno, José Manuel

    2010-05-01

    Highly pathogenic avian influenza (HPAI) is considered one of the most important diseases of poultry. During the last 9 years, HPAI epidemics have been reported in Asia, the Americas, Africa, and in 18 countries of the European Union (EU). For that reason, it is possible that the risk for HPAI virus (HPAIV) introduction into Spain may have recently increased. Because of the EU free-trade policy and because legal trade of live poultry was considered an important route for HPAI spread in certain regions of the world, there are fears that Spain may become HPAIV-infected as a consequence of the legal introduction of live poultry. However, no quantitative assessment of the risk for HPAIV introduction into Spain or into any other EU member state via the trade of poultry has been published in the peer-reviewed literature. This article presents the results of the first quantitative assessment of the risk for HPAIV introduction into a free country via legal trade of live poultry, along with estimates of the geographical variation of the risk and of the relative contribution of exporting countries and susceptible poultry species to the risk. The annual mean risk for HPAI introduction into Spain was estimated to be as low as 1.36 x 10(-3), suggesting that under prevailing conditions, introduction of HPAIV into Spain through the trade of live poultry is unlikely to occur. Moreover, these results support the hypothesis that legal trade of live poultry does not impose a significant risk for the spread of HPAI into EU member states.

  7. Transforming Growth Factor-β: Activation by Neuraminidase and Role in Highly Pathogenic H5N1 Influenza Pathogenesis

    PubMed Central

    Moser, Lindsey A.; O'Brien, Kevin B.; Cline, Troy D.; Jones, Jeremy C.; Tumpey, Terrence M.; Katz, Jacqueline M.; Kelley, Laura A.; Gauldie, Jack; Schultz-Cherry, Stacey

    2010-01-01

    Transforming growth factor-beta (TGF-β), a multifunctional cytokine regulating several immunologic processes, is expressed by virtually all cells as a biologically inactive molecule termed latent TGF-β (LTGF-β). We have previously shown that TGF-β activity increases during influenza virus infection in mice and suggested that the neuraminidase (NA) protein mediates this activation. In the current study, we determined the mechanism of activation of LTGF-β by NA from the influenza virus A/Gray Teal/Australia/2/1979 by mobility shift and enzyme inhibition assays. We also investigated whether exogenous TGF-β administered via a replication-deficient adenovirus vector provides protection from H5N1 influenza pathogenesis and whether depletion of TGF-β during virus infection increases morbidity in mice. We found that both the influenza and bacterial NA activate LTGF-β by removing sialic acid motifs from LTGF-β, each NA being specific for the sialic acid linkages cleaved. Further, NA likely activates LTGF-β primarily via its enzymatic activity, but proteases might also play a role in this process. Several influenza A virus subtypes (H1N1, H1N2, H3N2, H5N9, H6N1, and H7N3) except the highly pathogenic H5N1 strains activated LTGF-β in vitro and in vivo. Addition of exogenous TGF-β to H5N1 influenza virus–infected mice delayed mortality and reduced viral titers whereas neutralization of TGF-β during H5N1 and pandemic 2009 H1N1 infection increased morbidity. Together, these data show that microbe-associated NAs can directly activate LTGF-β and that TGF-β plays a pivotal role protecting the host from influenza pathogenesis. PMID:20949074

  8. The effectiveness of preventative mass vaccination regimes against the incidence of highly pathogenic avian influenza on Java Island, Indonesia.

    PubMed

    Bett, B; McLaws, M; Jost, C; Schoonman, L; Unger, F; Poole, J; Lapar, M L; Siregar, E S; Azhar, M; Hidayat, M M; Dunkle, S E; Mariner, J

    2015-04-01

    We conducted an operational research study involving backyard and semicommercial farms on Java Island, Indonesia, between April 2008 and September 2009 to evaluate the effectiveness of two preventive mass vaccination strategies against highly pathogenic avian influenza (HPAI). One regimen used Legok 2003 H5N1 vaccine, while the other used both Legok 2003 H5N1 and HB1 Newcastle disease (ND) vaccine. A total of 16 districts were involved in the study. The sample size was estimated using a formal power calculation technique that assumed a detectable effect of treatment as a 50% reduction in the baseline number of HPAI-compatible outbreaks. Within each district, candidate treatment blocks with village poultry populations ranging from 80 000 to 120 000 were created along subdistrict boundary lines. Subsequently, four of these blocks were randomly selected and assigned one treatment from a list that comprised control, vaccination against HPAI, vaccination against HPAI + ND. Four rounds of vaccination were administered at quarterly intervals beginning in July 2008. A vaccination campaign involved vaccinating 100 000 birds in a treatment block, followed by another 100 000 vaccinations 3 weeks later as a booster dose. Data on disease incidence and vaccination coverage were also collected at quarterly intervals using participatory epidemiological techniques. Compared with the unvaccinated (control) group, the incidence of HPAI-compatible events declined by 32% (P = 0.24) in the HPAI-vaccinated group and by 73% (P = 0.00) in the HPAI- and ND-vaccinated group. The effect of treatment did not vary with time or district. Similarly, an analysis of secondary data from the participatory disease and response (PDSR) database revealed that the incidence of HPAI declined by 12% in the HPAI-vaccinated group and by 24% in the HPAI + ND-vaccinated group. The results suggest that the HPAI + ND vaccination significantly reduced the incidence of HPAI-compatible events in mixed populations of

  9. Risk factors and characteristics of H5N1 Highly Pathogenic Avian Influenza (HPAI) post-vaccination outbreaks.

    PubMed

    Henning, Joerg; Pfeiffer, Dirk U; Vu, Le Tri

    2009-01-01

    Highly pathogenic avian influenza (HPAI) virus H5N1 is now endemic in South-East Asia but HPAI control methods differ between countries. A widespread HPAI vaccination campaign that started at the end of 2005 in Viet Nam resulted in the cessation of poultry and human cases, but in 2006/2007 severe HPAI outbreaks re-emerged. In this study we investigated the pattern of this first post-vaccination epidemic in southern Viet Nam identifying a spatio-temporal cluster of outbreak occurrence and estimating spatially smoothed incidence rates of HPAI. Spatial risk factors associated with HPAI occurrence were identified. Medium-level poultry density resulted in an increased outbreak risk (Odds ratio (OR) = 5.4, 95% confidence interval (CI): 1.6-18.9) but also climate-vegetation factors played an important role: medium-level normalised difference vegetation indices during the rainy season from May to October were associated with higher risk of HPAI outbreaks (OR = 3.7, 95% CI: 1.7-8.1), probably because temporal flooding might have provided suitable conditions for the re-emergence of HPAI by expanding the virus distribution in the environment and by enlarging areas of possible contacts between domestic waterfowl and wild birds. On the other hand, several agricultural production factors, such as sweet potatoes yield, increased buffalo density, as well as increased electricity supply were associated with decreased risk of HPAI outbreaks. This illustrates that preventive control measures for HPAI should include a promotion of low-risk agricultural management practices as well as improvement of the infrastructure in village households. Improved HPAI vaccination efforts and coverage should focus on medium poultry density areas and on the pre-monsoon time period.

  10. U.S. Geological Survey science strategy for highly pathogenic avian influenza in wildlife and the environment (2016–2020)

    USGS Publications Warehouse

    Harris, M. Camille; Pearce, John M.; Prosser, Diann J.; White, C. LeAnn; Miles, A. Keith; Sleeman, Jonathan M.; Brand, Christopher J.; Cronin, James P.; De La Cruz, Susan; Densmore, Christine L.; Doyle, Thomas W.; Dusek, Robert J.; Fleskes, Joseph P.; Flint, Paul L.; Guala, Gerald F.; Hall, Jeffrey S.; Hubbard, Laura E.; Hunt, Randall J.; Ip, Hon S.; Katz, Rachel A.; Laurent, Kevin W.; Miller, Mark P.; Munn, Mark D.; Ramey, Andy M.; Richards, Kevin D.; Russell, Robin E.; Stokdyk, Joel P.; Takekawa, John Y.; Walsh, Daniel P.

    2016-08-18

    IntroductionThrough the Science Strategy for Highly Pathogenic Avian Influenza (HPAI) in Wildlife and the Environment, the USGS will assess avian influenza (AI) dynamics in an ecological context to inform decisions made by resource managers and policymakers from the local to national level. Through collection of unbiased scientific information on the ecology of AI viruses and wildlife hosts in a changing world, the U.S. Geological Survey (USGS) will enhance the development of AI forecasting tools and ensure this information is integrated with a quality decision process for managing HPAI.The overall goal of this USGS Science Strategy for HPAI in Wildlife and the Environment goes beyond document­ing the occurrence and distribution of AI viruses in wild birds. The USGS aims to understand the epidemiological processes and environmental factors that influence HPAI distribution and describe the mechanisms of transmission between wild birds and poultry. USGS scientists developed a conceptual model describing the process linking HPAI dispersal in wild waterfowl to the outbreaks in poul­try. This strategy focuses on five long-term science goals, which include:Science Goal 1—Augment the National HPAI Surveillance Plan;Science Goal 2—Determine mechanisms of HPAI disease spread in wildlife and the environment;Science Goal 3—Characterize HPAI viruses circulating in wildlife;Science Goal 4—Understand implications of avian ecol­ogy on HPAI spread; andScience Goal 5—Develop HPAI forecasting and decision-making tools.These goals will help define and describe the processes outlined in the conceptual model with the ultimate goal of facilitating biosecurity and minimizing transfer of diseases across the wildlife-poultry interface. The first four science goals are focused on scientific discovery and the fifth goal is application-based. Decision analyses in the fifth goal will guide prioritization of proposed actions in the first four goals.

  11. Persistence of highly pathogenic avian influenza H5N1 virus defined by agro-ecological niche

    USGS Publications Warehouse

    Hogerwerf, Lenny; Wallace, Rob G.; Ottaviani, Daniela; Slingenbergh, Jan; Prosser, Diann; Bergmann, Luc; Gilbert, Marius

    2010-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus has spread across Eurasia and into Africa. Its persistence in a number of countries continues to disrupt poultry production, impairs smallholder livelihoods, and raises the risk a genotype adapted to human-to-human transmission may emerge. While previous studies identified domestic duck reservoirs as a primary risk factor associated with HPAI H5N1 persistence in poultry in Southeast Asia, little is known of such factors in countries with different agro-ecological conditions, and no study has investigated the impact of such conditions on HPAI H5N1 epidemiology at the global scale. This study explores the patterns of HPAI H5N1 persistence worldwide, and for China, Indonesia, and India includes individual provinces that have reported HPAI H5N1 presence during the 2004–2008 period. Multivariate analysis of a set of 14 agricultural, environmental, climatic, and socio-economic factors demonstrates in quantitative terms that a combination of six variables discriminates the areas with human cases and persistence: agricultural population density, duck density, duck by chicken density, chicken density, the product of agricultural population density and chicken output/input ratio, and purchasing power per capita. The analysis identifies five agro-ecological clusters, or niches, representing varying degrees of disease persistence. The agro-ecological distances of all study areas to the medoid of the niche with the greatest number of human cases are used to map HPAI H5N1 risk globally. The results indicate that few countries remain where HPAI H5N1 would likely persist should it be introduced.

  12. The Perceived Value of Passive Animal Health Surveillance: The Case of Highly Pathogenic Avian Influenza in Vietnam.

    PubMed

    Delabouglise, A; Antoine-Moussiaux, N; Phan, T D; Dao, D C; Nguyen, T T; Truong, B D; Nguyen, X N T; Vu, T D; Nguyen, K V; Le, H T; Salem, G; Peyre, M

    2016-03-01

    Economic evaluations are critical for the assessment of the efficiency and sustainability of animal health surveillance systems and the improvement of their efficiency. Methods identifying and quantifying costs and benefits incurred by public and private actors of passive surveillance systems (i.e. actors of veterinary authorities and private actors who may report clinical signs) are needed. This study presents the evaluation of perceived costs and benefits of highly pathogenic avian influenza (HPAI) passive surveillance in Vietnam. Surveys based on participatory epidemiology methods were conducted in three provinces in Vietnam to collect data on costs and benefits resulting from the reporting of HPAI suspicions to veterinary authorities. A quantitative tool based on stated preference methods and participatory techniques was developed and applied to assess the non-monetary costs and benefits. The study showed that poultry farmers are facing several options regarding the management of HPAI suspicions, besides reporting the following: treatment, sale or destruction of animals. The option of reporting was associated with uncertain outcome and transaction costs. Besides, actors anticipated the release of health information to cause a drop of markets prices. This cost was relevant at all levels, including farmers, veterinary authorities and private actors of the upstream sector (feed, chicks and medicine supply). One benefit associated with passive surveillance was the intervention of public services to clean farms and the environment to limit the disease spread. Private actors of the poultry sector valued information on HPAI suspicions (perceived as a non-monetary benefit) which was mainly obtained from other private actors and media.

  13. Different environmental drivers of highly pathogenic avian influenza H5N1 outbreaks in poultry and wild birds.

    PubMed

    Si, Yali; de Boer, Willem F; Gong, Peng

    2013-01-01

    A large number of highly pathogenic avian influenza (HPAI) H5N1 outbreaks in poultry and wild birds have been reported in Europe since 2005. Distinct spatial patterns in poultry and wild birds suggest that different environmental drivers and potentially different spread mechanisms are operating. However, previous studies found no difference between these two outbreak types when only the effect of physical environmental factors was analysed. The influence of physical and anthropogenic environmental variables and interactions between the two has only been investigated for wild bird outbreaks. We therefore tested the effect of these environmental factors on HPAI H5N1 outbreaks in poultry, and the potential spread mechanism, and discussed how these differ from those observed in wild birds. Logistic regression analyses were used to quantify the relationship between HPAI H5N1 outbreaks in poultry and environmental factors. Poultry outbreaks increased with an increasing human population density combined with close proximity to lakes or wetlands, increased temperatures and reduced precipitation during the cold season. A risk map was generated based on the identified key factors. In wild birds, outbreaks were strongly associated with an increased Normalized Difference Vegetation Index (NDVI) and lower elevation, though they were similarly affected by climatic conditions as poultry outbreaks. This is the first study that analyses the differences in environmental drivers and spread mechanisms between poultry and wild bird outbreaks. Outbreaks in poultry mostly occurred in areas where the location of farms or trade areas overlapped with habitats for wild birds, whereas outbreaks in wild birds were mainly found in areas where food and shelters are available. The different environmental drivers suggest that different spread mechanisms might be involved: HPAI H5N1 spread to poultry via both poultry and wild birds, whereas contact with wild birds alone seems to drive the outbreaks

  14. Assessment of the efficacy of two novel DNA vaccine formulations against highly pathogenic Porcine Reproductive and Respiratory Syndrome Virus

    PubMed Central

    Du, Luping; Pang, Fengjiao; Yu, Zhengyu; Xu, Xiangwei; Fan, Baochao; Huang, Kehe; He, Kongwang; Li, Bin

    2017-01-01

    Since May 2006, a highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) has emerged and prevailed in mainland China, affecting over 2 million pigs. Commercial PRRSV killed and modified live vaccines cannot provide complete protection against HP-PRRSV due to genetic variation. Development of more effective vaccines against the emerging HP-PRRSV is urgently required. In our previous studies, two formulations of DNA vaccines (pcDNA3.1-PoIFN-λ1-SynORF5 and BPEI/PLGA-SynORF5) based on the HP-PRRSV were constructed and shown to induce enhanced humoral and cellular immune responses in mice. The objective of this study was to evaluate the immune response induced by these novel formulations in piglets. PcDNA3.1-PoIFN-λ1-SynORF5 and BPEI/PLGA-SynORF5 vaccines induced significantly enhanced GP5-specific antibody and PRRSV-specific neutralizing antibody in pigs compared with the pcDNA3.1-SynORF5 parental construct. Though IFN-γ levels and lymphocyte proliferation responses induced by the two DNA vaccine formulations were comparable to that induced by the pcDNA3.1-SynORF5 construct, each of the novel formulations provided efficient protection against challenge with HP-PRRSV. Non-severe clinical signs and rectal temperatures were observed in pigs immunized with BPEI/PLGA-SynORF5 compared with other groups. Thus, these novel DNA constructs may represent promising candidate vaccines against emerging HP-PRRSV. PMID:28157199

  15. Molecular evolution of H5N1 highly pathogenic avian influenza viruses in Bangladesh between 2007 and 2012.

    PubMed

    Haque, M E; Giasuddin, M; Chowdhury, E H; Islam, M R

    2014-01-01

    In Bangladesh, highly pathogenic avian influenza (HPAI) virus subtype H5N1 was first detected in February 2007. Since then the virus has become entrenched in poultry farms of Bangladesh. There have so far been seven human cases of H5N1 HPAI infection in Bangladesh with one death. The objective of the present study was to investigate the molecular evolution of H5N1 HPAI viruses during 2007 to 2012. Partial or complete nucleotide sequences of all eight gene segments of two chicken isolates, five gene segments of a duck isolate and the haemagglutinin gene segment of 18 isolates from Bangladesh were established in the present study and subjected to molecular analysis. In addition, full-length sequences of different gene segments of other Bangladeshi H5N1 isolates available in GenBank were included in the analysis. The analysis revealed that the first introduction of clade 2.2 virus in Bangladesh in 2007 was followed by the introduction of clade 2.3.2.1 and 2.3.4 viruses in 2011. However, only clade 2.3.2.1 viruses could be isolated in 2012, indicating progressive replacement of clade 2.2 and 2.3.4 viruses. There has been an event of segment re-assortment between H5N1 and H9N2 viruses in Bangladesh, where H5N1 virus acquired the PB1 gene from a H9N2 virus. Point mutations have accumulated in Bangladeshi isolates over the last 5 years with potential modification of receptor binding site and antigenic sites. Extensive and continuous molecular epidemiological studies are necessary to monitor the evolution of circulating avian influenza viruses in Bangladesh.

  16. Four different sublineages of highly pathogenic avian influenza H5N1 introduced in Hungary in 2006-2007.

    PubMed

    Szeleczky, Zsófia; Dán, Adám; Ursu, Krisztina; Ivanics, Eva; Kiss, István; Erdélyi, Károly; Belák, Sándor; Muller, Claude P; Brown, Ian H; Bálint, Adám

    2009-10-20

    Highly pathogenic avian influenza (HPAI) H5N1 viruses were introduced to Hungary during 2006-2007 in three separate waves. This study aimed at determining the full-length genomic coding regions of the index strains from these epizootics in order to: (i) understand the phylogenetic relationship to other European H5N1 isolates, (ii) elucidate the possible connection between the different outbreaks and (iii) determine the putative origin and way of introduction of the different virus variants. Molecular analysis of the HA gene of Hungarian HPAI isolates obtained from wild birds during the first introduction revealed two groups designated Hungarian1 (HUN1) and Hungarian2 (HUN2) within sublineage 2.2B and clade 2.2.1, respectively. Sequencing the whole coding region of the two index viruses A/mute swan/Hungary/3472/2006 and A/mute swan/4571/Hungary/2006 suggests the role of wild birds in the introduction of HUN1 and HUN2 viruses: the most similar isolates to HUN1 and HUN2 group were found in wild avian species in Croatia and Slovakia, respectively. The second introduction of HPAI H5N1 led to the largest epizootic in domestic waterfowl in Europe. The index strain of the epizootic A/goose/Hungary/14756/2006 clustered to sublineage 2.2.A1 forming the Hungarian3 (HUN3) group. A common ancestry of HUN3 isolates with Bavarian strains is suggested as the most likely scenario of origin. Hungarian4 (HUN4) viruses isolated from the third introduction clustered with isolate A/turkey/United Kingdom/750/2007 forming a sublineage 2.2.A2. The origin and way of introduction of HUN4 viruses is still obscure, thus further genetic, phylogenetic, ecological and epidemiological data are required in order to elucidate it.

  17. Analysis of spatial distribution and transmission characters for highly pathogenic avian influenza in Chinese mainland in 2004

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Wei, C. J.; Yan, L.; Chi, T. H.; Wu, X. B.; Xiao, C. S.

    2006-03-01

    After the outbreak of highly pathogenic Avian Influenza (HPAI) in South Korea in the end of year 2003, estimates of the impact of HPAI in affected countries vary greatly, the total direct losses are about 3 billion US dollars, and it caused 15 million birds and poultry flocks death. It is significant to understand the spatial distribution and transmission characters of HPAI for its prevention and control. According to 50 outbreak cases for HPAI in Chinese mainland during 2004, this paper introduces the approach of spatial distribution and transmission characters for HPAI and its results. Its approach is based on remote sensing and GIS techniques. Its supporting data set involves normalized difference vegetation index (NDVI) and land surface temperature (Ts) derived from a time-series of remote sensing data of 1 kilometer-resolution NOAA/AVHRR, birds' migration routes, topology geographic map, lake and wetland maps, and meteorological observation data. In order to analyze synthetically using these data, a supporting platform for analysis Avian Influenza epidemic situation (SPAS/AI) was developed. Supporting by SPAS/AI, the integrated information from multi-sources can be easily used to the analysis of the spatial distribution and transmission character of HPAI. The results show that the range of spatial distribution and transmission of HPAI in China during 2004 connected to environment factors NDVI, Ts and the distributions of lake and wetland, and especially to bird migration routes. To some extent, the results provide some suggestions for the macro-decision making for the prevention and control of HPAI in the areas of potential risk and reoccurrence.

  18. The Variable Region of Pneumococcal Pathogenicity Island 1 Is Responsible for Unusually High Virulence of a Serotype 1 Isolate

    PubMed Central

    Harvey, Richard M.; Trappetti, Claudia; Mahdi, Layla K.; Wang, Hui; McAllister, Lauren J.; Scalvini, Alexandra; Paton, Adrienne W.

    2016-01-01

    Streptococcus pneumoniae is the leading infectious cause of death in children in the world. However, the mechanisms that drive the progression from asymptomatic colonization to disease are poorly understood. Two virulence-associated genomic accessory regions (ARs) were deleted in a highly virulent serotype 1 clinical isolate (strain 4496) and examined for their contribution to pathogenesis. Deletion of a prophage encoding a platelet-binding protein (PblB) resulted in reduced adherence, biofilm formation, reduced initial infection within the lungs, and a reduction in the number of circulating platelets in infected mice. However, the region's overall contribution to the survival of mice was not significant. In contrast, deletion of the variable region of pneumococcal pathogenicity island 1 (vPPI1) was also responsible for a reduction in adherence and biofilm formation but also reduced survival and invasion of the pleural cavity, blood, and lungs. While the 4496ΔPPI1 strain induced higher expression of the genes encoding interleukin-10 (IL-10) and CD11b in the lungs of challenged mice than the wild-type strain, very few other genes exhibited altered expression. Moreover, while the level of IL-10 protein was increased in the lungs of 4496ΔPPI1 mutant-infected mice compared to strain 4496-infected mice, the levels of gamma interferon (IFN-γ), CXCL10, CCL2, and CCL4 were not different in the two groups. However, the 4496ΔPPI1 mutant was found to be more susceptible than the wild type to phagocytic killing by a macrophage-like cell line. Therefore, our data suggest that vPPI1 may be a major contributing factor to the heightened virulence of certain serotype 1 strains, possibly by influencing resistance to phagocytic killing. PMID:26755156

  19. Experimental infection of mandarin duck with highly pathogenic avian influenza A (H5N8 and H5N1) viruses.

    PubMed

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Heo, Gyeong-Beom; Jung, Joojin; Jang, Il; Bae, You-Chan; Jung, Suk Chan; Lee, Youn-Jeong

    2017-01-01

    A highly pathogenic avian influenza (HPAI) H5N8 virus was first detected in poultry and wild birds in South Korea in January 2014. Here, we determined the pathogenicity and transmissibility of three different clades of H5 viruses in mandarin ducks to examine the potential for wild bird infection. H5N8 (clade 2.3.4.4) replicated more efficiently in the upper and lower respiratory tract of mandarin ducks than two previously identified H5N1 virus clades (clades 2.2 and 2.3.2.1). However, none of the mandarin ducks infected with H5N8 and H5N1 viruses showed severe clinical signs or mortality, and gross lesions were only observed in a few tissues. Viral replication and shedding were greater in H5N8-infected ducks than in H5N1-infected ducks. Recovery of all viruses from control duck in contact with infected ducks indicated that the highly pathogenic H5 viruses spread horizontally through contact. Taken together, these results suggest that H5N8 viruses spread efficiently in mandarin ducks. Further studies of pathogenicity in wild birds are required to examine possible long-distance dissemination via migration routes.

  20. Bio-Conjugated CNT-Bridged 3D Porous Graphene Oxide Membrane for Highly Efficient Disinfection of Pathogenic Bacteria and Removal of Toxic Metals from Water.

    PubMed

    Nellore, Bhanu Priya Viraka; Kanchanapally, Rajashekhar; Pedraza, Francisco; Sinha, Sudarson Sekhar; Pramanik, Avijit; Hamme, Ashton T; Arslan, Zikri; Sardar, Dhiraj; Ray, Paresh Chandra

    2015-09-02

    More than a billion people lack access to safe drinking water that is free from pathogenic bacteria and toxic metals. The World Health Organization estimates several million people, mostly children, die every year due to the lack of good quality water. Driven by this need, we report the development of PGLa antimicrobial peptide and glutathione conjugated carbon nanotube (CNT) bridged three-dimensional (3D) porous graphene oxide membrane, which can be used for highly efficient disinfection of Escherichia coli O157:H7 bacteria and removal of As(III), As(V), and Pb(II) from water. Reported results demonstrate that versatile membrane has the capability to capture and completely disinfect pathogenic pathogenic E. coli O157:H7 bacteria from water. Experimentally observed disinfection data indicate that the PGLa attached membrane can dramatically enhance the possibility of destroying pathogenic E. coli bacteria via synergistic mechanism. Reported results show that glutathione attached CNT-bridged 3D graphene oxide membrane can be used to remove As(III), As(V), and Pb(II) from water sample at 10 ppm level. Our data demonstrated that PGLa and glutathione attached membrane has the capability for high efficient removal of E. coli O157:H7 bacteria, As(III), As(V), and Pb(II) simultaneously from Mississippi River water.

  1. Ecology of Fungal Plant Pathogens.

    PubMed

    Termorshuizen, Aad J

    2016-12-01

    Fungal plant pathogens are ubiquitous and highly diverse. Key to their success is high host density, which notably is the case in agroecosystems. Several hypotheses related to the effects of plant pathogens on plant diversity (the Janzen-Connell hypothesis, the dilution effect hypothesis) and the phenomenon of higher biomass in plant mixtures (i.e., overyielding) can all be explained by the quantitative interplay between host and pathogen density. In many agroecosystems, fungal plant pathogens cause great losses, since in monocultures diseased plants cannot be replaced by healthy plants. On the other hand, in natural ecosystems fungal plant pathogens shape the succession of vegetation and enhance the biodiversity of forests and grasslands. When pathogens are introduced into areas outside their natural range, they may behave differently, causing severe damage. Once introduced, changes may occur such as hybridization with other closely related pathogens or host shifts, host jumps, or horizontal gene transfer. Such changes can be hazardous for both agricultural and natural ecosystems.

  2. The North American strain of viral hemorrhagic septicemia virus is highly pathogenic for laboratory-reared Pacific herring (Clupea pallasi)

    USGS Publications Warehouse

    Kocan, R.; Bradley, M.; Elder, N.; Meyers, T.; Batts, W.; Winton, J.

    1997-01-01

    Specific-pathogen-free Pacific herring Clupea pallasi were reared in the laboratory from eggs and then challenged at 5, 9, and 13 months of age by waterborne exposure to low (101.5–2.5 plaque-forming units [PFU] per milliliter), medium (103.5–4.5 PFU/mL), or high (105.5–6.5 PFU/mL) levels of a North American isolate of viral hemorrhagic septicemia virus (VHSV). The fish were extremely susceptible to the virus, showing clinical disease, mortality approaching 100%, and only a limited increase in resistance with age. Mortality began 4–6 d after exposure and peaked at approximately day 7 in fish exposed to high levels of virus. Whereas the mean time to death showed a significant dose response (P < 0.001), the percent mortality and virus titers in dead fish were generally high in all groups regardless of initial challenge dose. External signs of disease were usually limited to 1–2-mm hemorrhagic areas on the lower jaw and isthmus and around the eye, but 2 of 130 infected fish exhibited extensive cutaneous hemorrhaging. Histopathologic examination of tissues from moribund fish sampled at 2–8 d after exposure revealed multifocal coagulative necrosis of hepatocytes, diffuse necrosis of interstitial hematopoietic tissues in the kidney, diffuse necrosis of the spleen, epidermis, and subcutis, and occasional necrosis of pancreatic acinar cells. Virus titers in tissues of experimentally infected herring were first detected 48 h after exposure and peaked 6-8 d after exposure at 107.7 PFU/g. Fish began shedding virus at 48 h after exposure with titers in the flow-through aquaria reaching 102.5 PFU/mL at 4–5 d after exposure, just before peak mortality. When the water flow was turned off for 3 h, titers in the water rose to 103.5 PFU/mL, and the amount of virus shed by infected fish (on average, greater than 106.5 PFU/h per fish) appeared sufficient to sustain a natural epizootic among schooling herring. Taken together, these data suggest that VHSV could be a

  3. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China

    USGS Publications Warehouse

    Martin, Vincent; Pfeiffer, Dirk U.; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J.; Guo, Fusheng; Gilbert, Marius

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004–2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  4. Antigenic analysis of H5N1 highly pathogenic avian influenza viruses circulating in Egypt (2006-2012).

    PubMed

    Ibrahim, Mahmoud; Eladl, Abdel-Fattah; Sultan, Hesham A; Arafa, Abdel Satar; Abdel Razik, Alaa G; Abd El Rahman, Sahar; El-Azm, Kamel I Abou; Saif, Yehia M; Lee, Chang-Won

    2013-12-27

    The highly pathogenic avian influenza (HPAI) H5N1 in Egypt circulated continuously after its introduction in February 2006 with substantial economic losses and frequent human infections. Phylogenetic analysis of the available HA sequences revealed the presence of two main sublineages; the classic 2.2.1 and the variant 2.2.1.1. The classic 2.2.1 had subdivided into two clusters of viruses; cluster C1 contained the originally introduced virus and isolates from 2006 to 2009 and cluster C2 emerged in 2007 and continues to circulate. The variant 2.2.1.1 represents the isolates mainly from chickens and subdivided into two clusters; cluster V1 contains isolates from 2007 to 2009 and cluster V2 contains isolates from 2008 to 2011. Sequence analysis revealed 28 amino acid mutations in the previously reported antigenic sites and high evolution rate which may be due to selective pressure from vaccination and/or natural infection. Antigenic analysis of 18 H5N1 isolates from 2006 to 2012 that represent different clusters was conducted using hemagglutination inhibition (HI) and virus neutralization (VN) assays using hyperimmune sera produced by immunizing SPF chickens with inactivated whole-virus. Antigenic relatedness of ancestral Egyptian H5N1 isolate (459-3/06) with other isolates ranged from 30.7% to 79.1% indicating significant antigenic drift of the H5N1 viruses from the ancestral strains. The antigenic relatedness between C2 and V2 clusters ranged from 28.9% to 68% supporting the need for vaccine seed strains from both clusters. Interestingly, A/CK/EG/1709-6/2008 H5N1 strain showed a broad cross reactivity against viruses in different H5N1 clusters (antigenic relatedness ranged from 63.9% to 85.8%) demonstrating a potential candidate as a vaccine strain. Antigenic cartography which facilitates a quantitative interpretation and easy visualization of serological data was constructed based on HI results and further demonstrated the several antigenic groups among Egyptian H5N

  5. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China.

    PubMed

    Martin, Vincent; Pfeiffer, Dirk U; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J; Guo, Fusheng; Gilbert, Marius

    2011-03-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004-2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  6. Validation of high-throughput real time polymerase chain reaction assays for simultaneous detection of invasive citrus pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of economically important citrus pathogens are spread by nursery propagation, arthropod vector transmission and in advertent importation and dissemination of infected plants. For these reasons, citrus disease management and clean stock programs need to employ an economical and sensitive p...

  7. Tracking the amphibian pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans using a highly specific monoclonal antibody and lateral-flow technology.

    PubMed

    Dillon, Michael J; Bowkett, Andrew E; Bungard, Michael J; Beckman, Katie M; O'Brien, Michelle F; Bates, Kieran; Fisher, Matthew C; Stevens, Jamie R; Thornton, Christopher R

    2017-03-01

    The fungus Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a lethal epizootic disease of amphibians. Rapid identification of the pathogen and biosecurity is essential to prevent its spread, but current laboratory-based tests are time-consuming and require specialist equipment. Here, we describe the generation of an IgM monoclonal antibody (mAb), 5C4, specific to Bd as well as the related salamander and newt pathogen Batrachochytrium salamandrivorans (Bsal). The mAb, which binds to a glycoprotein antigen present on the surface of zoospores, sporangia and zoosporangia, was used to develop a lateral-flow assay (LFA) for rapid (15 min) detection of the pathogens. The LFA detects known lineages of Bd and also Bsal, as well as the closely related fungus Homolaphlyctis polyrhiza, but does not detect a wide range of related and unrelated fungi and oomycetes likely to be present in amphibian habitats. When combined with a simple swabbing procedure, the LFA was 100% accurate in detecting the water-soluble 5C4 antigen present in skin, foot and pelvic samples from frogs, newts and salamanders naturally infected with Bd or Bsal. Our results demonstrate the potential of the portable LFA as a rapid qualitative assay for tracking these amphibian pathogens and as an adjunct test to nucleic acid-based detection methods.

  8. Expansion of variant diversity associated with high prevalence of pathogen strain superinfection under conditions of natural transmission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Superinfection occurs when a second, genetically distinct strain infects a host that has already mounted an immune response to a primary strain. For antigenically variant pathogens, the primary strain itself expresses a broad diversity of variants over time. Thus successful superinfection would requ...

  9. Characterization of 10 adjuvants for inactivated avian influenza virus (AIV) vaccines against challenge with highly pathogenic AIV in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inactivated vaccines comprise 95% of all vaccine used for avian influenza virus (AIV) by dose. Optimizing the adjuvant is one way to improve vaccine efficacy. Inactivated vaccines were produced with beta-propiolactone inactivated A/chicken/BC/314514-1/2004 H7N3 low pathogenicity AIV and standardiz...

  10. Clinical detection of human probiotics and human pathogenic bacteria by using a novel high-throughput platform based on next generation sequencing

    PubMed Central

    2014-01-01

    Background The human body plays host to a vast array of bacteria, found in oral cavities, skin, gastrointestinal tract and the vagina. Some bacteria are harmful while others are beneficial to the host. Despite the availability of many methods to identify bacteria, most of them are only applicable to specific and cultivable bacteria and are also tedious. Based on high throughput sequencing technology, this work derives 16S rRNA sequences of bacteria and analyzes probiotics and pathogens species. Results We constructed a database that recorded the species of probiotics and pathogens from literature, along with a modified Smith-Waterman algorithm for assigning the taxonomy of the sequenced 16S rRNA sequences. We also constructed a bacteria disease risk model for seven diseases based on 98 samples. Applicability of the proposed platform is demonstrated by collecting the microbiome in human gut of 13 samples. Conclusions The proposed platform provides a relatively easy means of identifying a certain amount of bacteria and their species (including uncultivable pathogens) for clinical microbiology applications. That is, detecting how probiotics and pathogens inhabit humans and how affect their health can significantly contribute to develop a diagnosis and treatment method. PMID:24418497

  11. DotU expression is highly induced during in vivo infection and responsible for virulence and Hcp1 secretion in avian pathogenic Escherichia coli

    PubMed Central

    Wang, Shaohui; Dai, Jianjun; Meng, Qingmei; Han, Xiangan; Han, Yue; Zhao, Yichao; Yang, Denghui; Ding, Chan; Yu, Shengqing

    2014-01-01

    Type VI secretion systems (T6SSs) contribute to pathogenicity in many pathogenic bacteria. Three distinguishable T6SS loci have been discovered in avian pathogenic Escherichia coli (APEC). The sequence of APEC T6SS2 locus is highly similar to the sequence of the newborn meningitis Escherichia coli (NMEC) RS218 T6SS locus, which might contribute to meningitis pathogenesis. However, little is known about the function of APEC T6SS2. We showed that the APEC T6SS2 component organelle trafficking protein (DotU) could elicit antibodies in infected ducks, suggesting that DotU might be involved in APEC pathogenicity. To investigate DotU in APEC pathogenesis, mutant and complemented strains were constructed and characterized. Inactivation of the APEC dotU gene attenuated virulence in ducks, diminished resistance to normal duck serum, and reduced survival in macrophage cells and ducks. Furthermore, deletion of the dotU gene abolished hemolysin-coregulated protein (Hcp) 1 secretion, leading to decreased interleukin (IL)-6 and IL-8 gene expression in HD-11 chicken macrophages. These functions were restored for the complementation strain. Our results demonstrated that DotU plays key roles in the APEC pathogenesis, Hcp1 secretion, and intracellular host response modulation. PMID:25426107

  12. Design and Elementary Evaluation of a Highly-Automated Fluorescence-Based Instrument System for On-Site Detection of Food-Borne Pathogens

    PubMed Central

    Lu, Zhan; Zhang, Jianyi; Xu, Lizhou; Li, Yanbin; Chen, Siyu; Ye, Zunzhong; Wang, Jianping

    2017-01-01

    A simple, highly-automated instrument system used for on-site detection of foodborne pathogens based on fluorescence was designed, fabricated, and preliminarily tested in this paper. A corresponding method has been proved effective in our previous studies. This system utilizes a light-emitting diode (LED) to excite fluorescent labels and a spectrometer to record the fluorescence signal from samples. A rotation stage for positioning and switching samples was innovatively designed for high-throughput detection, ten at most in one single run. We also developed software based on LabVIEW for data receiving, processing, and the control of the whole system. In the test of using a pure quantum dot (QD) solution as a standard sample, detection results from this home-made system were highly-relevant with that from a well-commercialized product and even slightly better reproducibility was found. And in the test of three typical kinds of food-borne pathogens, fluorescence signals recorded by this system are highly proportional to the variation of the sample concentration, with a satisfied limit of detection (LOD) (nearly 102–103 CFU·mL−1 in food samples). Additionally, this instrument system is low-cost and easy-to-use, showing a promising potential for on-site rapid detection of food-borne pathogens. PMID:28241478

  13. Design and Elementary Evaluation of a Highly-Automated Fluorescence-Based Instrument System for On-Site Detection of Food-Borne Pathogens.

    PubMed

    Lu, Zhan; Zhang, Jianyi; Xu, Lizhou; Li, Yanbin; Chen, Siyu; Ye, Zunzhong; Wang, Jianping

    2017-02-23

    A simple, highly-automated instrument system used for on-site detection of foodborne pathogens based on fluorescence was designed, fabricated, and preliminarily tested in this paper. A corresponding method has been proved effective in our previous studies. This system utilizes a light-emitting diode (LED) to excite fluorescent labels and a spectrometer to record the fluorescence signal from samples. A rotation stage for positioning and switching samples was innovatively designed for high-throughput detection, ten at most in one single run. We also developed software based on LabVIEW for data receiving, processing, and the control of the whole system. In the test of using a pure quantum dot (QD) solution as a standard sample, detection results from this home-made system were highly-relevant with that from a well-commercialized product and even slightly better reproducibility was found. And in the test of three typical kinds of food-borne pathogens, fluorescence signals recorded by this system are highly proportional to the variation of the sample concentration, with a satisfied limit of detection (LOD) (nearly 10²-10³ CFU·mL(-1) in food samples). Additionally, this instrument system is low-cost and easy-to-use, showing a promising potential for on-site rapid detection of food-borne pathogens.

  14. Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in Model Ferrets

    PubMed Central

    Sun, Honglei; Pu, Juan; Wei, Yandi; Sun, Yipeng; Hu, Jiao; Liu, Litao; Xu, Guanlong; Gao, Weihua; Li, Chong; Zhang, Xuxiao; Huang, Yinhua; Chang, Kin-Chow; Liu, Xiufan

    2016-01-01

    ABSTRACT Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SAα2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans. IMPORTANCE Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes, including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathogenicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affinity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat of avian H5N6 viruses to humans should not be ignored. PMID:27122581

  15. Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: a descriptive study

    PubMed Central

    Pritt, Bobbi S; Mead, Paul S; Hoang Johnson, Diep K; Neitzel, David F; Respicio-Kingry, Laurel B; Davis, Jeffrey P; Schiffman, Elizabeth; Sloan, Lynne M; Schriefer, Martin E; Replogle, Adam J; Paskewitz, Susan M; Ray, Julie A; Bjork, Jenna; Steward, Christopher R; Deedon, Alecia; Lee, Xia; Kingry, Luke C; Miller, Tracy K; Feist, Michelle A; Theel, Elitza S; Patel, Robin; Irish, Cole L; Petersen, Jeannine M

    2016-01-01

    Summary Background Lyme borreliosis is the most common tick-borne disease in the northern hemisphere. It is a multisystem disease caused by Borrelia burgdorferi sensu lato genospecies and characterised by tissue localisation and low spirochaetaemia. In this study we aimed to describe a novel Borrelia species causing Lyme borreliosis in the USA. Methods At the Mayo clinic, from 2003 to 2014, we tested routine clinical diagnostic specimens from patients in the USA with PCR targeting the oppA1 gene of B burgdorferi sensu lato. We identified positive specimens with an atypical PCR result (melting temperature outside of the expected range) by sequencing, microscopy, or culture. We collected Ixodes scapularis ticks from regions of suspected patient tick exposure and tested them by oppA1 PCR. Findings 100 545 specimens were submitted by physicians for routine PCR from Jan 1, 2003 to Sept 30, 2014. From these samples, six clinical specimens (five blood, one synovial fluid) yielded an atypical oppA1 PCR product, but no atypical results were detected before 2012. Five of the six patients with atypical PCR results had presented with fever, four had diffuse or focal rash, three had symptoms suggestive of neurological inclusion, and two were admitted to hospital. The sixth patient presented with knee pain and swelling. Motile spirochaetes were seen in blood samples from one patient and cultured from blood samples from two patients. Among the five blood specimens, the median oppA1 copy number was 180 times higher than that in 13 specimens that tested positive for B burgdorferi sensu stricto during the same time period. Multigene sequencing identified the spirochaete as a novel B burgdorferi sensu lato genospecies. This same genospecies was detected in ticks collected at a probable patient exposure site. Interpretation We describe a new pathogenic Borrelia burgdorferi sensu lato genospecies (candidatus Borrelia mayonii) in the upper midwestern USA, which causes Lyme borreliosis

  16. Highly Pathogenic Reassortant Avian Influenza A(H5N1) Virus Clade 2.3.2.1a in Poultry, Bhutan

    PubMed Central

    Marinova-Petkova, Atanaska; Franks, John; Tenzin, Sangay; Dahal, Narapati; Dukpa, Kinzang; Dorjee, Jambay; Feeroz, Mohammed M.; Rehg, Jerold E.; Barman, Subrata; Krauss, Scott; McKenzie, Pamela; Webby, Richard J.

    2016-01-01

    Highly pathogenic avian influenza A(H5N1), clade 2.3.2.1a, with an H9-like polymerase basic protein 1 gene, isolated in Bhutan in 2012, replicated faster in vitro than its H5N1 parental genotype and was transmitted more efficiently in a chicken model. These properties likely help limit/eradicate outbreaks, combined with strict control measures. PMID:27584733

  17. Two-Component Signaling Regulates Osmotic Stress Adaptation via SskA and the High-Osmolarity Glycerol MAPK Pathway in the Human Pathogen Talaromyces marneffei

    PubMed Central

    Cao, Cunwei; Andrianopoulos, Alex

    2016-01-01

    ABSTRACT For successful infection to occur, a pathogen must be able to evade or tolerate the host’s defense systems. This requires the pathogen to first recognize the host environment and then signal this response to elicit a complex adaptive program in order to activate its own defense strategies. In both prokaryotes and eukaryotes, two-component signaling systems are utilized to sense and respond to changes in the external environment. The hybrid histidine kinases (HHKs) at the start of the two-component signaling pathway have been well characterized in human pathogens. However, how these HHKs regulate processes downstream currently remains unclear. This study describes the role of a response regulator downstream of these HHKs, sskA, in Talaromyces marneffei, a dimorphic human pathogen. sskA is required for asexual reproduction, hyphal morphogenesis, cell wall integrity, osmotic adaptation, and the morphogenesis of yeast cells both in vitro at 37°C and during macrophage infection, but not during dimorphic switching. Comparison of the ΔsskA mutant with a strain in which the mitogen-activated protein kinase (MAPK) of the high-osmolarity glycerol pathway (SakA) has been deleted suggests that SskA acts upstream of this pathway in T. marneffei to regulate these morphogenetic processes. This was confirmed by assessing the amount of phosphorylated SakA in the ΔsskA mutant, antifungal resistance due to a lack of SakA activation, and the ability of a constitutively active sakA allele (sakAF316L) to suppress the ΔsskA mutant phenotypes. We conclude that SskA regulates morphogenesis and osmotic stress adaptation in T. marneffei via phosphorylation of the SakA MAPK of the high-osmolarity glycerol pathway. IMPORTANCE This is the first study in a dimorphic fungal pathogen to investigate the role of a response regulator downstream of two-component signaling systems and its connection to the high-osmolarity glycerol pathway. This study will inspire further research into

  18. Immunization with live nonpathogenic H5N3 duck influenza virus protects chickens against highly pathogenic H5N1 virus.

    PubMed

    Gambaryan, A S; Boravleva, E Y; Lomakina, N F; Kropotkina, E A; Gordeychuk, I V; Chvala, I A; Drygin, V V; Klenk, H-D; Matrosovich, M N

    Development of an effective, broadly-active and safe vaccine for protection of poultry from H5N1 highly pathogenic avian influenza viruses (HPAIVs) remains an important practical goal. In this study we used a low pathogenic wild aquatic bird virus isolate А/duck/Moscow/4182/2010 (H5N3) (dk/4182) as a live candidate vaccine. We compared this virus with four live 1:7 reassortant anti-H5N1 candidate vaccine viruses with modified hemagglutinin from either A/Vietnam/1203/04 (H5N1) or A/Kurgan/3/05 (H5N1) and the rest of the genes from either H2N2 cold-adapted master strain A/Leningrad/134/17/57 (rVN-Len and rKu-Len) or H6N2 virus A/gull/Moscow/3100/2006 (rVN-gull and rKu-gull). The viruses were tested in parallel for pathogenicity, immunogenicity and protective effectiveness in chickens using aerosol, intranasal and oral routes of immunization. All five viruses showed zero pathogenicity indexes in chickens. Viruses rVN-gull and rKu-gull were immunogenic and protective, but they were insufficiently attenuated and caused significant mortality of 1-day-old chickens. The viruses with cold-adapted backbones (rVN-Len and rKu-Len) were completely nonpathogenic, but they were significantly less immunogenic and provided lower protection against lethal challenge with HPAIV A/Chicken/Kurgan/3/05 (H5N1) as compared with three other vaccine candidates. Unlike other four viruses, dk/4182 was both safe and highly immunogenic in chickens of any age regardless of inoculation route. Single administration of 106 TCID50 of dk/4182 virus via drinking water provided complete protection of 30-days-old chickens from 100 LD50 of the challenge virus. Our results suggest that low pathogenic viruses of wild aquatic birds can be used as safe and effective live poultry vaccines against highly pathogenic avian viruses.

  19. Proteomic screening of variola virus reveals a unique NF-kappaB inhibitor that is highly conserved among pathogenic orthopoxviruses.

    PubMed

    Mohamed, Mohamed R; Rahman, Masmudur M; Lanchbury, Jerry S; Shattuck, Donna; Neff, Chris; Dufford, Max; van Buuren, Nick; Fagan, Katharine; Barry, Michele; Smith, Scott; Damon, Inger; McFadden, Grant

    2009-06-02

    Identification of the binary interactions between viral and host proteins has become a valuable tool for investigating viral tropism and pathogenesis. Here, we present the first systematic protein interaction screening of the unique variola virus proteome by using yeast 2-hybrid screening against a variety of human cDNA libraries. Several protein-protein interactions were identified, including an interaction between variola G1R, an ankryin/F-box containing protein, and human nuclear factor kappa-B1 (NF-kappaB1)/p105. This represents the first direct interaction between a pathogen-encoded protein and NF-kappaB1/p105. Orthologs of G1R are present in a variety of pathogenic orthopoxviruses, but not in vaccinia virus, and expression of any one of these viral proteins blocks NF-kappaB signaling in human cells. Thus, proteomic screening of variola virus has the potential to uncover modulators of the human innate antiviral responses.

  20. Emerging highly pathogenic H5 avian influenza viruses in France during winter 2015/16: phylogenetic analyses and markers for zoonotic potential

    PubMed Central

    Briand, François-Xavier; Schmitz, Audrey; Ogor, Katell; Le Prioux, Aurélie; Guillou-Cloarec, Cécile; Guillemoto, Carole; Allée, Chantal; Le Bras, Marie-Odile; Hirchaud, Edouard; Quenault, Hélène; Touzain, Fabrice; Cherbonnel-Pansart, Martine; Lemaitre, Evelyne; Courtillon, Céline; Gares, Hélène; Daniel, Patrick; Fediaevsky, Alexandre; Massin, Pascale; Blanchard, Yannick; Eterradossi, Nicolas; van der Werf, Sylvie; Jestin, Véronique; Niqueux, Eric

    2017-01-01

    Several new highly pathogenic (HP) H5 avian influenza virus (AIV) have been detected in poultry farms from south-western France since November 2015, among which an HP H5N1. The zoonotic potential and origin of these AIVs immediately became matters of concern. One virus of each subtype H5N1 (150169a), H5N2 (150233) and H5N9 (150236) was characterised. All proved highly pathogenic for poultry as demonstrated molecularly by the presence of a polybasic cleavage site in their HA protein – with a sequence (HQRRKR/GLF) previously unknown among avian H5 HPAI viruses – or experimentally by the in vivo demonstration of an intravenous pathogenicity index of 2.9 for the H5N1 HP isolate. Phylogenetic analyses based on the full genomes obtained by NGS confirmed that the eight viral segments of the three isolates were all part of avian Eurasian phylogenetic lineage but differed from the Gs/Gd/1/96-like lineage. The study of the genetic characteristics at specific amino acid positions relevant for modulating the adaptation to and the virulence for mammals showed that presently, these viruses possess most molecular features characteristic of AIV and lack some major characteristics required for efficient respiratory transmission to or between humans. The three isolates are therefore predicted to have no significant pandemic potential. PMID:28277218

  1. Rapid acquisition of polymorphic virulence markers during adaptation of highly pathogenic avian influenza H5N8 virus in the mouse

    PubMed Central

    Choi, Won-Suk; Baek, Yun Hee; Kwon, Jin Jung; Jeong, Ju Hwan; Park, Su-Jin; Kim, Young-il; Yoon, Sun-Woo; Hwang, Jungwon; Kim, Myung Hee; Kim, Chul-Joong; Webby, Richard J.; Choi, Young Ki; Song, Min-Suk

    2017-01-01

    Emergence of a highly pathogenic avian influenza (HPAI) H5N8 virus in Asia and its spread to Europe and North America has caused great concern for human health. Although the H5N8 virus has been only moderately pathogenic to mammalian hosts, virulence can still increase. We evaluated the pathogenic potential of several H5N8 strains via the mouse-adaptation method. Two H5N8 viruses were sequentially passaged in BALB/c mice and plaque-purified from lung samples. The viruses rapidly obtained high virulence (MLD50, up to 0.5 log10 PFU/mL) within 5 passages. Sequence analysis revealed the acquisition of several virulence markers, including the novel marker P708S in PB1 gene. Combinations of markers synergistically enhanced viral replication and polymerase activity in human cell lines and virulence and multiorgan dissemination in mice. These results suggest that H5N8 viruses can rapidly acquire virulence markers in mammalian hosts; thus, rapid spread as well as repeated viral introduction into the hosts may significantly increase the risk of human infection and elevate pandemic potential. PMID:28094780

  2. Genetic analysis of an H5N2 highly pathogenic avian influenza virus isolated from a chicken in a live bird market in Northern Vietnam in 2012.

    PubMed

    Nishi, Tatsuya; Okamatsu, Masatoshi; Sakurai, Kenji; Chu, Huy Duc; Thanh, Long Pham; van Nguyen, Long; van Hoang, Nam; Thi, Diep Nguyen; Sakoda, Yoshihiro; Kida, Hiroshi

    2014-01-01

    In August 2012, A/chicken/Vietnam/OIE-2215/2012 (H5N2) was isolated from a chicken in a live bird market (LBM) in Northern Vietnam. Intravenous pathogenicity test revealed that this virus is highly pathogenic in chickens. The PA, HA, NP and M, PB2 and NA, and PB1 and NS genes of the isolate were phylogenetically closely related to those of A/duck/Vietnam/OIE-2202/2012 (H5N1) of clade 2.3.2.1, A/chicken/Vietnam/OIE-1611/2012 (H9N2) and A/chicken/Vietnam/OIE-2468/2012 (H9N2), respectively. All of these viruses were isolated from birds in LBMs in the same province. These results indicate that A/chicken/Vietnam/OIE-2215/2012 (H5N2) is a genetic reassortant and that surveillance of avian influenza in LBMs and stamping out policy are essential for the eradication of highly pathogenic avian influenza viruses from Asia.

  3. High content image-based screening of a protease inhibitor library reveals compounds broadly active against Rift Valley fever virus and other highly pathogenic RNA viruses.

    PubMed

    Mudhasani, Rajini; Kota, Krishna P; Retterer, Cary; Tran, Julie P; Whitehouse, Chris A; Bavari, Sina

    2014-08-01

    High content image-based screening was developed as an approach to test a protease inhibitor small molecule library for antiviral activity against Rift Valley fever virus (RVFV) and to determine their mechanism of action. RVFV is the causative agent of severe disease of humans and animals throughout Africa and the Arabian Peninsula. Of the 849 compounds screened, 34 compounds exhibited ≥ 50% inhibition against RVFV. All of the hit compounds could be classified into 4 distinct groups based on their unique chemical backbone. Some of the compounds also showed broad antiviral activity against several highly pathogenic RNA viruses including Ebola, Marburg, Venezuela equine encephalitis, and Lassa viruses. Four hit compounds (C795-0925, D011-2120, F694-1532 and G202-0362), which were most active against RVFV and showed broad-spectrum antiviral activity, were selected for further evaluation for their cytotoxicity, dose response profile, and mode of action using classical virological methods and high-content imaging analysis. Time-of-addition assays in RVFV infections suggested that D011-2120 and G202-0362 targeted virus egress, while C795-0925 and F694-1532 inhibited virus replication. We showed that D011-2120 exhibited its antiviral effects by blocking microtubule polymerization, thereby disrupting the Golgi complex and inhibiting viral trafficking to the plasma membrane during virus egress. While G202-0362 also affected virus egress, it appears to do so by a different mechanism, namely by blocking virus budding from the trans Golgi. F694-1532 inhibited viral replication, but also appeared to inhibit overall cellular gene expression. However, G202-0362 and C795-0925 did not alter any of the morphological features that we examined and thus may prove to be good candidates for antiviral drug development. Overall this work demonstrates that high-content image analysis can be used to screen chemical libraries for new antivirals and to determine their mechanism of action and

  4. Pathogenesis and transmission of H7 and H5 highly pathogenic avian influenza viruses in mallards including the recent intercontinental H5 viruses (H5N8 and H5N2)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of Asian lineage H5N1, and recently H5N8, HPAIVs, which can cause moderate to sev...

  5. Characterization of the amantadine-resistant H5N1 highly pathogenic avian influenza variants isolated from quails in Southern China.

    PubMed

    Dong, Guoying; Luo, Jing; Zhou, Kai; Wu, Bin; Peng, Chao; Ji, Guangju; He, Hongxuan

    2014-10-01

    Highly pathogenic H5N1 avian influenza viruses have spread in poultry and wild birds in Asia, Europe, and Africa since 2003. To evaluate the role of quails in the evolution of influenza A virus, we characterized three H5N1 viruses isolated from quails (QA viruses) in southern China. Phylogenetic analysis indicated that three QA viruses derived from the A/goose/Guangdong/1/96-like lineage and most closely related to HA clade 4 A/chicken/Hong Kong/31.4/02-like viruses. Molecular analysis suggested that QA viruses and clade 4 H5N1 viruses carried consistent residue signatures, such as the characteristic M2 Ser31Asn amantadine-resistance mutation, implying a common origin of these viruses. As revealed by viral pathogenicity tests, these QA viruses could replicate in intranasally infected mice, but were not lethal to them, showing low pathogenicity in mammals. However, they killed all intravenously inoculated chickens, showing high pathogenicity in poultry. Results from amantadine sensitivity tests of wild-type QA viruses and their reverse genetic viruses demonstrated that all QA viruses were resistant to amantadine, and the M2 Ser31Asn mutation was determined as the most likely cause of the increased amantadine-resistance of H5N1 QA viruses. Our study confirmed experimentally that the amino acid at residue 31 in the M2 protein plays a major role in determining the amantadine-resistance phenotype of H5N1 influenza viruses. Our findings provide further evidence that quails may play important roles in the evolution of influenza A viruses, which raises concerns over possible transmissions of H5N1 viruses among poultry, wild birds, and humans.

  6. Low-pathogenic avian influenza virus A/turkey/Ontario/6213/1966 (H5N1) is the progenitor of highly pathogenic A/turkey/Ontario/7732/1966 (H5N9)

    PubMed Central

    Ping, Jihui; Selman, Mohammed; Tyler, Shaun; Forbes, Nicole; Keleta, Liya

    2012-01-01

    The first confirmed outbreak of highly pathogenic avian influenza (HPAI) virus infections in North America was caused by A/turkey/Ontario/7732/1966 (H5N9); however, the phylogeny of this virus is largely unknown. This study performed genomic sequence analysis of 11 avian influenza isolates from 1956 to 1979 for comparison with A/turkey/Ontario/7732/1966 (H5N9). Phylogenetic and genetic analyses included these viruses in combination with all known full-genome sequences of avian viruses isolated before 1981. It was shown that a low-pathogenic avian influenza virus, A/turkey/Ontario/6213/1966 (H5N1), that had been isolated 3 months previously, was the closest known genetic relative with six genome segments of common lineage encoding the polymerase subunits PB2, PB1 and PA, nucleoprotein (NP), haemagglutinin (HA) and non-structural (NS) proteins. The lineages of these genome segments included reassortment with other North American turkey viruses that were all rooted in North American wild waterfowl with the HA gene originating from the H5N2 serotype. The phylogenies demonstrated adaptation from North American wild birds to turkeys with the possible involvement of domestic waterfowl. The turkey isolate, A/turkey/Wisconsin/1968 (H5N9), was the second most closely related poultry isolate to A/turkey/Ontario/7732/1966 (H5N9), possessing five common lineage genome segments (PB2, PB1, PA, HA and neuraminidase). The A/turkey/Ontario/6213/1966 (H5N1) virus was more virulent than A/turkey/Wisconsin/68 (H5N9) for chicken embryos and mice, indicating a greater biological similarity to A/turkey/Ontario/7732/1966 (H5N9). Thus, A/turkey/Ontario/6213/1966 (H5N1) was identified as the closest known ancestral relative of HPAI A/turkey/Ontario/7732/1966 (H5N9), which will serve as a useful reference virus for characterizing the early genetic and biological properties associated with the emergence of pathogenic avian influenza strains. PMID:22592261

  7. Molecular diagnostic and genetic characterization of highly pathogenic viruses: application during Crimean–Congo haemorrhagic fever virus outbreaks in Eastern Europe and the Middle East

    PubMed Central

    Filippone, C; Marianneau, P; Murri, S; Mollard, N; Avsic-Zupanc, T; Chinikar, S; Desprès, P; Caro, V; Gessain, A; Berthet, N; Tordo, N

    2013-01-01

    Several haemorrhagic fevers are caused by highly pathogenic viruses that must be handled in Biosafety level 4 (BSL–4) containment. These zoonotic infections have an important impact on public health and the development of a rapid and differential diagnosis in case of outbreak in risk areas represents a critical priority. We have demonstrated the potential of a DNA resequencing microarray (PathogenID v2.0) for this purpose. The microarray was first validated in vitro using supernatants of cells infected with prototype strains from five different families of BSL-4 viruses (e.g. families Arenaviridae, Bunyaviridae, Filoviridae, Flaviviridae and Paramyxoviridae). RNA was amplified based on isothermal amplification by Phi29 polymerase before hybridization. We were able to detect and characterize Nipah virus and Crimean–Congo haemorrhagic fever virus (CCHFV) in the brains of experimentally infected animals. CCHFV was finally used as a paradigm for epidemics because of recent outbreaks in Turkey, Kosovo and Iran. Viral variants present in human sera were characterized by BLASTN analysis. Sensitivity was estimated to be 105–106 PFU/mL of hybridized cDNA. Detection specificity was limited to viral sequences having ∼13–14% of global divergence with the tiled sequence, or stretches of ∼20 identical nucleotides. These results highlight the benefits of using the PathogenID v2.0 resequencing microarray to characterize geographical variants in the follow-up of haemorrhagic fever epidemics; to manage patients and protect communities; and in cases of bioterrorism. PMID:23240764

  8. High load of multi-drug resistant nosocomial neonatal pathogens carried by cockroaches in a neonatal intensive care unit at Tikur Anbessa specialized hospital, Addis Ababa, Ethiopia

    PubMed Central

    2012-01-01

    Background Cockroaches have been described as potential vectors for various pathogens for decades; although studies from neonatal intensive care units are scarce. This study assessed the vector potential of cockroaches (identified as Blatella germanica) in a neonatal intensive care unit setup in Tikur Anbessa Hospital, Addis Ababa, Ethiopia. Methods A total of 400 Blatella germanica roaches were aseptically collected for five consecutive months. Standard laboratory procedures were used to process the samples. Results From the external and gut homogenates, Klebsiella oxytoca, Klebsiella pneumoniae, Citrobacter spp. Enterobacter cloacae, Citrobacter diversus, Pseudomonas aeruginosa, Providencia rettgeri, Klebsiella ozaenae, Enterobacter aeruginosa, Salmonella C1, Non Group A streptococcus, Staphylococcus aureus, Escherichia coli, Acinetobacter spp. and Shigella flexneri were isolated. Multi-drug resistance was seen in all organisms. Resistance to up to all the 12 antimicrobials tested was observed in different pathogens. Conclusion Cockroaches could play a vector role for nosocomial infections in a neonatal intensive care unit and environmental control measures of these vectors is required to reduce the risk of infection. A high level of drug resistance pattern of the isolated pathogens was demonstrated. PMID:22958880

  9. Host Specificity of Bacterial Pathogens

    PubMed Central

    Bäumler, Andreas; Fang, Ferric C.

    2013-01-01

    Most pathogens are able to infect multiple hosts but some are highly adapted to a single-host species. A detailed understanding of the basis of host specificity can provide important insights into molecular pathogenesis, the evolution of pathogenic microbes, and the potential for pathogens to cross the species barrier to infect new hosts. Comparative genomics and the development of humanized mouse models have provided important new tools with which to explore the basis of generalism and specialism. This review will examine host specificity of bacterial pathogens with a focus on generalist and specialist serovars of Salmonella enterica. PMID:24296346

  10. Rapid detection and statistical differentiation of KPC gene variants in Gram-negative pathogens by use of high-resolution melting and ScreenClust analyses.

    PubMed

    Roth, Amanda L; Hanson, Nancy D

    2013-01-01

    In the United States, the production of the Klebsiella pneumoniae carbapenemase (KPC) is an important mechanism of carbapenem resistance in Gram-negative pathogens. Infections with KPC-producing organisms are associated with increased morbidity and mortality; therefore, the rapid detection of KPC-producing pathogens is critical in patient care and infection control. We developed a real-time PCR assay complemented with traditional high-resolution melting (HRM) analysis, as well as statistically based genotyping, using the Rotor-Gene ScreenClust HRM software to both detect the presence of bla(KPC) and differentiate between KPC-2-like and KPC-3-like alleles. A total of 166 clinical isolates of Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii with various β-lactamase susceptibility patterns were tested in the validation of this assay; 66 of these organisms were known to produce the KPC β-lactamase. The real-time PCR assay was able to detect the presence of bla(KPC) in all 66 of these clinical isolates (100% sensitivity and specificity). HRM analysis demonstrated that 26 had KPC-2-like melting peak temperatures, while 40 had KPC-3-like melting peak temperatures. Sequencing of 21 amplified products confirmed the melting peak results, with 9 isolates carrying bla(KPC-2) and 12 isolates carrying bla(KPC-3). This PCR/HRM assay can identify KPC-producing Gram-negative pathogens in as little as 3 h after isolation of pure colonies and does not require post-PCR sample manipulation for HRM analysis, and ScreenClust analysis easily distinguishes bla(KPC-2-like) and bla(KPC-3-like) alleles. Therefore, this assay is a rapid method to identify the presence of bla(KPC) enzymes in Gram-negative pathogens that can be easily integrated into busy clinical microbiology laboratories.

  11. Proteomic screening of variola virus reveals a unique NF-κB inhibitor that is highly conserved among pathogenic orthopoxviruses

    PubMed Central

    Mohamed, Mohamed R.; Rahman, Masmudur M.; Lanchbury, Jerry S.; Shattuck, Donna; Neff, Chris; Dufford, Max; van Buuren, Nick; Fagan, Katharine; Barry, Michele; Smith, Scott; Damon, Inger; McFadden, Grant

    2009-01-01

    Identification of the binary interactions between viral and host proteins has become a valuable tool for investigating viral tropism and pathogenesis. Here, we present the first systematic protein interaction screening of the unique variola virus proteome by using yeast 2-hybrid screening against a variety of human cDNA libraries. Several protein–protein interactions were identified, including an interaction between variola G1R, an ankryin/F-box containing protein, and human nuclear factor kappa-B1 (NF-κB1)/p105. This represents the first direct interaction between a pathogen-encoded protein and NF-κB1/p105. Orthologs of G1R are present in a variety of pathogenic orthopoxviruses, but not in vaccinia virus, and expression of any one of these viral proteins blocks NF-κB signaling in human cells. Thus, proteomic screening of variola virus has the potential to uncover modulators of the human innate antiviral responses. PMID:19451633

  12. High-resolution transcript profiling of the atypical biotrophic interaction between Theobroma cacao and the fungal pathogen Moniliophthora perniciosa.

    PubMed

    Teixeira, Paulo José Pereira Lima; Thomazella, Daniela Paula de Toledo; Reis, Osvaldo; do Prado, Paula Favoretti Vital; do Rio, Maria Carolina Scatolin; Fiorin, Gabriel Lorencini; José, Juliana; Costa, Gustavo Gilson Lacerda; Negri, Victor Augusti; Mondego, Jorge Maurício Costa; Mieczkowski, Piotr; Pereira, Gonçalo Amarante Guimarães

    2014-11-01

    Witches' broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen's transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.

  13. Legionella pneumophila: The Paradox of a Highly Sensitive Opportunistic Waterborne Pathogen Able to Persist in the Environment.

    PubMed

    Berjeaud, Jean-Marc; Chevalier, Sylvie; Schlusselhuber, Margot; Portier, Emilie; Loiseau, Clémence; Aucher, Willy; Lesouhaitier, Olivier; Verdon, Julien

    2016-01-01

    Legionella pneumophila, the major causative agent of Legionnaires' disease, is found in freshwater environments in close association with free-living amoebae and multispecies biofilms, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. Indeed, legionellosis outbreaks are mainly due to the ability of this bacterium to colonize and persist in water facilities, despite harsh physical and chemical treatments. However, these treatments are not totally efficient and, after a lag period, L. pneumophila may be able to quickly re-colonize these systems. Several natural compounds (biosurfactants, antimicrobial peptides…) with anti-Legionella properties have recently been described in the literature, highlighting their specific activities against this pathogen. In this review, we first consider this hallmark of Legionella to resist killing, in regard to its biofilm or host-associated life style. Then, we focus more accurately on natural anti-Legionella molecules described so far, which could provide new eco-friendly and alternative ways to struggle against this important pathogen in plumbing.

  14. Legionella pneumophila: The Paradox of a Highly Sensitive Opportunistic Waterborne Pathogen Able to Persist in the Environment

    PubMed Central

    Berjeaud, Jean-Marc; Chevalier, Sylvie; Schlusselhuber, Margot; Portier, Emilie; Loiseau, Clémence; Aucher, Willy; Lesouhaitier, Olivier; Verdon, Julien

    2016-01-01

    Legionella pneumophila, the major causative agent of Legionnaires’ disease, is found in freshwater environments in close association with free-living amoebae and multispecies biofilms, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. Indeed, legionellosis outbreaks are mainly due to the ability of this bacterium to colonize and persist in water facilities, despite harsh physical and chemical treatments. However, these treatments are not totally efficient and, after a lag period, L. pneumophila may be able to quickly re-colonize these systems. Several natural compounds (biosurfactants, antimicrobial peptides…) with anti-Legionella properties have recently been described in the literature, highlighting their specific activities against this pathogen. In this review, we first consider this hallmark of Legionella to resist killing, in regard to its biofilm or host-associated life style. Then, we focus more accurately on natural anti-Legionella molecules described so far, which could provide new eco-friendly and alternative ways to struggle against this important pathogen in plumbing. PMID:27092135

  15. Naegleria fowleri: a free-living highly pathogenic amoeba contains trypanothione/trypanothione reductase and glutathione/glutathione reductase systems.

    PubMed

    Ondarza, Raúl N; Hurtado, Gerardo; Tamayo, Elsa; Iturbe, Angélica; Hernández, Eva

    2006-11-01

    This paper presents definitive data showing that the thiol-bimane compound isolated and purified by HPLC from Naegleria fowleri trophozoites unequivocally corresponds by matrix assisted laser-desorption ionization-time-of-flight MS, to the characteristic monoprotonated ion of trypanothione-(bimane)(2) [M(+)H(+)] of m/z 1104.57 and to the trypanothione-(bimane) of m/z 914.46. The trypanothione disulfide T(S)(2) was also found to have a molecular ion of m/z 723.37. Additionally HPLC demonstrated that thiol-bimane compounds corresponding to cysteine and glutathione were present in Naegleria. The ion patterns of the thiol-bimane compounds prepared from commercial trypanothione standard, Entamoeba histolytica and Crithidia luciliae are identical to the Naegleria thiol-bimane compound. Partially purified extracts from N. fowleri showed the coexistence of glutathione and trypanothione reductases activities. There is not doubt that the thiol compound trypanothione, which was previously thought to occur only in Kinetoplastida, is also present in the human pathogens E. histolytica and N. fowleri, as well as in the non-pathogenic euglenozoan E. gracilis. The presence of the trypanothione/trypanothione reductase system in N. fowleri creates the possibility of using this enzyme as a new "drug target" for rationally designed drugs to eliminate the parasite, without affecting the human host.

  16. Import risk assessment incorporating a dose-response model: introduction of highly pathogenic porcine reproductive and respiratory syndrome into Australia via illegally imported raw pork.

    PubMed

    Brookes, V J; Hernández-Jover, M; Holyoake, P; Ward, M P

    2014-03-01

    Highly pathogenic porcine reproductive and respiratory syndrome (PRRS) has spread through parts of south-east Asia, posing a risk to Australia. The objective of this study was to assess the probability of infection of a feral or domestic pig in Australia with highly pathogenic PRRS following ingestion of illegally imported raw pork. A conservative scenario was considered in which 500 g of raw pork was imported from the Philippines into Australia without being detected by border security, then discarded from a household and potentially accessed by a pig. Monte Carlo simulation of a two-dimensional, stochastic model was used to estimate the probability of entry and exposure, and the probability of infection was assessed by incorporating a virus-decay and mechanistic dose-response model. Results indicated that the probability of infection of a feral pig after ingestion of raw meat was higher than the probability of infection of a domestic pig. Sensitivity analysis was used to assess the influence of input parameters on model output probability estimates, and extension of the virus-decay and dose-response model was used to explore the impact of different temperatures and time from slaughter to ingestion of the meat, different weights of meat, and the level of viraemia at slaughter on the infectivity of meat. Parameters with the highest influence on the model output were the level of viraemia of a pig prior to slaughter and the probability of access by a feral pig to food-waste discarded on property surrounding a household. Extension of the decay and dose-response model showed that small pieces of meat (10 g) from a highly pathogenic PRRS viraemic pig could contain enough virus to have a high probability of infection of a pig, and that routes to Australia by sea or air from all highly pathogenic PRRS virus endemic countries were of interest dependent on the temperature of the raw meat during transport. This study highlighted the importance of mitigation strategies such

  17. High quality permanent draft genome sequence of Phaseolibacter flectens ATCC 12775(T), a plant pathogen of French bean pods.

    PubMed

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Lapidus, Alla; Copeland, Alex; Reddy, Tbk; Huntemann, Marcel; Pillay, Manoj; Markowitz, Victor; Göker, Markus; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos C; Halpern, Malka

    2016-01-01

    Phaseolibacter flectens strain ATCC 12775(T) (Halpern et al., Int J Syst Evol Microbiol 63:268-273, 2013) is a Gram-negative, rod shaped, motile, aerobic, chemoorganotroph bacterium. Ph. flectens is as a plant-pathogenic bacterium on pods of French bean and was first identified by Johnson (1956) as Pseudomonas flectens. After its phylogenetic position was reexamined, Pseudomonas flectens was transferred to the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA GC content is 44.34 mol%. The chromosome length is 2,748,442 bp. It encodes 2,437 proteins and 89 RNA genes. Ph. flectens genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.

  18. High quality permanent draft genome sequence of Phaseolibacter flectens ATCC 12775T, a plant pathogen of French bean pods

    DOE PAGES

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Lapidus, Alla; ...

    2016-01-13

    We report that the Phaseolibacter flectens strain ATCC 12775T (Halpern et al., Int J Syst Evol Microbiol 63:268–273, 2013) is a Gram-negative, rod shaped, motile, aerobic, chemoorganotroph bacterium. Ph. flectens is as a plant-pathogenic bacterium on pods of French bean and was first identified by Johnson (1956) as Pseudomonas flectens. After its phylogenetic position was reexamined, Pseudomonas flectens was transferred to the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA GC content is 44.34 mol%. The chromosome length is 2,748,442 bp.more » It encodes 2,437 proteins and 89 RNA genes. Ph. flectens genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.« less

  19. Genetic diversity of highly pathogenic H5N8 avian influenza viruses at a single overwintering site of migratory birds in Japan, 2014/15.

    PubMed

    Ozawa, M; Matsuu, A; Tokorozaki, K; Horie, M; Masatani, T; Nakagawa, H; Okuya, K; Kawabata, T; Toda, S

    2015-05-21

    We isolated eight highly pathogenic H5N8 avian influenza viruses (H5N8 HPAIVs) in the 2014/15 winter season at an overwintering site of migratory birds in Japan. Genetic analyses revealed that these isolates were divided into three groups, indicating the co-circulation of three genetic groups of H5N8 HPAIV among these migratory birds. These results also imply the possibility of global redistribution of the H5N8 HPAIVs via the migration of these birds next winter.

  20. Highly pathogenic avian influenza A(H5N8) outbreaks: protection and management of exposed people in Europe, 2014/15 and 2016

    PubMed Central

    Adlhoch, Cornelia; Brown, Ian H.; Angelova, Svetla G.; Bálint, Ádám; Bouwstra, Ruth; Buda, Silke; Castrucci, Maria R.; Dabrera, Gavin; Dán, Ádám; Grund, Christian; Harder, Timm; van der Hoek, Wim; Krisztalovics, Katalin; Parry-Ford, Frances; Popescu, Rodica; Wallensten, Anders; Zdravkova, Anna; Zohari, Siamak; Tsolova, Svetla; Penttinen, Pasi

    2016-01-01

    Introduction of highly pathogenic avian influenza (HPAI) virus A(H5N8) into Europe prompted animal and human health experts to implement protective measures to prevent transmission to humans. We describe the situation in 2016 and list public health measures and recommendations in place. We summarise critical interfaces identified during the A(H5N1) and A(H5N8) outbreaks in 2014/15. Rapid exchange of information between the animal and human health sectors is critical for a timely, effective and efficient response. PMID:27983512

  1. Highly pathogenic avian influenza A(H5N8) outbreaks: protection and management of exposed people in Europe, 2014/15 and 2016.

    PubMed

    Adlhoch, Cornelia; Brown, Ian H; Angelova, Svetla G; Bálint, Ádám; Bouwstra, Ruth; Buda, Silke; Castrucci, Maria R; Dabrera, Gavin; Dán, Ádám; Grund, Christian; Harder, Timm; van der Hoek, Wim; Krisztalovics, Katalin; Parry-Ford, Frances; Popescu, Rodica; Wallensten, Anders; Zdravkova, Anna; Zohari, Siamak; Tsolova, Svetla; Penttinen, Pasi

    2016-12-08

    Introduction of highly pathogenic avian influenza (HPAI) virus A(H5N8) into Europe prompted animal and human health experts to implement protective measures to prevent transmission to humans. We describe the situation in 2016 and list public health measures and recommendations in place. We summarise critical interfaces identified during the A(H5N1) and A(H5N8) outbreaks in 2014/15. Rapid exchange of information between the animal and human health sectors is critical for a timely, effective and efficient response.

  2. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005.

    PubMed

    Adlhoch, C; Gossner, C; Koch, G; Brown, I; Bouwstra, R; Verdonck, F; Penttinen, P; Harder, T

    2014-12-18

    Since the beginning of November 2014, nine outbreaks of highly pathogenic avian influenza virus (HPAIV) A(H5N8) in poultry have been detected in four European countries. In this report, similarities and differences between the modes of introduction of HPAIV A(H5N1) and A(H5N8) into Europe are described. Experiences from outbreaks of A(H5N1) in Europe demonstrated that early detection to control HPAIV in poultry has proven pivotal to minimise the risk of zoonotic transmission and prevention of human cases.

  3. Two highly similar LAEDDTNAQKT and LTDKIGTEI epitopes in G glycoprotein may be useful for effective epitope based vaccine design against pathogenic Henipavirus.

    PubMed

    Parvege, Md Masud; Rahman, Monzilur; Nibir, Yead Morshed; Hossain, Mohammad Shahnoor

    2016-04-01

    Nipah virus and Hendra virus, two members of the genus Henipavirus, are newly emerging zoonotic pathogens which cause acute respiratory illness and severe encephalitis in human. Lack of the effective antiviral therapy endorses the urgency for the development of vaccine against these deadly viruses. In this study, we employed various computational approaches to identify epitopes which has the potential for vaccine development. By analyzing the immune parameters of the conserved sequences of G glycoprotein using various databases and bioinformatics tools, we identified two potential epitopes which may be used as peptide vaccines. Using different B cell epitope prediction servers, four highly similar B cell epitopes were identified. Immunoinformatics analyses revealed that LAEDDTNAQKT is a highly flexible and accessible B-cell epitope to antibody. Highly similar putative CTL epitopes were analyzed for their binding with the HLA-C 12*03 molecule. Docking simulation assay revealed that LTDKIGTEI has significantly lower binding energy, which bolstered its potential as epitope-based vaccine design. Finally, cytotoxicity analysis has also justified their potential as promising epitope-based vaccine candidate. In sum, our computational analysis indicates that either LAEDDTNAQKT or LTDKIGTEI epitope holds a promise for the development of universal vaccine against all kinds of pathogenic Henipavirus. Further in vivo and in vitro studies are necessary to validate the obtained findings.

  4. Characterization of clade 2.3.4.4 H5N8 highly pathogenic avian influenza viruses from wild birds possessing atypical hemagglutinin polybasic cleavage sites.

    PubMed

    Usui, Tatsufumi; Soda, Kosuke; Tomioka, Yukiko; Ito, Hiroshi; Yabuta, Toshiyo; Takakuwa, Hiroki; Otsuki, Koichi; Ito, Toshihiro; Yamaguchi, Tsuyoshi

    2017-02-01

    Since 2014, clade 2.3.4.4 H5 subtype highly pathogenic avian influenza viruses (HPAIVs) have been distributed worldwide. These viruses, which were reported to be highly virulent in chickens by intravenous inoculation, have a consensus HPAI motif PLRERRRKR at the HA cleavage site. However, two-clade 2.3.4.4 H5N8 viruses which we isolated from wild migratory birds in late 2014 in Japan possessed atypical HA cleavage sequences. A swan isolate, Tottori/C6, had a novel polybasic cleavage sequence, PLGERRRKR, and another isolate from a dead mandarin duck, Gifu/01, had a heterogeneous mixture of consensus PLRERRRKR and variant PLRERRRRKR sequences. The polybasic HA cleavage site is the prime virulence determinant of AIVs. Therefore, in the present study, we examined the pathogenicity of these H5N8 isolates in chickens by intravenous inoculation. When 10(6) EID50 of these viruses were intravenously inoculated into chickens, the mean death time associated with Tottori/C6 was substantially longer (>6.1 days) than that associated with Gifu/01 (2.5 days). These viruses had comparable abilities to replicate in tissue culture cells in the presence and absence of exogenous trypsin, but the growth of Tottori/C6 was hampered. These results indicate that the novel cleavage motif of Tottori/C6 did not directly affect the infectivity of the virus, but Tottori/C6 caused attenuated pathogenicity in chickens because of hampered replication efficiency. It is important to test for the emergence of diversified HPAIVs, because introduction of HPAIVs with a lower virulence like Tottori/C6 might hinder early detection of affected birds in poultry farms.

  5. In silico Analysis Revealed High-risk Single Nucleotide Polymorphisms in Human Pentraxin-3 Gene and their Impact on Innate Immune Response against Microbial Pathogens

    PubMed Central

    Thakur, Raman; Shankar, Jata

    2016-01-01

    Pentraxin-3 (PTX-3) protein is an evolutionary conserved protein that acts as a soluble pattern-recognition receptor for pathogens and plays important role in innate immune response. It recognizes various pathogens by interacting with extracellular moieties such as glactomannan of conidia (Aspergillus fumigatus), lipopolysaccharide of Pseudomonas aeruginosa, Streptococcus pneumonia and Salmonella typhimurium. Thus, PTX-3 protein helps to clear these pathogens by activating downstream innate immune process. In this study, computational methods were used to analyze various non-synonymous single nucleotide polymorphisms (nsSNPs) in PTX-3 gene. Three different databases were used to retrieve SNP data sets followed by seven different in silico algorithms to screen nsSNPs in PTX-3 gene. Sequence homology based approach was used to identify nsSNPs. Conservation profile of PTX-3 protein amino acid residues were predicted by ConSurf web server. In total, 10 high-risk nsSNPs were identified in pentraxin-domain of PTX-3 gene. Out of these 10 high-risk nsSNPs, 4 were present in the conserved structural and functional residues of the pentraxin-domain, hence, selected for structural analyses. The results showed alteration in the putative structure of pentraxin-domain. Prediction of protein–protein interactions analysis showed association of PTX-3 protein with C1q component of complement pathway. Different functional and structural residues along with various putative phosphorylation sites and evolutionary relationship were also predicted for PTX-3 protein. This is the first extensive computational analyses of pentraxin protein family with nsSNPs and will serve as a valuable resource for future population based studies. PMID:26941719

  6. Rain-induced ejection of pathogens from leaves: revisiting the hypothesis of splash-on-film using high-speed visualization.

    PubMed

    Gilet, Tristan; Bourouiba, Lydia

    2014-12-01

    Plant diseases are a major cause of losses of crops worldwide. Although rainfalls and foliar disease outbreaks are correlated, the detailed mechanism explaining their link remains poorly understood. The common assumption from phytopathology for such link is that a splash is generated upon impact of raindrops on contaminated liquid films coating sick leaves. We examine this assumption using direct high-speed visualizations of the interactions of raindrops and leaves over a range of plants. We show that films are seldom found on the surface of common leaves. We quantify the leaf-surface's wetting properties, showing that sessile droplets instead of films are predominant on the surfaces of leaves. We find that the presence of sessile drops rather than that of films has important implications when coupled with the compliance of a leaf: it leads to a new physical picture consisting of two dominant rain-induced mechanisms of ejection of pathogens. The first involves a direct interaction between the fluids of the raindrop and the sessile drops via an off-centered splash. The second involves the indirect action of the raindrop that leads to the inertial detachment of the sessile drop via the leaf's motion imparted by the impact of the raindrop. Both mechanisms are distinct from the commonly assumed scenario of splash-on-film in terms of outcome: they result in different fragmentation processes induced by surface tension, and, thus, different size-distributions of droplets ejected. This is the first time that modern direct high-speed visualizations of impacts on leaves are used to examine rain-induced ejection of pathogens at the level of a leaf and identify the inertial detachment and off-center splash ejections as alternatives to the classically assumed splash-on-film ejections of foliar pathogens.

  7. Differential cellular gene expression in duck trachea infected with a highly or low pathogenic H5N1 avian influenza virus

    PubMed Central

    2013-01-01

    Background Avian influenza A (AI) viruses of subtypes H5 can cause serious disease outbreaks in poultry including panzootic due to H5N1 highly pathogenic (HP) viruses. These viruses are a threat not only for animal health but also public health due to their zoonotic potential. The domestic duck plays a major role in the epidemiological cycle of influenza virus subtypes H5 but little is known concerning host/pathogen interactions during influenza infection in duck species. In this study, a subtracted library from duck trachea (a primary site of influenza virus infection) was constructed to analyse and compare the host response after a highly or low pathogenic (LP) H5N1-infection. Results Here, we show that more than 200 different genes were differentially expressed in infected duck trachea to a significant degree. In addition, significant differentially expressed genes between LPAI- and HPAI-infected tracheas were observed. Gene ontology annotation was used and specific signalling pathways were identified. These pathways were different for LPAI and HPAI-infected tracheas, except for the CXCR4 signalling pathway which is implicated in immune response. A different modulation of genes in the CXCR4 signalling pathway and TRIM33 was induced in duck tracheas infected with a HPAI- or a LPAI-H5N1. Conclusion First, this study indicates that Suppressive Subtractive Hybridization (SSH) is an alternative approach to gain insights into the pathogenesis of influenza infection in ducks. Secondly, the results indicate that cellular gene expression in the duck trachea was differently modulated after infection with a LPAI-H5N1 or after infection with a HPAI-H5N1 virus. Such difference found in infected trachea, a primary infection site, could precede continuation of infection and could explain appearance of respiratory symptoms or not. PMID:24015922

  8. Highly pathogenic avian influenza H5N1 virus could partly be evacuated by pregnant BALB/c mouse during abortion or preterm delivery.

    PubMed

    Xu, Lili; Bao, Linlin; Deng, Wei; Qin, Chuan

    2011-07-08

    The highly pathogenic avian influenza H5N1 virus is one of candidates for future pandemic. Since H5N1 viruses had previously been isolated only from avian species, the outbreak raised questions about the ability of these viruses to cause severe disease and death in humans. Pregnant women are at increased risk for influenza-associated illness and death. However, little is known about whether influenza viruses could transmit to the fetus through the placenta, and the effects of abortion and preterm delivery to maternal influenza infection are not well understood. We found that the H5N1 viruses could vertical transmit to the fetus through the placenta in the BALB/c mouse model, and the viruses could partly be evacuated by the pregnant mice during abortion or preterm delivery. This study may further our understanding about the transmission of this highly pathogenic avian influenza viruses, supply optimized clinical treatment method for pregnant women, and shed some light on better preventing and controlling for future potential outbreak of H5N1 influenza pandemic.

  9. Surveillance plan for the early detection of H5N1 highly pathogenic avian influenza virus in migratory birds in the United States: surveillance year 2009

    USGS Publications Warehouse

    Brand, Christopher J.

    2009-01-01

    Executive Summary: This Surveillance Plan (Plan) describes plans for conducting surveillance of wild birds in the United States and its Territories and Freely-Associated States to provide for early detection of the introduction of the H5N1 Highly Pathogenic Avian Influenza (HPAI) subtype of the influenza A virus by migratory birds during the 2009 surveillance year, spanning the period of April 1, 2009 - March 31, 2010. The Plan represents a continuation of surveillance efforts begun in 2006 under the Interagency Strategic Plan for the Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds (U.S. Department of Agriculture and U.S. Department of the Interior, 2006). The Plan sets forth sampling plans by: region, target species or species groups to be sampled, locations of sampling, sample sizes, and sampling approaches and methods. This Plan will be reviewed annually and modified as appropriate for subsequent surveillance years based on evaluation of information from previous years of surveillance, changing patterns and threats of H5N1 HPAI, and changes in funding availability for avian influenza surveillance. Specific sampling strategies will be developed accordingly within each of six regions, defined here as Alaska, Hawaiian/Pacific Islands, Lower Pacific Flyway (Washington, Oregon, California, Idaho, Nevada, Arizona), Central Flyway, Mississippi Flyway, and Atlantic Flyway.

  10. The influence of economic indicators, poultry density and the performance of veterinary services on the control of high-pathogenicity avian influenza in poultry.

    PubMed

    Pavade, G; Awada, L; Hamilton, K; Swayne, D E

    2011-12-01

    High-pathogenicity avian influenza (HPAI) and low-pathogenicity notifiable avian influenza (LPNAI) in poultry are notifiable diseases that must be reported to the World Organisation for Animal Health (OIE). There are variations between countries' responses to avian influenza (AI) outbreak situations based on their economic status, diagnostic capacity and other factors. The objective of this study was to ascertain the significant association between HPAI control data and a country's poultry density, the performance of its Veterinary Services, and its economic indicators (gross domestic product, agricultural gross domestic product, gross national income, human development index and Organisation for Economic Co-operation and Development [OECD] status). Results indicate that as poultry density increases for least developed countries there is an increase in the number and duration of HPAI outbreaks and in the time it takes to eradicate the disease. There was no significant correlation between HPAI control and any of the economic indicators except membership of the OECD. Member Countries, i.e. those with high-income economies, transparency and good governance, had shorter and significantly fewer HPAI outbreaks, quicker eradication times, lower mortality rates and higher culling rates than non-OECD countries. Furthermore, countries that had effective and efficient Veterinary Services (as measured by the ratings they achieved when they were assessed using the OIE Tool for the Evaluation of Performance of Veterinary Services) had better HPAI control measures.

  11. Surveillance for high pathogenicity avian influenza virus in wild birds in the Pacific Flyway of the United States, 2006-2007

    USGS Publications Warehouse

    Dusek, R.J.; Bortner, J.B.; DeLiberto, T.J.; Hoskins, J.; Franson, J. Christian; Bales, B.D.; Yparraguirre, D.; Swafford, S.R.; Ip, H.S.

    2009-01-01

    In 2006 the U.S. Department of Agriculture, U.S. Department of Interior, and cooperating state fish and wildlife agencies began surveillance for high-pathogenicity avian influenza (HPAI) H5N1 virus in wild birds in the Pacific Flyway of the United States. This surveillance effort was highly integrated in California, Oregon, Washington, Idaho, Nevada, Arizona, Utah, and western Montana, with collection of samples coordinated with state agencies. Sampling focused on live wild birds, hunterkilled waterfowl during state hunting seasons, and wild bird mortality events. Of 20,888 samples collected, 18,139 were from order Anseriformes (waterfowl) and 2010 were from order Charadriiformes (shorebirds), representing the two groups of birds regarded to be the primary reservoirs of avian influenza viruses. Although 83 birds were positive by H5 real-time reverse transcription polymerase chain reaction (rRT-PCR), no HPAI H5N1 virus was found. Thirty-two virus isolates were obtained from the H5- positive samples, including low-pathogenicity H5 viruses identified as H5N2, H5N3, and H5N9.

  12. Surveillance for high pathogenicity avian influenza virus in wild birds in the Pacific Flyway of the United States, 2006-2007.

    PubMed

    Dusek, Robert J; Bortner, J Bradley; DeLiberto, Thomas J; Hoskins, Jenny; Franson, J Christian; Bales, Bradley D; Yparraguirre, Dan; Swafford, Seth R; Ip, Hon S

    2009-06-01

    In 2006 the U.S. Department of Agriculture, U.S. Department of Interior, and cooperating state fish and wildlife agencies began surveillance for high-pathogenicity avian influenza (HPAI) H5N1 virus in wild birds in the Pacific Flyway of the United States. This surveillance effort was highly integrated in California, Oregon, Washington, Idaho, Nevada, Arizona, Utah, and western Montana, with collection of samples coordinated with state agencies. Sampling focused on live wild birds, hunter-killed waterfowl during state hunting seasons, and wild bird mortality events. Of 20,888 samples collected, 18,139 were from order Anseriformes (waterfowl) and 2010 were from order Charadriiformes (shorebirds), representing the two groups of birds regarded to be the primary reservoirs of avian influenza viruses. Although 83 birds were positive by H5 real-time reverse transcription polymerase chain reaction (rRT-PCR), no HPAI H5N1 virus was found. Thirty-two virus isolates were obtained from the H5-positive samples, including low-pathogenicity H5 viruses identified as H5N2, H5N3, and H5N9.

  13. A Novel High-Throughput Method for Molecular Detection of Human Pathogenic Viruses Using a Nanofluidic Real-Time PCR System.

    PubMed

    Coudray-Meunier, Coralie; Fraisse, Audrey; Martin-Latil, Sandra; Delannoy, Sabine; Fach, Patrick; Perelle, Sylvie

    2016-01-01

    Human enteric viruses are recognized as the main causes of food- and waterborne diseases worldwide. Sensitive and quantitative detection of human enteric viruses is typically achieved through quantitative RT-PCR (RT-qPCR). A nanofluidic real-time PCR system was used to develop novel high-throughput methods for qualitative molecular detection (RT-qPCR array) and quantification of human pathogenic viruses by digital RT-PCR (RT-dPCR). The performance of high-throughput PCR methods was investigated for detecting 19 human pathogenic viruses and two main process controls used in food virology. The conventional real-time PCR system was compared to the RT-dPCR and RT-qPCR array. Based on the number of genome copies calculated by spectrophotometry, sensitivity was found to be slightly better with RT-qPCR than with RT-dPCR for 14 viruses by a factor range of from 0.3 to 1.6 log10. Conversely, sensitivity was better with RT-dPCR than with RT-qPCR for seven viruses by a factor range of from 0.10 to 1.40 log10. Interestingly, the number of genome copies determined by RT-dPCR was always from 1 to 2 log10 lower than the expected copy number calculated by RT-qPCR standard curve. The sensitivity of the RT-qPCR and RT-qPCR array assays was found to be similar for two viruses, and better with RT-qPCR than with RT-qPCR array for eighteen viruses by a factor range of from 0.7 to 3.0 log10. Conversely, sensitivity was only 0.30 log10 better with the RT-qPCR array than with conventional RT-qPCR assays for norovirus GIV detection. Finally, the RT-qPCR array and RT-dPCR assays were successfully used together to screen clinical samples and quantify pathogenic viruses. Additionally, this method made it possible to identify co-infection in clinical samples. In conclusion, given the rapidity and potential for large numbers of viral targets, this nanofluidic RT-qPCR assay should have a major impact on human pathogenic virus surveillance and outbreak investigations and is likely to be of benefit

  14. Transient virulence of emerging pathogens.

    PubMed

    Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini

    2010-05-06

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.

  15. Serological evidence for non-lethal exposures of Mongolian wild birds to highly pathogenic avian influenza H5N1 virus.

    PubMed

    Gilbert, Martin; Koel, Björn F; Bestebroer, Theo M; Lewis, Nicola S; Smith, Derek J; Fouchier, Ron A M

    2014-01-01

    Surveillance for highly pathogenic avian influenza viruses (HPAIV) in wild birds is logistically demanding due to the very low rates of virus detection. Serological approaches may be more cost effective as they require smaller sample sizes to identify exposed populations. We hypothesized that antigenic differences between classical Eurasian H5 subtype viruses (which have low pathogenicity in chickens) and H5N1 viruses of the Goose/Guangdong/96 H5 lineage (which are HPAIV) may be used to differentiate populations where HPAIVs have been circulating, from those where they have not. To test this we performed hemagglutination inhibition assays to compare the reactivity of serum samples from wild birds in Mongolia (where HPAIV has been circulating, n = 1,832) and Europe (where HPAIV has been rare or absent, n = 497) to a panel of reference viruses including classical Eurasian H5 (of low pathogenicity), and five HPAIV H5N1 antigens of the Asian lineage A/Goose/Guangdong/1/96. Antibody titres were detected against at least one of the test antigens for 182 Mongolian serum samples (total seroprevalence of 0.10, n = 1,832, 95% adjusted Wald confidence limits of 0.09-0.11) and 25 of the European sera tested (total seroprevalence of 0.05, n = 497, 95% adjusted Wald confidence limits of 0.03-0.07). A bias in antibody titres to HPAIV antigens was found in the Mongolian sample set (22/182) that was absent in the European sera (0/25). Although the interpretation of serological data from wild birds is complicated by the possibility of exposure to multiple strains, and variability in the timing of exposure, these findings suggest that a proportion of the Mongolian population had survived exposure to HPAIV, and that serological assays may enhance the targeting of traditional HPAIV surveillance toward populations where isolation of HPAIV is more likely.

  16. Serological Evidence for Non-Lethal Exposures of Mongolian Wild Birds to Highly Pathogenic Avian Influenza H5N1 Virus

    PubMed Central

    Gilbert, Martin; Koel, Björn F.; Bestebroer, Theo M.; Lewis, Nicola S.; Smith, Derek J.; Fouchier, Ron A. M.

    2014-01-01

    Surveillance for highly pathogenic avian influenza viruses (HPAIV) in wild birds is logistically demanding due to the very low rates of virus detection. Serological approaches may be more cost effective as they require smaller sample sizes to identify exposed populations. We hypothesized that antigenic differences between classical Eurasian H5 subtype viruses (which have low pathogenicity in chickens) and H5N1 viruses of the Goose/Guangdong/96 H5 lineage (which are HPAIV) may be used to differentiate populations where HPAIVs have been circulating, from those where they have not. To test this we performed hemagglutination inhibition assays to compare the reactivity of serum samples from wild birds in Mongolia (where HPAIV has been circulating, n = 1,832) and Europe (where HPAIV has been rare or absent, n = 497) to a panel of reference viruses including classical Eurasian H5 (of low pathogenicity), and five HPAIV H5N1 antigens of the Asian lineage A/Goose/Guangdong/1/96. Antibody titres were detected against at least one of the test antigens for 182 Mongolian serum samples (total seroprevalence of 0.10, n = 1,832, 95% adjusted Wald confidence limits of 0.09–0.11) and 25 of the European sera tested (total seroprevalence of 0.05, n = 497, 95% adjusted Wald confidence limits of 0.03–0.07). A bias in antibody titres to HPAIV antigens was found in the Mongolian sample set (22/182) that was absent in the European sera (0/25). Although the interpretation of serological data from wild birds is complicated by the possibility of exposure to multiple strains, and variability in the timing of exposure, these findings suggest that a proportion of the Mongolian population had survived exposure to HPAIV, and that serological assays may enhance the targeting of traditional HPAIV surveillance toward populations where isolation of HPAIV is more likely. PMID:25502318

  17. Molecular pathogenicity of Streptococcus anginosus.

    PubMed

    Asam, D; Spellerberg, B

    2014-08-01

    Streptococcus anginosus and the closely related species Streptococcus constellatus and Streptococcus intermedius, are primarily commensals of the mucosa. The true pathogenic potential of this group has been under-recognized for a long time because of difficulties in correct species identification as well as the commensal nature of these species. In recent years, streptococci of the S. anginosus group have been increasingly found as relevant microbial pathogens in abscesses and blood cultures and they play a pathogenic role in cystic fibrosis. Several international studies have shown a surprisingly high frequency of infections caused by the S. anginosus group. Recent studies and a genome-wide comparative analysis suggested the presence of multiple putative virulence factors that are well-known from other streptococcal species. However, very little is known about the molecular basis of pathogenicity in these bacteria. This review summarizes our current knowledge of pathogenicity factors and their regulation in S. anginosus.

  18. Rapid detection of highly pathogenic porcine reproductive and respiratory syndrome virus by a fluorescent probe-based isothermal recombinase polymerase amplification assay.

    PubMed

    Yang, Yang; Qin, Xiaodong; Sun, Yingjun; Chen, Ting; Zhang, Zhidong

    2016-12-01

    A novel fluorescent probe-based real-time reverse transcription recombinase polymerase amplification (real-time RT-RPA) assay was developed for rapid detection of highly pathogenic type 2 porcine reproductive and respiratory syndrome virus (HP-PRRSV). The sensitivity analysis showed that the detection limit of RPA was 70 copies of HP-PRRSV RNA/reaction. The real-time RT-RPA highly specific amplified HP-PRRSV with no cross-reaction with classic PRRSV, classic swine fever virus, pseudorabies virus, and foot-and-mouth disease virus. Assessment with 125 clinical samples showed that the developed real-time RT-RPA assay was well correlated with real-time RT-qPCR assays for detection of HP-PRRSV. These results suggest that the developed real-time RT-RPA assay is suitable for rapid detection of HP-PRRSV.

  19. Pathogene Mikroorganismen

    NASA Astrophysics Data System (ADS)

    Wagner, Martin

    Infektionen, die vom Tier auf den Menschen übertragen werden, werden als Zoonosen bezeichnet. Pathogene Mikroorganismen können entweder durch Mensch-Mensch, Mensch-Tier-Kontakt oder durch Kontakt mit kontaminierten Vektoren übertragen werden [39]. Vektoren können einerseits belebt (z. B. blutsaugende Insekten), andererseits unbelebt sein. Kontaminierte Lebensmittel und Wasser gehören zu den wichtigsten unbelebten Vektoren. Neben Lebensmitteln können aber auch kontaminierte Gegenstände oder der Kontakt mit Kontaminationsquellen in der Umwelt Auslöser von Krankheitsfällen sein. Weltweit sind mehr als 1400 krankheitsverursachende biologische Agentien bekannt, von denen über 60 % ein zoonotisches Potenzial aufweisen. Als Ergebnis von Expertengesprächen wurde kürzlich berichtet, dass etwa 3 bis 4, meist virale, neu auftretende Infektionskrankheiten ("emerging diseases“) pro Jahr erwartet werden können [15]. Es handelt sich bei diesen Vorgängen aber nicht nur um das Auftauchen vollkommen neuer oder unbeschriebener Spezies, sondern auch um evolutionsbedingte Anpassungen von mikrobiellen Populationen an neue Bedingungen in ihrem Ökosystem [7]. Molekulare Analysen an Umweltchlamydien erbrachten Hinweise, dass die Evolution erste genetische Pathogenitätsmerkmale in dieser Spezies schon vor 700 Mio. Jahren entstehen ließ [14]. Viele Faktoren befeuern den Prozess der Anpassung, unter anderem auch alle Strategien, mit denen der Mensch seit Jahrtausenden versucht, Lebensmittel sicher und haltbar zu machen. Als die treibenden Kräfte des Auftretens neuer Krankheitserreger werden in der Gegenwart vor allem das sich ändernde Weltklima, die globalen Warenströme und die sich verändernden Konsumgewohnheiten genannt. Es steht auch außer Zweifel, dass viele dieser Erreger Tiere als ihr natürliches Reservoir haben werden, d. h. Zoonosen im klassischen Sinne sind [15].

  20. Movements of wild ruddy shelducks in the Central Asian Flyway and their spatial relationship to outbreaks of highly pathogenic avian influenza H5N1

    USGS Publications Warehouse

    Takekawa, John Y.; Prosser, Diann J.; Collins, Bridget M.; Douglas, David C.; Perry, William M.; Baoping, Yan; Luo, Ze; Hou, Yuansheng; Lei, Fumin; Li, Tianxian; Li, Yongdong; Newman, Scott H.

    2013-01-01

    Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea), a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease.

  1. Low pathogenic avian influenza A(H7N9) virus causes high mortality in ferrets upon intratracheal challenge: a model to study intervention strategies.

    PubMed

    Kreijtz, J H C M; Kroeze, E J B Veldhuis; Stittelaar, K J; de Waal, L; van Amerongen, G; van Trierum, S; van Run, P; Bestebroer, T; T Kuiken; Fouchier, R A M; Rimmelzwaan, G F; Osterhaus, A D M E

    2013-10-09

    Infections with low pathogenic avian influenza (LPAI) A(H7N9) viruses have caused more than 100 hospitalized human cases of severe influenza in China since February 2013 with a case fatality rate exceeding 25%. Most of these human infections presented with severe viral pneumonia, while limited information is available currently on the occurrence of mild and subclinical cases. In the present study, a ferret model for this virus infection in humans is presented to evaluate the pathogenesis of the infection in a mammalian host, as ferrets have been shown to mimic the pathogenesis of human infection with influenza viruses most closely. Ferrets were inoculated intratracheally with increasing doses (>10 e5 TCID50) of H7N9 influenza virus A/Anhui/1/2013 and were monitored for clinical and virological parameters up to four days post infection. Virus replication was detected in the upper and lower respiratory tracts while animals developed fatal viral pneumonia. This study illustrates the high pathogenicity of LPAI-H7N9 virus for mammals. Furthermore, the intratracheal inoculation route in ferrets proofs to offer a solid model for LPAI-H7N9 virus induced pneumonia in humans. This model will facilitate the development and assessment of clinical intervention strategies for LPAI-H7N9 virus infection in humans, such as preventive vaccination and the use of antivirals.

  2. The Fungal Pathogen Moniliophthora perniciosa Has Genes Similar to Plant PR-1 That Are Highly Expressed during Its Interaction with Cacao

    PubMed Central

    Vidal, Ramon O.; do Prado, Paula F.V.; Reis, Osvaldo; Baroni, Renata M.; Franco, Sulamita F.; Mieczkowski, Piotr; Pereira, Gonçalo A.G.; Mondego, Jorge M.C.

    2012-01-01

    The widespread SCP/TAPS superfamily (SCP/Tpx-1/Ag5/PR-1/Sc7) has multiple biological functions, including roles in the immune response of plants and animals, development of male reproductive tract in mammals, venom activity in insects and reptiles and host invasion by parasitic worms. Plant Pathogenesis Related 1 (PR-1) proteins belong to this superfamily and have been characterized as markers of induced defense against pathogens. This work presents the characterization of eleven genes homologous to plant PR-1 genes, designated as MpPR-1, which were identified in the genome of Moniliophthora perniciosa, a basidiomycete fungus responsible for causing the devastating witches' broom disease in cacao. We describe gene structure, protein alignment and modeling analyses of the MpPR-1 family. Additionally, the expression profiles of MpPR-1 genes were assessed by qPCR in different stages throughout the fungal life cycle. A specific expression pattern was verified for each member of the MpPR-1 family in the conditions analyzed. Interestingly, some of them were highly and specifically expressed during the interaction of the fungus with cacao, suggesting a role for the MpPR-1 proteins in the infective process of this pathogen. Hypothetical functions assigned to members of the MpPR-1 family include neutralization of plant defenses, antimicrobial activity to avoid competitors and fruiting body physiology. This study provides strong evidence on the importance of PR-1-like genes for fungal virulence on plants. PMID:23029323

  3. The fungal pathogen Moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao.

    PubMed

    Teixeira, Paulo J P L; Thomazella, Daniela P T; Vidal, Ramon O; do Prado, Paula F V; Reis, Osvaldo; Baroni, Renata M; Franco, Sulamita F; Mieczkowski, Piotr; Pereira, Gonçalo A G; Mondego, Jorge M C

    2012-01-01

    The widespread SCP/TAPS superfamily (SCP/Tpx-1/Ag5/PR-1/Sc7) has multiple biological functions, including roles in the immune response of plants and animals, development of male reproductive tract in mammals, venom activity in insects and reptiles and host invasion by parasitic worms. Plant Pathogenesis Related 1 (PR-1) proteins belong to this superfamily and have been characterized as markers of induced defense against pathogens. This work presents the characterization of eleven genes homologous to plant PR-1 genes, designated as MpPR-1, which were identified in the genome of Moniliophthora perniciosa, a basidiomycete fungus responsible for causing the devastating witches' broom disease in cacao. We describe gene structure, protein alignment and modeling analyses of the MpPR-1 family. Additionally, the expression profiles of MpPR-1 genes were assessed by qPCR in different stages throughout the fungal life cycle. A specific expression pattern was verified for each member of the MpPR-1 family in the conditions analyzed. Interestingly, some of them were highly and specifically expressed during the interaction of the fungus with cacao, suggesting a role for the MpPR-1 proteins in the infective process of this pathogen. Hypothetical functions assigned to members of the MpPR-1 family include neutralization of plant defenses, antimicrobial activity to avoid competitors and fruiting body physiology. This study provides strong evidence on the importance of PR-1-like genes for fungal virulence on plants.

  4. Potency, efficacy, and antigenic mapping of H7 avian influenza virus vaccines against the 2012 H7N3 highly pathogenic avian influenza virus from Mexico.

    PubMed

    Spackman, Erica; Wan, Xiu-Feng; Kapczynski, Darrell; Xu, Yifei; Pantin-Jackwood, Mary; Suarez, David L; Swayne, David

    2014-09-01

    In the spring of 2012 an outbreak of H7N3 highly pathogenic (HP) avian influenza virus (AIV) occurred in poultry in Mexico. Vaccination was implemented as a control measure, along with increased biosecurity and surveillance. At that time there was no commercially available H7 AIV vaccine in North America; therefore, a recent H7N3 wild bird isolate of low pathogenicity from Mexico (A/cinnamon teal/Mexico/2817/2006 H7N3) was selected and utilized as the vaccine seed strain. In these studies, the potency and efficacy of this vaccine strain was evaluated in chickens against challenge with the 2012 Jalisco H7N3 HPAIV. Although vaccine doses of 256 and 102 hemagglutinating units (HAU) per bird decreased morbidity and mortality significantly compared to sham vaccinates, a dose of 512 HAU per bird was required to prevent mortality and morbidity completely. Additionally, the efficacy of 11 other H7 AIV vaccines and an antigenic map of hemagglutination inhibition assay data with all the vaccines and challenge viruses were evaluated, both to identify other potential vaccine strains and to characterize the relationship between genetic and antigenic distance with protection against this HPAIV. Several other isolates provided adequate protection against the 2012 Jalisco H7N3 lineage, but antigenic and genetic differences were not clear indicators of protection because the immunogenicity of the vaccine seed strain was also a critical factor.

  5. Biological characterization of highly pathogenic avian influenza H5N1 viruses that infected humans in Egypt in 2014-2015.

    PubMed

    El-Shesheny, Rabeh; Mostafa, Ahmed; Kandeil, Ahmed; Mahmoud, Sara H; Bagato, Ola; Naguib, Amel; Refaey, Samir El; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2017-03-01

    Highly pathogenic avian influenza (HPAI) H5N1 influenza viruses emerged as a human pathogen in 1997 with expected potential to undergo sustained human-to-human transmission and pandemic viral spread. HPAI H5N1 is endemic in Egyptian poultry and has caused sporadic human infection. The first outbreak in early 2006 was caused by clade 2.2 viruses that rapidly evolved genetically and antigenically. A sharp increase in the number of human cases was reported in Egypt in the 2014/2015 season. In this study, we analyzed and characterized three isolates of HPAI H5N1 viruses isolated from infected humans in Egypt in 2014/2015. Phylogenetic analysis demonstrated that the nucleotide sequences of eight segments of the three isolates were clustered with those of members of clade 2.2.1.2. We also found that the human isolates from 2014/2015 had a slight, non-significant difference in their affinity for human-like sialic acid receptors. In contrast, they showed significant differences in their replication kinetics in MDCK, MDCK-SIAT, and A549 cells as well as in embryonated chicken eggs. An antiviral bioassay study revealed that all of the isolates were susceptible to amantadine. Therefore, further investigation and monitoring is required to correlate the genetic and/or antigenic changes of the emerging HPAI H5N1 viruses with possible alteration in their characteristics and their potential to become a further threat to public health.

  6. Evaluation of Patients with Community-Acquired Pneumonia Caused by Zoonotic Pathogens in an Area with a High Density of Animal Farms.

    PubMed

    Huijskens, E G W; Smit, L A M; Rossen, J W A; Heederik, D; Koopmans, M

    2016-03-01

    Intensive animal farming could potentially lead to outbreaks of infectious diseases. Clinicians are at the forefront of detecting unusual diseases, but the lack of specificity of zoonotic disease symptoms makes this a challenging task. We evaluated patients with community-acquired pneumonia (CAP) with known and unknown aetiology in an area with a high livestock density and a potential association with animal farms in the proximity. Between 2008 and 2009, a period coinciding with a large Q fever outbreak in the Netherlands, patients with CAP were tested for the presence of possible respiratory pathogens. The presence and number of farm animals within 1 km of the patients' home address were assessed using geographic information system (GIS) and were compared between cases and age-matched control subjects. Of 408 patients with CAP, pathogens were detected in 275 (67.4%) patients. The presence of sheep and the number of goats were associated with CAP caused by Coxiella burnetii in a multiple logistic regression model (P < 0.05). CAP with unknown aetiology was not associated with the presence of animal farms (P > 0.10). The use of GIS in combination with aetiology of CAP could be potentially used to target diagnostics and to identify outbreaks of rare zoonotic disease.

  7. The enigma of the apparent disappearance of Eurasian highly pathogenic H5 clade 2.3.4.4 influenza A viruses in North American waterfowl

    PubMed Central

    Krauss, Scott; Stallknecht, David E.; Slemons, Richard D.; Bowman, Andrew S.; Poulson, Rebecca L.; Nolting, Jacqueline M.; Knowles, James P.; Webster, Robert G.

    2016-01-01

    One of the major unresolved questions in influenza A virus (IAV) ecology is exemplified by the apparent disappearance of highly pathogenic (HP) H5N1, H5N2, and H5N8 (H5Nx) viruses containing the Eurasian hemagglutinin 2.3.4.4 clade from wild bird populations in North America. The introduction of Eurasian lineage HP H5 clade 2.3.4.4 H5N8 IAV and subsequent reassortment with low-pathogenic H?N2 and H?N1 North American wild bird-origin IAVs in late 2014 resulted in widespread HP H5Nx IAV infections and outbreaks in poultry and wild birds across two-thirds of North America starting in November 2014 and continuing through June 2015. Although the stamping out strategies adopted by the poultry industry and animal health authorities in Canada and the United States—which included culling, quarantining, increased biosecurity, and abstention from vaccine use—were successful in eradicating the HP H5Nx viruses from poultry, these activities do not explain the apparent disappearance of these viruses from migratory waterfowl. Here we examine current and historical aquatic bird IAV surveillance and outbreaks of HP H5Nx in poultry in the United States and Canada, providing additional evidence of unresolved mechanisms that restrict the emergence and perpetuation of HP avian influenza viruses in these natural reservoirs. PMID:27457948

  8. Differentiation between pathogenic serotype 1 isolates of Marek's disease virus and the Rispens CVI988 vaccine in Australia using real-time PCR and high resolution melt curve analysis.

    PubMed

    Renz, K G; Cheetham, B F; Walkden-Brown, S W

    2013-01-01

    Two real-time PCR assays were developed which enable quantitation and differentiation between pathogenic Australian isolates of Marek's disease virus (MDV) serotype 1 and the serotype 1 vaccine strain Rispens CVI988. The assays are based on a DNA sequence variation in the meq gene between pathogenic and vaccinal MDV1 which has been confirmed by sequencing of 20 Australian field strains of MDV. Complete specificity has been demonstrated in samples containing pathogenic MDV (n=20), Rispens (3 commercial vaccine strains), or both. The limit of detection of both the Rispens-specific and the pathogenic MDV1-specific assays was 10 viral copies/reaction. The tests successfully differentiated and quantified MDV in mixtures of pathogenic and vaccinal Rispens virus. A high resolution melt curve analysis targeting the same SNP used for the real-time PCR assays was also developed which successfully detected sequence variation between Md5, six Australian MDV1 isolates and the three Rispens vaccines. However it was ineffective at differentiating mixtures of pathogenic and vaccinal MDV1. The real-time PCR assays have both diagnostic and epidemiological applications as they enable differentiation and quantitation of Rispens CVI988 and pathogenic MDV1 in co-infected chickens in Australia.

  9. Pathogenicity of a highly exopolysaccharide-producing Halomonas strain causing epizootics in larval cultures of the Chilean scallop Argopecten purpuratus (Lamarck, 1819).

    PubMed

    Rojas, Rodrigo; Miranda, Claudio D; Amaro, Ana María

    2009-01-01

    Mass mortalities of larval cultures of Chilean scallop Argopecten purpuratus have repeatedly occurred in northern Chile, characterized by larval agglutination and accumulation in the bottom of rearing tanks. The exopolysaccharide slime (EPS) producing CAM2 strain was isolated as the primary organism from moribund larvae in a pathogenic outbreak occurring in a commercial hatchery producing larvae of the Chilean scallop Argopecten purpuratus located in Bahía Inglesa, Chile. The CAM2 strain was characterized biochemically and was identified by polymerase chain reaction amplification of 16S rRNA as Halomonas sp. (Accession number DQ885389.1). Healthy 7-day-old scallop larvae cultures were experimentally infected for a 48-h period with an overnight culture of the CAM2 strain at a final concentration of ca. 10(5) cells per milliliter, and the mortality and vital condition of larvae were determined by optical and scanning electron microscopy (SEM) to describe the chronology of the disease. Pathogenic action of the CAM2 strain was clearly evidenced by SEM analysis, showing a high ability to adhere and detach larvae velum cells by using its "slimy" EPS, producing agglutination, loss of motility, and a posterior sinking of scallop larvae. After 48 h, a dense bacterial slime on the shell surface was observed, producing high percentages of larval agglutination (63.28 +/- 7.87%) and mortality (45.03 +/- 4.32%) that were significantly (P < 0.05) higher than those of the unchallenged control cultures, which exhibited only 3.20 +/- 1.40% dead larvae and no larval agglutination. Furthermore, the CAM2 strain exhibited a high ability to adhere to fiberglass pieces of tanks used for scallop larvae rearing (1.64 x 10(5) cells adhered per square millimeters at 24 h postinoculation), making it very difficult to eradicate it from the culture systems. This is the first report of a pathogenic activity on scallop larvae of Halomonas species, and it prompts the necessity of an appraisal on

  10. Highly pathogenic avian influenza H5N1 virus induces cytokine dysregulation with suppressed maturation of chicken monocyte-derived dendritic cells.

    PubMed

    Kalaiyarasu, Semmannan; Kumar, Manoj; Senthil Kumar, Dhanapal; Bhatia, Sandeep; Dash, Sandeep Kumar; Bhat, Sushant; Khetan, Rohit K; Nagarajan, Shanmugasundaram

    2016-10-01

    One of the major causes of death in highly pathogenic avian influenza virus (HPAIV) infection in chickens is acute induction of pro-inflammatory cytokines (cytokine storm), which leads to severe pathology and acute mortality. DCs and respiratory tract macrophages are the major antigen presenting cells that are exposed to mucosal pathogens. We hypothesized that chicken DCs are a major target for induction of cytokine dysregulation by H5N1 HPAIV. It was found that infection of chicken peripheral blood monocyte-derived dendritic cells (chMoDCs) with H5N1 HPAIV produces high titers of progeny virus with more rounding and cytotoxicity than with H9N2 LPAIV. Expression of maturation markers (CD40, CD80 and CD83) was weaker in both H5N1 and H9N2 groups than in a LPS control group. INF-α, -β and -γ were significantly upregulated in the H5N1 group. Pro-inflammatory cytokines (IL-1β, TNF-α and IL-18) were highly upregulated in early mid (IL-1), and late (IL-6) phases of H5N1 virus infection. IL-8 (CXCLi2) mRNA expression was significantly stronger in the H5N1 group from 6 hr of infection. TLR3, 7, 15 and 21 were upregulated 24 hr after infection by H5N1 virus compared with H9N2 virus, with maximum expression of TLR 3 mRNA. Similarly, greater H5N1 virus-induced apoptotic cell death and cytotoxicity, as measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and lactate dehydrogenase assays, respectively, were found. Thus, both H5N1 and H9N2 viruses evade the host immune system by inducing impairment of chMoDCs maturation and enhancing cytokine dysregulation in H5N1 HPAIV-infected cells.

  11. Characterization of the 2012 highly pathogenic avian influenza H7N3 virus isolated from poultry in an outbreak in Mexico: pathobiology and vaccine protection.

    PubMed

    Kapczynski, Darrell R; Pantin-Jackwood, Mary; Guzman, Sofia G; Ricardez, Yadira; Spackman, Erica; Bertran, Kateri; Suarez, David L; Swayne, David E

    2013-08-01

    In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012) and determine the protection against the virus conferred by different H7 inactivated vaccines in chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died at between 2 and 4 days postinoculation (p.i.). High virus titers and viral replication in many tissues were demonstrated at 2 days p.i. in infected birds. The virus from Jalisco, Mexico, had high sequence similarity of greater than 97% to the sequences of wild bird viruses from North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24-nucleotide insert at the hemagglutinin cleavage site which had 100% sequence identity to chicken 28S rRNA, suggesting that the insert was the result of nonhomologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low-pathogenic avian influenza (LPAI) viruses and a 2006 Mexican H7 LPAI virus were tested as antigens in experimental oil emulsion vaccines and injected into chickens 3 weeks prior to challenge. All H7 vaccines tested provided ≥90% protection against clinical disease after challenge and decreased the number of birds shedding virus and the titers of virus shed. This study demonstrates the pathological consequences of the infection of chickens with the 2012 Mexican lineage H7N3 HPAI virus and provides support for effective programs of vaccination against this virus in poultry.

  12. Highly (H5N1) and Low (H7N2) Pathogenic Avian Influenza Virus Infection in Falcons Via Nasochoanal Route and Ingestion of Experimentally Infected Prey

    PubMed Central

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5–7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey

  13. Pathological and Immunohistochemical Findings of Natural Highly Pathogenic Avian Influenza Infection in Tufted Ducks during 2010–2011 Outbreaks in Japan

    PubMed Central

    ABDO, Walied; HARIDY, Mohie; KATOU, Yuki; GOTO, Minami; MIZOGUCHI, Toshio; SAKODA, Yoshihiro; SAKAI, Hiroki; YANAI, Tokuma

    2014-01-01

    ABSTRACT In the winter of 2010–2011, an outbreak of highly pathogenic avian influenza virus (HPAIV) infection occurred in wild and domestic birds in Japan. Tufted ducks were found dead in an urban area of Toyota City, Koriyama, Fukushima Prefecture. Two tufted ducks were examined histopathologically, immunohistochemically and molecularly. Gross findings included marked dark-red clotted blood in the pectoral muscles and multifocal hemorrhages on the serous membranes. Microscopically, non-suppurative meningoencephalitis, multifocal to coalescing pancreatic necrosis and severe pulmonary congestion were observed. HPAIV antigen was detected in the malacic areas, neuronal, glial and ependymal cells, pulmonary capillary endothelial cells and epithelium of pulmonary bronchioles, necrotic pancreatic acini and degenerated cardiac myocytes. The HPAIV isolate was genetically classified into clade 2.3.2.1 group A. The broad distribution of virus antigen in brain and pulmonary tissues associated with HPAIV spontaneous infection in tufted ducks might be useful in understanding its pathogenesis in nature. PMID:24881650

  14. Rapid detection of highly pathogenic avian influenza H5N1 virus by TaqMan reverse transcriptase-polymerase chain reaction.

    PubMed

    Heine, H G; Trinidad, L; Selleck, P; Lowther, S

    2007-03-01

    Highly pathogenic avian influenza (AI) H5N1 viruses have been spreading from Asia since late 2003. Early detection and classification are paramount for control of the disease because these viruses are lethal to birds and have caused fatalities in humans. Here, we described TaqMan reverse transcriptase-polymerase chain reaction assays for rapid detection of all AI viruses (influenza type A) and for identification of H5N1 of the Eurasian lineage. The assays were sensitive and quantitative over a 10(5)-10(6) linear range, detected all of the tested AI viruses, and enabled differentiation between H5 and H7 subtypes. These tests allow definitive confirmation of an AI virus as H5 within hours, which is crucial for rapid implementation of control measures in the event of an outbreak.

  15. Excision of the high-pathogenicity island of Yersinia pseudotuberculosis requires the combined actions of its cognate integrase and Hef, a new recombination directionality factor.

    PubMed

    Lesic, Biliana; Bach, Sandrine; Ghigo, Jean-Marc; Dobrindt, Ulrich; Hacker, Jörg; Carniel, Elisabeth

    2004-06-01

    The Yersinia high-pathogenicity island (HPI) encodes the siderophore yersiniabactin-mediated iron uptake system. The HPI of Yersinia pseudotuberculosis I has previously been shown to be able to excise precisely from the bacterial chromosome by recombination between the attB-R and attB-L sites flanking the island. However, the nature of the Y. pseudotuberculosis HPI excision machinery remained unknown. We show here that, upon excision, the HPI forms an episomal circular molecule. The island thus has the ability to excise from the chromosome, circularize and reintegrate itself, either in the same location or in another asn tRNA copy. We also demonstrate that the HPI-encoded bacteriophage P4-like integrase (Int) plays a critical role in HPI excision and that, like phage integrases, it acts as a site-specific recombinase that catalyses both excision and integration reactions. However, Int alone cannot efficiently promote recombination between the attB-R and attB-L sites, and we demonstrate that a newly identified HPI-borne factor, designated Hef (for HPI excision factor) is also required for this activity. Hef belongs to a family of recombination directionality factors. Like the other members of this family, Hef probably plays an architectural rather than a catalytic role and promotes HPI excision from the chromosome by driving the function of Int towards an excisionase activity. The fact that the HPI, and probably several other pathogenicity islands, carry a machinery of integration/excision highly similar to those of bacteriophages argues for a phage-mediated acquisition and transfer of these elements.

  16. Mammalian Innate Resistance to Highly Pathogenic Avian Influenza H5N1 Virus Infection Is Mediated through Reduced Proinflammation and Infectious Virus Release

    PubMed Central

    Nelli, Rahul K.; Dunham, Stephen P.; Kuchipudi, Suresh V.; White, Gavin A.; Baquero-Perez, Belinda; Chang, Pengxiang; Ghaemmaghami, Amir; Brookes, Sharon M.; Brown, Ian H.

    2012-01-01

    Respiratory epithelial cells and macrophages are the key innate immune cells that play an important role in the pathogenesis of influenza A virus infection. We found that these two cell types from both human and pig showed comparable susceptibilities to initial infection with a highly pathogenic avian influenza (HPAI) H5N1 virus (A/turkey/Turkey/1/05) and a moderately pathogenic human influenza H1N1 virus (A/USSR/77), but there were contrasting differences in host innate immune responses. Human cells mounted vigorous cytokine (tumor necrosis factor alpha [TNF-α] and interleukin-6 [IL-6]) and chemokine (CXCL9, CXCL10, and CXCL11) responses to H5N1 virus infection. However, pig epithelial cells and macrophages showed weak or no TNF-α and chemokine induction with the same infections. The apparent lack of a strong proinflammatory response, corroborated by the absence of TNF-α induction in H5N1 virus-challenged pigs, coincided with greater cell death and the reduced release of infectious virus from infected pig epithelial cells. Suppressor of cytokine signaling 3 (SOCS3), a protein suppressor of the JAK-STAT pathway, was constitutively highly expressed and transcriptionally upregulated in H5N1 virus-infected pig epithelial cells and macrophages, in contrast to the corresponding human cells. The overexpression of SOCS3 in infected human macrophages dampened TNF-α induction. In summary, we found that the reported low susceptibility of pigs to contemporary Eurasian HPAI H5N1 virus infections coincides at the level of innate immunity of respiratory epithelial cells and macrophages with a reduced output of viable virus and an attenuated proinflammatory response, possibly mediated in part by SOCS3, which could serve as a target in the treatment or prevention of virus-induced hypercytokinemia, as observed for humans. PMID:22718824

  17. Evidence for common ancestry among viruses isolated from wild birds in Beringia and highly pathogenic intercontinental reassortant H5N1 and H5N2 influenza A viruses

    USGS Publications Warehouse

    Ramey, Andy M.; Reeves, Andrew; Teslaa, Joshua L.; Nashold, Sean W.; Donnelly, Tyrone F.; Bahl, Justin; Hall, Jeffrey S.

    2016-01-01

    Highly pathogenic clade 2.3.4.4 H5N8, H5N2, and H5N1 influenza A viruses were first detected in wild, captive, and domestic birds in North America in November–December 2014. In this study, we used wild waterbird samples collected in Alaska prior to the initial detection of clade 2.3.4.4 H5 influenza A viruses in North America to assess the evidence for: (1) dispersal of highly pathogenic influenza A viruses from East Asia to North America by migratory birds via Alaska and (2) ancestral origins of clade 2.3.4.4 H5 reassortant viruses in Beringia. Although we did not detect highly pathogenic influenza A viruses in our sample collection from western Alaska, we did identify viruses that contained gene segments sharing recent common ancestry with intercontinental reassortant H5N2 and H5N1 viruses. Results of phylogenetic analyses and estimates for times of most recent common ancestry support migratory birds sampled in Beringia as maintaining viral diversity closely related to novel highly pathogenic influenza A virus genotypes detected in North America. Although our results do not elucidate the route by which highly pathogenic influenza A viruses were introduced into North America, genetic evidence is consistent with the hypothesized trans-Beringian route of introduction via migratory birds.

  18. Pathogenesis and Transmission of Novel Highly Pathogenic Avian Influenza H5N2 and H5N8 Viruses in Ferrets and Mice

    PubMed Central

    Pulit-Penaloza, Joanna A.; Sun, Xiangjie; Creager, Hannah M.; Zeng, Hui; Belser, Jessica A.; Maines, Taronna R.

    2015-01-01

    ABSTRACT A novel highly pathogenic avian influenza (HPAI) H5N8 virus, first detected in January 2014 in poultry and wild birds in South Korea, has spread throughout Asia and Europe and caused outbreaks in Canada and the United States by the end of the year. The spread of H5N8 and the novel reassortant viruses, H5N2 and H5N1 (H5Nx), in domestic poultry across multiple states in the United States pose a potential public health risk. To evaluate the potential of cross-species infection, we determined the pathogenicity and transmissibility of two Asian-origin H5Nx viruses in mammalian animal models. The newly isolated H5N2 and H5N8 viruses were able to cause severe disease in mice only at high doses. Both viruses replicated efficiently in the upper and lower respiratory tracts of ferrets; however, the clinical symptoms were generally mild, and there was no evidence of systemic dissemination of virus to multiple organs. Moreover, these influenza H5Nx viruses lacked the ability to transmit between ferrets in a direct contact setting. We further assessed viral replication kinetics of the novel H5Nx viruses in a human bronchial epithelium cell line, Calu-3. Both H5Nx viruses replicated to a level comparable to a human seasonal H1N1 virus, but significantly lower than a virulent Asian-lineage H5N1 HPAI virus. Although the recently isolated H5N2 and H5N8 viruses displayed moderate pathogenicity in mammalian models, their ability to rapidly spread among avian species, reassort, and generate novel strains underscores the need for continued risk assessment in mammals. IMPORTANCE In 2015, highly pathogenic avian influenza (HPAI) H5 viruses have caused outbreaks in domestic poultry in multiple U.S. states. The economic losses incurred with H5N8 and H5N2 subtype virus infection have raised serious concerns for the poultry industry and the general public due to the potential risk of human infection. This recent outbreak underscores the need to better understand the pathogenesis and

  19. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection.

    PubMed

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi; Wolff, Anders; Bang, Dang Duong

    2017-04-15

    Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detection technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP-PCR directly on top of the SAF microlens array. Attribute to the high fluorescence collection efficiency of the SAF microlens array, the SP-PCR assay on the LOC platform demonstrated a high sensitivity of 1.6 copies/µL, comparable to off-chip detection using conventional laser scanner. The combination of SP-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples.

  20. Highly virulent Beauveria bassiana strains against the two-spotted spider mite, Tetranychus urticae, show no pathogenicity against five phytoseiid mite species.

    PubMed

    Wu, Shengyong; Xie, Haicui; Li, Maoye; Xu, Xuenong; Lei, Zhongren

    2016-12-01

    Entomopathogenic fungi and predatory mites can independently contribute to suppressing the two-spotted spider mite, Tetranychus urticae Koch. It is important to assess the risk of possible fungal infections in predators when a combination of them are being considered as a tandem control strategy for suppressing T. urticae. The first part of this study tested 12 Beauveria bassiana isolates for virulence in T. urticae. Strains SCWJ-2, SDDZ-9, LNSZ-26, GZGY-1-3 and WLMQ-32 were found to be the most potent, causing 37.6-49.5% adult corrected mortality at a concentration of 1 × 10(7) m/L conidia 4 days post-treatment. The second part evaluated the pathogenicity of these five strains in five species of predatory phytoseiid mites. The bioassay results indicated that all adult predatory mite mortalities ranged from 7.5 to 9.1% 4 days post-treatment. No viable fungal hyphae were found on predator cadavers. Observations with scanning electron microscopy revealed that conidia were attached to the cuticle of predatory mites within 2-12 h after spraying with strain LNSZ-26, and had germinated within 24-36 h. After 48 h, conidia had gradually been shed from the mites, after none of the conidia had penetrated the cuticular surfaces. In contrast, the germinated conidia successfully penetrated the cuticle of T. urticae, and within 60 h the fungus colonized the mite's body. Our study demonstrated that although several B. bassiana strains displayed a high virulence in T. urticae there was no evident pathogenicity to phytoseiid mites. These findings support the potential use of entomopathogenic fungus in combination with predatory mites in T. urticae control programs.

  1. Spatial modeling of wild bird risk factors to investigate highly pathogenic A(H5N1) avian influenza virus transmission

    USGS Publications Warehouse

    Prosser, Diann J.; Hungerford, Laura L.; Erwin, R. Michael; Ottinger, Mary Ann; Takekawa, John Y.; Newman, Scott H.; Xiao, Xianming; Ellis, Erie C.

    2016-01-01

    One of the longest-persisting avian influenza viruses in history, highly pathogenic avian influenza virus (HPAIV) A(H5N1), continues to evolve after 18 years, advancing the threat of a global pandemic. Wild waterfowl (family Anatidae), are reported as secondary transmitters of HPAIV, and primary reservoirs for low-pathogenic avian influenza viruses, yet spatial inputs for disease risk modeling for this group have been lacking. Using GIS and Monte Carlo simulations, we developed geospatial indices of waterfowl abundance at 1 and 30 km resolutions and for the breeding and wintering seasons for China, the epicenter of H5N1. Two spatial layers were developed: cumulative waterfowl abundance (WAB), a measure of predicted abundance across species, and cumulative abundance weighted by H5N1 prevalence (WPR), whereby abundance for each species was adjusted based on prevalence values then totaled across species. Spatial patterns of the model output differed between seasons, with higher WAB and WPR in the northern and western regions of China for the breeding season and in the southeast for the wintering season. Uncertainty measures indicated highest error in southeastern China for both WAB and WPR. We also explored the effect of resampling waterfowl layers from 1 km to 30 km resolution for multi-scale risk modeling. Results indicated low average difference (less than 0.16 and 0.01 standard deviations for WAB and WPR, respectively), with greatest differences in the north for the breeding season and southeast for the wintering season. This work provides the first geospatial models of waterfowl abundance available for China. The indices provide important inputs for modeling disease transmission risk at the interface of poultry and wild birds. These models are easily adaptable, have broad utility to both disease and conservation needs, and will be available to the scientific community for advanced modeling applications.

  2. Diagnostics method for the rapid quantitative detection and identification of low-level contamination of high-purity water with pathogenic bacteria.

    PubMed

    Minogue, Elizabeth; Reddington, Kate; Dorai-Raj, Siobhan; Tuite, Nina; Clancy, Eoin; Barry, Thomas

    2013-09-01

    High-purity water (HPW) can be contaminated with pathogenic microorganisms, which may result in human infection. Current culture-based techniques for the detection of microorganisms from HPW can be slow and laborious. The aim of this study was to develop a rapid method for the quantitative detection and identification of pathogenic bacteria causing low-level contamination of HPW. A novel internally controlled multiplex real-time PCR diagnostics assay was designed and optimized to specifically detect and identify Pseudomonas aeruginosa and the Burkholderia genus. Sterile HPW, spiked with a bacterial load ranging from 10 to 10(3) cfu/100 ml, was filtered and the bacterial cells were removed from the filters by sonication. Total genomic DNA was then purified from these bacteria and subjected to testing with the developed novel multiplex real-time PCR diagnostics assay. The specific P. aeruginosa and Burkholderia genus assays have an analytical sensitivity of 3.5 genome equivalents (GE) and 3.7 GE, respectively. This analysis demonstrated that it was possible to detect a spiked bacterial load of 1.06 × 10(2) cfu/100 ml for P. aeruginosa and 2.66 × 10(2) cfu/100 ml for B. cepacia from a 200-ml filtered HPW sample. The rapid diagnostics method described can reliably detect, identify, and quantify low-level contamination of HPW with P. aeruginosa and the Burkholderia genus in <4 h. We propose that this rapid diagnostics method could be applied to the pharmaceutical and clinical sectors to assure the safety and quality of HPW, medical devices, and patient-care equipment.

  3. Human microRNA-24 modulates highly pathogenic avian-origin H5N1 influenza A virus infection in A549 cells by targeting secretory pathway furin.

    PubMed

    Loveday, Emma-Kate; Diederich, Sandra; Pasick, John; Jean, François

    2015-01-01

    A common critical cellular event that many human enveloped viruses share is the requirement for proteolytic cleavage of the viral glycoprotein by furin in the host secretory pathway. For example, the furin-dependent proteolytic activation of highly pathogenic (HP) influenza A (infA) H5 and H7 haemagglutinin precursor (HA0) subtypes is critical for yielding fusion-competent infectious virions. In this study, we hypothesized that viral hijacking of the furin pathway by HP infA viruses to permit cleavage of HA0 could represent a novel molecular mechanism controlling the dynamic production of fusion-competent infectious virus particles during the viral life cycle. We explored the biological role of a newly identified furin-directed human microRNA, miR-24, in this process as a potential post-transcriptional regulator of the furin-mediated activation of HA0 and production of fusion-competent virions in the host secretory pathway. We report that miR-24 and furin are differentially expressed in human A549 cells infected with HP avian-origin infA H5N1. Using miR-24 mimics, we demonstrated a robust decrease in both furin mRNA levels and intracellular furin activity in A549 cells. Importantly, pretreatment of A549 cells with miR-24 mimicked these results: a robust decrease of H5N1 infectious virions and a complete block of H5N1 virus spread that was not observed in A549 cells infected with low-pathogenicity swine-origin infA H1N1 virus. Our results suggest that viral-specific downregulation of furin-directed microRNAs such as miR-24 during the life cycle of HP infA viruses may represent a novel regulatory mechanism that governs furin-mediated proteolytic activation of HA0 glycoproteins and production of infectious virions.

  4. A Highly Stable Plastidic-Type Ferredoxin-NADP(H) Reductase in the Pathogenic Bacterium Leptospira interrogans

    PubMed Central

    Catalano-Dupuy, Daniela L.; Musumeci, Matías A.; López-Rivero, Arleth; Ceccarelli, Eduardo A.

    2011-01-01

    Leptospira interrogans is a bacterium that is capable of infecting animals and humans, and its infection causes leptospirosis with a range of symptoms from flu-like to severe illness and death. Despite being a bacteria, Leptospira interrogans contains a plastidic class ferredoxin-NADP(H) reductase (FNR) with high catalytic efficiency, at difference from the bacterial class FNRs. These flavoenzymes catalyze the electron transfer between NADP(H) and ferredoxins or flavodoxins. The inclusion of a plastidic FNR in Leptospira metabolism and in its parasitic life cycle is not currently understood. Bioinformatic analyses of the available genomic and proteins sequences showed that the presence of this enzyme in nonphotosynthetic bacteria is restricted to the Leptospira genus and that a [4Fe-4S] ferredoxin (LB107) encoded by the Leptospira genome may be the natural substrate of the enzyme. Leptospira FNR (LepFNR) displayed high diaphorase activity using artificial acceptors and functioned as a ferric reductase. LepFNR displayed cytochrome c reductase activity with the Leptospira LB107 ferredoxin with an optimum at pH 6.5. Structural stability analysis demonstrates that LepFNR is one of the most stable FNRs analyzed to date. The persistence of a native folded LepFNR structure was detected in up to 6 M urea, a condition in which the enzyme retains 38% activity. In silico analysis indicates that the high LepFNR stability might be due to robust interactions between the FAD and the NADP+ domains of the protein. The limited bacterial distribution of plastidic class FNRs and the biochemical and structural properties of LepFNR emphasize the uniqueness of this enzyme in the Leptospira metabolism. Our studies show that in L. interrogans a plastidic-type FNR exchanges electrons with a bacterial-type ferredoxin, process which has not been previously observed in nature. PMID:22039544

  5. Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Lin; Chu, B. H.; Chen, K. H.; Chang, C. Y.; Lele, T. P.; Papadi, G.; Coleman, J. K.; Sheppard, B. J.; Dungen, C. F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.; Ren, F.

    2009-06-01

    Antibody-functionalized, Au-gated AlGaN/GaN high electron mobility transistors (HEMTs) were used to detect Perkinsus marinus. The antibody was anchored to the gate area through immobilized thioglycolic acid. The AlGaN/GaN HEMT drain-source current showed a rapid response of less than 5 s when the infected solution was added to the antibody-immobilized surface. The sensor can be recycled with a phosphate buffered saline wash. These results clearly demonstrate the promise of field-deployable electronic biological sensors based on AlGaN/GaN HEMTs for Perkinsus marinus detection.

  6. Pathogenicity of the highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans and its geographic dissemination and role in aggressive periodontitis

    PubMed Central

    Haubek, Dorte; Johansson, Anders

    2014-01-01

    For decades, Aggregatibacter actinomycetemcomitans has been associated with aggressive forms of periodontitis in adolescents. In the middle of the 1990s, a specific JP2 clone of A. actinomycetemcomitans, belonging to the cluster of serotype b strains of A. actinomycetemcomitans and having a number of other characteristics, was found to be strongly associated with aggressive forms of periodontitis, particularly in North Africa. Although several longitudinal studies still point to the bacterial species, A. actinomycetemcomitans as a risk factor of aggressive periodontitis, it is now also widely accepted that the highly leukotoxic JP2 clone of A. actinomycetemcomitans is implicated in rapidly progressing forms of aggressive periodontitis. The JP2 clone strains are highly prevalent in human populations living in Northern and Western parts of Africa. These strains are also prevalent in geographically widespread populations that have originated from the Northwest Africa. Only sporadic signs of a dissemination of the JP2 clone strains to non-African populations have been found despite Africans living geographically widespread for hundreds of years. It remains an unanswered question if a particular host tropism exists as a possible explanation for the frequent colonization of the Northwest African population with the JP2 clone. Two exotoxins of A. actinomycetemcomitans are known, leukotoxin (LtxA) and cytolethal distending toxin (Cdt). LtxA is able to kill human immune cells, and Cdt can block cell cycle progression in eukaryotic cells and thus induce cell cycle arrest. Whereas the leukotoxin production is enhanced in JP2 clone strains thus increasing the virulence potential of A. actinomycetemcomitans, it has not been possible so far to demonstrate such a role for Cdt. Lines of evidence have led to the understanding of the highly leukotoxic JP2 clone of A. actinomycetemcomitans as an aetiological factor of aggressive periodontitis. Patients, who are colonized with the JP2

  7. Pathogenicity of the highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans and its geographic dissemination and role in aggressive periodontitis.

    PubMed

    Haubek, Dorte; Johansson, Anders

    2014-01-01

    For decades, Aggregatibacter actinomycetemcomitans has been associated with aggressive forms of periodontitis in adolescents. In the middle of the 1990s, a specific JP2 clone of A. actinomycetemcomitans, belonging to the cluster of serotype b strains of A. actinomycetemcomitans and having a number of other characteristics, was found to be strongly associated with aggressive forms of periodontitis, particularly in North Africa. Although several longitudinal studies still point to the bacterial species, A. actinomycetemcomitans as a risk factor of aggressive periodontitis, it is now also widely accepted that the highly leukotoxic JP2 clone of A. actinomycetemcomitans is implicated in rapidly progressing forms of aggressive periodontitis. The JP2 clone strains are highly prevalent in human populations living in Northern and Western parts of Africa. These strains are also prevalent in geographically widespread populations that have originated from the Northwest Africa. Only sporadic signs of a dissemination of the JP2 clone strains to non-African populations have been found despite Africans living geographically widespread for hundreds of years. It remains an unanswered question if a particular host tropism exists as a possible explanation for the frequent colonization of the Northwest African population with the JP2 clone. Two exotoxins of A. actinomycetemcomitans are known, leukotoxin (LtxA) and cytolethal distending toxin (Cdt). LtxA is able to kill human immune cells, and Cdt can block cell cycle progression in eukaryotic cells and thus induce cell cycle arrest. Whereas the leukotoxin production is enhanced in JP2 clone strains thus increasing the virulence potential of A. actinomycetemcomitans, it has not been possible so far to demonstrate such a role for Cdt. Lines of evidence have led to the understanding of the highly leukotoxic JP2 clone of A. actinomycetemcomitans as an aetiological factor of aggressive periodontitis. Patients, who are colonized with the JP2

  8. Simultaneous identification of three highly pathogenic Eimeria species in rabbits using a multiplex PCR diagnostic assay based on ITS1-5.8S rRNA-ITS2 fragments.

    PubMed

    Yan, Wenchao; Wang, Wenlong; Wang, Tianqi; Suo, Xun; Qian, Weifeng; Wang, Shuai; Fan, Di

    2013-03-31

    Eimeria stiedai, E. intestinalis, and E. flavescens are highly pathogenic in rabbits, especially rabbits younger than 3 months. In this study, the complete ITS1-5.8S rRNA-ITS2 sequences of six rabbit Eimeria species, E. stiedai, E. intestinalis, E. flavescens, E. media, E. magna, and E. irresidua, were cloned with universal primers for the genus Eimeria and genomic DNA of LY and KF isolates as templates. These results revealed that both ITS1 and ITS2 sequences were specific to each Eimeria species in rabbits. A specific and sensitive multiplex PCR diagnostic assay based on polymorphic sites of ITS1 and ITS2 was developed and used to identify the three highly pathogenic species from rabbits, E. stiedai, E. intestinalis, and E. flavescens. Our findings provide a powerful tool for the clinical differentiation of highly pathogenic Eimeria species in rabbits and the study of the population genetics of rabbit coccidia.

  9. Rapid Detection and Identification of Nontuberculous Mycobacterial Pathogens in Fish by Using High-Resolution Melting Analysis

    PubMed Central

    Phung, Thu Nguyet; Caruso, Domenico; Godreuil, Sylvain; Keck, Nicolas; Vallaeys, Tatiana

    2013-01-01

    Mycobacterial infections in fish are commonly referred to as piscine mycobacteriosis, irrespectively of the specific identity of the causal organism. They usually cause a chronic disease and sometimes may result in high mortalities and severe economic losses. Nearly 20 species of Mycobacterium have been reported to infect fish. Among them, Mycobacterium marinum, M. fortuitum, and M. chelonae are generally considered the major agents responsible for fish mycobacteriosis. As no quick and inexpensive diagnostic test exists, we tested the potential of high-resolution melting analysis (HRMA) to rapidly identify and differentiate several Mycobacterium species involved in fish infections. By analyzing both the melting temperature and melting profile of the 16S-23S rRNA internal transcribed spacer (ITS), we were able to discriminate 12 different species simultaneously. Sensitivity tests conducted on purified M. marinum and M. fortuitum DNA revealed a limit of detection of 10 genome equivalents per reaction. The primers used in this procedure did not lead to any amplification signal with 16 control non-Mycobacterium species, thereby demonstrating their specificity for the genus Mycobacterium. PMID:24123734

  10. Short-Term Heat Shock Affects Host–Virus Interaction in Mice Infected with Highly Pathogenic Avian Influenza Virus H5N1

    PubMed Central

    Xue, Jia; Fan, Xiaoxu; Yu, Jing; Zhang, Shouping; Xiao, Jin; Hu, Yanxin; Wang, Ming

    2016-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 is a highly contagious virus that can cause acute respiratory infections and high human fatality ratio due to excessive inflammatory response. Short-term heat shock, as a stressful condition, could induce the expression of heat shock proteins that function as molecular chaperones to protect cells against multiple stresses. However, the protective effect of short-term heat shock in influenza infection is far from being understood. In this study, mice were treated at 39°C for 4 h before being infected with HPAIV H5N1. Interestingly, short-term heat shock significantly increased the levels of HSP70 and pro-inflammatory cytokines IL-6, TNF-α, IFN-β, and IFN-γ in the lung tissues of mice. Following HPAIV H5N1 infection, short-term heat shock alleviated immunopathology and viral replication in lung tissue and repressed the weight loss and increased the survival rate of H5N1-infected mice. Our data reported that short-term heat shock provided beneficial anti-HPAIV H5N1 properties in mice model, which offers an alternative strategy for non-drug prevention for influenza infection. PMID:27379054

  11. Short-Term Heat Shock Affects Host-Virus Interaction in Mice Infected with Highly Pathogenic Avian Influenza Virus H5N1.

    PubMed

    Xue, Jia; Fan, Xiaoxu; Yu, Jing; Zhang, Shouping; Xiao, Jin; Hu, Yanxin; Wang, Ming

    2016-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 is a highly contagious virus that can cause acute respiratory infections and high human fatality ratio due to excessive inflammatory response. Short-term heat shock, as a stressful condition, could induce the expression of heat shock proteins that function as molecular chaperones to protect cells against multiple stresses. However, the protective effect of short-term heat shock in influenza infection is far from being understood. In this study, mice were treated at 39°C for 4 h before being infected with HPAIV H5N1. Interestingly, short-term heat shock significantly increased the levels of HSP70 and pro-inflammatory cytokines IL-6, TNF-α, IFN-β, and IFN-γ in the lung tissues of mice. Following HPAIV H5N1 infection, short-term heat shock alleviated immunopathology and viral replication in lung tissue and repressed the weight loss and increased the survival rate of H5N1-infected mice. Our data reported that short-term heat shock provided beneficial anti-HPAIV H5N1 properties in mice model, which offers an alternative strategy for non-drug prevention for influenza infection.

  12. Lectins in human pathogenic fungi.

    PubMed

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  13. Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes

    PubMed Central

    2011-01-01

    Background Plant defensins are an important component of the innate defence system of plants where they form protective antimicrobial barriers between tissue types of plant organs as well as around seeds. These peptides also have other activities that are important for agricultural applications as well as the medical sector. Amongst the numerous plant peptides isolated from a variety of plant species, a significant number of promising defensins have been isolated from Brassicaceae species. Here we report on the isolation and characterization of four defensins from Heliophila coronopifolia, a native South African Brassicaceae species. Results Four defensin genes (Hc-AFP1-4) were isolated with a homology based PCR strategy. Analysis of the deduced amino acid sequences showed that the peptides were 72% similar and grouped closest to defensins isolated from other Brassicaceae species. The Hc-AFP1 and 3 peptides shared high homology (94%) and formed a unique grouping in the Brassicaceae defensins, whereas Hc-AFP2 and 4 formed a second homology grouping with defensins from Arabidopsis and Raphanus. Homology modelling showed that the few amino acids that differed between the four peptides had an effect on the surface properties of the defensins, specifically in the alpha-helix and the loop connecting the second and third beta-strands. These areas are implicated in determining differential activities of defensins. Comparing the activities after recombinant production of the peptides, Hc-AFP2 and 4 had IC50 values of 5-20 μg ml-1 against two test pathogens, whereas Hc-AFP1 and 3 were less active. The activity against Botrytis cinerea was associated with membrane permeabilization, hyper-branching, biomass reduction and even lytic activity. In contrast, only Hc-AFP2 and 4 caused membrane permeabilization and severe hyper-branching against the wilting pathogen Fusarium solani, while Hc-AFP1 and 3 had a mild morphogenetic effect on the fungus, without any indication of

  14. Genotyping of the protozoan pathogen Toxoplasma gondii using high-resolution melting analysis of the repeated B1 gene.

    PubMed

    Costa, Jean-Marc; Cabaret, Odile; Moukoury, Sandrine; Bretagne, Stéphane

    2011-09-01

    Genetic studies of the protozoan parasite Toxoplasma gondii have identified three main distinct types according to virulence in some hosts. Several methods have been developed to differentiate genotypes currently dominated by microsatellite markers targeting single-copy loci. We analyzed the possibility of using the 35-fold repetitive B1 gene via high-resolution melting (HRM) curve analysis. Sequencing of the B1 gene of 14 reference strains (four Type I, six Type II, and four Type III strains) identified 18 single nucleotide polymorphisms (SNP). Primers were designed to amplify eight of them for HRM analysis and for relative quantification of each nucleotide variation using SNaPshot mini-sequencing. Genotyping with five microsatellite markers was performed for comparison. Two to four HRM profiles were obtained depending on the SNP tested. The differences observed relied on the different ratios of nucleotides at the SNP locus as evidenced via SNaPshot mini-sequencing. The three main lineages could be distinguished by using several HRM profiles. Some HRM profiles proved more informative than the analysis based on five microsatellite markers, showing additional differences in Type I and Type II strains. Using HRM analysis, we obtained at least an equally good discrimination of the main lineages than that based on five microsatellite markers.

  15. High spoligotype diversity within a Mycobacterium bovis population: clues to understanding the demography of the pathogen in Europe.

    PubMed

    Rodríguez, Sabrina; Romero, Beatriz; Bezos, Javier; de Juan, Lucía; Alvarez, Julio; Castellanos, Elena; Moya, Nuria; Lozano, Francisco; González, Sergio; Sáez-Llorente, José Luis; Mateos, Ana; Domínguez, Lucas; Aranaz, Alicia

    2010-02-24

    Mycobacterium bovis is the main causative agent of bovine tuberculosis. This zoonotic disease produces important economic losses and must be considered a threat to endangered animal species and public health. This study was performed (1) to assess the degree of diversity of the Spanish M. bovis isolates and its effect on the epidemiology of the infection, and (2) to understand the connection of M. bovis populations within a European context. In this report we resume the DVR-spoligotyping results of 6215 M. bovis isolates collected between 1992 and 2007 from different hosts. The isolates clustered into 252 spoligotypes which varied largely in frequency, geographical distribution and appearance in different animal species. In general, the most frequent spoligotypes were found all over the country and in different animal species, though some were restricted to a geographical area. Among our most often isolated spoligotypes, SB0121 and SB0120 (BCG-like) are a common feature between mainland European countries, however, the spoligotypes differ with those found in the UK, the Republic of Ireland and abroad. A comparison of spoligotypes reported from other countries reveals hints for the M. bovis demography in Europe and suggests a common ancestor strain. This study gives insight into the usefulness of the standardized DVR-spoligotyping technique for epidemiological studies in a country with a high degree of strain diversity.

  16. Cultural Practices Shaping Zoonotic Diseases Surveillance: The Case of Highly Pathogenic Avian Influenza and Thailand Native Chicken Farmers.

    PubMed

    Delabouglise, A; Antoine-Moussiaux, N; Tatong, D; Chumkaeo, A; Binot, A; Fournié, G; Pilot, E; Phimpraphi, W; Kasemsuwan, S; Paul, M C; Duboz, R; Salem, G; Peyre, M

    2016-04-17

    Effectiveness of current passive zoonotic disease surveillance systems is limited by the under-reporting of disease outbreaks in the domestic animal population. Evaluating the acceptability of passive surveillance and its economic, social and cultural determinants appears a critical step for improving it. A participatory rural appraisal was implemented in a rural subdistrict of Thailand. Focus group interviews were used to identify sanitary risks perceived by native chicken farmers and describe the structure of their value chain. Qualitative individual interviews with a large diversity of actors enabled to identify perceived costs and benefits associated with the reporting of HPAI suspicions to sanitary authorities. Besides, flows of information on HPAI suspected cases were assessed using network analysis, based on data collected through individual questionnaires. Results show that the presence of cockfighting activities in the area negatively affected the willingness of all chicken farmers and other actors to report suspected HPAI cases. The high financial and affective value of fighting cocks contradicted the HPAI control policy based on mass culling. However, the importance of product quality in the native chicken meat value chain and the free veterinary services and products delivered by veterinary officers had a positive impact on suspected case reporting. Besides, cockfighting practitioners had a significantly higher centrality than other actors in the information network and they facilitated the spatial diffusion of information. Social ties built in cockfighting activities and the shared purpose of protecting valuable cocks were at the basis of the diffusion of information and the informal collective management of diseases. Building bridges with this informal network would greatly improve the effectiveness of passive surveillance.

  17. Portable pathogen detection system

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Milanovich, Fred P.; Brown, Steve B.; Vendateswaran, Kodumudi; Simon, Jonathan N.

    2005-06-14

    A portable pathogen detection system that accomplishes on-site multiplex detection of targets in biological samples. The system includes: microbead specific reagents, incubation/mixing chambers, a disposable microbead capture substrate, and an optical measurement and decoding arrangement. The basis of this system is a highly flexible Liquid Array that utilizes optically encoded microbeads as the templates for biological assays. Target biological samples are optically labeled and captured on the microbeads, which are in turn captured on an ordered array or disordered array disposable capture substrate and then optically read.

  18. Experimental infection of a North American raptor, American Kestrel (Falco sparverius), with highly pathogenic avian influenza virus (H5N1).

    PubMed

    Hall, Jeffrey S; Ip, Hon S; Franson, J Christian; Meteyer, Carol; Nashold, Sean; TeSlaa, Joshua L; French, John; Redig, Patrick; Brand, Christopher

    2009-10-22

    Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV) subtype H5N1. Should HPAIV (H5N1) reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1) infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1). All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1) is introduced into North America.

  19. Chances and limitations of wild bird monitoring for the avian influenza virus H5N1--detection of pathogens highly mobile in time and space.

    PubMed

    Wilking, Hendrik; Ziller, Mario; Staubach, Christoph; Globig, Anja; Harder, Timm C; Conraths, Franz J

    2009-08-14

    Highly pathogenic influenza virus (HPAIV) H5N1 proved to be remarkably mobile in migratory bird populations where it has led to extensive outbreaks for which the true number of affected birds usually cannot be determined. For the evaluation of avian influenza monitoring and HPAIV early warning systems, we propose a time-series analysis that includes the estimation of confidence intervals for (i) the prevalence in outbreak situations or (ii) in the apparent absence of disease in time intervals for specified regional units. For the German outbreak regions in 2006 and 2007, the upper 95% confidence limit allowed the detection of prevalences below 1% only for certain time intervals. Although more than 25,000 birds were sampled in Germany per year, the upper 95% confidence limit did not fall below 5% in the outbreak regions for most of the time. The proposed analysis can be used to monitor water bodies and high risk areas, also as part of an early-warning system. Chances for an improved targeting of the monitoring system as part of a risk-based approach are discussed with the perspective of reducing sample sizes.

  20. ve-SEQ: Robust, unbiased enrichment for streamlined detection and whole-genome sequencing of HCV and other highly diverse pathogens

    PubMed Central

    Trebes, Amy; Brown, Anthony; Klenerman, Paul; Buck, David; Piazza, Paolo; Barnes, Eleanor; Bowden, Rory

    2015-01-01

    The routine availability of high-depth virus sequence data would allow the sensitive detection of resistance-associated variants that can jeopardize HIV or hepatitis C virus (HCV) treatment. We introduce ve-SEQ, a high-throughput method for sequence-specific enrichment and characterization of whole-virus genomes at up to 20% divergence from a reference sequence and 1,000-fold greater sensitivity than direct sequencing. The extreme genetic diversity of HCV led us to implement an algorithm for the efficient design of panels of oligonucleotide probes to capture any sequence among a defined set of targets without detectable bias. ve-SEQ enables efficient detection and sequencing of any HCV genome, including mixtures and intra-host variants, in a single experiment, with greater tolerance of sequence diversity than standard amplification methods and greater sensitivity than metagenomic sequencing, features that are directly applicable to other pathogens or arbitrary groups of target organisms, allowing the combination of sensitive detection with sequencing in many settings. PMID:27092241

  1. Experimental infection of a North American raptor, American kestrel (Falco sparverius), with highly pathogenic avian influenza virus (H5N1)

    USGS Publications Warehouse

    Hall, J.S.; Ip, H.S.; Franson, J.C.; Meteyer, C.; Nashold, S.; Teslaa, J.L.; French, J.; Redig, P.; Brand, C.

    2009-01-01

    Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV) subtype H5N1. Should HPAIV (H5N1) reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1) infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1). All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1) is introduced into North America.

  2. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    NASA Astrophysics Data System (ADS)

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-08-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration.

  3. Phylogenetic study-based hemagglutinin (HA) gene of highly pathogenic avian influenza virus (H5N1) detected from backyard chickens in Iran, 2015.

    PubMed

    Ghafouri, Syed Ali; Langeroudi, Arash Ghalyanchi; Maghsoudloo, Hossein; Tehrani, Farshad; Khaltabadifarahani, Reza; Abdollahi, Hamed; Fallah, Mohammad Hossein

    2017-02-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype have been diversified into multiple phylogenetic clades over the past decade and are highly genetically variable. In June 2015, one outbreak of HPAI H5N1 in backyard chickens was reported in the Nogardan village of the Mazandaran Province. Tracheal tissues were taken from the dead domestic chickens (n = 10) and processed for RT-PCR. The positive samples (n = 10) were characterized as HPAI H5N1 by sequencing analysis for the hemagglutinin and neuraminidase genes. Phylogenetic analysis of the samples revealed that the viruses belonged to clade 2.3.2.1c, and cluster with the HPAI H5N1 viruses isolated from different avian species in Bulgaria, Romania, and Nigeria in 2015. They were not closely related to other H5N1 isolates detected in previous years in Iran. Our study provides new insights into the evolution and genesis of H5N1 influenza in Iran and has important implications for targeting surveillance efforts to rapidly identify the spread of the virus into and within Iran.

  4. Identification of Highly Pathogenic Microorganisms by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Results of an Interlaboratory Ring Trial.

    PubMed

    Lasch, Peter; Wahab, Tara; Weil, Sandra; Pályi, Bernadett; Tomaso, Herbert; Zange, Sabine; Kiland Granerud, Beathe; Drevinek, Michal; Kokotovic, Branko; Wittwer, Matthias; Pflüger, Valentin; Di Caro, Antonino; Stämmler, Maren; Grunow, Roland; Jacob, Daniela

    2015-08-01

    In the case of a release of highly pathogenic bacteria (HPB), there is an urgent need for rapid, accurate, and reliable diagnostics. MALDI-TOF mass spectrometry is a rapid, accurate, and relatively inexpensive technique that is becoming increasingly important in microbiological diagnostics to complement classical microbiology, PCR, and genotyping of HPB. In the present study, the results of a joint exercise with 11 partner institutions from nine European countries are presented. In this exercise, 10 distinct microbial samples, among them five HPB, Bacillus anthracis, Brucella canis, Burkholderia mallei, Burkholderia pseudomallei, and Yersinia pestis, were characterized under blinded conditions. Microbial strains were inactivated by high-dose gamma irradiation before shipment. Preparatory investigations ensured that this type of inactivation induced only subtle spectral changes with negligible influence on the quality of the diagnosis. Furthermore, pilot tests on nonpathogenic strains were systematically conducted to ensure the suitability of sample preparation and to optimize and standardize the workflow for microbial identification. The analysis of the microbial mass spectra was carried out by the individual laboratories on the basis of spectral libraries available on site. All mass spectra were also tested against an in-house HPB library at the Robert Koch Institute (RKI). The averaged identification accuracy was 77% in the first case and improved to >93% when the spectral diagnoses were obtained on the basis of the RKI library. The compilation of complete and comprehensive databases with spectra from a broad strain collection is therefore considered of paramount importance for accurate microbial identification.

  5. Quantitative assessment of a spatial multicriteria model for highly pathogenic avian influenza H5N1 in Thailand, and application in Cambodia

    PubMed Central

    Paul, Mathilde C.; Goutard, Flavie L.; Roulleau, Floriane; Holl, Davun; Thanapongtharm, Weerapong; Roger, François L.; Tran, Annelise

    2016-01-01

    The Highly Pathogenic Avian Influenza H5N1 (HPAI) virus is now considered endemic in several Asian countries. In Cambodia, the virus has been circulating in the poultry population since 2004, with a dramatic effect on farmers’ livelihoods and public health. In Thailand, surveillance and control are still important to prevent any new H5N1 incursion. Risk mapping can contribute effectively to disease surveillance and control systems, but is a very challenging task in the absence of reliable disease data. In this work, we used spatial multicriteria decision analysis (MCDA) to produce risk maps for HPAI H5N1 in poultry. We aimed to i) evaluate the performance of the MCDA approach to predict areas suitable for H5N1 based on a dataset from Thailand, comparing the predictive capacities of two sources of a priori knowledge (literature and experts), and ii) apply the best method to produce a risk map for H5N1 in poultry in Cambodia. Our results showed that the expert-based model had a very high predictive capacity in Thailand (AUC = 0.97). Applied in Cambodia, MCDA mapping made it possible to identify hotspots suitable for HPAI H5N1 in the Tonlé Sap watershed, around the cities of Battambang and Kampong Cham, and along the Vietnamese border. PMID:27489997

  6. Therapeutic efficacy of peramivir against H5N1 highly pathogenic avian influenza viruses harboring the neuraminidase H275Y mutation.

    PubMed

    Kobayashi, Masanori; Kodama, Makoto; Noshi, Takeshi; Yoshida, Ryu; Kanazu, Takushi; Nomura, Naoki; Soda, Kosuke; Isoda, Norikazu; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Yamano, Yoshinori; Sato, Akihiko; Kida, Hiroshi

    2017-03-01

    High morbidity and mortality associated with human cases of highly pathogenic avian influenza (HPAI) viruses, including H5N1 influenza virus, have been reported. The purpose of the present study was to evaluate the antiviral effects of peramivir against HPAI viruses. In neuraminidase (NA) inhibition and virus replication inhibition assays, peramivir showed strong inhibitory activity against H5N1, H7N1 and H7N7 HPAI viruses with sub-nanomolar activity in enzyme assays. In H5N1 viruses containing the NA H275Y mutation, the antiviral activity of peramivir against the variant was lower than that against the wild-type. Evaluation of the in vivo antiviral activity showed that a single intravenous treatment of peramivir (10 mg/kg) prevented lethality in mice infected with wild-type H5N1 virus and also following infection with H5N1 virus with the H275Y mutation after a 5 day administration of peramivir (30 mg/kg). Furthermore, mice injected with peramivir showed low viral titers and low levels of proinflammatory cytokines in the lungs. These results suggest that peramivir has therapeutic activity against HPAI viruses even if the virus harbors the NA H275Y mutation.

  7. An Integrated Epidemiological and Economic Analysis of Vaccination against Highly Pathogenic Porcine Reproductive and Respiratory Syndrome (PRRS) in Thua Thien Hue Province, Vietnam

    PubMed Central

    Zhang, Haifeng; Kono, Hiroichi; Kubota, Satoko

    2014-01-01

    The purposes of this study are to assess pig farmers’ preference for highly pathogenic porcine reproductive and respiratory syndrome (PRRS) vaccine, and estimate the cost and benefit of PRRS vaccination in Vietnam. This study employed an integrated epidemiological and economic analysis which combined susceptible-infectious-recovered (SIR) model, choice experiment (CE) and cost-benefit analysis (CBA) together. The result of SIR model showed the basic reproduction number (R0) of PRRS transmission in this study is 1.3, consequently, the optimal vaccination percentage is 26%. The results of CE in this study indicate that Vietnam pig farmers are showing a high preference for the PRRS vaccine. However, their mean willingness to pay is lower than the potential cost of PRRS vaccine. It can be considered to be one of the reasons that the PRRS vaccination ratio is still low in Vietnam. The results of CBA specified from the whole society’s point of view (Social perspective), the benefits of PRRS vaccination are 2.3 to 4.5 times larger than the costs. To support policy making for increasing the PRRS vaccination proportion, this study indicates two ways to increase the vaccination proportion: i) decrease vaccine price by providing a subsidy, ii) provide compensation of culling only for PRRS vaccinated pigs. PMID:25178303

  8. Synthesis and Photodynamic Effect of New Highly Photostable Decacationically Armed [60]- and [70]Fullerene Decaiodide Monoadducts to Target Pathogenic Bacteria and Cancer Cells

    PubMed Central

    Wang, Min; Huang, Liyi; Sharma, Sulbha K; Jeon, Seaho; Thota, Sammaiah; Sperandio, Felipe F; Nayka, Suhasini; Chang, Julie; Hamblin, Michael R.; Chiang, Long Y.

    2012-01-01

    Novel water-soluble decacationically armed C60 and C70 decaiodide monoadduct, C60- or C70[>M(C3N6+C3)2] were synthesized, characterized, and applied as photosensitizers and potential nano-PDT agents against pathogenic bacteria and cancer cells. A high number of cationic charges per fullerene cage and H-bonding moieties were designed for rapid binding to the anionic residues displayed on the outer parts of bacterial cell walls. In the presence of a high number of electron-donating iodide anions as parts of quaternary ammonium salts in the arm region, we found that C70[>M(C3N6+C3)2] produced more HO• than C60[>M(C3N6+C3)2], in addition to 1O2. This finding offers an explanation of the preferential killing of Gram-positive and Gram-negative bacteria by C60[>M(C3N6+C3)2] and C70[>M(C3N6+C3)2], respectively. The hypothesis is that 1O2 can diffuse more easily into porous cell walls of Gram-positive bacteria to reach sensitive sites, while the less permeable Gram-negative bacterial cell wall needs the more reactive HO• to cause real damage. PMID:22512669

  9. Molecular characterization of highly pathogenic avian influenza H5N8 viruses isolated from Baikal teals found dead during a 2014 outbreak in Korea

    PubMed Central

    Kim, Seol-Hee; Hur, Moonsuk; Suh, Jae-Hwa; Woo, Chanjin; Wang, Seung-Jun; Park, Eung-Roh; Hwang, Jongkyung; An, In-Jung; Jo, Seong-Deok; Shin, Jeong-Hwa; Yu, Seung Do; Choi, Kyunghee; Lee, Dong-Hun

    2016-01-01

    Nineteen highly pathogenic avian influenza (HPAI) H5N8 viruses were isolated from wild birds in the Donglim reservoir in Gochang, Jeonbuk province, Korea, which was first reported to be an outbreak site on January 17, 2014. Most genes from the nineteen viruses shared high nucleotide sequence identities (i.e., 99.7% to 100%). Phylogenetic analysis showed that these viruses were reassortants of the HPAI H5 subtype and the H4N2 strain and that their hemagglutinin clade was 2.3.4.4, which originated from Eastern China. The hemagglutinin protein contained Q222 and G224 at the receptor-binding site. Although the neuraminidase protein contained I314V and the matrix 2 protein contained an S31N substitution, other mutations resulting in oseltamivir and amantadine resistance were not detected. No substitutions associated with increased virulence and enhanced transmission in mammals were detected in the polymerase basic protein 2 (627E and 701D). Non-structural-1 was 237 amino acids long and had an ESEV motif with additional RGNKMAD amino acids in the C terminal region. These viruses caused deaths in the Baikal teal, which was unusual, and outbreaks occurred at the same time in both poultry and wild birds. These data are helpful for epidemiological understanding of HPAI and the design of prevention strategies. PMID:26245355

  10. Role of vaccination-induced immunity and antigenic distance in the transmission dynamics of highly pathogenic avian influenza H5N1.

    PubMed

    Sitaras, Ioannis; Rousou, Xanthoula; Kalthoff, Donata; Beer, Martin; Peeters, Ben; de Jong, Mart C M

    2016-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 epidemics in poultry cause huge economic losses as well as sporadic human morbidity and mortality. Vaccination in poultry has often been reported as being ineffective in preventing transmission and as a potential driving force in the selection of immune escape mutants. We conducted transmission experiments to evaluate the transmission dynamics of HPAI H5N1 strains in chickens vaccinated with high and low doses of immune escape mutants we have previously selected, and analysed the data using mathematical models. Remarkably, we demonstrate that the effect of antigenic distances between the vaccine and challenge strains used in this study is too small to influence the transmission dynamics of the strains used. This is because the effect of a sufficient vaccine dose on antibody levels against the challenge viruses is large enough to compensate for any decrease in antibody titres due to antigenic differences between vaccine and challenge strains. Our results show that at least under experimental conditions, vaccination will remain effective even after antigenic changes as may be caused by the initial selection in vaccinated birds.

  11. An evaluation of the mobility of pathogen indicators, Escherichia coli and bacteriophage MS-2, in a highly weathered tropical soil under unsaturated conditions

    USGS Publications Warehouse

    Wong, T.-P.; Byappanahalli, M.; Yoneyama, B.; Ray, C.

    2008-01-01

    Laboratory column experiments were conducted to study the effects of anionic polyacrylamide (PAM) polymer and surfactant linear alkylbenzene sulfonate (LAS) on the movement of Escherichia coli and the FRNA phage MS-2. The study was designed to evaluate if PAM or PAM + LAS would enhance the mobility of human pathogens in tropical soils under unsaturated conditions. No breakthrough of phage was observed in a 10 cm column after passing 100 pore volumes of solution containing 1 ?? 108 plaque-forming units (PFU)/ml. In later experiments, after passing 10-20 pore volumes of influent containing 1 ?? 108/ml MS-2 or E. coli through 15 cm columns, the soil was sliced and the organisms eluted. Phage moved slightly deeper in the polymer-treated column than in the control column. There was no measurable difference in the movement of E. coli in either polymer-treated or control columns. The properties of the soil (high amounts of metal oxides, kaolinitic clay), unsaturated flow conditions, and relatively high ionic strengths of the leaching solution attributed to significant retention of these indicators. The impacts of PAM and LAS on the mobility of E. coli or MS-2 phage in the chosen soils were not significant. ?? IWA Publishing 2008.

  12. Role of vaccination-induced immunity and antigenic distance in the transmission dynamics of highly pathogenic avian influenza H5N1

    PubMed Central

    Rousou, Xanthoula; Kalthoff, Donata; Beer, Martin

    2016-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 epidemics in poultry cause huge economic losses as well as sporadic human morbidity and mortality. Vaccination in poultry has often been reported as being ineffective in preventing transmission and as a potential driving force in the selection of immune escape mutants. We conducted transmission experiments to evaluate the transmission dynamics of HPAI H5N1 strains in chickens vaccinated with high and low doses of immune escape mutants we have previously selected, and analysed the data using mathematical models. Remarkably, we demonstrate that the effect of antigenic distances between the vaccine and challenge strains used in this study is too small to influence the transmission dynamics of the strains used. This is because the effect of a sufficient vaccine dose on antibody levels against the challenge viruses is large enough to compensate for any decrease in antibody titres due to antigenic differences between vaccine and challenge strains. Our results show that at least under experimental conditions, vaccination will remain effective even after antigenic changes as may be caused by the initial selection in vaccinated birds. PMID:26763336

  13. Designation of pathogenic resistant bacteria in the Sparusaurata sea collected in Tunisia coastlines: Correlation with high performance liquid chromatography-tandem mass spectrometry analysis of antibiotics.

    PubMed

    Zouiten, Amina; Mehri, Ines; Beltifa, Asma; Ghorbel, Asma; Sire, Olivier; Van Loco, Joris; Abdenaceur, Hassen; Reyns, Tim; Ben Mansour, Hedi

    2017-01-03

    Vibrio is characterized by a large number of species and some of them are human pathogens causing gastro intestinal and wound infections through the ingestion or manipulation of contaminated fishes including Vibrio parahaemolyticus and Vibrio alginolyticus. In this study, we reported the phenotypic and molecular characterization of Vibrio parahaemolyticus and Vibrio alginolyticus strains isolated from wild and farm sea bream (Sparus aurata L.) along the Tunisian coast from December 2015 to April 2016. Therefore, the antibiograms indicate a difference between farmed and wild fish. Resistance against amoxicillin antibiotic appears for the bacteria isolated from wild fish, while those from aquaculture farming presented sensitivity to amoxicillin and resistance to antibiotics colistin and fusidic acid. The chloramphenicol antibiotic exhibited a high sensitivity in all isolated bacteria. In fact, traces of amoxicillin in the organs of the fish from Hergla farm were detected by UPLC-MS/MS analysis during December 2016 to April 2016. In addition, antibiotics were detected in January 2014 with high concentration of norfloxacin 2262 ng/g in fish from Hergla coast. The results obtained in this work indicated that the use and presence of antibiotics in water impacts on the occurrence of resistant bacteria and the detection of antibiotic in fish.

  14. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    PubMed Central

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-01-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest wa