Science.gov

Sample records for highly potent anti-inflammatory

  1. AHR-5850: a potent anti-inflammatory compound.

    PubMed

    Sancilio, L F; Reese, D L; Cheung, S; Alphin, R S

    1977-03-01

    AHR-5850 is a non-steroidal anti-inflammatory compound possessing antipyretic and analgesic properties. AHR-5850 was 16.4 and 22.8 times more potent than phenylbutazone in suppressing acute (Evans blue-carrageenan pleural effusion) and chronic (adjuvant-induced arthritis) inflammation, respectively. The analgesic activity of AHR 5850 was 43 times that of acetylsalicylic acid in the Randall-Selitto assay, and 156 and 56.3 times more potent than phenylbutazone in the acetylcholine-induced abdominal constriction in mice and in the bradykinin-induced nociceptive response in dogs, respectively. Single-dose studies showed that AHR-5850 produced less gastric irritation than acetylsalicylic acid when applied topically to the exposed gastric mucosa of cats or when administered orally to rats and dogs. Upon subchronic oral administration to rats, the therapeutic ratio of AHR-5850 was twice that of phenylbutazone. This was based on the ratio of its potency relative to phenylbutazone in producing intestinal lesions to its anti-inflammatory potency relative to phenylbutazone in the adjuvant-induced arthritis.

  2. Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects

    NASA Astrophysics Data System (ADS)

    Ardekani, Soroush; Scott, Harry A.; Gupta, Sharad; Eum, Shane; Yang, Xiao; Brunelle, Alexander R.; Wilson, Sean M.; Mohideen, Umar; Ghosh, Kaustabh

    2015-11-01

    Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies.

  3. Esters of some non-steroidal anti-inflammatory drugs with cinnamyl alcohol are potent lipoxygenase inhibitors with enhanced anti-inflammatory activity.

    PubMed

    Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Tziona, Paraskevi; Kourounakis, Panos N; Rekka, Eleni A

    2015-11-15

    Novel esters of non steroidal anti-inflammatory drugs, α-lipoic acid and indol-3-acetic acid with cinnamyl alcohol were synthesised by a straightforward method and at high yields (60-98%). They reduced acute inflammation more than the parent acids and are potent inhibitors of soybean lipoxygenase. Selected structures decreased plasma lipidemic indices in Triton-induced hyperlipidemia to rats. Therefore, the synthesised compounds may add to the current knowledge about agents acting against various inflammatory disorders.

  4. Esters of some non-steroidal anti-inflammatory drugs with cinnamyl alcohol are potent lipoxygenase inhibitors with enhanced anti-inflammatory activity.

    PubMed

    Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Tziona, Paraskevi; Kourounakis, Panos N; Rekka, Eleni A

    2015-11-15

    Novel esters of non steroidal anti-inflammatory drugs, α-lipoic acid and indol-3-acetic acid with cinnamyl alcohol were synthesised by a straightforward method and at high yields (60-98%). They reduced acute inflammation more than the parent acids and are potent inhibitors of soybean lipoxygenase. Selected structures decreased plasma lipidemic indices in Triton-induced hyperlipidemia to rats. Therefore, the synthesised compounds may add to the current knowledge about agents acting against various inflammatory disorders. PMID:26494261

  5. Stereoselective synthesis of protectin D1: A potent anti-inflammatory and proresolving lipid mediator

    PubMed Central

    Aursnes, M.; Tungen, J. E.; Vik, A.; Dalli, J.; Hansen, T. V.

    2014-01-01

    A convergent stereoselective synthesis of the potent anti-inflammatory, proresolving and neuroprotective lipid mediator protectin D1 (2) has been achieved in 15% yield over eight steps. The key features were a stereocontrolled Evans-aldol reaction with Nagao’s chiral auxiliary and a highly selective Lindlar reduction of internal alkyne 23, allowing the sensitive conjugated E,E,Z-triene to be introduced late in the preparation of 2. The UV and LC/MS-MS data of synthetic protectin D1 (2) matched those obtained from endogenously produced material PMID:24253202

  6. Stereocontrolled total synthesis of the potent anti-inflammatory and pro-resolving lipid mediator resolvin D3 and its aspirin-triggered 17R-epimer.

    PubMed

    Winkler, Jeremy W; Uddin, Jasim; Serhan, Charles N; Petasis, Nicos A

    2013-04-01

    The first total synthesis of stereochemically pure resolvin D3 and aspirin-triggered resolvin D3 is reported. These enzymatic metabolites of docosahexaenoic acid (DHA) have potent anti-inflammatory and pro-resolving actions. The convergent synthetic strategy is based on enantiomerically pure starting materials, and it is highly stereocontrolled. PMID:23510485

  7. Synthesis and biological evaluation of pyrazolylthiazole carboxylic acids as potent anti-inflammatory-antimicrobial agents.

    PubMed

    Khloya, Poonam; Kumar, Satish; Kaushik, Pawan; Surain, Parveen; Kaushik, Dhirender; Sharma, Pawan K

    2015-03-15

    Current Letter presents design, synthesis and biological evaluation of a novel series of pyrazolylthiazole carboxylates 1a-1p and corresponding acid derivatives 2a-2p. All 32 novel compounds were tested for their in vivo anti-inflammatory activity by carrageenan-induced rat paw edema method as well as for in vitro antimicrobial activity. All the tested compounds exhibited excellent AI activity profile. Three compounds 1p (R=Cl, R(1)=Cl), 2c (R=H, R(1)=F) and 2n (R=Cl, R(1)=OCH3) were identified as potent anti-inflammatory agents exhibiting edema inhibition of 93.06-89.59% which is comparable to the reference drug indomethacin (91.32%) after 3h of carrageenan injection while most of the other compounds displayed inhibition ⩾80%. In addition, pyrazolylthiazole carboxylic acids (2a-2p) also showed good antimicrobial profile. Compound 2h (R=OCH3, R(1)=Cl) showed excellent antimicrobial activity (MIC 6.25μg/mL) against both Gram positive bacteria comparable with the reference drug ciprofloxacin (MIC 6.25μg/mL).

  8. Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs

    PubMed Central

    Boukhatem, Mohamed Nadjib; Ferhat, Mohamed Amine; Kameli, Abdelkrim; Saidi, Fairouz; Kebir, Hadjer Tchoketch

    2014-01-01

    Background Volatile oils obtained from lemon grass [Cymbopogon citratus (DC.) Stapf, Poaceae family] are used in traditional medicine as remedies for the treatment of various diseases. Aims In the present study, lemon grass essential oil (LGEO) was evaluated for its in vivo topical and oral anti-inflammatory effects, and for its in vitro antifungal activity using both liquid and vapor phases. Methods The chemical profile of LGEO as determined by gas chromatography–mass spectrometry analysis revealed two major components: geranial (42.2%), and neral (31.5%). The antifungal activity of LGEO was evaluated against several pathogenic yeasts and filamentous fungi using disc diffusion and vapor diffusion methods. Results LGEO exhibited promising antifungal effect against Candida albicans, C. tropicalis, and Aspergillus niger, with different inhibition zone diameters (IZDs) (35–90 mm). IZD increased with increasing oil volume. Significantly, higher anti-Candida activity was observed in the vapor phase. For the evaluation of the anti-inflammatory effect, LGEO (10 mg/kg, administered orally) significantly reduced carrageenan-induced paw edema with a similar effect to that observed for oral diclofenac (50 mg/kg), which was used as the positive control. Oral administration of LGEO showed dose-dependent anti-inflammatory activity. In addition, topical application of LGEO in vivo resulted in a potent anti-inflammatory effect, as demonstrated by using the mouse model of croton oil-induced ear edema. To our knowledge, this is the first such report to be published. The topical application of LGEO at doses of 5 and 10 µL/ear significantly reduced acute ear edema induced by croton oil in 62.5 and 75% of the mice, respectively. In addition, histological analysis clearly confirmed that LGEO inhibits the skin inflammatory response in animal models. Conclusion Results of the present study indicate that LGEO has a noteworthy potential for the development of drugs for the treatment of

  9. A Novel Anti-Inflammatory Effect for High Density Lipoprotein

    PubMed Central

    Cameron, Scott J.; Morrell, Craig N.; Bao, Clare; Swaim, AnneMarie F.; Rodriguez, Annabelle; Lowenstein, Charles J.

    2015-01-01

    High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL) are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC). Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis. PMID:26680360

  10. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents.

    PubMed

    Liu, Jinbing; Wu, Fengyan; Chen, Changhong

    2015-11-15

    Twenty aloe-emodin derivatives were designed, synthesized, and their biological activities were evaluated. Some compounds displayed potent tyrosinase inhibitory activities, especially, compounds with thiosemicarbazide moiety showed more potent inhibitory effects than the other compounds. The structure-activity relationships (SARs) were preliminarily discussed. The inhibition mechanism of selected compounds 1 and 13 were investigated. The results showed compound 1 was reversible inhibitor, however, compound 13 was irreversible. Kinetic analysis indicated that compound 1 was competitive tyrosinase inhibitor. Furthermore, the antibacterial activities and anti-inflammatory activities of some selected compounds were also screened. The results showed that compound 3 exhibited more potent antibacterial activity than the aloe-emodin, compounds 5 and 6 possessed more potent anti-inflammatory activities than the diacerein.

  11. Targeting the Hemoglobin Scavenger receptor CD163 in Macrophages Highly Increases the Anti-inflammatory Potency of Dexamethasone

    PubMed Central

    Graversen, Jonas H; Svendsen, Pia; Dagnæs-Hansen, Frederik; Dal, Jakob; Anton, Gabriele; Etzerodt, Anders; Petersen, Mikkel D; Christensen, Peter A; Møller, Holger J; Moestrup, Søren K

    2012-01-01

    Synthetic glucocorticoids are potent anti-inflammatory drugs but serious side effects such as bone mobilization, muscle mass loss, immunosuppression, and metabolic alterations make glucocorticoid therapy a difficult balance. The therapeutic anti-inflammatory effect of glucocorticoids relies largely on the suppressed release of tumor-necrosis factor-α and other cytokines by macrophages at the sites of inflammation. We have now developed a new biodegradable anti-CD163 antibody-drug conjugate that specifically targets the glucocorticoid, dexamethasone to the hemoglobin scavenger receptor CD163 in macrophages. The conjugate, that in average contains four dexamethasone molecules per antibody, exhibits retained high functional affinity for CD163. In vitro studies in rat macrophages and in vivo studies of Lewis rats showed a strong anti-inflammatory effect of the conjugate measured as reduced lipopolysaccharide-induced secretion of tumor-necrosis factor-α. The in vivo potency of conjugated dexamethasone was about 50-fold that of nonconjugated dexamethasone. In contrast to a strong systemic effect of nonconjugated dexamethasone, the equipotent dose of the conjugate had no such effect, measured as thymus lymphocytes apoptosis, body weight loss, and suppression of endogenous cortisol levels. In conclusion, the study shows antibody-drug conjugates as a future approach in anti-inflammatory macrophage-directed therapy. Furthermore, the data demonstrate CD163 as an excellent macrophage target for anti-inflammatory drug delivery. PMID:22643864

  12. Potent Anti-Inflammatory Activity of Tetramethylpyrazine Is Mediated through Suppression of NF-k

    PubMed Central

    Chen, Wei; Chen, Weixiong; Zhu, Jinshui; Chen, Niwei; Lu, Yunmin

    2016-01-01

    The purpose of the current study was to evaluate the anti-inflammatory activity of tetramethlpyrazine on oxazolone-induced colitis mice. Spleen mononuclear cells (SMC), lamina propria mononuclear cells (LPMC) and peripheral blood mononuclear cells (PBMC) were isolated from oxazolone-induced colitis and normal mice. The colitis cells treated by oxazolone were randomly divided into model, low dose, middle dose and high dose groups treated with 0, 0.5, 1.0 and 2.0 g/L tetramethlpyrazine, respectively. The apoptotic rate of SMC and LPMC in the oxazolone-induced group was lower than that in the normal group. Compared with model group, apoptotic rate of SMC was significantly increased in the high dose group, while the apoptotic rate of LPMC in the middle dose group was increased. Compared with SMC, LPMC and PBMC of normal group, the mRNA level of nuclear factor kappa B (NF-kB), transcription factor-activated protein-1 (AP-1) and nuclear factor of activated T cells (NF-AT) were higher in model group. Tetramethylpyrazine inhibited the increase of NF-kB, AP-1 and NF-AT mRNA induced by oxazolone. For SMC, LPMC and PBMC there was significant difference in the mRNA level of AP-1 among the three different doses of tetramethylpyrazine treated groups. However, no significant difference was observed in the mRNA levels of NF-AT and NF-κB between normal and middle groups. Tetramethylpyrazine promoted the apoptotic rate of SMC and LPMC in-vitro, and suppressed the expression of transcription factors in SMC, LPMC and PBMC isolated from oxazolone-induced colitis mice. The study provides a novel insight into the mechanism behind the effect of etramethylpyrazine on colitis. PMID:27610159

  13. Potent Anti-Inflammatory Activity of Tetramethylpyrazine Is Mediated through Suppression of NF-k.

    PubMed

    Chen, Wei; Chen, Weixiong; Zhu, Jinshui; Chen, Niwei; Lu, Yunmin

    2016-01-01

    The purpose of the current study was to evaluate the anti-inflammatory activity of tetramethlpyrazine on oxazolone-induced colitis mice. Spleen mononuclear cells (SMC), lamina propria mononuclear cells (LPMC) and peripheral blood mononuclear cells (PBMC) were isolated from oxazolone-induced colitis and normal mice. The colitis cells treated by oxazolone were randomly divided into model, low dose, middle dose and high dose groups treated with 0, 0.5, 1.0 and 2.0 g/L tetramethlpyrazine, respectively. The apoptotic rate of SMC and LPMC in the oxazolone-induced group was lower than that in the normal group. Compared with model group, apoptotic rate of SMC was significantly increased in the high dose group, while the apoptotic rate of LPMC in the middle dose group was increased. Compared with SMC, LPMC and PBMC of normal group, the mRNA level of nuclear factor kappa B (NF-kB), transcription factor-activated protein-1 (AP-1) and nuclear factor of activated T cells (NF-AT) were higher in model group. Tetramethylpyrazine inhibited the increase of NF-kB, AP-1 and NF-AT mRNA induced by oxazolone. For SMC, LPMC and PBMC there was significant difference in the mRNA level of AP-1 among the three different doses of tetramethylpyrazine treated groups. However, no significant difference was observed in the mRNA levels of NF-AT and NF-κB between normal and middle groups. Tetramethylpyrazine promoted the apoptotic rate of SMC and LPMC in-vitro, and suppressed the expression of transcription factors in SMC, LPMC and PBMC isolated from oxazolone-induced colitis mice. The study provides a novel insight into the mechanism behind the effect of etramethylpyrazine on colitis. PMID:27610159

  14. Discovery of a novel COX-2 inhibitor as an orally potent anti-pyretic and anti-inflammatory drug: design, synthesis, and structure-activity relationship.

    PubMed

    Hayashi, Shigeo; Sumi, Yoko; Ueno, Naomi; Murase, Akio; Takada, Junji

    2011-10-01

    Cyclooxygenase (COX) has been considered as a significant pharmacological target because of its pivotal roles in the prostaglandin biosynthesis and following cascades that lead to various (patho)physiological effects. Non-steroidal anti-inflammatory drugs (NSAIDs) that suppress COX activities have been used clinically for the treatment of fever, inflammation, and pain; however, nonselective COX inhibitors exhibit serious side-effects such as gastrointestinal damage because of their inhibitory activities against COX-1. Thus, COX-1 is constitutive and expressed ubiquitously and serves a housekeeping role, while COX-2 is inducible or upregulated by inflammatory/injury stimuli such as interleukin-1β, tumor necrosis factor-α, and lipopolysaccharide in macrophage, monocyte, synovial, liver, and lung, and is associated with prostaglandin E₂ and prostacyclin production that evokes or sustains systemic/peripheral inflammatory symptoms. Also, hypersensitivity of aspirin is a significant concern clinically. Hence, design, synthesis, and structure-activity relationship of [2-{[(4-substituted)-pyridin-2-yl]carbonyl}-(6- or 5-substituted)-1H-indol-3-yl]acetic acid analogues were investigated to discover novel acid-type COX-2 inhibitor as an orally potent new-class anti-pyretic and anti-inflammatory drug. As significant findings, compounds 1-3 demonstrated potent COX-2 inhibitory activities with high selectivities for COX-2 over COX-1 in human cells or whole-blood in vitro, and demonstrated orally potent anti-pyretic activity against lipopolysaccharide-induced systemic-inflammatory fever model in F344 rats. Also compound 1 demonstrated orally potent anti-inflammatory activity against edema formation and a suppressive effect against PGE₂ production in carrageenan-induced peripheral-inflammation model on the paw of SD rats. These results suggest that compounds 1-3 are potential agents for the treatment of inflammatory disease and are useful for further pharmacological COX-2

  15. Berteroin present in cruciferous vegetables exerts potent anti-inflammatory properties in murine macrophages and mouse skin.

    PubMed

    Jung, Yoo Jin; Jung, Jae In; Cho, Han Jin; Choi, Myung-Sook; Sung, Mi-Kyung; Yu, Rina; Kang, Young-Hee; Park, Jung Han Yoon

    2014-11-11

    Berteroin (5-methylthiopentyl isothiocyanate) is a sulforaphane analog present in cruciferous vegetables, including Chinese cabbage, rucola salad leaves, and mustard oil. We examined whether berteroin exerts anti-inflammatory activities using lipopolysaccharide (LPS)-stimulated Raw 264.7 macrophages and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin inflammation models. Berteroin decreased LPS-induced release of inflammatory mediators and pro-inflammatory cytokines in Raw 264.7 macrophages. Berteroin inhibited LPS-induced degradation of inhibitor of κBα (IκBα) and nuclear factor-κB p65 translocation to the nucleus and DNA binding activity. Furthermore, berteroin suppressed degradation of IL-1 receptor-associated kinase and phosphorylation of transforming growth factor β activated kinase-1. Berteroin also inhibited LPS-induced phosphorylation of p38 MAPK, ERK1/2, and AKT. In the mouse ear, berteroin effectively suppressed TPA-induced edema formation and down-regulated iNOS and COX-2 expression as well as phosphorylation of AKT and ERK1/2. These results demonstrate that berteroin exhibits potent anti-inflammatory properties and suggest that berteroin can be developed as a skin anti-inflammatory agent.

  16. Separation of flavonoids from Millettia griffithii with high-performance counter-current chromatography guided by anti-inflammatory activity.

    PubMed

    Tang, Huan; Wu, Bo; Chen, Kai; Pei, Heying; Wu, Wenshuang; Ma, Liang; Peng, Aihua; Ye, Haoyu; Chen, Lijuan

    2015-02-01

    Millettia griffithii is a unique Chinese plant located in the southern part of Yunnan Province. Up to now, there is no report about its phytochemical or related bioactivity research. In our previous study, the n-hexane crude extract of Millettia griffithii revealed significant anti-inflammatory activity at 100 μg/mL, inspiring us to explore the anti-inflammatory constituents. Four fractions (I, II, III, and A) were fractionated from n-hexane crude extract by high-performance counter-current chromatography with solvent system composed of n-hexane/ethyl acetate/methanol/water (8:9:8:9, v/v) and then were investigated for the potent anti-inflammatory activity. Fraction A, with the most potent inhibitory activity was further separated to give another four fractions (IV, V, VI, and B) with solvent system composed of n-hexane/ethyl acetate/methanol/water (8:4:8:4, v/v). Compound V and fraction B exhibited remarkable anti-inflammatory activity with nitric oxide inhibitory rate of 80 and 65%, which was worth further fractionation. Then, three fractions (VII, VIII, and IX) were separated from fraction B with a solvent system composed of n-hexane/ethyl acetate/methanol/water (8:1:8:1, v/v), with compound VIII demonstrating the most potent inhibitory activity (80%). Finally, the IC50 values of compound V and VIII were tested as 38.2 and 14.9 μM. The structures were identified by electrospray ionization mass spectrometry and(1)H and (13)C NMR spectroscopy. PMID:25413585

  17. Arzanol, a Potent mPGES-1 Inhibitor: Novel Anti-Inflammatory Agent

    PubMed Central

    Kothavade, Pankaj S.; Nagmoti, Dnyaneshwar M.; Bulani, Vipin D.; Juvekar, Archana R.

    2013-01-01

    Arzanol is a novel phloroglucinol α-pyrone, isolated from a Mediterranean plant Helichrysum italicum (Roth) Don ssp. microphyllum which belongs to the family Asteraceae. Arzanol has been reported to possess a variety of pharmacological activities. However, anti-inflammatory, anti-HIV, and antioxidant activities have been studied in some detail. Arzanol has been reported to inhibit inflammatory transcription factor NFκB activation, HIV replication in T cells, releases of IL-1β, IL-6, IL-8, and TNF-α, and biosynthesis of PGE2 by potentially inhibiting mPGES-1 enzyme. Diversity of mechanisms of actions of arzanol may be useful in treatment of disease involving these inflammatory mediators such as autoimmune diseases and cancer. This review presents comprehensive information on the chemistry, structure-activity relationship, and pharmacological activities of arzanol. In addition this review discusses recent developments and the scope for future research in these aspects. PMID:24198734

  18. Breast Cancer Stem Cell Potent Copper(II)-Non-Steroidal Anti-Inflammatory Drug Complexes.

    PubMed

    Boodram, Janine N; Mcgregor, Iain J; Bruno, Peter M; Cressey, Paul B; Hemann, Michael T; Suntharalingam, Kogularamanan

    2016-02-18

    The breast cancer stem cell (CSC) potency of a series of copper(II)-phenanthroline complexes containing the nonsteroidal anti-inflammatory drug (NSAID), indomethacin, is reported. The most effective copper(II) complex in this series, 4, selectivity kills breast CSC-enriched HMLER-shEcad cells over breast CSC-depleted HMLER cells. Furthermore, 4 reduces the formation, size, and viability of mammospheres, to a greater extent than salinomycin, a potassium ionophore known to selectively inhibit CSCs. Mechanistic studies revealed that the CSC-specificity observed for 4 arises from its ability to generate intracellular reactive oxygen species (ROS) and inhibit cyclooxygenase-2 (COX-2), an enzyme that is overexpressed in breast CSCs. The former induces DNA damage, activates JNK and p38 pathways, and leads to apoptosis.

  19. Design, synthesis and biological evaluation of piperic acid triazolyl derivatives as potent anti-inflammatory agents.

    PubMed

    Ali, Yakub; Alam, Mohammad Sarwar; Hamid, Hinna; Husain, Asif; Bano, Sameena; Dhulap, Abhijeet; Kharbanda, Chetna; Nazreen, Syed; Haider, Saqlain

    2015-03-01

    Nineteen novel piperine based triazoles have been synthesized using click chemistry approach and were tested for in vivo anti-inflammatory activity. The most active compounds were evaluated for in vitro TNF-α expression. Compounds 3g and 3f were found to show significant in vivo inhibition of inflammation, 80.40% and 76.71%, respectively after 5 h in comparison to piperine (54.72%) and the standard drug indomethacin (77.02%) without causing any damage to the stomach. Compounds 3g and 3f suppressed TNF-α level by 73.73% and 70.64%, respectively and protein expression of COX-2, NF-κB and TNF-α more than indomethacin. Moreover, the compound 3g was found to show significant analgesic activity of 54.09% which was comparable with the indomethacin (57.43%). PMID:25596479

  20. Design and Synthesis of Potent N-Acylethanolamine-hydrolyzing Acid Amidase (NAAA) Inhibitor as Anti-Inflammatory Compounds

    PubMed Central

    Chen, Ling; Zhu, Chenggang; Huang, Rui; Zheng, Xiao; Qiu, Yan; Fu, Jin

    2012-01-01

    N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme involved in biological deactivation of N-palmitoylethanolamide (PEA), which exerts anti-inflammatory and analgesic effects through the activation of nuclear receptor peroxisome proliferator-activated receptor-alpha (PPAR-α). To develop selective and potent NAAA inhibitors, we designed and synthesized a series of derivatives of 1-pentadecanyl-carbonyl pyrrolidine (compound 1), a general amidase inhibitor. Structure activity relationship (SAR) studies have identified a compound 16, 1-(2-Biphenyl-4-yl)ethyl-carbonyl pyrrolidine, which has shown the highest inhibition on NAAA activity (IC50 = 2.12±0.41 µM) and is characterized as a reversible and competitive NAAA inhibitor. Computational docking analysis and mutagenesis study revealed that compound 16 interacted with Asparagine 209 (Asn209) residue flanking the catalytic pocket of NAAA so as to block the substrate entrance. In vitro pharmacological studies demonstrated that compound 16 dose-dependently reduced mRNA expression levels of iNOS and IL-6, along with an increase of intracellular PEA levels, in mouse macrophages with lipopolysaccharides (LPS) induced inflammation. Our study discovered a novel NAAA inhibitor, compound 16, that could serve as a potential anti-inflammatory agent. PMID:22916199

  1. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders

    PubMed Central

    Johnson, Tyler A.; Sohn, Johann; Inman, Wayne D.; Bjeldanes, Leonard F.; Rayburn, Keith

    2012-01-01

    Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica, (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activity in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves were also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with the standard anti-inflammatory agent celastrol (1) but was moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves plant portions displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects ≥ 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of the roots, stems or leaves of stinging nettle may be more effective then traditional tinctures (water, methanol, ethanol) to undergo clinical evaluations for the treatment of inflammatory disorders including arthritis. A chemical investigation into the lipophillic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. PMID:23092723

  2. Identification and Characterization of the First Cathelicidin from Sea Snakes with Potent Antimicrobial and Anti-inflammatory Activity and Special Mechanism.

    PubMed

    Wei, Lin; Gao, Jiuxiang; Zhang, Shumin; Wu, Sijin; Xie, Zeping; Ling, Guiying; Kuang, Yi-Qun; Yang, Yongliang; Yu, Haining; Wang, Yipeng

    2015-07-01

    Cathelicidins are a family of gene-encoded peptide effectors of innate immunity found exclusively in vertebrates. They play pivotal roles in host immune defense against microbial invasions. Dozens of cathelicidins have been identified from several vertebrate species. However, no cathelicidin from marine reptiles has been characterized previously. Here we report the identification and characterization of a novel cathelicidin (Hc-CATH) from the sea snake Hydrophis cyanocinctus. Hc-CATH is composed of 30 amino acids, and the sequence is KFFKRLLKSVRRAVKKFRKKPRLIGLSTLL. Circular dichroism spectroscopy and structure modeling analysis indicated that Hc-CATH mainly assumes an amphipathic α-helical conformation in bacterial membrane-mimetic solutions. It possesses potent broad-spectrum and rapid antimicrobial activity. Meanwhile, it is highly stable and shows low cytotoxicity toward mammalian cells. The microbial killing activity of Hc-CATH is executed through the disruption of cell membrane and lysis of bacterial cells. In addition, Hc-CATH exhibited potent anti-inflammatory activity by inhibiting the LPS-induced production of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Hc-CATH directly binds with LPS to neutralize its toxicity, and it also binds to Toll-like receptor 4 (TLR4/MD2 complex), which therefore inhibits the binding of LPS to TLR4/MD2 complex and the subsequent activation of LPS-induced inflammatory response pathways. Taken together, our study demonstrates that Hc-CATH, the first cathelicidin from sea snake discovered to have both antimicrobial and anti-inflammatory activity, is a potent candidate for the development of peptide antibiotics.

  3. Identification and Characterization of the First Cathelicidin from Sea Snakes with Potent Antimicrobial and Anti-inflammatory Activity and Special Mechanism*

    PubMed Central

    Wei, Lin; Gao, Jiuxiang; Zhang, Shumin; Wu, Sijin; Xie, Zeping; Ling, Guiying; Kuang, Yi-Qun; Yang, Yongliang; Yu, Haining; Wang, Yipeng

    2015-01-01

    Cathelicidins are a family of gene-encoded peptide effectors of innate immunity found exclusively in vertebrates. They play pivotal roles in host immune defense against microbial invasions. Dozens of cathelicidins have been identified from several vertebrate species. However, no cathelicidin from marine reptiles has been characterized previously. Here we report the identification and characterization of a novel cathelicidin (Hc-CATH) from the sea snake Hydrophis cyanocinctus. Hc-CATH is composed of 30 amino acids, and the sequence is KFFKRLLKSVRRAVKKFRKKPRLIGLSTLL. Circular dichroism spectroscopy and structure modeling analysis indicated that Hc-CATH mainly assumes an amphipathic α-helical conformation in bacterial membrane-mimetic solutions. It possesses potent broad-spectrum and rapid antimicrobial activity. Meanwhile, it is highly stable and shows low cytotoxicity toward mammalian cells. The microbial killing activity of Hc-CATH is executed through the disruption of cell membrane and lysis of bacterial cells. In addition, Hc-CATH exhibited potent anti-inflammatory activity by inhibiting the LPS-induced production of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Hc-CATH directly binds with LPS to neutralize its toxicity, and it also binds to Toll-like receptor 4 (TLR4/MD2 complex), which therefore inhibits the binding of LPS to TLR4/MD2 complex and the subsequent activation of LPS-induced inflammatory response pathways. Taken together, our study demonstrates that Hc-CATH, the first cathelicidin from sea snake discovered to have both antimicrobial and anti-inflammatory activity, is a potent candidate for the development of peptide antibiotics. PMID:26013823

  4. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders.

    PubMed

    Johnson, Tyler A; Sohn, Johann; Inman, Wayne D; Bjeldanes, Leonard F; Rayburn, Keith

    2013-01-15

    Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activities in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves was also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with a standard compound celastrol (1) but were moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects greater than or equal to 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of stinging nettle may be more effective than traditional tinctures (water, methanol, ethanol) in clinical evaluations for the treatment of inflammatory disorders especially arthritis. A chemical investigation into the lipophilic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. PMID:23092723

  5. Rational Development of a Potent 15-Lipoxygenase-1 Inhibitor with in Vitro and ex Vivo Anti-inflammatory Properties.

    PubMed

    Eleftheriadis, Nikolaos; Neochoritis, Constantinos G; Leus, Niek G J; van der Wouden, Petra E; Dömling, Alexander; Dekker, Frank J

    2015-10-01

    Human 15-lipoxygenase-1 (h-15-LOX-1) is a mammalian lipoxygenase and plays an important role in several inflammatory lung diseases such as asthma, COPD, and chronic bronchitis. Novel potent inhibitors of h-15-LOX-1 are required to explore the role of this enzyme further and to enable drug discovery efforts. In this study, we applied an approach in which we screened a fragment collection that is focused on a diverse substitution pattern of nitrogen-containing heterocycles such as indoles, quinolones, pyrazoles, and others. We denoted this approach substitution-oriented fragment screening (SOS) because it focuses on the identification of novel substitution patterns rather than on novel scaffolds. This approach enabled the identification of hits with good potency and clear structure-activity relationships (SAR) for h-1-5-LOX-1 inhibition. Molecular modeling enabled the rationalization of the observed SAR and supported structure-based design for further optimization to obtain inhibitor 14 d that binds with a Ki of 36 nM to the enzyme. In vitro and ex vivo biological evaluations of our best inhibitor demonstrate a significant increase of interleukin-10 (IL-10) gene expression, which indicates its anti-inflammatory properties. PMID:26331552

  6. Rational development of a potent 15-lipoxygenase-1 inhibitor with in vitro and ex vivo anti-inflammatory properties

    PubMed Central

    Eleftheriadis, Nikolaos; Neochoritis, Constantinos G.; Leus, Niek G.J.; van der Wouden, Petra E.; Dömling, Alexander; Dekker, Frank J.

    2016-01-01

    Human 15-lipoxygenase-1 (h-15-LOX-1) is an important mammalian lipoxygenase and plays an important role in several inflammatory lung diseases such as asthma, COPD and chronic bronchitis. Novel potent inhibitors of h-15-LOX-1 are required to explore the role of this enzyme further and to enable drug discovery efforts. In this study, we applied an approach in which we screened a fragment collection that is focused on a diverse substitution pattern of nitrogen containing heterocycles such as indoles, quinolones, pyrazoles etc. We denoted this approach Substitution Oriented fragment Screening (SOS), because it is focuses on identification of novel substitution patterns rather than on novel scaffolds. This approach enabled the identification of hits with good potency and clear structure activity relationships (SAR) for h-1-5-LOX-1 inhibition. A molecular modeling enabled the rationalization of the observed SAR and supported structure-based design for further optimization to obtain inhibitor 14d that binds with a Ki of 36 nM to the enzyme. In vitro and ex vivo biological evaluations of our best inhibitor demonstrate significant increase of interleukin-10 (IL-10) gene expression, which indicates anti-inflammatory properties. PMID:26331552

  7. Highly oxygenated triterpenoids from the roots of Schisandra chinensis and their anti-inflammatory activities.

    PubMed

    Song, Qiu-Yan; Gao, Kun; Nan, Zhi-Biao

    2016-01-01

    A new highly oxygenated triterpenoid, schinchinenlactone D (1), and three known compounds (2-4) were isolated from the roots of Schisandra chinensis. Their structures were determined by combining the spectroscopic analysis with the theoretical computations. The anti-inflammatory activities of compounds 1-4 were evaluated, and compound 3 exhibits the most significant activity in the inhibition of NO production with an IC50 value of 10.6 μM.

  8. The anti-inflammatory compound BAY-11-7082 is a potent inhibitor of protein tyrosine phosphatases.

    PubMed

    Krishnan, Navasona; Bencze, Gyula; Cohen, Philip; Tonks, Nicholas K

    2013-06-01

    The families of protein tyrosine phosphatases (PTPs) and protein tyrosine kinases (PTKs) function in a coordinated manner to regulate signal transduction events that are critical for cellular homeostasis. Aberrant tyrosine phosphorylation, resulting from disruption of either PTP or PTK function, has been shown to be the cause of major human diseases, including cancer and diabetes. Consequently, the characterization of small-molecule inhibitors of these kinases and phosphatases may not only provide molecular probes with which to define the significance of particular signaling events, but also may have therapeutic implications. BAY-11-7082 is an anti-inflammatory compound that has been reported to inhibit IκB kinase activity. The compound has an α,β-unsaturated electrophilic center, which confers the property of being a Michael acceptor; this suggests that it may react with nucleophilic cysteine-containing proteins, such as PTPs. In this study, we demonstrated that BAY-11-7082 was a potent, irreversible inhibitor of PTPs. Using mass spectrometry, we have shown that BAY-11-7082 inactivated PTPs by forming a covalent adduct with the active-site cysteine. Administration of the compound caused an increase in protein tyrosine phosphorylation in RAW 264 macrophages, similar to the effects of the generic PTP inhibitor sodium orthovanadate. These data illustrate that BAY-11-7082 is an effective pan-PTP inhibitor with cell permeability, revealing its potential as a new probe for chemical biology approaches to the study of PTP function. Furthermore, the data suggest that inhibition of PTP function may contribute to the many biological effects of BAY-11-7082 that have been reported to date.

  9. The anti-inflammatory compound BAY-11-7082 is a potent inhibitor of protein tyrosine phosphatases.

    PubMed

    Krishnan, Navasona; Bencze, Gyula; Cohen, Philip; Tonks, Nicholas K

    2013-06-01

    The families of protein tyrosine phosphatases (PTPs) and protein tyrosine kinases (PTKs) function in a coordinated manner to regulate signal transduction events that are critical for cellular homeostasis. Aberrant tyrosine phosphorylation, resulting from disruption of either PTP or PTK function, has been shown to be the cause of major human diseases, including cancer and diabetes. Consequently, the characterization of small-molecule inhibitors of these kinases and phosphatases may not only provide molecular probes with which to define the significance of particular signaling events, but also may have therapeutic implications. BAY-11-7082 is an anti-inflammatory compound that has been reported to inhibit IκB kinase activity. The compound has an α,β-unsaturated electrophilic center, which confers the property of being a Michael acceptor; this suggests that it may react with nucleophilic cysteine-containing proteins, such as PTPs. In this study, we demonstrated that BAY-11-7082 was a potent, irreversible inhibitor of PTPs. Using mass spectrometry, we have shown that BAY-11-7082 inactivated PTPs by forming a covalent adduct with the active-site cysteine. Administration of the compound caused an increase in protein tyrosine phosphorylation in RAW 264 macrophages, similar to the effects of the generic PTP inhibitor sodium orthovanadate. These data illustrate that BAY-11-7082 is an effective pan-PTP inhibitor with cell permeability, revealing its potential as a new probe for chemical biology approaches to the study of PTP function. Furthermore, the data suggest that inhibition of PTP function may contribute to the many biological effects of BAY-11-7082 that have been reported to date. PMID:23578302

  10. The anti-inflammatory compound BAY 11-7082 is a potent inhibitor of Protein Tyrosine Phosphatases

    PubMed Central

    Krishnan, Navasona; Bencze, Gyula; Cohen, Philip; Tonks, Nicholas K.

    2013-01-01

    Summary The families of protein tyrosine phosphatases (PTPs) and protein tyrosine kinases (PTKs) function in a coordinated manner to regulate signal transduction events that are critical for cellular homeostasis. Aberrant tyrosine phosphorylation, resulting from disruption of either PTP or PTK function, has been shown to be the cause of major human diseases, including cancer and diabetes. Consequently, the characterization of small molecule inhibitors of these kinases and phosphatases may not only provide molecular probes with which to define the significance of particular signalling events, but also may have therapeutic implications. BAY 11-7082 is an anti-inflammatory compound that has been reported to inhibit IκB kinase activity. The compound has an α,β-unsaturated electrophilic center, which confers the property of being a Michael acceptor; this suggests that it may react with nucleophilic cysteine-containing proteins, such as PTPs. In this study, we demonstrated that BAY 11-7082 was a potent, irreversible inhibitor of PTPs. Using mass spectrometry, we have shown that BAY 11-7082 inactivated PTPs by forming a covalent adduct with the active site cysteine. Administration of the compound caused an increase in protein tyrosine phosphorylation in RAW 264 macrophages, similar to the effects of the generic PTP inhibitor sodium orthovanadate. These data illustrate that BAY 11-7082 is an effective pan-PTP inhibitor with cell permeability, revealing its potential as a new probe for chemical biology approaches to the study of PTP function. Furthermore, the data suggest that inhibition of PTP function may contribute to the many biological effects of BAY 11-7082 that have been reported to date. PMID:23578302

  11. High-Throughput Yeast-Based Reporter Assay to Identify Compounds with Anti-inflammatory Potential.

    PubMed

    Garcia, G; Santos, C Nunes do; Menezes, R

    2016-01-01

    The association between altered proteostasis and inflammatory responses has been increasingly recognized, therefore the identification and characterization of novel compounds with anti-inflammatory potential will certainly have a great impact in the therapeutics of protein-misfolding diseases such as degenerative disorders. Although cell-based screens are powerful approaches to identify potential therapeutic compounds, establishing robust inflammation models amenable to high-throughput screening remains a challenge. To bridge this gap, we have exploited the use of yeasts as a platform to identify lead compounds with anti-inflammatory properties. The yeast cell model described here relies on the high-degree homology between mammalian and yeast Ca(2+)/calcineurin pathways converging into the activation of NFAT and Crz1 orthologous proteins, respectively. It consists of a recombinant yeast strain encoding the lacZ gene under the control of Crz1-recongition elements to facilitate the identification of compounds interfering with Crz1 activation through the easy monitoring of β-galactosidase activity. Here, we describe in detail a protocol optimized for high-throughput screening of compounds with potential anti-inflammatory activity as well as a protocol to validate the positive hits using an alternative β-galactosidase substrate. PMID:27613055

  12. New triterpenes, myrrhanol A and myrrhanone A, from guggul-gum resins, and their potent anti-inflammatory effect on adjuvant-induced air-pouch granuloma of mice.

    PubMed

    Kimura, I; Yoshikawa, M; Kobayashi, S; Sugihara, Y; Suzuki, M; Oominami, H; Murakami, T; Matsuda, H; Doiphode, V V

    2001-04-23

    Myrrhanol A, a new triterpene isolated from guggul (Balsamodendron or Commiphora mukul Hook.)-gum resin, displays a potent anti-inflammatory effect on exudative pouch fluid, angiogenesis, and granuloma weights in adjuvant-induced air-pouch granuloma of mice. Its effects were more marked than those of hydrocortisone and the 50% aqueous methanolic extract of the crude drug. Myrrhanol A is a plausible candidate for a potent anti-inflammatory agent. PMID:11327606

  13. Potent Anti-Inflammatory Activity of Ursolic Acid, a Triterpenoid Antioxidant, Is Mediated through Suppression of NF-κB, AP-1 and NF-AT

    PubMed Central

    Checker, Rahul; Sandur, Santosh K.; Sharma, Deepak; Patwardhan, Raghavendra S.; Jayakumar, S.; Kohli, Vineet; Sethi, Gautam; Aggarwal, Bharat B.; Sainis, Krishna B.

    2012-01-01

    Background Ursolic acid (UA), a pentacyclic triterpenoid carboxylic acid, is the major component of many plants including apples, basil, cranberries, peppermint, rosemary, oregano and prunes and has been reported to possess antioxidant and anti-tumor properties. These properties of UA have been attributed to its ability to suppress NF-κB (nuclear factor kappa B) activation. Since NF-κB, in co-ordination with NF-AT (nuclear factor of activated T cells) and AP-1(activator protein-1), is known to regulate inflammatory genes, we hypothesized that UA might exhibit potent anti-inflammatory effects. Methodology/Principal Findings The anti-inflammatory effects of UA were assessed in activated T cells, B cells and macrophages. Effects of UA on ERK, JNK, NF-κB, AP-1 and NF-AT were studied to elucidate its mechanism of action. In vivo efficacy of UA was studied using mouse model of graft-versus-host disease. UA inhibited activation, proliferation and cytokine secretion in T cells, B cells and macrophages. UA inhibited mitogen-induced up-regulation of activation markers and co-stimulatory molecules in T and B cells. It inhibited mitogen-induced phosphorylation of ERK and JNK and suppressed the activation of immunoregulatory transcription factors NF-κB, NF-AT and AP-1 in lymphocytes. Treatment of cells with UA prior to allogenic transplantation significantly delayed induction of acute graft-versus-host disease in mice and also significantly reduced the serum levels of pro-inflammatory cytokines IL-6 and IFN-γ. UA treatment inhibited T cell activation even when added post-mitogenic stimulation demonstrating its therapeutic utility as an anti-inflammatory agent. Conclusions/Significance The present study describes the detailed mechanism of anti-inflammatory activity of UA. Further, UA may find application in the treatment of inflammatory disorders. PMID:22363615

  14. Identification of Magnolia officinalis L. bark extract as the most potent anti-inflammatory of four plant extracts.

    PubMed

    Walker, Joel M; Maitra, Amarnath; Walker, Jessica; Ehrnhoefer-Ressler, Miriam M; Inui, Taichi; Somoza, Veronika

    2013-01-01

    This study was designed to compare the anti-inflammatory potential of a Magnolia officinalis L. bark extract solely or in combination with extracts prepared from either Polygonum aviculare L., Sambucus nigra L., or Isodon japonicus L. in bacterial lipopolysaccharide (LPS) stimulated human gingival fibroblasts (HGF-1) and human U-937 monocytes, as cell models of periodontal disease. HGF-1 and U-937 cells were incubated with LPS from either Porphyromonas gingivalis or Escherichia coli together with the four plant extracts alone or in combination. Secretion of anti-inflammatory cytokines from HGF-1 and U-937 cells was measured by means of a multiplexed bead assay system. Magnolia officinalis L. bark extract, at concentrations of 1 μg/mL and 10 μg/mL, reduced interleukin 6 (IL-6) and interleukin-8 (IL-8) secretion from HGF-1 cells to 72.5 ± 28.6% and reduced matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) secretion from U-937 cells to 8.87 ± 7.97% compared to LPS-treated cells (100%). The other three extracts also reduced secretion of these inflammatory markers but were not as effective. Combination of 9 μg/mL Magnolia officinalis L. extract with 1 μg/mL of each of the other extracts maintained the anti-inflammatory effect of Magnolia officinalis L. extract. Combination of 5 μg/mL Magnolia officinalis L. extract with 5 μg/mL Isodon japonicus L. extract also maintained the anti-inflammatory potential of the Magnolia officinalis L. extract, whereas increasing concentrations of any of the other plant extracts in the combination experiments reduced the Magnolia officinalis L. extract efficacy in U-937 cells. PMID:23711140

  15. Anti-inflammatory activity of cinnamon (C. zeylanicum and C. cassia) extracts - identification of E-cinnamaldehyde and o-methoxy cinnamaldehyde as the most potent bioactive compounds.

    PubMed

    Gunawardena, Dhanushka; Karunaweera, Niloo; Lee, Samiuela; van Der Kooy, Frank; Harman, David G; Raju, Ritesh; Bennett, Louise; Gyengesi, Erika; Sucher, Nikolaus J; Münch, Gerald

    2015-03-01

    Chronic inflammation is a contributing factor in many age-related diseases. In a previous study, we have shown that Sri Lankan cinnamon (C. zeylanicum) was one of the most potent anti-inflammatory foods out of 115 foods tested. However, knowledge about the exact nature of the anti-inflammatory compounds and their distribution in the two major cinnamon species used for human consumption is limited. The aim of this investigation was to determine the anti-inflammatory activity of C. zeylanicum and C. cassia and elucidate their main phytochemical compounds. When extracts were tested in LPS and IFN-γ activated RAW 264.7 macrophages, most of the anti-inflammatory activity, measured by down-regulation of nitric oxide and TNF-α production, was observed in the organic extracts. The most abundant compounds in these extracts were E-cinnamaldehyde and o-methoxycinnamaldehyde. The highest concentration of E-cinnamaldehyde was found in the DCM extract of C. zeylanicum or C. cassia (31 and 34 mg g(-1) of cinnamon, respectively). When these and other constituents were tested for their anti-inflammatory activity in RAW 264.7 and J774A.1 macrophages, the most potent compounds were E-cinnamaldehyde and o-methoxycinnamaldehyde, which exhibited IC₅₀ values for NO with RAW 264.7 cells of 55 ± 9 μM (7.3 ± 1.2 μg mL(-1)) and 35 ± 9 μM (5.7 ± 1.5 μg mL(-1)), respectively; and IC₅₀ values for TNF-α of 63 ± 9 μM (8.3 ± 1.2 μg mL(-1)) and 78 ± 16 μM (12.6 ± 2.6 μg mL(-1)), respectively. If therapeutic concentrations can be achieved in target tissues, cinnamon and its components may be useful in the treatment of age-related inflammatory conditions.

  16. Tepoxalin: a dual cyclooxygenase/5-lipoxygenase inhibitor of arachidonic acid metabolism with potent anti-inflammatory activity and a favorable gastrointestinal profile.

    PubMed

    Argentieri, D C; Ritchie, D M; Ferro, M P; Kirchner, T; Wachter, M P; Anderson, D W; Rosenthale, M E; Capetola, R J

    1994-12-01

    Tepoxalin [5-(4-chlorophenyl)-N-hydroxy-(4-methoxyphenyl)-N-methyl-1H- pyrazole-3-propanamide] is a potent inhibitor of sheep seminal vesicle cyclooxygenase (CO) (IC50 = 4.6 microM), rat basophilic leukemia cell (RBL-1) lysate CO (IC50 = 2.85 microM) and CO from intact RBL-1 cells (IC50 = 4.2 microM). The compound inhibits the production of thromboxane B2 (TxB2) in Ca++ ionophore A-23187-stimulated human peripheral blood leukocytes (HPBL; IC50 = 0.01 microM) and human whole blood (IC50 = 0.08 microM) and is a potent inhibitor of epinephrine-induced human platelet aggregation (IC50 = 0.045 microM). Tepoxalin inhibits lipoxygenase (LO) in RBL-1 lysates (IC50 = 0.15 microM) and intact RBL-1 cells (IC50 = 1.7 microM) and inhibits the generation of leukotriene B4 (LTB4) in calcium ionophore A-23187-stimulated HPBL (IC50 = 0.07 microM) and human whole blood (IC50 = 1.57 microM). Human platelet 12-LO (IC50 = 3.0 microM) is inhibited, but 15-LO is only weakly so (IC50 = 157 microM). In vivo, tepoxalin, administered orally, demonstrated potent anti-inflammatory activity in the established adjuvant arthritic rat (ED50 = 3.5 mg/kg) and potent analgesic activity in the acetic acid abdominal construction assay in mice (ED50 = 0.45 mg/kg). In an ex vivo whole blood eicosanoid production assay, tepoxalin produces a dose-related inhibition of prostaglandin (PG) and LT production in dogs (PGF2 alpha - ED50 = 0.015 mg/kg; LTB4 - ED50 = 2.37 mg/kg) and adjuvant arthritic rats following oral administration. In adjuvant arthritic rats, tepoxalin is devoid of ulcerogenic activity within its anti-inflammatory therapeutic range (1-33 mg/kg p.o.) and does not exhibit ulcerogenic activity in normal rats at doses lower than 100 mg/kg (UD50 = 173 mg/kg p.o.). Tepoxalin represents a new class of anti-inflammatory drugs which may exhibit less gastrointestinal toxicity and may be efficacious in immunoinflammatory disease states where excessive PG and LT production has been implicated and may

  17. Synthesis and biological evaluation of 2-aroylbenzofurans, rugchalcones A, B and their derivatives as potent anti-inflammatory agents.

    PubMed

    Seo, Young Hwa; Damodar, Kongara; Kim, Jin-Kyung; Jun, Jong-Gab

    2016-03-15

    An efficient synthesis of 2-aroylbenzofurans, rugchalcones A, B and their derivatives was accomplished in excellent yields by the Rap-Stoermer reaction between substituted salicylaldehydes and phenacyl bromides. Later their anti-inflammatory effects were evaluated in lipopolysaccharide (LPS)-induced RAW-264.7 macrophages. The compounds were exhibited exceptional potency against inflammatory mediated NO production with no cytotoxicity at 10 μM concentration and IC50 values are found in the range from 0.75 to 13.27 μM. Among the 2-aroylbenzofurans prepared in this study, compounds 4 (99.6%; IC50=0.57), rugchalcone B (2) (99.3%; IC50=4.13), 7 (96.8%; IC50=1.90) and 8 (74.3%; IC50=0.99) were showed the maximum inhibitory activity. This study suggests that compounds 2, 4, 7 and 8 which are having 4-hydroxyphenyl group and/or hydroxy (-OH) group at 5- and/or 6-position of benzofuran motif could be considered as a promising scaffolds for the further development of iNOS inhibitors for potential anti-inflammatory applications. PMID:26898337

  18. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-α-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine.

    PubMed

    Wu, Zhongping; Kong, Xiangliang; Zhang, Tong; Ye, Jin; Fang, Zhaoqin; Yang, Xuejun

    2014-02-01

    The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 μg/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-α (TNF-α) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-IκB-α, reducing the degradation of sequestered nuclear factor kappa B (NF-κB) in the cytoplasm, and inhibited the translocation of NF-κB/p65 to the nucleus, the transcription of TNF-α mRNA and the production of TNF-α in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-α production. PMID:24365491

  19. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents.

    PubMed

    Husain, Asif; Ahmad, Aftab; Khan, Shah Alam; Asif, Mohd; Bhutani, Rubina; Al-Abbasi, Fahad A

    2016-01-01

    The aim of this study was to design and synthesize pharmaceutical agents containing imidazolidine heterocyclic ring in the hope of developing potent, safe and orally active anti-inflammatory agents. A number of substituted-imidazolidine derivatives (3a-k) were synthesized starting from ethylene diamine and aromatic aldehydes. The imidazolidine derivatives (3a-k) were investigated for their anticipated anti-inflammatory, and analgesic activity in Wistar albino rats and Swiss albino mice, respectively. Bioactivity score, molecular and pharmacokinetic properties of the imidazolidine derivatives were calculated by online computer software programs viz. Molinspiration and Osiris property explorer. The results of biological testing indicated that among the synthesized compounds only three imidazolidine derivatives namely 4-[1,3-Bis(2,6-dichlorobenzyl)-2-imidazolidinyl]phenyl-diethylamine (3g), 4-[1,3-Bis(3-hydroxy-4-methoxybenzyl)-2-imidazolidinyl]phenyl-diethylamine (3i) and 4-(1,3-Bis(4-methoxybenzyl)-4-methylimidazolidin-2-yl)-phenyl-diethylamine (3j) possess promising anti-inflammatory and analgesic actions. Additionally these derivatives displayed superior GI safety profile (low severity index) with respect to the positive control, Indomethacin. All synthesized compounds showed promising bioactivity score for drug targets by Molinspiration software. Almost all the compounds were predicted to have very low toxicity risk by Osiris online software. Compound number (3i) emerged as a potential candidate for further research as it obeyed Lipinski's rule of five for drug likeness, exhibited promising biological activity in-vivo and showed no risk of toxicity in computer aided screening. PMID:26903774

  20. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-α-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine.

    PubMed

    Wu, Zhongping; Kong, Xiangliang; Zhang, Tong; Ye, Jin; Fang, Zhaoqin; Yang, Xuejun

    2014-02-01

    The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 μg/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-α (TNF-α) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-IκB-α, reducing the degradation of sequestered nuclear factor kappa B (NF-κB) in the cytoplasm, and inhibited the translocation of NF-κB/p65 to the nucleus, the transcription of TNF-α mRNA and the production of TNF-α in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-α production.

  1. Crystal Structures of mPGES-1 Inhibitor Complexes Form a Basis for the Rational Design of Potent Analgesic and Anti-Inflammatory Therapeutics.

    PubMed

    Luz, John Gately; Antonysamy, Stephen; Kuklish, Steven L; Condon, Bradley; Lee, Matthew R; Allison, Dagart; Yu, Xiao-Peng; Chandrasekhar, Srinivasan; Backer, Ryan; Zhang, Aiping; Russell, Marijane; Chang, Shawn S; Harvey, Anita; Sloan, Ashley V; Fisher, Matthew J

    2015-06-11

    Microsomal prostaglandin E synthase 1 (mPGES-1) is an α-helical homotrimeric integral membrane inducible enzyme that catalyzes the formation of prostaglandin E2 (PGE2) from prostaglandin H2 (PGH2). Inhibition of mPGES-1 has been proposed as a therapeutic strategy for the treatment of pain, inflammation, and some cancers. Interest in mPGES-1 inhibition can, in part, be attributed to the potential circumvention of cardiovascular risks associated with anti-inflammatory cyclooxygenase 2 inhibitors (coxibs) by targeting the prostaglandin pathway downstream of PGH2 synthesis and avoiding suppression of antithrombotic prostacyclin production. We determined the crystal structure of mPGES-1 bound to four potent inhibitors in order to understand their structure-activity relationships and provide a framework for the rational design of improved molecules. In addition, we developed a light-scattering-based thermal stability assay to identify molecules for crystallographic studies. PMID:25961169

  2. Investigation on Toxicity and Teratogenicity in Rats of a Retinoid-Polyamine Conjugate with Potent Anti-Inflammatory Properties.

    PubMed

    Petridis, Theodoros; Giannakopoulou, Dimitra; Stamatopoulou, Vassiliki; Grafanaki, Katerina; Kostopoulos, Christos G; Papadaki, Helen; Malavaki, Christina J; Karamanos, Nikos K; Douroumi, Stathianna; Papachristou, Dionysios; Magoulas, George E; Papaioannou, Dionissios; Drainas, Denis

    2016-02-01

    Previous studies have shown that N(1),N(12)-bis(all-trans-retinoyl)spermine (RASP), a retinoid analog, inhibits RNase P activity and angiogenesis in the chicken embryo chorioallantoic membrane, demonstrates anti-tumor activity on prostate cancer cells, and acts as anti-inflammatory agent, being more effective and less toxic than all-trans retinoic acid. In an attempt to further characterize the biological profile of RASP, we tested its effects on organ toxicity and teratogenicity by daily oral gavage of RASP at a level of 50 mg/Kg of body weight in two generations of rats. We found that this compound does not induce changes to the body growth, the appearance of physical features, and the animal's reflexes. Additionally, no substantial histopathological lesions were found in brain, heart, lung, thymus, liver, thyroid gland, adrenal gland, pituitary gland, kidneys, spleen, skin, femora, prostate, testis, epididymis, vagina, uterus, and ovaries of RASP-treated animals. These results suggest RASP, as a promising lead compound for the treatment of several dermatological disorders and certain cancer types, has apparently minimal toxic side-effects as revealed in this two-generation reproduction study in rats. PMID:26762583

  3. Antioxidant and anti-inflammatory effects of Marrubium alysson extracts in high cholesterol-fed rabbits

    PubMed Central

    Essawy, Soha S.; Abo-elmatty, Dina M.; Ghazy, Nabila M.; Badr, Jihan M.; Sterner, Olov

    2013-01-01

    The antioxidant and anti-inflammatory effects of hexane (HEXA), chloroform (CHLORO), ethyl acetate (EA) and total alcoholic (T. ALCOH) extracts of Marrubium alysson in hypercholesterolemic-fed rabbits were evaluated. Hypercholesterolemia was induced in male rabbits by high cholesterol diet (HCD) (350 mg/kg) for 8 weeks. Hypercholesterolemic rabbits were allocated into groups, treated with simvastatin (SIM 5 mg/kg), different extracts of M. alysson at two doses of 250, 500 mg/kg. A normal control group and an HCD control one were used for comparison. Lipid profile, as well as oxidized low density lipoprotein-cholesterol (ox-LDL-C), myeloperoxidase activity (MPO) and superoxide anion production (O2•−), C-reactive protein (CRP) and monocyte chemoattractant protein-1 (MCP-1) were also evaluated. In addition, histological examination of ascending aorta was performed. We found dyslipidemia associated with significant increases in ox-LDL-C 123.5 ± 9.8 nmol MDA/mg non-HDL, MPO activity 0.08 ± 0.05 U/100 mg tissue and O2•− production 3.5 ± 0.3 nmol cytochrome C reduced/min/g tissue × 10−4 in hypercholerterolemic rabbits. In addition, there was a significant increase in CRP 6.6 ± 0.49 μmol/L and MCP-1 190.9 ± 6.4 pg/ml and its mRNA expression in HCD. Intima appeared thick with thick plaques surrounding the intima and luminal narrowing. SIM, EA and HEXA extracts of M. alysson had lipid lowering effect, decrease in ox-LDL-C, MPO, O2•−, CRP and MCP-1 mRNA expression with improvement of the pathological picture. M. alysson enhanced the stability of plaque, had lipid lowering, anti-inflammatory and antioxidant activities. PMID:25473336

  4. Prevention effects of ND-07, a novel drug candidate with a potent antioxidative action and anti-inflammatory action, in animal models of severe acute pancreatitis.

    PubMed

    Lee, Jin Hwan; An, Chun San; Yun, Bok Sun; Kang, Kum Suk; Lee, Young Ae; Won, Sun Mi; Gwag, Byoung Joo; Cho, Sung Ig; Hahm, Ki-Baik

    2012-07-15

    Oxidative stress and inflammation both play major roles in the development of the acute pancreatitis. Currently, a pancreatic enzyme inhibitor with limited efficacy is only clinically available in a few countries, and antioxidants or non-steroidal anti-inflammatory drugs (NSAIDs) provide only partial tissue protection in acute pancreatitis animal models. Here, we introduce a new drug candidate for treating acute pancreatitis named ND-07 [chemical name: 2-acetoxy-5-(2-4-(trifluoromethyl)-phenethylamino)-benzoic acid] that exhibits both potent antioxidative and anti-inflammatory activities. In an electron spin resonance (ESR) study, ND-07 almost blocked hydroxyl radical generation as low as 0.05 μM and significantly suppressed DNA oxidation and cell death in a lipopolysaccharide (LPS)-stimulated pancreatic cell line. In a cerulein plus LPS-induced acute pancreatitis model, ND-07 pretreatment showed significant tissue protective effects, with reductions of serum amylase and lipase levels and pancreatic wet weights. ND-07 not only diminished the plasma levels of malondialdehyde (MDA) and nitric oxide but also significantly decreased prostaglandin E₂ (PGE₂) and expression of tumor necrotizing factor-alpha (TNF-α) in the pancreatic tissue. In a severe acute necrotizing pancreatitis model induced by a choline deficient, ethionine-supplemented (CDE) diet, ND-07 dramatically protected the mortality even without any death, providing attenuation of pancreas, lung, and liver damages as well as the reductions in serum levels of lactate dehydrogenase (LDH), amylase and lipase, MDA levels in the plasma and pancreatic tissues, plasma levels of TNF-α, and interleukin-1 (IL-1β). These findings suggest that current dual synergistic action mechanisms of ND-07 might provide a superior protection for acute pancreatitis than conventional drug treatments. PMID:22575522

  5. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities.

    PubMed

    Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling

    2015-09-16

    As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested.

  6. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities

    PubMed Central

    Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling

    2015-01-01

    As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested. PMID:26389925

  7. A Herbal Composition of Scutellaria baicalensis and Eleutherococcus senticosus Shows Potent Anti-Inflammatory Effects in an Ex Vivo Human Mucosal Tissue Model

    PubMed Central

    Zhang, Nan; Van Crombruggen, Koen; Holtappels, Gabriele; Bachert, Claus

    2012-01-01

    Background. Patients seek an effective alternative to pharmacotherapy including herbal treatment options for allergic rhinitis and rhinosinusitis. Material and Methods. Nasal mucosal tissue was obtained from 12 patients, fragmented, preincubated with tissue culture medium, S. baicalensis and/or E. senticosus and/or vitamin C (each compound 0.2 μg/mL and 2 μg/mL) for 1 hour at 37°C/5% CO2, and stimulated with anti-IgE for 30 minutes and 6 hours to imitate the allergic early and late phases. Furthermore, Staphylococcus aureus superantigen B (SEB) stimulation for 6 hours was used to imitate T-cell activation. Results. The combination of S. baicalensis and E. senticosus had a more potent suppressive effect on the release of PGD2, histamine, and IL-5 than S. baicalensis alone. The combination also resulted in a significant inhibition of SEB-induced cytokines comparable or superior to an established topical corticosteroid, fluticasone propionate. Vitamin C increased ciliary beat frequency, but had no anti-inflammatory effects. Discussion. The combination of S. baicalensis and E. senticosus may be able to significantly block allergic early-and late-phase mediators and substantially suppress the release of proinflammatory, and Th1-, Th2-, and Th17—derived cytokines. PMID:22272213

  8. Potent anti-inflammatory agent escin does not affect the healing of tibia fracture and abdominal wound in an animal model

    PubMed Central

    ZHANG, LEIMING; WANG, HONGSHENG; WANG, TIAN; JIANG, NA; YU, PENGFEI; LIU, FEIYAN; CHONG, YATING; FU, FENGHUA

    2012-01-01

    Escin, a potent anti-inflammatory and anti-edematous agent, has been widely used clinically in preventing inflammatory edema after trauma, such as fracture and surgery. The aim of this study was to investigate whether escin has an inhibitory effect on fracture healing, and whether escin has an inhibitory effect on wound healing after surgery. Male New Zealand white rabbits underwent tibial mid-diaphyseal osteotomy, and were administered escin once per day for 10 days. At weeks 2, 4 and 6, bone fracture healing and bone mineral density were measured. The histologic examination of callus, osteocalcin, alkaline phosphatase, calcium and phosphate in the serum were also assayed. In another experiment, the rats underwent midline laparotomy, and received escin once prior to or after the operation. Six days later, the abdominal incision wounds were excised for measuring hydroxyproline levels. The results showed that there were no significant differences in fracture healing between the model and rabbits administered escin, and escin did not affect the hydroxyproline levels in the abdominal incision wounds of the rats. These findings suggest that escin has no inhibitory effect on fracture and wound healing in animal models. PMID:22969961

  9. Correction: The anti-inflammatory effect of a glycosylation product derived from the high hydrostatic pressure enzymatic hydrolysate of a flatfish byproduct.

    PubMed

    Choe, In-Hu; Jeon, Hyeon Jin; Eom, Sung-Hwan; Han, Young-Ki; Kim, Yoon Sook; Lee, Sang-Hoon

    2016-08-10

    Correction for 'The anti-inflammatory effect of a glycosylation product derived from the high hydrostatic pressure enzymatic hydrolysate of a flatfish byproduct' by In-Hu Choe, et al., Food Funct., 2016, 7, 2557-2565.

  10. A high performance liquid chromatography with ultraviolet method for Eschweilera nana leaves and their anti-inflammatory and antioxidant activities

    PubMed Central

    Outuki, Priscila M.; Lazzeri, Nides S.; de Francisco, Lizziane M. B.; Bersani-Amado, Ciomar A.; Ferreira, Izabel C. P.; Cardoso, Mara Lane C.

    2015-01-01

    Background: Eschweilera nana Miers is a tree widely distributed in Cerrado, Brazil. Objective: In this study, we aimed to describe its phytochemical properties and antioxidant and topical anti-inflammatory effects for the first time, as well validate an high performance liquid chromatography with ultraviolet/visible (HPLC-UV-Vis) method for the separation and quantification of the main components (hyperoside and rutin) in the hydroalcoholic extract of E. nana leaves. Materials and Methods: Structural identification of compounds in E. nana extract was performed by analysis of spectral data by 1H nuclear magnetic resonance, 13C nuclear magnetic resonance and/or ESI/EM. The HPLC-UV-Vis method was validated according International Conference on Harmonization (ICH) parameters. The 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) method were used for determination of in vitro antioxidant activities and the croton oil-induced inflammation for evaluation of in vivo anti-inflammatory effects. Results: Hyperoside, rutin, α-amirin, β-amirin, β-sitosterol, and stigmasterol were identified in the hydroalcoholic extract of E. nana leaves. HPLC-UV-Vis was validated according to ICH parameters. Furthermore, in vitro and in vivo assays demonstrated that the hydroalcoholic extract and methanol fraction showed significant antioxidant and topical anti-inflammatory effects, as they were able to reduce ear edema induced by croton-oil application. Conclusions: This research showed the first phytochemical study of E. nana extract and their biological activities may be associated with the presence of flavonoids in the extracts. PMID:26246741

  11. Anti-inflammatory effect with high intensity focused ultrasound-mediated pulsatile delivery of diclofenac.

    PubMed

    Wang, Chih-Yu; Yang, Chih-Hui; Lin, Yung-Sheng; Chen, Chih-Hsin; Huang, Keng-Shiang

    2012-02-01

    A pulsatile ultrasound controlled drug release platform with diclofenac-loaded alginate microcapsules (fabricated with a home-made electrostatic device, 75% embedded rate) was established to evaluate anti-inflammation efficiency. Better anti-inflammation efficiency was found using the ultrasound system and the drug delivery can be adjusted based on the programmed ultrasound cycle. The results of the in vitro study show that an approx. 30% higher drug release rate was obtained by using continuous ultrasound irradiation (9-Watt, 180 min), and an approx. 16% higher drug release rate was obtained by using pulsatile ultrasound irradiation (9-Watt, 60 min) compared to without ultrasound activation. For the in vivo study, the anti-inflammatory test with carrageenan-induced rat's paw edema shows that diclofenac-loaded microcapsules followed by ultrasound irradiation (9-Watt, 60 min) contributed to an 81% inhibition rate, which was significantly higher than diclofenac only (approx. 60% higher). In addition, because of their heat conducting properties, gold nanoparticles encapsulated in the diclofenac-loaded microcapsules resulted in better drug release efficiency, but tended to depress the anti-inflammation effect.

  12. Anti-inflammatory Diets.

    PubMed

    Sears, Barry

    2015-01-01

    Chronic disease is driven by inflammation. This article will provide an overview on how the balance of macronutrients and omega-6 and omega-3 fatty acids in the diet can alter the expression of inflammatory genes. In particular, how the balance of the protein to glycemic load of a meal can alter the generation of insulin and glucagon and the how the balance of omega-6 and omega-3 fatty acids can effect eicosanoid formation. Clinical results on the reduction of inflammation following anti-inflammatory diets are discussed as well as the molecular targets of anti-inflammatory nutrition. To overcome silent inflammation requires an anti-inflammatory diet (with omega-3s and polyphenols, in particular those of Maqui). The most important aspect of such an anti-inflammatory diet is the stabilization of insulin and reduced intake of omega-6 fatty acids. The ultimate treatment lies in reestablishing hormonal and genetic balance to generate satiety instead of constant hunger. Anti-inflammatory nutrition, balanced 40:30:30 with caloric restriction, should be considered as a form of gene silencing technology, in particular the silencing of the genes involved in the generation of silent inflammation. To this anti-inflammatory diet foundation supplemental omega-3 fatty acids at the level of 2-3 g of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) per day should be added. Finally, a diet rich in colorful, nonstarchy vegetables would contribute adequate amounts of polyphenols to help not only to inhibit nuclear factor (NF)-κB (primary molecular target of inflammation) but also activate AMP kinase. Understanding the impact of an anti-inflammatory diet on silent inflammation can elevate the diet from simply a source of calories to being on the cutting edge of gene-silencing technology. PMID:26400429

  13. [The anti-inflammatory effect of auranofin].

    PubMed

    Hiroi, J; Ohara, K; Fujitsu, T; Hirai, O; Satoh, S; Ochi, T; Senoh, H; Mori, J; Kikuchi, H

    1985-12-01

    The anti-inflammatory effects of auranofin were studied and compared with those of indomethacin, gold sodium thiomalate (GST) and D-penicillamine. Auranofin was active as indomethacin in inhibiting carrageenan induced paw edema in rats, but was less potent than indomethacin in inhibiting UV-induced erythema in guinea pigs. Auranofin inhibited Arthus type paw edema and reverse PCA reaction in rats, on which indomethacin was ineffective. The inhibitory activity of auranofin on adjuvant arthritis was weaker than that of indomethacin. In in vitro experiments, auranofin did not show any suppression of cyclooxygenase activity, but was capable of suppression of lysosomal enzyme release and chemotaxis of neutrophils and macrophages. In addition to these anti-inflammatory activities, auranofin had almost equal anti-analgesic and anti-pyretic activity to that of indomethacin. The above results indicated that the anti-inflammatory profiles of auranofin and indomethacin differ, so we can expect new therapeutic activities of auranofin. GST had similar anti-inflammatory and anti-analgesic profiles to those of auranofin; however, the activities were less potent than auranofin and devoid of anti-pyretic activity. D-penicillamine did not show any anti-inflammatory, anti-analgesic or anti-pyretic activity. PMID:3937805

  14. Gaseous mediator-based anti-inflammatory drugs.

    PubMed

    Sulaieva, Oksana; Wallace, John L

    2015-12-01

    Among the most commonly used drugs, nonsteroidal anti-inflammatory drugs (NSAIDs) remain problematic because of their propensity to cause serious adverse events, principally affecting the gastrointestinal tract. In recent years, the discovery of potent anti-inflammatory and cytoprotective effects of endogenous gaseous mediators (nitric oxide, hydrogen sulfide, carbon monoxide) stimulated efforts to develop novel, combination NSAIDs that suppress prostaglandin synthesis (producing anti-inflammatory and analgesic effects) and release one or more of the cytoprotective gaseous mediators. Gaseous mediator-based anti-inflammatory drugs have reached the human clinical trial stage and show considerable promise as a safer option for treating chronic inflammatory diseases.

  15. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production.

    PubMed

    Säemann, M D; Böhmig, G A; Osterreicher, C H; Burtscher, H; Parolini, O; Diakos, C; Stöckl, J; Hörl, W H; Zlabinger, G J

    2000-12-01

    Cytokines are critical in regulating unresponsiveness versus immunity towards enteric antigens derived from the intestinal flora and ingested food. There is increasing evidence that butyrate, a major metabolite of intestinal bacteria and crucial energy source for gut epithelial cells, also possesses anti-inflammatory properties. Its influence on cytokine production, however, is not established. Here, we report that butyrate strongly inhibits interleukin-12 (IL-12) production by suppression of both IL-12p35 and IL-12p40 mRNA accumulation, but massively enhances IL-10 secretion in Staphylococcus aureus cell-stimulated human monocytes. The effect of butyrate on IL-12 production was irreversible upon the addition of neutralizing antibodies to IL-10 or transforming growth factor b1 and of indomethacin. In anti-CD3-stimulated peripheral blood mononuclear cells, butyrate enhanced IL-10 and IL-4 secretion but reduced the release of IL-2 and interferon-g. The latter effect was in part a result of suppressed IL-12 production but also a result of inhibition of IL-12 receptor expression on T cells. These data demonstrate a novel anti-inflammatory property of butyrate that may have broad implications for the regulation of immune responses in vivo and could be exploited as new therapeutic approach in inflammatory conditions.

  16. Potent anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R. Br. ex Cass., a Q'eqchi' Maya traditional medicine.

    PubMed

    Walshe-Roussel, Brendan; Choueiri, Christine; Saleem, Ammar; Asim, Muhammd; Caal, Federico; Cal, Victor; Rojas, Marco Otarola; Pesek, Todd; Durst, Tony; Arnason, John Thor

    2013-08-01

    The widespread use of Neurolaena lobata (L.) R. Br. ex Cass. by Q'eqchi' Maya and indigenous healers throughout the Caribbean for inflammatory conditions prompted the study of the anti-inflammatory activity of this traditional medicine. The objectives of this study were to conduct a detailed ethnobotanical investigation of the uses of N. lobata by the Q'eqchi' Maya of Belize for a variety of inflammatory symptoms and to evaluate the in vitro anti-inflammatory activity of leaf extract and isolated sesquiterpene lactones. The crude 80% EtOH extract of N. lobata leaves administered at 100 μg/mL reduced LPS-stimulated TNF-α production in THP-1 monocytes by 72% relative to the stimulated vehicle control. Isolated sesquiterpene lactones, neurolenins B, C+D, lobatin B and 9α-hydroxy-8β-isovalerianyloxy-calyculatolide were more active (IC50=0.17-2.32 μM) than the positive control parthenolide (IC50=4.79 μM). The results provide a pharmacological and phytochemical basis for the traditional use of this leaf for inflammatory conditions. PMID:23747054

  17. Potent anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R. Br. ex Cass., a Q'eqchi' Maya traditional medicine.

    PubMed

    Walshe-Roussel, Brendan; Choueiri, Christine; Saleem, Ammar; Asim, Muhammd; Caal, Federico; Cal, Victor; Rojas, Marco Otarola; Pesek, Todd; Durst, Tony; Arnason, John Thor

    2013-08-01

    The widespread use of Neurolaena lobata (L.) R. Br. ex Cass. by Q'eqchi' Maya and indigenous healers throughout the Caribbean for inflammatory conditions prompted the study of the anti-inflammatory activity of this traditional medicine. The objectives of this study were to conduct a detailed ethnobotanical investigation of the uses of N. lobata by the Q'eqchi' Maya of Belize for a variety of inflammatory symptoms and to evaluate the in vitro anti-inflammatory activity of leaf extract and isolated sesquiterpene lactones. The crude 80% EtOH extract of N. lobata leaves administered at 100 μg/mL reduced LPS-stimulated TNF-α production in THP-1 monocytes by 72% relative to the stimulated vehicle control. Isolated sesquiterpene lactones, neurolenins B, C+D, lobatin B and 9α-hydroxy-8β-isovalerianyloxy-calyculatolide were more active (IC50=0.17-2.32 μM) than the positive control parthenolide (IC50=4.79 μM). The results provide a pharmacological and phytochemical basis for the traditional use of this leaf for inflammatory conditions.

  18. Linear, Mannitol-Based Poly(anhydride-esters) with High Ibuprofen Loading and Anti-Inflammatory Activity.

    PubMed

    Stebbins, Nicholas D; Yu, Weiling; Uhrich, Kathryn E

    2015-11-01

    Sugar alcohols, such as mannitol and xylitol, are biocompatible polyols that have been used to make highly cross-linked polyester elastomers and dendrimers for tissue engineering and drug delivery. However, research that utilizes the secondary hydroxyl groups as sites for pendant bioactive attachment and subsequent polymerization is limited. This work is the first report of a linear, completely biodegradable polymer with a sugar alcohol backbone and chemically incorporated pendant bioactives that exhibits sustained bioactive release and high bioactive loading (∼70%). With four pendant esters per repeat unit, this poly(anhydride-ester) has high loading and biodegrades into three biocompatible products: bioactive, sugar alcohol, and alkyl-based diacid. Ibuprofen serves as a representative bioactive, whereas mannitol is a representative polyol. Polymerization was achieved through reaction with (trimethylsilyl)ethoxyacetylene. Drug release via polymer degradation was quantified by high performance liquid chromatography. Additionally, a cytocompatibility study with fibroblast cells was performed to elucidate the polymer's suitability for in vivo use and a cyclooxygenase-2 (COX-2) assay was performed on the degradation media to ensure that released ibuprofen retained its anti-inflammatory activity. This work enables the future development of novel, biodegradable polymers exhibiting two key features: (i) polymer backbones with easily modified pendant groups, such as targeting moieties, and (ii) high drug loading using a multitude of bioactive classes.

  19. Similar Anti-Inflammatory Acute Responses from Moderate-Intensity Continuous and High-Intensity Intermittent Exercise

    PubMed Central

    Cabral-Santos, Carolina; Gerosa-Neto, José; Inoue, Daniela Sayuri; Panissa, Valéria Leme Gonçalves; Gobbo, Luís Alberto; Zagatto, Alessandro Moura; Campos, Eduardo Zapaterra; Lira, Fábio Santos

    2015-01-01

    The purpose of this study was to compare the effect of high-intensity intermittent exercise (HIIE) versus volume matched steady state exercise (SSE) on inflammatory and metabolic responses. Eight physically active male subjects completed two experimental sessions, a 5-km run on a treadmill either continuously (70% vVO2max) or intermittently (1:1 min at vVO2max). Blood samples were collected at rest, immediately, 30 and 60 minutes after the exercise session. Blood was analyzed for glucose, non-ester fatty acid (NEFA), uric acid, lactate, cortisol, and cytokines (IL-6, IL-10 and TNF-α) levels. The lactate levels exhibited higher values immediately post-exercise than at rest (HIIE 1.34 ± 0.24 to 7.11 ± 2.85, and SSE 1.35 ± 0.14 to 4.06±1.60 mmol·L-1, p < 0.05), but HIIE promoted higher values than SSE (p < 0.05); the NEFA levels were higher immediately post-exercise than at rest only in the SSE condition (0.71 ± 0.04 to 0.82±0.09 mEq/L, respectively, p < 0.05), yet, SSE promoted higher values than HIIE immediately after exercise (HIIE 0.72±0.03 vs SSE 0.82±0.09 mEq·L-1, p < 0.05). Glucose and uric acid levels did not show changes under the different conditions (p > 0.05). Cortisol, IL-6, IL-10 and TNF-α levels showed time-dependent changes under the different conditions (p < 0.05), however, the area under the curve of TNF-α in the SSE were higher than HIIE (p < 0.05), and the area under the curve of IL-6 in the HIIE showed higher values than SSE (p < 0.05). In addition, both exercise conditions promote increased IL-10 levels and IL-10/TNF-α ratio (p < 0.05). In conclusion, our results demonstrated that both exercise protocols, when volume is matched, promote similar inflammatory responses, leading to an anti-inflammatory status; however, the metabolic responses are different. Key points Metabolic contribution of both exercise, HIIE and SSE, was different. Both protocols leading to an anti-inflammatory status. HIIE induce a higher energy expenditure take

  20. A versatile high throughput screening system for the simultaneous identification of anti-inflammatory and neuroprotective compounds.

    PubMed

    Hansen, Elizabeth; Krautwald, Martina; Maczurek, Annette E; Stuchbury, Grant; Fromm, Phillip; Steele, Megan; Schulz, Oliver; Garcia, Obdulio Benavente; Castillo, Julian; Körner, Heinrich; Münch, Gerald

    2010-01-01

    In many chronic neurodegenerative diseases including Frontotemporal Dementia and Alzheimer's disease (AD), microglial activation is suggested to be involved in pathogenesis or disease progression. Activated microglia secrete a variety of cytokines, including interleukin-1beta, interleukin-6, and tumor necrosis factor as well as reactive oxygen and nitrogen species (ROS/RNS). ROS and RNS contribute to alterations in neuronal glucose uptake, inhibition of mitochondrial enzymes, a decrease in mitochondrial membrane potential, impaired axonal transport, and synaptic signaling. In addition, ROS act as signaling molecules in pro-inflammatory redox-active signal transduction pathways. To establish a high throughput screening system for anti-inflammatory and neuroprotective compounds, we have constructed an "Enhanced Green Fluorescent protein" (EGFP) expressing neuronal cell line and set up a murine microglia/neuron co-culture system with these EGFP expressing neuronal cells. We show that microglia activation leads to neuronal cell death, which can be conveniently measured by loss of neuronal EGFP fluorescence. Moreover, we used this system to test selected polyphenolic compounds for their ability to downregulate inflammatory markers and to protect neurons against microglial insult. We suggest that this system might allow accelerated drug discovery for the treatment of inflammation-mediated neurodegenerative diseases. PMID:20110593

  1. The role of fatty acids in anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation.

    PubMed

    Gapeyev, Andrew B; Kulagina, Tatiana P; Aripovsky, Alexander V; Chemeris, Nikolay K

    2011-07-01

    The effects of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR; 42.2 GHz, 0.1 mW/cm(2) , exposure duration 20 min) on the fatty acid (FA) composition of thymic cells and blood plasma in normal mice and in mice with peritoneal inflammation were studied. It was found that the exposure of normal mice to EHF EMR increased the content of polyunsaturated FAs (PUFAs) (eicosapentaenoic and docosapentaenoic) in thymic cells. Using a model of zymosan-induced peritoneal inflammation, it was shown that the exposure of mice to EHF EMR significantly increased the content of PUFAs (dihomo-γ-linolenic, arachidonic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic) and reduced the content of monounsaturated FAs (MUFAs) (palmitoleic and oleic) in thymic cells. Changes in the FA composition in the blood plasma were less pronounced and manifested themselves as an increase in the level of saturated FAs during the inflammation. The data obtained support the notion that MUFAs are replaced by PUFAs that can enter into the thymic cells from the external media. Taking into account the fact that the metabolites of PUFAs are lipid messengers actively involved in inflammatory and immune reactions, we assume that the increase in the content of n-3 and n-6 PUFAs in phospholipids of cellular membranes facilitates the realization of anti-inflammatory effects of EHF EMR.

  2. High Strength Multifunctional Multiwalled Hydrogel Tubes: Ion-Triggered Shape Memory, Antibacterial, and Anti-inflammatory Efficacies.

    PubMed

    Xu, Bing; Li, Yongmao; Gao, Fei; Zhai, Xinyun; Sun, Mengge; Lu, William; Cao, Zhiqiang; Liu, Wenguang

    2015-08-01

    In this study, ion-responsive hydrogen bonding strengthened hydrogels (termed as PVV) were synthesized by one-pot copolymerization of 2-vinyl-4,6-diamino-1,3,5-triazine (VDT), 1-vinylimidazole (VI), and polyethylene glycol diacrylate. The diaminotriazine-diaminotriazine (DAT-DAT) H-bonding interaction and copolymerization of VI contributed to a notable increase in comprehensive performances including tensile/compressive strength, elasticity, modulus, and fracture energy. In addition, introducing mM levels of zinc ions could further increase the mechanical properties of PVV hydrogels and fix a variety of temporary shapes due to the strong coordination of zinc with imidazole. The release of zinc ions from the hydrogel contributed to an antibacterial effect, without compromising the shape memory effect. Remarkably, a multiwalled hydrogel tube (MWHT) fixed with Zn(2+) demonstrated much higher flexural strengths and a more sustainable release of zinc ions than the solid hydrogel cylinder (SHC). A Zn(2+)-fixed MWHT was implanted subcutaneously in rats, and it was found that the Zn(2+)-fixed MWHT exhibited anti-inflammatory and wound healing efficacies. The reported high strength hydrogel with integrated functions holds potential as a tissue engineering scaffold.

  3. The pharmacological profile of 2-(8-methyl-10,11-dihydro-11-oxodibenz[b,f]oxepin-2-yl)propionic acid (AD-1590), a new non-steroidal anti-inflammatory agent with potent antipyretic activity.

    PubMed

    Nakamura, H; Yokoyama, Y; Motoyoshi, S; Ishii, K; Imazu, C; Seto, Y; Kadokawa, T; Shimizu, M

    1983-01-01

    Anti-inflammatory, analgesic, antipyretic and gastrointestinal ulcerogenic activities of 2-(8-methyl-10,11-dihydro-11-oxodibenz(b,f]oxepin-2-yl)propionic acid (AD-1590), a new non-steroidal anti-inflammatory drug, were compared with indomethacin (INN: indomethacin) and other non-steroidal anti-inflammatory drugs (NSAID) in experimental animals. AD-1590 showed the potent inhibitory activity on acute and subacute inflammation such as carrageenin hind paw edema (oral ED50 = 1.35 mg/kg), acetic acid-induced increased vascular permeability (0.205 mg/kg), UV-erythema (0.295 mg/kg) and felt pellet-induced granuloma formation (1.7 mg/kg), and its potency was on the whole 2 to 3 times that of indomethacin. Oral analgesic ED50-values of AD-1590 were 0.245, 8.32 and 13.9 mg/kg in the writhing tests, and 2.45 mg/kg in the silver nitrate-induced arthritic pain test. Analgesic potency of AD-1590 was on the whole comparable to that of indomethacin. Against the pyrexia caused by two kinds of pyrogens (yeast and adjuvant), AD-1590 exerted a strong antipyretic action at oral doses as low as 0.02 to 0.1 mg/kg, and its potency (ED50 equal 0.0210 and 0.0406 mg/kg) was 8.7 to 11 times that of indomethacin. , AD-1590 displayed the antipyretic activity at low doses which were widely different from its anti-inflammatory and analgesic effective dose. The body temperature was not affected by 20 mg/kg p.o. of AD-1590 in the afebrile animals. AD-1590 was the strongest antipyretic drug among 10 NSAID tested. In rats, AD-1590 produced gastrointestinal ulcer similar to indomethacin, and its gastric ulcerogenicity (SUD50 equal 13.8 mg/kg p.o.) was about one-half that of indomethacin. The activity of AD-1590 in the fecal occult bleeding test in beagle dogs was weaker than that of indomethacin. The potency of AD-1590 (IC50 equal 0.78 mumol/l) as a prostaglandin synthetase inhibitor was about 2.7 times that of indomethacin in the in vitro test. The safety index (SUD50/ED50) of AD-1590 was larger than

  4. Low volume-high intensity interval exercise elicits antioxidant and anti-inflammatory effects in humans.

    PubMed

    Wadley, Alex J; Chen, Yu-Wen; Lip, Gregory Y H; Fisher, James P; Aldred, Sarah

    2016-01-01

    The purpose of the present study was to compare acute changes in oxidative stress and inflammation in response to steady state and low volume, high intensity interval exercise (LV-HIIE). Untrained healthy males (n = 10, mean ± s: age 22 ± 3 years; VO2MAX 42.7 ± 5.0 ml · kg(-1) · min(-1)) undertook three exercise bouts: a bout of LV-HIIE (10 × 1 min 90% VO2MAX intervals) and two energy-matched steady-state cycling bouts at a moderate (60% VO2MAX; 27 min, MOD) and high (80% VO2MAX; 20 min, HIGH) intensity on separate days. Markers of oxidative stress, inflammation and physiological stress were assessed before, at the end of exercise and 30 min post-exercise (post+30). At the end of all exercise bouts, significant changes in lipid hydroperoxides (LOOH) and protein carbonyls (PCs) (LOOH (nM): MOD +0.36; HIGH +3.09; LV-HIIE +5.51 and PC (nmol · mg(-1) protein): MOD -0.24; HIGH -0.11; LV-HIIE -0.37) were observed. Total antioxidant capacity (TAC) increased post+30, relative to the end of all exercise bouts (TAC (µM): MOD +189; HIGH +135; LV-HIIE +102). Interleukin (IL)-6 and IL-10 increased post+30 in HIGH and LV-HIIE only (P < 0.05). HIGH caused the greatest lymphocytosis, adrenaline and cardiovascular response (P < 0.05). At a reduced energy cost and physiological stress, LV-HIIE elicited similar cytokine and oxidative stress responses to HIGH.

  5. Anti-inflammatory and antiobesity effects of mulberry leaf and fruit extract on high fat diet-induced obesity.

    PubMed

    Lim, Hyun Hwa; Lee, Sung Ok; Kim, Sun Yeou; Yang, Soo Jin; Lim, Yunsook

    2013-10-01

    The purpose of this study was to investigate the anti-inflammatory and antiobesity effect of combinational mulberry leaf extract (MLE) and mulberry fruit extract (MFE) in a high-fat (HF) diet-induced obese mice. Mice were fed a control diet or a HF diet for nine weeks. After obesity was induced, the mice were administered with single MLE at low dose (133 mg/kg/day, LMLE) and high dose (333 mg/kg/day, HMLE) or combinational MLE and MFE (MLFE) at low dose (133 mg MLE and 67 mg MFE/kg/day, LMLFE) and high dose (333 mg MLE and 167 mg MFE/kg/day, HMLFE) by stomach gavage for 12 weeks. The mulberry leaf and fruit extract treatment for 12 weeks did not show liver toxicity. The single MLE and combinational MLFE treatments significantly decreased plasma triglyceride, liver lipid peroxidation levels and adipocyte size and improved hepatic steatosis as compared with the HF group. The combinational MLFE treatment significantly decreased body weight gain, fasting plasma glucose and insulin, and homeostasis model assessment of insulin resistance. HMLFE treatment significantly improved glucose control during intraperitoneal glucose tolerance test compared with the HF group. Moreover, HMLFE treatment reduced protein levels of oxidative stress markers (manganese superoxide dismutase) and inflammatory markers (monocyte chemoattractant protein-1, inducible nitric oxide synthase, C-reactive protein, tumour necrosis factor-α and interleukin-1) in liver and adipose tissue. Taken together, combinational MLFE treatment has potential antiobesity and antidiabetic effects through modulation of obesity-induced inflammation and oxidative stress in HF diet-induced obesity.

  6. Anti-inflammatory and anti-diabetic effects of brown seaweeds in high-fat diet-induced obese mice

    PubMed Central

    Oh, Ji-Hyun; Kim, Jaehoon

    2016-01-01

    BACKGROUND/OBJECTIVES Seaweeds have been reported to have various health beneficial effects. In this study, we investigated the potential anti-obesity and anti-inflammatory effects of four types of domestic brown seaweeds in a high-fat diet-induced obese mouse model and bone marrow-derived macrophages (BMDM). MATERIALS/METHODS Male C57BL/6N mice were fed low-fat diet (LFD), high-fat diet (HFD) or HFD containing Undaria Pinnatifida, HFD containing Laminaria Japonica (LJ), HFD containing Sargassum Fulvellum, or HFD containing Hizikia Fusiforme (HF) for 16 weeks. RESULTS Brown seaweed supplementation did not affect long-term HFD-associated changes in body weight or adiposity, although mice fed HFD + LJ or HFD + HF gained slightly less body weight compared with those fed HFD at the beginning of feeding. Despite being obese, mice fed HFD + LJ appeared to show improved insulin sensitivity compared to mice fed HFD. Consistently, we observed significantly reduced blood glucose concentrations in mice fed HFD + LJ compared with those of mice fed HFD. Although no significant differences in adipocyte size were detected among the HFD-fed groups, consumption of seaweeds decreased formation of HFD-induced crown-like structures in gonadal adipose tissue as well as plasma inflammatory cytokines. BMDM from mice fed HFDs with seaweeds showed differential regulation of pro-inflammatory cytokines such as IL-1β and IL-6 compared with BMDM from mice fed HFD by LPS stimulation. CONCLUSION Although seaweed consumption did not prevent long-term HFD-induced obesity in C57BL/6N mice, it reduced insulin resistance (IR) and circulation of pro-inflammatory cytokines. Therefore, seaweeds may ameliorate systemic inflammation and IR in obesity partially due to inhibition of inflammatory signaling in adipose tissue cells as well as bone marrow-derived immune cells. PMID:26865915

  7. Antihyperglycemic and Anti-Inflammatory Effects of Standardized Curcuma xanthorrhiza Roxb. Extract and Its Active Compound Xanthorrhizol in High-Fat Diet-Induced Obese Mice

    PubMed Central

    2014-01-01

    Xanthorrhizol, a natural compound isolated from Curcuma xanthorrhiza Roxb. (Java turmeric), has been reported to possess antioxidant and anticancer properties; however, its effects on metabolic disorders remain unknown. The aim of the present study was to evaluate the effects of xanthorrhizol (XAN) and C. xanthorrhiza extract (CXE) with standardized XAN on hyperglycemia and inflammatory markers in high-fat diet- (HFD-) induced obese mice. Treatment with XAN (10 or 25 mg/kg/day) or CXE (50 or 100 mg/kg/day) significantly decreased fasting and postprandial blood glucose levels in HFD-induced obese mice. XAN and CXE treatments also lowered insulin, glucose, free fatty acid (FFA), and triglyceride (TG) levels in serum. Epididymal fat pad and adipocyte size were decreased by high doses of XAN (26.6% and 20.1%) and CXE (25.8% and 22.5%), respectively. XAN and CXE treatment also suppressed the development of fatty liver by decreasing liver fat accumulation. Moreover, XAN and CXE significantly inhibited production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and C-reactive protein (CRP) in adipose tissue (27.8–82.7%), liver (43.9–84.7%), and muscle (65.2–92.5%). Overall, these results suggest that XAN and CXE, with their antihyperglycemic and anti-inflammatory activities, might be used as potent antidiabetic agents for the treatment of type 2 diabetes. PMID:25053966

  8. Anti-inflammatory effect of water-soluble complex of 1'-acetoxychavicol acetate with highly branched β-1,3-glucan on contact dermatitis.

    PubMed

    Li, Jiawei; Aizawa, Yui; Hiramoto, Keiichi; Kasahara, Emiko; Tsuruta, Daisuke; Suzuki, Toshio; Ikeda, Atsushi; Azuma, Hideki; Nagasaki, Takeshi

    2015-02-01

    The anti-inflammatory effect on contact dermatitis of the water solubilized 1'-Acetoxychavicol Acetate (ACA) by complexation with β-1,3-glucan isolated form Aureobasidium pullulans black yeast is reported. It is well-known that ACA possesses a function to inhibit the activation of NF-κB by which genes encoding proinflammatory cytokines, chemokines, and growth factors are regulated. However, because ACA is quite insoluble in water, its usefulness has been extremely limited. On the other hand, a triple-helical polysaccharide β-1,3-glucan can include hydrophobic compounds into intrastrand hydrophobic cavity and solubilize poorly water-soluble compounds. In this study, solubilization of ACA by complexation with highly branched β-1,3-glucan was achieved. The effect of anti-inflammatory response of water-soluble ACA complex with β-1,3-glucan was confirmed in vitro and in vivo.

  9. PXS-4681A, a potent and selective mechanism-based inhibitor of SSAO/VAP-1 with anti-inflammatory effects in vivo.

    PubMed

    Foot, Jonathan S; Yow, Tin T; Schilter, Heidi; Buson, Alberto; Deodhar, Mandar; Findlay, Alison D; Guo, Lily; McDonald, Ian A; Turner, Craig I; Zhou, Wenbin; Jarolimek, Wolfgang

    2013-11-01

    Semicarbazide-sensitive amine oxidase (SSAO), also known as vascular adhesion protein-1 (VAP-1), is a member of the copper-dependent amine oxidase family that is associated with various forms of inflammation and fibrosis. To investigate the therapeutic potential of SSAO/VAP-1 inhibition, potent and selective inhibitors with drug-like properties are required. PXS-4681A [(Z)-4-(2-(aminomethyl)-3-fluoroallyloxy)benzenesulfonamide hydrochloride] is a mechanism-based inhibitor of enzyme function with a pharmacokinetic and pharmacodynamic profile that ensures complete, long-lasting inhibition of the enzyme after a single low dose in vivo. PXS-4681A irreversibly inhibits the enzyme with an apparent Ki of 37 nM and a kinact of 0.26 min(-1) with no observed turnover in vitro. It is highly selective for SSAO/VAP-1 when profiled against related amine oxidases, ion channels, and seven-transmembrane domain receptors, and is superior to previously reported inhibitors. In mouse models of lung inflammation and localized inflammation, dosing of this molecule at 2 mg/kg attenuates neutrophil migration, tumor necrosis factor-α, and interleukin-6 levels. These results demonstrate the drug-like properties of PXS-4681A and its potential use in the treatment of inflammation.

  10. Low-molecular-weight fucoidan and high-stability fucoxanthin from brown seaweed exert prebiotics and anti-inflammatory activities in Caco-2 cells

    PubMed Central

    Hwang, Pai-An; Phan, Nam Nhut; Lu, Wen-Jung; Ngoc Hieu, Bui Thi; Lin, Yen-Chang

    2016-01-01

    Background The aim of this study is to investigate the anti-inflammatory effects of low-molecular-weight fucoidan (LMF) and high-stability fucoxanthin (HS-Fucox) in a lipopolysaccharide-induced inflammatory Caco-2 cell line co-culture with B. lactis. Methods We used various methods such as transepithelial resistance (TER) assay, cytokine secretion assay, and tight junction protein mRNA expression assay to examine LMF and HS-Fucox anti-inflammatory properties. Results LMF and HS-Fucox activated probiotic growth and reduced the inflammation of the intestinal epithelial cells. Moreover, the combination of LMFHS-Fucox dramatically enhanced the intestinal epithelial barrier and immune function against the lipopolysaccharide effect by inhibiting IL-1β and TNF-α and promoting IL-10 and IFN-γ. Conclusion These findings suggested that LMF and HS-Fucox, alone or in combination, could be the potential natural compounds to enhance the immune system and have an anti-inflammatory effect on the intestinal cells. PMID:27487850

  11. Mushrooms: A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications

    PubMed Central

    Elsayed, Elsayed A.; El Enshasy, Hesham; Wadaan, Mohammad A. M.; Aziz, Ramlan

    2014-01-01

    For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents. PMID:25505823

  12. Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications.

    PubMed

    Elsayed, Elsayed A; El Enshasy, Hesham; Wadaan, Mohammad A M; Aziz, Ramlan

    2014-01-01

    For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents.

  13. Anti-Inflammatory Iridoids of Botanical Origin

    PubMed Central

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer’s disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective anti-inflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  14. Molecular mechanisms of inflammation. Anti-inflammatory benefits of virgin olive oil and the phenolic compound oleocanthal.

    PubMed

    Lucas, Lisa; Russell, Aaron; Keast, Russell

    2011-01-01

    Chronic inflammation is a critical factor in the pathogenesis of many inflammatory disease states including cardiovascular disease, cancer, diabetes, degenerative joint diseases and neurodegenerative diseases. Chronic inflammatory states are poorly understood, however it is known that dietary habits can evoke or attenuate inflammatory responses. Popular methods to deal with inflammation and its associated symptoms involve the use of non steroidal anti-inflammatory drugs, however the use of these drugs are associated with severe side effects. Therefore, investigations concerned with natural methods of inflammatory control are warranted. A traditional Mediterranean diet has been shown to confer some protection against the pathology of chronic diseases through the attenuation of pro-inflammatory mediators and this has been partially attributed to the high intake of virgin olive oil accompanying this dietary regime. Virgin olive oil contains numerous phenolic compounds that exert potent anti-inflammatory actions. Of interest to this paper is the recently discovered phenolic compound oleocanthal. Oleocanthal is contained in virgin olive oil and possesses similar anti-inflammatory properties to ibuprofen. This pharmacological similarity has provoked interest in oleocanthal and the few studies conducted thus far have verified its anti-inflammatory and potential therapeutic actions. A review of the health benefits of the Mediterranean diet and anti-inflammatory properties of virgin olive oil is presented with the additional emphasis on the pharmacological and anti-inflammatory properties of the phenolic compound oleocanthal. PMID:21443487

  15. Evaluation of Caesalpinia bonducella flower extract for anti-inflammatory action in rats and its high performance thin layer chromatography chemical fingerprinting

    PubMed Central

    Arunadevi, Rathinam; Murugammal, Shanmugam; Kumar, Dinesh; Tandan, Surendra Kumar

    2015-01-01

    Objective: The study is aimed to evaluate anti-inflammatory activity of Caesalpinia bonducella Fleming (Caesalpiniaceae) flower extract (CBFE) and to study its effect on radiographic outcome in adjuvant induced arthritis and authentication by high performance thin layer chromatography (HPTLC) chemical fingerprinting. Materials and Methods: CBFE was administered orally (30, 100, and 300 mg/kg b.wt.) and tested for its anti-inflammatory activity in carrageenan-induced inflammation, cotton pellet induced chronic granulomatous inflammation and autacoids-induced inflammation. Effect on radiographic outcome was tested in adjuvant-induced arthritis. CBFE was HPTLC fingerprinted in suitable solvent system. Result: In carrageenan-induced inflammation, CBFE produced significant inhibition in edema volume at all the doses (30, 100 and 300 mg/kg b.wt.) and percentage of inhibition was 28.68, 31.00, and 22.48, respectively as compared to control at 5 h of its administration. In cotton pellet granuloma assay, CBFE significantly decreased the granuloma weight at 300 mg/kg dose level by 22.53%. CBFE (300 mg/kg) caused significant inhibition by 37.5, 44.44, and 35.29% edema volume, at ½, 1 and 3 h after 5-hydroxytryptamine injection, respectively. Radiographic score of animals treated with 300 mg/kg CBFE was significantly decreased when compared to arthritic control animals. Conclusion: The extract was found to possess significant anti-inflammatory activity. CBFE treatment improved the bony architecture in adjuvant-induced arthritis in rats. The developed HPTLC fingerprint would be helpful in the authentication of C. bonducella flower extract. PMID:26729956

  16. Structural insights into the interaction between a potent anti-inflammatory protein, viral CC chemokine inhibitor (vCCI), and the human CC chemokine, Eotaxin-1.

    PubMed

    Kuo, Nai-Wei; Gao, Yong-Guang; Schill, Megan S; Isern, Nancy; Dupureur, Cynthia M; Liwang, Patricia J

    2014-03-01

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirus-encoded protein viral CC chemokine inhibitor (vCCI), a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes and may represent a potent method to stop inflammation. Previously, our structure of the vCCI·MIP-1β (macrophage inflammatory protein-1β) complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1β N terminus, 20s region and 40s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), a CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI·MIP-1β complex and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin-1. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1 (monocyte chemoattractant protein-1), MIP-1β, and RANTES (regulated on activation normal T cell expressed and secreted), were determined as 1.1, 1.2, and 0.22 nm, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and multiple CC chemokines.

  17. Structural Insights into the Interaction Between a Potent Anti-Inflammatory Protein, Viral CC Chemokine Inhibitor (vCCI), and the Human CC Chemokine, Eotaxin-1

    SciTech Connect

    Kuo, Nai-Wei; Gao, Yong; Schill, Megan S.; Isern, Nancy G.; Dupureur, Cynthia M.; Liwang, Patricia J.

    2014-01-30

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirusencoded protein vCCI, a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes, and may represent a potent method to stop inflammation. Previously, our structure of the vCCI:MIP-1β complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1βN-terminus, 20’s region and 40’s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), another CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI:MIP-1βcomplex, and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin. Compared to wild-type eotaxin, single, double, or triple mutations at these critical charged residues weaken the binding. One exception is the K47A mutation that exhibits increased affinity for vCCI, which can be explained structurally. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1, MIP-1β and RANTES, were determined as 1.09 nM, 1.16 nM, and 0.22 nM, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and different CC chemokines.

  18. Anti-inflammatory iridoids of botanical origin.

    PubMed

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer's disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective antiinflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo.

  19. Anti-inflammatory iridoids of botanical origin.

    PubMed

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer's disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective antiinflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  20. The anti-inflammatory effect of a glycosylation product derived from the high hydrostatic pressure enzymatic hydrolysate of a flatfish byproduct.

    PubMed

    Choe, In-Hu; Jeon, Hyeon Jin; Eom, Sung-Hwan; Han, Young-Ki; Kim, Yoon Sook; Lee, Sang-Hoon

    2016-06-15

    In this study, flatfish byproducts were hydrolyzed by Protamex at high hydrostatic pressure and glycosylated with ribose to utilize the protein of flatfish byproducts as a nutraceutical. We investigated the anti-inflammatory effects of glycosylated fish byproduct protein hydrolysate (GFPH) and its anti-inflammatory mechanisms were elucidated in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophage. The results showed that GFPH suppresses LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) dose-dependently. The enzyme-linked immunosorbent assay (ELISA) kit clearly demonstrated that GFPH significantly reduced the production of pro-inflammatory cytokines such as, interleukin (IL)-6, interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1. Moreover, GFPH reduced nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. These results indicate that the inhibitory effects of GFPH on LPS-induced NO and PGE2 production might be due to the suppression of the NF-κB and MAPKs signaling pathways. Therefore, these results suggest that flatfish byproducts are latent bioactive resources and GFPH may have potential as a therapeutic agent in the treatment of various inflammatory diseases.

  1. First evidence for the anti-inflammatory activity of fucoxanthin in high-fat-diet-induced obesity in mice and the antioxidant functions in PC12 cells.

    PubMed

    Tan, Cong-ping; Hou, Yun-hua

    2014-04-01

    Obesity, characterized as a state of low-level inflammation, is a powerful determinant influencing the development of insulin resistance and progression to type 2 diabetes. The purpose of the present study was to investigate the anti-inflammatory activity of fucoxanthin in experimental high-fat-diet-induced obesity in mice and antioxidant activity in PC12 cells under oxidative stress situation. The anti-inflammatory potential of fucoxanthin in the regulation of maleic dialdehyde (MDA), polymorphonuclear cells (PMNs), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), and cyclooxygenase-2 (COX-2) was determined by ELISA. Fucoxanthin significantly inhibited obesity-induced upregulation of the production of IL-1β, TNF-α, iNOS, and COX-2. Moreover, fucoxanthin suppressed MDA and infiltration of PMNs. The protective effects were associated with lack of hypertrophy and crown-like structures in mammary gland. At the same time, fucoxanthin showed an advantage of antioxidant activity in PC12 cells under oxidative stress situation. These results suggest that supplementation of fucoxanthin is a promising strategy for blocking macrophage-mediated inflammation and inflammation-induced obesity and its associated complications.

  2. Two new proanthocyanidin trimers isolated from Cistus incanus L. demonstrate potent anti-inflammatory activity and selectivity to cyclooxygenase isoenzymes inhibition.

    PubMed

    Mansoor, K A; Matalka, K Z; Qa'dan, F S; Awad, R; Schmidt, M

    2016-09-01

    Two new proanthocyanidin trimers have been isolated from Cistus incanus herb; gallocatechin-(4α→6)-gallocatechin-(4α→8)-gallocatechin (compound 1) and epigallocatechin-3-O-gallate-(4ß→8)-epigallocatechin-3-O-gallate-(4ß→8)-gallocatechin (compound 2). The structures were determined on the basis of 1D- and 2D-NMR (HSQC, HMBC) of their peracetylated derivatives, MALDI-TOF-MS and by acid-catalysed degradation with phloroglucinol. A more abundant proanthocyanidin oligomer was also isolated, purified and its chemical constitution studied by (13)C-NMR and phloroglucinol degradation. The mean molecular weight of the polymer was estimated to be about 7 to 8 flavan-3-ol-units with a ratio of procyanidin : prodelphinidin units at 1:5, some of which are derivatised by gallic acid. Water extract and higher oligomeric proanthocyanidin fractions of C. incanus significantly inhibited TPA-induced oedema when applied topically at doses of 0.5 and 1 mg/ear in mice. Furthermore, the extracts and the pure compounds inhibited COX-1 and COX-2 activities. In addition, compound 2 exhibited an IC50 of 4.5 μM against COX-2 indicating its high selectivity towards COX-2. PMID:26414773

  3. High Spinal Anesthesia Enhances Anti-Inflammatory Responses in Patients Undergoing Coronary Artery Bypass Graft Surgery and Aortic Valve Replacement: Randomized Pilot Study

    PubMed Central

    Lee, Trevor W. R.; Kowalski, Stephen; Falk, Kelsey; Maguire, Doug; Freed, Darren H.; HayGlass, Kent T.

    2016-01-01

    Background Cardiac surgery induces many physiologic changes including major inflammatory and sympathetic nervous system responses. Here, we conducted a single-centre pilot study to generate hypotheses on the potential immune impact of adding high spinal anaesthesia to general anaesthesia during cardiac surgery in adults. We hypothesized that this strategy, previously shown to blunt the sympathetic response and improve pain management, could reduce the undesirable systemic inflammatory responses caused by cardiac surgery. Methods This prospective randomized unblinded pilot study was conducted on 14 patients undergoing cardiac surgery for coronary artery bypass grafting and/or aortic valve replacement secondary to severe aortic stenosis. The primary outcome measures examined longitudinally were serum pro-inflammatory (IL-6, IL-1b, CCL2), anti-inflammatory (IL-10, TNF-RII, IL-1Ra), acute phase protein (CRP, PTX3) and cardiovascular risk (sST2) biomarkers. Results The kinetics of pro- and anti-inflammatory biomarker was determined following surgery. All pro-inflammatory and acute phase reactant biomarker responses induced by surgical stress were indistinguishable in intensity and duration between control groups and those who also received high spinal anaesthesia. Conversely, IL-10 levels were markedly elevated in both intensity and duration in the group receiving high spinal anesthesia (p = 0.005). Conclusions This hypothesis generating pilot study suggests that high spinal anesthesia can alter the net inflammatory response that results from cardiac surgery. In appropriately selected populations, this may add incremental benefit by dampening the net systemic inflammatory response during the week following surgery. Larger population studies, powered to assess immune, physiologic and clinical outcomes in both acute and longer term settings, will be required to better assess potential benefits of incorporating high spinal anesthesia. Trial Registration Clinical

  4. Enhanced Anti-inflammatory Effects of γ-irradiated Pig Placenta Extracts

    PubMed Central

    Kim, Youn Kyu; Kim, Chang-Kyu; Oh, Yu-Kyung

    2015-01-01

    Porcine placenta extract (PPE) is known to possess anti-inflammatory properties owing to its high concentration of bioactive substances. However, the need to eliminate blood-borne infectious agents while maintaining biological efficacy raises concerns about the optimal method for sterilizing PPE. Therefore, the objective of this study was to compare the effects of the standard pressurized heat (autoclaving) method of sterilization with γ-irradiation on the anti-inflammatory effects of PPE. The anti-inflammatory actions of these two preparations of PPE were evaluated by measuring their inhibitory effects on the production of NO, the expression of iNOS protein, and the expression of iNOS, COX2, TNF-α, IL-1β, and IL-6 mRNA in lipopolysaccharide-stimulated RAW 264.7 cells. Compared with autoclaved PPE, γ-irradiated PPE showed significantly greater inhibition of NO production and iNOS protein expression, and produced a greater reduction in the expression of iNOS, COX2, TNF-α, IL-1β, and IL-6 mRNA. These results provide evidence that the sterilization process is crucial in determining the biological activity of PPE, especially its anti-inflammatory activity. Collectively, our data suggest that γ-irradiated PPE acts at the transcriptional level to effectively and potently suppresses the production of NO and the expression of pro-inflammatory cytokines. PMID:26761842

  5. Anti-inflammatory and immune-regulatory mechanisms prevent contact hypersensitivity to Arnica montana L.

    PubMed

    Lass, Christian; Vocanson, Marc; Wagner, Steffen; Schempp, Christoph M; Nicolas, Jean-Francois; Merfort, Irmgard; Martin, Stefan F

    2008-10-01

    Sesquiterpene lactones (SL), secondary plant metabolites from flowerheads of Arnica, exert anti-inflammatory effects mainly by preventing nuclear factor (NF)-kappaB activation because of alkylation of the p65 subunit. Despite its known immunosuppressive action, Arnica has been classified as a plant with strong potency to induce allergic contact dermatitis. Here we examined the dual role of SL as anti-inflammatory compounds and contact allergens in vitro and in vivo. We tested the anti-inflammatory and allergenic potential of SL in the mouse contact hypersensitivity model. We also used dendritic cells to study the activation of NF-kappaB and the secretion of interleukin (IL)-12 in the presence of different doses of SL in vitro. Arnica tinctures and SL potently suppressed NF-kappaB activation and IL-12 production in dendritic cells at high concentrations, but had immunostimulatory effects at low concentrations. Contact hypersensitivity could not be induced in the mouse model, even when Arnica tinctures or SL were applied undiluted to inflamed skin. In contrast, Arnica tinctures suppressed contact hypersensitivity to the strong contact sensitizer trinitrochlorobenzene and activation of dendritic cells. However, contact hypersensitivity to Arnica tincture could be induced in acutely CD4-depleted MHC II knockout mice. These results suggest that induction of contact hypersensitivity by Arnica is prevented by its anti-inflammatory effect and immunosuppression as a result of immune regulation in immunocompetent mice.

  6. Anti-inflammatory Flavonoids Isolated from Passiflora foetida.

    PubMed

    Nguyen, Thi Yen; To, Dao Cuong; Tran, Manh Hung; Lee, Joo Sang; Lee, Jeong Hyung; Kim, Jeong Ah; Woo, Mi Hee; Min, Byung Sun

    2015-06-01

    In this study, we evaluated the anti-inflammatory activity of the soluble ethyl acetate fraction and chemical components of the stem bark of Passiflora foetida (Passifloraceae). Ten flavonoids (1-10) were isolated by various chromatographic techniques, and their structures were determined based on spectroscopic analyses by using nuclear magnetic resonance (NMR). Luteolin (2) and chrysoeriol (3) showed the most potent inhibition of nitric oxide (NO) production in macrophage cell line, RAW264.7, with half maximal inhibitor concentration (IC50) values of 1.2 and 3.1 μM, respectively. These compounds suppressed lipopolysaccharide (LPS)-induced inducible NO synthase (iNOS) expression at the transcription level. Our research indicates that the stem bark of P. foetida has significant anti-inflammatory properties, suggesting that its flavonoids may have anti-inflammatory benefits. PMID:26197519

  7. Modifying anti-inflammatory effect of Diclofenac with Murraya koenigii.

    PubMed

    Kaur, Ginpreet; Daftardar, Saloni; Barve, Kalyani H

    2014-01-01

    Murraya koenigii (Curry leaves) has been widely used in Asian countries for the treatment of some ailments such as diabetes and hypertension. In the present study, leaves of Murraya koenigii were extracted with ethanol and evaluated for anti-inflammatory activity in rats using carrageenan induced paw edema method. Ethanolic extract showed a potent anti-inflammatory activity at third hour after carrageenan administration when compared with the standard drug, Diclofenac. The percent inhibition of paw volume was found to be 84.75% for 50 mg/kg of extract whereas it was found to be 80.86% for 50 mg/kg extract in combination with Diclofenac 10 mg/kg. Thus, the present study suggests that the combination therapy potentiates the anti-inflammatory effect of diclofenac and may help in reducing the dose of the synthetic drug. Some relevant patents are also outlined in this article.

  8. Anti-inflammatory activity of Syzygium cumini bark.

    PubMed

    Muruganandan, S; Srinivasan, K; Chandra, S; Tandan, S K; Lal, J; Raviprakash, V

    2001-05-01

    The ethanolic extract of the bark of Syzygium cumini was investigated for its anti-inflammatory activity in animal models. The extract did not show any sign of toxicity up to a dose of 10.125 g/kg, p.o. in mice. Significant anti-inflammatory activity was observed in carrageenin (acute), kaolin-carrageenin (subacute), formaldehyde (subacute)-induced paw oedema and cotton pellet granuloma (chronic) tests in rats. The extract did not induce any gastric lesion in both acute and chronic ulcerogenic tests in rats. Thus, the present study demonstrated that S. cumini bark extract has a potent anti-inflammatory action against different phases of inflammation without any side effect on gastric mucosa. PMID:11395258

  9. Synthesis and anti-inflammatory activity of aromatic glucosinolates.

    PubMed

    Vo, Quan V; Trenerry, Craige; Rochfort, Simone; Wadeson, Jenny; Leyton, Carolina; Hughes, Andrew B

    2013-10-01

    Aromatic GLs are important members of the glucosinolate family of compounds because of their potential biological activity and medicinal properties. This study has shown success in the high yielding synthesis of some important aromatic GLs as well as the results of testing for anti-inflammatory properties of the synthetic GLs. 3,4-Dimethoxyphenylglucosinolate was found to be the most active anti-inflammatory of the seven glucosinolates assayed. PMID:23978357

  10. Antioxidant properties of proanthocyanidins of Uncaria tomentosa bark decoction: a mechanism for anti-inflammatory activity.

    PubMed

    Gonçalves, Cristina; Dinis, Teresa; Batista, Maria Teresa

    2005-01-01

    Decoctions prepared from the bark of Uncaria tomentosa (cat's claw) are widely used in the traditional Peruvian medicine for the treatment of several diseases, in particular as a potent anti-inflammatory agent. Therefore, the main purpose of this study was to determine if the well-known anti-inflammatory activity of cat's claw decoction was related with its reactivity with the oxidant species generated in the inflammatory process and to establish a relationship between such antioxidant ability and its phenolic composition. We observed that the decoction prepared according to the traditional Peruvian medicine presented a potent radical scavenger activity, as suggested by its high capacity to reduce the free radical diphenylpicrylhydrazyl, and by its reaction with superoxide anion, peroxyl and hydroxyl radicals as well as with the oxidant species, hydrogen peroxide and hypochlorous acid. It also protected membrane lipids against peroxidation induced by the iron/ascorbate system, as evaluated by the formation of thiobarbituric acid-reactive substances (TBARs). The decoction phenolic profile was established by chromatographic analysis (HPLC/DAD and TLC) revealing essentially the presence of proanthocyanidins (oligomeric procyanidins) and phenolic acids, mainly caffeic acid. Thus, our results provide evidence for an antioxidant mechanism underlying the anti-inflammatory activity of cat's claw and support some of the biological effects of proanthocyanidins, more exactly its antioxidant and radical scavenging activities.

  11. Rapid Anti-Inflammatory Effects of Gonadotropin-Releasing Hormone Antagonism in Rheumatoid Arthritis Patients with High Gonadotropin Levels in the AGRA Trial

    PubMed Central

    Kåss, Anita; Hollan, Ivana; Fagerland, Morten Wang; Gulseth, Hans Christian; Torjesen, Peter Abusdal; Førre, Øystein Torleiv

    2015-01-01

    Objectives Gonadotropin-releasing hormone (GnRH) and pituitary gonadotropins, which appear to be proinflammatory, undergo profound secretory changes during events associated with rheumatoid arthritis (RA) onset, flares, or improvement e.g. menopausal transition, postpartum, or pregnancy. Potential anti-inflammatory effects of GnRH-antagonists may be most pronounced in patients with high GnRH and gonadotropin levels. Therefore, we investigated the efficacy and safety of a GnRH-antagonist, cetrorelix, in RA patients with high gonadotropin levels. Methods We report intention-to-treat post hoc analyses among patients with high gonadotropin levels (N = 53), i.e. gonadotropin levels>median, from our proof-of-concept, double-blind AGRA-study (N = 99). Patients with active longstanding RA, randomized to subcutaneous cetrorelix (5mg days1–2; 3mg days 3–5) or placebo, were followed through day 15. Only predefined primary and secondary endpoints were analyzed. Results The primary endpoint, Disease Activity Score of 28-joint counts with C-reactive protein (DAS28-CRP), improved with cetrorelix compared with placebo by day 5 (-1.0 vs. -0.4, P = 0∙010). By day 5, more patients on cetrorelix achieved at least a 20% improvement in the American College of Rheumatology scale (44% vs. 19%, P = 0.049), DAS28-CRP≤3.2 (24% vs. 0%, P = 0.012), and European League against Rheumatism ‘Good-responses’ (19% vs. 0%, P = 0.026). Tumor necrosis factor-α, interleukin-1β, interleukin-10, and CRP decreased with cetrorelix (P = 0.045, P = 0.034, P = 0.020 and P = 0.042 respectively) compared with placebo by day 15. Adverse event rates were similar between groups. Conclusions GnRH-antagonism produced rapid anti-inflammatory effects in RA patients with high gonadotropin levels. GnRH should be investigated further in RA. Trial Registration ClinicalTrials.gov NCT00667758 PMID:26460564

  12. Development of high-throughput multi-residue method for non-steroidal anti-inflammatory drugs monitoring in swine muscle by LC-MS/MS.

    PubMed

    Castilhos, Tamara S; Barreto, Fabiano; Meneghini, Leonardo; Bergold, Ana Maria

    2016-07-01

    A reliable and simple method for the detection and quantification of residues of 14 non-steroidal anti-inflammatory drugs and a metamizole metabolite in swine muscle was developed using liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS). The samples were extracted with acetonitrile (ACN) in solid-liquid extraction followed by a low-temperature partitioning (LLE-LTP) process at -20 ± 2°C. After evaporation to dryness, the residue was reconstituted with hexane and a mixture of water:acetonitrile (1:1). LC separation was achieved on a reversed-phase (RP18) column with gradient elution using water (phase A) and ACN (phase B) both containing 1 mmol l(-)(1) ammonium acetate (NH4COO) with 0.025% acetic acid. Analysis was carried out on a triple-quadrupole tandem mass spectrometer (LC-MS/MS) in multiple reaction monitoring mode using an electrospray interface in negative and positive mode in a single run. Method validation was performed according to the criteria of Commission Decision No. 2002/657/EC. The matrix effect and linearity were evaluated. Decision limit (CCα), detection capability (CCβ), accuracy and repeatability of the method are also reported. The proposed method proved to be simple, easy and adequate for high-throughput analysis and was applied to routine analysis by the Brazilian Ministry of Agriculture, Livestock and Food Supply. PMID:27268755

  13. Anti-inflammatory effects of yerba maté extract (Ilex paraguariensis) ameliorate insulin resistance in mice with high fat diet-induced obesity.

    PubMed

    Arçari, Demétrius P; Bartchewsky, Waldemar; dos Santos, Tanila W; Oliveira, Karim A; DeOliveira, Carlorine C; Gotardo, Érica M; Pedrazzoli, José; Gambero, Alessandra; Ferraz, Lucio F C; Carvalho, Patricia de O; Ribeiro, Marcelo L

    2011-03-30

    The aim of the present study was to evaluate the effects of yerba maté extract upon markers of insulin resistance and inflammatory markers in mice with high fat diet-induced obesity. The mice were introduced to either standard or high fat diets. After 12 weeks on a high fat diet, mice were randomly assigned to one of the two treatment conditions, water or yerba maté extract at 1.0 gkg(-1). After treatment, glucose blood level and hepatic and soleus muscle insulin response were evaluated. Serum levels of TNF-α and IL-6 were evaluated by ELISA, liver tissue was examined to determine the mRNA levels of TNF-α, IL-6 and iNOS, and the nuclear translocation of NF-κB was determined by an electrophoretic mobility shift assay. Our data show improvements in both the basal glucose blood levels and in the response to insulin administration in the treated animals. The molecular analysis of insulin signalling revealed a restoration of hepatic and muscle insulin substrate receptor (IRS)-1 and AKT phosphorylation. Our data show that the high fat diet caused an up-regulation of the TNF-α, IL-6, and iNOS genes. Although after intervention with yerba maté extract the expression levels of those genes returned to baseline through the NF-κB pathway, these results could also be secondary to the weight loss observed. In conclusion, our results indicate that yerba maté has a potential anti-inflammatory effect. Additionally, these data demonstrate that yerba maté inhibits hepatic and muscle TNF-α and restores hepatic insulin signalling in mice with high fat diet-induced obesity.

  14. Synthesis and assignment of absolute configuration of (-)-oleocanthal: a potent, naturally occurring non-steroidal anti-inflammatory and anti-oxidant agent derived from extra virgin olive oils.

    PubMed

    Smith, Amos B; Han, Qiang; Breslin, Paul A S; Beauchamp, Gary K

    2005-10-27

    [structure: see text] Effective total syntheses and the assignment of absolute configurations of both the (+)- and (-)-enantiomers of oleocanthal 1 (a.k.a. deacetoxy ligstroside aglycon), the latter derived from extra virgin olive oils and known to be responsible for the back of the throat irritant properties of olive oils, have been achieved. The absolute and relative stereochemistry of the naturally occurring enantiomer (-)-1 proved to be 3S,4E. Both syntheses begin with d-(-)-ribose, proceed in 12 steps, and are achieved with an overall yield of 7%. Both enantiomers proved to be non-steroidal anti-inflammatory and anti-oxidant agents. PMID:16235961

  15. NOSH-sulindac (AVT-18A) is a novel nitric oxide- and hydrogen sulfide-releasing hybrid that is gastrointestinal safe and has potent anti-inflammatory, analgesic, antipyretic, anti-platelet, and anti-cancer properties.

    PubMed

    Kashfi, Khosrow; Chattopadhyay, Mitali; Kodela, Ravinder

    2015-12-01

    Sulindac is chemopreventive and has utility in patients with familial adenomatous polyposis; however, side effects preclude its long-term use. NOSH-sulindac (AVT-18A) releases nitric oxide and hydrogen sulfide, was designed to be a safer alternative. Here we compare the gastrointestinal safety, anti-inflammatory, analgesic, anti-pyretic, anti-platelet, and anti-cancer properties of sulindac and NOSH-sulindac administered orally to rats at equimolar doses. Gastrointestinal safety: 6h post-administration, number/size of hemorrhagic lesions in stomachs were counted. Tissue samples were frozen for PGE2, SOD, and MDA determination. Anti-inflammatory: 1h after drug administration, the volume of carrageenan-induced rat paw edemas was measured for 5h. Anti-pyretic: fever was induced by LPS (ip) an hour before administration of the test drugs, core body temperature was measured hourly for 5h. Analgesic: time-dependent analgesic effects were evaluated by carrageenan-induced hyperalgesia. Antiplatelet: anti-aggregatory effects were studied on collagen-induced platelet aggregation of human platelet-rich plasma. Anti-cancer: We examined the effects of NOSH-sulindac on the growth properties of 12 human cancer cell lines of six different tissue origins. Both agents reduced PGE2 levels in stomach tissue; however, NOSH-sulindac did not cause any stomach ulcers, whereas sulindac caused significant bleeding. Lipid peroxidation induced by sulindac was higher than that from NOSH-sulindac. SOD activity was significantly lowered by sulindac but increased by NOSH-sulindac. Both agents showed similar anti-inflammatory, analgesic, anti-pyretic, and anti-platelet activities. Sulindac increased plasma TNFα whereas this rise was lower in the NOSH-sulindac-treated animals. NOSH-sulindac inhibited the growth of all cancer cell lines studied, with potencies of 1000- to 9000-fold greater than that of sulindac. NOSH-sulindac inhibited cell proliferation, induced apoptosis, and caused G2/M cell

  16. NOSH-sulindac (AVT-18A) is a novel nitric oxide- and hydrogen sulfide-releasing hybrid that is gastrointestinal safe and has potent anti-inflammatory, analgesic, antipyretic, anti-platelet, and anti-cancer properties

    PubMed Central

    Kashfi, Khosrow; Chattopadhyay, Mitali; Kodela, Ravinder

    2015-01-01

    Sulindac is chemopreventive and has utility in patients with familial adenomatous polyposis; however, side effects preclude its long-term use. NOSH-sulindac (AVT-18A) releases nitric oxide and hydrogen sulfide, was designed to be a safer alternative. Here we compare the gastrointestinal safety, anti-inflammatory, analgesic, anti-pyretic, anti-platelet, and anti-cancer properties of sulindac and NOSH-sulindac administered orally to rats at equimolar doses. Gastrointestinal safety: 6 h post-administration, number/size of hemorrhagic lesions in stomachs were counted. Tissue samples were frozen for PGE2, SOD, and MDA determination. Anti-inflammatory: 1 h after drug administration, the volume of carrageenan-induced rat paw edemas was measured for 5 h. Anti-pyretic: fever was induced by LPS (ip) an hour before administration of the test drugs, core body temperature was measured hourly for 5 h. Analgesic: time-dependent analgesic effects were evaluated by carrageenan-induced hyperalgesia. Antiplatelet: anti-aggregatory effects were studied on collagen-induced platelet aggregation of human platelet-rich plasma. Anti-cancer: We examined the effects of NOSH-sulindac on the growth properties of 12 human cancer cell lines of six different tissue origins. Both agents reduced PGE2 levels in stomach tissue; however, NOSH-sulindac did not cause any stomach ulcers, whereas sulindac caused significant bleeding. Lipid peroxidation induced by sulindac was higher than that from NOSH-sulindac. SOD activity was significantly lowered by sulindac but increased by NOSH-sulindac. Both agents showed similar anti-inflammatory, analgesic, anti-pyretic, and anti-platelet activities. Sulindac increased plasma TNFα whereas this rise was lower in the NOSH-sulindac-treated animals. NOSH-sulindac inhibited the growth of all cancer cell lines studied, with potencies of 1000- to 9000-fold greater than that of sulindac. NOSH-sulindac inhibited cell proliferation, induced apoptosis, and caused G2/M

  17. NOSH-sulindac (AVT-18A) is a novel nitric oxide- and hydrogen sulfide-releasing hybrid that is gastrointestinal safe and has potent anti-inflammatory, analgesic, antipyretic, anti-platelet, and anti-cancer properties.

    PubMed

    Kashfi, Khosrow; Chattopadhyay, Mitali; Kodela, Ravinder

    2015-12-01

    Sulindac is chemopreventive and has utility in patients with familial adenomatous polyposis; however, side effects preclude its long-term use. NOSH-sulindac (AVT-18A) releases nitric oxide and hydrogen sulfide, was designed to be a safer alternative. Here we compare the gastrointestinal safety, anti-inflammatory, analgesic, anti-pyretic, anti-platelet, and anti-cancer properties of sulindac and NOSH-sulindac administered orally to rats at equimolar doses. Gastrointestinal safety: 6h post-administration, number/size of hemorrhagic lesions in stomachs were counted. Tissue samples were frozen for PGE2, SOD, and MDA determination. Anti-inflammatory: 1h after drug administration, the volume of carrageenan-induced rat paw edemas was measured for 5h. Anti-pyretic: fever was induced by LPS (ip) an hour before administration of the test drugs, core body temperature was measured hourly for 5h. Analgesic: time-dependent analgesic effects were evaluated by carrageenan-induced hyperalgesia. Antiplatelet: anti-aggregatory effects were studied on collagen-induced platelet aggregation of human platelet-rich plasma. Anti-cancer: We examined the effects of NOSH-sulindac on the growth properties of 12 human cancer cell lines of six different tissue origins. Both agents reduced PGE2 levels in stomach tissue; however, NOSH-sulindac did not cause any stomach ulcers, whereas sulindac caused significant bleeding. Lipid peroxidation induced by sulindac was higher than that from NOSH-sulindac. SOD activity was significantly lowered by sulindac but increased by NOSH-sulindac. Both agents showed similar anti-inflammatory, analgesic, anti-pyretic, and anti-platelet activities. Sulindac increased plasma TNFα whereas this rise was lower in the NOSH-sulindac-treated animals. NOSH-sulindac inhibited the growth of all cancer cell lines studied, with potencies of 1000- to 9000-fold greater than that of sulindac. NOSH-sulindac inhibited cell proliferation, induced apoptosis, and caused G2/M cell

  18. Gut health immunomodulatory and anti-inflammatory functions of gut enzyme digested high protein micro-nutrient dietary supplement-Enprocal

    PubMed Central

    Kanwar, Jagat R; Kanwar, Rupinder K

    2009-01-01

    Background Enprocal is a high-protein micro-nutrient rich formulated supplementary food designed to meet the nutritional needs of the frail elderly and be delivered to them in every day foods. We studied the potential of Enprocal to improve gut and immune health using simple and robust bioassays for gut cell proliferation, intestinal integrity/permeability, immunomodulatory, anti-inflammatory and anti-oxidative activities. Effects of Enprocal were compared with whey protein concentrate 80 (WPC), heat treated skim milk powder, and other commercially available milk derived products. Results Enprocal (undigested) and digested (Enprocal D) selectively enhanced cell proliferation in normal human intestinal epithelial cells (FHs74-Int) and showed no cytotoxicity. In a dose dependent manner Enprocal induced cell death in Caco-2 cells (human colon adencarcinoma epithelial cells). Digested Enprocal (Enprocal D: gut enzyme cocktail treated) maintained the intestinal integrity in transepithelial resistance (TEER) assay, increased the permeability of horseradish peroxidase (HRP) and did not induce oxidative stress to the gut epithelial cells. Enprocal D upregulated the surface expression of co-stimulatory (CD40, CD86, CD80), MHC I and MHC II molecules on PMA differentiated THP-1 macrophages in coculture transwell model, and inhibited the monocyte/lymphocyte (THP-1/Jurkat E6-1 cells)-epithelial cell adhesion. In cytokine secretion analyses, Enprocal D down-regulated the secretion of proinflammatory cytokines (IL-1β and TNF-α) and up-regulated IFN-γ, IL-2 and IL-10. Conclusion Our results indicate that Enprocal creates neither oxidative injury nor cytotoxicity, stimulates normal gut cell proliferation, up regulates immune cell activation markers and may aid in the production of antibodies. Furthermore, through downregulation of proinflammatory cytokines, Enprocal appears to be beneficial in reducing the effects of chronic gut inflammatory diseases such as inflammatory bowel

  19. Separation and on-column preconcentration of some nonsteroidal anti-inflammatory drugs by microemulsion electrokinetic capillary chromatography using high-speed separations.

    PubMed

    Macià, Alba; Borrull, Francesc; Calull, Marta; Aguilar, Carme

    2005-02-01

    Various strategies have been investigated for separating a group of nonsteroidal anti-inflammatory drugs (NSAIDs) by microemulsion electrokinetic capillary chromatography (MEEKC) using high-speed separations. The parameters that of affect the separation, such as the nature of the oil droplet and the buffer, and the surfactant concentration have been studied. In addition, several organic solvents were used to decrease the retention of the analytes in the oil droplet phase and to improve the resolution of the NSAIDs. The optimum microemulsion background electrolyte (BGE) solution made of 0.8% w/w ethyl acetate, 6.6% w/w butan-1-ol, 6.0% w/w acetonitrile, 1.0% w/w sodium dodecyl sulfate (SDS), and 85.6% w/w of 10 mM sodium tetraborate at pH 9.2 resolved the drugs within 8 min. The short-end injection procedure is an alternative for reducing the analysis time. When this procedure was used, the microemulsion BGE solution consisted of 0.8% w/w ethyl acetate, 6.6% w/w butan-1-ol, 17.0% w/w methanol, 1.0% w/w SDS, and 74.6% w/w of 10 mM sodium tetraborate, pH 9.2, and the NSAIDs were separated within 3 min. The reversed electrode polarity stacking mode (REPSM) technique was applied to the on-line concentration of the NSAIDs. In this technique, the sample matrix was pumped out of the capillary using a polarity-switching step. When this technique was applied, the sensitivity was enhanced up to 40-fold and the limits of detection (LODs) were in the low microg.L(-1) levels.

  20. Potent anti-inflammatory effect of dioscin mediated by suppression of TNF-α-induced VCAM-1, ICAM-1and EL expression via the NF-κB pathway.

    PubMed

    Wu, Shan; Xu, Hui; Peng, Jinyong; Wang, Changyuan; Jin, Yue; Liu, Kexin; Sun, Huijun; Qin, Jianhua

    2015-03-01

    The modulation of adhesion molecule expression and the reduction of aberrant leukocyte adhesion to the endothelium are attractive approaches for treating inflammation-related vascular complications, including atherosclerosis. Dioscin has a variety of biological activities including anti-inflammatory activity. However, the molecular mechanisms behind dioscin's anti-inflammatory effects are not fully understood. In this study, we investigated the molecular mechanism involved in the effects of dioscin on inflammatory mediators in tumor necrosis factor-α (TNF-α)-stimulated human umbilical vein endothelial cells (HUVECs). In vitro, dioscin decreased monocyte adhesion to TNF-α-treated HUVECs by reducing vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) expression and inhibiting endothelial lipase (EL) expression in TNF-α-treated HUVECs and macrophages by blocking the nuclear factor-κB (NF-κB) pathway. Thus, dioscin might inhibit inflammation by interrupting the NF-κB signaling pathway and could potentially contribute to treatments for inflammatory diseases and atherosclerosis. PMID:25577996

  1. Anti-inflammatory effect of thalidomide dithiocarbamate and dithioate analogs.

    PubMed

    Talaat, Roba; El-Sayed, Waheba; Agwa, Hussein S; Gamal-Eldeen, Amira M; Moawia, Shaden; Zahran, Magdy A H

    2015-08-01

    Thalidomide has anti-inflammatory, immunomodulatory, and anti-angiogenic properties. It has been used to treat a variety of cancers and autoimmune diseases. This study aimed to characterize anti-inflammatory activities of novel thalidomide analogs by exploring their effects on splenocytes proliferation and macrophage functions and their antioxidant activity. MTT assay was used to assess the cytotoxic effect of thalidomide analogs against splenocytes. Tumor necrosis factor (TNF-α) and nuclear factor kappa B (NF-κB-P65) were determined by enzyme-linked immunosorbent assay (ELISA). Nitric oxide (NO) was estimated by colorimetric assay. Antioxidant activity was examined by ORAC assay. Our results demonstrated that thalidomide dithioate analog 2 and thalidomide dithiocarbamate analog 4 produced a slight increase in splenocyte proliferation compared with thalidomide. Thalidomide dithiocarbamate analog 1 is a potent inhibitor of TNF-α production, whereas thalidomide dithiocarbamate analog 5 is a potent inhibitor of both TNF-α and NO. Analog 2 has a pronounced inhibitory effect on NF-κB-P65 production level. All thalidomide analogs showed prooxidant activity against hydroxyl (OH) radical. Analog 1 and thalidomide dithioate analog 3 have prooxidant activity against peroxyl (ROO) radical in relation to thalidomide. On the other hand, analog 4 has a potent scavenging capacity against peroxyl (ROO) radical compared with thalidomide. Taken together, the results of this study suggest that thalidomide analogs might have valuable anti-inflammatory activities with more pronounced effect than thalidomide itself.

  2. De Novo Design and Synthesis of Ultra-Short Peptidomimetic Antibiotics Having Dual Antimicrobial and Anti-Inflammatory Activities

    PubMed Central

    Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu

    2013-01-01

    Background Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. Methodology/Principal Findings In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti–methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. Conclusion/Significance The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics. PMID:24302996

  3. Bioactive Compounds, Antioxidant, Xanthine Oxidase Inhibitory, Tyrosinase Inhibitory and Anti-Inflammatory Activities of Selected Agro-Industrial By-products

    PubMed Central

    Oskoueian, Ehsan; Abdullah, Norhani; Hendra, Rudi; Karimi, Ehsan

    2011-01-01

    Evaluation of abundantly available agro-industrial by-products for their bioactive compounds and biological activities is beneficial in particular for the food and pharmaceutical industries. In this study, rapeseed meal, cottonseed meal and soybean meal were investigated for the presence of bioactive compounds and antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities. Methanolic extracts of rapeseed meal showed significantly (P < 0.01) higher phenolics and flavonoids contents; and significantly (P < 0.01) higher DPPH and nitric oxide free radical scavenging activities when compared to that of cottonseed meal and soybean meal extracts. Ferric thiocyanate and thiobarbituric acid tests results showed rapeseed meal with the highest antioxidant activity (P < 0.01) followed by BHT, cotton seed meal and soybean meal. Rapeseed meal extract in xanthine oxidase and tyrosinase inhibitory assays showed the lowest IC50 values followed by cottonseed and soybean meals. Anti-inflammatory assay using IFN-γ/LPS stimulated RAW 264.7 cells indicated rapeseed meal is a potent source of anti-inflammatory agent. Correlation analysis showed that phenolics and flavonoids were highly correlated to both antioxidant and anti-inflammatory activities. Rapeseed meal was found to be promising as a natural source of bioactive compounds with high antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities in contrast to cotton and soybean meals. PMID:22272095

  4. Structures and mechanism for the design of highly potent glucocorticoids

    PubMed Central

    He, Yuanzheng; Yi, Wei; Suino-Powell, Kelly; Zhou, X Edward; Tolbert, W David; Tang, Xiaobo; Yang, Jing; Yang, Huaiyu; Shi, Jingjing; Hou, Li; Jiang, Hualiang; Melcher, Karsten; Xu, H Eric

    2014-01-01

    The evolution of glucocorticoid drugs was driven by the demand of lowering the unwanted side effects, while keeping the beneficial anti-inflammatory effects. Potency is an important aspect of this evolution as many undesirable side effects are associated with use of high-dose glucocorticoids. The side effects can be minimized by highly potent glucocorticoids that achieve the same treatment effects at lower doses. This demand propelled the continuous development of synthetic glucocorticoids with increased potencies, but the structural basis of their potencies is poorly understood. To determine the mechanisms underlying potency, we solved the X-ray structures of the glucocorticoid receptor (GR) ligand-binding domain (LBD) bound to its endogenous ligand, cortisol, which has relatively low potency, and a highly potent synthetic glucocorticoid, mometasone furoate (MF). The cortisol-bound GR LBD revealed that the flexibility of the C1-C2 single bond in the steroid A ring is primarily responsible for the low affinity of cortisol to GR. In contrast, we demonstrate that the very high potency of MF is achieved by its C-17α furoate group completely filling the ligand-binding pocket, thus providing additional anchor contacts for high-affinity binding. A single amino acid in the ligand-binding pocket, Q642, plays a discriminating role in ligand potency between MF and cortisol. Structure-based design led to synthesis of several novel glucocorticoids with much improved potency and efficacy. Together, these results reveal key structural mechanisms of glucocorticoid potency and provide a rational basis for developing novel highly potent glucocorticoids. PMID:24763108

  5. Potent anti-inflammatory effect of a novel furan-2,5-dione derivative, BPD, mediated by dual suppression of COX-2 activity and LPS-induced inflammatory gene expression via NF-κB inactivation

    PubMed Central

    Shin, Ji-Sun; Park, Seung-Jae; Ryu, Suran; Kang, Han Byul; Kim, Tae Woo; Choi, Jung-Hye; Lee, Jae-Yeol; Cho, Young-Wuk; Lee, Kyung-Tae

    2012-01-01

    BACKGROUND AND PURPOSE We previously reported that 3-(benzo[d]-1,3-dioxol-5-yl)-4-phenylfuran-2,5-dione (BPD) showed strong inhibitory effects on PGE2 production. However, the exact mechanism for the anti-inflammatory effect of BPD is not completely understood. In this study, we investigated the molecular mechanism involved in the effects of BPD on inflammatory mediators in LPS-stimulated macrophages and animal models of inflammation. EXPERIMENTAL APPROACH The expressions of COX-2, inducible NOS (iNOS), TNF-α, IL-6 and IL-1β, in LPS-stimulated RAW 264.7 cells and murine peritoneal macrophages, were determined by Western blot and/or qRT-PCR, respectively. NF-κB activation was investigated by EMSA, reporter gene assay and Western blotting. Anti-inflammatory effects of BPD were evaluated in vivo in carrageenan-induced paw oedema in rats and LPS-induced septic shock in mice. KEY RESULTS BPD not only inhibited COX-2 activity but also reduced the expression of COX-2. In addition, BPD inhibited the expression of iNOS, TNF-α, IL-6 and IL-1β at the transcriptional level. BPD attenuated LPS-induced DNA-binding activity and the transcription activity of NF-κB; this was associated with a decrease in the phosphorylation level of inhibitory κB-α (IκB-α) and reduced nuclear translocation of NF-κB. Furthermore, BPD suppressed the formation of TGF-β-activated kinase-1 (TAK1)/TAK-binding protein1 (TAB1), which was accompanied by a parallel reduction of phosphorylation of TAK1 and IκB kinase (IKK). Pretreatment with BPD inhibited carrageenan-induced paw oedema and LPS-induced septic death. CONCLUSION AND IMPLICATIONS Taken together, our data indicate that BPD is involved in the dual inhibition of COX-2 activity and TAK1-NF-κB pathway, providing a molecular basis for the anti-inflammatory properties of BPD. PMID:21913901

  6. Systematic Analysis of Absorbed Anti-Inflammatory Constituents and Metabolites of Sarcandra glabra in Rat Plasma Using Ultra-High-Pressure Liquid Chromatography Coupled with Linear Trap Quadrupole Orbitrap Mass Spectrometry

    PubMed Central

    Li, Xiong; Zhao, Jin; Liu, Jianxing; Li, Geng; Zhao, Ya; Zeng, Xing

    2016-01-01

    Ultra-high-pressure liquid chromatography (UHPLC) was coupled with linear ion trap quadrupole Orbitrap mass spectrometry (LTQ-Orbitrap) and was used for the first time to systematically analyze the absorbed components and metabolites in rat plasma after oral administration of the water extract of Sarcandra glabra. This extract is a well-known Chinese herbal medicine for the treatment of inflammation and immunity related diseases. The anti-inflammatory activities of the absorbed components were evaluated by measuring nitric oxide (NO) production and proinflammatory genes expression in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. As a result, 54 components in Sarcandra glabra were detected in dosed rat plasma, and 36 of them were positively identified. Moreover, 23 metabolites were characterized and their originations were traced. Furthermore, 20 of the 24 studied components showed anti-inflammatory activities. These results provide evidence that this method efficiency detected constituents in plasma based on the anti-inflammatory mechanism of multiple components and would be a useful technique for screening multiple targets for natural medicine research. PMID:26974321

  7. Systematic Analysis of Absorbed Anti-Inflammatory Constituents and Metabolites of Sarcandra glabra in Rat Plasma Using Ultra-High-Pressure Liquid Chromatography Coupled with Linear Trap Quadrupole Orbitrap Mass Spectrometry.

    PubMed

    Li, Xiong; Zhao, Jin; Liu, Jianxing; Li, Geng; Zhao, Ya; Zeng, Xing

    2016-01-01

    Ultra-high-pressure liquid chromatography (UHPLC) was coupled with linear ion trap quadrupole Orbitrap mass spectrometry (LTQ-Orbitrap) and was used for the first time to systematically analyze the absorbed components and metabolites in rat plasma after oral administration of the water extract of Sarcandra glabra. This extract is a well-known Chinese herbal medicine for the treatment of inflammation and immunity related diseases. The anti-inflammatory activities of the absorbed components were evaluated by measuring nitric oxide (NO) production and proinflammatory genes expression in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. As a result, 54 components in Sarcandra glabra were detected in dosed rat plasma, and 36 of them were positively identified. Moreover, 23 metabolites were characterized and their originations were traced. Furthermore, 20 of the 24 studied components showed anti-inflammatory activities. These results provide evidence that this method efficiency detected constituents in plasma based on the anti-inflammatory mechanism of multiple components and would be a useful technique for screening multiple targets for natural medicine research.

  8. Anti-inflammatory and related properties of 2-(2,4-dichlorophenoxy)phenylacetic acid (fenclofenac).

    PubMed

    Atkinson, D C; Leach, E C

    1976-09-01

    Fenclofenac was shown to possess anti-inflammatory, antinociceptive and antipyretic properties as measured by tests in rats that detect clinically active compounds. In a chronic test for assessing anti-inflammatory activity (established adjuvant arthritis), it was approximately equipotent to alclofenac, fenoprofen calcium and phenylbutazone, more potent than acetylsalicylic acid and ibuprofen, but was less potent than diclofenac sodium, indomethacin, ketoprofen and naproxen. In contrast, the potency of fenclofenac in acute tests for anti-inflammatory, antinociceptive and anti-pyretic activity was generally lower, the drug being approximately equipotent to acetylsalicylic acid in such tests. The anti-inflammatory activity of fenclofenac was not mediated via the pituitary-adrenal axis or a counter-irritant action. Fenclofenac was shown to have remarkably low gastric ulcerogenic potential, both acutely and chronically. PMID:970297

  9. Boswellia carterii liquisolid systems with promoted anti-inflammatory activity.

    PubMed

    Mostafa, Dina Mahmoud; Ammar, Nagwa Mohammed; Abd El-Alim, Sameh Hosam; Kassem, Ahmed Alaa; Hussein, Rehab Ali; Awad, Gamal; El-Awdan, Sally Abdul-Wanees

    2015-01-01

    Boswellia carterii (BC) Birdwood oleogum resin is an ancient remedy of inflammation processes known since Ancient Egyptian time. Of boswellic acids, 3-acetyl-11-keto-β-boswellic acid (AKBA) is the most potent anti-inflammatory active principle. Liquisolid systems of the biologically active fraction of BC oleogum resin were prepared for improving dissolution properties using low dose oral delivery to achieve enhanced anti-inflammatory activity, in comparison with the standard oral anti-inflammatory; Indomethacin. AKBA was assayed, employing an accurate and sensitive HPLC method. Detection was carried out at 210 nm using UV/Vis detector. A solubility study for the bioactive fraction was conducted. Microcrystalline cellulose and Aeroperl®300 Pharma were used as carrier and coating materials. Angle of slide, liquid load factor and Carr's flow index were estimated. Six systems were prepared using polyethylene glycol 400, solvent and two drug loading concentrations; 20 and 40 %. For each concentration, three carrier: coat ratios were dispensed; 20:1, 10:1, and 5:1. Dissolution study was performed and two systems were selected for characterization and in vivo evaluation by investigating upper GIT ulcerogenic effect and anti-inflammatory efficacy in rats. Results indicate absence of ulcers and significantly higher and prolonged anti-inflammatory efficacy for formulations F1 and F2, with carrier: coat ratio, 5:1 and drug loads of 20 and 40 %, respectively, compared with standard oral indomethacin. We conclude higher efficacy of BC bioactive fraction liquisolids compared with Indomethacin with greater safety on GIT, longer duration of action and hence better patient compliance. PMID:25895614

  10. Nonsteroidal anti-inflammatory drugs: add an anti-ulcer drug for patients at high risk only. Always limit the dose and duration of treatment with NSAIDs.

    PubMed

    2011-09-01

    In addition to their cardiac, renal, hepatic, cutaneous and neuropsychological adverse effects, nonsteroidal anti-inflammatory drugs (NSAIDs) can have severe effects on the entire gastrointestinal tract, including bleeding, perforation and occlusion. Which anti-ulcer drugs reduce the risk of the severe gastrointestinal adverse effects of NSAIDs, and which patients should receive them? To answer these questions, we conducted a review of the literature, using the standard Prescrire methodology. The main risk factors for severe gastrointestinal adverse effects during NSAID therapy are: a high dose regimen; age over 65 years; a history of gastric or duodenal ulcer or gastrointestinal bleeding; heavy use of both alcohol and tobacco; and concomitant treatment with a corticosteroid, antiplatelet drug, anticoagulant, or selective serotonin reuptake inhibitor (SSRI) antidepressant. Gastrointestinal symptoms and ulceration (on endoscopy) are poor predictors of severe gastrointestinal reactions. A meta-analysis examined randomised placebo-controlled trials of misoprostol in more than 11 000 patients. The results were mainly based on a large trial including about 9000 rheumatoid arthritis patients with an average age of 68 years. Misoprostol (400 microg to 800 microg/day, in 4 doses) prevented about 4 severe gastroduodenal events when 1000 patients over 60 years of age were treated for 6 months. Diarrhoea and other mild gastrointestinal disorders were frequent. There are no randomised trials comparing proton pump inhibitors (PPIs) and histamine H2 receptor antagonists versus misoprostol or versus placebo therapy for the prevention of severe adverse effects associated with NSAIDs. PPIs and H2 antagonists both reduce the incidence of gastric or duodenal ulceration detected by routine endoscopy. A randomised trial compared an H2 antagonist (famotidine) versus a PPI (pantoprazole) in 128 patients with an average age of 69 years who had a very high risk of serious gastrointestinal

  11. Role of effective composition on antioxidant, anti-inflammatory, sedative-hypnotic capacities of 6 common edible Lilium varieties.

    PubMed

    Wang, Tingting; Huang, Hanhan; Zhang, Yao; Li, Xia; Li, Hongfa; Jiang, Qianqian; Gao, Wenyuan

    2015-04-01

    Nine Lilium samples (belong to 6 different cultivars with different maturity stage) were qualitatively and quantitatively analyzed of total phenolics (TP), total flavonoids (TF), total saponins (TS), total carbohydrates (TC, polysaccharides), and soluble proteins contents (SP), and the monomeric components were quantified utilizing high-performance liquid chromatography with photodiode array detector (HPLC-PAD) associated with liquid chromatography-mass spectrometry (HPLC-MS). Antioxidant activity (reducing power and DPPH radical scavenging activity), anti-inflammatory (xylene-induced mouse ear edema detumescent assay and carrageenan-induced mouse paw edema detumescent assay), and sedative-hypnotic capacities (sodium pentobarbital-induced sleep assay) were comparatively evaluated in mouse model. Additionally, correlation analysis and principal component analysis were carried out to detect clustering and elucidate relationships between components' concentrations and bioactivities to clarify the role of effective composition. Lilium bulbs in later maturity stage preliminary evidenced higher saponins content, and lower phenolic acids and flavonoids content. The result demonstrated that Lilium bulbs generally had distinct antioxidant, anti-inflammatory, and sedative-hypnotic capacities. Varieties statistically differed (P < 0.05) in chemical composition and bioactivities. Lilium varieties of Dongbei and Lanzhou presented potent sedative-hypnotic effect and anti-inflammatory activity. The antioxidant capacity was related to the phenolic acids and flavonoids contents, the anti-inflammatory and sedative-hypnotic capacities were related to the saponins content. This is first study presenting comprehensive description of common edible Lilium bulbs' chemical compositions, sedative-hypnotic, and anti-inflammatory capacities grown in China. It would informatively benefit the genetic selection and cultivated optimization of Lilium varieties to improve nutritional quality, and

  12. Therapeutic Potential of Hydrazones as Anti-Inflammatory Agents

    PubMed Central

    Bala, Suman; Sharma, Neha; Saini, Vipin

    2014-01-01

    Hydrazones are a special class of organic compounds in the Schiff base family. Hydrazones constitute a versatile compound of organic class having basic structure (R1R2C=NNR3R4). The active centers of hydrazone, that is, carbon and nitrogen, are mainly responsible for the physical and chemical properties of the hydrazones and, due to the reactivity toward electrophiles and nucleophiles, hydrazones are used for the synthesis of organic compound such as heterocyclic compounds with a variety of biological activities. Hydrazones and their derivatives are known to exhibit a wide range of interesting biological activities like antioxidant, anti-inflammatory, anticonvulsant, analgesic, antimicrobial, anticancer, antiprotozoal, antioxidant, antiparasitic, antiplatelet, cardioprotective, anthelmintic, antidiabetic, antitubercular, trypanocidal, anti-HIV, and so forth. The present review summarizes the efficiency of hydrazones as potent anti-inflammatory agents. PMID:25383223

  13. Anti-inflammatory tirucallane saponins from Paramignya scandens.

    PubMed

    Phan, Nguyen Huu Toan; Thuan, Nguyen Thi Dieu; Ngoc, Ninh Thi; Thao, Nguyen Phuong; Kim, Sohyun; Koh, Young Sang; Thanh, Nguyen Van; Cuong, Nguyen Xuan; Nam, Nguyen Hoai; Kiem, Phan Van; Kim, Young Ho; Minh, Chau Van

    2015-01-01

    Five new tirucallane saponins, paramignyosides A-E (1-5), were isolated from the water fraction of the Paramignya scandens stem and leaves. Their structures were elucidated on the basis of spectroscopic evidence including high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and one dimensional (1D)- and 2D-NMR. The effects of isolated compounds on pro-inflammatory cytokines were evaluated by measuring the production of interleukin (IL)-12 p40, IL-6, and tumor necrosis factor-α (TNF-α) in lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells (BMDCs). Paramignyoside C (3) exhibited selective and potent inhibitory effect (IC50=5.03±0.19 µM) on the production of IL-12 p40 comparable to that of the positive control, SB203580 (IC50=5.00±0.16 µM). Further studies are required to confirm efficacy in vivo and the mechanism of anti-inflammatory effects. PMID:26133071

  14. Anti-Inflammatory Agents for Cancer Therapy

    PubMed Central

    Rayburn, Elizabeth R.; Ezell, Scharri J.; Zhang, Ruiwen

    2010-01-01

    Inflammation is closely linked to cancer, and many anti-cancer agents are also used to treat inflammatory diseases, such as rheumatoid arthritis. Moreover, chronic inflammation increases the risk for various cancers, indicating that eliminating inflammation may represent a valid strategy for cancer prevention and therapy. This article explores the relationship between inflammation and cancer with an emphasis on epidemiological evidence, summarizes the current use of anti-inflammatory agents for cancer prevention and therapy, and describes the mechanisms underlying the anti-cancer effects of anti-inflammatory agents. Since monotherapy is generally insufficient for treating cancer, the combined use of anti-inflammatory agents and conventional cancer therapy is also a focal point in discussion. In addition, we also briefly describe future directions that should be explored for anti-cancer anti-inflammatory agents. PMID:20333321

  15. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model

    SciTech Connect

    Liu Junyan; Qiu Hong; Morisseau, Christophe; Hwang, Sung Hee; Tsai, Hsing-Ju; Ulu, Arzu; Chiamvimonvat, Nipavan; Hammock, Bruce D.

    2011-09-01

    The increasing use of the antimicrobial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined. TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs. - Graphical abstract: Display Omitted Research Highlights: > Anti-microbial triclocarban (TCC) is anti-inflammatory in a murine model. > TCC significantly shifted the oxylipin profile in vivo as expected from a sEHI. > TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. > TCC significantly repressed LPS-induced increased release of inflammatory cytokines.

  16. The detection and characterization of analgesics and anti-inflammatory drugs on high performance thin-layer chromatography plates using tandem mass spectrometry: application to drugs and metabolites in urine.

    PubMed

    Morden, W; Wilson, I D

    1996-01-01

    The application of tandem mass spectrometry to the analysis and identification of analgesics and non-steroidal anti-inflammatory drugs such as paracetamol, ibuprofen and indomethacin following thin-layer chromatography (TLC) is described. TLC was combined successfully with mass spectrometry and with tandem mass spectrometry using silica gel and diol-bonded silica gel high performance TLC plates. The diol-bonded phase was found to be superior for use with biological samples and enabled the identification of paracetamol, ibuprofen and salicylhippuric acid (the major metabolite of acetylsalicylic acid) in human urine extracts following normal therapeutic doses.

  17. In vitro analysis of the cytotoxic and anti-inflammatory effects of antioxidant compounds used as additives in ultra high-molecular weight polyethylene in total joint replacement components.

    PubMed

    Bladen, C L; Tzu-Yin, L; Fisher, J; Tipper, J L

    2013-04-01

    Ultra high-molecular weight polyethylene (UHMWPE) remains the most commonly used material in modern joint replacement prostheses. However, UHMWPE wear particles, formed as the bearing articulates, are one of the main factors leading to joint replacement failure via the induction of osteolysis and subsequent aseptic loosening. Previous studies have shown that the addition of antioxidants such as vitamin E to UHMWPE can improve wear resistance of the polymer and reduce oxidative fatigue. However, little is known regarding the biological consequences of such antioxidant chemicals. This study investigated the cytotoxic and anti-inflammatory effects of a variety of antioxidant compounds currently being tested experimentally for use in hip and knee prostheses, including nitroxides, hindered phenols, and lanthanides on U937 human histocyte cells and human peripheral blood mononuclear cells (PBMNCs) in vitro. After addition of the compounds, cell viability was determined by dose response cytotoxicity studies. Anti-inflammatory effects were determined by quantitation of TNF-α release in lipopolysaccharide (LPS)-stimulated cells. This study has shown that many of these compounds were cytotoxic to U937 cells and PBMNCs, at relatively low concentrations (micromolar), specifically the hindered phenol 3,5-di-tert-butyl-4-hydroxyhydrocinnamate (HPAO1), and the nitroxide 2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO). Lanthanides were only cytotoxic at very high concentrations and were well tolerated by the cells at lower concentrations. Cytotoxic compounds also showed reduced anti-inflammatory effects, particularly in PBMNCs. Careful consideration should therefore be given to the use of any of these compounds as potential additives to UHMWPE.

  18. Anti-inflammatory activity of (polyphenolic)-sulfonates and their sodium salts in rodents.

    PubMed

    Hall, I H; Murphy, M E; Elkins, A L

    1998-01-01

    A series of polyphenolic-sulfonated compounds were observed to have potent anti-inflammatory activity and were protective against induced endotoxic shock in mice at 8 and 16 mg/kg, I.P. These agents proved to be potent elastase inhibitors in human leukocytes and J774-AI and IC-21 mouse macrophages as well as prostaglandin cyclo-oxygenase inhibitors in J774-AI macrophages. The compounds from 5 to 50 muM inhibited TNFalpha release from IC-21 macrophages and IL-1 release from mouse P388(D1) macrophages induced by LPS. The binding of these cytokines to high affinity receptors on target cells, e.g. L929 fibroblasts and IL-2 in HuT78 T lymphoma cells, were also suppressed by the agents. These compounds blocked the adhesion of leukocytes and macrophages to the plasma membranes of L929 fibroblasts. PMID:18475825

  19. Anti-Inflammatory Activity of (Polyphenolic)-Sulfonates and Their Sodium Salts in Rodents

    PubMed Central

    Murphy, Margaret E.; Elkins, Amy L.

    1998-01-01

    A series of polyphenolic-sulfonated compounds were observed to have potent anti-inflammatory activity and were protective against induced endotoxic shock in mice at 8 and 16 mg/kg, I.P. These agents proved to be potent elastase inhibitors in human leukocytes and J774-AI and IC-21 mouse macrophages as well as prostaglandin cyclo-oxygenase inhibitors in J774-AI macrophages. The compounds from 5 to 50 μM inhibited TNFα release from IC-21 macrophages and IL-1 release from mouse P388D1 macrophages induced by LPS. The binding of these cytokines to high affinity receptors on target cells, e.g. L929 fibroblasts and IL-2 in HuT78 T lymphoma cells, were also suppressed by the agents. These compounds blocked the adhesion of leukocytes and macrophages to the plasma membranes of L929 fibroblasts. PMID:18475825

  20. Marine Diterpenoids as Potential Anti-Inflammatory Agents.

    PubMed

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E; Fernandez, Patricia L

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  1. Anti-inflammatory defense mechanisms of Entamoeba histolytica.

    PubMed

    Silva-García, Raúl; Rico-Rosillo, Guadalupe

    2011-02-01

    The monocyte locomotion inhibitory factor (MLIF), a heat-stable oligopeptide found in the supernatant fluid of Entamoeba histolytica axenic cultures, may contribute to the delayed inflammation observed in amoebic hepatic abscess. This factor was isolated by ultra-filtration and high powered liquid chromatography, obtaining a primary Met-Gln-Cys-Asn-Ser structure, identified afterwards as the carboxyl-terminal (…Cys-Asn-Ser) active site. The selective anti-inflammatory effects of the pentapeptide have been observed in both in vitro and in vivo models, using a synthetic pentapeptide to maintain the same anti-inflammatory conditions during the experimental assays. Anti-inflammatory effects observed include inhibition of human monocyte locomotion and the respiratory burst in monocytes and neutrophils, increasing expression of anti-inflammatory cytokines and inhibiting expression of the adhesion molecules VLA-4 and VCAM, among others. In this review, we will describe the effects of MLIF detected so far and how it might be used as a therapeutical agent against inflammatory diseases.

  2. Marine Diterpenoids as Potential Anti-Inflammatory Agents

    PubMed Central

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E.; Fernandez, Patricia L.

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  3. Anti-inflammatory glucocorticoids: changing concepts.

    PubMed

    Newton, Robert

    2014-02-01

    Despite being the most effective anti-inflammatory treatment for chronic inflammatory diseases, the mechanisms by which glucocorticoids (corticosteroids) effect repression of inflammatory gene expression remain incompletely understood. Direct interaction of the glucocorticoid receptor (NR3C1) with inflammatory transcription factors to repress transcriptional activity, i.e. transrepression, represents one mechanism of action. However, transcriptional activation, or transactivation, by NR3C1 also represents an important mechanism of glucocorticoid action. Glucocorticoids rapidly and profoundly increase expression of multiple genes, many with properties consistent with the repression of inflammatory gene expression. For example: the dual specificity phosphatase, DUSP1, reduces activation of mitogen-activated protein kinases; glucocorticoid-induced leucine zipper (TSC22D3) represses nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) transcriptional responses; inhibitor of κBα (NFKBIA) inhibits NF-κB; tristraprolin (ZFP36) destabilises and translationally represses inflammatory mRNAs; CDKN1C, a cell cycle regulator, may attenuate JUN N-terminal kinase signalling; and regulator of G-protein signalling 2 (RGS2), by reducing signalling from Gαq-linked G protein-coupled receptors (GPCRs), is bronchoprotective. While glucocorticoid-dependent transrepression can co-exist with transactivation, transactivation may account for the greatest level and most potent repression of inflammatory genes. Equally, NR3C1 transactivation is enhanced by β2-adrenoceptor agonists and may explain the enhanced clinical efficacy of β2-adrenoceptor/glucocorticoid combination therapies in asthma and chronic obstructive pulmonary disease. Finally, NR3C1 transactivation is reduced by inflammatory stimuli, including respiratory syncytial virus and human rhinovirus. This provides an explanation for glucocorticoid resistance. Continuing efforts to understand roles for glucocorticoid

  4. Cannabinoids as novel anti-inflammatory drugs

    PubMed Central

    Nagarkatti, Prakash; Pandey, Rupal; Rieder, Sadiye Amcaoglu; Hegde, Venkatesh L; Nagarkatti, Mitzi

    2009-01-01

    Cannabinoids are a group of compounds that mediate their effects through cannabinoid receptors. The discovery of Δ9-tetrahydrocannabinol (THC) as the major psychoactive principle in marijuana, as well as the identification of cannabinoid receptors and their endogenous ligands, has led to a significant growth in research aimed at understanding the physiological functions of cannabinoids. Cannabinoid receptors include CB1, which is predominantly expressed in the brain, and CB2, which is primarily found on the cells of the immune system. The fact that both CB1 and CB2 receptors have been found on immune cells suggests that cannabinoids play an important role in the regulation of the immune system. Recent studies demonstrated that administration of THC into mice triggered marked apoptosis in T cells and dendritic cells, resulting in immunosuppression. In addition, several studies showed that cannabinoids downregulate cytokine and chemokine production and, in some models, upregulate T-regulatory cells (Tregs) as a mechanism to suppress inflammatory responses. The endocannabinoid system is also involved in immunoregulation. For example, administration of endocannabinoids or use of inhibitors of enzymes that break down the endocannabinoids, led to immunosuppression and recovery from immune-mediated injury to organs such as the liver. Manipulation of endocannabinoids and/or use of exogenous cannabinoids in vivo can constitute a potent treatment modality against inflammatory disorders. This review will focus on the potential use of cannabinoids as a new class of anti-inflammatory agents against a number of inflammatory and autoimmune diseases that are primarily triggered by activated T cells or other cellular immune components. PMID:20191092

  5. Bioengineered Colorectal Cancer Drugs: Orally Delivered Anti-Inflammatory Agents.

    PubMed

    Urbanska, Aleksandra Malgorzata; Zhang, Xiaoying; Prakash, Satya

    2015-07-01

    Intestinal inflammation is one of the major factors that increase colorectal cancer (CRC) incidence worldwide. Inflammation in the gastrointestinal tract is directly linked to tumor development at the early stages of the disease, thus a key issue toward the prevention and the treatment of colonic neoplasia. Thus, the use of anti-inflammatory drugs has emerged first as a strategy to reduce chronic inflammation in case of many inflammatory bowel diseases (IBD), but it has proven its efficacy by reducing the risk of colonic neoplasia. This comprehensive review highlights the role of chronic inflammation, mainly in IBD, in the development of CRC including molecular and immune mechanisms that have tumorigenic effects. Multiple lines of evidence indicate that several bioactive and phytochemical compounds used as anti-inflammatory drugs have also antitumoral attributes. The uses of orally delivered cytokines and small molecules, as well as key dietary supplementation as anti-inflammatory therapeutics are discussed. In addition, comprehensive knowledge about CRC and intestinal inflammation, and the importance of the intestinal mucosal wall as a mucosal immunological barrier that comes into play during interactions with gut microbiota (pathogens and commensal), luminal secretions (bile acids, and bacterial and epithelial metabolites), and ingested chemicals (food components, high fat content, heterocyclic amines, and low intake of dietary fiber) are underscored. The multifunctionality of several anti-inflammatory drugs opens a line for their application in the treatment and prevention not only in IBD but also in CRC. Current bioengineering approaches for oral delivery of anti-inflammatory agents including cytokines, genetically modified bacteria, or small molecule inhibitors of inflammation directly contribute to the early management of CRC. Limitations of the current therapeutics, which stem from the lack of complete understanding of the complex molecular interactions

  6. CHF6001 II: a novel phosphodiesterase 4 inhibitor, suitable for topical pulmonary administration--in vivo preclinical pharmacology profile defines a potent anti-inflammatory compound with a wide therapeutic window.

    PubMed

    Villetti, Gino; Carnini, Chiara; Battipaglia, Loredana; Preynat, Laurent; Bolzoni, Pier Tonino; Bassani, Franco; Caruso, Paola; Bergamaschi, Marco; Pisano, Anna Rita; Puviani, Veronica; Stellari, Fabio Franco; Cenacchi, Valentina; Volta, Roberta; Bertacche, Vittorio; Mileo, Valentina; Bagnacani, Valentina; Moretti, Elisa; Puccini, Paola; Catinella, Silvia; Facchinetti, Fabrizio; Sala, Angelo; Civelli, Maurizio

    2015-03-01

    CHF6001 [(S)-3,5-dichloro-4-(2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-(3-(cyclopropylmethoxy)-4-(methylsulfonamido)benzoyloxy)ethyl)pyridine 1-oxide] is a novel phosphodiesterase 4 (PDE4) inhibitor designed for use in pulmonary diseases by inhaled administration. Intratracheal administration of CHF6001 to ovalbumin-sensitized Brown-Norway rats suppressed the antigen-induced decline of lung functions (ED50 = 0.1 µmol/kg) and antigen-induced eosinophilia (ED50 = 0.03 µmol/kg) when administered (0.09 μmol/kg) up to 24 hours before antigen challenge, in agreement with CHF6001-sustained lung concentrations up to 72 hours after intratracheal treatment (mean residence time 26 hours). Intranasal, once daily administration of CHF6001 inhibited neutrophil infiltration observed after 11 days of tobacco smoke exposure in mice, both upon prophylactic (0.15-0.45 µmol/kg per day) or interventional (0.045-0.45 µmol/kg per day) treatment. CHF6001 was ineffective in reversing ketamine/xylazine-induced anesthesia (a surrogate of emesis in rat) up to 5 µmol/kg administered intratracheally, a dose 50- to 150-fold higher than anti-inflammatory ED50 observed in rats. When given topically to ferrets, no emesis and nausea were evident up to 10 to 20 µmol/kg, respectively, whereas the PDE4 inhibitor GSK-256066 (6-[3-(dimethylcarbamoyl)phenyl]sulfonyl-4-(3-methoxyanilino)-8-methylquinoline-3-carboxamide) induced nausea at 1 µmol/kg intratracheally. A 14-day inhalation toxicology study in rats showed a no-observed-adverse-effect level dose of 4.4 µmol/kg per day for CHF6001, lower than the 0.015 μmol/kg per day for GSK-256066. CHF6001 was found effective and extremely well tolerated upon topical administration in relevant animal models, and may represent a step forward in PDE4 inhibition for the treatment of asthma and chronic obstructive respiratory disease. PMID:25576073

  7. The promotion of functional urinary bladder regeneration using anti-inflammatory nanofibers.

    PubMed

    Bury, Matthew I; Fuller, Natalie J; Meisner, Jay W; Hofer, Matthias D; Webber, Matthew J; Chow, Lesley W; Prasad, Sheba; Thaker, Hatim; Yue, Xuan; Menon, Vani S; Diaz, Edward C; Stupp, Samuel I; Cheng, Earl Y; Sharma, Arun K

    2014-11-01

    Current attempts at tissue regeneration utilizing synthetic and decellularized biologic-based materials have typically been met in part by innate immune responses in the form of a robust inflammatory reaction at the site of implantation or grafting. This can ultimately lead to tissue fibrosis with direct negative impact on tissue growth, development, and function. In order to temper the innate inflammatory response, anti-inflammatory signals were incorporated through display on self-assembling peptide nanofibers to promote tissue healing and subsequent graft compliance throughout the regenerative process. Utilizing an established urinary bladder augmentation model, the highly pro-inflammatory biologic scaffold (decellularized small intestinal submucosa) was treated with anti-inflammatory peptide amphiphiles (AIF-PAs) or control peptide amphiphiles and used for augmentation. Significant regenerative advantages of the AIF-PAs were observed including potent angiogenic responses, limited tissue collagen accumulation, and the modulation of macrophage and neutrophil responses in regenerated bladder tissue. Upon further characterization, a reduction in the levels of M2 macrophages was observed, but not in M1 macrophages in control groups, while treatment groups exhibited decreased levels of M1 macrophages and stabilized levels of M2 macrophages. Pro-inflammatory cytokine production was decreased while anti-inflammatory cytokines were up-regulated in treatment groups. This resulted in far fewer incidences of tissue granuloma and bladder stone formation. Finally, functional urinary bladder testing revealed greater bladder compliance and similar capacities in groups treated with AIF-PAs. Data demonstrate that AIF-PAs can alleviate galvanic innate immune responses and provide a highly conducive regenerative milieu that may be applicable in a variety of clinical settings. PMID:25145852

  8. The promotion of functional urinary bladder regeneration using anti-inflammatory nanofibers

    PubMed Central

    Bury, Matthew I.; Fuller, Natalie J.; Meisner, Jay W.; Hofer, Matthias D.; Webber, Matthew J.; Chow, Lesley W.; Prasad, Sheba; Thaker, Hatim; Yue, Xuan; Menon, Vani S.; Diaz, Edward C.; Stupp, Samuel I.; Cheng, Earl Y.; Sharma, Arun K.

    2014-01-01

    Current attempts at tissue regeneration utilizing synthetic and decellularized biologic-based materials have typically been met in part by innate immune responses in the form of a robust inflammatory reaction at the site of implantation or grafting. This can ultimately lead to tissue fibrosis with direct negative impact on tissue growth, development, and function. In order to temper the innate inflammatory response, anti-inflammatory signals were incorporated through display on self-assembling peptide nanofibers to promote tissue healing and subsequent graft compliance throughout the regenerative process. Utilizing an established urinary bladder augmentation model, the highly pro-inflammatory biologic scaffold (decellularized small intestinal submucosa) was treated with anti-inflammatory peptide amphiphiles (AIF-PAs) or control peptide amphiphiles and used for augmentation. Significant regenerative advantages of the AIF-PAs were observed including potent angiogenic responses, limited tissue collagen accumulation, and the modulation of macrophage and neutrophil responses in regenerated bladder tissue. Upon further characterization, a reduction in the levels of M2 macrophages was observed, but not in M1 macrophages in control groups, while treatment groups exhibited decreased levels of M1 macrophages and stabilized levels of M2 macrophages. Pro-inflammatory cytokine production was decreased while anti-inflammatory cytokines were up-regulated in treatment groups. This resulted in far fewer incidences of tissue granuloma and bladder stone formation. Finally, functional urinary bladder testing revealed greater bladder compliance and similar capacities in groups treated with AIF-PAs. Data demonstrate that AIF-PAs can alleviate galvanic innate immune responses and provide a highly conducive regenerative milieu that may be applicable in a variety of clinical settings. PMID:25145852

  9. Studies on tracheorelaxant and anti-inflammatory activities of rhizomes of Polygonatum verticillatum

    PubMed Central

    2013-01-01

    Background The present study describes the tracheorelaxant and anti-inflammatory effects of Polygonatum verticillatum which may support its medicinal use in hyperactive airway complaints and inflammatory disorders. Methods The tracheorelaxant activity of crude extract of the rhizomes of P. verticillatum (PR) was assessed in isolated guinea-pig tracheal tissues immersed in tissue organ bath filled with Tyrode’s solution and a continuous supply of carbogen gas (95% O2 and 5% CO2). The contractile and relaxant responses of the tissue were measured using isometric transducers coupled with Power-Lab data acquisition system. The anti-inflammatory effect was evaluated in carrageenan-induced rat paw edema model, while the lipoxygenase inhibitory activity was performed in the in-vitro assay. Various chromatographic and spectroscopic techniques were used for the isolation and characterization of pure molecules. Results In isolated guinea-pig tracheal preparations, PR caused complete inhibition of the high K+ (80 mM) and carbachol-induced contractions however, it was more potent against K+ than CCh, similar to verapamil. Pretreatment of the tissue with PR, displaced the Ca2+ concentration-response curves to the right, similar to that induced by verapamil, indicating the presence of Ca2+ channel blocking like activity. When tested on carrageenan-induced rat paw edema, PR demonstrated a marked reduction in edema with 65.22% protection at 200 mg/kg, similar to aspirin. In the in-vitro assay, PR showed lipoxygenase inhibitory activity (IC50: 102 ± 0.19 μg/mL), similar to baicalein. Bioactivity-guided fractionation led to the isolation of 2-hydroxybenzoic acid and β-sitosterol. Conclusions These results indicate that the plant possesses tracheorelaxant, mediated possibly through a Ca2+ channel blockade mechanism, and anti-inflammatory activities, which may explain the medicinal use of this plant in airway disorders and inflammation. PMID:23895558

  10. Synthesis, analgesic, anti-inflammatory and anti-ulcerogenic activities of certain novel Schiff's bases as fenamate isosteres.

    PubMed

    Alafeefy, Ahmed M; Bakht, Mohammed A; Ganaie, Majid A; Ansarie, Mohd N; El-Sayed, Nahed N; Awaad, Amani S

    2015-01-15

    A series of certain novel Schiff bases as fenamate isosteres (VI:a-k) were synthesized to locate analgesic, anti-inflammatory agent with minimal ulcerogenic potential. The structures of the newly synthesized compounds were elucidated on the basis of their elemental analysis as well as IR, and NMR and mass spectroscopic data. All the compounds were evaluated for their anti-inflammatory activity by carrageenan induced paw oedema method. The compounds possessing good anti-inflammatory activity were further tested for analgesic, ulcerogenic, lipid peroxidation potentials and liver toxicity. Compounds (VI-c), (VI-f), (VI-h) and (VI-i) showed the best anti-inflammatory and significant analgesic activities at doses comparable to that of the standard drug Indomethacin. However, compounds (VI-c) and (VI-f) could be considered the most potent anti-inflammatory and analgesic molecules with maximum reduction in gastro-intestinal ulceration with no hepatocyte necrosis or liver degeneration.

  11. Rose geranium essential oil as a source of new and safe anti-inflammatory drugs

    PubMed Central

    Boukhatem, Mohamed Nadjib; Kameli, Abdelkrim; Ferhat, Mohamed Amine; Saidi, Fairouz; Mekarnia, Maamar

    2013-01-01

    Background Since the available anti-inflammatory drugs exert an extensive variety of side effects, the search for new anti-inflammatory agents has been a priority of pharmaceutical industries. Aims The aim of the present study was to assess the anti-inflammatory activities of the essential oil of rose geranium (RGEO). Methods The chemical composition of the RGEO was investigated by gas chromatography. The major components were citronellol (29.13%), geraniol (12.62%), and citronellyl formate (8.06%). In the carrageenan-induced paw edema, five different groups were established and RGEO was administered orally in three different doses. Results RGEO (100 mg/kg) was able to significantly reduce the paw edema with a comparable effect to that observed with diclofenac, the positive control. In addition, RGEO showed a potent anti-inflammatory activity by topical treatment in the method of croton oil-induced ear edema. When the dose was 5 or 10 µl of RGEO per ear, the inflammation was reduced by 73 and 88%, respectively. This is the first report to demonstrate a significant anti-inflammatory activity of Algerian RGEO. In addition, histological analysis confirmed that RGEO inhibited the inflammatory responses in the skin. Conclusion Our results indicate that RGEO may have significant potential for the development of novel anti-inflammatory drugs with improved safety profile. PMID:24103319

  12. Anti-inflammatory activities of oleanolic acid on HMGB1 activated HUVECs.

    PubMed

    Yang, Eun-Ju; Lee, Wonhwa; Ku, Sae-Kwang; Song, Kyung-Sik; Bae, Jong-Sup

    2012-05-01

    As a late mediator of inflammation, high mobility group box 1 (HMGB1) protein up-regulates pro-inflammatory cytokines in several inflammatory diseases. Further, high plasma levels of HMGB1 correlate with poor prognosis and increased mortality in patients with severe inflammation. Oleanolic acid (OA), a triterpenoid known for its anti-inflammatory and anti-cancer properties, is commonly present in several medicinal plants but the effects of OA on HMGB1-mediated pro-inflammatory responses of human endothelial cells is not well-studied. In this study, we investigated this question by monitoring the effect of OA on lipopolysaccharide (LPS)-mediated release of HMGB1 and the HMGB1-mediated modulation of inflammatory responses in human umbilical vein endothelial cells (HUVECs). OA potently inhibited the release of HMGB1 by HUVECs as well as down-regulated HMGB1-dependent adhesion and migration of the monocytic cell line THP-1 to activated HUVECs. OA also down-regulated the cell surface expression of the receptor of HMGB1, thereby inhibiting HMGB1-dependent pro-inflammatory responses by inhibiting activation of nuclear factor-κB (NF-κB) and production of tumor necrosis factor-α (TNF-α) by HMGB1. Given these results, OA showed anti-inflammatory activities and could be a candidate as a therapeutic agent for various inflammatory diseases through the inhibition of the HMGB1 signaling pathway.

  13. High anti-inflammatory activity of harpagoside-enriched extracts obtained from solvent-modified super- and subcritical carbon dioxide extractions of the roots of Harpagophytum procumbens.

    PubMed

    Günther, M; Laufer, S; Schmidt, P C

    2006-01-01

    Solvent-modified carbon dioxide extractions of the roots of Harpagophytum procumbens have been investigated with respect to extraction efficiency and content of harpagoside, and compared with a conventional extract. The effects of pressure, temperature, type and concentration of the modifier have been examined. Two extraction steps were necessary in order to achievehigh anti-inflammatory harpagoside-enriched extracts. The first extraction step was carried out in the supercritical state using carbon dioxide modified with n-propanol to remove undesired lipophilic substances. The main extraction was performed either in the supercritical or in the subcritical state with carbon dioxide modified with ethanol. The supercritical fluid extraction resulted in extracts containing up to 30% harpagoside. The subcritical extracts showed a harpagoside content of ca. 20%, but the extraction yield was nearly three times greater compared with supercritical conditions. The total harpagoside recovery resulting from the sum of the extract and the crude drug residue was greater than 99% in all experiments. The conventional extract and two carbon dioxide extracts were tested for in-vitro inhibition of 5-lipoxygenase or cyclooxygenase-2 biosynthesis. Both carbon dioxide extracts showed total inhibition on 5-lipoxygenase biosynthesis at a concentration of 51.8 mg/L. In contrast, the conventional extract failed to show any inhibition of 5-lipoxygenase biosynthesis. PMID:16454469

  14. The anti-inflammatory effect of opioids.

    PubMed

    Gavalas, A; Victoratos, P; Yiangou, M; Hadjipetrou-Kourounakis, L; Rekka, E; Kourounakis, P

    1994-01-01

    The anti-inflammatory activity of two novel opioids PM and PO as well as of pethidine was studied. The mouse paw edema, induced by various phlogistic agents, was significantly inhibited after the administration of opioids, fact that was independent of their antioxidant properties. The anti-inflammatory action of the above opioids was not reversed by naloxone. These results suggest that a variety of complex regulatory activities may be performed by opioid agonists via naloxone-sensitive or naloxone insensitive receptors on inflammatory cells, directly or indirectly by the inhibition of cytokines and mediators involved in inflammation.

  15. Anti-inflammatory effects of five commercially available mushroom species determined in lipopolysaccharide and interferon-γ activated murine macrophages.

    PubMed

    Gunawardena, Dhanushka; Bennett, Louise; Shanmugam, Kirubakaran; King, Kerryn; Williams, Roderick; Zabaras, Dimitrios; Head, Richard; Ooi, Lezanne; Gyengesi, Erika; Münch, Gerald

    2014-04-01

    Inflammation is a well-known contributing factor to many age-related chronic diseases. One of the possible strategies to suppress inflammation is the employment of functional foods with anti-inflammatory properties. Edible mushrooms are attracting more and more attention as functional foods since they are rich in bioactive compounds, but their anti-inflammatory properties and the effect of food processing steps on this activity has not been systematically investigated. In the present study, White Button and Honey Brown (both Agaricus bisporus), Shiitake (Lentinus edodes), Enoki (Flammulina velutipes) and Oyster mushroom (Pleurotus ostreatus) preparations were tested for their anti-inflammatory activity in lipopolysaccharide (LPS) and interferon-γ (IFN-γ) activated murine RAW 264.7 macrophages. Potent anti-inflammatory activity (IC₅₀<0.1 mg/ml), measured as inhibition of NO production, could be detected in all raw mushroom preparations, but only raw Oyster (IC₅₀=0.035 mg/ml), Shiitake (IC₅₀=0.047 mg/ml) and Enoki mushrooms (IC₅₀=0.099 mg/ml) showed also potent inhibition of TNF-α production. When the anti-inflammatory activity was followed through two food-processing steps, which involved ultrasonication and heating, a significant portion of the anti-inflammatory activity was lost suggesting that the anti-inflammatory compounds might be susceptible to heating or prone to evaporation. PMID:24262531

  16. Antioxidant, Anti-inflammatory and Cytotoxicity of Phaleria macrocarpa (Boerl.) Scheff Fruit

    PubMed Central

    2011-01-01

    Background Phaleria macrocarpa (Scheff.) Boerl (Thymelaceae) originates from Papua Island, Indonesia and grows in tropical areas. The different parts of the fruit of P. macrocarpa were evaluated for antioxidant, anti-inflammatory, and cytotoxic activities. Methods Phaleria macrocarpa fruit were divided into pericarp, mesocarp and seed. All parts of the fruit were reflux extracted with methanol. The antioxidant activity of the extracts were characterized in various in vitro model systems such as FTC, TBA, DPPH radical, reducing power and NO radical. Anti-inflammatory assays were done by using NO production by macrophage RAW 264.7 cell lines induced by LPS/IFN-γ and cytotoxic activities were determined by using several cancer cell lines and one normal cell line Results The results showed that different parts (pericarp, mesocarp, and seed) of Phaleria macrocarpa fruit contain various amount of total phenolic (59.2 ± 0.04, 60.5 ± 0.17, 47.7 ± 1.04 mg gallic acid equivalent/g DW) and flavonoid compounds (161.3 ± 1.58, 131.7 ± 1.66, 35.9 ± 2.47 mg rutin equivalent/g DW). Pericarp and mesocarp showed high antioxidant activities by using DPPH (71.97%, 62.41%), ferric reducing antioxidant power (92.35%, 78.78%) and NO scavenging activity (65.68%, 53.45%). Ferric thiocyanate and thiobarbituric acid tests showed appreciable antioxidant activity in the percentage hydroperoxides inhibitory activity from pericarp and mesocarp in the last day of the assay. Similarly, the pericarp and mesocarp inhibited inducible nitric oxide synthesis with values of 63.4 ± 1.4% and 69.5 ± 1.4% in macrophage RAW 264.7 cell lines induced by LPS/IFN-γ indicating their notable anti-inflammatory potential. Cytotoxic activities against HT-29, MCF-7, HeLa and Chang cell lines were observed in all parts. Conclusions These results indicated the possible application of P. macrocarpa fruit as a source of bioactive compounds, potent as an antioxidant, anti inflammatory and cytotoxic agents. PMID

  17. Determination of Residual Nonsteroidal Anti-Inflammatory Drugs in Aqueous Sample Using Magnetic Nanoparticles Modified with Cetyltrimethylammonium Bromide by High Performance Liquid Chromatography

    PubMed Central

    Khoeini Sharifabadi, Malihe; Saber-Tehrani, Mohammad; Waqif Husain, Syed; Mehdinia, Ali; Aberoomand-Azar, Parviz

    2014-01-01

    A simple and sensitive solid-phase extraction method for separation and preconcentration of trace amount of four nonsteroidal anti-inflammatory drugs (naproxen, indomethacin, diclofenac, and ibuprofen) using Fe3O4 magnetic nanoparticles modified with cetyltrimethylammonium bromide has been developed. For this purpose, the surface of MNPs was modified with cetyltrimethylammonium bromide (CTAB) as a cationic surfactant. Effects of different parameters influencing the extraction efficiency of drugs including the pH, amount of salt, shaking time, eluent type, the volume of solvent, amount of adsorbent, sample volume, and the time of desorption were investigated and optimized. Methanol has been used as desorption solvent and the extracts were analysed on a reversed-phase octadecyl silica column using 0.02 M phosphate-buffer (pH = 6.02) acetonitrile (65 : 35 v/v) as the mobile phase and the effluents were measured at 202 nm with ultraviolet detector. The relative standard deviation (RSD%) of the method was investigated at three concentrations (25, 50, and 200 ng/mL) and was in the range of 3.98–9.83% (n = 6) for 50 ng/mL. The calibration curves obtained for studied drugs show reasonable linearity (R2 > 0.99) and the limit of detection (LODs) ranged between 2 and 7 ng/mL. Finally, the proposed method has been effectively employed in extraction and determination of the drugs in biological and environmental samples. PMID:24982923

  18. New analogues of butylated hydroxytoluene as anti-inflammatory and antioxidant agents.

    PubMed

    Ziakas, George N; Rekka, Eleni A; Gavalas, Antonios M; Eleftheriou, Phaedra T; Kourounakis, Panos N

    2006-08-15

    Amine or amide derivatives bearing the 2,6-di-tert-butyl phenol moiety are synthesised. Almost all are antioxidants, reduce acute inflammation and inhibit COX-1 and lipoxygenase activity. The most potent anti-inflammatory, COX-1 inhibitor and antioxidant agent, with low toxicity, is 2,6-di-tert-butyl-4-thiomorpholin-4-ylmethyl-phenol.

  19. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues.

    PubMed

    Surendra Kumar, R; Arif, Ibrahim A; Ahamed, Anis; Idhayadhulla, Akbar

    2016-09-01

    A new sequence of pyrazole derivatives (1-6) was synthesized from condensation technique under utilizing ultrasound irradiation. Synthesized compounds were characterized from IR, (1)H NMR, (13)C NMR, Mass and elemental analysis. Synthesized compounds (1-6) were screened for antimicrobial activity. Among the compounds 3 (MIC: 0.25 μg/mL) was exceedingly antibacterially active against gram negative bacteria of Escherichia coli and compound 4 (MIC: 0.25 μg/mL) was highly active against gram positive bacteria of Streptococcus epidermidis compared with standard Ciprofloxacin. Compound 2 (MIC: 1 μg/mL) was highly antifungal active against Aspergillus niger proportionate to Clotrimazole. Synthesized compounds (1-6) were screened for anti-inflammatory activity and the compound 2-((5-hydroxy-3-methyl-1H-pyrazol-4-yl)(4-nitrophenyl)methyl)hydrazinecarboxamide (4) was better activity against anti-inflammatory when compared with standard drugs (Diclofenac sodium). Compounds (2, 3 and 4) are the most important molecules and hence the need to develop new drugs of antibacterial, antifungal and anti-inflammatory agents. PMID:27579011

  20. Molecular basis for nonspecificity of nonsteroidal anti-inflammatory drugs (NSAIDs).

    PubMed

    Dwivedi, Avaneesh K; Gurjar, Vaishali; Kumar, Sanjit; Singh, Nagendra

    2015-07-01

    Inhibition of the production of inflammatory mediators by the action of nonsteroidal anti-inflammatory drugs (NSAIDs) is highly accredited to their recognition of cyclooxygenase enzymes. Along with inflammation relief, however, NSAIDs also cause adverse effects. Although NSAIDs strongly inhibit enzymes of the prostaglandin synthesis pathways, several other proteins also serve as fairly potent targets for these drugs. Based on their recognition pattern, these receptors are categorised as enzymes modifying NSAIDs, noncatalytic proteins binding to NSAIDs and enzymes with catalytic functions that are inhibited by NSAIDs. The extensive binding of NSAIDs is responsible for their limited in vivo efficacy as well as the large spectrum of their effects. The biochemical nature of drugs binding to multiple protein targets and its implications on physiology are discussed. PMID:25794602

  1. Anti-inflammatory activity of thiabendazole and its relation to parasitic disease.

    PubMed

    van Arman, G G; Campbell, W C

    1975-01-01

    In 6 differnet animal assays in the laboratory, thiabendazole had clear anti-inflammatory effect, though it was less potent than aspirin in all assays. These findings add support to clinical suggestions that the drug may have anti-inflammatory properties in man. Such properties may contribute to the clinical response observed following the use of thiabendazole in cases of trichinosis, cutaneous larva migrans, visceral larva migrans, dracunculosis and scabies. In parasitic infections in which corticosteroids are commonly used in clinical management, notably trichinosis, the fact that thiabendazole does not appear to have immunosuppressive activity may confer an added clinical advantage.

  2. Oncostatin M in the anti-inflammatory response

    PubMed Central

    Wahl, A; Wallace, P

    2001-01-01

    Oncostatin M (OM) is a pleiotropic cytokine of the interleukin 6 family, whose in vivo properties and physiological function remain in dispute and poorly defined. These in vivo studies strongly suggest that OM is anabolic, promoting wound healing and bone formation, and anti-inflammatory. In models of inflammation OM is produced late in the cytokine response and protects from lipopolysaccharide (LPS)-induced toxicities, promoting the re-establishment of homoeostasis by cooperating with proinflammatory cytokines and acute phase molecules to alter and attenuate the inflammatory response. Administration of OM inhibited bacterial LPS-induced production of tumour necrosis factor α and septic lethality in a dose dependent manner. Consistent with these findings, in animal models of chronic inflammatory disease OM potently suppressed inflammation and tissue destruction in murine models of rheumatoid arthritis and multiple sclerosis. T cell function and antibody production were not impaired by OM treatment. Taken together, these data indicate that the activities of this cytokine in vivo are anti-inflammatory without concordant immunosuppression.

 PMID:11890661

  3. Anti-inflammatory properties of new bioisosteres of indomethacin synthesized from safrole which are sulindac analogues.

    PubMed

    Pereira, E F; Pereira, N A; Lima, M E; Coelho, F A; Barreiro, E J

    1989-01-01

    The anti-inflammatory activities of new compounds (I, II, III and IV) synthesized in 30% overall yield from the abundant natural product safrole, the principal chemical constituent of the oil of sassafras (Ocotea pretiosa, Lauraceae), were determined in mice. The synthesis of these new indenyl-acetic acids (I and II) and indenyl-propionic acids (III and IV) was based on the minimal structural features of non-steroid anti-inflammatory agents of the aryl- or heteroarylcarboxylic acid group. The compounds exhibited potencies 4- to 10-fold less than that of indomethacin in inhibiting carrageenan-induced hindpaw edema. In contrast, like sulindac, all the new compounds were more potent than indomethacin in antagonizing writhing pain and increased vascular permeability caused by acetic acid. The results confirm the anticipated bioisosteric relationship between these synthetic derivatives, designed as sulindac analogues, and the classical non-steroidal anti-inflammatory agent, indomethacin.

  4. Intravital Microscopic Methods to Evaluate Anti-inflammatory Effects and Signaling Mechanisms Evoked by Hydrogen Sulfide

    PubMed Central

    Zuidema, Mozow Y.; Korthuis, Ronald J.

    2016-01-01

    Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule with potent anti-inflammatory properties. Exogenous application of H2S donors, administered either acutely during an inflammatory response or as an antecedent preconditioning intervention that invokes the activation of anti-inflammatory cell survival programs, effectively limits leukocyte rolling, adhesion and emigration, generation of reactive oxygen species, chemokine and cell adhesion molecule expression, endothelial barrier disruption,capillary perfusion deficits, and parenchymal cell dysfunction and injury. This chapter focuses on intravital microscopic methods that can be used to assess the anti-inflammatory effects exerted by H2S, as well as to explore the cellular signaling mechanisms by which this gaseous molecule limits the aforementioned inflammatory responses. Recent advances include use of intravital multiphoton microscopy and optical biosensor technology to explore signaling mechanisms in vivo. PMID:25747477

  5. Design, synthesis and pharmacological evaluation of omeprazole-like agents with anti-inflammatory activity.

    PubMed

    El-Nezhawy, Ahmed O H; Biuomy, Ayman R; Hassan, Fatma S; Ismaiel, Ayman K; Omar, Hany A

    2013-04-01

    A new series of novel benzimidazole derivatives containing substituted pyrid-2-yl moiety and polyhydroxy sugar conjugated to the N-benzimidazole moiety has been synthesized and evaluated as orally bioavailable anti-inflammatory agents with anti-ulcerogenic activity. The anti-inflammatory and anti-ulcerogenic activities of these compounds were compared to diclofenac and omeprazole, respectively. In carrageenan-induced paw oedema assay, 2-methyl-N-((3,4-dimethoxypyridin-2-yl)methyl)-1H-benzimidazol-5-amine (12d) and 1-(1,2,3,5-tetrahydroxy-α-D-mannofuranose)-5-(((3,4-dimethoxypyridin-2yl)methyl)amino)-2-methyl-1H-benzimidazole (15d) displayed dose-dependent anti-inflammatory activities by decreasing the inflammation by 62% and 72%, respectively which is comparable to that of diclofenac (73%). In contrast to diclofenac, the anti-inflammatory activity of these compounds was not only free from any side effects on the gastric mucosa but also showed significant anti-ulcerogenic activity in rat pyloric ligation and ethanol-induced gastric ulcer models similar to that of omeprazole. Together, these findings suggest that 12d and 15d are potent anti-inflammatory agents with concurrent anti-ulcerogenic activity and support its clinical promise as a component of therapeutic strategies for inflammation, for which the gastric side effects are always a major limitation.

  6. Evaluation of anti-inflammatory activity of Calotropis gigantea (AKANDA) in various biological system.

    PubMed

    Adak, Manoranjan; Gupta, Joyanta Kumar

    2006-09-01

    To evaluate the effect of Calotropis G in various experimental animal models. The anti-inflammatory activity was evaluated using carrageenin-induced kaolin -induced rat paw oedema for acute and cotton-pellet granuloma, adjuvant-induced arthritis model for chronic inflammation. Antipyretic activity was carried out using yeast induced pyresis method. Phenylquinone--induced writhing method in mice was used for analgesic activity. Test compounds exhibited variable anti-inflammatory activity and peak activity of the test compounds were reached at 2 h. Alkaloid fraction possesses comparatively high initial anti-inflammatory activity. The residual anti-inflammatory activity of alkaloid fraction of Calotropis G suggest either a greater protein binding nature of the compound there by providing a slow released pool of active drug molecule in the system or non available of possible bioactive metabolites to retain the activity profile relation.

  7. QSAR and Docking Studies on Capsazepine Derivatives for Immunomodulatory and Anti-Inflammatory Activity

    PubMed Central

    Shukla, Aparna; Sharma, Pooja; Prakash, Om; Singh, Monika; Kalani, Komal; Khan, Feroz; Bawankule, Dnyaneshwar Umrao; Luqman, Suaib; Srivastava, Santosh Kumar

    2014-01-01

    Capsazepine, an antagonist of capsaicin, is discovered by the structure and activity relationship. In previous studies it has been found that capsazepine has potency for immunomodulation and anti-inflammatory activity and emerging as a favourable target in quest for efficacious and safe anti-inflammatory drug. Thus, a 2D quantitative structural activity relationship (QSAR) model against target tumor necrosis factor-α (TNF-α) was developed using multiple linear regression method (MLR) with good internal prediction (r2 = 0.8779) and external prediction (r2pred = 0.5865) using Discovery Studio v3.5 (Accelrys, USA). The predicted activity was further validated by in vitro experiment. Capsazepine was tested in lipopolysaccharide (LPS) induced inflammation in peritoneal mouse macrophages. Anti-inflammatory profile of capsazepine was assessed by its potency to inhibit the production of inflammatory mediator TNF-α. The in vitro experiment indicated that capsazepine is an efficient anti-inflammatory agent. Since, the developed QSAR model showed significant correlations between chemical structure and anti-inflammatory activity, it was successfully applied in the screening of forty-four virtual derivatives of capsazepine, which finally afforded six potent derivatives, CPZ-29, CPZ-30, CPZ-33, CPZ-34, CPZ-35 and CPZ-36. To gain more insights into the molecular mechanism of action of capsazepine and its derivatives, molecular docking and in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were performed. The results of QSAR, molecular docking, in silico ADMET screening and in vitro experimental studies provide guideline and mechanistic scope for the identification of more potent anti-inflammatory & immunomodulatory drug. PMID:25003344

  8. Medicinal plants with anti-inflammatory activities.

    PubMed

    Maione, Francesco; Russo, Rosa; Khan, Haroon; Mascolo, Nicola

    2016-06-01

    Medicinal plants have been the main remedy to treat various ailments for a long time and nowadays, many drugs have been developed from traditional medicine. This paper reviews some medicinal plants and their main constituents which possess anti-inflammatory activities useful for curing joint inflammation, inflammatory skin disorders, cardiovascular inflammation and other inflammatory diseases. Here, we provide a brief overview of quick and easy reading on the role of medicinal plants and their main constituents in these inflammatory diseases. We hope that this overview will shed some light on the function of these natural anti-inflammatory compounds and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of various inflammatory conditions.

  9. Medicinal plants with anti-inflammatory activities.

    PubMed

    Maione, Francesco; Russo, Rosa; Khan, Haroon; Mascolo, Nicola

    2016-06-01

    Medicinal plants have been the main remedy to treat various ailments for a long time and nowadays, many drugs have been developed from traditional medicine. This paper reviews some medicinal plants and their main constituents which possess anti-inflammatory activities useful for curing joint inflammation, inflammatory skin disorders, cardiovascular inflammation and other inflammatory diseases. Here, we provide a brief overview of quick and easy reading on the role of medicinal plants and their main constituents in these inflammatory diseases. We hope that this overview will shed some light on the function of these natural anti-inflammatory compounds and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of various inflammatory conditions. PMID:26221780

  10. Anti-inflammatory actions of acupuncture.

    PubMed Central

    Zijlstra, Freek J; van den Berg-de Lange, Ineke; Huygen, Frank J P M; Klein, Jan

    2003-01-01

    Acupuncture has a beneficial effect when treating many diseases and painful conditions, and therefore is thought to be useful as a complementary therapy or to replace generally accepted pharmacological intervention. The attributive effect of acupuncture has been investigated in inflammatory diseases, including asthma, rhinitis, inflammatory bowel disease, rheumatoid arthritis, epicondylitis, complex regional pain syndrome type 1 and vasculitis. Large randomised trials demonstrating the immediate and sustained effect of acupuncture are missing. Mechanisms underlying the ascribed immunosuppressive actions of acupuncture are reviewed in this communication. The acupuncture-controlled release of neuropeptides from nerve endings and subsequent vasodilative and anti-inflammatory effects through calcitonine gene-related peptide is hypothesised. The complex interactions with substance P, the analgesic contribution of beta-endorphin and the balance between cell-specific pro-inflammatory and anti-inflammatory cytokines tumour necrosis factor-alpha and interleukin-10 are discussed. PMID:12775355

  11. Anti-inflammatory properties of diclofenac transition metalloelement complexes.

    PubMed

    Konstandinidou, M; Kourounakis, A; Yiangou, M; Hadjipetrou, L; Kovala-Demertzi, D; Hadjikakou, S; Demertzis, M

    1998-04-01

    As part of our research into understanding drug-metalloelement interactions, we have prepared complexes of Cu(II), Co(II), Ni(II), Mn(II), Fe(II), Fe(III), and Pd(II) with Diclofenac, in order to investigate their anti-inflammatory activity. Their inhibitory effects on rat or mouse paw edema induced by Carrageenan, Con-A, Nystatin, and Baker's yeast were compared with those of Diclofenac. Furthermore, the action of Diclofenac's metalloelement complexes on phagocytosis of yeast by rat peritoneal cells, as well as the capacity of some of the metalloelement complexes to inhibit lipid peroxidation of liver microsomal membranes was also investigated. These complexes exhibited a strong inhibitory effect on Carrageenan-, ConA-, and Nystatin-induced edemas (35-80% inhibition) comparable to the inhibition caused by Diclofenac (61-76% inhibition). Furthermore, complexes with Co(II), Ni(II), Pd(II), and Mn(II) were found to have an anti-inflammatory profile (35-50% inhibition) superior to diclofenac (17% inhibition) when inhibiting inflammations due to Baker's yeast, the mechanism of which involves mainly the activation of lipoxygenase and/or complement system. Complexes of Ni(II) and Pd(II), which showed significant inhibition of induced-edemas in rats, were also tested in mice at lower and higher doses and showed a significant dose-dependent inhibition of edemas in mice. Some of these complexes also interfere with in vitro phagocytosis. The most active anti-inflammatory complexes Co(II), Pd(II), and Ni(II), also offered significant protection against lipid peroxidation in vitro, acting as antioxidant compounds, properties that are not demonstrated by Diclofenac. Finally, it is noted that almost all metalloelement complexes of Diclofenac showed high anti-inflammatory activity at molecular concentrations much lower than that of Diclofenac. From the present study it is suggested that the anti-inflammatory activity of Diclofenac is enhanced by the formation of coordination

  12. Anti-Inflammatory Effect of Selected Dihydroxyflavones

    PubMed Central

    Sangeetha, K.S.Sridevi

    2015-01-01

    Background The mechanism of inflammation is attributed, to release of reactive oxygen species from activated neutrophils and macrophages. Over production of reactive oxygen species may result in tissue injury by damaging macromolecules. Flavones are the polyphenolic compounds with antioxidant property. This antioxidant property of flavones may have beneficial effect against inflammation. Aim To study the anti-inflammatory effect of selected dihydroxyflavones (DHF) in albino rats. The prime objective of the present study is to identify safe and effective agents to treat inflammation from among the selected DHF group of compounds. Materials and Methods The present study was designed to investigate the anti-inflammatory action of four selected dihydroxyflavone derivatives; 2’,3’- dihydroxyflavone and 2’, 4’ -dihydroxyflavones, 5, 3’- dihydroxyflavone and 7, 3’ dihydroxyflavone. The anti-inflammatory activity of selected DHF was studied in rats by carrageenan induced hind paw oedema method. Results All the selected dihydroxyflavone derivatives showed dose and time dependent inhibition of carrageenan induced paw oedema. PMID:26155493

  13. Anti-inflammatory effect of three iridoids in human neutrophils.

    PubMed

    Wei, Shihu; Chi, Haidong; Kodama, Hiroyuki; Chen, Guang

    2013-01-01

    To verify the anti-inflammatory potency of iridoids, three iridoids (two natural, loganic acid: LA; geniposide: GE; and an artefact, 7(S)-n-butyl morroniside: BM) were investigated in vitro on the inhibition of superoxide generation in human neutrophils. All compounds showed inhibitory effect on fMLP-induced superoxide generation in a concentration-dependent manner with the following order: BM>LA>GE. BM exhibits potent inhibitory activity on superoxide anion induced by PMA, while LA and GE showed weak effect. When AA was used as stimulus, the generation of superoxide anion was suppressed by BM in a concentration-dependent manner. LA and GE exhibit both sides effect on superoxide generation.

  14. Synthesis and Anti-Inflammatory Activity of New Alkyl-Substituted Phthalimide 1H-1,2,3-Triazole Derivatives

    PubMed Central

    Assis, Shalom Pôrto de Oliveira; da Silva, Moara Targino; de Oliveira, Ronaldo Nascimento; Lima, Vera Lúcia de Menezes

    2012-01-01

    Four new 1,2,3-triazole phthalimide derivatives with a potent anti-inflammatory activity have been synthesized in the good yields by the 1,3-dipolar cycloaddition reaction from N-(azido-alkyl)phthalimides and terminal alkynes. The anti-inflammatory activity was determined by injecting carrageenan through the plantar tissue of the right hind paw of Swiss white mice to produce inflammation. All the compounds 3a–c and 5a–c exhibited an important anti-inflammatory activity; the best activity was found for the compounds 3b and 5c, which showed to be able to decrease by 69% and 56.2% carrageenan-induced edema in mice. These compounds may also offer a future promise as a new anti-inflammatory agent. PMID:23304092

  15. Non-carboxylic analogues of aryl propionic acid: synthesis, anti-inflammatory, analgesic, antipyretic and ulcerogenic potential.

    PubMed

    Eissa, S I; Farrag, A M; Galeel, A A A

    2014-09-01

    As a part of ongoing studies in developing new potent anti-inflammatory and analgesic agents, a series of novel 6-methoxy naphthalene derivatives was efficiently synthesized and characterized by spectral and elemental analyses. The newly synthesized compounds were evaluated for their anti-inflammatory activities using carrageenin-induced rat paw edema model, analgesic activities using acetic acid induced writhing model in mice and anti-pyretic activity using yeast induced hyperpyrexia method as well as ulcerogenic effects. Among the synthesized compounds, thiourea derivative (6a, e) exhibited higher anti-inflammatory activity than the standard drug naproxen in reduction of the rat paw edema (88.71, 89.77%) respectively. All of the non-carboxylic tested compounds were found to have promising anti-inflammatory, analgesic and antipyretic activity, while were devoid of any ulcerogenic effects. PMID:24446206

  16. Design, synthesis, and biological evaluation of semicarbazide-sensitive amine oxidase (SSAO) inhibitors with anti-inflammatory activity.

    PubMed

    Wang, Eric Y; Gao, Hongfeng; Salter-Cid, Luisa; Zhang, Jun; Huang, Li; Podar, Erika M; Miller, Andrew; Zhao, Jingjing; O'rourke, Anne; Linnik, Matthew D

    2006-04-01

    In an attempt to examine the effect of inhibition of semicarbazide-sensitive amine oxidase (SSAO; EC 1.4.3.6, also known as VAP-1) as a novel anti-inflammatory target, the structure/mechanism based design and synthesis of a series of novel hydrazino-containing small molecules are described. The in vitro biological results show that compounds 4a,c are highly potent SSAO inhibitors with notable selectivity toward SSAO over monoamine oxidases A and B (MAO-A and MAO-B). SAR studies based on compound 4c were performed, and the results are discussed. The most potent and selective compound, 4a (IC(50) = 2 nM), is an orally active, competitive, and apparently irreversible inhibitor of SSAO that is effective at reducing disease incidence and severity in an in vivo animal disease model of multiple sclerosis.

  17. Quantitative Analysis and In vitro Anti-inflammatory Effects of Gallic Acid, Ellagic Acid, and Quercetin from Radix Sanguisorbae

    PubMed Central

    Seo, Chang-Seob; Jeong, Soo-Jin; Yoo, Sae-Rom; Lee, Na-Ri; Shin, Hyeun-Kyoo

    2016-01-01

    Background: Radix Sanguisorbae has long been used to treat diarrhea, enteritis, duodenal ulcers, and internal hemorrhage. Objective: We investigated the in vitro anti-inflammatory effects of Radix Sanguisorbae and performed quantitative analyses of three marker components, namely gallic acid, ellagic acid, and quercetin, using high-performance liquid chromatography coupled with a photodiode array detector. Materials and Methods: The three marker components were separated using a reversed-phase Gemini C18 analytical column maintained at 40°C by the gradient elution with two solvent systems. We examined the biological effects of the three marker compounds, gallic acid, ellagic acid, and quercetin, by determining their anti-inflammatory activities in the murine macrophage cell line RAW 264.7. Results: All of the marker compounds exhibited inhibitory effects on prostaglandin E2 production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, with no cytotoxicity. Particularly, ellagic acid significantly inhibited production of the proinflammatory cytokines tumor necrosis factor alpha and interleukin-6 in LPS-treated RAW 264.7 cells. Conclusion: Our results suggest that ellagic acid is the most potent bioactive phytochemical component of radix Sanguisorbae in the treatment of inflammatory diseases. SUMMARY Established high-performance liquid chromatography method was applied in the quantitative analysis of gallic acid, ellagic acid, and quercetin present in an extract from radix SanguisorbaeAmong the three compounds, the ellagic acid.(7.65.mg/g) is main component in radix SanguisorbaeEllagic acid significantly inhibited production of the proinflammatory cytokines tumor necrosis factor alpha and interleukin-6 in lipopolysaccharide-treated RAW 264.7 cells. Abbreviations used: HPLC: High-performance liquid chromatography, PDA: Photodiode array, TNF-α: Tumor necrosis factor alpha, IL: Interleukin, LPS: Lipopolysaccharide, PGE2: Prostaglandin E2, NSAIDs

  18. Erdosteine: antitussive and anti-inflammatory effects.

    PubMed

    Dal Negro, Roberto W

    2008-01-01

    Erdosteine is a multifactorial drug currently used in COPD for its rheologic activity on bronchial secretions and its positive effects on bacterial adhesiveness. Erdosteine produces an active metabolite (Met 1) which was shown to produce antioxidant effects during the respiratory burst of human PMNs, due to the presence of an SH group. The substantial antitussive effects of erdosteine were first documented in clinical trials even though mucolytic agents are regarded as not consistently effective in ameliorating cough in patients with bronchitis, although they may be of benefit to this population in other ways. Actually, a mucolytic drug could exert antitussive effects if it also affects mucus consistency and enhances ciliary function. In the last decade, data from several studies on animal models pointed to the possible antitussive and anti-inflammatory properties of erdosteine and an indirect anti-inflammatory mechanism of action was suggested. Recently, data from some controlled versus placebo studies documented the antioxidant properties of erdosteine in humans and in current smokers with COPD. The mechanism of action was described as related to erdosteine's ability to inhibit some inflammatory mediators and some pro-inflammatory cytokines that are specifically involved in oxidative stress. As oxidative stress is also presumed to impair beta-adrenoceptor function and contribute to airway obstruction, specific controlled studies recently investigated the effect of antioxidant intervention on short-term airway response to salbutamol in nonreversible COPD, according to a double-blind design versus placebo and NAC. Only erdosteine consistently restored a significant short-term reversibility in COPD subjects, previously unresponsive to beta(2) adrenergics. This peculiar activity of erdosteine (to our knowledge never previously assessed) proved related to the ROS scavenging activity (which actually proved equal to that of N), and its significant inhibiting effect on

  19. Erdosteine: antitussive and anti-inflammatory effects.

    PubMed

    Dal Negro, Roberto W

    2008-01-01

    Erdosteine is a multifactorial drug currently used in COPD for its rheologic activity on bronchial secretions and its positive effects on bacterial adhesiveness. Erdosteine produces an active metabolite (Met 1) which was shown to produce antioxidant effects during the respiratory burst of human PMNs, due to the presence of an SH group. The substantial antitussive effects of erdosteine were first documented in clinical trials even though mucolytic agents are regarded as not consistently effective in ameliorating cough in patients with bronchitis, although they may be of benefit to this population in other ways. Actually, a mucolytic drug could exert antitussive effects if it also affects mucus consistency and enhances ciliary function. In the last decade, data from several studies on animal models pointed to the possible antitussive and anti-inflammatory properties of erdosteine and an indirect anti-inflammatory mechanism of action was suggested. Recently, data from some controlled versus placebo studies documented the antioxidant properties of erdosteine in humans and in current smokers with COPD. The mechanism of action was described as related to erdosteine's ability to inhibit some inflammatory mediators and some pro-inflammatory cytokines that are specifically involved in oxidative stress. As oxidative stress is also presumed to impair beta-adrenoceptor function and contribute to airway obstruction, specific controlled studies recently investigated the effect of antioxidant intervention on short-term airway response to salbutamol in nonreversible COPD, according to a double-blind design versus placebo and NAC. Only erdosteine consistently restored a significant short-term reversibility in COPD subjects, previously unresponsive to beta(2) adrenergics. This peculiar activity of erdosteine (to our knowledge never previously assessed) proved related to the ROS scavenging activity (which actually proved equal to that of N), and its significant inhibiting effect on

  20. Novel N-phenylcarbamothioylbenzamides with anti-inflammatory activity and prostaglandin E2 inhibitory properties

    PubMed Central

    Limban, Carmen; Missir, Alexandru Vasile; Fahelelbom, Khairi Mustafa Salem; Al-Tabakha, Moawia Mohammad; Caproiu, Miron Teodor; Sadek, Bassem

    2013-01-01

    A number of 2-((4-ethylphenoxy)methyl)-N-(substituted-phenylcarbamothioyl) benzamides (1a–h) were synthesized via reaction of 2-((4-ethylphenoxy)methyl)benzoyl isothiocyanate (2) as a key intermediate with several substituted primary aromatic amines. The new compounds were characterized by proton nuclear magnetic resonance (1H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR), infrared spectrometry (IR), mass spectrometry (MS), and elemental analysis. The anti-inflammatory activity of 1a–h was investigated by acute carrageenan-induced paw edema in mice using the reference drug indomethacin. The results obtained indicated that, of the derivatives developed, 1a and 1d–h exhibited significantly higher anti-inflammatory activity (26.81%–61.45%) when compared with the reference drug indomethacin (22.43%) (P = 0.0490 for 1a, 0.0015 for 1d, 0.0330 for 1f, and P < 0.001 for 1e and 1h). Moreover, the ulcer incidence of 20% for 1e and 1h was clearly lower when compared with the indomethacin group (in which the ulcer incidence was 80%). Of particular note, the ulcer index of 0.2 for 1e was significantly less than that in the indomethacin group (0.6, P = 0.014). Additionally, prostaglandin E2 (PGE2) inhibitory properties were found to be high with 1e (68.32 pg/mL), significantly different from those of the placebo group (530.13 pg/mL, P < 0.001), and equipotent to the effect observed in the indomethacin-pretreated group (96.13 pg/mL, P > 0.05). Moreover, the PGE2 level of 54.15 pg/mL with 1h was also significantly different from that of the placebo group (P < 0.001) and of the indomethacin group (P < 0.05). The significant inhibition of PGE2 observed with 1e (68.32 pg/mL) and 1h (54.15 pg/mL) agree with their observed ulcer incidences. Our overall findings for N-phenylcarbamothioylbenzamides 1a–h clearly suggest that the compounds exhibit an anti-inflammatory effect, potently inhibit PGE2 synthesis, and markedly demonstrate low ulcer incidence. PMID:24039398

  1. New Anti-Inflammatory Metabolites by Microbial Transformation of Medrysone

    PubMed Central

    Bano, Saira; Wahab, Atia-tul-; Yousuf, Sammer; Jabeen, Almas; Mesaik, Mohammad Ahmed; Rahman, Atta-ur-; Choudhary, M. Iqbal

    2016-01-01

    Microbial transformation of the anti-inflammatory steroid medrysone (1) was carried out for the first time with the filamentous fungi Cunninghamella blakesleeana (ATCC 8688a), Neurospora crassa (ATCC 18419), and Rhizopus stolonifer (TSY 0471). The objective was to evaluate the anti-inflammatory potential of the substrate (1) and its metabolites. This yielded seven new metabolites, 14α-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (2), 6β-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (3), 15β-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (4), 6β,17α-dihydroxy-6α-methylpregn-4-ene-3,11,20-trione (5), 6β,20S-dihydroxy-6α-methylpregn-4-ene-3,11-dione (6), 11β,16β-dihydroxy-6α-methylpregn-4-ene-3,11-dione (7), and 15β,20R-dihydroxy-6α-methylpregn-4-ene-3,11-dione (8). Single-crystal X-ray diffraction technique unambiguously established the structures of the metabolites 2, 4, 6, and 8. Fungal transformation of 1 yielded oxidation at the C-6β, -11β, -14α, -15β, -16β positions. Various cellular anti-inflammatory assays, including inhibition of phagocyte oxidative burst, T-cell proliferation, and cytokine were performed. Among all the tested compounds, metabolite 6 (IC50 = 30.3 μg/mL) moderately inhibited the reactive oxygen species (ROS) produced from zymosan-induced human whole blood cells. Compounds 1, 4, 5, 7, and 8 strongly inhibited the proliferation of T-cells with IC50 values between <0.2–10.4 μg/mL. Compound 7 was found to be the most potent inhibitor (IC50 < 0.2 μg/mL), whereas compounds 2, 3, and 6 showed moderate levels of inhibition (IC50 = 14.6–20.0 μg/mL). Compounds 1, and 7 also inhibited the production of pro-inflammatory cytokine TNF-α. All these compounds were found to be non-toxic to 3T3 cells (mouse fibroblast), and also showed no activity when tested against HeLa (human epithelial carcinoma), or against PC3 (prostate cancer) cancer cell lines. PMID:27104348

  2. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats

    SciTech Connect

    Ahad, Amjid; Ganai, Ajaz Ahmad; Mujeeb, Mohd; Siddiqui, Waseem Ahmad

    2014-08-15

    Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-α) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16 weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-α expression and inhibited the nuclear transcription factor-kappa B (NF-kB) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-β), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-α pathway. - Highlights: • Chrysin reduced renal oxidative stress and inflammation in diabetic rats. • Chrysin reduced serum levels of pro-inflammatory in diabetic rats. • Chrysin exhibited renal protective effect by suppressing the TNF-α pathway.

  3. Anti-Inflammatory Effects of Agrimoniin-Enriched Fractions of Potentilla erecta.

    PubMed

    Hoffmann, Julia; Casetti, Federica; Bullerkotte, Ute; Haarhaus, Birgit; Vagedes, Jan; Schempp, Christoph M; Wölfle, Ute

    2016-01-01

    Potentilla erecta (PE) is a small herbaceous plant with four yellow petals belonging to the Rosaceae family. The rhizome of PE has traditionally been used as an antidiarrheal, hemostatic and antihemorrhoidal remedy. PE contains up to 20% tannins and 5% ellagitannins, mainly agrimoniin. Agrimoniin is a hydrolyzable tannin that is a potent radical scavenger. In this study we tested the anti-inflammatory effect of four PE fractions with increasing amounts of agrimoniin obtained by Sephadex column separation. First, we analyzed in HaCaT keratinocytes the expression of cyclooxygenase-2 (COX-2) induced by ultraviolet-B (UVB) irradiation. As COX-2 catalyzes the metabolism of arachidonic acid to prostanoids such as PGE₂, we also measured the PGE₂ concentration in cell culture supernatants. PE inhibited UVB-induced COX-2 expression in HaCaT cells and dose-dependently reduced PGE₂. The PE fraction with the highest agrimoniin amount (PE4) was the most effective in this experiment, whereas fraction PE1 containing mainly sugars had no effect. PE4 also dose dependently inhibited the phosphorylation of the epidermal growth factor receptor (EGFR) which plays a crucial role in UVB-mediated COX-2 upregulation. A placebo-controlled UV-erythema study with increasing concentrations of PE4 demonstrated a dose dependent inhibition of UVB-induced inflammation in vivo. Similarly, PE4 significantly reduced UVB-induced PGE₂ production in suction blister fluid in vivo. In summary, PE fractions with a high agrimoniin content display anti-inflammatory effects in vitro and in vivo in models of UVB-induced inflammation. PMID:27322232

  4. Anti-inflammatory activity of extracts from leaves of Phyllanthus emblica.

    PubMed

    Ihantola-Vormisto, A; Summanen, J; Kankaanranta, H; Vuorela, H; Asmawi, Z M; Moilanen, E

    1997-12-01

    Leaves and fruits of Phyllanthus emblica L. have been used for the anti-inflammatory and antipyretic treatment of rural populations in its growing areas in subtropical and tropical parts of China, India, Indonesia, and the Malay Peninsula. In the present study, leaves of Ph. emblica were extracted with ten different solvents (n-hexane, diethyl ether, methanol, tetrahydrofuran, acetic acid, dichloromethane, 1,4-dioxane, toluene, chloroform, and water). The inhibitory activity of the extracts against human polymorphonuclear leukocyte (PMN) and platelet functions was studied. Methanol, tetrahydrofuran, and 1,4-dioxane extracts (50 micrograms/ml) inhibited leukotriene B4-induced migration of human PMNs by 90% and N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-induced degranulation by 25-35%. The inhibitory activity on receptor-mediated migration and degranulation of human PMNs was associated with a high proportion of polar compounds in the extracts as assessed by normal phase thin layer chromatography. Diethyl ether extract (50 micrograms/ml) inhibited calcium ionophore A23187-induced leukotriene B4 release from human PMNs by 40%, thromboxane B2 production in platelets during blood clotting by 40% and adrenaline-induced platelet aggregation by 36%. Ellagic acid, gallic acid and rutin, all compounds isolated earlier from Ph. emblica, could not explain these inhibitory activities on PMNs or platelets by Ph. emblica extracts. These results show that the leaves of Ph. emblica have inhibitory activity on PMNs and platelets, which confirm the anti-inflammatory and antipyretic properties of this plant as suggested by its use in traditional medicine. The data suggest that the plant leaves contain as yet unidentified polar compound(s) with potent inhibitory activity on PMNs and chemically different apolar molecule(s) which inhibit both prostanoid and leukotriene synthesis.

  5. Anti-inflammatory, analgesic and anti-pyretic effects of d-2-[4-(3-methyl-2-thienyl)phenyl]propionic acid (M-5011), a new non-steroidal anti-inflammatory drug, in rats and guinea pigs.

    PubMed

    Kido, H; Murakami, N; Ito, A; Kimura, K; Kodera, N; Doi, T; Naruse, T

    1998-01-01

    Anti-inflammatory, analgesic and anti-pyretic effects of d-2-[4-(3-methyl-2-thienyl)phenyl]propionic acid (M-5011), a new non-steroidal anti-inflammatory drug (NSAID), were compared with those of indomethacin, diclofenac sodium and ketoprofen in rats and guinea pigs. Anti-inflammatory effect of M-5011 on ultraviolet-induced erythema in guinea pigs was 11.7 and 1.8 times more potent than that of indomethacin and ketoprofen, respectively. Inhibitory effect of M-5011 on carrageenin-induced paw edema was 2 and 1.5 times more potent than that of indomethacin and diclofenac sodium, respectively. Analgesic effect of M-5011 on dry yeast-induced hyperalgesia or adjuvant-induced arthritic pain was equipotent to that of indomethacin, diclofenac sodium or ketoprofen. Anti-pyretic effect of M-5011 on yeast-induced pyrexia in rats was 4.2 and 4.6 times more potent than that of indomethacin and ketoprofen, respectively. Inhibitory effect of M-5011 on prostaglandin E2 production in the exudate of air-pouch inflammation induced by carrageenin was 1.75 times more potent than that in the non-inflamed site (stomach). As a result, gastric ulcerogenic activity of M-5011 was half that of indomethacin in rat. These results suggest that M-5011 shows more potent anti-inflammatory and anti-pyretic effects and equipotent analgesic effect with low gastro-ulcerogenic activity compared with classical NSAIDs. PMID:9517407

  6. Anti-inflammatory effects of isoketocharbroic acid from brown alga, Sargassum micracanthum

    PubMed Central

    Ham, Young Min; Yoon, Weon-Jong; Lee, Wook Jae; Kim, Sang-Cheol; Baik, Jong Seok; Kim, Jin Hwa; Lee, Geun Soo; Lee, Nam Ho; Hyun, Chang-Gu

    2015-01-01

    During our on-going screening program designed to isolate natural compounds from marine environments, we isolated isoketochabrolic acid (IKCA) from Sargassum micracanthum, an important brown algae distributed in Jeju Island, Korea. Furthermore, we evaluated the inhibitory effects of IKCA on nitric oxide (NO) production in lipopolysaccharide (LPS)-triggered macrophages. IKCA strongly inhibited NO production, with an IC50 value of 58.31 μM. Subsequent studies demonstrated that IKCA potently and concentration-dependently reduced prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6 cytokine production. In conclusion, to the best of our knowledge, this is the first study to show that IKCA isolated from S. micracanthum has a potent anti-inflammatory activity. Therefore, IKCA might be useful as an anti-inflammatory health supplement or functional cosmetics. PMID:26600756

  7. Anti-inflammatory effects of isoketocharbroic acid from brown alga, Sargassum micracanthum.

    PubMed

    Ham, Young Min; Yoon, Weon-Jong; Lee, Wook Jae; Kim, Sang-Cheol; Baik, Jong Seok; Kim, Jin Hwa; Lee, Geun Soo; Lee, Nam Ho; Hyun, Chang-Gu

    2015-01-01

    During our on-going screening program designed to isolate natural compounds from marine environments, we isolated isoketochabrolic acid (IKCA) from Sargassum micracanthum, an important brown algae distributed in Jeju Island, Korea. Furthermore, we evaluated the inhibitory effects of IKCA on nitric oxide (NO) production in lipopolysaccharide (LPS)-triggered macrophages. IKCA strongly inhibited NO production, with an IC50 value of 58.31 μM. Subsequent studies demonstrated that IKCA potently and concentration-dependently reduced prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6 cytokine production. In conclusion, to the best of our knowledge, this is the first study to show that IKCA isolated from S. micracanthum has a potent anti-inflammatory activity. Therefore, IKCA might be useful as an anti-inflammatory health supplement or functional cosmetics. PMID:26600756

  8. Investigation of Pharmacological Activity of Caralluma penicillata: Anti-Inflammatory Properties and Gastritis Protection against Indomethacin in Adult Guinea Pigs.

    PubMed

    Albaser, Nabil; Ghanem, Najeeb; Shehab, Mohanad; Al-Adhal, Adnan; Amood Al-Kamarany, Mohammed

    2014-01-01

    Caralluma is a plant that possessing a great therapeutic potential in folk medicine in Yemen, namely, Caralluma penicillata (C. penicillata) as antiulcer. The study aims to evaluate the anti-inflammatory properties and gastritis protection activity of C. penicillata against indomethacin in adult guinea pigs. The study was divided into four parts: firstly, the optimum dose of extract as anti-inflammatory effect was determined. Secondly, the acute anti-inflammatory effect of extract were estimated. Thirdly, the repeated doses of extract against chronic inflammation was estimated. The anti-inflammatory activity of extract was compared with indomethacin as a prototype of drug against inflammation. Fourthly, the gastritis protection properties of extract with/without indomethacin were performed. The results showed that a 400 mg/kg of 10% ethanol extract produced the maximum of anti-inflammatory effect. Also, the single dose of extract was equipotent for indomethacin (10 mg/kg), but shorter in duration with regard to acute anti-inflammatory effect. In addition, the repeated doses of extract against chronic inflammation were less potent than indomethacin with regard to ulcerogenic effect. On the other hand, extract-indomethacin combination reduced the gastritis effect of indomethacin based on ulcer index and histological study.

  9. Synthesis and QSAR study of novel anti-inflammatory active mesalazine-metronidazole conjugates.

    PubMed

    Naumov, Roman N; Panda, Siva S; Girgis, Adel S; George, Riham F; Farhat, Michel; Katritzky, Alan R

    2015-06-01

    Novel, mesalazine, metronidazole conjugates 6a-e with amino acid linkers were synthesized utilizing benzotriazole chemistry. Biological data acquired for all the novel bis-conjugates showed (a) some bis-conjugates exhibit comparable anti-inflammatory activity with parent drugs and (b) the potent bis-conjugates show no visible stomach lesions. 3D-pharmacophore and 2D-QSAR modeling support the observed bio-properties. PMID:25937011

  10. Biological properties of a new non-steroidal anti-inflammatory drug: etoclofene.

    PubMed

    Fregnan, G B; Subissi, A; Torsello, A L

    1975-05-01

    Etoclofene, the ethoxy methyl ester of N-(2,6-dichloro-m-tolyl)anthranilic acid, showed potent anti-inflammatory, anti-pyretic and peripheral analgesic activity in several experimental models of inflammation. There was no evidence of adrenal dependence or corticoid-like effects at effective and non-toxic dose levels. Etoclofene showed a low level of toxicity and was well tolerated in animals. PMID:1175762

  11. Develop Anti-Inflammatory Nanotherapies to Treat Cardiovascular Disease

    NASA Astrophysics Data System (ADS)

    Tang, Jun

    Cardiovascular disease (CVD) is the leading cause of disease-related death in the world, accounting for 30 % global mortality. The majority of CVD is caused by atherosclerosis, a chronic inflammatory disease of major arteries featured by the deposition of lipids and cholesterol. Inflammation of atherosclerosis is mainly promoted by the pathological macrophages and monocytes, and modulating their functions has been proposed as a promising therapeutic target. This dissertation first presents the development of a novel simvastatin-loaded high-density lipoprotein (HDL) based nanoparticle ([S]-rHDL), which was able to deliver anti-inflammatory simvastatin preferentially to inflammatory monocytes in the blood and to macrophages in advanced atherosclerotic plaques, leading to the reduced inflammation in the tissue. Second, extensive in vivo characterization of [S]-rHDL in a mouse atherosclerosis model revealed that the anti-inflammatory capability of [S]-rHDL derived from its effects on blood monocytes, endothelial layer, monocyte recruitment, and plaque macrophage function. Third, a translational study that integrated the use of [S]-rHDL into oral statin treatment demonstrated a great potential for this nanomedicine as an attractive addition to the current high-dose oral statin standard-of-care for acute coronary syndrome. Finally, preliminary results suggested potential applications of the rHDL platform to other macrophage-implicated diseases.

  12. Immuno-modulation and anti-inflammatory benefits of antibiotics: the example of tilmicosin.

    PubMed

    Buret, André G

    2010-01-01

    Exaggerated immune responses, such as those implicated in severe inflammatory reactions, are costly to the metabolism. Inflammation and pro-inflammatory mediators negatively affect production in the food animal industry by reducing growth, feed intake, reproduction, milk production, and metabolic health. An ever-increasing number of findings have established that antibiotics, macrolides in particular, may generate anti-inflammatory effects, including the modulation of pro-inflammatory cytokines and the alteration of neutrophil function. The effects are time- and dose-dependent, and the mechanisms responsible for these phenomena remain incompletely understood. Recent studies, mostly using the veterinary macrolide tilmicosin, may have shed new light on the mode of action of some macrolides and their anti-inflammatory properties. Indeed, research findings demonstrate that this compound, amongst others, induces neutrophil apoptosis, which in turn provides anti-inflammatory benefits. Studies using tilmicosin model systems in vitro and in vivo demonstrate that this antibiotic has potent immunomodulatory effects that may explain why at least parts of its clinical benefits are independent of anti-microbial effects. More research is needed, using this antibiotic and others that may have similar properties, to clarify the biological mechanisms responsible for antibiotic-induced neutrophil apoptosis, and how this, in turn, may provide enhanced clinical benefits. Such studies may help establish a rational basis for the development of novel, efficacious, anti-microbial compounds that generate anti-inflammatory properties in addition to their antibacterial effects.

  13. Antimicrobial and anti-inflammatory activities of leaf extract of Valeriana wallichii DC.

    PubMed

    Khuda, Fazli; Iqbal, Zafar; Zakiullah; Khan, Ayub; Nasir, Fazli

    2012-10-01

    Valeriana wallichii DC (Valerianaceae) is one of the most widely used traditional remedies for various complications associated with nervous system and digestion. No antimicrobial and anti-inflammatory studies have so far been carried out on the aerial parts of the plant. The present work was focused to evaluate the antimicrobial (antifungal and antibacterial) and anti-inflammatory properties of V. wallichii using reported methods. Chloroform fraction (VW-2) and hexane fraction (VW-3) exhibited significant activity against S. aureus and B. subtilus, respectively. The chloroform fraction (VW-2) showed significant activity against S. aureus with 0.27 mg/ml MIC, where 0.31 mg/ml MIC was deduced for VW-3 fraction against B. subtilus. VW-3 fraction was also found to be the most potent inhibitor of M. canis, showing 70% inhibition with an MIC value of 0.19 mg/ml. Considerable inhibitory activity was also observed for VW-2 and water fraction (VW-6) against M. canis and A. flavus. A remarkable anti-inflammatory like activity was observed for the crude extract at a dose of 200 mg/kg at all observed durations. Other doses of the sample also showed excellent activity. Looking to these results it may be concluded that V. wallichii may be a potential source for activity guided isolation of natural products with antimicrobial and anti-inflammatory-like properties. PMID:23009985

  14. Antibacterial, anti-inflammatory and probiotic potential of Enterococcus hirae isolated from the rumen of Bos primigenius.

    PubMed

    Arokiyaraj, Selvaraj; Hairul Islam, Villianur Ibrahim; Bharanidharan, R; Raveendar, Sebastian; Lee, Jinwook; Kim, Do Hyung; Oh, Young Kyoon; Kim, Eun-Kyung; Kim, Kyoung Hoon

    2014-07-01

    In the present study bacterial strains were isolated from the rumen fluids of Bos primigenius and investigated their in vitro probiotic properties with potent antibacterial activity and anti-inflammatory effects. 9 g positive bacterial isolates were obtained and three isolates could able to tolerate gastric conditions, high bile salt concentrations and exhibited significant bactericidal effect against the enteric pathogens Vibrio cholera, Enterococcus faecalis, Enterobacter aerogens, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi. Moreover it showed above 70% cell surface hydrophobicity, significant low-invasion ability and potential adherence capacity in Caco-2 cells when compared with the control. The proinflammatory cytokines (TNF-α) was greatly reduced in rumen bacteria treatment and ARBS-1 modulate the immune response by activating the IL-4 secretion in parallel to TNF-α suppression. The 16s rRNA gene sequence of the active isolates were identified as Enterococcus hirae (ARBS-1), Pediococcus acidilactici (ARBS-4) and Bacillus licheniformis (ARBS-7). This study revealed the probiotic bactericidal properties of E. hirae obtained from the rumen of B. primigenius with potential antibacterial and anti-inflammatory effects. Future studies with the strains may yield some novel probiotic product for livestock's.

  15. Review of Anti-Inflammatory Herbal Medicines.

    PubMed

    Ghasemian, Mona; Owlia, Sina; Owlia, Mohammad Bagher

    2016-01-01

    Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil's claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle. PMID:27247570

  16. Review of Anti-Inflammatory Herbal Medicines

    PubMed Central

    Ghasemian, Mona; Owlia, Sina; Owlia, Mohammad Bagher

    2016-01-01

    Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil's claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle. PMID:27247570

  17. Use of Non-Steroidal Anti-Inflammatory Drugs That Elevate Cardiovascular Risk: An Examination of Sales and Essential Medicines Lists in Low-, Middle-, and High-Income Countries

    PubMed Central

    McGettigan, Patricia; Henry, David

    2013-01-01

    Background Certain non-steroidal anti-inflammatory drugs (NSAIDs) (e.g., rofecoxib [Vioxx]) increase the risk of heart attack and stroke and should be avoided in patients at high risk of cardiovascular events. Rates of cardiovascular disease are high and rising in many low- and middle-income countries. We studied the extent to which evidence on cardiovascular risk with NSAIDs has translated into guidance and sales in 15 countries. Methods and Findings Data on the relative risk (RR) of cardiovascular events with individual NSAIDs were derived from meta-analyses of randomised trials and controlled observational studies. Listing of individual NSAIDs on Essential Medicines Lists (EMLs) was obtained from the World Health Organization. NSAID sales or prescription data for 15 low-, middle-, and high-income countries were obtained from Intercontinental Medical Statistics Health (IMS Health) or national prescription pricing audit (in the case of England and Canada). Three drugs (rofecoxib, diclofenac, etoricoxib) ranked consistently highest in terms of cardiovascular risk compared with nonuse. Naproxen was associated with a low risk. Diclofenac was listed on 74 national EMLs, naproxen on just 27. Rofecoxib use was not documented in any country. Diclofenac and etoricoxib accounted for one-third of total NSAID usage across the 15 countries (median 33.2%, range 14.7–58.7%). This proportion did not vary between low- and high-income countries. Diclofenac was by far the most commonly used NSAID, with a market share close to that of the next three most popular drugs combined. Naproxen had an average market share of less than 10%. Conclusions Listing of NSAIDs on national EMLs should take account of cardiovascular risk, with preference given to low risk drugs. Diclofenac has a risk very similar to rofecoxib, which was withdrawn from worldwide markets owing to cardiovascular toxicity. Diclofenac should be removed from EMLs. Please see later in the article for the Editors' Summary

  18. Anti-Inflammatory and Antioxidant Activities of Salvia fruticosa: An HPLC Determination of Phenolic Contents.

    PubMed

    Boukhary, Rima; Raafat, Karim; Ghoneim, Asser I; Aboul-Ela, Maha; El-Lakany, Abdalla

    2016-01-01

    Objectives. Salvia fruticosa Mill. (S. fruticosa) is widely used in folk medicine. Accordingly, the present study was designed to evaluate the antioxidant and anti-inflammatory activities of S. fruticosa, and to determine the phenolic constituents of its extracts. Methods. The antioxidant activity was determined using 2,2-diphenylpicrylhydrazyl assay. Total phenolic contents were estimated using Folin-Ciocalteu reagent, and high-performance liquid chromatography was performed to identify phenolic constituents. To evaluate the anti-inflammatory activity, carrageenan-induced mouse paw edema was determined plethysmographically. Key Findings. Different plant extracts demonstrated strong radical scavenging activity, where the ethyl acetate extract had the highest value in the roots and the lowest in the aerial parts. This antioxidant activity was correlated to the total phenolic content of different extracts, where rutin and luteolin were the most abundant constituents. Interestingly, both the roots and aerial parts revealed a significant anti-inflammatory activity comparable to diclofenac. Conclusions. This study is the first to demonstrate pharmacologic evidence of the potential anti-inflammatory activity of S. fruticosa. This activity may partly be due to the radical scavenging effects of its polyphenolic contents. These findings warrant the popular use of the East Mediterranean sage and highlight the potential of its active constituents in the development of new anti-inflammatory drugs.

  19. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species.

    PubMed

    Amorim, Jorge Luis; Simas, Daniel Luiz Reis; Pinheiro, Mariana Martins Gomes; Moreno, Daniela Sales Alviano; Alviano, Celuta Sales; da Silva, Antonio Jorge Ribeiro; Fernandes, Patricia Dias

    2016-01-01

    Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia. PMID:27088973

  20. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species

    PubMed Central

    Amorim, Jorge Luis; Simas, Daniel Luiz Reis; Pinheiro, Mariana Martins Gomes; Moreno, Daniela Sales Alviano; Alviano, Celuta Sales; da Silva, Antonio Jorge Ribeiro

    2016-01-01

    Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia. PMID:27088973

  1. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species.

    PubMed

    Amorim, Jorge Luis; Simas, Daniel Luiz Reis; Pinheiro, Mariana Martins Gomes; Moreno, Daniela Sales Alviano; Alviano, Celuta Sales; da Silva, Antonio Jorge Ribeiro; Fernandes, Patricia Dias

    2016-01-01

    Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia.

  2. Anti-Inflammatory and Antioxidant Activities of Salvia fruticosa: An HPLC Determination of Phenolic Contents

    PubMed Central

    Boukhary, Rima; Ghoneim, Asser I.; Aboul-Ela, Maha; El-Lakany, Abdalla

    2016-01-01

    Objectives. Salvia fruticosa Mill. (S. fruticosa) is widely used in folk medicine. Accordingly, the present study was designed to evaluate the antioxidant and anti-inflammatory activities of S. fruticosa, and to determine the phenolic constituents of its extracts. Methods. The antioxidant activity was determined using 2,2-diphenylpicrylhydrazyl assay. Total phenolic contents were estimated using Folin-Ciocalteu reagent, and high-performance liquid chromatography was performed to identify phenolic constituents. To evaluate the anti-inflammatory activity, carrageenan-induced mouse paw edema was determined plethysmographically. Key Findings. Different plant extracts demonstrated strong radical scavenging activity, where the ethyl acetate extract had the highest value in the roots and the lowest in the aerial parts. This antioxidant activity was correlated to the total phenolic content of different extracts, where rutin and luteolin were the most abundant constituents. Interestingly, both the roots and aerial parts revealed a significant anti-inflammatory activity comparable to diclofenac. Conclusions. This study is the first to demonstrate pharmacologic evidence of the potential anti-inflammatory activity of S. fruticosa. This activity may partly be due to the radical scavenging effects of its polyphenolic contents. These findings warrant the popular use of the East Mediterranean sage and highlight the potential of its active constituents in the development of new anti-inflammatory drugs. PMID:26881007

  3. Artificial matrices with high-sulfated glycosaminoglycans and collagen are anti-inflammatory and pro-osteogenic for human mesenchymal stromal cells.

    PubMed

    Hempel, Ute; Matthäus, Claudia; Preissler, Carolin; Möller, Stephanie; Hintze, Vera; Dieter, Peter

    2014-09-01

    Bone healing has been described to be most efficient if the early inflammatory phase is resolved timely. When the inflammation elevates or is permanently established, bone healing becomes impaired and, moreover, bone destruction often takes place. Systemic disorders such as diabetes and bone diseases like arthritis and osteoporosis are associated with sustained inflammation and delayed bone healing. One goal of biomaterial research is the development of materials/surface modifications which support the healing process by inhibiting the inflammatory bone erosion and suppressing pro-inflammatory mediators and by that promoting the bone repair process. In the present study, the influence of artificial extracellular matrices (aECM) on the interleukin (IL)-1β-induced pro-inflammatory response of human mesenchymal stromal cells (hMSC) was studied. hMSC cultured on aECM composed of collagen I and high-sulfated glycosaminoglycan (GAG) derivatives did not secrete IL-6, IL-8, monocyte chemoattractant protein-1, and prostaglandin E2 in response to IL-1β. The activation and nuclear translocation of nuclear factor κBp65 induced by IL-1β, tumor necrosis factor-α or lipopolysaccharide was abrogated. Furthermore, these aECM promoted the osteogenic differentiation of hMSC as determined by an increased activity of tissue non-specific alkaline phosphatase (TNAP); however, the aECM had no effect on the IL-1β-induced TNAP activity. These data suggest that aECM with high-sulfated GAG derivatives suppress the formation of pro-inflammatory mediators and simultaneously promote the osteogenic differentiation of hMSC. Therefore, these aECM might offer an interesting approach as material/surface modification supporting the bone healing process.

  4. Sol-gel-derived magnetic SiO2/TiO2 nanocomposite reinforced hollow fiber-solid phase microextraction for enrichment of non-steroidal anti-inflammatory drugs from human hair prior to high performance liquid chromatography.

    PubMed

    Es'haghi, Zarrin; Esmaeili-Shahri, Effat

    2014-10-01

    Hollow fiber-solid phase micro-extraction (HF-SPME) technique containing sol-gel-derived Fe3O4/SiO2/TiO2 core-double shell nanocomposite as a novel high efficiency sorbent, coupled with high performance liquid chromatography was used to extraction and determination of six non-steroidal anti-inflammatory drugs; acetylsalicylic acid, naproxen, piroxicam, diclofenac, indomethacin and mefenamic acid, in hair samples. First, magnetite nanoparticles (Fe3O4-NPs) were synthesized by chemical co-precipitation of Fe(II) and Fe(III) ions (where the ratio of Fe(II) to Fe(III) is 1:2 and a non-oxidizing environment), in alkaline medium to produce magnetite particles. Subsequently, surface of Fe3O4-NPs was modified with SiO2 and TiO2 using layer-by-layer chemical technique. A core-shell structure of Fe3O4/SiO2/TiO2 composite was prepared by coating magnetite core particles with silica and titania layers. In the proposed method, NSAIDs were extracted by the synthesized nanocomposite and analyzed by HPLC. The parameters affecting the efficiency of magnetic nanoparticle (MNPs) assisted HF-SPME were investigated and optimized. The method validation was included and satisfying results with high pre-concentration factors (405 up to 2450) were obtained. It owes large surface area and porosity of the nano-adsorbent. Under the optimal conditions, the method detection limits (S/N=3) were in the range of 0.01-0.10μgml(-1) and the limits of quantification (S/N=10) between 0.04 and 0.30μgml(-1). Relative standard deviations were 3.09-6.61%. Eventually, the method was successfully applied to human hair after administration of NSAIDs.

  5. High-performance liquid chromatography analysis of anti-inflammatory pharmaceuticals with ultraviolet and electrospray-mass spectrometry detection in suspected counterfeit homeopathic medicinal products.

    PubMed

    Panusa, Alessia; Multari, Giuseppina; Incarnato, Giampaolo; Gagliardi, Luigi

    2007-03-12

    A simple high-performance liquid chromatography (HPLC) method with both ultraviolet (UV) and electrospray ionisation mass spectrometry (ESI-MS) detection has been developed for the determination of seven pharmaceuticals in counterfeit homeopathic preparations. Naproxen, Ketoprofen, Ibuprofen, Diclofenac, Piroxicam, Nimesulide and Paracetamol were separated by reversed phase chromatography with acetonitrile-water (0.1% acetic acid) mobile phase, and detected by UV at 245 nm and by ESI-MS in negative ionisation mode with the exception of Paracetamol which was detected in positive ionisation mode. Benzoic acid was used as internal standard (IS). This method was successfully applied to the analysis of homeopathic preparations like mother tinctures, solutions, tablets, granules, creams, and suppositories. Linearity was studied with UV detection in the 50-400 microg mL(-1) range and with ESI-MS in the 0.1-50 microg mL(-1) range. Good correlation coefficients were found in both UV and ESI-MS. Detection limits ranged from 0.18 to 41.5 ng in UV and from 0.035 to 1.00 ng in ESI-MS.

  6. Application of statistical experimental design to the optimisation of microextraction by packed sorbent for the analysis of nonsteroidal anti-inflammatory drugs in human urine by ultra-high pressure liquid chromatography.

    PubMed

    Magiera, Sylwia; Gülmez, Şefika; Michalik, Aleksandra; Baranowska, Irena

    2013-08-23

    A new approach based on microextraction by packed sorbent (MEPS) and a reversed-phase ultra-high pressure liquid chromatography (UHPLC) method was developed and validated for the determination and quantification of nonsteroidal anti-inflammatory drugs (NSAIDs) (acetylsalicylic acid, ketoprofen, diclofenac, naproxen and ibuprofen) in human urine. The important factors that could influence the extraction were previously screened using the Plackett-Burman design approach. The optimal MEPS extraction conditions were obtained using C18 phase as a sorbent, small sample volume (20μL) and a short time period (approximately 5min) for the entire sample preparation step. The analytes were separated on a core-shell column (Poroshell 120 EC-C18; 100mm×3.0mm; 2.7μm) using a binary mobile phase composed of aqueous 0.1% trifluoroacetic acid and acetonitrile in the gradient elution mode (4.5min of analysis time). The analytical method was fully validated based on linearity, limits of detection (LOD), limits of quantification (LOQ), inter- and intra-day precision and accuracy, and extraction yield. Under optimised conditions, excellent linearity (R(2)>0.9991), limits of detection (1.07-16.2ngmL(-1)) and precision (0.503-9.15% RSD) were observed for the target drugs. The average absolute recoveries of the analysed compounds extracted from the urine samples were 89.4-107%. The proposed method was also applied to the analysis of NSAIDs in human urine. The new approach offers an attractive alternative for the analysis of selected drugs from urine samples, providing several advantages including fewer sample preparation steps, faster sample throughput and ease of performance compared to traditional methodologies.

  7. Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil.

    PubMed

    Intahphuak, S; Khonsung, P; Panthong, A

    2010-02-01

    This study investigated some pharmacological properties of virgin coconut oil (VCO), the natural pure oil from coconut [Cocos nucifera Linn (Palmae)] milk, which was prepared without using chemical or high-heat treatment. The anti-inflammatory, analgesic, and antipyretic effects of VCO were assessed. In acute inflammatory models, VCO showed moderate anti-inflammatory effects on ethyl phenylpropiolate-induced ear edema in rats, and carrageenin- and arachidonic acid-induced paw edema. VCO exhibited an inhibitory effect on chronic inflammation by reducing the transudative weight, granuloma formation, and serum alkaline phosphatase activity. VCO also showed a moderate analgesic effect on the acetic acid-induced writhing response as well as an antipyretic effect in yeast-induced hyperthermia. The results obtained suggest anti-inflammatory, analgesic, and antipyretic properties of VCO.

  8. Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil.

    PubMed

    Intahphuak, S; Khonsung, P; Panthong, A

    2010-02-01

    This study investigated some pharmacological properties of virgin coconut oil (VCO), the natural pure oil from coconut [Cocos nucifera Linn (Palmae)] milk, which was prepared without using chemical or high-heat treatment. The anti-inflammatory, analgesic, and antipyretic effects of VCO were assessed. In acute inflammatory models, VCO showed moderate anti-inflammatory effects on ethyl phenylpropiolate-induced ear edema in rats, and carrageenin- and arachidonic acid-induced paw edema. VCO exhibited an inhibitory effect on chronic inflammation by reducing the transudative weight, granuloma formation, and serum alkaline phosphatase activity. VCO also showed a moderate analgesic effect on the acetic acid-induced writhing response as well as an antipyretic effect in yeast-induced hyperthermia. The results obtained suggest anti-inflammatory, analgesic, and antipyretic properties of VCO. PMID:20645831

  9. Anti-inflammatory, antinociceptive, and antipyretic effects of Lantana trifolia Linnaeus in experimental animals.

    PubMed

    Uzcátegui, Bercy; Avila, Dinorah; Suárez-Roca, Heberto; Quintero, Luis; Ortega, José; González, Beatriz

    2004-12-01

    Lantana trifolia L. (Verbenaceae) is traditionally used as an anti-inflammatory medicinal plant in Venezuela. The methanol extract of the aerial parts of L. trifolia were assessed for the anti-inflammatory, anti-nociceptive and anti-pyretic properties. The extract produced an inhibition of carrageenan-induced edema in the rat paw over a dose range of 10-300 mg/kg i.p.; the dose-response curve was bell-shaped with a maximal effect at 100 mg/kg. The extract also produced a small but significant increase in the response latency of rats subjected to the hot plate, a thermal pain test that only detects analgesia by high-efficacy agents. The extract did not exhibit antipyretic activity. Thus, the L. trifolia extract could have therapeutically relevant anti-inflammatory and analgesic properties in humans. PMID:15602898

  10. Anti-inflammatory and immunomodulatory properties of Carica papaya.

    PubMed

    Pandey, Saurabh; Cabot, Peter J; Shaw, P Nicholas; Hewavitharana, Amitha K

    2016-07-01

    Chronic inflammation is linked with the generation and progression of various diseases such as cancer, diabetes and atherosclerosis, and anti-inflammatory drugs therefore have the potential to assist in the treatment of these conditions. Carica papaya is a tropical plant that is traditionally used in the treatment of various ailments including inflammatory conditions. A literature search was conducted by using the keywords "papaya", "anti-inflammatory and inflammation" and "immunomodulation and immune" along with cross-referencing. Both in vitro and in vivo investigation studies were included. This is a review of all studies published since 2000 on the anti-inflammatory activity of papaya extracts and their effects on various immune-inflammatory mediators. Studies on the anti-inflammatory activities of recognized phytochemicals present in papaya are also included. Although in vitro and in vivo studies have shown that papaya extracts and papaya-associated phytochemicals possess anti-inflammatory and immunomodulatory properties, clinical studies are lacking.

  11. Anti-inflammatory and immunomodulatory properties of Carica papaya.

    PubMed

    Pandey, Saurabh; Cabot, Peter J; Shaw, P Nicholas; Hewavitharana, Amitha K

    2016-07-01

    Chronic inflammation is linked with the generation and progression of various diseases such as cancer, diabetes and atherosclerosis, and anti-inflammatory drugs therefore have the potential to assist in the treatment of these conditions. Carica papaya is a tropical plant that is traditionally used in the treatment of various ailments including inflammatory conditions. A literature search was conducted by using the keywords "papaya", "anti-inflammatory and inflammation" and "immunomodulation and immune" along with cross-referencing. Both in vitro and in vivo investigation studies were included. This is a review of all studies published since 2000 on the anti-inflammatory activity of papaya extracts and their effects on various immune-inflammatory mediators. Studies on the anti-inflammatory activities of recognized phytochemicals present in papaya are also included. Although in vitro and in vivo studies have shown that papaya extracts and papaya-associated phytochemicals possess anti-inflammatory and immunomodulatory properties, clinical studies are lacking. PMID:27416522

  12. Luteolin exhibits anti-inflammatory effects by blocking the activity of heat shock protein 90 in macrophages.

    PubMed

    Chen, Dan; Bi, Aijing; Dong, Xiaoliang; Jiang, Yi; Rui, Bing; Liu, Jinjiao; Yin, Zhimin; Luo, Lan

    2014-01-01

    Septic diseases represent the prevalent complications in intensive care units. Luteolin, a plant flavonoid, has potent anti-inflammatory properties; however, the molecular mechanism beneath luteolin mediated immune modulation remains unclear. Here in vitro investigations showed that luteolin dose-dependently inhibited LPS-triggered secretion and relocation of high mobility group B-1 (HMGB1) and LPS-induced production of tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) in macrophages. The mechanism analysis demonstrated that luteolin reduced the release of HMGB1 through destabilizing c-Jun and suppressed HMGB1-induced aggravation of inflammatory cascade through reducing Akt protein level. As an inhibitor of Hsp90, luteolin destabilized Hsp90 client protein c-Jun and Akt. In vivo investigations showed that luteolin effectively protected mice from lipopolysaccharide (LPS)-induced lethality. In conclusion, the present study suggested that luteolin may act as a potential therapeutic reagent for treating septic diseases. PMID:24321097

  13. Synthesis and anti-inflammatory activity of 2-substituted-((N, N-disubstituted)-1, 3-benzoxazole)-5-carboxamides.

    PubMed

    Reena, M; Kiran, G; Rajyalakshmi, G; Venkateshwa, Rao J; Sarangapani, M

    2010-06-01

    A series of 2-substituted-((N, N-disubstituted)-1, 3-benzoxazole)-5-carboxamides derivatives were synthesized by the reaction of 2-substituted-5-carbomethoxy benzoxazole with different secondary amines. The newly synthesized compounds were characterized on the basis of spectral (FT-IR, 1H NMR, MS) & elemental analysis. All these compounds were screened for anti-inflammatory activity using carrageenan induced rat paw edema method. All of these compounds exhibited significant activity. Among the tested compounds Ve, Vg, Vf and Va were considered to have potent anti-inflammatory activity and was comparable with standard.

  14. Highly potent fibrinolytic serine protease from Streptomyces.

    PubMed

    Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi

    2011-01-01

    We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis.

  15. Isolation and anti-inflammatory activity of Bakuchiol from Ulmus davidiana var. japonica.

    PubMed

    Choi, Sang Yoon; Lee, Sanghyun; Choi, Won-Hee; Lee, Yeonmi; Jo, Youn Ock; Ha, Tae-Youl

    2010-08-01

    The bark of the root and stem of Ulmus davidiana var. japonica has been used as a traditional Korean medicine to treat inflammatory disorders. This plant reportedly exhibits antioxidant, anticancer, and anti-inflammatory effects. A search for biologically active compounds in U. davidiana var. japonica extracts yielded bakuchiol, which we structurally identified on the basis of spectral data, including two-dimensional nuclear magnetic resonance spectroscopy and distortionless enhancement by polarization transfer. In our study, bakuchiol (50 microM) inhibited lipopolysaccharide-induced nitric oxide and prostaglandin E(2) production in RAW 264.7 macrophages by 53.7% and 84.2%, respectively. These results suggested that bakuchiol is one of the potent anti-inflammatory components of U. davidiana var. japonica.

  16. Anti-inflammatory and antioxidant properties of a novel resveratrol-salicylate hybrid analog.

    PubMed

    Aldawsari, Fahad S; Aguiar, Rafael Pazinatto; Wiirzler, Luiz Alexandre Marques; Aguayo-Ortiz, Rodrigo; Aljuhani, Naif; Cuman, Roberto Kenji Nakamura; Medina-Franco, José L; Siraki, Arno G; Velázquez-Martínez, Carlos A

    2016-03-01

    Resveratrol is a natural compound with a plethora of activities as well as limitations. We recently reported a series of resveratrol-salicylate analogs with potential chemopreventive activity. Herein, we report the anti-inflammatory and antioxidant properties of these resveratrol derivatives. Using an in vitro COX inhibition assay, and two in vivo protocols (carrageenan-induced peritonitis and paw edema), we identified a novel compound (C10) as a potent anti-inflammatory agent. The enhanced potency of C10 was associated with the ability of C10 to decrease the activity of myeloperoxidase (MPO) enzyme at 10mg/kg, whereas resveratrol and it's natural analog (TMS) did not exert the same effect. Additionally, C10 significantly reduced the concentration of intracellular reactive oxygen species. Because of the proven association between cancer, inflammation, and oxidative stress, we believe that C10 is a promising chemopreventive molecule.

  17. Antidepressant augmentation with anti-inflammatory agents.

    PubMed

    Andrade, Chittaranjan

    2014-09-01

    Antidepressant augmentation strategies are commonly employed to treat depressed patients who do not respond to antidepressant monotherapy. Neuroinflammatory mechanisms have been implicated in depression, and nonsteroidal anti-inflammatory drugs (NSAIDs) have been found effective in animal models of depression both in monotherapy and when used to augment antidepressant drugs. However, results with NSAIDs have been mixed in human observational studies, with both better and worse depression outcomes reported. Four small (pooled N = 160) randomized controlled trials suggest that celecoxib (200-400 mg/d) augmentation of antidepressant medication improves 4-6 week outcomes in major depressive disorder. There are no data, however, to support the use of celecoxib or other NSAIDs in antidepressant-resistant depression. There are also concerns about adverse events associated with NSAID treatment, and about pharmacodynamic drug interactions between these drugs and serotonin reuptake inhibitors. A reasonable conclusion for the present is that NSAID augmentation of antidepressants is, at best, a tentative approach in nonrefractory major depression.

  18. Sterols and triterpenoids as potential anti-inflammatories: Molecular docking studies for binding to some enzymes involved in inflammatory pathways.

    PubMed

    Loza-Mejía, Marco A; Salazar, Juan Rodrigo

    2015-11-01

    Triterpenes and sterols are good candidates for the development of anti-inflammatory drugs and use in chemoprevention or chemotherapy of cancer via the interaction with therapeutic targets related to inflammation, such as COX-1 and -2; LOX-5; MPO, PLA2 and i-NOS. In this study, we use molecular docking to evaluate the potential binding of a database of selected sterol and triterpenoid compounds with several skeletons against enzymes related to inflammation to propose structural requirements beneficial for anti-inflammatory activity that can be used for the design of more potent and selective anti-inflammatory and antitumor drugs. Our results suggest that the substitution pattern is important and that there is an important relationship between the class of sterol or triterpenoid skeleton and enzyme binding.

  19. [Anti-inflammatory and anti-allergic oral vaccines?].

    PubMed

    Lomholt, H B; Kilian, M

    1996-09-16

    Recent data suggest clinical efficacy of specific antigens delivered at mucosal sites in the treatment of certain organ specific autoimmune diseases. This approach appears non-toxic and has no side effects. Phase I/II human trials on multiple sclerosis and rheumatoid arthritis show positive outcomes. Furthermore, animal studies point to beneficial effects on uveitis, diabetes mellitus, transplantation reactions and allergic diseases. The immunological mechanism is oral tolerance, a well known principle for induction of a systemic hyporesponse to specific antigens. The tolerance is most pronounced on delayed type hypersensibility and IgE-mediated reactions. At least three different mechanisms mediate the tolerance. Low doses of antigen induce active suppression, intermediate doses induce clonal T-cell anergy, and high doses induce clonal T-cell deletion. The recent improvements in the understanding of the mechanisms of oral tolerance have fueled an interest in manipulating this principle to develop anti-inflammatory vaccines. PMID:8966773

  20. Black Cumin (Nigella sativa) and Its Active Constituent, Thymoquinone: An Overview on the Analgesic and Anti-inflammatory Effects.

    PubMed

    Amin, Bahareh; Hosseinzadeh, Hossein

    2016-01-01

    For many centuries, seeds of Nigella sativa (black cumin), a dicotyledon of the Ranunculaceae family, have been used as a seasoning spice and food additive in the Middle East and Mediterranean areas. Traditionally, the plant is used for asthma, hypertension, diabetes, inflammation, cough, bronchitis, headache, eczema, fever, dizziness, and gastrointestinal disturbances. The literature regarding the biological activities of seeds of this plant is extensive, citing bronchodilative, anti-inflammatory, antinociceptive, antibacterial, hypotensive, hypolipidemic, cytotoxic, antidiabetic, and hepatoprotective effects. The active ingredients of N. sativa are mainly concentrated in the fixed or essential oil of seeds, which are responsible for most health benefits. This review will provide all updated reported activities of this plant with an emphasis on the antinociceptive and anti-inflammatory effects. Results of various studies have demonstrated that the oil, extracts, and their active ingredients, in particular, thymoquinone, possess antinociceptive and anti-inflammatory effects, supporting the common folk perception of N. Sativa as a potent analgesic and anti-inflammatory agent. Many protective properties are attributed to reproducible radical scavenging activity as well as an interaction with numerous molecular targets involved in inflammation, including proinflammatory enzymes and cytokines. However, there is a need for further investigations to find out the precise mechanisms responsible for the antinociceptive and anti-inflammatory effects of this plant and its active constituents.

  1. Estimation of total phenolic content, in-vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera

    PubMed Central

    Alhakmani, Fatma; Kumar, Sokindra; Khan, Shah Alam

    2013-01-01

    Objective To evaluate and compare the antioxidant potential and anti-inflammatory activity of ethanolic extract of flowers of Moringa oleifera (M. oleifera) grown in Oman. Methods Flowers of M. oleifera were collected in the month of December 2012 and identified by a botanist. Alcoholic extract of the dry pulverized flowers of M. oleifera were obtained by cold maceration method. The ethanolic flower extract was subjected to preliminary phytochemical screening as the reported methods. Folin-Ciocalteu reagent was used to estimate total phenolic content. DPPH was used to determine in-vitro antioxidant activity and anti-inflammatory activity of flowers was investigated by protein denaturation method. Results Phytochemical analysis of extract showed presence of major classes of phytochemicals such as tannins, alkaloids, flavonoids, cardiac glycosides etc. M. oleifera flowers were found to contain 19.31 mg/g of gallic acid equivalent of total phenolics in dry extract but exhibited moderate antioxidant activity. The anti-inflammatory activity of plant extract was significant and comparable with the standard drug diclofenac sodium. Conclusions The results of our study suggest that flowers of M. oleifera possess potent anti-inflammatory activity and are also a good source of natural antioxidants. Further study is needed to identify the chemical compounds responsible for their anti-inflammatory activity. PMID:23905019

  2. Black Cumin (Nigella sativa) and Its Active Constituent, Thymoquinone: An Overview on the Analgesic and Anti-inflammatory Effects.

    PubMed

    Amin, Bahareh; Hosseinzadeh, Hossein

    2016-01-01

    For many centuries, seeds of Nigella sativa (black cumin), a dicotyledon of the Ranunculaceae family, have been used as a seasoning spice and food additive in the Middle East and Mediterranean areas. Traditionally, the plant is used for asthma, hypertension, diabetes, inflammation, cough, bronchitis, headache, eczema, fever, dizziness, and gastrointestinal disturbances. The literature regarding the biological activities of seeds of this plant is extensive, citing bronchodilative, anti-inflammatory, antinociceptive, antibacterial, hypotensive, hypolipidemic, cytotoxic, antidiabetic, and hepatoprotective effects. The active ingredients of N. sativa are mainly concentrated in the fixed or essential oil of seeds, which are responsible for most health benefits. This review will provide all updated reported activities of this plant with an emphasis on the antinociceptive and anti-inflammatory effects. Results of various studies have demonstrated that the oil, extracts, and their active ingredients, in particular, thymoquinone, possess antinociceptive and anti-inflammatory effects, supporting the common folk perception of N. Sativa as a potent analgesic and anti-inflammatory agent. Many protective properties are attributed to reproducible radical scavenging activity as well as an interaction with numerous molecular targets involved in inflammation, including proinflammatory enzymes and cytokines. However, there is a need for further investigations to find out the precise mechanisms responsible for the antinociceptive and anti-inflammatory effects of this plant and its active constituents. PMID:26366755

  3. Anti-inflammatory and antiviral effects of Glossogyne tenuifolia.

    PubMed

    Wu, Ming-Jiuan; Weng, Ching-Yi; Ding, Hsiou-Yu; Wu, Pei-Jong

    2005-01-21

    Glossogyne tenuifolia (Hsiang-Ju) is a traditional antipyretic and hepatoprotective herb used in Chinese medicine. The aim of this research is to investigate the pharmacological activities and potent components of the ethanol extract of Glossogyne tenuifolia (GT) in human primary cells and cell line. We found that GT (0.1 approximately 0.25 mg/ml) exerted dose-dependent inhibitions on the release of TNF-alpha and IL-6 in LPS-activated human whole blood and peripheral blood mononuclear cells (PBMC), and IFN-gamma in PHA-stimulated human whole blood. The lack of cytotoxicity indicated that the inhibitory effects of GT on cytokine production were not due to cell death. Luteolin, the deglycosylated derivative of one of the major compositions, luteolin-7-glucoside, exerted inhibitory effects on TNF-alpha, IL-6 and IFN-gamma production in activated human whole blood with estimated IC(50)s of 42.73 microM, 44.86 microM and 3.34 microM, respectively. Furthermore, GT had potent anti-hepatitis B virus (HBV) effects on the human hepatocellular carcinoma cell line, PLC/PRF/5. GT exhibited a dose-dependent inhibition on the release of hepatitis B surface antigen (HBsAg) by repressing the expression of HBsAg with IC(50) of 0.093 mg/ml. We concluded that GT exerted combinatorial anti-inflammatory and antiviral effects, and the multiple actions may underlie its traditional hepatoprotective function. PMID:15620577

  4. Anti-inflammatory activity of Bacopa monniera in rodents.

    PubMed

    Channa, Shabana; Dar, Ahsana; Anjum, Shazia; Yaqoob, Muhammad; Atta-Ur-Rahman

    2006-03-01

    The ethanol extract of Bacopa monniera (Scrophulariaceae) exhibited marked anti-inflammatory activity against carrageenan-induced paw edema in mice and rats, an acute inflammatory model. To assess the possible mechanism of anti-inflammatory action against carrageenan, the ethanol extract was treated with chemical mediators (histamine, serotonin, bradykinin, prostaglandin E(2) and arachidonic acid)-induced edema in rats. The extract selectively inhibited prostaglandin E(2)-induced inflammation. Thus, it may be inferred that B. monniera possesses significant anti-inflammatory activity that may well be relevant for its effectiveness in the healing of various inflammatory conditions in traditional medicine.

  5. The anti-inflammatory action of nepitrin, a flavonoid.

    PubMed

    Agarwal, O P

    1982-07-01

    The anti-inflammatory efficacy of nepitrin (5,3',4'-trihydroxy-6-methoxy flavone), a flavonoid, was investigated in both acute and chronic models of inflammation in rats. Nepitrin was found to possess significant anti-inflammatory activity in the exudative and proliferative phases of inflammation. This action of nepitrin could be due to its anti-bradykinin and anti-angiotensin action. Nepitrin also possessed anti-pyretic and weak analgesic activity. The study reveals that nepitrin may be useful as an anti-inflammatory and anti-arthritic agent. PMID:6982607

  6. Anti-inflammatory therapies for cardiovascular disease

    PubMed Central

    Ridker, Paul M.; Lüscher, Thomas F.

    2014-01-01

    Atherothrombosis is no longer considered solely a disorder of lipoprotein accumulation in the arterial wall. Rather, the initiation and progression of atherosclerotic lesions is currently understood to have major inflammatory influences that encompass components of both the innate and acquired immune systems. Promising clinical data for ‘upstream’ biomarkers of inflammation such as interleukin-6 (IL-6) as well as ‘downstream’ biomarkers such as C-reactive protein, observations regarding cholesterol crystals as an activator of the IL-1β generating inflammasome, and recent Mendelian randomization data for the IL-6 receptor support the hypothesis that inflammatory mediators of atherosclerosis may converge on the central IL-1, tumour necrosis factor (TNF-α), IL-6 signalling pathway. On this basis, emerging anti-inflammatory approaches to vascular protection can be categorized into two broad groups, those that target the central IL-6 inflammatory signalling pathway and those that do not. Large-scale Phase III trials are now underway with agents that lead to marked reductions in IL-6 and C-reactive protein (such as canakinumab and methotrexate) as well as with agents that impact on diverse non-IL-6-dependent pathways (such as varespladib and darapladib). Both approaches have the potential to benefit patients and reduce vascular events. However, care should be taken when interpreting these trials as outcomes for agents that target IL-6 signalling are unlikely to be informative for therapies that target alternative pathways, and vice versa. As the inflammatory system is redundant, compensatory, and crucial for survival, evaluation of risks as well as benefits must drive the development of agents in this class. PMID:24864079

  7. Some biological properties of flurbiprofen, an anti-inflammatory, analgesic and antipyretic agent.

    PubMed

    Adams, S S; McCullough, K F; Nicholson, J S

    1975-11-01

    2-(2-Fluoro-4-biphenyl)propionic acid (flurbiprofen) possesses peripheral analgesic, anti-inflammatory and antipyretic properties. It does not possess glucocorticoid or adrenocortical-stimulating properties. It is a highly potent agent which in acute pharmacological test systems produced a significant pharmacological effect in single oral doses varying from 0.04 to 0.47 mg/kg. The peak plasma concentrations attained after these doses were generally of the order of 1 to 3 mug/ml. Doses of 0.33 mg/kg/day, which gave peak plasma concentrations of 0.6 mug/ml, produced a significant inhibition of rat adjuvant arthritis, both developing and established. The very shallow dose-response curves for flurbiprofen compared with acetylsalicylic acid, especially in the mouse and the rat test systems, are not due to an unreliable or abnormal absorption, which suggests that in these species the mode of action of flurbiprofen is not identical with that of acetylsalicylic acid.

  8. Anti-inflammatory effects of chronic aspirin on brain arachidonic acid metabolites.

    PubMed

    Basselin, Mireille; Ramadan, Epolia; Chen, Mei; Rapoport, Stanley I

    2011-01-01

    Pro-inflammatory and anti-inflammatory mediators derived from arachidonic acid (AA) modulate peripheral inflammation and its resolution. Aspirin (ASA) is a unique non-steroidal anti-inflammatory drug, which switches AA metabolism from prostaglandin E₂ (PGE₂) and thromboxane B₂ (TXB₂) to lipoxin A₄ (LXA₄) and 15-epi-LXA₄. However, it is unknown whether chronic therapeutic doses of ASA are anti-inflammatory in the brain. We hypothesized that ASA would dampen increases in brain concentrations of AA metabolites in a rat model of neuroinflammation, produced by a 6-day intracerebroventricular infusion of bacterial lipopolysaccharide (LPS). In rats infused with LPS (0.5 ng/h) and given ASA-free water to drink, concentrations in high-energy microwaved brain of PGE₂, TXB₂ and leukotriene B₄ (LTB₄) were elevated. In rats infused with artificial cerebrospinal fluid, 6 weeks of treatment with a low (10 mg/kg/day) or high (100 mg/kg/day) ASA dose in drinking water decreased brain PGE₂, but increased LTB₄, LXA₄ and 15-epi-LXA₄ concentrations. Both doses attenuated the LPS effects on PGE₂, and TXB₂. The increments in LXA₄ and 15-epi-LXA₄ caused by high-dose ASA were significantly greater in LPS-infused rats. The ability of ASA to increase anti-inflammatory LXA₄ and 15-epi-LXA₄ and reduce pro-inflammatory PGE₂ and TXB₂ suggests considering aspirin further for treating clinical neuroinflammation. PMID:20981485

  9. Suppression of MAPKs/NF-κB Activation Induces Intestinal Anti-Inflammatory Action of Ginsenoside Rf in HT-29 and RAW264.7 Cells.

    PubMed

    Ahn, Sungeun; Siddiqi, Muhammad Hanif; Aceituno, Veronica Castro; Simu, Shakina Yesmin; Yang, Deok Chun

    2016-07-01

    This study investigated the intestinal anti-inflammatory action of ginsenoside Rf in inflammatory bowel disease (IBD). IBD is a chronic inflammatory disease that affects the intestinal tract. It is associated with elevated levels of various inflammatory mediators, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), nitric oxide (NO), and reactive oxygen species (ROS). Ginsenosides, the main active constituents of ginseng, have been reported to exert potent therapeutic effects against diverse diseases. However, ginsenoside Rf treatment for inflammation has not yet been examined. In this study, we evaluated the inhibitory effect of ginsenoside Rf on the inflammatory mediators downstream of p38/NF-kB activation on TNF-α-stimulated intestinal epithelial cells (HT-29) and mouse macrophage cells (RAW264.7). Our results showed that ginsenoside Rf significantly reduced the production of IL-1β, IL-6, TNF-α, NO, and ROS, which are most highly activated in IBD. In addition, ginsenoside Rf significantly suppressed TNF-α/LPS-induced NF-κB transcriptional activity. These results suggest that ginsenoside Rf contains a compound that has potent intestinal anti-inflammatory effects that could be used to treat diseases such as IBD.

  10. Anti-inflammatory properties of bioactive titanium metals.

    PubMed

    Yang, Bangcheng; Gan, Lu; Qu, Yang; Yue, Chongxia

    2010-09-01

    Anti-inflammatory properties of bioactive titanium metals prepared by anodic oxidation (AO-Ti) and alkali-heat (AH-Ti) treatments were studied by bacterial adhesion test and myeloperoxidase (MPO) activity assay methods. The bioactivities of the metals were also evaluated by apatite formation ability and osteoblasts culture experiments. Both metals could induce apatite formation and support osteoblasts proliferation. At the condition with normal incandescent light shine, both bioactive titanium metals had antibacterial adhesion properties compared with the titanium metal without treatment. The MPO activity assay proved that they both showed anti-inflammatory properties in vivo. The bioactive AO-Ti had better anti-inflammatory properties than the AH-Ti. It indicated that it is possible to optimize the anti-inflammatory properties of the bioactive titanium metals by different preparation methods.

  11. Biochemical pharmacology of biflavonoids: implications for anti-inflammatory action.

    PubMed

    Kim, Hyun Pyo; Park, Haeil; Son, Kun Ho; Chang, Hyeun Wook; Kang, Sam Sik

    2008-03-01

    Biflavonoids belong to a subclass of the plant flavonoid family. Distribution of biflavonoids in the plant kingdom is limited to several species. Previously, some pharmacological activities of biflavonoids were described such as inhibition of histamine release from mast cells and inhibition of lymphocyte proliferation, suggesting the anti-inflammatory/antiallergic potential of the biflavonoids. Furthermore, several natural biflavonoids including ochnaflavone and ginkgetin inhibit phospholipase A2. Most importantly, certain biflavonoids exhibit anti-inflammatory activity through the regulation of proinflammatory gene expression in vitro and in vivo. Recently, several synthetic approaches yielded new biflavonoid molecules with anti-inflammatory potential. These molecules also exhibit phospholipase A2 and cyclooxygenase-2 inhibitory activity. Although the bioavailability needs be improved, certain biflavonoids may have potential as new anti-inflammatory agents. This is the first review of biflavonoid pharmacology to date.

  12. Anti-inflammatory activity of polysaccharide from Schizophyllum commune as affected by ultrasonication.

    PubMed

    Du, Bin; Zeng, Huansong; Yang, Yuedong; Bian, Zhaoxiang; Xu, Baojun

    2016-10-01

    Ultrasound treatment was applied to modify the physicochemical properties of an exopolysaccharide from mycelial culture of Schizophyllum commune. Molecular weight (MW) degradation, viscosity and anti-inflammatory property of ultrasonic treated polysaccharide were optimized with response surface methodology. The best ultrasonic parameters were obtained with a three-variable-three-level Box-Behnken design. The optimized conditions for efficient anti-inflammatory activity are initial concentration at 0.4%, ultrasonic power at 600W, and duration of ultrasonic irradiation for 9min. Under these conditions, the nitric oxide inhibition rate was 95±0.03% which agreed closely with the predicted value (96%). Average MW of polysaccharide decreased after ultrasonic treatments. The viscosity of degraded polysaccharide dropped compared with native polysaccharide. The anti-inflammatory activity was improved by ultrasound treatment. The results suggested that ultrasound treatment is an effective approach to decrease the MW of polysaccharide with high anti-inflammatory activity. Ultrasonic treatment is a viable modification technology for high MW polymer materials. PMID:27189700

  13. Study of anti-inflammatory activities of α-D-glucosylated eugenol.

    PubMed

    Zhang, Peng; Zhang, Erli; Xiao, Min; Chen, Chang; Xu, Weijian

    2013-01-01

    Inflammation is an immune response against a variety of noxious stimuli, such as infection, chemicals, and physical injury. Eugenol, a natural phenolic extract, has drawn much attention for its various desirable pharmacological functions and is, therefore, broadly used in our daily life and medical practice. However, further usage of eugenol is greatly limited due to its unwanted properties, such as physicochemical instability, poor solubility, and high-dose cytotoxicity. In hopes of extending its applicability through glycosylation, we previously reported a novel, efficient, and high throughput way to biosynthesize α-D-glucosylated eugenol (α-EG). In this study, we further explored the potential superior properties of α-EG to its parent eugenol in terms of anti-inflammatory activities. We demonstrated that α-EG was an effective anti-inflammatory mediator in both non-cellular and cellular environments. In addition, the non-cellular inhibitory effect of α-EG could be amplified by α-glucosidase, which ubiquitously exists in cytoplasm. Furthermore, α-EG exhibited a superior anti-inflammatory effect to its parent eugenol in a cellular environment. In words, our findings collectively suggest that α-EG is a stronger anti-inflammatory mediator and may thereby serve as a desirable substitute for eugenol and a potential therapeutic prodrug in treating inflammatory diseases in the future.

  14. Synthesis and anti-inflammatory activity of chalcone derivatives.

    PubMed

    Herencia, F; Ferrándiz, M L; Ubeda, A; Domínguez, J N; Charris, J E; Lobo, G M; Alcaraz, M J

    1998-05-19

    Chalcones and their derivatives were synthesized and evaluated for their anti-inflammatory activity. In vitro, chalcones 2, 4, 8, 10 and 13 inhibited degranulation and 5-lipoxygenase in human neutrophils, whereas 11 behaved as scavenger of superoxide. Only four compounds (4-7) inhibited cyclo-oxygenase-2 activity. The majority of these samples showed anti-inflammatory effects in the mouse air pouch model.

  15. Avicenna's Canon of Medicine: a review of analgesics and anti-inflammatory substances

    PubMed Central

    Mahdizadeh, Shahla; Khaleghi Ghadiri, Maryam; Gorji, Ali

    2015-01-01

    Naturally occurring substances mentioned in medieval medical literatures currently have, and will continue to have, a crucial place in drug discovery. Avicenna was a Persian physician who is known as the most influential medical writers in the Middle ages. Avicenna`s Canon of Medicine, the most famous books in the history of medicine, presents a clear and organized summary of all the medical knowledge of the time, including a long list of drugs. Several hundred substances and receipts from different sources are mentioned for treatment of different illnesses in this book. The aim of the present study was to provide a descriptive review of all anti-inflammatory and analgesic drugs presented in this comprehensive encyclopedia of medicine. Data for this review were provided by searches of different sections of this book. Long lists of anti-inflammatory and analgesic substances used in the treatment of various diseases are provided. The efficacy of some of these drugs, such as opium, willow oil, curcuma, and garlic, was investigated by modern medicine; pointed to their potent anti-inflammatory and analgesic properties. This review will help further research into the clinical benefits of new drugs for treatment of inflammatory diseases and pain. PMID:26101752

  16. Avicenna's Canon of Medicine: a review of analgesics and anti-inflammatory substances.

    PubMed

    Mahdizadeh, Shahla; Khaleghi Ghadiri, Maryam; Gorji, Ali

    2015-01-01

    Naturally occurring substances mentioned in medieval medical literatures currently have, and will continue to have, a crucial place in drug discovery. Avicenna was a Persian physician who is known as the most influential medical writers in the Middle ages. Avicenna`s Canon of Medicine, the most famous books in the history of medicine, presents a clear and organized summary of all the medical knowledge of the time, including a long list of drugs. Several hundred substances and receipts from different sources are mentioned for treatment of different illnesses in this book. The aim of the present study was to provide a descriptive review of all anti-inflammatory and analgesic drugs presented in this comprehensive encyclopedia of medicine. Data for this review were provided by searches of different sections of this book. Long lists of anti-inflammatory and analgesic substances used in the treatment of various diseases are provided. The efficacy of some of these drugs, such as opium, willow oil, curcuma, and garlic, was investigated by modern medicine; pointed to their potent anti-inflammatory and analgesic properties. This review will help further research into the clinical benefits of new drugs for treatment of inflammatory diseases and pain.

  17. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiling; Nong, Jia; Zhong, Yinghui

    2015-08-01

    Objective. Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. Approach. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Main results. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg2+-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. Significance. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.

  18. Screening for anti-inflammatory and bronchorelaxant activities of 12 commonly used Chinese herbal medicines.

    PubMed

    Yue, Grace G L; Chan, Ben C L; Kwok, Hin-Fai; To, Ming-Ho; Hon, Kam-Lun; Fung, Kwok-Pui; Lau, Clara B S; Leung, Ping-Chung

    2012-06-01

    The use of health supplements derived from medicinal herbs as self-medication for the relief of respiratory tract pathology symptoms is increasing in Chinese communities as air pollution is worsening. Twelve herbs from two formulae of our previous studies were evaluated for their anti-inflammatory, immunomodulatory and bronchorelaxant activities in this study. Among the extracts tested, those of Herba Schizonepetae and Radix Glycyrrhizae showed significant inhibitory effects on LPS-induced nitric oxide production (p < 0.05) in mouse macrophage RAW264.7 cells, suggesting their anti-inflammatory activities. Radix Scutellariae and Radix Glycyrrhizae extracts showed significant inhibitory effects on phytohaemagglutinin-induced proliferation in human peripheral blood mononuclear cells (p < 0.05). These extracts also showed inhibition of TNF-α, IFN-γ and IL-10 production. For the bronchorelaxant assay, Rhizoma Cynanchi Stauntonii and Radix Glycyrrhizae extracts showed potent attenuation of the acetylcholine- and carbachol-induced contractions in rat trachea (p < 0.05), implying their relaxant activities. In conclusion, Herba Schizonepetae, Radix Glycyrrhizae, Radix Scutellariae and Rhizoma Cynanchi Stauntonii extracts were demonstrated to exert anti-inflammatory, immunomodulatory and bronchorelaxant activities, which may help to ameliorate the symptoms of respiratory tract pathologies. The findings have thus provided some scientific evidence on the efficacy and mechanisms of action of these herbs, which are useful for the further development of clinical applications. PMID:22105892

  19. Topical anti-inflammatory properties of flutrimazole, a new imidazole antifungal agent.

    PubMed

    Merlos, M; Vericat, M L; García-Rafanell, J; Forn, J

    1996-01-01

    The topical anti-inflammatory properties of flutrimazole, a new imidazole antifungal, have been evaluated. Flutrimazole inhibited mouse ear oedema induced by arachidonic acid, tetradecanoylphorbol-acetate and dithranol, with IC50 values of 3.32, 0.55 and 2.42 mumols/ear, respectively. Ketoconazole showed similar potency in arachidonic acid and dithranol models (IC50 = 3.76 and 2.41 mumols/ear) whereas it was less active against tetradecanoylphorbol acetate (IC50 = 1.96 mumols/ear). The standard anti-inflammatory sodium diclofenac was overall slightly more potent than antifungals (IC50 = 2.23, 0.57 and 0.57 mumols/ear against arachidonic acid, tetradecanoylphorbol acetate and dithranol, respectively). Both 2% flutrimazole and 2% ketoconazole creams, applied topically, inhibited carrageenan-induced rat paw oedema by about 40%. Under the same conditions, 1% flutrimazole and diclofenac creams inhibited by 26 and 54%, respectively. Flutrimazole may work through the inhibition of 5-lipoxygenase, as it inhibited LTB4 production by human granulocytes with an IC50 value of 11 microM (IC50 value for ketoconazole was 17 microM), whereas ram seminal vesicle cyclooxygenase was only inhibited by 16% at a concentration of 25 microM. Drugs such as flutrimazole, with dual anti-inflammatory/antifungal activity, may be advantageous in the treatment of topical fungal infections with an inflammatory component.

  20. Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus.

    PubMed

    Fang, Song-Chwan; Hsu, Chin-Lin; Yen, Gow-Chin

    2008-06-25

    Artocarpus heterophyllus Lam is a large evergreen tree cultivated throughout Southeast Asia for its fruits. Its leaves and roots have been used for medicinal purposes. The aim of this work was to study the in vitro anti-inflammatory effects of phenolic compounds isolated from the ethyl acetate extracts of the fruits of Artocarpus heterophyllus. Three phenolic compounds were characterized as artocarpesin [5,7,2',4'-tetrahydroxy-6-(3-methylbut-3-enyl) flavone] ( 1), norartocarpetin (5,7,2',4'-tetrahydroxyflavone) ( 2), and oxyresveratrol [ trans-2,4,3',5'-tetrahydroxystilbene] ( 3) by spectroscopic methods and through comparison with data reported in the literatures. The anti-inflammatory effects of the isolated compounds ( 1- 3) were evaluated by determining their inhibitory effects on the production of proinflammatory mediators in lipopolysaccharide (LPS)-activated RAW 264.7 murine macrophage cells. These three compounds exhibited potent anti-inflammatory activity. The results indicated that artocarpesin ( 1) suppressed the LPS-induced production of nitric oxide (NO) and prostaglandin E 2 (PGE 2) through the down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expressions. Thus, artocarpesin ( 1) may provide a potential therapeutic approach for inflammation-associated disorders.

  1. Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus.

    PubMed

    Fang, Song-Chwan; Hsu, Chin-Lin; Yen, Gow-Chin

    2008-06-25

    Artocarpus heterophyllus Lam is a large evergreen tree cultivated throughout Southeast Asia for its fruits. Its leaves and roots have been used for medicinal purposes. The aim of this work was to study the in vitro anti-inflammatory effects of phenolic compounds isolated from the ethyl acetate extracts of the fruits of Artocarpus heterophyllus. Three phenolic compounds were characterized as artocarpesin [5,7,2',4'-tetrahydroxy-6-(3-methylbut-3-enyl) flavone] ( 1), norartocarpetin (5,7,2',4'-tetrahydroxyflavone) ( 2), and oxyresveratrol [ trans-2,4,3',5'-tetrahydroxystilbene] ( 3) by spectroscopic methods and through comparison with data reported in the literatures. The anti-inflammatory effects of the isolated compounds ( 1- 3) were evaluated by determining their inhibitory effects on the production of proinflammatory mediators in lipopolysaccharide (LPS)-activated RAW 264.7 murine macrophage cells. These three compounds exhibited potent anti-inflammatory activity. The results indicated that artocarpesin ( 1) suppressed the LPS-induced production of nitric oxide (NO) and prostaglandin E 2 (PGE 2) through the down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expressions. Thus, artocarpesin ( 1) may provide a potential therapeutic approach for inflammation-associated disorders. PMID:18500810

  2. Screening of Ficus religiosa leaves fractions for analgesic and anti-inflammatory activities

    PubMed Central

    Gulecha, Vishal; Sivakumar, T; Upaganlawar, Aman; Mahajan, Manoj; Upasani, Chandrashekhar

    2011-01-01

    Objective: To evaluate the different fractions of dried leaves of Ficus religiosa Linn for analgesic and anti-inflammatory activity using different models of pain and inflammation Materials and Methods: The analgesic activity of F. religiosa carried out using acetic acid-induced writhing in mice and tail flick test in rats. The anti-inflammatory activity was evaluated using carrageenan-induced rat paw edema and cotton pellet-granuloma formation in rats. Five different fractions (FRI, FRII, FRIII, FRIV and FRV) of F. religiosa at the dose level of 20 and 40 mg/kg, p.o were tested. Results: The fraction FRI (40 mg/kg, p.o.) and FRIII (40 mg/kg, p.o) were found to be more effective (P<0.01) in preventing carrageenan induced rat paw edema, cotton pellet granuloma formation, and acetic acid induced writhing compared to the other fractions. FRI (20 mg/kg, p.o.) and FRIII (20 mg/kg, p.o.) were also found to be more effective in increasing latency period in tail flick method. Conclusion: Out of five different fractions of F. religiosa leaves tested, FRI and FRIII possess potent analgesic and anti-inflammatory activities against different models of inflammation and pain. PMID:22144770

  3. Avicenna's Canon of Medicine: a review of analgesics and anti-inflammatory substances.

    PubMed

    Mahdizadeh, Shahla; Khaleghi Ghadiri, Maryam; Gorji, Ali

    2015-01-01

    Naturally occurring substances mentioned in medieval medical literatures currently have, and will continue to have, a crucial place in drug discovery. Avicenna was a Persian physician who is known as the most influential medical writers in the Middle ages. Avicenna`s Canon of Medicine, the most famous books in the history of medicine, presents a clear and organized summary of all the medical knowledge of the time, including a long list of drugs. Several hundred substances and receipts from different sources are mentioned for treatment of different illnesses in this book. The aim of the present study was to provide a descriptive review of all anti-inflammatory and analgesic drugs presented in this comprehensive encyclopedia of medicine. Data for this review were provided by searches of different sections of this book. Long lists of anti-inflammatory and analgesic substances used in the treatment of various diseases are provided. The efficacy of some of these drugs, such as opium, willow oil, curcuma, and garlic, was investigated by modern medicine; pointed to their potent anti-inflammatory and analgesic properties. This review will help further research into the clinical benefits of new drugs for treatment of inflammatory diseases and pain. PMID:26101752

  4. Anti-inflammatory and analgesic effects of ketoprofen in palm oil esters nanoemulsion.

    PubMed

    Sakeena, M H F; Yam, M F; Elrashid, S M; Munavvar, A S; Azmin, M N

    2010-01-01

    Ketoprofen is a potent non-steroidal anti-inflammatory drug has been used in the treatment of various kinds of pains, inflammation and arthritis. However, oral administration of ketoprofen produces serious gastrointestinal adverse effects. One of the promising methods to overcome these adverse effects is to administer the drug through the skin. The aim of the present work is to evaluate the anti-inflammatory and analgesic effects from topically applied ketoprofen entrapped palm oil esters (POEs) based nanoemulsion and to compare with market ketoprofen product, Fastum(®) gel. The novelty of this study is, use of POEs for the oil phase of nanoemulsion. The anti-inflammatory and analgesic studies were performed on rats by carrageenan-induced rat hind paw edema test and carrageenan-induced hyperalgesia pain threshold test to compare the ketoprofen entrapped POEs based nanoemulsion formulation and market formulation. Results indicated that there are no significant different between ketoprofen entrapped POEs nanoemulsion and market formulation in carrageenan-induced rat hind paw edema study and carrageenan-induced hyperalgesia pain threshold study. However, it shows a significant different between POEs nanoemulsion formulation and control group in these studies at p<0.05. From these results it was concluded that the developed nanoemulsion have great potential for topical application of ketoprofen.

  5. Anti-inflammatory Activity of Constituents Isolated from Aerial Part of Angelica acutiloba Kitagawa.

    PubMed

    Uto, Takuhiro; Tung, Nguyen Huu; Taniyama, Risa; Miyanowaki, Tosihide; Morinaga, Osamu; Shoyama, Yukihiro

    2015-12-01

    Recently, the resources of medicinal plants have been exhausting. The root of Angelica acutiloba is one of the most important ingredients in Japanese Kampo medicine for the treatment of gynecological diseases. In our search for alternative medicinal plant resources of the root of A. acutiloba, we found that its aerial part has the anti-inflammatory potency as well as the root. Phytochemical investigation of the aerial part resulted in the isolation of four compounds including a new dimeric phthalide, namely tokiaerialide (2), along with Z-ligustilide (1), falcarindiol (3), and bergaptol (4). Next, we investigated the in vitro anti-inflammatory activity of 1-4 in lipopolysaccharide-stimulated RAW264 macrophages. Among the isolated compounds, 1 exhibited the most potent inhibition against lipopolysaccharide-induced production of prostaglandin E2 , nitric oxide, and pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor-α). Compounds 3 and 4 also inhibited all inflammatory mediators, but their inhibitory abilities were weaker than those of 1. Furthermore, 1, 3, and 4 strongly also induced heme oxygenase-1. These results suggest that 1, 3, and 4 potentially exert anti-inflammatory activity, and the aerial part of A. acutiloba may be considered to be a useful medicinal resource for inflammatory diseases.

  6. Hypoglycemic agents and potential anti-inflammatory activity

    PubMed Central

    Kothari, Vishal; Galdo, John A; Mathews, Suresh T

    2016-01-01

    Current literature shows an association of diabetes and secondary complications with chronic inflammation. Evidence of these immunological changes include altered levels of cytokines and chemokines, changes in the numbers and activation states of various leukocyte populations, apoptosis, and fibrosis during diabetes. Therefore, treatment of diabetes and its complications may include pharmacological strategies to reduce inflammation. Apart from anti-inflammatory drugs, various hypoglycemic agents have also been found to reduce inflammation that could contribute to improved outcomes. Extensive studies have been carried out with thiazolidinediones (peroxisome proliferator-activated receptor-γ agonist), dipeptidyl peptidase-4 inhibitors, and metformin (AMP-activated protein kinase activator) with each of these classes of compounds showing moderate-to-strong anti-inflammatory action. Sulfonylureas and alpha glucosidase inhibitors appeared to exert modest effects, while the injectable agents, insulin and glucagon-like peptide-1 receptor agonists, may improve secondary complications due to their anti-inflammatory potential. Currently, there is a lack of clinical data on anti-inflammatory effects of sodium–glucose cotransporter type 2 inhibitors. Nevertheless, for all these glucose-lowering agents, it is essential to distinguish between anti-inflammatory effects resulting from better glucose control and effects related to intrinsic anti-inflammatory actions of the pharmacological class of compounds. PMID:27114714

  7. [Anti-inflammatory effects of methylprednisolone aceponate in animals].

    PubMed

    Ikoma, Y; Yamashita, M; Kamitani, K; Nakagawa, H

    1991-11-01

    In the case of dermal application of the drugs to croton oil-induced ear edema in rats and picryl chloride-induced delayed type hypersensitivity in mice, the anti-inflammatory effect of methylprednisolone aceponate (MPA) was slightly weaker than those of clobetasol 17-propionate and diflucortolone 21-valerate, but stronger than those of hydrocortisone 17-butyrate and hydrocortisone 17-butyrate 21-propionate. Betamethasone 17-valerate applied dermally was less and more effective than MPA to ear edema in rats and delayed type hypersensitivity in mice, respectively. The anti-inflammatory effect of MPA was weaker in subcutaneous administration than in topical application to the two inflammatory models. It was suggested that MPA has strong anti-inflammatory effects and weak systemic effects by topical application. Methylprednisolone 17-propionate (MP-17P) and methylprednisolone (MP), unesterified in only the C-21 position and in both the C-17 and 21 positions of MPA, respectively, showed weaker anti-inflammatory activities than MPA by topical application to croton oil-induced ear edema. The ratio of the anti-inflammatory effects by topical application to subcutaneous administration of MPA was higher than those of MP-17P and MP. The excellent characteristics of MPA as a dermal anti-inflammatory drug are suggested to be derived from di-esterification of MP, which has a weak activity intrinsically. PMID:1813371

  8. Drug Targets for Cardiovascular-Safe Anti-Inflammatory: In Silico Rational Drug Studies

    PubMed Central

    Shahbazi, Sajad; Sahrawat, Tammanna R.; Ray, Monalisa; Dash, Swagatika; Kar, Dattatreya; Singh, Shikha

    2016-01-01

    Cyclooxygenase-2 (COX-2) plays an important role in memory consolidation and synaptic activity, the most fundamental functions of the brain. It converts arachidonic acid to prostaglandin endoperoxide H2. In contrast, if over-expressed, it causes inflammation in response to cytokine, pro-inflammatory molecule, and growth factor. Anti-inflammatory agents, by allosteric or competitive inhibition of COX-2, alleviate the symptoms of inflammation. Coxib family drugs, particularly celecoxib, are the most famous anti-inflammatory agents available in the market showing significant inhibitory effect on COX-2 activity. Due to high cardiovascular risk of this drug group, recent researches are focused on the investigation of new safer drugs for anti-inflammatory diseases. Natural compounds, particularly, phytochemicals are found to be good candidates for drug designing and discovery. In the present study, we performed in silico studies to quantitatively scrutinize the molecular interaction of curcumin and its structural analogs with COX-2, COX-1, FXa and integrin αIIbβIII to investigate their therapeutic potential as a cardiovascular-safe anti-inflammatory medicine (CVSAIM). The results of both ADMET and docking study indicated that out of all the 39 compounds studied, caffeic acid had remarkable interaction with proteins involved in inflammatory response. It was also found to inhibit the proteins that are involved in thrombosis, thereby, having the potential to be developed as therapeutic agent. PMID:27258084

  9. Non-steroidal anti-inflammatory drug gastropathy: clinical results with antacids and sucralfate.

    PubMed

    Lazzaroni, M; Sainaghi, M; Bianchi Porro, G

    1999-01-01

    The efficacy of antacids in the short- and long-term treatment of peptic ulcers, has suggested a possible use in the prevention and in the treatment of non-steroidal anti-inflammatory drug related gastroduodenal lesions. In short-term prevention studies, significant protection against ASA-related lesions was observed when antacids at high-dose were given before the administration of the offending drug. To the contrary, antacids at low dose did not prevent ASA-induced lesions of gastric and duodenal mucosa. As for long-term prophylaxis, no clinical effect was observed. In the treatment of non-steroidal anti-inflammatory drug-related mucosal lesions in patients who were able to discontinue the offending drugs, antacids proved of some use, when compared with placebo, but were significantly less effective than H2 blockers, as cimetidine. Sucralfate is an effective antiulcer drug thought to provide cytoprotective action. Although initial studies utilizing sucralfate for protection against short-term aspirin administration were encouraging, longer term studies (more than 7 days) were generally disappointing. A comparative study with misoprostol demonstrated that the PGE1 analogue was far superior for the prevention of non-steroidal anti-inflammatory drugs ulcers, and that ulceration rates in the sucralfate group were equivalent to rates in the placebo group. As far as the treatment of non-steroidal anti-inflammatory drug-related mucosal lesions is concerned, sucralfate proved superior to placebo, similar to ranitidine, but significantly less effective than omeprazole.

  10. Nonsteroidal Anti-inflammatory-Organometallic Anticancer Compounds.

    PubMed

    Păunescu, Emilia; McArthur, Sarah; Soudani, Mylène; Scopelliti, Rosario; Dyson, Paul J

    2016-02-15

    Compounds that combine metal-based drugs with covalently linked targeted organic agents have been shown, in some instances, to exhibit superior anticancer properties compared to the individual counterparts. Within this framework, we prepared a series of organometallic ruthenium(II)- and osmium(II)-p-cymene complexes modified with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin and diclofenac. The NSAIDs are attached to the organometallic moieties via monodentate (pyridine/phosphine) or bidentate (bipyridine) ligands, affording piano-stool Ru(II) and Os(II) arene complexes of general formula [M(η(6)-p-cymene)Cl2(N)], where N is a pyridine-based ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate}, [M(η(6)-p-cymene)Cl2(P)], where P is a phosphine ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate, and [M(η(6)-p-cymene)Cl(N,N')][Cl], where N,N' is a bipyridine-based ligand, (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate), (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(2-((2,6-dichlorophenyl)amino)phenyl)acetate), (bis(2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate), or (bis(2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate). The antiproliferative properties of the complexes were assessed in human ovarian cancer cells (A2780 and A2780cisR, the latter being resistant to cisplatin) and nontumorigenic human embryonic kidney (HEK-293) cells. Some of the complexes are considerably more cytotoxic than the original drugs and also display significant cancer cell selectivity. PMID:26824462

  11. Anti-Inflammatory Effects of 4-Methylcyclopentadecanone on Edema Models in Mice

    PubMed Central

    Ma, Yukui; Li, Yue; Li, Xiufeng; Wu, Yingliang

    2013-01-01

    The present study evaluated the anti-inflammatory effects of 4-methylcyclopentadecanone (4-MCPC) on edema models in mice and aimed to determine the safety of 4-MCPC after acute exposure. The acute toxicity of 4-MCPC was evaluated by oral administration to rats of single doses of 0, 5, 50, 500 and 5000 mg/kg. Toxic symptoms were observed for 14 days. The anti-inflammatory activity was evaluated in xylene-induced mouse ear edema and carrageenan-induced mouse paw edema. The animals were treated with 4-MCPC once every day for seven consecutive days. Edema index, % inhibition, IL-1β, TNF-α, PGE2 and MPO levels in paws were detected after the treatment with xylene or carrageenan. Our results indicated that the LD50 value of 4-MCPC in rats is greater than 5000 mg/kg. The ED50 of 4-MCPC in xylene-induced mouse ear edema model was 7.5 mg/kg. 4-MCPC (8 or 16 mg/kg) remarkably inhibited carrageenan-induced mouse paw edema. Further study revealed that 4-MCPC treatment also decreased IL-1β, TNF-α, PGE2 and MPO levels in mice paws. Intragastric administration of 4-MCPC exhibited more significant anti-inflammatory activity than muscone at a dose of 16 mg/kg. Taken together, our results suggest that 4-MCPC has potent anti-inflammatory activity and the mechanisms might be related to the decreases of the levels of IL-1β, TNF-α, PGE2 and MPO in inflamed paws. PMID:24351869

  12. Topical anti-inflammatory activity of Eupatilin, a lipophilic flavonoid from mountain wormwood ( Artemisia umbelliformis Lam.).

    PubMed

    Giangaspero, Anna; Ponti, Cristina; Pollastro, Federica; Del Favero, Giorgia; Della Loggia, Roberto; Tubaro, Aurelia; Appendino, Giovanni; Sosa, Silvio

    2009-09-01

    Eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone) is the major lipophilic flavonoid from Artemisia umbelliformis Lam. and Artemisia genipi Weber, two mountain wormwoods used for the production of the celebrated alpine liqueur genepy. The topical anti-inflammatory activity of eupatilin was investigated using the inhibition of the Croton-oil-induced dermatitis in the mouse ear as the end point. The oedematous response and the leukocyte infiltration were evaluated up to 48 h after the induction of phlogosis, comparing eupatilin with hydrocortisone and indomethacin as representatives of steroid and non-steroid anti-inflammatory drugs, respectively. At maximum development, eupatilin significantly reduced edema in a dose-dependent manner (ID(50) = 0.28 micromol/cm(2)), showing an anti-inflammatory potency comparable to that of indomethacin (ID(50) = 0.26 micromol/cm(2)) and only 1 order of magnitude lower than that of hydrocortisone (ID(50) = 0.03 micromol/cm(2)). Within 48 h, eupatilin (0.30 micromol/cm(2)) caused a global inhibition of the oedematous response (42%) higher than that of an equimolar dose of indomethacin (18%) and fully comparable to that of 0.03 micromol/cm(2) of hydrocortisone (55%). Moreover, the effect of eupatilin on the granulocytes infiltrate (32% inhibition) was similar to that of indomethacin (35% inhibition) and comparable to that of hydrocortisone (42% reduction), as confirmed by histological analysis. When our results are taken together, they show that eupatilin is endowed with potent in vivo topical anti-inflammatory activity, qualitatively similar to that of hydrocortisone and intermediate in terms of potency between those of steroid and non-steroid drugs.

  13. Topical anti-inflammatory constituents of lipophilic leaf fractions of Alchornea floribunda and Alchornea cordifolia.

    PubMed

    Okoye, F B C; Osadebe, P O; Nworu, C S; Okoye, N N; Omeje, E O; Esimone, C O

    2011-12-01

    The leaves of Alchornea floribunda and Alchornea cordifolia are used traditionally as topical anti-inflammatory agents. In this study, two highly lipophilic fractions AFLF and ACLF isolated from A. floribunda and A. cordifolia leaves respectively were investigated for topical anti-inflammatory effects using xylene-induced mice ear oedema as a model of inflammation. AFLF and ACLF at 5 mg per ear showed significant (p < 0.01) topical anti-inflammatory effect with oedema inhibitions of 64.0% and 79.0% at 2 h, respectively. When compared to indomethacin (5 mg per ear), these fractions showed significantly (p < 0.05) higher topical anti-inflammatory effect. Gas chromatography-mass spectrometry analysis revealed that AFLF is composed mainly of long chain saturated and unsaturated hydrocarbons (18.78%) and their oxygenated derivatives (1.89%); while ACLF is rich in volatile oils eugenol (21.26%) and cadinol (4.76%), and other constituents like, nanocosaine (36.86%) and steroid derivatives, ethyl iso-allocholate (4.59%) and 3-acetoxy-7,8-epoxylanostan-1-ol (15.86%). Analysis of the volatile oil (ACV) extracted from the fresh leaves of A. cordifolia revealed the presence of high concentrations of eugenol (41.7%), cadinol (2.46%), Caryophylene (1.04%), Linalool (30.59%) and (E)-α-bergamotene (4.54%). These compounds could be contributing to the topical anti-inflammatory effects of A. floribunda and A. cordifolia leaf extracts.

  14. Local anti-inflammatory activity and systemic side effects of NM-135, a new prodrug glucocorticoid, in an experimental inflammatory rat model.

    PubMed

    Ishii, T; Kibushi, N; Nakajima, T; Kakuta, T; Tanaka, N; Sato, C; Sugai, K; Kijima-Suda, I; Kai, H; Miyata, T

    1998-12-01

    The local anti-inflammatory activity and systemic side effects of NM-135 (6alpha,9-difluoro-11beta-hydroxy-16alpha-methyl-21[[2 ,3,4,6-tetrakis-O-(4-methylbenzoyl)-beta-D-glucopyranosyl]oxy]-pregna-1, 4-diene-3,20-dione) in croton oil-induced granuloma pouches and ear edema in rats were studied. The local anti-inflammatory activity of NM-135 was stronger than that of betamethasone 17-valerate (BV). As to systemic side effects, BV and diflucortolon valerate (DFV) caused thymolysis at the doses required for the anti-inflammatory activity. In contrast, no clear systemic side effect was observed in rats administered NM-135 at the dose producing the anti-inflammatory activity. These results suggest that NM-135 is a drug exhibiting a high degree of dissociation between the local anti-inflammatory activity and systemic side effects. PMID:9920209

  15. The Anti-inflammatory Effects of Water Extract from Cordyceps militaris in Murine Macrophage

    PubMed Central

    Jo, Wol Soon; Choi, Yoo Jin; Kim, Hyoun Ji; Lee, Jae Yun; Nam, Byung Hyouk; Lee, Jae Dong; Lee, Sang Wha; Seo, Su Yeong

    2010-01-01

    The aim of this study was to determine the in vitro anti-inflammatory effect of hot water extract from Cordyceps militaris fruiting bodies (CMWE) on lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release in RAW 264.7 cells. The treatment of macrophages with various concentrations of hot CMWE significantly reduced LPS-induced production as well as NO, TNF-α and IL-6 secretion in a concentration-dependent manner. These results suggest that CMWE have potent inhibitory effects on the production of these inflammatory mediators. PMID:23956624

  16. The Anti-inflammatory Effects of Water Extract from Cordyceps militaris in Murine Macrophage.

    PubMed

    Jo, Wol Soon; Choi, Yoo Jin; Kim, Hyoun Ji; Lee, Jae Yun; Nam, Byung Hyouk; Lee, Jae Dong; Lee, Sang Wha; Seo, Su Yeong; Jeong, Min Ho

    2010-03-01

    The aim of this study was to determine the in vitro anti-inflammatory effect of hot water extract from Cordyceps militaris fruiting bodies (CMWE) on lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release in RAW 264.7 cells. The treatment of macrophages with various concentrations of hot CMWE significantly reduced LPS-induced production as well as NO, TNF-α and IL-6 secretion in a concentration-dependent manner. These results suggest that CMWE have potent inhibitory effects on the production of these inflammatory mediators. PMID:23956624

  17. Anti-inflammatory and antimalarial meroterpenoids from the New Zealand ascidian Aplidium scabellum.

    PubMed

    Chan, Susanna T S; Pearce, A Norrie; Januario, Ana H; Page, Michael J; Kaiser, Marcel; McLaughlin, Rene J; Harper, Jacquie L; Webb, Victoria L; Barker, David; Copp, Brent R

    2011-11-01

    Bioassay-directed fractionation of an extract of the New Zealand ascidian Aplidium scabellum has afforded the anti-inflammatory secondary metabolite 2-geranyl-6-methoxy-1,4-hydroquinone-4-sulfate (1) and a family of pseudodimeric meroterpenoids scabellones A (2)-D (5). The benzo[c]chromene-7,10-dione scaffold contained within scabellones A-D is particularly rare among natural products. The structures were elucidated by interpretation of NMR data. Scabellone B was also identified as a moderately potent, nontoxic inhibitor of Plasmodium falciparum.

  18. Toxicological Evaluation of Emblica officinalis Fruit Extract and its Anti-inflammatory and Free Radical Scavenging Properties

    PubMed Central

    Middha, Sushil Kumar; Goyal, Arvind Kumar; Lokesh, Prakash; Yardi, Varsha; Mojamdar, Lavanya; Keni, Deepthi Sudhir; Babu, Dinesh; Usha, Talambedu

    2015-01-01

    officinalis fruit (MEO) has potent antioxidant activity as assessed by DPPH, ABTS and LPO assaysMEO has potent anti-inflammatory activity in carrageenan induced paw edema modelThe phenolic compounds of MEO might be a potential herbal drug for amelioration of acute inflammation. Abbreviations used: ROS, reactive oxygen species; RNS, reactive nitrogen species, LPO, lipid peroxidation, NO, nitric oxide, IL, interleukin; TNF α tumor necrosis factor alpha; NSAIDs, nonsteroidal anti inflammatory drugs; AA, ascorbic acid; MEO, methanolic extract of Emblica officinalis fruit; ABTS+; 2,2’ azino bis 3 ethylbenzthiazoline 6 sulphonic acid; DPPH, 1,1 diphenyl 2 picrylhydrazyl; HPLC, high performance liquid chromatography; MDA, malondialdehyde; DMSO, dimethyl sulphoxide; ELISA, enzyme linked immunosorbent assay. PMID:26929577

  19. Physicochemical characteristics and anti-inflammatory activities of antrodan, a novel glycoprotein isolated from Antrodia cinnamomea mycelia.

    PubMed

    Chiu, Chun-Hung; Peng, Chiung-Chi; Ker, Yaw-Bee; Chen, Chin-Chu; Lee, Arwen; Chang, Wan-Lin; Chyau, Charng-Cherng; Peng, Robert Y

    2013-01-01

    Antrodia cinnamomea (AC) is a unique fungus found inhabiting the rotten wood of Cinnamomum kanehirai. A submerged liquid culture of AC has been developed and its bioproducts have been used to meet the market demand for natural fruiting bodies. AC exhibits anti-inflammatory, antitumor, antioxidant, and immunomodulatory effects. Previously, we isolated polysaccharide AC-2 from AC mycelia by means of alkali extraction with subsequent acid precipitation and found it had a pronounced anti-inflammatory effect. In this study, a novel polysaccharide named "antrodan" was obtained by further purification of AC-2 using Sepharose CL-6B column chromatography. Antrodan exhibited a molecular weight of 442 kD and contained a particularly high content of uronic acid (152.6±0.8 mg/g). The protein content was 71.0%, apparently, higher than the carbohydrate content (14.1%), and thus antrodan was characterized as a glycoprotein. Its total glucan content was 15.65%, in which β-glucan (14.20%) was prominently higher than α-glucan (1.45%). Its FTIR confirmed the presence of β-linkages between sugars, and intramolecular amide bonds between sugars and amino acids. Its 1H-NMR spectrum showed that antrodan was a complex union of α- and β-glucans, which had (1→4)-linked α-Glcp and (1→3)-linked β-Glcp linkages to the carbohydrate chains via asparagine linked to protein site. Biologically, antrodan was confirmed to be totally non-detrimental to RAW 264.7 cell line even at dose as high as 400 μg/mL. It showed potent suppressing effect on the lipopolysaccharide-induced inflammatory responses in RAW 264.7 cell line. Moreover, antrodan significantly reduced the nitrogen oxide production at doses as low as 18.75 μg/mL. PMID:24451244

  20. Anti-inflammatory drugs in the 21st century.

    PubMed

    Rainsford, K D

    2007-01-01

    physiological processes whose inhibition was considered a major factor in development of adverse reactions, including those in the GI tract. At the turn of this century, there was enormous commercial development following the introduction of two new highly selective COX-2 inhibitors, known as coxibs (celecoxib and rofecoxib) which were claimed to have low GI side effects. While found to have fulfilled these aims in part, an alarming turn of events took place in the late 2004 period when rofecoxib was withdrawn worldwide because of serious cardiovascular events and other coxibs were subsequently suspected to have this adverse reaction, although to a varying degree. Major efforts are currently underway to discover why cardiovascular reactions took place with coxibs, identify safer coxibs, as well as elucidate the roles of COX-2 and COX-1 in cardiovascular diseases and stroke in the hope that there may be some basis for developing newer agents (e.g. nitric oxide-donating NSAIDs) to control these conditions. The discovery of the COX isoforms led to establishing their importance in many non-arthritic or non-pain states where there is an inflammatory component to pathogenesis, including cancer, Alzheimer's and other neurodegenerative diseases. The applications of NSAIDs and the coxibs in the prevention and treatment of these conditions as well as aspirin and other analogues in the prevention of thrombo-embolic diseases now constitute one of the major therapeutic developments of the this century. Moreover, new anti-inflammatory drugs are being discovered and developed based on their effects on signal transduction and as anti-cytokine agents and these drugs are now being heralded as the new therapies to control those diseases where cytokines and other nonprostaglandin components of chronic inflammatory and neurodegenerative diseases are manifest. To a lesser extent safer application of corticosteroids and the applications of novel drug delivery systems for use with these drugs as well

  1. Evaluation of Anticancer, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication.

    PubMed

    Shaikh, Rafik; Pund, Mahesh; Dawane, Ashwini; Iliyas, Sayyed

    2014-10-01

    The present study was carried out to evaluate the anticancer, antioxidant, and possible anti-inflammatory properties of diverse medicinal plants frequently used in Indian traditional medication. The selected botanicals such as Soymida fembrifuga (Roxb.) A. Juss. (Miliaceae), Tinospora cordifolia (Willd.) Miers. (Menispermaceae), Lavandula bipinnata (L.) O. Ktze. (Lamiaceae), and Helicteres isora L. (Sterculiaceae) extracted in different solvents were evaluated for their in vitro anticancer and antioxidant activities. The results obtained indicate that H. isora has potent cytotoxic activity toward the selected cancer cells such as HeLa-B75 (34.21 ± 0.24%), HL-60 (30.25 ± 1.36%), HEP-3B (25.36 ± 1.78%), and PN-15 (29.21 ± 0.52%). Interestingly, the selected botanicals selectively inhibited cyclooxygenase-2 (COX-2) more than (COX-1), which are the key enzymes implicated in inflammation. COX-2 inhibition was observed to be in the range of 19.66-49.52% as compared to COX-1 inhibition (3.93-19.61%). The results of the antioxidant study revealed that the selected plants were found to be effective 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH), and superoxide radical (SOR) scavenging agents. High-performance thin layer chromatography (HPTLC) fingerprint of flavonoids was used as a measure of quality control of the selected plant samples. The results of the present findings strengthen the potential of the selected plants as a resource for the discovery of novel anticancer, anti-inflammatory, and antioxidant agents. PMID:25379467

  2. Anti-inflammatory and immunomodulating properties of grape melanin. Inhibitory effects on paw edema and adjuvant induced disease.

    PubMed

    Avramidis, N; Kourounakis, A; Hadjipetrou, L; Senchuk, V

    1998-07-01

    Natural or synthetic melanin (CAS 8049-97-6) is a high molecular weight heteropolymer, product of the enzyme tyrosinase, found to possess radical scavenging and antioxidant functions. It was of interest, therefore, to study in detail the possible anti-inflammatory and/or immunosuppressive properties of a melanin isolated from grapes. The inhibitory effect of melanin on carrageenin-induced edema, as well as on edemas produced by other phlogistics, was remarkable suggesting that melanin interferes with the prostaglandin as well as the leukotriene and/or complement system mediated inflammation. Grape melanin showed potent inhibitory effect on adjuvant induced disease (AID) in rat, suppressing significantly the primary inflammation and almost totally the secondary lesions of arthritis. Melanin under the present experimental conditions not only strongly inhibited the in vitro lipid peroxidation of rat liver microsomal membranes, but furthermore protected the in vivo hepatic peroxidation occurring in AID rats, demonstrating its antioxidant and cytoprotective properties. The serum proinflammatory cytokines IL-1, IL-6 and TNF-a and the serum globulin fraction were elevated in AID rats, parameters which were more or less normalised by melanin treatment in contrast to the reduced serum levels of IL-2 which were not affected. Similarly to other lipoxygenase inhibitors and hydroxyl radical scavenger NSAIDs, melanin treatment did not affect IL-1 neither increased the splenic mitogenic responses, unlike the classical cyclooxygenase inhibitory NSAIDs. The subpopulation Th1 (T4+ or T8+) of lymphocytes is mainly responsible for cellular immune responses and thus their possible inhibition by melanin could lead to suppression of the development of AID, a model for cell-mediated immunity. The effect of melanin on T-cells is exhibited by the reduced spleen mitogenic responses to a T-cell mitogen and the reduced serum levels of IL-2 of treated rats. In conclusion, grape melanin is an

  3. Evaluation of Anticancer, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication

    PubMed Central

    Shaikh, Rafik; Pund, Mahesh; Dawane, Ashwini; Iliyas, Sayyed

    2014-01-01

    The present study was carried out to evaluate the anticancer, antioxidant, and possible anti-inflammatory properties of diverse medicinal plants frequently used in Indian traditional medication. The selected botanicals such as Soymida fembrifuga (Roxb.) A. Juss. (Miliaceae), Tinospora cordifolia (Willd.) Miers. (Menispermaceae), Lavandula bipinnata (L.) O. Ktze. (Lamiaceae), and Helicteres isora L. (Sterculiaceae) extracted in different solvents were evaluated for their in vitro anticancer and antioxidant activities. The results obtained indicate that H. isora has potent cytotoxic activity toward the selected cancer cells such as HeLa-B75 (34.21 ± 0.24%), HL-60 (30.25 ± 1.36%), HEP-3B (25.36 ± 1.78%), and PN-15 (29.21 ± 0.52%). Interestingly, the selected botanicals selectively inhibited cyclooxygenase-2 (COX-2) more than (COX-1), which are the key enzymes implicated in inflammation. COX-2 inhibition was observed to be in the range of 19.66-49.52% as compared to COX-1 inhibition (3.93-19.61%). The results of the antioxidant study revealed that the selected plants were found to be effective 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH), and superoxide radical (SOR) scavenging agents. High-performance thin layer chromatography (HPTLC) fingerprint of flavonoids was used as a measure of quality control of the selected plant samples. The results of the present findings strengthen the potential of the selected plants as a resource for the discovery of novel anticancer, anti-inflammatory, and antioxidant agents. PMID:25379467

  4. Anti-inflammatory activity of Bromelia hieronymi: comparison with bromelain.

    PubMed

    Errasti, María E; Caffini, Néstor O; Pelzer, Lilian E; Rotelli, Alejandra E

    2013-03-01

    Some plant proteases (e. g., papain, bromelain, ficin) have been used as anti-inflammatory agents for some years, and especially bromelain is still being used as alternative and/or complementary therapy to glucocorticoids, nonsteroidal antirheumatics, and immunomodulators. Bromelain is an extract rich in cysteine endopeptidases obtained from Ananas comosus. In this study the anti-inflammatory action of a partially purified extract of Bromelia hieronymi fruits, whose main components are cysteine endopeptidases, is presented. Different doses of a partially purified extract of B. hieronymi were assayed on carrageenan-induced and serotonine-induced rat paw edema, as well as in cotton pellet granuloma model. Doses with equal proteolytic activity of the partially purified extract and bromelain showed significantly similar anti-inflammatory responses. Treatment of the partially purified extract and bromelain with E-64 provoked loss of anti-inflammatory activity on carrageenan-induced paw edema, a fact which is consistent with the hypothesis that the proteolytic activity would be responsible for the anti-inflammatory action.

  5. Modeling Natural Anti-Inflammatory Compounds by Molecular Topology

    PubMed Central

    Galvez-Llompart, María; Zanni, Riccardo; García-Domenech, Ramón

    2011-01-01

    One of the main pharmacological problems today in the treatment of chronic inflammation diseases consists of the fact that anti-inflammatory drugs usually exhibit side effects. The natural products offer a great hope in the identification of bioactive lead compounds and their development into drugs for treating inflammatory diseases. Computer-aided drug design has proved to be a very useful tool for discovering new drugs and, specifically, Molecular Topology has become a good technique for such a goal. A topological-mathematical model, obtained by linear discriminant analysis, has been developed for the search of new anti-inflammatory natural compounds. An external validation obtained with the remaining compounds (those not used in building up the model), has been carried out. Finally, a virtual screening on natural products was performed and 74 compounds showed actual anti-inflammatory activity. From them, 54 had been previously described as anti-inflammatory in the literature. This can be seen as a plus in the model validation and as a reinforcement of the role of Molecular Topology as an efficient tool for the discovery of new anti-inflammatory natural compounds. PMID:22272145

  6. Analgesic and Anti-Inflammatory Activity of Pinus roxburghii Sarg.

    PubMed Central

    Kaushik, Dhirender; Kumar, Ajay; Kaushik, Pawan; Rana, A. C.

    2012-01-01

    The Chir Pine, Pinus roxburghii, named after William Roxburgh, is a pine native to the Himalaya. Pinus roxburghii Sarg. (Pinaceae) is traditionally used for several medicinal purposes in India. As the oil of the plant is extensively used in number of herbal preparation for curing inflammatory disorders, the present study was undertaken to assess analgesic and anti-inflammatory activities of its bark extract. Dried and crushed leaves of Pinus roxburghii Sarg. were defatted with petroleum ether and then extracted with alcohol. The alcoholic extract at the doses of 100 mg/kg, 300 mg/kg, and 500 mg/kg body weight was subjected to evaluation of analgesic and anti-inflammatory activities in experimental animal models. Analgesic activity was evaluated by acetic acid-induced writhing and tail immersion tests in Swiss albino mice; acute and chronic anti-inflammatory activity was evaluated by carrageenan-induced paw oedema and cotton pellet granuloma in Wistar albino rats. Diclofenac sodium and indomethacin were employed as reference drugs for analgesic and anti-inflammatory studies, respectively. In the present study, the alcoholic bark extract of Pinus roxburghii Sarg. demonstrated significant analgesic and anti-inflammatory activities in the tested models. PMID:22761611

  7. Mechanisms for the anti-inflammatory effects of adiponectin in macrophages.

    PubMed

    Huang, Honglian; Park, Pil-Hoon; McMullen, Megan R; Nagy, Laura E

    2008-03-01

    Adiponectin is an adipokine with potent anti-inflammatory properties. The development of alcoholic liver disease is thought to involve increased pro-inflammatory activity, mediated in part by the activation of hepatic macrophages (Kupffer cells). Chronic ethanol feeding sensitizes hepatic macrophages to activation by lipopolysaccharide (LPS), leading to increased production of reactive oxygen species and tumor necrosis factor-alpha (TNF-alpha). Adiponectin can normalize Toll-like receptor-4 (TLR-4) mediated signaling in hepatic macrophages after ethanol feeding, likely contributing to the hepatoprotective effect of adiponectin in the progression of alcoholic liver disease. However, the mechanisms by which adiponectin suppress TLR-4 mediated responses are not well understood. Using the macrophage-like cell line, RAW264.7, we have investigated the molecular mechanisms by which adiponectin suppresses LPS-stimulated TNF-alpha production. Globular adiponectin (gAcrp)-mediated desensitization of LPS-stimulated responses in RAW264.7 macrophages was dependent on the production of the anti-inflammatory cytokine interleukin (IL)-10. gAcrp initially increased TNF-alpha expression in RAW264.7 macrophages; this TNF-alpha then contributed to increased expression of IL-10. This initial gAcrp-mediated increase in TNF-alpha production by macrophages was mediated via activation of ERK1/2-->Egr-1 and nuclear factor (NF)-kappaB-dependent mechanisms. gAcrp-stimulated IL-10 expression was also dependent on the phosphorylation of cAMP response element-binding protein and the cAMP response element in the IL-10 promoter. In summary, these studies reveal a complex, integrated response of macrophages to gAcrp. gAcrp initially activated signaling pathways considered to be pro-inflammatory, with a subsequent increase in the expression of the potent, anti-inflammatory cytokine, IL-10. Increased IL-10 expression was ultimately required for the suppression of TLR4-mediated signaling by g

  8. Hesperetin derivatives: Synthesis and anti-inflammatory activity.

    PubMed

    Wang, Qian-Qian; Shi, Jing-Bo; Chen, Chen; Huang, Cheng; Tang, Wen-Jian; Li, Jun

    2016-03-01

    Sixteen novel hesperetin derivatives containing Mannich base moiety were designed and synthesized and their anti-inflammatory activities were evaluated by inhibiting tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in mouse RAW264.7 macrophages. Compounds 3a-3k showed better hydrophilic, while compounds 3l-3p with aromatic groups was hydrophobic. The anti-inflammatory activity of title compounds was correlated with logP values, among them, compounds 3c, 3e and 3i with minus logP values exhibited best anti-inflammatory activity through decreasing both IL-6 and TNF-α. Furthermore, the expression of LPS-induced notch1 and inos was reduced by compounds 3c, 3e, and 3i, and compound 3e attenuated LPS-induced inos protein levels in a dose-dependent manner.

  9. Hesperetin derivatives: Synthesis and anti-inflammatory activity.

    PubMed

    Wang, Qian-Qian; Shi, Jing-Bo; Chen, Chen; Huang, Cheng; Tang, Wen-Jian; Li, Jun

    2016-03-01

    Sixteen novel hesperetin derivatives containing Mannich base moiety were designed and synthesized and their anti-inflammatory activities were evaluated by inhibiting tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in mouse RAW264.7 macrophages. Compounds 3a-3k showed better hydrophilic, while compounds 3l-3p with aromatic groups was hydrophobic. The anti-inflammatory activity of title compounds was correlated with logP values, among them, compounds 3c, 3e and 3i with minus logP values exhibited best anti-inflammatory activity through decreasing both IL-6 and TNF-α. Furthermore, the expression of LPS-induced notch1 and inos was reduced by compounds 3c, 3e, and 3i, and compound 3e attenuated LPS-induced inos protein levels in a dose-dependent manner. PMID:26848111

  10. Anti-Inflammatory Effects of 81 Chinese Herb Extracts and Their Correlation with the Characteristics of Traditional Chinese Medicine

    PubMed Central

    Chen, Chang-Liang; Zhang, Dan-Dan

    2014-01-01

    Inducible nitrogen oxide synthase (iNOS) is the primary contributor of the overproduction of nitric oxide and its inhibitors have been actively sought as effective anti-inflammatory agents. In this study, we prepared 70% ethanol extracts from 81 Chinese herbs. These extracts were subsequently evaluated for their effect on nitrogen oxide (NO) production and cell growth in LPS/IFNγ-costimulated and unstimulated murine macrophage RAW264.7 cells by Griess reaction and MTT assay. Extracts of Daphne genkwa Sieb.et Zucc, Caesalpinia sappan L., Iles pubescens Hook.et Arn, Forsythia suspensa (Thunb.) Vahl, Zingiber officinale Rosc, Inula japonica Thunb., and Ligusticum chuanxiong Hort markedly inhibited NO production (inhibition > 90% at 100 μg/mL). Among active extracts (inhibition > 50% at 100 μg/mL), Rubia cordifolia L., Glycyrrhiza glabra L., Iles pubescens Hook.et Arn, Nigella glandulifera Freyn et Sint, Pueraria lobata (Willd.) Ohwi, and Scutellaria barbata D. Don displayed no cytotoxicity to unstimulated RAW246.7 cells while increasing the growth of LPS/IFNγ-costimulated cells. By analyzing the correlation between their activities and their Traditional Chinese Medicine (TCM) characteristics, herbs with pungent flavor displayed potent anti-inflammatory capability. Our study provides a series of potential anti-inflammatory herbs and suggests that herbs with pungent flavor are candidates of effective anti-inflammatory agents. PMID:24696703

  11. Anti-inflammatory effects of 81 chinese herb extracts and their correlation with the characteristics of traditional chinese medicine.

    PubMed

    Chen, Chang-Liang; Zhang, Dan-Dan

    2014-01-01

    Inducible nitrogen oxide synthase (iNOS) is the primary contributor of the overproduction of nitric oxide and its inhibitors have been actively sought as effective anti-inflammatory agents. In this study, we prepared 70% ethanol extracts from 81 Chinese herbs. These extracts were subsequently evaluated for their effect on nitrogen oxide (NO) production and cell growth in LPS/IFNγ-costimulated and unstimulated murine macrophage RAW264.7 cells by Griess reaction and MTT assay. Extracts of Daphne genkwa Sieb.et Zucc, Caesalpinia sappan L., Iles pubescens Hook.et Arn, Forsythia suspensa (Thunb.) Vahl, Zingiber officinale Rosc, Inula japonica Thunb., and Ligusticum chuanxiong Hort markedly inhibited NO production (inhibition > 90% at 100 μg/mL). Among active extracts (inhibition > 50% at 100 μg/mL), Rubia cordifolia L., Glycyrrhiza glabra L., Iles pubescens Hook.et Arn, Nigella glandulifera Freyn et Sint, Pueraria lobata (Willd.) Ohwi, and Scutellaria barbata D. Don displayed no cytotoxicity to unstimulated RAW246.7 cells while increasing the growth of LPS/IFNγ-costimulated cells. By analyzing the correlation between their activities and their Traditional Chinese Medicine (TCM) characteristics, herbs with pungent flavor displayed potent anti-inflammatory capability. Our study provides a series of potential anti-inflammatory herbs and suggests that herbs with pungent flavor are candidates of effective anti-inflammatory agents. PMID:24696703

  12. Inflammatory Regulation Effect and Action Mechanism of Anti-Inflammatory Effective Parts of Housefly (Musca domestica) Larvae on Atherosclerosis.

    PubMed

    Chu, Fu Jiang; Jin, Xiao Bao; Xu, Yin Ye; Ma, Yan; Li, Xiao Bo; Lu, Xue Mei; Liu, Wen Bin; Zhu, Jia Yong

    2013-01-01

    The protein-enriched extracts of housefly larvae were segregated by gel-filtration chromatography (GFC) and then anti-inflammatory activity screening in RAW264.7 (induced by LPS) was carried out. After acquire the anti-inflammatory effective parts, its anti-atherosclerotic properties in vivo were then evaluated. Results showed that the anti-inflammatory effective parts of housefly larvae were low-molecular-weight parts. After treated with the effective parts oral gavaged for 4 weeks, the atherosclerotic lesions of the mouse were significantly decreased. The inflammatory and lipid parameters were also reduced (except HDL which was increased). Western blot analysis demonstrated that the effective parts exerted potent inhibitory effect on expression of p65 in nucleus and cytoplasm. The results of immunofluorescence microscopy analysis also showed that the expressions of p65 both in cytoplasm and nucleus were significantly reduced. The hypothesis that the anti-inflammatory effective parts of housefly larvae possessed anti-atherosclerosis activity in mouse and the possible mechanism could be associated with the inhibition of expression and nuclear transfer of NF- κ B p65 could be derived. PMID:23554828

  13. IL-35 is a novel responsive anti-inflammatory cytokine--a new system of categorizing anti-inflammatory cytokines.

    PubMed

    Li, Xinyuan; Mai, Jietang; Virtue, Anthony; Yin, Ying; Gong, Ren; Sha, Xiaojin; Gutchigian, Stefanie; Frisch, Andrew; Hodge, Imani; Jiang, Xiaohua; Wang, Hong; Yang, Xiao-Feng

    2012-01-01

    It remains unknown whether newly identified anti-inflammatory/immunosuppressive cytokine interleukin-35 (IL-35) is different from other anti-inflammatory cytokines such as IL-10 and transforming growth factor (TGF)-β in terms of inhibition of inflammation initiation and suppression of full-blown inflammation. Using experimental database mining and statistical analysis methods we developed, we examined the tissue expression profiles and regulatory mechanisms of IL-35 in comparison to other anti-inflammatory cytokines. Our results suggest that in contrast to TGF-β, IL-35 is not constitutively expressed in human tissues but it is inducible in response to inflammatory stimuli. We also provide structural evidence that AU-rich element (ARE) binding proteins and microRNAs target IL-35 subunit transcripts, by which IL-35 may achieve non-constitutive expression status. Furthermore, we propose a new system to categorize anti-inflammatory cytokines into two groups: (1) the house-keeping cytokines, such as TGF-β, inhibit the initiation of inflammation whereas (2) the responsive cytokines including IL-35 suppress inflammation in full-blown stage. Our in-depth analyses of molecular events that regulate the production of IL-35 as well as the new categorization system of anti-inflammatory cytokines are important for the design of new strategies of immune therapies.

  14. A novel anti-inflammatory oligopeptide produced by Entamoeba histolytica.

    PubMed

    Kretschmer, R R; Rico, G; Giménez, J A

    2001-02-01

    The monocyte locomotion inhibitory factor (MLIF), a heat-stable oligopeptide found in the supernatant fluid of Entamoeba histolytica axenic cultures was isolated by ultra-filtration, gel-sieve chromatography and high powered liquid chromatography (HPLC), and its primary structure (Met-Gln-Cys-Asn-Ser) established by Edman sequencing and mass-spectrometry (MS). A synthetic peptide had the same selective anti-inflammatory features as the native material in comparable concentrations: in vitro inhibition of the locomotion in human peripheral blood monocytes, and of the respiratory burst in the same cells and in human neutrophil polymorphonuclear leucocytes; and in vivo depression of delayed hypersensitivity skin reactions to dinitrochlorobenzene in guinea pigs. This oligopeptide is apparently synthesized by the ameba as suggested by [(35)S]-Cys and Met incorporation, probably as part of a larger molecule, from which it is cleaved by proteolysis. The full sequence was not found in the 431 available E. histolytica protein sequences. The factor may contribute to the unexpected paucity of the late inflammatory reaction found in advanced invasive amebiasis and, perhaps in consequence, to the regeneration without scarring (restitutio ad integrum) of the affected organs that is observed following successful treatment of this disease

  15. Anti-inflammatory properties of drugs from saffron crocus.

    PubMed

    Poma, Anna; Fontecchio, Gabriella; Carlucci, Giuseppe; Chichiriccò, Giuseppe

    2012-01-01

    The medicinal uses of saffron (Crocus sativus Linnaeus) have a long history beginning in Asian countries since the Late Bronze Age. Recent studies have validated its potential to lower the risk of several diseases. Some metabolites derived from saffron stigmas exert numerous therapeutic effects due to hypolipidemic, antitussive, antioxidant, antidiabetic activities and many others. Water and ethanol extracts of Crocus sativus L. are cardioprotective and counteract neurodegenerative disorders. Many of these medicinal properties of saffron can be attributed to a number of its compounds such as crocetin, crocins and other substances having strong antioxidant and radical scavenger properties against a variety of radical oxygen species and pro-inflammatory cytokines. Botany, worldwide spreading of cultivars, biochemical pathways, active constituents and chemical detection methods are reviewed. Therapeutic uses of saffron principles with particular regard to those exhibiting antioxidant and thus anti-inflammatory features are discussed. To date, very few adverse health effects of saffron have been demonstrated. At high doses (more than 5 g/die day), it should be avoided in pregnancy owing to its uterine stimulation activity.

  16. Colonic anastomoses and non-steroidal anti-inflammatory drugs.

    PubMed

    Slim, K; Joris, J; Beloeil, H

    2016-08-01

    Nonsteroidal anti-inflammatory drugs (NSAID) play an important role in the treatment of post-operative pain, particularly in the context of enhanced recovery after colorectal surgery. Several recent articles have suggested that NSAID may have a deleterious effect on colo-colic or colo-rectal anastomoses. The aim of this review is to analyze the evidence based on meta-analyses and cohort studies in the literature. A systematic review of clinical studies identified twelve studies including two meta-analyses and ten comparative cohort studies that included a large number of patients. The data in these studies are heterogeneous, often biased, and do not permit a formal recommendation based on a high level of evidence. The main conclusion of this review is that the balance of benefit vs. risk (analgesic effect/risk of anastomotic disruption) is acceptable; it appears (with a low level of evidence) that a prescription of NSAID for 48h after surgery may be recommended for elective colon surgery. Nevertheless, it is important to respect the specific contra-indications of NSAID and avoid post-operative NSAID use if there are risk factors for anastomotic leakage: advanced age, malnutrition, severe co-morbidities, intra-operative difficulties. PMID:27480526

  17. Biological evaluation of Phellinus linteus-fermented broths as anti-inflammatory agents.

    PubMed

    Lin, Chun-Jung; Lien, Hsiu-Man; Chang, Hsiao-Yun; Huang, Chao-Lu; Liu, Jau-Jin; Chang, Yun-Chieh; Chen, Chia-Chang; Lai, Chih-Ho

    2014-07-01

    Phellinus linteus and its constituent hispolon induce potent anti-inflammatory activity in macrophages. Efficient production of the effective constituent and the biological function of P. linteus in the regulation of innate sensing have rarely been investigated. The aim of this study was to efficiently manufacture P. linteus-fermented broth containing the effective constituent, hispolon, and evaluate its immunoregulatory functions in macrophages. Four distinct fermented broths (PL1-4) and the medium dialyzate (MD) were prepared to screen suitable culture conditions for the mycelial growth of P. linteus. The P. linteus-fermented broth exhibited a dose-responsive inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production by murine macrophages. In addition, the P. linteus-fermented broths suppressed macrophage LPS-mediated nuclear factor (NF)-κB activity and tumor necrosis factor (TNF)-α. Among the tested samples from P. linteus, PL4 contained vast amounts of hispolon and showed the greatest anti-inflammatory activity in both the RAW264.7 cells and murine primary peritoneal exudate macrophages (PEMs). This study demonstrates that the purification of the effective constituent from P. linteus-fermented broth may enable the production of a potent therapeutic agent for anti-inflammation in macrophages. PMID:24503424

  18. Design and optimization of oleanolic/ursolic acid-loaded nanoplatforms for ocular anti-inflammatory applications.

    PubMed

    Alvarado, Helen L; Abrego, Guadalupe; Garduño-Ramirez, María L; Clares, Beatriz; Calpena, Ana C; García, María L

    2015-04-01

    Oleanolic acid (OA) and ursolic acid (UA) are ubiquitous pentacyclic triterpenes compounds in plants with great interest as anti-inflammatory therapeutics. The aim of this study was the design and optimization of polymeric nanoparticles (NPs) loaded with natural and synthetic mixtures (NM, SM) of these drugs for ophthalmic administration. A 2(3) + star central rotatable composite design was employed to perform the experiments. Results showed optimal and stable formulations with suitable physicochemical properties (mean diameter<225 nm), homogeneous distribution (polydispersity index∼0.1), negatively charged surface (∼-27 mV) and high entrapment efficiency (∼77%). Release and corneal permeation studies showed that NM release was faster than SM. Amounts of drug retained in the corneal tissue were also higher for NM. In vitro and in vivo tests showed no signs of irritation or toxicity and successful in vivo anti-inflammatory efficacy for both formulations, being NM-OA/UA NPs the most effective. From the clinical editor: Oleanolic acid (OA) and ursolic acid (UA) are compounds found in plants with anti-inflammatory properties. The authors in this paper designed nanoparticles (NPs) using poly(dl-lactide-coglycolide) acid (PLGA) loaded with these compounds for ophthalmic administration. Both in vitro and in vivo experiments showed no toxicity and significant anti-inflammatory efficacy. This may provide new drugs for ocular anti-inflammatory treatment.

  19. The laser desorption/laser ionization mass spectra of some anti-inflammatory drugs

    NASA Astrophysics Data System (ADS)

    Milnes, John; Rogers, Kevin; Jones, Sian; Gormally, John

    1994-03-01

    The IR laser desorption/ultraviolet laser ionization time-of-flight mass spectra are reported for the anti-inflammatory drugs indomethacin, acemetacin, ibuprofen, flurbiprofen, diflunisal and mefenamic acid. It is found that the six compounds can be readily ionized by two photon absorption at a fixed wavelength of 266 nm. Mass spectra have been obtained under conditions of high ionizing irradiance and the observed fragmentation behaviour is discussed.

  20. Studies on the antiplatelet and antithrombotic profile of anti-inflammatory coumarin derivatives.

    PubMed

    Kontogiorgis, Christos; Nicolotti, Orazio; Mangiatordi, Giuseppe Felice; Tognolini, Massimiliano; Karalaki, Foteini; Giorgio, Carmine; Patsilinakos, Alexandros; Carotti, Angelo; Hadjipavlou-Litina, Dimitra; Barocelli, Elisabetta

    2015-12-01

    The interest towards coumarin-based structures stems from their polypharmacological profile. Herein, we present a series of Mannich bases and 7-azomethine-linked coumarin derivatives exhibiting antiplatelet and antithrombotic activities, in addition to the already known anti-inflammatory and antioxidant activities. Among others, compounds 15 and 16 were found to be the most potent and selective inhibitors of platelet aggregation whereas compound 3 also proved to be the most potent in the clot retraction assay. Structure-activity relationship studies were conducted to elucidate the molecular determinants responsible for the herein observed activities. The chance of inhibiting cyclooxygenase-1 was also investigated for evaluating the platelet aggregation induced by arachidonic acid. Taken together, these results suggest that the investigation of other targets connected to the antiplatelet activity, such as phosphodiesterase-3 (PDE3), could be a viable strategy to shed light on the polypharmacological profile of coumarin-based compounds. Docking simulations towards PDE3 were also carried out.

  1. European experience with flurbiprofen. A new analgesic/anti-inflammatory agent.

    PubMed

    Buchanan, W W; Kassam, Y B

    1986-03-24

    Numerous European clinical trials begun more than 12 years ago have clearly demonstrated flurbiprofen's safety and efficacy as an analgesic, anti-inflammatory, and antipyretic agent. In preclinical studies, flurbiprofen was at least as potent as indomethacin, and approximately 200 times more potent than aspirin. For patients with rheumatoid arthritis, a review of several trials found flurbiprofen often superior to aspirin and naproxen, and equivalent to indomethacin and ibuprofen in efficacy. Acetaminophen appeared no more effective than placebo for patients with rheumatoid arthritis. For patients with ankylosing spondylitis, flurbiprofen was also shown to be equivalent or superior to indomethacin and phenylbutazone. For patients with osteoarthritis of the peripheral joints, spine, hip, and knee, flurbiprofen was again found equal to ibuprofen, diclofenac, indomethacin, and naproxen. Side effects with flurbiprofen were few and predominantly related to the gastrointestinal tract.

  2. Screening of the topical anti-inflammatory activity of some Central American plants.

    PubMed

    Sosa, S; Balick, M J; Arvigo, R; Esposito, R G; Pizza, C; Altinier, G; Tubaro, Aurelia

    2002-07-01

    Hexane, chloroform and methanol extracts of seven herbal drugs used in the folk medicine of Central America against skin disorders (Aristolochia trilobata leaves and bark, Bursera simaruba bark, Hamelia patens leaves, Piper amalago leaves, and Syngonium podophyllum leaves and bark) were evaluated for their topical anti-inflammatory activity against the Croton oil-induced ear oedema in mice. Most of the extracts induced a dose-dependent oedema reduction. The chloroform extract of almost all the drugs exhibited interesting activities with ID(50) values ranging between 108 and 498 micro g/cm(2), comparable to that of indomethacin (93 micro g/cm(2)). Therefore, the tested plants are promising sources of principles with high anti-inflammatory activity.

  3. Anti-inflammatory effects of Houttuynia cordata supercritical extract in carrageenan-air pouch inflammation model.

    PubMed

    Kim, Dajeong; Park, Dongsun; Kyung, Jangbeen; Yang, Yun-Hui; Choi, Ehn-Kyoung; Lee, Yoon-Bok; Kim, Hyun-Kyu; Hwang, Bang Yeon; Kim, Yun-Bae

    2012-06-01

    Anti-inflammatory effects of Houttuynia cordata supercritical extract (HSE) were investigated in rat carrageenan-air pouch model. Oral administration of HSE (50-200 mg/kg) suppressed carrageenan-induced exudation and albumin leakage, as well as inflammatory cell infiltration at a high dose (200 mg/kg). Intraperitoneal injection of dexamethasone (2 mg/kg) only decreased exudation and cell infiltration, while indomethacin (2 mg/kg, i.p.) reduced exudate volume and albumin content without influence on the cell number. HSE lowered tumor-necrosis factor-α (TNF-α) and nitric oxide (NO), as well as prostaglandin E(2) (PGE(2)). Dexamethasone only reduced TNF-α and NO, while indomethacin decreased PGE(2). The results indicate that HSE exhibits anti-inflammatory effects by inhibiting both TNF-α-NO and cyclooxygenase-2-PGE(2) pathways. PMID:22787488

  4. Phytochemical screening and anti-inflammatory actions of Alangium salviifolium root extract.

    PubMed

    Ahad, Hindustan Abdul; Padmaja, B Suma; Sravanthi, M; Ramyasree, P; Kavitha, K

    2012-01-01

    Alangium salviifolium root was screened for phytochemical and anti-inflammatory properties. The percentage inhibition of carrageenan induced paw oedema was studied in rats. Alangium salvifolium gave maximum extractive values with Ethanol and the Loss on Drying value, total ash value and acid-insoluble ash and water soluble ash values were within limits. The extract gave positive tests for phytosterols, triterpenes, flavonoids, carbohydrates and alkaloids. The extract was free from glycosides, saponins, tannins, proteins and amino acids. In acute toxicity studies, Alangium salviifolium root extract was found to be safe up to 3000 mg kg⁻¹, p.o. in the albino rats. The Alangium salviifolium root gave significant per cent inhibition of the maximal paw oedema and very highly significant per cent inhibition of total paw oedema during 6 h. This study revealed that Alangium salviifolium root has good anti-inflammatory actions when compared with Diclofenac sodium.

  5. Analgesic, anti-inflammatory and anti-hyperlipidemic activities of Commiphora molmol extract (Myrrh)

    PubMed Central

    Shalaby, Mostafa Abbas; Hammouda, Ashraf Abd-Elkhalik

    2014-01-01

    Aim: The aim was to evaluate the analgesic, anti-inflammatory, and anti-hyperlipidemic activities of Commiphora molmol extract (CME) and its effects on body weight and blood lipids. Materials and Methods: The analgesic effect was assessed using thermal (hot plate test) and chemical (writhing test) stimuli to induce central and peripheral pain in mice. The anti-inflammatory activity was determined using formalin-induced paw edema in rats. For anti-hyperlipidemic effect, 25 rats were randomly divided into five groups (n = 5). Group 1 was fed on basal diet (normal control), while the other four groups were fed on high-fat diet for 6 weeks to induce obesity and hyperlipidemia. Thereafter, Group 2 was kept obese hyperlipidemic, and Groups 3, 4 and 5 were orally given CME in doses of 125, 250, and 500 mg/kg for 6 weeks, respectively. Body weight gains of rats were calculated, and blood samples were collected for analysis of blood lipids. Results: CME produced a dose-dependent analgesic effect using both hot plate and writhing tests in mice. The hot plate method appeared to be more sensitive than writhing test. CME exhibited an anti-inflammatory activity as it decreased volume of paw edema induced by formalin in rats. The extract decreased body weight gain; normalized the high levels of blood lipids and decreased atherogenic index low-density lipoprotein/ high-density lipoprotein in obese hyperlipidemic rats. Conclusion: The results denote that C. molmol extract (myrrh) has significant analgesic, anti-inflammatory and anti-hyperlipidemic effects and reduces body weight gain and improves blood lipids profile. These results affirm the traditional use of C. molmol for the treatment of pain, inflammations, and hyperlipidemia. PMID:26401348

  6. The Use of Nonsteroidal Anti-Inflammatory Drugs in Sports.

    ERIC Educational Resources Information Center

    Calabrese, Leonard H.; Rooney, Theodore W.

    1986-01-01

    Recent advances in the understanding of the mechanism of action and clinical pharmacology of the new nonsteroidal anti-inflammatory drugs (NSAIDs) can help practitioners decide which to use and how to administer them. Indications for and effects of NSAIDs are described. (MT)

  7. Analgesic and anti-inflammatory activity of Leonurus sibiricus.

    PubMed

    Islam, M Amirul; Ahmed, Firoj; Das, A K; Bachar, S C

    2005-06-01

    The methanolic extract of Leonurus sibiricus aerial parts injected intraperitoneally at dose of 250 and 500 mg/kg showed a significant analgesic effect in acetic acid-induced writhing in mice. Moreover, when given orally to rats at dose of 200 and 400 mg/kg, it showed a significant anti-inflammatory activity against carrageenin induced rat paw edema in rats.

  8. Anti-inflammatory activity of some traditional medicinal plants.

    PubMed

    Singh, R K; Joshi, V K; Gambhir, S S

    1998-10-01

    The ethanol extract of roots, fruits and roots of solanum indicum and saccharum munja respectively and water soluble resin of commiphora myrrha were studied for antiinflammatory activity against carrageenin induced oedema in rats, the significant antiinflammatory activity were found in former two plants will slight anti inflammatory activity was observed in latter plant.

  9. Viscum album Exerts Anti-Inflammatory Effect by Selectively Inhibiting Cytokine-Induced Expression of Cyclooxygenase-2

    PubMed Central

    Hegde, Pushpa; Maddur, Mohan S.; Friboulet, Alain; Bayry, Jagadeesh; Kaveri, Srini V.

    2011-01-01

    Viscum album (VA) preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2) and prostaglandin E2 (PGE2) play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells) as a model. A549 cells were stimulated with IL-1β and treated with VA preparation (VA Qu Spez) for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1β-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2. PMID:22028854

  10. Evaluation of analgesic, antipyretic and anti-inflammatory activity on Cordia dichotoma G. Forst. Leaf

    PubMed Central

    Gupta, Richa; Kaur, Jagjit

    2015-01-01

    Background: Cordia dichotoma G. Forst. is an important medicinal plant of family Boraginaceae. Traditionally, its leaves are used to treat fever, headache, and joint pain but its medicinal activities have not been proven by research. Objective: To evaluate the analgesic, anti-inflammatory, and antipyretic activity of C. dichotoma G. Forst. leaf extract. Material and Methods: The various extracts of leaf powder were prepared by using soxhlet apparatus. The methanol extract was selected for pharmacological study. To evaluate analgesic activity, Eddy's hot plate method, to study anti-inflammatory activity, carageenan-induced rat paw edema method, and to study antipyretic activity, yeast-induced pyrexia method was used. SD female rats (180-200 g) were used for the study. Results: In all three tests, the methanol extract high dose (400 mg/kg) was found to be highly significant as compared to standard drug. Conclusion: This study proved the traditional uses of plant leaves and concluded the analgesic, anti-inflammatory, and antipyretic activity of the leaf methanol extract. PMID:25598647

  11. The Combination of N-Acetyl Cysteine, Alpha-Lipoic Acid, and Bromelain Shows High Anti-Inflammatory Properties in Novel In Vivo and In Vitro Models of Endometriosis

    PubMed Central

    Agostinis, C.; Zorzet, S.; De Leo, R.; Zauli, G.; De Seta, F.; Bulla, R.

    2015-01-01

    To evaluate the efficacy of an association of N-acetyl cystein, alpha-lipoic acid, and bromelain (NAC/LA/Br) in the treatment of endometriosis we set up a new in vivo murine model. We explored the anti-inflammatory and proapoptotic effect of this combination on human endometriotic endothelial cells (EECs) and on endothelial cells isolated from normal uterus (UtMECs). We implanted fragments of human endometriotic cysts intraperitoneally into SCID mice to evaluate the efficacy of NAC/LA/Br treatment. UtMECs and EECs, untreated or treated with NAC/LA/Br, were activated with the proinflammatory stimulus TNF-α and their response in terms of VCAM1 expression was evaluated. The proapoptotic effect of higher doses of NAC/LA/Br on UtMECs and EECs was measured with a fluorogenic substrate for activated caspases 3 and 7. The preincubation of EECs with NAC/LA/Br prior to cell stimulation with TNF-α prevents the upregulation of the expression of the inflammatory “marker” VCAM1. Furthermore NAC/LA/Br were able to induce EEC, but not UtMEC, apoptosis. Finally, the novel mouse model allowed us to demonstrate that mice treated with NAC/LA/Br presented a lower number of cysts, smaller in size, compared to untreated mice. Our findings suggest that these dietary supplements may have potential therapeutic uses in the treatment of chronic inflammatory diseases like endometriosis. PMID:25960622

  12. The combination of N-acetyl cysteine, alpha-lipoic acid, and bromelain shows high anti-inflammatory properties in novel in vivo and in vitro models of endometriosis.

    PubMed

    Agostinis, C; Zorzet, S; De Leo, R; Zauli, G; De Seta, F; Bulla, R

    2015-01-01

    To evaluate the efficacy of an association of N-acetyl cystein, alpha-lipoic acid, and bromelain (NAC/LA/Br) in the treatment of endometriosis we set up a new in vivo murine model. We explored the anti-inflammatory and proapoptotic effect of this combination on human endometriotic endothelial cells (EECs) and on endothelial cells isolated from normal uterus (UtMECs). We implanted fragments of human endometriotic cysts intraperitoneally into SCID mice to evaluate the efficacy of NAC/LA/Br treatment. UtMECs and EECs, untreated or treated with NAC/LA/Br, were activated with the proinflammatory stimulus TNF-α and their response in terms of VCAM1 expression was evaluated. The proapoptotic effect of higher doses of NAC/LA/Br on UtMECs and EECs was measured with a fluorogenic substrate for activated caspases 3 and 7. The preincubation of EECs with NAC/LA/Br prior to cell stimulation with TNF-α prevents the upregulation of the expression of the inflammatory "marker" VCAM1. Furthermore NAC/LA/Br were able to induce EEC, but not UtMEC, apoptosis. Finally, the novel mouse model allowed us to demonstrate that mice treated with NAC/LA/Br presented a lower number of cysts, smaller in size, compared to untreated mice. Our findings suggest that these dietary supplements may have potential therapeutic uses in the treatment of chronic inflammatory diseases like endometriosis.

  13. Anti-Inflammatory Effects of Spirulina platensis Extract via the Modulation of Histone Deacetylases.

    PubMed

    Pham, Tho X; Park, Young-Ki; Lee, Ji-Young

    2016-01-01

    We previously demonstrated that the organic extract of Spirulina platensis (SPE), an edible blue-green alga, possesses potent anti-inflammatory effects. In this study, we investigated if the regulation of histone deacetylases (HDACs) play a role in the anti-inflammatory effect of SPE in macrophages. Treatment of macrophages with SPE rapidly and dose-dependently reduced HDAC2, 3, and 4 proteins which preceded decreases in their mRNA levels. Degradation of HDAC4 protein was attenuated in the presence of inhibitors of calpain proteases, lysosomal acidification, and Ca(2+)/calmodulin-dependent protein kinase II, respectively, but not a proteasome inhibitor. Acetylated histone H3 was increased in SPE-treated macrophages to a similar level as macrophages treated with a pan-HDAC inhibitor, with concomitant inhibition of inflammatory gene expression upon LPS stimulation. Knockdown of HDAC3 increased basal and LPS-induced pro-inflammatory gene expression, while HDAC4 knockdown increased basal expression of interleukin-1β (IL-1β), but attenuated LPS-induced inflammatory gene expression. Chromatin immunoprecipitation showed that SPE decreased p65 binding and H3K9/K14 acetylation at the Il-1β and tumor necrosis factor α (Tnfα) promoters. Our results suggest that SPE increased global histone H3 acetylation by facilitating HDAC protein degradation, but decreases histone H3K9/K14 acetylation and p65 binding at the promoters of Il-1β and Tnfα to exert its anti-inflammatory effect. PMID:27338466

  14. Synthesis and anti-inflammatory properties of some aromatic and heterocyclic aromatic curcuminoids.

    PubMed

    Khan, M Akram; El-Khatib, Riyad; Rainsford, K D; Whitehouse, M W

    2012-02-01

    A variety of novel aromatic and heterocyclic aromatic curcuminoids were synthesised, characterised and their anti-inflammatory activities (AIA) determined in vivo. Some of these compounds also were tested for inflammatory mediator production. The AIA of the main representatives of these compounds were assessed by oral administration to female Wistar rats using (a) acute carrageenan-induced paw oedema, (b) chronic adjuvant arthritis (therapeutic mode), and (c) anti-pyretic activity assessed in the yeast pyrexia. Gastric ulceration was determined in pre-inflamed rats. Natural curcumin showed modest aspirin-like anti-inflammatory activity which was enhanced when co-administered with the PGE(1) analogue misoprostol as a synergist. In contrast, four novel curcuminoids (RK-97, RK-103, RK-104 and RK-106) in which the bis-methoxy-phenyl group of curcumin was replaced with bis-dimethoxybutenolidyl-(ascorbate), bis-naphthyl, and bis-furanyl derivatives, respectively, had potent activity in the anti-arthritic assay with little gastric or systemic toxicity, compared with the vehicle-treated controls. Of the curcuminoids the furan RK-106 was the only compound to inhibit production of TNFα and IL-1β in a monocytic cell-line THP-1 in vitro. The inactivity of RK-106 on the production of PGE(2) may be related to its absence of gastrotoxicity. None of the curcuminoids exhibited anti-pyretic activity and this may also be related to its insensitivity to PGE(2). Thus, these novel curcuminoids, such as RK-106, may warrant the development of new low gastro-toxic anti-inflammatory agents with selective inhibitory activity of cytokine inflammatory mediators. PMID:22172598

  15. Anti-oxidative and anti-inflammatory effects of Tagetes minuta essential oil in activated macrophages

    PubMed Central

    Karimian, Parastoo; Kavoosi, Gholamreza; Amirghofran, Zahra

    2014-01-01

    Objective To investigate antioxidant and anti-inflammatory effects of Tagetes minuta (T. minuta) essential oil. Methods In the present study T. minuta essential oil was obtained from leaves of T. minuta via hydro-distillation and then was analyzed by gas chromatography-mass spectrometry. The anti-oxidant capacity of T. minuta essential oil was examined by measuring reactive oxygen, reactive nitrogen species and hydrogen peroxide scavenging. The anti-inflammatory activity of T. minuta essential oil was determined through measuring NADH oxidase, inducible nitric oxide synthase and TNF-α mRNA expression in lipopolysacharide-stimulated murine macrophages using real-time PCR. Results Gas chromatography-mass spectrometry analysis indicated that the main components in the T. minuta essential oil were dihydrotagetone (33.86%), E-ocimene (19.92%), tagetone (16.15%), cis-β-ocimene (7.94%), Z-ocimene (5.27%), limonene (3.1%) and epoxyocimene (2.03%). The T. minuta essential oil had the ability to scavenge all reactive oxygen/reactive nitrogen species radicals with IC50 12-15 µg/mL, which indicated a potent radical scavenging activity. In addition, T. minuta essential oil significantly reduced NADH oxidase, inducible nitric oxide synthaseand TNF-α mRNA expression in the cells at concentrations of 50 µg/mL, indicating a capacity of this product to potentially modulate/diminish immune responses. Conclusions T. minuta essential oil has radical scavenging and anti-inflammatory activities and could potentially be used as a safe effective source of natural anti-oxidants in therapy against oxidative damage and stress associated with some inflammatory conditions. PMID:25182441

  16. Anti-Inflammatory Effects of Spirulina platensis Extract via the Modulation of Histone Deacetylases

    PubMed Central

    Pham, Tho X.; Park, Young-Ki; Lee, Ji-Young

    2016-01-01

    We previously demonstrated that the organic extract of Spirulina platensis (SPE), an edible blue-green alga, possesses potent anti-inflammatory effects. In this study, we investigated if the regulation of histone deacetylases (HDACs) play a role in the anti-inflammatory effect of SPE in macrophages. Treatment of macrophages with SPE rapidly and dose-dependently reduced HDAC2, 3, and 4 proteins which preceded decreases in their mRNA levels. Degradation of HDAC4 protein was attenuated in the presence of inhibitors of calpain proteases, lysosomal acidification, and Ca2+/calmodulin-dependent protein kinase II, respectively, but not a proteasome inhibitor. Acetylated histone H3 was increased in SPE-treated macrophages to a similar level as macrophages treated with a pan-HDAC inhibitor, with concomitant inhibition of inflammatory gene expression upon LPS stimulation. Knockdown of HDAC3 increased basal and LPS-induced pro-inflammatory gene expression, while HDAC4 knockdown increased basal expression of interleukin-1β (IL-1β), but attenuated LPS-induced inflammatory gene expression. Chromatin immunoprecipitation showed that SPE decreased p65 binding and H3K9/K14 acetylation at the Il-1β and tumor necrosis factor α (Tnfα) promoters. Our results suggest that SPE increased global histone H3 acetylation by facilitating HDAC protein degradation, but decreases histone H3K9/K14 acetylation and p65 binding at the promoters of Il-1β and Tnfα to exert its anti-inflammatory effect. PMID:27338466

  17. Multitargeting of selected prostanoid receptors provides agents with enhanced anti-inflammatory activity in macrophages.

    PubMed

    Wang, Jenny W; Woodward, David F; Martos, Jose L; Cornell, Clive L; Carling, Robert W; Kingsley, Philip J; Marnett, Lawrence J

    2016-01-01

    A polypharmacologic approach to prostanoid based anti-inflammatory therapeutics was undertaken in order to exploit both the anti- and proinflammatory properties attributed to the various prostanoid receptors. Multitargeting of selected prostanoid receptors yielded a prototype compound, compound 1 (AGN 211377), that antagonizes prostaglandin D2 receptors (DPs) DP1 (49) and DP2 (558), prostaglandin E2 receptors (EPs) EP1 (266) and EP4 (117), prostaglandin F2α receptor (FP) (61), and thromboxane A2 receptor (TP) (11) while sparing EP2, EP3, and prostaglandin I2 receptors (IPs); Kb values (in nanomoles) are given in parentheses. Compound 1 evoked a pronounced inhibition of cytokine/chemokine secretion from lipopolysaccharide or TNF-α stimulated primary human macrophages. These cytokine/chemokines included cluster of designation 40 receptor (CD40), epithelial-derived neutrophil-activating protein 78 (ENA-78), granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), IL-8, IL-18, monocyte chemotactic protein-1 (CCL2) (MCP-1), tissue plasminogen activator inhibitor (PAI-1), and regulated on activation, normal T cell expressed and secreted (RANTES). In contrast, the inhibitory effects of most antagonists selective for a single receptor were modest or absent, and selective EP2 receptor blockade increased cytokine release in some instances. Compound 1 also showed clear superiority to the cyclooxygenase inhibitors diclofenac and rofecoxib. These findings reveal that blockade of multiple prostanoid receptors, with absent antagonism of EP2 and IP, may provide more effective anti-inflammatory activity than global suppression of prostanoid synthesis or highly selective prostanoid receptor blockade. These investigations demonstrate the first working example of prostanoid receptor polypharmacology for potentially safer and more effective anti-inflammatory therapeutics by blocking multiple proinflammatory receptors while sparing

  18. Gastric anti-ulcerative and anti-inflammatory activity of metyrosine in rats.

    PubMed

    Albayrak, Abdulmecit; Polat, Beyzagul; Cadirci, Elif; Hacimuftuoglu, Ahmet; Halici, Zekai; Gulapoglu, Mine; Albayrak, Fatih; Suleyman, Halis

    2010-01-01

    In this study, the anti-inflammatory and anti-ulcerative effects of metyrosine, a selective tyrosine hydroxylase enzyme inhibitor, were investigated in rats. For ulcer experiments, indomethacin-induced gastric ulcer tests and ethanol-induced gastric ulcer tests were used. For these experiments, rats were fasted for 24 h. Different doses of metyrosine and 25 mg/kg doses of ranitidine were administered to rats, followed by indomethacin at 25 mg/kg for the indomethacin-induced ulcer test, or 50% ethanol for the ethanol-induced test. Results have shown that at all of the doses used (50, 100 and 200 mg/kg), metyrosine had significant anti-ulcerative effects in both indomethacin and ethanol-induced ulcer tests. Metyrosine doses of 100 and 200 mg/kg (especially the 200 mg/kg dose) also inhibited carrageenan-induced paw inflammation even more effectively than indomethacin. In addition, to characterize the anti-inflammatory mechanism of metyrosine we investigated its effects on cyclooxygenase (COX) activity in inflammatory tissue (rat paw). The results showed that all doses of metyrosine significantly inhibited high COX-2 activity. The degree of COX-2 inhibition correlated with the increase in anti-inflammatory activity. In conclusion, we found that metyrosine has more anti-inflammatory effects than indomethacin and that these effects can be attributed to the selective inhibition of COX-2 enzymes by metyrosine. We also found that adrenalin levels are reduced upon metyrosine treatment, which may be the cause of the observed gastro-protective effects of this compound.

  19. Antioxidant, Analgesic, Anti-Inflammatory, and Hepatoprotective Effects of the Ethanol Extract of Mahonia oiwakensis Stem

    PubMed Central

    Chao, Jung; Liao, Jiunn-Wang; Peng, Wen-Huang; Lee, Meng-Shiou; Pao, Li-Heng; Cheng, Hao-Yuan

    2013-01-01

    The aim of this study was to evaluate pharmacological properties of ethanol extracted from Mahonia oiwakensis Hayata stems (MOSEtOH). The pharmacological properties included antioxidant, analgesic, anti-inflammatory and hepatoprotective effects. The protoberberine alkaloid content of the MOSEtOH was analyzed by high-performance liquid chromatography (HPLC). The results revealed that three alkaloids, berberine, palmatine and jatrorrhizine, could be identified. Moreover, the MOSEtOH exhibited antioxidative activity using the DPPH assay (IC50, 0.743 mg/mL). The DPPH radical scavenging activity of MOSEtOH was five times higher that that of vitamin C. MOSEtOH was also found to inhibit pain induced by acetic acid, formalin, and carrageenan inflammation. Treatment with MOSEtOH (100 and 500 mg/kg) or silymarin (200 mg/kg) decreased the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels compared with the CCl4-treated group. Histological evaluation showed that MOSEtOH reduced the degree of liver injury, including vacuolization, inflammation and necrosis of hepatocytes. The anti-inflammatory and hepatoprotective effect of MOSEtOH were found to be related to the modulation of antioxidant enzyme activity in the liver and decreases in malondialdehyde (MDA) level and nitric oxide (NO) contents. Our findings suggest that MOSEtOH has analgesic, anti-inflammatory and hepatoprotective effects. These effects support the use of MOSEtOH for relieving pain and inflammation in folk medicine. PMID:23364614

  20. Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis.

    PubMed

    Bermudez, Maria A; Sendon-Lago, Juan; Seoane, Samuel; Eiro, Noemi; Gonzalez, Francisco; Saa, Jorge; Vizoso, Francisco; Perez-Fernandez, Roman

    2016-08-01

    The aim of the present study was to evaluate the effect of conditioned medium from human uterine cervical stem cells (CM-hUCESCs) in uveitis. To do that, uveitis was induced in rats after footpad injection of Escherichia coli lipopolysaccaride (LPS). Human retinal pigment epithelial (ARPE-19) cells after LPS challenge were used to test anti-inflammatory effect of CM-hUCESCs 'ìn vitro'. Real-time PCR was used to evaluate mRNA expression levels of the pro-inflammatory cytokines interkeukin-6, interkeukin-8, macrophage inflammatory protein-1 alpha, tumor necrosis factor alpha, and the anti-inflammatory interkeukin-10. Leucocytes from aqueous humor (AqH) were quantified in a Neubauer chamber, and eye histopathological analysis was done with hematoxylin-eosin staining. Additionally, using a human cytokine antibody array we evaluated CM-hUCESCs to determine mediating proteins. Results showed that administration of CM-hUCESCs significantly reduced LPS-induced pro-inflammatory cytokines both 'in vitro' and 'in vivo', and decreased leucocytes in AqH and ocular tissues. High levels of cytokines with anti-inflammatory effects were found in CM-hUCESCs, suggesting a possible role of these factors in reducing intraocular inflammation. In summary, treatment with CM-hUCESCs significantly reduces inflammation in uveitis. Our data indicate that CM-hUCESCs could be regarded as a potential therapeutic agent for patients suffering from ocular inflammation. PMID:27381329

  1. Rutin-loaded chitosan microspheres: Characterization and evaluation of the anti-inflammatory activity.

    PubMed

    Cosco, Donato; Failla, Paola; Costa, Nicola; Pullano, Salvatore; Fiorillo, Antonino; Mollace, Vincenzo; Fresta, Massimo; Paolino, Donatella

    2016-11-01

    Rutin was microencapsulated in a chitosan matrix using the spray-drying technique and the resulting system was investigated. High amounts of rutin were efficiently entrapped within polymeric microspheres, and these microparticles were characterized by a smooth surface and afforded a controlled release of the active compound. The anti-inflammatory activity of rutin-loaded microspheres was investigated in in vitro models of NCTC 2544 and C-28 cells treated with LPS by determining the levels of IL-1β and IL-6. The rutin-loaded microspheres showed an increase of in vitro anti-inflammatory activity with respect to the free active compound. Confocal laser scanning microscopy demonstrated that massive intracellular uptake of the chitosan microspheres took place after a few hours of incubation and that the drug was localized in the cytosol compartment of the treated cells. The improved anti-inflammatory activity of the rutin-loaded microspheres was further confirmed by an in vivo model of carrageenan-induced paw edema. PMID:27516307

  2. M2 Macrophage Polarization Mediates Anti-inflammatory Effects of Endothelial Nitric Oxide Signaling

    PubMed Central

    Lee, Woo Je; Tateya, Sanshiro; Cheng, Andrew M.; Rizzo-DeLeon, Norma; Wang, Nicholas F.; Handa, Priya; Wilson, Carole L.; Clowes, Alexander W.; Sweet, Ian R.; Bomsztyk, Karol; Schwartz, Michael W.

    2015-01-01

    Endothelial nitric oxide (NO) signaling plays a physiological role in limiting obesity-associated insulin resistance and inflammation. This study was undertaken to investigate whether this NO effect involves polarization of macrophages toward an anti-inflammatory M2 phenotype. Mice with transgenic endothelial NO synthase overexpression were protected against high-fat diet (HFD)-induced hepatic inflammation and insulin resistance, and this effect was associated with reduced proinflammatory M1 and increased anti-inflammatory M2 activation of Kupffer cells. In cell culture studies, exposure of macrophages to endothelial NO similarly reduced inflammatory (M1) and increased anti-inflammatory (M2) gene expression. Similar effects were induced by macrophage overexpression of vasodilator-stimulated phosphoprotein (VASP), a key downstream mediator of intracellular NO signaling. Conversely, VASP deficiency induced proinflammatory M1 macrophage activation, and the transplantation of bone marrow from VASP-deficient donor mice into normal recipients caused hepatic inflammation and insulin resistance resembling that induced in normal mice by consumption of an HFD. These data suggest that proinflammatory macrophage M1 activation and macrophage-mediated inflammation are tonically inhibited by NO → VASP signal transduction, and that reduced NO → VASP signaling is involved in the effect of HFD feeding to induce M1 activation of Kupffer cells and associated hepatic inflammation. Our data implicate endothelial NO → VASP signaling as a physiological determinant of macrophage polarization and show that signaling via this pathway is required to prevent hepatic inflammation and insulin resistance. PMID:25845662

  3. Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis.

    PubMed

    Bermudez, Maria A; Sendon-Lago, Juan; Seoane, Samuel; Eiro, Noemi; Gonzalez, Francisco; Saa, Jorge; Vizoso, Francisco; Perez-Fernandez, Roman

    2016-08-01

    The aim of the present study was to evaluate the effect of conditioned medium from human uterine cervical stem cells (CM-hUCESCs) in uveitis. To do that, uveitis was induced in rats after footpad injection of Escherichia coli lipopolysaccaride (LPS). Human retinal pigment epithelial (ARPE-19) cells after LPS challenge were used to test anti-inflammatory effect of CM-hUCESCs 'ìn vitro'. Real-time PCR was used to evaluate mRNA expression levels of the pro-inflammatory cytokines interkeukin-6, interkeukin-8, macrophage inflammatory protein-1 alpha, tumor necrosis factor alpha, and the anti-inflammatory interkeukin-10. Leucocytes from aqueous humor (AqH) were quantified in a Neubauer chamber, and eye histopathological analysis was done with hematoxylin-eosin staining. Additionally, using a human cytokine antibody array we evaluated CM-hUCESCs to determine mediating proteins. Results showed that administration of CM-hUCESCs significantly reduced LPS-induced pro-inflammatory cytokines both 'in vitro' and 'in vivo', and decreased leucocytes in AqH and ocular tissues. High levels of cytokines with anti-inflammatory effects were found in CM-hUCESCs, suggesting a possible role of these factors in reducing intraocular inflammation. In summary, treatment with CM-hUCESCs significantly reduces inflammation in uveitis. Our data indicate that CM-hUCESCs could be regarded as a potential therapeutic agent for patients suffering from ocular inflammation.

  4. Anti-inflammatory action of γ-irradiated genistein in murine peritoneal macrophage

    NASA Astrophysics Data System (ADS)

    Sung, Nak-Yun; Byun, Eui-Baek; Song, Du-Sup; Jin, Yeung-Bae; Park, Jae-Nam; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon; Kim, Jae-Hun

    2014-12-01

    This present study was to examine the cytotoxicity and anti-inflammatory activity of gamma (γ)-irradiated genistein in murine peritoneal macrophage. Inflammation to macrophage was induced by adding the lipopolysaccharide (LPS). γ-Irradiated genistein significantly decreased the cytotoxicity to murine peritoneal macrophage in dose ranges from 5 to 10 μM than that of non-irradiated genistein. Anti-inflammatory activity within the doses less than 2 μM showed that γ-irradiated genistein treatment remarkably reduced the lipopolysaccharide-induced inflammation by decreasing the nitric oxide (NO) and cytokines (TNF-α, IL-6) production. In a structural analysis through the high pressure liquid chromatography (HPLC), γ-irradiated genistein showed a new peak production distinguished from main peak of genistein (non-irradiated). Therefore, increase of anti-inflammatory activity may closely mediate with structural changes induced by γ irradiation exposure. Based on the above result, γ-irradiation could be an effective tool for reduction of toxicity and increase of physiological activity of biomolecules.

  5. Binary graft modification of polypropylene for anti-inflammatory drug-device combo products.

    PubMed

    Melendez-Ortiz, Hector Ivan; Díaz-Rodríguez, Patricia; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio

    2014-04-01

    Temperature- and pH-responsive copolymers were γ-ray grafted onto polypropylene (PP) to provide its surface with capability to load and to control the release of nonsteroidal anti-inflammatory drugs (NSAIDs) with the aim of being useful as component of drug-eluting medical devices. Poly(N,N'-dimethylaminoethylmethacrylate) (PDMAEMA) or poly(4-vinylpyridine) (P4VP) were grafted onto PP films via a direct method, and then poly(N-isopropylacrylamide) (PNIPAAm) was grafted applying a preirradiation method. The binary graft copolymers showed hemocompatibility and certain capability to adsorb albumin. (PP-g-DMAEMA)-g-NIPAAm exhibited higher affinity for ibuprofen and, particularly, diclofenac than (PP-g-4VP)-g-NIPAAm. Sustained release was observed under physiological conditions. Cytotoxicity and anti-inflammatory activity of NSAID-eluting (PP-g-DMAEMA)-g-NIPAAm films were evaluated on RAW 264.7 macrophage cells. First, dose dependence of anti-inflammatory activity and cytotoxicity of ibuprofen and diclofenac on RAW 264.7 cells were investigated to elucidate the ranges of drug concentration that the graft copolymers should provide. Optimal concentrations of diclofenac and ibuprofen at which they reduce inflammation while maintaining cell viability were determined to be 200 μg/mL and above 400 μg/mL in culture medium. Sequential grafting of DMAEMA and NIPAAm made PP surface to exhibit remarkably high affinity to diclofenac, being able to load and to regulate drug release fulfilling in vitro requirements to avoid inflammatory response.

  6. Synthesis and molecular modeling studies of anti-inflammatory active 1H-pyrrolizine-5-carboxamides.

    PubMed

    Barsoum, Flora F

    2011-01-01

    A variety of N-aryl-7-cyano-2,3-dihydro-1H-pyrrolizine-5-carboxamides 5, 6, 8, and 9 were synthesized via reaction of the 2-amino derivatives 4 with acid chlorides and aromatic aldehydes. Meanwhile, 4a,b were obtained through the reaction of 2-pyrrolidinylidenepropanedinitrile 1 with chloroacetanilides 2a,b. In addition, the tricyclic pyrimido[5,4-a]pyrrolizines were formed through conducting the reaction of 4a,b with 90% formic acid. Anti-inflammatory activity screening of some synthesized compounds utilizing in vivo acute carrageenan-induced paw edema standard method in rats exhibited that the prepared heterocycles possess considerable pharmacological properties especially, 4a, 4b, 10a, and 10b which reveal remarkable activities relative to diclofenac sodium (reference standard). Ulcerogenic liability of the highly promising synthesized anti-inflammatory active agents were evaluated and 4a and 4b showed ulcerogenic liability lower than that of the standard used drug. Molecular modeling studies were initiated herein in order to validate the attained pharmacological data and provide understandable evidence for the observed anti-inflammatory behavior.

  7. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation.

    PubMed

    Benatti, Fabiana B; Pedersen, Bente K

    2015-02-01

    Persistent systemic inflammation, a typical feature of inflammatory rheumatic diseases, is associated with a high cardiovascular risk and predisposes to metabolic disorders and muscle wasting. These disorders can lead to disability and decreased physical activity, exacerbating inflammation and the development of a network of chronic diseases, thus establishing a 'vicious cycle' of chronic inflammation. During the past two decades, advances in research have shed light on the role of exercise as a therapy for rheumatic diseases. One of the most important of these advances is the discovery that skeletal muscle communicates with other organs by secreting proteins called myokines. Some myokines are thought to induce anti-inflammatory responses with each bout of exercise and mediate long-term exercise-induced improvements in cardiovascular risk factors, having an indirect anti-inflammatory effect. Therefore, contrary to fears that physical activity might aggravate inflammatory pathways, exercise is now believed to be a potential treatment for patients with rheumatic diseases. In this Review, we discuss how exercise disrupts the vicious cycle of chronic inflammation directly, after each bout of exercise, and indirectly, by improving comorbidities and cardiovascular risk factors. We also discuss the mechanisms by which some myokines have anti-inflammatory functions in inflammatory rheumatic diseases.

  8. Analgesic and anti-inflammatory property of the methanol extract from Ligustrum morrisonense leaves in rodents.

    PubMed

    Wu, Chi-Rei; Lin, Wen-Hsin; Lin, Yung-Ta; Wen, Chi-Luan; Ching, Hui; Lin, Li-Wei

    2011-01-01

    Ligustrum morrisonense Kaneh and Sasaki (abbreviated as LM), an endemic Ligustrum plant in Taiwan, is similar to Ligustrum lucidum, which is usually used for curing hepatic and inflammatory disorders. The aim of this study was to evaluate the analgesic and anti-inflammatory properties of LM by chemical-induced algesia and carrageenan-induced inflammation in rodents. Its triterpenoid contents were measured by using high performance liquid chromatography-photodiode array detector. LM leaf extracts effectively inhibited writhing responses induced by 1% acetic acid and biphasic-licking responses caused by 1% formalin. LM leaf extract also reduced the edema induced by 1% carrageenan. Furthermore, LM leaf extract reduced the abdominal Evan's blue extravasations caused by lipopolysaccharide (LPS), serotonin, histamine and bradykinin. LM leaf extract has higher contents of amyrin and lupeol among six assayed triterpenoid compounds. In conclusion, LM is a potential analgesic and anti-inflammatory Ligustrum plant, and its anti-inflammatory effects are partially related to decreasing microvascular permeability via inflammatory mediators and inhibiting cyclooxygenase-2 activity. PMID:21476210

  9. Determination of antidermatophytic effects of non-steroidal anti-inflammatory drugs on Trichophyton mentagrophytes and Epidermophyton floccosum.

    PubMed

    Al-Janabi, Ali Abdul Hussein S

    2011-09-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most common pharmacological agents. They have three primary therapeutic properties including anti-inflammatory, anti-pyretic and analgesic effects. Seven NSAIDs were tested against two species of dermatophytes. Percentage inhibition was determined for effective agents. Diclofenac, aspirin and naproxen showed more potential to inhibit the growth of dermatophytes. Epidermophyton floccosum revealed susceptibility to more number of the tested agents than Trichophyton mentagrophytes. In conclusion, many NSAIDs may have a high potential to inhibit the growth of dermatophytes, while some of the agents belonging to this pharmaceutical group used in this study showed a potential activity on tested fungi. PMID:21535450

  10. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review.

    PubMed

    Surh, Young-Joon

    2002-08-01

    A wide variety of phenolic substances derived from spice possess potent antimutagenic and anticarcinogenic activities. Examples are curcumin, a yellow colouring agent, contained in turmeric (Curcuma longa L., Zingiberaceae), [6]-gingerol, a pungent ingredient present in ginger (Zingiber officinale Roscoe, Zingiberaceae) and capsaicin, a principal pungent principle of hot chili pepper (Capsicum annuum L, Solanaceae). The chemopreventive effects exerted by these phytochemicals are often associated with their antioxidative and anti-inflammatory activities. Cyclo-oxygenase-2 (COX-2) has been recognized as a molecular target of many chemopreventive as well as anti-inflammatory agents. Recent studies have shown that COX-2 is regulated by the eukaryotic transcription factor NF-kappaB. This short review summarizes the molecular mechanisms underlying chemopreventive effects of the aforementioned spice ingredients in terms of their effects on intracellular signaling cascades, particularly those involving NF-kappaB and mitogen-activated protein kinases. PMID:12067569

  11. Anti-inflammatory effect of Momordica charantia in sepsis mice.

    PubMed

    Chao, Che-Yi; Sung, Ping-Jyun; Wang, Wei-Hsien; Kuo, Yueh-Hsiung

    2014-01-01

    Wild bitter gourd (Momordica charantia L. var. abbreviate Seringe), a common vegetable in Asia, is used in traditional medicine to treat various diseases, including inflammation. Extant literature indicates that wild bitter gourds have components that activate PPARα and PPARγ. This research probed the influence of adding wild bitter gourd to diets on inflammation responses in mice with sepsis induced by intraperitoneal injection of LPS. Male BALB/c mice were divided normal, sepsis, positive control, and three experimental groups. The latter ate diets with low (1%), moderate (2%), and high (10%) ratios of wild bitter gourd lyophilized powder. Before mice were sacrificed, with the exception of the normal group, intraperitoneal injection of LPS induced sepsis in each group; positive control group was injected with LPS after PDTC. This experiment revealed starkly lower weights in groups with added wild bitter gourd than those of the remaining groups. Blood lipids (TG, cholesterol, and NEFA) were also lower in comparison to the sepsis group, and blood glucose concentrations recovered and approached normal levels. Blood biochemistry values related to inflammation reactions indicated GOT, GPT, C-RP, and NO concentrations of groups with added wild bitter gourd were all lower than those of the sepsis group. Secretion levels of the spleen pro-inflammatory cytokines IL-1, IL-6, and TNF-α tallied significantly lower in comparison to the sepsis group, whereas secretion levels of IL-10 anti-inflammatory cytokine increased. Expression level of proteins NF-κB, iNOS, and COX-2 were significantly inhibited. Results indicate wild bitter gourd in diets promoted lipid metabolism, reducing fat accumulation, and improving low blood glucose in sepsis. Addition of wild bitter gourd can reduce inflammation biochemical markers or indicators and pro-inflammatory cytokines in the body, hence improving the inflammation responses in mice with sepsis. PMID:25153878

  12. Anti-Inflammatory Effect of Taurine in Burned Patients

    PubMed Central

    Lak, Sima; Ostadrahimi, Alireza; Nagili, Behrooz; Asghari-Jafarabadi, Mohammad; Beigzali, Sanaz; Salehi, Feridoon; Djafarzadeh, Roxana

    2015-01-01

    Purpose: Burn induced inflammatory response can be mediated by reactive oxygen metabolites and accompanied by multiple organ dysfunction. Taurine has protective effects against various inflammatory conditions. The aim of this study was to determine the effect of Taurine supplement in thermal burn victims. Methods: Thirty patients with severe thermal burns were enrolled in this randomized double-blinded clinical trial. These patients were randomly divided into two equal groups (namely Control and Taurine groups), where both received isocaloric and isonitrogenous formula. One group was supplemented with 50 mg/kg of Taurine per day for a duration of 10 days. Blood samples were obtained to measure Interleukin-10 (IL-10), high-sensitivity C-reactive protein (hs-CRP), and Tumor Necrosis Factor alpha (TNF-α) levels at the beginning and the end of the study. Results: Change in serum level of IL-10 in Taurine group was more than Control group [-13.60(-31.40, -10.40) compared to -4.00(-20.00, -0.20) respectively; P = 0.030]. This change was significant in patients with more than 30% TBSA of burn [-14.20(-31.40, -10.40) compared to -2.40(-9.60, 0.40) respectively; P = 0.013]. As for the hs-CRP and TNF-α levels, the difference between the two groups were not significant. Conclusion: Based on the results obtained, Taurine supplement showed a positive outcome on anti-inflammatory cytokine IL-10 in all burn patients. This effect was even more significant in patients with higher percentage of burn area. Taurine had no significant effect on the inflammatory marker hs-CRP and the pro-inflammatory cytokine TNF-α level. For a more thorough verification, measurement of a wider range of inflammatory cytokines in more frequent time intervals are suggested. PMID:26819926

  13. Anti-inflammatory and cytotoxic activities of Bursera copallifera

    PubMed Central

    Columba-Palomares, M. F. María C.; Villareal, Dra. María L.; Acevedo Quiroz, M. C. Macdiel E.; Marquina Bahena, M. C. Silvia; Álvarez Berber, Dra. Laura P.; Rodríguez-López, Dra. Verónica

    2015-01-01

    Background: The plant species Bursera copallifera (DC) bullock is used in traditional medicine to treat inflammation. The leaves of this plant can be prepared as an infusion to treat migraines, bronchitis, and dental pain Objective: The purpose of this study was to determine the anti-inflammatory and cytotoxic activities of organic extracts from the stems, stem bark, and leaves of B. copallifera, which was selected based on the knowledge of its traditional use. Materials and Methods: We evaluated the ability of extracts to inhibit mouse ear inflammation in response to topical application of 12-O tetradecanoylphorbol-13-acetate. The extracts with anti-inflammatory activity were evaluated for their inhibition of pro-inflammatory enzymes. In addition, the in vitro cytotoxic activities of the organic extracts were evaluated using the sulforhodamine B assay. Results: The hydroalcoholic extract of the stems (HAS) exhibited an anti-inflammatory activity of 54.3% (0.5 mg/ear), whereas the anti-inflammatory activity of the dichloromethane-methanol extract from the leaves (DMeL) was 55.4% at a dose of 0.1 mg/ear. Methanol extract from the leaves (MeL) showed the highest anti-inflammatory activity (IC50 = 4.4 μg/mL), hydroalcoholic extract of leaves, and DMeL also reduce the enzyme activity, (IC50 = 6.5 μg/mL, IC50 = 5.7 μg/mL), respectively, from stems HAS exhibit activity at the evaluated concentrations (IC50 =6.4 μg/mL). The hydroalcoholic extract of the stems exhibited the highest cytotoxic activity against a breast adenocarcinoma cell line (MCF7, IC50 = 0.90 μg/mL), whereas DMeL exhibited an IC50 value of 19.9 μg/mL. Conclusion: In conclusion, extracts from leaves and stems inhibited cyclooxygenase-1, which is the target enzyme for nonsteroidal anti inflammatory drugs, and some of these extracts demonstrated substantial antiproliferative effects against the MCF7 cell line. These results validate the traditional use of B. copallifera. PMID:26664022

  14. Synthesis and anti-inflammatory activity evaluation of novel triazolyl-isatin hybrids.

    PubMed

    Sharma, Pramod K; Balwani, Sakshi; Mathur, Divya; Malhotra, Shashwat; Singh, Brajendra K; Prasad, Ashok K; Len, Christophe; Van der Eycken, Erik V; Ghosh, Balaram; Richards, Nigel G J; Parmar, Virinder S

    2016-12-01

    New isatin-triazole based hybrids have been synthesized and evaluated for their inhibitory activity of TNF-α induced expression of Intercellular Adhesion Molecule-1 (ICAM-1) on the surface of human endothelial cells. Structure-activity relationship (SAR) studies revealed that the presence of the electron-attracting bromo substituent at position-5 of the isatin moiety played an important role in enhancing the anti-inflammatory potential of the synthesized compounds. Z-1-[3-(1H-1,2,4-Triazol-1-yl)propyl]-5-bromo-3-[2-(4-methoxyphenyl)hydrazono]indolin-2-one (19) with an IC50 = 20 μM and 89% ICAM-1 inhibition with MTD at 200 μM was found to be the most potent of all the synthesized derivatives. Introduction of 1,2,4-triazole ring and electron-donating methoxy group on the phenylhydrazone moiety resulted in four-fold increase of the anti-inflammatory activity.

  15. Anti-inflammatory effects of methylthiouracil in vitro and in vivo.

    PubMed

    Ku, Sae-Kwang; Baek, Moon-Chang; Bae, Jong-Sup

    2015-11-01

    The screening of bioactive compound libraries can be an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases. Here, methylthiouracil (MTU), an antithyroid drug, was examined for its effects on lipopolysaccharide (LPS)-mediated vascular inflammatory responses. The anti-inflammatory activities of MTU were determined by measuring permeability, human neutrophil adhesion and migration, and activation of pro-inflammatory proteins in LPS-activated human umbilical vein endothelial cells and mice. We found that post-treatment with MTU inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion/transendothelial migration of human neutrophils to human endothelial cells. MTU induced potent inhibition of LPS-induced endothelial cell protein C receptor (EPCR) shedding. It also suppressed LPS-induced hyperpermeability and neutrophil migration in vivo. Furthermore, MTU suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, and the activation of nuclear factor-κB (NF-κB) and extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, post-treatment with MTU resulted in reduced LPS-induced lethal endotoxemia. These results suggest that MTU exerts anti-inflammatory effects by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.

  16. Physicochemical, antimicrobial and anti-inflammatory evaluation of fixed oil from Boa constrictor.

    PubMed

    Falodun, Abiodun; Owolabi, Omonkhelin Josephine; Osahon, Obasuyi

    2008-01-01

    Boa constrictor is one of the snakes found in the riverine areas of Nigeria, especially in the Niger Delta regions. The fat obtained from the snake is used ethno-medicinally for the treatment of burns and inflammatory conditions. The purpose of this study was to validate the traditional use of this crude fat and oil. The fat obtained from the Boa snake was subjected to some physiochemical screening tests. A systematic chemical and antimicrobial investigation was carried out using some bacterial found in wound such as Staphylococcus aureus, B. subtilis and Streptococcus pyrogenes. The degree of zone of inhibition was a measure of the antimicrobial activity of the fat and oil. The maximal inhibitory dilution was determined for significant zone. The anti-inflammatory investigation was done using the croton oil induced ear edema. The results of the study revealed a potent anti-inflammatory and a significant antimicrobial activity of the fat from Boa constrictor against S. aureus and S. pyrogenes organisms, thus, justifying the traditional usage of the fat of Boa constrictor.

  17. Physicochemical, antimicrobial and anti-inflammatory evaluation of fixed oil from Boa constrictor.

    PubMed

    Falodun, Abiodun; Owolabi, Omonkhelin Josephine; Osahon, Obasuyi

    2008-01-01

    Boa constrictor is one of the snakes found in the riverine areas of Nigeria, especially in the Niger Delta regions. The fat obtained from the snake is used ethno-medicinally for the treatment of burns and inflammatory conditions. The purpose of this study was to validate the traditional use of this crude fat and oil. The fat obtained from the Boa snake was subjected to some physiochemical screening tests. A systematic chemical and antimicrobial investigation was carried out using some bacterial found in wound such as Staphylococcus aureus, B. subtilis and Streptococcus pyrogenes. The degree of zone of inhibition was a measure of the antimicrobial activity of the fat and oil. The maximal inhibitory dilution was determined for significant zone. The anti-inflammatory investigation was done using the croton oil induced ear edema. The results of the study revealed a potent anti-inflammatory and a significant antimicrobial activity of the fat from Boa constrictor against S. aureus and S. pyrogenes organisms, thus, justifying the traditional usage of the fat of Boa constrictor. PMID:19051590

  18. Anti-Inflammatory and Antinociceptive Activities of Anthraquinone-2-Carboxylic Acid

    PubMed Central

    Park, Jae Gwang; Kim, Seung Cheol; Kim, Yun Hwan; Yang, Woo Seok; Kim, Yong; Hong, Sungyoul; Kim, Kyung-Hee; Yoo, Byong Chul; Kim, Shi Hyung; Kim, Jong-Hoon; Cho, Jae Youl

    2016-01-01

    Anthraquinone compounds are one of the abundant polyphenols found in fruits, vegetables, and herbs. However, the in vivo anti-inflammatory activity and molecular mechanisms of anthraquinones have not been fully elucidated. We investigated the activity of anthraquinones using acute inflammatory and nociceptive experimental conditions. Anthraquinone-2-carboxylic acid (9,10-dihydro-9,10-dioxo-2-anthracenecarboxylic acid, AQCA), one of the major anthraquinones identified from Brazilian taheebo, ameliorated various inflammatory and algesic symptoms in EtOH/HCl- and acetylsalicylic acid- (ASA-) induced gastritis, arachidonic acid-induced edema, and acetic acid-induced abdominal writhing without displaying toxic profiles in body and organ weight, gastric irritation, or serum parameters. In addition, AQCA suppressed the expression of inflammatory genes such as cyclooxygenase- (COX-) 2 in stomach tissues and lipopolysaccharide- (LPS-) treated RAW264.7 cells. According to reporter gene assay and immunoblotting analyses, AQCA inhibited activation of the nuclear factor- (NF-) κB and activator protein- (AP-) 1 pathways by suppression of upstream signaling involving interleukin-1 receptor-associated kinase 4 (IRAK1), p38, Src, and spleen tyrosine kinase (Syk). Our data strongly suggest that anthraquinones such as AQCA act as potent anti-inflammatory and antinociceptive components in vivo, thus contributing to the immune regulatory role of fruits and herbs. PMID:27057092

  19. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: structural and enantiomeric selectivity.

    PubMed

    Rufino, Ana T; Ribeiro, Madalena; Judas, Fernando; Salgueiro, Lígia; Lopes, Maria C; Cavaleiro, Carlos; Mendes, Alexandrina F

    2014-02-28

    Previous studies have suggested that α-pinene, a common volatile plant metabolite, may have anti-inflammatory effects in human chondrocytes, thus exhibiting potential antiosteoarthritic activity. The objective of this study was to further characterize the potential antiosteoarthritic activity of selected pinene derivatives by evaluating their ability to modulate inflammation and extracellular matrix remodeling in human chondrocytes and to correlate the biological and chemical properties by determining whether the effects are isomer- and/or enantiomer-selective. To further elucidate chemicopharmacological interactions, the activities of other naturally occurring monoterpenes with the pinane nucleus were also investigated. At noncytotoxic concentrations, (+)-α-pinene (1) elicited the most potent inhibition of the IL-1β-induced inflammatory and catabolic pathways, namely, NF-κB and JNK activation and the expression of the inflammatory (iNOS) and catabolic (MMP-1 and -13) genes. (-)-α-Pinene (2) was less active than the (+)-enantiomer (1), and β-pinene (3) was inactive. E-Pinane (4) and oxygenated pinane-derived compounds, pinocarveol (5), myrtenal (6), (E)-myrtanol (7), myrtenol (8), and (Z)-verbenol (9), were less effective or even completely inactive and more cytotoxic than the pinenes tested (1-3). The data obtained show isomer- and enantiomer-selective anti-inflammatory and anticatabolic effects of α-pinene in human chondrocytes, (+)-α-pinene (1) being the most promising for further studies to determine its potential value as an antiosteoarthritic drug.

  20. Antioxidant, Anti-inflammatory, and Chemoprotective Properties of Acacia catechu Heartwood Extracts.

    PubMed

    Stohs, Sidney J; Bagchi, Debasis

    2015-06-01

    Aqueous extracts of Acacia catechu heartwood are rich source of catechin and epicatechin (gallic acid derivatives), with smaller amounts of flavonoids. Extracts have also been prepared with ethyl acetate, ethanol, and methanol, and the properties of these extracts have been studied and are reviewed. Potent antioxidant activity has been well established in both in vitro and in vivo studies. This antioxidant activity is believed to be responsible for the anti-inflammatory, tissue protectant, antineoplastic, and analgesic activities that have been demonstrated and clearly established in animal and cell culture systems. Furthermore, antihyperglycemic, antidiarrheal, antinociceptive, and antipyretic activities have been demonstrated in animal studies. No adverse effects have been observed in animal or human studies or in cell culture systems. In spite of the fact that Acacia products have been used for many years and the general safety of catechins and epicatechins is well documented, few human studies have ever been conducted on the efficacy or safety of A. catechu heartwood extracts. Several studies have shown that a two-ingredient combination product containing A. catechu extract exhibited no adverse effects when administered daily for up to 12 weeks while exhibiting significant anti-inflammatory activity in subjects with osteoarthritis of the knee. There is a need for additional human clinical studies with regard to efficacy and safety.

  1. Chemical composition and anti-inflammatory activities of the essential oils from Acacia mearnsii de Wild.

    PubMed

    Avoseh, Opeyemi N; Oyedeji, Ope-oluwa O; Aremu, Kayode; Nkeh-Chungag, Benedicta N; Songca, Sandile P; Oluwafemi, Samuel O; Oyedeji, Adebola O

    2015-01-01

    The volatile oils of the leaves and the stem bark of Acacia mearnsii de Wild obtained by hydro-distillation were analysed by gas chromatography-mass spectrometry. A total of 20, 38, 29 and 38 components accounted for 93.8%, 92.1%, 78.5% and 90.9% of the total oils of the fresh, dry leaves and fresh, dry stem bark, respectively. The major components of the oil were octadecyl alcohol (25.5%) and phytol (10.5%); cis-verbenol (29.5%); phytol (10.1%) and phytol (23.4%) for the fresh leaves, dried leaves, fresh stem, dry stem bark, respectively. Oral administration of essential oils at a dose of 2% showed significant (p < 0.05) anti-inflammatory properties in the albumin-induced test model in rats. Oils from the fresh leaves and dry stems inhibited inflammation beyond 4 h post treatment. The potent anti-inflammatory activity of essential oils of A. mearnsii hereby confirmed its traditional use in treating various inflammatory diseases.

  2. Secondary metabolites of ponderosa lemon (Citrus pyriformis) and their antioxidant, anti-inflammatory, and cytotoxic activities.

    PubMed

    Hamdan, Dalia; El-Readi, Mahmoud Zaki; Tahrani, Ahmad; Herrmann, Florian; Kaufmann, Dorothea; Farrag, Nawal; El-Shazly, Assem; Wink, Michael

    2011-01-01

    Column chromatography of the dichloromethane fraction from an aqueous methanolic extract of fruit peel of Citrus pyriformis Hassk. (Rutaceae) resulted in the isolation of seven compounds including one coumarin (citropten), two limonoids (limonin and deacetylnomilin), and four sterols (stigmasterol, ergosterol, sitosteryl-3-beta-D-glucoside, and sitosteryl-6'-O-acyl-3-beta-D-glucoside). From the ethyl acetate fraction naringin, hesperidin, and neohesperidin were isolated. The dichloromethane extract of the defatted seeds contained three additional compounds, nomilin, ichangin, and cholesterol. The isolated compounds were identified by MS (EI, CI, and ESI), 1H, 13C, and 2D-NMR spectral data. The limonoids were determined qualitatively by LC-ESI/MS resulting in the identification of 11 limonoid aglycones. The total methanolic extract of the peel and the petroleum ether, dichloromethane, and ethyl acetate fractions were screened for their antioxidant and anti-inflammatory activities. The ethyl acetate fraction exhibited a significant scavenging activity for DPPH free radicals (IC50 = 132.3 microg/mL). The petroleum ether fraction inhibited 5-lipoxygenase with IC50 = 30.6 microg/mL indicating potential anti-inflammatory properties. Limonin has a potent cytotoxic effect against COS7 cells [IC50 = (35.0 +/- 6.1) microM] compared with acteoside as a positive control [IC50 = (144.5 +/- 10.96) microM].

  3. Arzanol, a prenylated heterodimeric phloroglucinyl pyrone, inhibits eicosanoid biosynthesis and exhibits anti-inflammatory efficacy in vivo.

    PubMed

    Bauer, Julia; Koeberle, Andreas; Dehm, Friederike; Pollastro, Federica; Appendino, Giovanni; Northoff, Hinnak; Rossi, Antonietta; Sautebin, Lidia; Werz, Oliver

    2011-01-15

    Based on its capacity to inhibit in vitro HIV-1 replication in T cells and the release of pro-inflammatory cytokines in monocytes, the prenylated heterodimeric phloroglucinyl α-pyrone arzanol was identified as the major anti-inflammatory and anti-viral constituent from Helichrysum italicum. We have now investigated the activity of arzanol on the biosynthesis of pro-inflammatory eicosanoids, evaluating its anti-inflammatory efficacy in vitro and in vivo. Arzanol inhibited 5-lipoxygenase (EC 7.13.11.34) activity and related leukotriene formation in neutrophils, as well as the activity of cyclooxygenase (COX)-1 (EC 1.14.99.1) and the formation of COX-2-derived prostaglandin (PG)E(2)in vitro (IC(50)=2.3-9μM). Detailed studies revealed that arzanol primarily inhibits microsomal PGE(2) synthase (mPGES)-1 (EC 5.3.99.3, IC(50)=0.4μM) rather than COX-2. In fact, arzanol could block COX-2/mPGES-1-mediated PGE(2) biosynthesis in lipopolysaccharide-stimulated human monocytes and human whole blood, but not the concomitant COX-2-derived biosynthesis of thromboxane B(2) or of 6-keto PGF(1α), and the expression of COX-2 or mPGES-1 protein was not affected. Arzanol potently suppressed the inflammatory response of the carrageenan-induced pleurisy in rats (3.6mg/kg, i.p.), with significantly reduced levels of PGE(2) in the pleural exudates. Taken together, our data show that arzanol potently inhibits the biosynthesis of pro-inflammatory lipid mediators like PGE(2)in vitro and in vivo, providing a mechanistic rationale for the anti-inflammatory activity of H. italicum, and a rationale for further pre-clinical evaluation of this novel anti-inflammatory lead.

  4. Liang-Ge-San, a classic traditional Chinese medicine formula, protects against lipopolysaccharide-induced inflammation through cholinergic anti-inflammatory pathway.

    PubMed

    Liu, Jun-Shan; Wei, Xi-Duan; Lu, Zi-Bin; Xie, Pei; Zhou, Hong-Ling; Chen, Yu-Yao; Ma, Jia-Mei; Yu, Lin-Zhong

    2016-04-19

    Liang-Ge-San (LGS) is a classic formula in traditional Chinese medicine, which is widely used to treat acute lung injury (ALI), pharyngitis and amygdalitis in clinic. However, the underlying mechanisms remain poorly defined. In this study, we discovered that LGS exerted potent anti-inflammatory effects in lipopolysaccharide (LPS)-induced inflammation. We found that LGS significantly depressed the production of IL-6 and TNF-α in LPS-stimulated RAW 264.7 macrophage cells. The degradation and phosphorylation of IκBα and the nuclear translocation of NF-κB p65 were also inhibited. Moreover, LGS activated α7 nicotinic cholinergic receptor (α7nAchR). The blockage of α7nAchR by selective inhibitor methyllycaconitine (MLA) or α7nAchR siRNA attenuated the inhibitory effects of LGS on IκBα, NF-κB p65, IL-6 and TNF-α. Critically, LGS significantly inhibited inflammation in LPS-induced ALI rats through the activation of NF-κB signaling pathway. However, these protective effects could be counteracted by the treatment of MLA. Taken together, we first demonstrated anti-inflammatory effects of LGS both in vitro and in vivo through cholinergic anti-inflammatory pathway. The study provides a rationale for the clinical application of LGS as an anti-inflammatory agent and supports the critical role of cholinergic anti-inflammatory pathway in inflammation. PMID:27034013

  5. Liang-Ge-San, a classic traditional Chinese medicine formula, protects against lipopolysaccharide-induced inflammation through cholinergic anti-inflammatory pathway.

    PubMed

    Liu, Jun-Shan; Wei, Xi-Duan; Lu, Zi-Bin; Xie, Pei; Zhou, Hong-Ling; Chen, Yu-Yao; Ma, Jia-Mei; Yu, Lin-Zhong

    2016-04-19

    Liang-Ge-San (LGS) is a classic formula in traditional Chinese medicine, which is widely used to treat acute lung injury (ALI), pharyngitis and amygdalitis in clinic. However, the underlying mechanisms remain poorly defined. In this study, we discovered that LGS exerted potent anti-inflammatory effects in lipopolysaccharide (LPS)-induced inflammation. We found that LGS significantly depressed the production of IL-6 and TNF-α in LPS-stimulated RAW 264.7 macrophage cells. The degradation and phosphorylation of IκBα and the nuclear translocation of NF-κB p65 were also inhibited. Moreover, LGS activated α7 nicotinic cholinergic receptor (α7nAchR). The blockage of α7nAchR by selective inhibitor methyllycaconitine (MLA) or α7nAchR siRNA attenuated the inhibitory effects of LGS on IκBα, NF-κB p65, IL-6 and TNF-α. Critically, LGS significantly inhibited inflammation in LPS-induced ALI rats through the activation of NF-κB signaling pathway. However, these protective effects could be counteracted by the treatment of MLA. Taken together, we first demonstrated anti-inflammatory effects of LGS both in vitro and in vivo through cholinergic anti-inflammatory pathway. The study provides a rationale for the clinical application of LGS as an anti-inflammatory agent and supports the critical role of cholinergic anti-inflammatory pathway in inflammation.

  6. Liang-Ge-San, a classic traditional Chinese medicine formula, protects against lipopolysaccharide-induced inflammation through cholinergic anti-inflammatory pathway

    PubMed Central

    Xie, Pei; Zhou, Hong-Ling; Chen, Yu-Yao; Ma, Jia-Mei; Yu, Lin-Zhong

    2016-01-01

    Liang-Ge-San (LGS) is a classic formula in traditional Chinese medicine, which is widely used to treat acute lung injury (ALI), pharyngitis and amygdalitis in clinic. However, the underlying mechanisms remain poorly defined. In this study, we discovered that LGS exerted potent anti-inflammatory effects in lipopolysaccharide (LPS)-induced inflammation. We found that LGS significantly depressed the production of IL-6 and TNF-α in LPS-stimulated RAW 264.7 macrophage cells. The degradation and phosphorylation of IκBα and the nuclear translocation of NF-κB p65 were also inhibited. Moreover, LGS activated α7 nicotinic cholinergic receptor (α7nAchR). The blockage of α7nAchR by selective inhibitor methyllycaconitine (MLA) or α7nAchR siRNA attenuated the inhibitory effects of LGS on IκBα, NF-κB p65, IL-6 and TNF-α. Critically, LGS significantly inhibited inflammation in LPS-induced ALI rats through the activation of NF-κB signaling pathway. However, these protective effects could be counteracted by the treatment of MLA. Taken together, we first demonstrated anti-inflammatory effects of LGS both in vitro and in vivo through cholinergic anti-inflammatory pathway. The study provides a rationale for the clinical application of LGS as an anti-inflammatory agent and supports the critical role of cholinergic anti-inflammatory pathway in inflammation. PMID:27034013

  7. [Cardiovascular side effects of non-steroidal anti-inflammatory drugs in the light of recent recommendations. Diclofenac is not more dangerous].

    PubMed

    Horváth, Viktor József; Tabák, Gy Ádám; Szabó, Gergely; Putz, Zsuzsanna; Koós, Csaba Géza; Lakatos, Péter

    2015-03-29

    Among their beneficial effects, non-steroidal anti-inflammatory drugs may also exert several side effects which depend on the dosage and the type of these medications. The most frequent gastrointestinal side effects usually develop shortly after the beginning of their administration, but others such as cardiovascular interactions (which are present much less frequently than gastrointestinal side effects) can also occur after the beginning of drug administration without a latency period. For a long-term treatment, non-steroidal anti-inflammatory drugs are most frequently used in the elderly population where patients typically have high cardiovascular risk and take other medicines, e.g. low dose acetylsalicylic acid that can interact with non-steroidal anti-inflammatory drugs; in this aspect diclofenac may cause less side effects. In this review, the authors briefly review cardiovascular side effects of non-steroidal anti-inflammatory drugs, the processes which potentially influence them, therapeutic consequences and their interaction with acetylsalicylic acid.

  8. Anti-inflammatory and antipyretic effects of boldine.

    PubMed

    Backhouse, N; Delporte, C; Givernau, M; Cassels, B K; Valenzuela, A; Speisky, H

    1994-10-01

    Boldine, an antioxidant alkaloid isolated from Peumus boldus, exhibits a dose-dependent anti-inflammatory activity in the carrageenan-induced guinea pig paw edema test with an oral ED50 of 34 mg/kg. Boldine also reduces bacterial pyrogen-induced hyperthermia in rabbits to an extent which varied between 51% and 98% at a dose of 60 mg/kg p.o. In vitro studies carried out in rat aortal rings revealed that boldine is an effective inhibitor of prostaglandin biosynthesis, promoting 53% inhibition at 75 microM. The latter in vitro effect may be mechanistically linked to the anti-inflammatory and antipyretic effects of boldine exerted in vivo. PMID:7879695

  9. Antibiotic and Anti-Inflammatory Therapies for Cystic Fibrosis

    PubMed Central

    Chmiel, James F.; Konstan, Michael W.; Elborn, J. Stuart

    2013-01-01

    Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from <6 mo in 1940 to >38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed. PMID:23880054

  10. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats

    PubMed Central

    Yu, Jie; Bi, Xiaojuan; Yu, Bing; Chen, Daiwen

    2016-01-01

    Inflammation, a biological response of body tissues to harmful stimuli, is also known to be involved in a host of diseases, such as obesity, atherosclerosis, rheumatoid arthritis, and even cancer. Isoflavones are a class of flavonoids that exhibit antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Increasing evidence has highlighted the potential for isoflavones to prevent the chronic diseases in which inflammation plays a key role, though the underlying mechanisms remain unclear. Recently, some studies have raised concerns about isoflavones induced negative effects like carcinogenesis, thymic involution, and immunosuppression. Therefore, this review aims to summarize the anti-inflammatory effects of isoflavones, unravel the underlying mechanisms, and present the potential health risks. PMID:27294954

  11. Anti-inflammatory effects of praseodymium, gadolinium and ytterbium chlorides.

    PubMed

    Basile, A C; Hanada, S; Sertié, J A; Oga, S

    1984-02-01

    Anti-inflammatory effects of chloride salts of praseodymium, gadolinium and ytterbium were investigated, using various experimental inflammatory models in rats. The lanthanide salts administered by oral route showed no significant effect, but when injected intraperitoneally they significantly inhibited the carrageenin-induced oedema, proportional to their doses ranging from 15 to 75 mg/kg. They also reduced nystatin-induced oedema and vascular permeability response to histamine and serotonin. Pronounced inhibitory effect of lanthanide salts at the dose of 50 mg/kg, i.p., was observed in histamine- and serotonin-induced changes in vascular permeability. Repeated administration of lanthanide salts in the dose of 20 mg/kg for 13 d significantly inhibited arthritis development. The same dose of these salts for a 6-d period similarly reduced granuloma formation. However, praseodymium, gadolinium and ytterbium chlorides showed no significant difference among themselves and their anti-inflammatory effects were smaller than those from phenylbutazone.

  12. Novel anti-inflammatory therapies for the treatment of atherosclerosis.

    PubMed

    Khan, Razi; Spagnoli, Vincent; Tardif, Jean-Claude; L'Allier, Philippe L

    2015-06-01

    The underlying role of inflammation in atherosclerosis has been characterized. However, current treatment of coronary artery disease (CAD) predominantly consists of targeted reductions in serum lipoprotein levels rather than combating the deleterious effects of acute and chronic inflammation. Vascular inflammation acts by a number of different molecular and cellular pathways to contribute to atherogenesis. Over the last decades, both basic studies and clinical trials have provided evidence for the potential benefits of treatment of inflammation in CAD. During this period, development of pharmacotherapies directed towards inflammation in atherosclerosis has accelerated quickly. This review will highlight specific therapies targeting interleukin-1β (IL-1β), P-selectin and 5-lipoxygenase (5-LO). It will also aim to examine the anti-inflammatory effects of serpin administration, colchicine and intravenous HDL-directed treatment of CAD. We summarize the mechanistic rationale and evidence for these novel anti-inflammatory treatments at both the experimental and clinical levels.

  13. Anti-inflammatory and Antinociceptive Activity of Ouabain in Mice

    PubMed Central

    de Vasconcelos, Danielle Ingrid Bezerra; Leite, Jacqueline Alves; Carneiro, Luciana Teles; Piuvezam, Márcia Regina; de Lima, Maria Raquel Vitorino; de Morais, Liana Clébia Lima; Rumjanek, Vivian Mary; Rodrigues-Mascarenhas, Sandra

    2011-01-01

    Ouabain, an inhibitor of the Na+/K+-ATPase pump, was identified as an endogenous substance of human plasma. Ouabain has been studied for its ability to interfere with various regulatory mechanisms. Despite the studies portraying the ability of ouabain to modulate the immune response, little is known about the effect of this substance on the inflammatory process. The aim of this work was to study the effects triggered by ouabain on inflammation and nociceptive models. Ouabain produced a reduction in the mouse paw edema induced by carrageenan, compound 48/80 and zymosan. This anti-inflammatory potential might be related to the inhibition of prostaglandin E2, bradykinin, and mast-cell degranulation but not to histamine. Ouabain also modulated the inflammation induced by concanavalin A by inhibiting cell migration. Besides that, ouabain presented antinociceptive activity. Taken these data together, this work demonstrated, for the first time, that ouabain presented in vivo analgesic and anti-inflammatory effects. PMID:21772669

  14. Pharmacology in rehabilitation: nonsteroidal anti-inflammatory agents.

    PubMed

    Biederman, Ross E

    2005-06-01

    Nonsteroidal anti-inflammatory agents (NSAIDs) are the most commonly encountered over-the-counter (OTC) and prescription medications in physical therapy practice. Worldwide, over 73000000 prescriptions for nonsteroidal agents are written yearly. NSAIDs produce a wide range of beneficial effects to the physical therapy patient, enhancing the outcome of treatment. Helpful effects of NSAIDs include analgesia, antipyretic, anti-inflammatory, and antithrombotic properties. However, NSAIDs are also associated with frequent and significant side effects that are deleterious to treatment outcome, including delay in soft tissue and bone healing, renal and liver toxicity, hemorrhagic events, gastric irritation and ulceration, and central nervous system effects. Understanding of the pharmacological properties of these drugs, exemplified by aspirin, and the individual pharmacokinetics of specific preparations will help the therapist to screen patients for potential side effects, develop more effective plans of care, and, where allowed, effectively and safely prescribe NSAIDs. PMID:16001907

  15. Anti-inflammatory effects of a Houttuynia cordata supercritical extract.

    PubMed

    Shin, Sunhee; Joo, Seong Soo; Jeon, Jeong Hee; Park, Dongsun; Jang, Min Jung; Kim, Tae Ook; Kim, Hyun Kyu; Hwang, Bang Yeon; Kim, Ki Yon; Kim, Yun Bae

    2010-09-01

    Anti-inflammatory effects of Houttuynia cordata supercritical extract (HSE) were investigated in a carrageenan-air pouch model. HSE (200 mg/kg, oral) suppressed exudation and albumin leakage, as well as inflammatory cell infiltration. Dexamethasone (2 mg/kg, i.p.) only decreased exudation and cell infiltration, while indomethacin (2 mg/kg, i.p.) reduced exudate volume and albumin content. HSE lowered tumor-necrosis factor (TNF)-alpha and nitric oxide (NO), as well as prostaglandin E(2) (PGE(2)). Dexamethasone only reduced TNF-alpha and NO, while indomethacin decreased TNF-alpha and PGE(2). The suppressive activity of HSE on NO and PGE(2) production was confirmed in RAW 264.7. These results demonstrate that HSE exerts anti-inflammatory effects by inhibiting both TNF-alpha-NO and cyclooxygenase II-PGE(2) pathways. PMID:20706037

  16. Anti-Inflammatory Drug Design Using a Molecular Hybridization Approach

    PubMed Central

    Bosquesi, Priscila Longhin; Melo, Thais Regina Ferreira; Vizioli, Ednir Oliveira; dos Santos, Jean Leandro; Chung, Man Chin

    2011-01-01

    The design of new drugs with better physiochemical properties, adequate absorption, distribution, metabolism, and excretion, effective pharmacologic potency and lacking toxicity remains is a challenge. Inflammation is the initial trigger of several different diseases, such as Alzheimer's disease, asthma, atherosclerosis, colitis, rheumatoid arthritis, depression, cancer; and disorders such as obesity and sexual dysfunction. Although inflammation is not the direct cause of these disorders, inflammatory processes often increase related pain and suffering. New anti-inflammatory drugs developed using molecular hybridization techniques to obtain multiple-ligand drugs can act at one or multiple targets, allowing for synergic action and minimizing toxicity. This work is a review of new anti-inflammatory drugs developed using the molecular modification approach.

  17. Aminocarbonyl arylvinylbenzamides as gastric sparing anti-inflammatory agents.

    PubMed

    Khadse, Saurabh C; Talele, Gokul S; Agrawal, Surendra S

    2011-05-01

    Some (E/Z)-aminocarbonyl arylvinylbenzamides (B1-B15) were synthesized, evaluated for anti-inflammatory activity and ulcerogenic tendency, and their effect on gastro-intestinal motility in the rats was studied. These benzamides comprising of aliphatic unsaturated region situated between two amide linkages were synthesized by nucleophilic ring opening of appropriate azlactones (AZ1-AZ4) by suitable amines. The characterization of newly synthesized benzamides was performed by IR, (1)H- and (13)C-NMR, mass and elemental analysis. Amongst the tested compounds, benzamide B1, B2, B4, B5, and B13 were able to produce comparable or superior anti-inflammatory activity at 10 and 20 mg/kg p.o. dose with respect to standard diclofenac in carrageenan induced rat paw edema model with lessened propensity to cause gastro-intestinal hypermotility and were found to have nil tendencies to generate gastric ulcers.

  18. Antibiotic and anti-inflammatory therapies for cystic fibrosis.

    PubMed

    Chmiel, James F; Konstan, Michael W; Elborn, J Stuart

    2013-10-01

    Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from <6 mo in 1940 to >38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed.

  19. Pharmacology in rehabilitation: nonsteroidal anti-inflammatory agents.

    PubMed

    Biederman, Ross E

    2005-06-01

    Nonsteroidal anti-inflammatory agents (NSAIDs) are the most commonly encountered over-the-counter (OTC) and prescription medications in physical therapy practice. Worldwide, over 73000000 prescriptions for nonsteroidal agents are written yearly. NSAIDs produce a wide range of beneficial effects to the physical therapy patient, enhancing the outcome of treatment. Helpful effects of NSAIDs include analgesia, antipyretic, anti-inflammatory, and antithrombotic properties. However, NSAIDs are also associated with frequent and significant side effects that are deleterious to treatment outcome, including delay in soft tissue and bone healing, renal and liver toxicity, hemorrhagic events, gastric irritation and ulceration, and central nervous system effects. Understanding of the pharmacological properties of these drugs, exemplified by aspirin, and the individual pharmacokinetics of specific preparations will help the therapist to screen patients for potential side effects, develop more effective plans of care, and, where allowed, effectively and safely prescribe NSAIDs.

  20. Constituents from Vigna vexillata and Their Anti-Inflammatory Activity

    PubMed Central

    Leu, Yann-Lii; Hwang, Tsong-Long; Kuo, Ping-Chung; Liou, Kun-Pei; Huang, Bow-Shin; Chen, Guo-Feng

    2012-01-01

    The seeds of Vigna genus are important food resources and there have already been many reports regarding their bioactivities. In our preliminary bioassay, the chloroform layer of methanol extracts of V. vexillata demonstrated significant anti-inflammatory bioactivity. Therefore, the present research is aimed to purify and identify the anti-inflammatory principles of V. vexillata. One new sterol (1) and two new isoflavones (2,3) were reported from the natural sources for the first time and their chemical structures were determined by the spectroscopic and mass spectrometric analyses. In addition, 37 known compounds were identified by comparison of their physical and spectroscopic data with those reported in the literature. Among the isolates, daidzein (23), abscisic acid (25), and quercetin (40) displayed the most significant inhibition of superoxide anion generation and elastase release. PMID:22949828

  1. Anti-inflammatory activity of arctigenin from Forsythiae Fructus.

    PubMed

    Kang, Hyo Sook; Lee, Ji Yun; Kim, Chang Jong

    2008-03-01

    Oleaceae Forsythiae Fructus has been used for anti-inflammatory, diuretics, antidote, and antibacterials in traditional herbal medicine. Our previous screening of medicinal plants showed that methanol (MeOH) extract of Forsythiae Fructus had significant anti-inflammatory activity, but the active ingredients remain unclear. For isolation of active ingredient of MeOH extract of Forsythiae Fructus, it was partitioned with n-hexane and ethylacetate (EtOAc), and arctigenin was isolated from EtOAc fraction by column chromatography with anti-inflammatory activity-guided separation. Its activity was evaluated in the animal models of inflammation including myeloperoxidase (MPO) and eosinophil peroxidase (EPO) activities in the edematous tissues homogenate, and silica-induced reactive oxygen species (ROS) production in the RAW 264.7 cell line. It was shown that arctigenin (100 mg/kg) had significantly decreased not only carrageenan-induced paw edema 3 and 4h after injection of carrageenan, arachidonic acid (AA)-induced ear edema at a painting dose of 0.1-1.0mg/ear, and acetic acid-induced writhing response and acetic acid-induced capillary permeability accentuation at an oral dose of 25-100, and 100 mg/kg, respectively, but also MPO and EPO activities at a painting dose of 0.1-1.0mg/ear in the AA-induced edematous tissues homogenate as indicators of neutrophils and eosinophils recruitment into the inflamed tissue. Further, arctigenin (0.1-10 microM) also significantly inhibited the intracellular ROS production by silica. These results indicate that arctigenin is a bioactive agent of Forsythiae Fructus having significant anti-inflammatory action by inhibition of the exudation, and leukocytes recruitment into the inflamed tissues. The pharmacologic mechanism of action of arctigenin may be due to the inhibition of release/production of inflammatory mediators such as AA metabolites and free radicals.

  2. Anti-inflammatory activity of mycelial extracts from medicinal mushrooms.

    PubMed

    Geng, Yan; Zhu, Shuiling; Lu, Zhenming; Xu, Hongyu; Shi, Jin-Song; Xu, Zheng-Hong

    2014-01-01

    Medicinal mushrooms have been essential components of traditional Chinese herbal medicines for thousands of years, and they protect against diverse health-related conditions. The components responsible for their anti-inflammatory activity have yet to be fully studied. This study investigates the anti-inflammatory activity of n-hexane, chloroform, ethyl acetate, and methanol extracts of mycelia in submerged culture from 5 commercially available medicinal mushrooms, namely Cephalosporium sinensis, Cordyceps mortierella, Hericium erinaceus, Ganoderma lucidum, and Armillaria mellea. MTT colorimetric assay was applied to measure the cytotoxic effects of different extracts. Their anti-inflammatory activities were evaluated via inhibition against production of lipopolysaccharide (LPS)-induced nitric oxide (NO) in murine macrophage-like cell line RAW264.7 cells. Of the 20 extracts, n-hexane, chloroform, ethyl acetate, and methanol extracts from C. sinensis, C. mortierella, and G. lucidum; chloroform extracts from H. erinaceus and A. mellea; and ethyl acetate extracts from A. mellea at nontoxic concentrations (<300 μg/mL) dose-dependently inhibited LPS-induced NO production. Among them, the chloroform extract from G. lucidum was the most effective inhibitor, with the lowest half maximal inhibitory concentration (64.09 ± 6.29 μg/mL) of the LPS-induced NO production. These results indicate that extracts from medicinal mushrooms exhibited anti-inflammatory activity that might be attributable to the inhibition of NO generation and can therefore be considered a useful therapeutic and preventive approach to various inflammation-related diseases.

  3. Mechanisms of nonsteroidal anti-inflammatory drugs in cancer prevention.

    PubMed

    Umar, Asad; Steele, Vernon E; Menter, David G; Hawk, Ernest T

    2016-02-01

    Various clinical and epidemiologic studies show that nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin and cyclooxygenase inhibitors (COXIBs) help prevent cancer. Since eicosanoid metabolism is the main inhibitory targets of these drugs the resulting molecular and biological impact is generally accepted. As our knowledge base and technology progress we are learning that additional targets may be involved. This review attempts to summarize these new developments in the field. PMID:26970125

  4. Hepatoprotective and anti-inflammatory activities of Plantago major L

    PubMed Central

    Türel, Idris; Özbek, Hanefi; Erten, Remzi; Öner, Ahmet Cihat; Cengiz, Nureddin; Yilmaz, Orhan

    2009-01-01

    Objective: The aim of this study was to investigate anti-inflammatory and hepatoprotective activities of Plantago major L. (PM). Materials and Methods: Anti-inflammatory activity: Control and reference groups were administered isotonic saline solution (ISS) and indomethacin, respectively. Plantago major groups were injected PM in doses of 5 mg/kg (PM-I), 10 mg/kg (PM-II), 20 mg/kg (PM-III) and 25 mg/kg (PM-IV). Before and three hours after the injections, the volume of right hind-paw of rats was measured using a plethysmometer. Hepatoprotective Activity: The hepatotoxicity was induced by carbon tetrachloride (CCl4) administration. Control, CCl4 and reference groups received isotonic saline solution, CCl4 and silibinin, respectively. Plantago major groups received CCl4 (0.8 ml/kg) and PM in doses of 10, 20 and 25 mg/kg, respectively for seven days. Blood samples and liver were collected on the 8th day after the animals were killed. Results: Plantago major had an anti-inflammatory effect matching to that of control group at doses of 20 and 25 mg/kg. It was found that reduction in the inflammation was 90.01% with indomethacin, 3.10% with PM-I, 41.56% with PM-II, 45.87% with PM-III and 49.76% with PM-IV. Median effective dose (ED50) value of PM was found to be 7.507 mg/kg. Plantago major (25 mg/kg) significantly reduced the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels when compared to the CCl4 group. The histopathological findings showed a significant difference between the PM (25 mg/kg) and CCl4 groups. Conclusion: The results showed that PM had a considerable anti-inflammatory and hepatoprotective activities. PMID:20442819

  5. Anti-inflammatory drugs in psychiatry.

    PubMed

    Berthold-Losleben, Mark; Heitmann, Sabine; Himmerich, Hubertus

    2009-09-01

    Nervous and immune system interact through many different messenger substances such as neurotransmitters, cytokines or neuropeptides. For instance, neuropeptides are capable of affecting the metabolism of cells belonging to the immune system. Conversely, cytokines such as tumor necrosis factor (TNF)-alpha, interferon (IFN)-alpha and IFN-gamma, contribute to the receptor resistance of neuropeptides, reduce the availability of amino acids which are needed for the synthesis of neurotransmitters or show neurotoxic effects. Other cytokines like granulocyte-colony stimulating factor (G-CSF) may be highly attractive candidates for the treatment of neurodegenerative conditions. Cytokines are decisively involved in the pathophysiology of psychiatric disorders such as depression, schizophrenia or anorexia nervosa as well as in neurological, respectively neurodegenerative diseases like Parkinson's or Alzheimer's. This connection between the immune system and the pathogenesis of psychiatric disorders leads to the concept that immunomodulatory drugs which are already in use for various diseases related to the immune system may also be efficient in the treatment of psychiatric disorders. This article is supposed to give an overview over the current concepts and possibilities since hopefully these hypotheses lead to new therapeutical strategies for psychiatric patients in the future.

  6. Consumption of high-dose vitamin C (1250 mg per day) enhances functional and structural properties of serum lipoprotein to improve anti-oxidant, anti-atherosclerotic, and anti-aging effects via regulation of anti-inflammatory microRNA.

    PubMed

    Kim, Seong-Min; Lim, So-Mang; Yoo, Jeong-Ah; Woo, Moon-Jea; Cho, Kyung-Hyun

    2015-11-01

    Background Although the health effects of vitamin C are well known, its physiological effect on serum lipoproteins and microRNA still remain to be investigated, especially daily consumption of a high dosage. Objectives To investigate the physiological effect of vitamin C on serum lipoprotein metabolism in terms of its anti-oxidant and anti-glycation activities, and gene expression via microRNA regulation. Methods We analyzed blood parameters and lipoprotein parameters in young subjects (n = 46, 22 ± 2 years old) including smokers who consumed a high dose of vitamin C (1250 mg) daily for 8 weeks. Results Antioxidant activity of serum was enhanced with the elevation of Vit C content in plasma during 8 weeks consumption. In the LDL fraction, the apo-B48 band disappeared at 8 weeks post-consumption in all subjects. In the HDL fraction, apoA-I expression was enhanced by 20% at 8 weeks, especially in male smokers. In the lipoprotein fraction, all subjects showed significantly reduced contents of advanced glycated end products and reactive oxygen species (ROS). Triglyceride (TG) contents in each LDL and HDL fraction were significantly reduced in all groups following the Vit C consumption, suggesting that the lipoprotein was changed to be more anti-inflammatory and atherogenic properties. Phagocytosis of LDL, which was purified from each individual, into macrophages was significantly reduced at 8-weeks post-consumption of vitamin C. Anti-inflammatory and anti-senescence effects of HDL from all subjects were enhanced after the 8-weeks consumption. The expression level of microRNA 155 in HDL3 was reduced by 49% and 75% in non-smokers and smokers, respectively. Conclusion The daily consumption of a high dose of vitamin C for 8 weeks resulted in enhanced anti-senescence and anti-atherosclerotic effects via an improvement of lipoprotein parameters and microRNA expression through anti-oxidation and anti-glycation, especially in smokers.

  7. Anti-Inflammatory Activity and Composition of Senecio salignus Kunth

    PubMed Central

    Pérez González, Cuauhtemoc; Serrano Vega, Roberto; González-Chávez, Marco; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 ± 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9 ± 2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h. PMID:23691512

  8. Anti-inflammatory activity of traditional Chinese medicinal herbs

    PubMed Central

    Pan, Min-Hsiung; Chiou, Yi-Shiou; Tsai, Mei-Ling; Ho, Chi-Tang

    2011-01-01

    Accumulating epidemiological and clinical evidence shows that inflammation is an important risk factor for various human diseases. Thus, suppressing chronic inflammation has the potential to delay, prevent, and control various chronic diseases, including cerebrovascular, cardiovascular, joint, skin, pulmonary, blood, lymph, liver, pancreatic, and intestinal diseases. Various natural products from traditional Chinese medicine (TCM) have been shown to safely suppress proinflammatory pathways and control inflammation-associated disease. In vivo and/or in vitro studies have demonstrated that anti-inflammatory effects of TCM occur by inhibition of the expression of master transcription factors (for example, nuclear factor-κB (NF-κB)), pro-inflammatory cytokines (for example, tumor necrosis factor-α (TNF-α), chemokines (for example, chemokine (C-C motif) ligand (CCL)-24), intercellular adhesion molecule expression and pro-inflammatory mediators (for example, inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2)). However, a handful of review articles have focused on the anti-inflammatory activities of TCM and explore their possible mechanisms of action. In this review, we summarize recent research attempting to identify the anti-inflammatory constituents of TCM and their molecular targets that may create new opportunities for innovation in modern pharmacology. PMID:24716101

  9. Anti-inflammatory activity and chemical profile of Galphimia glauca.

    PubMed

    González-Cortazar, Manasés; Herrera-Ruiz, Maribel; Zamilpa, Alejandro; Jiménez-Ferrer, Enrique; Marquina, Silvia; Alvarez, Laura; Tortoriello, Jaime

    2014-01-01

    Galphimia glauca, commonly known as "flor de estrella", is a plant species used in Mexican traditional medicine for the treatment of different diseases that have an acute or chronic inflammatory process in common. Aerial parts of this plant contain nor-seco-triterpenoids with anxiolytic properties, which have been denominated galphimines. Other compounds identified in the plant are tetragalloyl-quinic acid, gallic acid, and quercetin, which are able to inhibit the bronchial obstruction induced by platelet-activating factor. The objective of this work was to evaluate the anti-inflammatory effect of crude extracts from G. glauca and, by means of bioguided chemical separation, to identify the compounds responsible for this pharmacological activity. n-Hexane, ethyl acetate, dichloromethane, and methanol extracts showed an important anti-inflammatory effect. Chemical separation of the active methanol extract allowed us to identify the nor-seco-triterpenes galphimine-A (1) and galphimine-E (3) as the anti-inflammatory principles. Analysis of structure-activity relationships evidenced that the presence of an oxygenated function in C6 is absolutely necessary to show activity. In this work, the isolation and structural elucidation of two new nor-seco-triterpenes denominated as galphimine-K (4) and galphimine-L (5), together with different alkanes, fatty acids, as well as three flavonoids (17-19), are described, to our knowledge for the first time, from Galphimia glauca.

  10. Anti-inflammatory properties of pterocarpanquinone LQB-118 in mice.

    PubMed

    Riça, Ingred G; Netto, Chaquip D; Rennó, Magdalena N; Abreu, Paula A; Costa, Paulo R R; da Silva, Alcides J M; Cavalcante, Moisés C M

    2016-09-15

    Pterocarpanquinone (+/-)-LQB-118 presents antineoplastic and antiparasitic properties and also shows great inhibitory effect on TNF-α release in vitro. Here, its anti-inflammatory activity was evaluated in a lipopolysaccharide (LPS)-induced lung inflammation model in C57BL/6 mice. LPS inhalation induced a marked neutrophil infiltration to the lungs which was reduced by intraperitoneal treatment with (+/-)-LQB-118 in a similar manner to that of dexamethasone and even better than that of acetylsalicylic acid. Moreover, (+/-)-LQB-118 administration resulted in decrease of NF-κB activation and KC level in lungs, with a pronounced inhibitory effect on TNF-α release, measured in bronchoalveolar lavage fluid. Trying to understand the anti-inflammatory mechanism by which (+/-)-LQB-118 acts, we performed a molecular modeling analysis, including docking to estrogen receptors α and β. Results suggested that (+/-)-LQB-118 may bind to both receptors, with a similar orientation to 17-β-estradiol. Together, these results showed that (+/-)-LQB-118 exhibits an anti-inflammatory effect, most likely by inhibiting TNF-α release and NF-κB activation, which may be related to the estrogen receptor binding.

  11. Anti-inflammatory properties of pterocarpanquinone LQB-118 in mice.

    PubMed

    Riça, Ingred G; Netto, Chaquip D; Rennó, Magdalena N; Abreu, Paula A; Costa, Paulo R R; da Silva, Alcides J M; Cavalcante, Moisés C M

    2016-09-15

    Pterocarpanquinone (+/-)-LQB-118 presents antineoplastic and antiparasitic properties and also shows great inhibitory effect on TNF-α release in vitro. Here, its anti-inflammatory activity was evaluated in a lipopolysaccharide (LPS)-induced lung inflammation model in C57BL/6 mice. LPS inhalation induced a marked neutrophil infiltration to the lungs which was reduced by intraperitoneal treatment with (+/-)-LQB-118 in a similar manner to that of dexamethasone and even better than that of acetylsalicylic acid. Moreover, (+/-)-LQB-118 administration resulted in decrease of NF-κB activation and KC level in lungs, with a pronounced inhibitory effect on TNF-α release, measured in bronchoalveolar lavage fluid. Trying to understand the anti-inflammatory mechanism by which (+/-)-LQB-118 acts, we performed a molecular modeling analysis, including docking to estrogen receptors α and β. Results suggested that (+/-)-LQB-118 may bind to both receptors, with a similar orientation to 17-β-estradiol. Together, these results showed that (+/-)-LQB-118 exhibits an anti-inflammatory effect, most likely by inhibiting TNF-α release and NF-κB activation, which may be related to the estrogen receptor binding. PMID:27492193

  12. Purification and characterization of an acid amidase selective for N-palmitoylethanolamine, a putative endogenous anti-inflammatory substance.

    PubMed

    Ueda, N; Yamanaka, K; Yamamoto, S

    2001-09-21

    N-Arachidonoylethanolamine (anandamide) is cannabimimetic, and N-palmitoylethanolamine is anti-inflammatory and immunosuppressive. We found an amidase that is more active with the latter than the former in contrast to the previously known anandamide amidohydrolase for which N-palmitoylethanolamine is a poor substrate. Proteins solubilized by freezing and thawing from the 12,000 x g pellet of various rat organs hydrolyzed [(14)C]N-palmitoylethanolamine to palmitic acid and ethanolamine. The specific enzyme activity was higher in the order of lung > spleen > small intestine > thymus > cecum, and high activity was found in peritoneal and alveolar macrophages. The enzyme with a molecular mass of 31 kDa was purified from rat lung to a specific activity of 1.8 micromol/min/mg protein. Relative reactivities of the enzyme with various N-acylethanolamines (100 microm) were as follows: N-palmitoylethanolamine, 100%; N-myristoylethanolamine, 48%; N-stearoylethanolamine, 21%; N-oleoylethanolamine, 20%; N-linoleoylethanolamine, 13%; anandamide, 8%. The enzyme was the most active at pH 5 and was activated 7-fold by Triton X-100. The enzyme was almost insensitive to methyl arachidonyl fluorophosphonate, which inhibited anandamide amidohydrolase potently. Thus, the new enzyme referred to as N-palmitoylethanolamine hydrolase was clearly distinguishable from anandamide amidohydrolase.

  13. Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species

    NASA Astrophysics Data System (ADS)

    El-Rafie, Hanaa Mohamed; Abdel-Aziz Hamed, Manal

    2014-09-01

    The environmentally friendly synthesis of nanoparticles process is a revolutionary step in the field of nanotechnology. In recent years plant mediated biological synthesis of nanoparticles has been gaining importance due to its simplicity and eco-friendliness. In this study, a simple and an efficient eco-friendly approach for the biosynthesis of stable, monodisperse silver nanoparticles using aqueous extracts of four Terminalia species, namely, Terminalia catappa, Terminalia mellueri, Terminalia bentazoe and Terminalia bellerica were described. The silver nanoparticles were characterized in terms of synthesis, capping functionalities (polysaccharides, phenolics and flavonoidal compounds) and microscopic evaluation by UV-visible spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. The results showed a simple and feasible approach for obtaining stable aqueous monodispersive silver nanoparticles. Furthermore, biological activity of the biosynthesized silver nanoparticles was examined. Concerning this, dose-dependent antioxidant activity of silver nanoparticles imparted by the plant phenolic and flavonoidal components was evaluated using in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and found to be comparable to standard ascorbic acid. The same holds true for the anti-inflammatory activity where Terminalia catappa and Terminalia mellueri have a high-test inhibition percentage better than that of ascorbic acid in the carrageenan induced hind paw edema. The results also revealed that the aqueous extract of Terminallia catapa and its silver nanoparticles recorded the most potent in vivo antioxidant effect.

  14. Structure-based design, synthesis and preliminary anti-inflammatory activity of bolinaquinone analogues.

    PubMed

    Petronzi, Carmen; Filosa, Rosanna; Peduto, Antonella; Monti, Maria Chiara; Margarucci, Luigi; Massa, Antonio; Ercolino, Simona Francesca; Bizzarro, Valentina; Parente, Luca; Riccio, Raffaele; de Caprariis, Paolo

    2011-02-01

    As a part of our drug discovery efforts we developed a series of simplified derivatives of bolinaquinone (BLQ), a hydroxyquinone marine metabolite, showing potent anti-inflammatory activity. Thirteen new hydroxyquinone derivatives closely related to BLQ were synthesized and tested on mouse macrophage-like RAW 264.7 cell line in order to investigate their ability to modulate the production of Prostaglandin E2 (PGE2). This optimization process led to the identification of three strictly correlated compounds with comparable and higher inhibitory potency than BLQ on PGE2 production. To evaluate the affinity of BLQ and its analogues for hsPLA2, surface plasmon resonance (SPR) experiments were performed. PMID:21163556

  15. AGN 190383, a novel phospholipase inhibitor with topical anti-inflammatory activity.

    PubMed

    De Vries, G W; Lee, G; Amdahl, L; Wenzel, M; Garst, M; Wheeler, L A

    1991-09-01

    AGN 190383 is a 5-hydroxy-2(5H)-furanone ring analog of the marine natural product manoalide. When applied topically, AGN 190383 inhibits phorbol ester induced mouse ear edema. It is a potent inhibitor of bee venom phospholipase A2 and blocks the release of arachidonic acid from calcium ionophore A23187 stimulated human neutrophils. AGN 190383 also inhibits both hormone-operated and depolarization-dependent calcium mobilization in GH3 cells, as well as fMLP stimulated increases in free cytosolic calcium in human PMNs. Furthermore, it is also able to block the release of the neutral protease elastase from stimulated neutrophils. The effects of AGN 190383 on arachidonic acid metabolism and leukocyte function may account, in part, for its anti-inflammatory activity in vivo.

  16. Antiproliferative and anti-inflammatory polyhydroxylated spirostanol saponins from Tupistra chinensis

    PubMed Central

    Xiang, Limin; Yi, Xiaomin; Wang, Yihai; He, Xiangjiu

    2016-01-01

    Tupistra chinensis is widely distributed in southwestern China and its rhizome is a famous folk medicine for the treatment of carbuncles and pharyngitis. Its chemical identity of potent antiproliferative and anti-inflammatory constituents has been carried out in this study. Twenty-three polyhydroxylated spirostanol saponins, including nine novels, were isolated and identified. The new spirostanol saponins were elucidated as spirost-25(27)-en-1β,2β,3β,4β,5β-pentol-2-O-β-D-xylopyranoside (1), spirost-25(27)- en-1β,2β,3β,4β,5β-pentol-2-O-α-L-arabinopyranoside (2), spirost-25(27)-en- 1β,3α,5β-triol (12), spirost-25(27)-en-1β,3α,4β,5β,6β-pentol (13), spirost-25(27)-en- 1β,2β,3β,5β-tetraol-5-O-β-D-glucopyranoside (16), 5β-spirost-25(27)-en-1β,3β-diol- 3-O-β-D-glucopyranosyl-(1 → 4)-β-D-glucopyranoside (17), (25R)-5β-spirostan- 1β,3β-diol-3-O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranoside (18), (25R)-5β- spirostan-1β,3β-diol-3-O-β-D-fructofuranosyl-(2 → 6)-β-D-glucopyranoside (19), 5β-spirost-25(27)-en-3β-ol-3-O-β-D-glucopyranosyl-(1 → 4)-β-D-glucopyranoside (20). The antiproliferative effects against seven human cancer cell lines and inhibitory activities on nitric oxide (NO) production induced by lipopolysaccharide (LPS) in a macrophage cell line RAW 264.7 were assayed for all the isolated compounds. Compounds 17, 19 and 21 exhibited potential antiproliferative activities against all of human cancer cell lines tested. Compounds 21 showed significant inhibition on NO production with IC50 values of 11.5 μM. These results showed that the spirostanol saponins isolated from the dried rhizomes of T. chinensis have potent antiproliferative and anti-inflammatory activities and T. chinensis might be used as anticancer and.anti-inflammatory supplement. PMID:27530890

  17. Antiproliferative and anti-inflammatory polyhydroxylated spirostanol saponins from Tupistra chinensis.

    PubMed

    Xiang, Limin; Yi, Xiaomin; Wang, Yihai; He, Xiangjiu

    2016-01-01

    Tupistra chinensis is widely distributed in southwestern China and its rhizome is a famous folk medicine for the treatment of carbuncles and pharyngitis. Its chemical identity of potent antiproliferative and anti-inflammatory constituents has been carried out in this study. Twenty-three polyhydroxylated spirostanol saponins, including nine novels, were isolated and identified. The new spirostanol saponins were elucidated as spirost-25(27)-en-1β,2β,3β,4β,5β-pentol-2-O-β-D-xylopyranoside (1), spirost-25(27)- en-1β,2β,3β,4β,5β-pentol-2-O-α-L-arabinopyranoside (2), spirost-25(27)-en- 1β,3α,5β-triol (12), spirost-25(27)-en-1β,3α,4β,5β,6β-pentol (13), spirost-25(27)-en- 1β,2β,3β,5β-tetraol-5-O-β-D-glucopyranoside (16), 5β-spirost-25(27)-en-1β,3β-diol- 3-O-β-D-glucopyranosyl-(1 → 4)-β-D-glucopyranoside (17), (25R)-5β-spirostan- 1β,3β-diol-3-O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranoside (18), (25R)-5β- spirostan-1β,3β-diol-3-O-β-D-fructofuranosyl-(2 → 6)-β-D-glucopyranoside (19), 5β-spirost-25(27)-en-3β-ol-3-O-β-D-glucopyranosyl-(1 → 4)-β-D-glucopyranoside (20). The antiproliferative effects against seven human cancer cell lines and inhibitory activities on nitric oxide (NO) production induced by lipopolysaccharide (LPS) in a macrophage cell line RAW 264.7 were assayed for all the isolated compounds. Compounds 17, 19 and 21 exhibited potential antiproliferative activities against all of human cancer cell lines tested. Compounds 21 showed significant inhibition on NO production with IC50 values of 11.5 μM. These results showed that the spirostanol saponins isolated from the dried rhizomes of T. chinensis have potent antiproliferative and anti-inflammatory activities and T. chinensis might be used as anticancer and.anti-inflammatory supplement. PMID:27530890

  18. Role of lipoxins and resolvins as anti-inflammatory and proresolving mediators in colon cancer.

    PubMed

    Janakiram, Naveena B; Rao, Chinthalapally V

    2009-06-01

    Recently, lipoxins (LXs) and resolvins (Rvs) have become the topic of intense interest because of expanding views of their action, particularly in chronic disorders where unresolved inflammation is a key factor leading to colon carcinogenesis. Rvs are biosynthesized from omega-3 fatty acids eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA) via cyclooxygenase-2/lipoxygenase (COX-2/LOX) pathways; Rvs are shown to dramatically reduce dermal inflammation, peritonitis, dendritic cell migration, and interleukin production. This explains that dietary supplementation of omega-3 fatty acids generates potent local endogenous mediators that control inflammation. LXs are biosynthesized from COX-2/LOX pathways. Metabolites of 15-LOX-1 and 2 are anti-tumorigenic; similarly, 15-epi-LXA(4) synthesized during COX-2 acetylation by low doses of aspirin too possesses anti-tumorigenic effects. Acetylating nonsteroidal anti-inflammatory drugs (NSAIDs), like aspirin, switches COX-2 from forming PGE(2) (promoting tumorigenesis) to 15-epi-LXA(4) (antitumorigenesis). LXs and Rvs are endogenously generated during the spontaneous resolution phase. These newly identified LXs and Rvs have proved to be potent regulators of both leukocytes and cytokine productions, thereby regulating the events of interest in inflammation and resolution. In light of existing knowledge on interconnected pathways of pro-inflammatory mediators (leukotrienes, chemokines (IL8, SDF-1 alpha, MIP-1 alpha, MCP-1,2 etc), and cytokines (IL3, IL6, IL12, IL-1 beta, GM-CSF, B94, TNF-alpha etc)), the anti-inflammatory properties of pro-resolving mediators in preventing chronic inflammation which leads to carcinogenesis needs further understanding. In this review, we explore the mechanisms that trigger formation of LXs and Rvs, to highlight the relative importance of LXs and Rvs in carcinogenesis in relation to pro-inflammatory mediators. PMID:19601807

  19. Interactions between inflammation and lipid metabolism: relevance for efficacy of anti-inflammatory drugs in the treatment of atherosclerosis.

    PubMed

    van Diepen, Janna A; Berbée, Jimmy F P; Havekes, Louis M; Rensen, Patrick C N

    2013-06-01

    Dyslipidemia and inflammation are well known causal risk factors the development of atherosclerosis. The interplay between lipid metabolism and inflammation at multiple levels in metabolic active tissues may exacerbate the development of atherosclerosis, and will be discussed in this review. Cholesterol, fatty acids and modified lipids can directly activate inflammatory pathways. In addition, circulating (modified) lipoproteins modulate the activity of leukocytes. Vice versa, proinflammatory signaling (i.e. cytokines) in pre-clinical models directly affects lipid metabolism. Whereas the main lipid-lowering drugs all have potent anti-inflammatory actions, the lipid-modulating actions of anti-inflammatory agents appear to be less straightforward. The latter have mainly been evaluated in pre-clinical models and in patients with chronic inflammatory diseases, which will be discussed. The clinical trials that are currently conducted to evaluate the efficacy of anti-inflammatory agents in the treatment of cardiovascular diseases may additionally reveal potential (beneficial) effects of these therapeutics on lipid metabolism in the general population at risk for CVD.

  20. Improved antioxidant and anti-inflammatory potential in mice consuming sour cherry juice (Prunus Cerasus cv. Maraska).

    PubMed

    Sarić, Ana; Sobocanec, Sandra; Balog, Tihomir; Kusić, Borka; Sverko, Visnja; Dragović-Uzelac, Verica; Levaj, Branka; Cosić, Zrinka; Macak Safranko, Zeljka; Marotti, Tatjana

    2009-12-01

    The present investigation tested the in vivo antioxidant efficacy (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase; Gpx), lipid peroxidation (LPO) and anti-inflammatory properties (cyclooxygenase-2; COX-2) of sour cherry juices obtained from an autochthonous cultivar (Prunus cerasus cv. Maraska) that is grown in coastal parts of Croatia. Antioxidant potential was tested in mouse tissue (blood, liver, and brain), LPO (liver, brain) and anti-inflammatory properties in glycogen elicited macrophages. Additionally, the concentration of cyanidin-3-glucoside, cyanidin-3-rutinoside, pelargonidin-3-glucoside, pelargonidin-3-rutinoside and total anthocyanins present in Prunus cerasus cv. Maraska cherry juice was determined. Mice were randomly divided into a control group (fed with commercial food pellets) and 2 experimental groups (fed with commercial food pellets with 10% or 50% of cherry juice added). Among the anthocyanins, the cyanidin-3-glucoside was present in the highest concentration. These results show antioxidant action of cherry juice through increased SOD (liver, blood) and Gpx (liver) activity and decreased LPO concentration. The study highlights cherry juice as a potent COX-2 inhibitor and antioxidant in the liver and blood of mice, but not in the brain. Thus, according to our study, Prunus cerasus cv. Maraska cherry juice might potentially be used as an antioxidant and anti-inflammatory product with beneficial health-promoting properties. PMID:19763832

  1. Antinociceptive and anti-inflammatory activities of the essential oil of Nepeta crispa Willd. in experimental rat models.

    PubMed

    Ali, Taskina; Javan, Mohammad; Sonboli, Ali; Semnanian, Saeed

    2012-01-01

    This study was conducted to evaluate the antinociceptive and anti-inflammatory activities of the essential oil of Nepeta crispa. The study was done using the tail-flick and formalin test pain models and the paw oedema model of inflammation. Male Wistar rats were used as the animal model. The essential oil dose-dependently produced analgesia in the acute pain models, including the tail-flick (p < 0.001) and the first phase of the formalin test (p < 0.01). In the late phase of the formalin test, as a model of chronic pain, the essential oil significantly reduced the pain-induced behaviour (p < 0.01). Nepeta crispa essential oil caused potent anti-inflammatory effects in the formalin-induced paw inflammation model and significantly reduced the paw oedema in all applied doses (p < 0.01). Its effects on pain in both the acute and chronic pain models and its anti-inflammatory effect suggest both central and peripheral mechanisms of action for the essential oil obtained from N. crispa.

  2. Antinociceptive and anti-inflammatory activities of the essential oil of Nepeta crispa Willd. in experimental rat models.

    PubMed

    Ali, Taskina; Javan, Mohammad; Sonboli, Ali; Semnanian, Saeed

    2012-01-01

    This study was conducted to evaluate the antinociceptive and anti-inflammatory activities of the essential oil of Nepeta crispa. The study was done using the tail-flick and formalin test pain models and the paw oedema model of inflammation. Male Wistar rats were used as the animal model. The essential oil dose-dependently produced analgesia in the acute pain models, including the tail-flick (p < 0.001) and the first phase of the formalin test (p < 0.01). In the late phase of the formalin test, as a model of chronic pain, the essential oil significantly reduced the pain-induced behaviour (p < 0.01). Nepeta crispa essential oil caused potent anti-inflammatory effects in the formalin-induced paw inflammation model and significantly reduced the paw oedema in all applied doses (p < 0.01). Its effects on pain in both the acute and chronic pain models and its anti-inflammatory effect suggest both central and peripheral mechanisms of action for the essential oil obtained from N. crispa. PMID:21981349

  3. Anti-inflammatory activity of flower extract of Calendula officinalis Linn. and its possible mechanism of action.

    PubMed

    Preethi, Korengath Chandran; Kuttan, Girija; Kuttan, Ramadasan

    2009-02-01

    Calendula officinalis flower extract possessed significant anti-inflammatory activity against carrageenan and dextran-induced acute paw edema. Oral administration of 250 and 500 mg/kg body weight Calendula extract produced significant inhibition (50.6 and 65.9% respectively) in paw edema of animals induced by carrageenan and 41.9 and 42.4% respectively with inflammation produced by dextran. In chronic anti-inflammatory model using formalin, administration of 250 and 500 mg/kg body weight Calendula extract produced an inhibition of 32.9 and 62.3% respectively compared to controls. TNF-alpha production by macrophage culture treated with lipopolysaccharide (LPS) was found to be significantly inhibited by Calendula extract. Moreover, increased levels of proinflammatory cytokines IL- 1beta, IL-6, TNF-alpha and IFN-gamma and acute phase protein, C- reactive protein (CRP) in mice produced by LPS injection were inhibited significantly by the extract. LPS induced cyclooxygenase-2 (Cox-2) levels in mice spleen were also found to be inhibited by extract treatment. The results showed that potent anti-inflammatory response of C. officinalis extract may be mediated by the inhibition of proinflammatory cytokines and Cox-2 and subsequent prostaglandin synthesis. PMID:19374166

  4. Isolation and Identification of a Flavone Apigenin from Marine Red Alga Acanthophora spicifera with Antinociceptive and Anti-Inflammatory Activities

    PubMed Central

    El Shoubaky, Gihan A.; Abdel-Daim, Mohamed M.; Mansour, Mohamed H.; Salem, Essam A.

    2016-01-01

    Physicochemical investigation of the red alga Acanthophora spicifera (Vahl) Borgesen, collected from Al-Shoaiba coast, Red Sea, Saudi Arabia, led to the isolation of a flavone from the algal tissue with acetone. Preparative chromatography on silica gel thin-layer chromatography was used for the separation of the flavone and eluted with the methanol:chloroform:ethyl acetate (1:7:2) solvent system. The physicochemical analyses infrared, mass spectra, and ultraviolet spectra in addition to shift reagents (NaOMe, NaOAc, NaOAc + H3BO3, AlCl3, and AlCl3 + HCl) were used for the identification and elucidation of the structure of the flavone compound (4,5,7-trihydroxy flavonoids). The flavone compound was identified as apigenin bycomparing its physicochemical data with those in the literature. Analgesic and anti-inflammatory activities of apigenin were evaluated. Apigenin showed promising analgesic and anti-inflammatory activities in the hot plate test and writhing test in mice as well as tail-immersion tests and carrageenan-induced paw edema and cotton pellet-induced granuloma formation in rats. It is concluded that apigenin possesses potent analgesic, anti-inflammatory, and antiproliferative activities, which might be due to the inhibition of PGE2 as well as proinflammatory cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor-α. PMID:26917974

  5. Biochemistry of prostaglandin endoperoxide H synthase-1 and synthase-2 and their differential susceptibility to nonsteroidal anti-inflammatory drugs.

    PubMed

    Smith, W L; DeWitt, D L

    1995-05-01

    The principal pharmacological effects of nonsteroidal anti-inflammatory drugs (NSAIDs) are due to their ability to inhibit prostaglandin synthesis. NSAIDs block the cyclooxygenase activities of the closely related PGH synthase-1 and PGH synthase-2 (PGHS-1 and PGHS-2) isozymes. NSAIDs are therapeutically useful due to their analgesic, anti-pyretic, anti-inflammatory, and anti-thrombogenic properties. Major side-effects of NSAIDs include their ulcerogenic and nephrotoxic activities. All clinically approved NSAIDs in general use today inhibit both PGHS-1 and PGHS-2. Recently, inhibitors have been identified that are selective toward PGHS-2 and that have potent analgesic and anti-inflammatory activities with minimal ulcerogenic activity. If the new PGHS-2 selective NSAIDs can effectively inhibit inflammatory prostaglandin synthesis by PGHS-2, without inhibiting PGHS-1 prostaglandin synthesis required to regulate sodium and water resorption, and renal blood flow, it is likely that these new drugs will also have significantly less renal toxicity than present-day NSAIDs. In this article, the mechanisms of actions of NSAIDs primarily at the biochemical level, including the reactions catalyzed by PGHSs, will be discussed. In addition, the biochemical properties of these isozymes, and the differential regulation of the PGHS-1 and PGHS-2 genes, will be examined. PMID:7631045

  6. [The application of Harpagophytum procumbens extract in anti-inflammatory preparations applied on skin produced on acrylic acid polymers base].

    PubMed

    Piechota-Urbańska, Magdalena; Kołodziejska, Justyna; Berner-Strzelczyk, Aneta

    2009-01-01

    An attempt was made to use dry standardized extract from Harpagophytum procumbens of confirmed anti-inflammatory activity in formulations applied on skin. To obtain synergy in the area of analgesic and anti-inflammatory activity formulations were produced containing plant extract and nonsteroidal anti-inflammatory drug (ketoprofen). All the preparations were prepared on the base of acrylic acid polymers (Carbopol Ultrez 10, Carbopol 980). The formulations were subjected to complementary physicochemical investigations. Viscosity parameters (structural viscosity, yield stress, thixotrophy) were determined with cone-plate digital rheometer. Potentiometric method was used to measure pH of the produced hydrogels. The test for ketoprofen pharmaceutical availability through a semipermeable membrane to acceptor fluid was performed in vitro. The rate of the process of release was tested by determining the quantity of the therapeutic agent diffusing into acceptor fluid at defined time intervals by spectrophotometric method. The effect of Harpagophytum procumbens extract components on ketoprofen diffusion was estimated. Viscosity tests revealed that all the formulations are viscoelastic systems having yield stress. All model formulations were tested 24h after production and after 6-month storage. All the formulations demonstrate rheological stability and high pharmaceutical availability of ketoprofen. The suggested formulations can be an alternative for market preparations applied on skin of anti-inflammatory and analgesic activity. PMID:19873929

  7. Comparison of Anti-Oxidant and Anti-Inflammatory Effects between Fresh and Aged Black Garlic Extracts.

    PubMed

    Jeong, Yi Yeong; Ryu, Ji Hyeon; Shin, Jung-Hye; Kang, Min Jung; Kang, Jae Ran; Han, Jaehee; Kang, Dawon

    2016-01-01

    Numerous studies have demonstrated that aged black garlic (ABG) has strong anti-oxidant activity. Little is known however regarding the anti-inflammatory activity of ABG. This study was performed to identify and compare the anti-oxidant and anti-inflammatory effects of ABG extract (ABGE) with those of fresh raw garlic (FRG) extract (FRGE). In addition, we investigated which components are responsible for the observed effects. Hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) were used as a pro-oxidant and pro-inflammatory stressor, respectively. ABGE showed high ABTS and DPPH radical scavenging activities and low ROS generation in RAW264.7 cells compared with FRGE. However, inhibition of cyclooxygenase-2 and 5-lipooxygenase activities by FRGE was stronger than that by ABGE. FRGE reduced PGE₂, NO, IL-6, IL-1β, LTD₄, and LTE₄ production in LPS-activated RAW264.7 cells more than did ABGE. The combination of FRGE and sugar (galactose, glucose, fructose, or sucrose), which is more abundant in ABGE than in FRGE, decreased the anti-inflammatory activity compared with FRGE. FRGE-induced inhibition of NF-κB activation and pro-inflammatory gene expression was blocked by combination with sugars. The lower anti-inflammatory activity in ABGE than FRGE could result from the presence of sugars. Our results suggest that ABGE might be helpful for the treatment of diseases mediated predominantly by ROS. PMID:27043510

  8. Comparison of Anti-Oxidant and Anti-Inflammatory Effects between Fresh and Aged Black Garlic Extracts.

    PubMed

    Jeong, Yi Yeong; Ryu, Ji Hyeon; Shin, Jung-Hye; Kang, Min Jung; Kang, Jae Ran; Han, Jaehee; Kang, Dawon

    2016-01-01

    Numerous studies have demonstrated that aged black garlic (ABG) has strong anti-oxidant activity. Little is known however regarding the anti-inflammatory activity of ABG. This study was performed to identify and compare the anti-oxidant and anti-inflammatory effects of ABG extract (ABGE) with those of fresh raw garlic (FRG) extract (FRGE). In addition, we investigated which components are responsible for the observed effects. Hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) were used as a pro-oxidant and pro-inflammatory stressor, respectively. ABGE showed high ABTS and DPPH radical scavenging activities and low ROS generation in RAW264.7 cells compared with FRGE. However, inhibition of cyclooxygenase-2 and 5-lipooxygenase activities by FRGE was stronger than that by ABGE. FRGE reduced PGE₂, NO, IL-6, IL-1β, LTD₄, and LTE₄ production in LPS-activated RAW264.7 cells more than did ABGE. The combination of FRGE and sugar (galactose, glucose, fructose, or sucrose), which is more abundant in ABGE than in FRGE, decreased the anti-inflammatory activity compared with FRGE. FRGE-induced inhibition of NF-κB activation and pro-inflammatory gene expression was blocked by combination with sugars. The lower anti-inflammatory activity in ABGE than FRGE could result from the presence of sugars. Our results suggest that ABGE might be helpful for the treatment of diseases mediated predominantly by ROS.

  9. Pten deletion in RIP-Cre neurons protects against type 2 diabetes by activating the anti-inflammatory reflex.

    PubMed

    Wang, Linyuan; Opland, Darren; Tsai, Sue; Luk, Cynthia T; Schroer, Stephanie A; Allison, Margaret B; Elia, Andrew J; Furlonger, Caren; Suzuki, Akira; Paige, Christopher J; Mak, Tak W; Winer, Daniel A; Myers, Martin G; Woo, Minna

    2014-05-01

    Inflammation has a critical role in the development of insulin resistance. Recent evidence points to a contribution by the central nervous system in the modulation of peripheral inflammation through the anti-inflammatory reflex. However, the importance of this phenomenon remains elusive in type 2 diabetes pathogenesis. Here we show that rat insulin-2 promoter (Rip)-mediated deletion of Pten, a gene encoding a negative regulator of PI3K signaling, led to activation of the cholinergic anti-inflammatory pathway that is mediated by M2 activated macrophages in peripheral tissues. As such, Rip-cre(+) Pten(flox/flox) mice showed lower systemic inflammation and greater insulin sensitivity under basal conditions compared to littermate controls, which were abolished when the mice were treated with an acetylcholine receptor antagonist or when macrophages were depleted. After feeding with a high-fat diet, the Pten-deleted mice remained markedly insulin sensitive, which correlated with massive subcutaneous fat expansion. They also exhibited more adipogenesis with M2 macrophage infiltration, both of which were abolished after disruption of the anti-inflammatory efferent pathway by left vagotomy. In summary, we show that Pten expression in Rip(+) neurons has a critical role in diabetes pathogenesis through mediating the anti-inflammatory reflex.

  10. Investigation of heat treating conditions for enhancing the anti-inflammatory activity of citrus fruit (Citrus reticulata) peels.

    PubMed

    Ho, Su-Chen; Lin, Chih-Cheng

    2008-09-10

    In traditional Chinese medicine, dried citrus fruit peels are widely used as remedies to alleviate coughs and reduce phlegm in the respiratory tract. Induction of inducible nitric oxide synthase (iNOS) in inflammatory cells and increased airway production of nitric oxide (NO) are well recognized as key events in inflammation-related respiratory tract diseases. Despite the fact that the enhancing effect of heat treatment on the antioxidant activity of citrus fruit peels has been well documented, the impact of heat treatment on citrus peel beneficial activities regarding anti-inflammation is unclear. To address this issue, we determined the anti-inflammatory activities of heat-treated citrus peel extracts by measuring their inhibitory effect upon NO production by lipopolysaccharide-activated RAW 264.7 macrophages. Results showed that the anti-inflammatory activity of citrus peel was significantly elevated after 100 degrees C heat treatment in a time-dependent fashion during a period from 0 to 120 min. Inhibition of iNOS gene expression was the major NO-suppressing mechanism of the citrus peel extract. Additionally, the anti-inflammatory activity of citrus peel extract highly correlated with the content of nobiletin and tangeretin. Conclusively, proper and reasonable heat treatment helped to release nobiletin and tangeretin, which were responsible for the increased anti-inflammatory activity of heat-treated citrus peels. PMID:18683945

  11. Antioxidant and anti-inflammatory activities of selected medicinal plants and fungi containing phenolic and flavonoid compounds

    PubMed Central

    2012-01-01

    Background This study aims to determine the relationship between the antioxidant and anti-inflammatory activities of the thirteen herbs and two fungi extracts, and their total phenolic and flavonoid contents. Methods Antioxidant activities were evaluated by four assays: an antioxidant activity assay using Saccharomyces cerevisiae, a DPPH ((2, 2-diphenyl-1-picrylhydrazyl) assay to assess free radical scavenging, an assay assessing ferrous ions or iron (II) chelating ability, and a ferric reducing antioxidant power (FRAP) assay. Total phenolic and flavonoid contents were determined using the Folin-Ciocalteu and aluminium chloride methods, respectively. Anti-inflammatory activities were determined by measuring the inhibition of nitric oxide and TNF-α production in lipopolysaccharide- and interferon-γ-activated J774A.1 macrophages. Their cytotoxicities against macrophages were determined by MTT assay. Results A positive linear correlation between antioxidant activities and the total phenolic and flavonoid content of the plant extracts was found. The plant extracts with high phenolic and flavonoid content also exhibited significant anti-inflammatory activity with good cell viability. Conclusion The selected herbs could be a rich source of antioxidants and free radical scavenging compounds. The levels of phenolic and flavonoid compounds were correlated with the antioxidant and anti-inflammatory activities of the extracts from the herbs. PMID:23176585

  12. Biogenic Synthesis, Purification, and Chemical Characterization of Anti-inflammatory Resolvins Derived from Docosapentaenoic Acid (DPAn-6)

    PubMed Central

    Dangi, Bindi; Obeng, Marcus; Nauroth, Julie M.; Teymourlouei, Mah; Needham, Micah; Raman, Krishna; Arterburn, Linda M.

    2009-01-01

    Enzymatically oxygenated derivatives of the ω-3 fatty acids cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) and cis-5,8,11,14,17-eicosapentaenoic acid, known as resolvins, have potent inflammation resolution activity (Serhan, C. N., Clish, C. B., Brannon, J., Colgan, S. P., Chiang, N., and Gronert, K. (2000) J. Exp. Med. 192, 1197–1204; Hong, S., Gronert, K., Devchand, P. R., Moussignac, R., and Serhan, C. N. (2003) J. Biol. Chem. 278, 14677–14687). Our objective was to determine whether similar derivatives are enzymatically synthesized from other C-22 fatty acids and whether these molecules possess inflammation resolution properties. The reaction of DHA, DPAn-3, and DPAn-6 with 5-, 12-, and 15-lipoxygenases produced oxylipins, which were identified and characterized by liquid chromatography coupled with tandem mass-spectrometry. DPAn-6 and DPAn-3 proved to be good substrates for 15-lipoxygenase. 15-Lipoxygenase proved to be the most efficient enzyme of the three tested for conversion of long chain polyunsaturated fatty acids to corresponding oxylipins. Since DPAn-6 is a major component of Martek DHA-S™ oil, we focused our attention on reaction products obtained from the DPAn-6 and 15-lipoxygenase reaction. (17S)-hydroxy-DPAn-6 and (10,17S)-dihydroxy-DPAn-6 were the main products of this reaction. These compounds were purified by preparatory high performance liquid chromatography techniques and further characterized by NMR, UV spectrophotometry, and tandem mass spectrometry. We tested both compounds in two animal models of acute inflammation and demonstrated that both compounds are potent anti-inflammatory agents that are active on local intravenous as well as oral administration. These oxygenated DPAn-6 compounds can thus be categorized as a new class of DPAn-6-derived resolvins. PMID:19324874

  13. Anti-Inflammatory and Antioxidant Activity of Acalypha hispida Leaf and Analysis of its Major Bioactive Polyphenols by HPLC

    PubMed Central

    Siraj, Md. Afjalus; Shilpi, Jamil A.; Hossain, Md. Golam; Uddin, Shaikh Jamal; Islam, Md. Khirul; Jahan, Ismet Ara; Hossain, Hemayet

    2016-01-01

    Purpose: Inflammation and oxidative stress can lead to different chronic diseases including cancer and atherosclerosis. Many medicinal plants have the potential to show as anti-inflammatory activity. Present investigation was performed to investigate anti-inflammatory, antioxidant activity, and quantification of selected bioactive plant polyphenols of the ethanol (EAH) and aqueous (AAH) extracts of Acalypha hispida (Euphorbiaceae) leaves. Methods: Anti-inflammatory activity was evaluated by carragenan and histamine induced rat paw edema models while antioxidant capacity was evaluated by DPPH free radical scavenging, Fe+2 chelating ability, reducing power, NO scavenging, total phenolic and total flavonoid content assay. Identification and quantification of bioactive polyphenols was done by HPLC. Results: At the doses of 200 and 400 mg/kg, both EAH and AAH showed statistically significant inhibition of paw volume in the anti-inflammatory activity test. Both the extracts showed DPPH scavenging (IC50: 14 and 17 µg/ml, respectively), Fe+2 ion chelating (IC50: 40 and 46 µg/ml, respectively), NO scavenging activity (65.49 and 60.66% inhibition at 100 µg/ml), and concentration dependent reducing power ability. For EAH and AAH, flavonoid content was 126.30 and 149.72 mg QE/g dry extract, while phenolic content was 130.51 and 173.80 mg GAE/g dry extract, respectively. HPLC analysis of EAH and AAH indicated the presence of high content of ellagic acid along with other phenolic constituents. Conclusion: High content of ellagic acid along with other phenolic constituents might have played an important role in the observed anti-inflammatory and antioxidant activity. PMID:27478793

  14. Anti-inflammatory, Anti-estrogenic, and Anti-implantation Activity of Bergia suffruticosa (Delile) Fenzl

    PubMed Central

    Bind, Sandeep Kumar; Jivrajani, Mehul; Anandjiwala, Sheetal; Nivsarkar, Manish

    2015-01-01

    Background: Bergia suffruticosa (Delile) Fenzl (Syn. Bergia odorata Edgew) (Elatinaceae family) is used traditionally to repair bones and is applied as a poultice on sores. It is also used for stomach troubles and as an antidote to scorpion stings. So far, very little scientific work has been reported to validate its ethnomedical uses in the alleviation of pain, bone repair, etc., Objective: This study was designed to explore the anti-inflammatory and anti-implantation potential of n-hexane extract of B. suffruticosa whole plant in mice along with identification of its chemical constituents. Materials and Methods: n-Hexane extract of B. suffruticosa whole plant was screened for acute and chronic anti-inflammatory activity followed by an anti-estrogenic activity. Eventually, n-hexane extract was tested for anti-implantation activity by exploiting markers of uterine receptivity, lipid peroxidation, and superoxide enzyme activity. The extract was administered orally at a dose of 100 mg/kg body weight in each study. Results: Thin layer chromatography fingerprint profile of n-hexane extract revealed the presence of lupeol and β-sitosterol. The n-hexane extract reduced the edema by 80% in acute inflammation, whereas it reduced edema to 75% on the 5th day in chronic inflammation. The n-hexane extract reduced elevated malonaldehyde level from 6 to 2.5 nmol/g × 10−5 and increased superoxide dismutase enzyme activity from 0 to 350 units/g in treated animals on the 5th day of pregnancy. Moreover, extract decreased uterine weight from 0.33 to 0.2 g in estradiol treated animals. Conclusion: These results indicate that n-hexane extract of B. suffruticosa is having potent anti-inflammatory, anti-estrogenic, and anti-implantation activity. This is the first report of all the pharmacological activities of B. suffruticosa mentioned above. SUMMARY TLC fingerprint profile of n-hexane extract of Bergia suffruticosa whole plant revealed the presence of lupeol and

  15. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio-; Ramírez-Apan, María Teresa; Gómez-Vidales, Virginia; Palacios, Eduardo; Montoya, Ascención; Ronquillo de Jesús, Elba

    2015-05-01

    Produced worldwide at 1.2m tons per year, fibrous clays are used in the production of pet litter, animal feed stuff to roof parcels, construction and rheological additives, and other applications needing to replace long-fiber length asbestos. To the authors' knowledge, however, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the anti-inflammatory, anti-bacterial, and cytotoxic activity by sepiolite (Vallecas, Spain) and palygorskite (Torrejon El Rubio, Spain). The anti-inflammatory activity was determined using the 12-O-tetradecanoylphorbol-13-acetate (TPA) and myeloperoxidase (MPO) methods. Histological cuts were obtained for quantifying leukocytes found in the epidermis. Palygorkite and sepiolite caused edema inhibition and migration of neutrophils ca. 68.64 and 45.54%, and 80 and 65%, respectively. Fibrous clays yielded high rates of infiltration, explained by cleavage of polysomes and exposure of silanol groups. Also, fibrous clays showed high inhibition of myeloperoxidase contents shortly after exposure, but decreased sharply afterwards. In contrast, tubular clays caused an increasing inhibition of myeloperoxidase with time. Thus, clay structure restricted the kinetics and mechanism of myeloperoxidase inhibition. Fibrous clays were screened in vitro against human cancer cell lines. Cytotoxicity was determined using the protein-binding dye sulforhodamine B (SRB). Exposing cancer human cells to sepiolite or palygorskite showed growth inhibition varying with cell line. This study shows that fibrous clays served as an effective anti-inflammatory, limited by chemical transfer and cellular-level signals responding exclusively to an early exposure to clay, and cell viability decreasing significantly only after exposure to high concentrations of sepiolite.

  16. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio-; Ramírez-Apan, María Teresa; Gómez-Vidales, Virginia; Palacios, Eduardo; Montoya, Ascención; Ronquillo de Jesús, Elba

    2015-05-01

    Produced worldwide at 1.2m tons per year, fibrous clays are used in the production of pet litter, animal feed stuff to roof parcels, construction and rheological additives, and other applications needing to replace long-fiber length asbestos. To the authors' knowledge, however, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the anti-inflammatory, anti-bacterial, and cytotoxic activity by sepiolite (Vallecas, Spain) and palygorskite (Torrejon El Rubio, Spain). The anti-inflammatory activity was determined using the 12-O-tetradecanoylphorbol-13-acetate (TPA) and myeloperoxidase (MPO) methods. Histological cuts were obtained for quantifying leukocytes found in the epidermis. Palygorkite and sepiolite caused edema inhibition and migration of neutrophils ca. 68.64 and 45.54%, and 80 and 65%, respectively. Fibrous clays yielded high rates of infiltration, explained by cleavage of polysomes and exposure of silanol groups. Also, fibrous clays showed high inhibition of myeloperoxidase contents shortly after exposure, but decreased sharply afterwards. In contrast, tubular clays caused an increasing inhibition of myeloperoxidase with time. Thus, clay structure restricted the kinetics and mechanism of myeloperoxidase inhibition. Fibrous clays were screened in vitro against human cancer cell lines. Cytotoxicity was determined using the protein-binding dye sulforhodamine B (SRB). Exposing cancer human cells to sepiolite or palygorskite showed growth inhibition varying with cell line. This study shows that fibrous clays served as an effective anti-inflammatory, limited by chemical transfer and cellular-level signals responding exclusively to an early exposure to clay, and cell viability decreasing significantly only after exposure to high concentrations of sepiolite. PMID:25819359

  17. Synthesis and biological evaluation of quinic acid derivatives as anti-inflammatory agents.

    PubMed

    Zeng, Kui; Thompson, Karin Emmons; Yates, Charles R; Miller, Duane D

    2009-09-15

    Quinic acid (QA) esters found in hot water extracts of Uncaria tomentosa (a.k.a. cat's claw) exert anti-inflammatory activity through mechanisms involving inhibition of the pro-inflammatory transcription factor nuclear factor kappa B (NF-kappaB). Herein, we describe the synthesis and biological testing of novel QA derivatives. Inhibition of NF-kappaB was assessed using A549 (Type II alveolar epithelial-like) cells that stably express a secreted alkaline phosphatase (SEAP) reporter driven by an NF-kappaB response element. A549-NF-kappaB cells were stimulated with TNF-alpha (10 ng/mL) in the presence or absence of QA derivative for 18 hours followed by measurement of SEAP activity. Amide substitution at the carboxylic acid position yielded potent inhibitors of NF-kappaB. A variety of modifications to the amide substitution were tolerated with the N-propyl amide derivative being the most potent. Further examination of the SAR demonstrated that acetylation of the hydroxyl groups reduced NF-kappaB inhibitory activity. QA amide derivatives lacked anti-oxidant activity and were found to be neither anti-proliferative nor cytotoxic at concentrations up to 100 microM. In conclusion, we have discovered a novel series of non-toxic QA amides that potently inhibit NF-kappaB, despite their lack of anti-oxidant activity. Mechanistic studies and pre-clinical efficacy studies in various inflammatory animal models are on-going.

  18. Assessment of the Polyphenolic Content, Free Radical Scavenging, Anti-inflammatory, and Antimicrobial Activities of Acetone and Aqueous Extracts of Lippia javanica (Burm.F.) Spreng

    PubMed Central

    Asowata-Ayodele, Abiola M.; Otunola, Gloria A.; Afolayan, Anthony J.

    2016-01-01

    Background: Lippia javanica (Burm.F.) Spreng is one of the spice plants commonly found in almost every part of South Africa. Apart from its culinary uses, it is also traditionally used as an insect repellant and infusion for fever, flu, kidney stone treatment, cough, common cold, and chest pain. Materials and Methods: The antioxidant activities of the aqueous and acetone extracts were determined by measuring their effects against 1,1-Diphenyl-2-picryl-hydrazyl, 2,2’azino-bis (3-ethylbenzthiazoline-6-sulfonic acid), nitric oxide, phosphomolybdate, lipid peroxidation, hydrogen peroxide, and reducing power. The antimicrobial activities were evaluated against four bacterial (two Gram-positive, two Gram-negative) strains and 9 fungal pathogens using the agar well diffusion and microdilution methods. Anti-inflammatory activity was assessed by determining the inhibition against protein denaturation and membrane stabilizing effects. Objective: The polyphenolic content, free radical scavenging, anti-inflammatory, and antimicrobial activities of the aqueous and acetone extracts of the plant were evaluated. Results: A significantly high total phenolic content and free radical scavenging activities were observed in the acetone extracts of the plants. The study also revealed a concentration-dependent inhibition of protein denaturation and membrane stabilization effects by both the aqueous and acetone extracts at the concentrations studied. The ability of L. javanica extracts to inhibit protein denaturation and maintain membrane stability could be responsible for its folkloric use. The overall antimicrobial activity indicates that both extracts were active against the bacterial strains but the acetone extract exhibited the most potent antifungal activity higher than even the reference drugs. Conclusion: Overall, the acetone extract of L. javanica exhibited a more pronounced antioxidant, anti-inflammatory, and antimicrobial effects than the aqueous extract. SUMMARY The

  19. General unknown screening, antioxidant and anti-inflammatory potential of Dendrobium macrostachyum Lindl.

    PubMed Central

    Sukumaran, Nimisha Pulikkal; Yadav, R. Hiranmai

    2016-01-01

    Context: D. macrostachyum is an epiphytic orchid abundant in Southern India and is reported for pain relief in folklore. Aims: The objective of the present study was to determine in vitro free radical scavenging and anti-inflammatory activity of D. macrostachyum and to perform LCMS based metabolic profiling of the plant. Settings and Design: Sequential stem and leaf extracts were assessed for its antioxidant and anti-inflammatory activity by in vitro methods. Materials and Methods: The antioxidant activity determined by assays based on the decolourization of the radical monocation of DPPH, ABTS and reducing power. Total amount of phenolics for quantitative analysis of antioxidative components was estimated. In vitro anti-inflammatory activity was evaluated using protein denaturation assay, membrane stabilization assay and proteinase inhibitory activity. Methanolic extract of plant was subjected to LCMS. Results: The stem ethanolic extracts exhibited significant IC50 value of 10.21, 31.54 and 142.97 μg/ml respectively for DPPH, ABTS radical scavenging and reducing power activity. The ethanol and water extract was highly effective as albumin denaturation inhibitors (IC50 = 114.13 and 135.818 μg/ml respectively) and proteinase inhibitors (IC50 = 72.49 and 129.681 μg/ml respectively). Membrane stabilization was also noticeably inhibited by the stem ethanolic extract among other extracts (IC50 = 89.33 μg/ml) but comparatively lower to aspirin standard (IC50 = 83.926 μg/ml). The highest total phenol content was exhibited by ethanolic stem and leaf extracts respectively at 20 and 16 mg of gallic acid equivalents of dry extract. On LCMS analysis 20 constituents were identified and it included chemotaxonomic marker for Dendrobium species. Conclusions: The results showed a relatively high concentration of phenolics, high scavenger activity and high anti-inflammatory activity of the stem extract compared to the leaf extract. The results indicate that the plant can be a

  20. Anti-inflammatory action of legume isoflavonoid sophoricoside through inhibition on cyclooxygenase-2 activity.

    PubMed

    Kim, Byung Hak; Chung, Eun Yong; Min, Bo-Kyung; Lee, Seung Ho; Kim, Mi-Kyeong; Min, Kyung Rak; Kim, Youngsoo

    2003-05-01

    Soy is a main source of isoflavonoids which are of high dietary intake for the oriental population. In this study, the anti-inflammatory action of sophoricoside, an isoflavone glycoside isolated from immature fruits of Sophora japonica L. (Leguminosae), has been demonstrated. When administered orally at > 100 mg/kg or injected intravenously at > 10 mg/kg, sophoricoside showed significant reduction of carrageenin-induced paw edema in mice. Sophoricoside has been identified as a selective inhibitor of cyclooxygenase (COX)-2 activity with an IC50 value of 3.3 microM. PMID:12802736

  1. General unknown screening, antioxidant and anti-inflammatory potential of Dendrobium macrostachyum Lindl.

    PubMed Central

    Sukumaran, Nimisha Pulikkal; Yadav, R. Hiranmai

    2016-01-01

    Context: D. macrostachyum is an epiphytic orchid abundant in Southern India and is reported for pain relief in folklore. Aims: The objective of the present study was to determine in vitro free radical scavenging and anti-inflammatory activity of D. macrostachyum and to perform LCMS based metabolic profiling of the plant. Settings and Design: Sequential stem and leaf extracts were assessed for its antioxidant and anti-inflammatory activity by in vitro methods. Materials and Methods: The antioxidant activity determined by assays based on the decolourization of the radical monocation of DPPH, ABTS and reducing power. Total amount of phenolics for quantitative analysis of antioxidative components was estimated. In vitro anti-inflammatory activity was evaluated using protein denaturation assay, membrane stabilization assay and proteinase inhibitory activity. Methanolic extract of plant was subjected to LCMS. Results: The stem ethanolic extracts exhibited significant IC50 value of 10.21, 31.54 and 142.97 μg/ml respectively for DPPH, ABTS radical scavenging and reducing power activity. The ethanol and water extract was highly effective as albumin denaturation inhibitors (IC50 = 114.13 and 135.818 μg/ml respectively) and proteinase inhibitors (IC50 = 72.49 and 129.681 μg/ml respectively). Membrane stabilization was also noticeably inhibited by the stem ethanolic extract among other extracts (IC50 = 89.33 μg/ml) but comparatively lower to aspirin standard (IC50 = 83.926 μg/ml). The highest total phenol content was exhibited by ethanolic stem and leaf extracts respectively at 20 and 16 mg of gallic acid equivalents of dry extract. On LCMS analysis 20 constituents were identified and it included chemotaxonomic marker for Dendrobium species. Conclusions: The results showed a relatively high concentration of phenolics, high scavenger activity and high anti-inflammatory activity of the stem extract compared to the leaf extract. The results indicate that the plant can be a

  2. Oenothein B's contribution to the anti-inflammatory and antioxidant activity of Epilobium sp.

    PubMed

    Kiss, Anna K; Bazylko, Agnieszka; Filipek, Agnieszka; Granica, Sebastian; Jaszewska, Edyta; Kiarszys, Urszula; Kośmider, Anita; Piwowarski, Jakub

    2011-05-15

    Willow herb tea or preparation are available and relatively popular in the European market, and claimed to be effective inter alia because of their anti-inflammatory activity. The present study is therefore aimed at comparing the anti-inflammatory and antioxidant activity of extracts of the three most popular Epilobium species (E. angustifolium, E. hirsutum and E. parviflorum) and at juxtaposing this activity against the dominating compounds from the following extracts: oenothein B (OeB), quercetin-3-O-glucuronide and myricetin-3-O-rhamnoside. The phytochemical analysis of the extracts has shown that OeB quantities vary between 20% and 35%, while flavonoids content does not exceed 2%. All extracts have inhibited the activity of hyaluronidase and lipoxygenase with IC₅₀ around 5 μg/ml and 25 μg/ml. The inhibition of hyaluronidase is related with the presence of OeB, a strong inhibitor of this enzyme (IC₅₀) 1.1 μM). Additionally, the extracts inhibited myeloperoxidase (MPO) release from stimulated neutrophils. OeB inhibited MPO release similarly to the anti-inflammatory drug indomethacin with IC₅₀ 7.7 μM and 15.4 μM, respectively. Tested extracts significantly reduced the production of reactive oxygen species (ROS) from f-MLP and PMA induced neutrophils with IC₅₀ 5 μg/ml and 25 μg/ml, respectively. The flavonoids content seems to exert little influence on extracts' activity, contrary to OeB, whose high concentration explains the activity of extract obtained from Epilobium. Tested currently marketed Epilobium preparations are often wrongly assigned, but we should stress that the level of OeB in all tested herbs was high and always exceeded 2% in raw material. PMID:21112753

  3. Magnetoliposomes loaded with poly-unsaturated fatty acids as novel theranostic anti-inflammatory formulations.

    PubMed

    Calle, Daniel; Negri, Viviana; Ballesteros, Paloma; Cerdán, Sebastián

    2015-01-01

    We describe the preparation, physico-chemical characterization and anti-inflammatory properties of liposomes containing the superparamagnetic nanoparticle Nanotex, the fluorescent dye Rhodamine-100 and omega-3 polyunsaturated fatty acid ethyl ester (ω-3 PUFA-EE), as theranostic anti-inflammatory agents. Liposomes were prepared after drying chloroform suspensions of egg phosphatidylcholine, hydration of the lipid film with aqueous phases containing or not Nanotex, Rhodamine-100 dye or ω-3 PUFA-EE, and eleven extrusion steps through nanometric membrane filters. This resulted in uniform preparations of liposomes of approximately 200 nm diameter. Extraliposomal contents were removed from the preparation by gel filtration chromatography. High Resolution Magic Angle Spinning (1)H NMR Spectroscopy of the liposomal preparations containing ω-3 PUFA-EE revealed well resolved (1)H resonances from highly mobile ω-3 PUFA-EE, suggesting the formation of very small (ca. 10 nm) ω-3 PUFA-EE nanogoticules, tumbling fast in the NMR timescale. Chloroform extraction of the liposomal preparations revealed additionally the incorporation of ω-3 PUFA-EE within the membrane domain. Water diffusion weighted spectra, indicated that the goticules of ω-3 PUFA-EE or its insertion in the membrane did not affect the average translational diffusion coefficient of water, suggesting an intraliposomal localization, that was confirmed by ultrafiltration. The therapeutic efficacy of these preparations was tested in two different models of inflammatory disease as inflammatory colitis or the inflammatory component associated to glioma development. Results indicate that the magnetoliposomes loaded with ω-3 PUFA-EE allowed MRI visualization in vivo and improved the outcome of inflammatory disease in both animal models, decreasing significantly colonic inflammation and delaying, or even reversing, glioma development. Together, our results indicate that magnetoliposomes loaded with ω-3 PUFA-EE may

  4. Magnetoliposomes Loaded with Poly-Unsaturated Fatty Acids as Novel Theranostic Anti-Inflammatory Formulations

    PubMed Central

    Calle, Daniel; Negri, Viviana; Ballesteros, Paloma; Cerdán, Sebastián

    2015-01-01

    We describe the preparation, physico-chemical characterization and anti-inflammatory properties of liposomes containing the superparamagnetic nanoparticle Nanotex, the fluorescent dye Rhodamine-100 and omega-3 polyunsaturated fatty acid ethyl ester (ω-3 PUFA-EE), as theranostic anti-inflammatory agents. Liposomes were prepared after drying chloroform suspensions of egg phosphatidylcholine, hydration of the lipid film with aqueous phases containing or not Nanotex, Rhodamine-100 dye or ω-3 PUFA-EE, and eleven extrusion steps through nanometric membrane filters. This resulted in uniform preparations of liposomes of approximately 200 nm diameter. Extraliposomal contents were removed from the preparation by gel filtration chromatography. High Resolution Magic Angle Spinning 1H NMR Spectroscopy of the liposomal preparations containing ω-3 PUFA-EE revealed well resolved 1H resonances from highly mobile ω-3 PUFA-EE, suggesting the formation of very small (ca. 10 nm) ω-3 PUFA-EE nanogoticules, tumbling fast in the NMR timescale. Chloroform extraction of the liposomal preparations revealed additionally the incorporation of ω-3 PUFA-EE within the membrane domain. Water diffusion weighted spectra, indicated that the goticules of ω-3 PUFA-EE or its insertion in the membrane did not affect the average translational diffusion coefficient of water, suggesting an intraliposomal localization, that was confirmed by ultrafiltration. The therapeutic efficacy of these preparations was tested in two different models of inflammatory disease as inflammatory colitis or the inflammatory component associated to glioma development. Results indicate that the magnetoliposomes loaded with ω-3 PUFA-EE allowed MRI visualization in vivo and improved the outcome of inflammatory disease in both animal models, decreasing significantly colonic inflammation and delaying, or even reversing, glioma development. Together, our results indicate that magnetoliposomes loaded with ω-3 PUFA-EE may become

  5. Anti-inflammatory ligustilides from Ligusticum chuanxiong Hort.

    PubMed

    Huang, Jian; Lu, Xiao-Qing; Zhang, Cui; Lu, Jin; Li, Guo-Yu; Lin, Rui-Chao; Wang, Jin-Hui

    2013-12-01

    Four new ligustilides chuanxiongnolide R1 (1), chuanxiongnolide R2 (2), chuanxiongdiolide R1 (3) and chuanxiongdiolide R2 (4) together with eight known derivatives (5-12) were isolated from the root of Ligusticum chuanxiong Hort. Their structures were elucidated by HR-ESI-MS, UV, IR, 1D and 2D NMR (HSQC, HMBC, (1)H-(1)H COSY, NOESY) methods. The absolute configurations were confirmed via the circular dichroism (CD) spectrum. The anti-inflammatory assay in LPS-triggered RAW 264.7 macrophages was carried out on the twelve compounds. 1, 3, 5 and 6 showed significant inhibitory effects against LPS-induced NO production. PMID:23973655

  6. Anti-inflammatory sesquiterpene lactones from Lourteigia ballotaefolia.

    PubMed

    Rosas-Romero, Alfredo; Manchado, Carlos Martinez; Crescente, Oscar; Acosta, Mercedes; Curini, Massimo; Epifano, Francesco; Marcotullio, Maria Carla; Rosati, Ornelio; Tubaro, Aurelia; Sosa, Silvio

    2002-09-01

    Three sesquiterpene lactones were isolated from Lourteigia ballotaefolia (H. B. K.). 9beta-hydroxy-atripliciolide-8- O-tiglate ( 1) was isolated for the first time from this plant and was previously reported in Conocliniopsis prasiifolia (DC) K. et R., 9beta-hydroxy-atripliciolide-8- O-(5'-acetoxytiglate) ( 2) had been already reported in this species. The minor component, 9beta-(tigloyloxy)-atripliciolide, is a new compound. The anti-inflammatory activity of compounds 1 and 2 was evaluated using the croton oil ear test in mice.

  7. Anti-inflammatory and immunosuppressive drugs and reproduction

    PubMed Central

    Østensen, Monika; Khamashta, Munther; Lockshin, Michael; Parke, Ann; Brucato, Antonio; Carp, Howard; Doria, Andrea; Rai, Raj; Meroni, Pierluigi; Cetin, Irene; Derksen, Ronald; Branch, Ware; Motta, Mario; Gordon, Caroline; Ruiz-Irastorza, Guillermo; Spinillo, Arsenio; Friedman, Deborah; Cimaz, Rolando; Czeizel, Andrew; Piette, Jean Charles; Cervera, Ricard; Levy, Roger A; Clementi, Maurizio; De Carolis, Sara; Petri, Michelle; Shoenfeld, Yehuda; Faden, David; Valesini, Guido; Tincani, Angela

    2006-01-01

    Rheumatic diseases in women of childbearing years may necessitate drug treatment during a pregnancy, to control maternal disease activity and to ensure a successful pregnancy outcome. This survey is based on a consensus workshop of international experts discussing effects of anti-inflammatory, immunosuppressive and biological drugs during pregnancy and lactation. In addition, effects of these drugs on male and female fertility and possible long-term effects on infants exposed to drugs antenatally are discussed where data were available. Recommendations for drug treatment during pregnancy and lactation are given. PMID:16712713

  8. Aerosolized Surfactants, Anti-Inflammatory Drugs, and Analgesics.

    PubMed

    Willson, Douglas F

    2015-06-01

    Drug delivery by aerosol may have several advantages over other modes, particularly if the lung is the target organ. Aerosol delivery may allow achievement of higher concentrations while minimizing systemic effects and offers convenience, rapid onset of action, and avoidance of the needles and sterile technique necessary with intravenous drug administration. Aerosol delivery may change the pharmacokinetics of many drugs, however, and an awareness of the caveats of aerosolized drug delivery is mandatory to ensure both safety and adequate drug delivery. This paper discusses the administration of surfactants, anti-inflammatory agents, and analgesics by the aerosol route.

  9. Nitro-fatty acids: novel anti-inflammatory lipid mediators

    PubMed Central

    Rubbo, H.

    2013-01-01

    Nitro-fatty acids are formed and detected in human plasma, cell membranes, and tissue, modulating metabolic as well as inflammatory signaling pathways. Here we discuss the mechanisms of nitro-fatty acid formation as well as their key chemical and biochemical properties. The electrophilic properties of nitro-fatty acids to activate anti-inflammatory signaling pathways are discussed in detail. A critical issue is the influence of nitroarachidonic acid on prostaglandin endoperoxide H synthases, redirecting arachidonic acid metabolism and signaling. We also analyze in vivo data supporting nitro-fatty acids as promising pharmacological tools to prevent inflammatory diseases. PMID:24068188

  10. Anti-inflammatory activity of Abutilon indicum extract.

    PubMed

    Tripathi, Priyanka; Chauhan, N S; Patel, J R

    2012-01-01

    Abutilon indicum Linn. had been broadly used for its reported biological activities in indigenous system of medicine. The ethanolic extract of the whole plant of A. indicum Linn. was evaluated for its anti-inflammatory activity at doses 250, 500 and 750 mg kg⁻¹ using the carrageenan-induced paw oedema in healthy Wistar albino rats. Results of in vivo activity led to the conclusion that the ethanolic extract of A. indicum showed predominantly significant activity in a dose-dependent manner, which is comparable to the reference standard ibuprofen. The results prove the traditional use of plant in the treatment of inflammation. PMID:21999427

  11. Synthesis and anti-inflammatory activity of indole glucosinolates.

    PubMed

    Vo, Quan V; Trenerry, Craige; Rochfort, Simone; Wadeson, Jenny; Leyton, Carolina; Hughes, Andrew B

    2014-01-15

    The nitronate and nitrovinyl methods to synthesize indole glucosinolates (GLs) have been investigated. The results were applied to generally the most prevalent natural indole glucosinolates to synthesize 4-methoxyglucobrassicin (MGB) and neo-glucobrassicin (NGB) in moderate overall yield for the first time. The anti-inflammatory activity of the synthetic indole GLs was determined by inhibition of TNF-α secretion in LPS-stimulated THP-1 cells. The data showed that glucobrassicin (GB) exhibited higher activity than other synthetic indolyl GLs. PMID:24360830

  12. Topical Nonsteroidal Anti-Inflammatory Drugs for Macular Edema

    PubMed Central

    Parmeggiani, Francesco; Romano, Mario R.; dell'Omo, Roberto

    2013-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are nowadays widely used in ophthalmology to reduce eye inflammation, pain, and cystoid macular edema associated with cataract surgery. Recently, new topical NSAIDs have been approved for topical ophthalmic use, allowing for greater drug penetration into the vitreous. Hence, new therapeutic effects can be achieved, such as reduction of exudation secondary to age-related macular degeneration or diabetic maculopathy. We provide an updated review on the clinical use of NSAIDs for retinal diseases, with a focus on the potential future applications. PMID:24227908

  13. Nonsteroidal Anti-Inflammatory Drugs for Retinal Disease

    PubMed Central

    Schoenberger, Scott D.; Kim, Stephen J.

    2013-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are used extensively in ophthalmology for pain and photophobia after photorefractive surgery and to reduce miosis, inflammation, and cystoid macular edema following cataract surgery. In recent years, the US Food and Drug Administration has approved new topical NSAIDs and previously approved NSAIDs have been reformulated. These changes may allow for greater drug penetration into the retina and thereby offer additional therapeutic advantages. For example, therapeutic effects on diabetic retinopathy and age-related macular degeneration may now be achievable. We provide an updated review on the scientific rationale and clinical use of NSAIDs for retinal disease. PMID:23365785

  14. Natural anti-inflammatory agents for pain relief

    PubMed Central

    Maroon, Joseph C.; Bost, Jeffrey W.; Maroon, Adara

    2010-01-01

    The use of both over-the-counter and prescription nonsteroidal medications is frequently recommended in a typical neurosurgical practice. But persistent long-term use safety concerns must be considered when prescribing these medications for chronic and degenerative pain conditions. This article is a literature review of the biochemical pathways of inflammatory pain, the potentially serious side effects of nonsteroidal drugs and commonly used and clinically studied natural alternative anti-inflammatory supplements. Although nonsteroidal medications can be effective, herbs and dietary supplements may offer a safer, and often an effective, alternative treatment for pain relief, especially for long-term use. PMID:21206541

  15. Synthesis and biological evaluation of 1,3-diaryl pyrazole derivatives as potential antibacterial and anti-inflammatory agents.

    PubMed

    Li, Ya-Ru; Li, Chao; Liu, Jia-Chun; Guo, Meng; Zhang, Tian-Yi; Sun, Liang-Peng; Zheng, Chang-Ji; Piao, Hu-Ri

    2015-11-15

    Three series of 1,3-diaryl pyrazole derivatives bearing aminoguanidine or furan-2-carbohydrazide moieties have been synthesized, characterized and evaluated for antibacterial and anti-inflammatory activities. Most of the synthesized compounds showed potent inhibition of several Gram-positive bacterial strains (including multidrug-resistant clinical isolates) and Gram-negative bacterial strains with minimum inhibitory concentration values in the range of 1-64 μg/mL. Compounds 6g, 6l and 7l presented the most potent inhibitory activity against Gram-positive bacteria (e.g. Staphylococcus aureus 4220), Gram-negative bacteria (e.g. Escherichia coli 1924) and the fungus, Candida albicans 7535, with minimum inhibitory concentration values of 1 or 2 μg/mL. Compared with previous studies, these compounds exhibited a broad spectrum of inhibitory activity. Furthermore, compound 7l showed the greatest anti-inflammatory activity (93.59% inhibition, 30 min after intraperitoneal administration), which was more potent than the reference drugs ibuprofen and indomethacin.

  16. Extracts from Lentinula edodes (Shiitake) Edible Mushrooms Enriched with Vitamin D Exert an Anti-Inflammatory Hepatoprotective Effect.

    PubMed

    Drori, Ariel; Shabat, Yehudit; Ben Ya'acov, Ami; Danay, Ofer; Levanon, Dan; Zolotarov, Lidya; Ilan, Yaron

    2016-04-01

    Vitamin D has been known for its anti-inflammatory properties. Extracts derived from Lentinula edodes (Shiitake) edible mushroom exert an anti-inflammatory effect. These extracts contain high levels of ergosterol, which converts into ergocalciferol (vitamin D2) following exposure to ultraviolet light, followed by absorption and hydroxylation into the active form 25-hydroxyvitamin D [25(OH)D]. To determine the anti-inflammatory effect of overexpression of vitamin D in edible mushrooms, L. edodes mushrooms were exposed to ultraviolet-B light, freeze-dried, followed by measurement of vitamin D2 contents, in their dry weight. C57B1/6 mice were orally treated with vitamin D2-enriched or nonenriched mushroom extract prior and during concanavalin A-immune-mediated liver injury. Exposure to ultraviolet light increased vitamin D2 content in Shiitake edible mushrooms. Following feeding of vitamin D-enriched mushroom extracts to mice with immune-mediated hepatitis, a significant decrease in liver damage was noted. This was shown by a decrease in alanine aminotransferase and aspartate aminotransferase serum levels, a decrease in proportion of mice with severe liver injury, and by improvement in liver histology. These effects were associated with a decrease in serum interferon gamma levels. A synergistic effect was noted between the anti-inflammatory effect of the mushroom extracts and that of vitamin D. Oral administration of vitamin D-enriched L. edodes edible mushroom exerts a synergistic anti-inflammatory effect in the immune-mediated hepatitis. The data support its potential use as safe immunomodulatory adjuvant for the treatment of HCV and nonalcoholic steatohepatitis. PMID:27027234

  17. Evaluation of Anti-Inflammatory Activity of Aqueous Extract of Leaves of Solanum Melongena Linn. in Experimental Animals

    PubMed Central

    Maniyar, Yasmeen A

    2015-01-01

    Introduction: Aqueous extract of leaves of Solanum melongena Linn was investigated for its anti-inflammatory activity. Materials and Methods: Acute oral toxicity study according to OECD425 guidelines was done to find out the LD50 of test drug. Carrageenan induced paw oedema method in Wistar Albino rats were used in this study. Aspirin in the dose of 300mg/kg was used as the standard drug and three doses of aqueous extract of leaves of Solanum melongena L. (100mg/kg, 200mg/kg, 400mg/kg b.w.) was used as the test drug. The results were measured at 1st h, 3rd h, and 5th h after the carrageenan injection. Results: In acute oral toxicity study none of the animals died at the dose of 2000mg/kg. Aqueous extract of Solanum melongena Linn leaf in the dose of 200mg/kg showed significant anti-inflammatory activity (p <0.05) at 3rd hr and highly significant anti-inflammatory activity (p<0.001) at 5th hr; in the dose of 400 mg/kg, test drug showed p<0.01 at 3rd and p<0.001 at 5th hr and in the dose of 100mg/kg it showed significant (p<0.05) anti-inflammatory activity at 5th hr. In doses of 200mg/kg and 400 mg/kg of aqueous extract of S. melongena L showed the percentage of inhibition of 42.62% which is less than the standard drug aspirin which showed 64.5% inhibition. Conclusion: Aqueous extract of leaves of Solanum melongena Linn has anti-inflammatory activity. PMID:25738003

  18. Induction of anti-inflammatory cytokine expression by IPNV in persistent infection.

    PubMed

    Reyes-Cerpa, Sebastián; Reyes-López, Felipe; Toro-Ascuy, Daniela; Montero, Ruth; Maisey, Kevin; Acuña-Castillo, Claudio; Sunyer, J Oriol; Parra, David; Sandino, Ana María; Imarai, Mónica

    2014-12-01

    Infectious Pancreatic Necrosis Virus (IPNV) is the agent of a well-characterized acute disease that produces a systemic infection and high mortality in farmed fish species but also persistent infection in surviving fish after outbreaks. Because viral persistence of susceptible mammal hosts appears to be associated with the modulation of anti-inflammatory cytokine expression, in this study we examined the expression levels of key pro- and anti-inflammatory cytokines in kidney and spleen of trout, as well as humoral immune response (IgM and IgT) during experimental persistent viral infection and in the acute phase of infection as a comparison. IPNV infection in rainbow trout resulted in a distinct profile of cytokine expression depending on the type of infection, acute or persistent. Levels of early pro-inflammatory cytokines, IL-1β and IL-8, did not increase in the head kidney of the fish with persistent asymptomatic infection but increased in some of the symptomatic infected fish. The antiviral cytokine IFNα was not significantly induced in any of the infected fish groups. The level of expression of the Th1-related cytokine IL-12 was significantly higher in trout with persistent asymptomatic infection than in symptomatic fish. This was also accompanied by an increase in IFNγ. The anti-inflammatory cytokines IL-10 and TGF-β1 had distinct expression profiles. While IL-10 expression increased in all infected fish, TGF-β1 was only up-regulated in fish with persistent infection. All infected fish had significantly lower total IgM levels than the non-infected fish whereas IgT levels did not change. Specific and neutralizing antibodies against IPNV were not observed in acute and persistent infection except in the group of fish with the lowest degree of clinical signs. Interestingly, the lack of humoral immune response could be associated with the high expression of anti-inflammatory cytokines, which might inhibit antibody production. The balance between pro

  19. Anti-inflammatory guaiane-type sesquiterpenes from the fruits of Pittosporum undulatum.

    PubMed

    Mendes, Sofia A C; Mansoor, Tayyab A; Rodrigues, Ana; Armas, Jácome Bruges; Ferreira, Maria-José U

    2013-11-01

    Two unprecedented guaiane-type sesquiterpene glycosides (undulatumosides A and B) were isolated by bioassay-guided fractionation from the MeOH extract of Pittosporum undulatum fruits, along with six known compounds, including the guaiane isomers 5-guaien-11-ol and 4-guaien-11-ol. The structures of the compounds were established as 4-guaiene-11-O-β-d-(3'-angeloxy-6'-deoxy)-glucopyranoside and 1(5)-guaiene-11-O-β-d-(3'-angeloxy-6'-deoxy)-glucopyranoside by spectroscopic methods, including 1D and 2D homo- and heteronuclear NMR experiments (COSY, HSQC, HMBC and NOESY), and HR-mass spectrometry. P. undulatum is a highly invasive weed that often outcompetes other plants, yet its fruits have become a traditional anti-inflammatory medicine in Azores. Therefore, aiming to investigate the claimed properties, the in vitro anti-inflammatory activity of guaiane-type sesquiterpenes was evaluated by analyzing their inhibitory effects on chemical mediators released by the LPS activated RAW 264.7 murine macrophages cell line. In addition, the cytotoxicity of these compounds was also evaluated in this cell line. Undulatumoside A, 5-guaien-11-ol and 4-guaien-11-ol displayed anti-inflammatory activity with IC50 values of 16.4, 8.1 and 7.2μM, respectively, comparable to that of the positive control, indomethacin (IC50=18.2 μM), with no cytotoxic effects (IC50 ≥ 198 μM). Furthermore, the same set of compounds was also assessed for anti-proliferative activity in lung large cell carcinoma COR-L23 and amelanotic melanoma C32 cells. PMID:23899690

  20. Novel methylxanthine derivative-mediated anti-inflammatory effects in inflammatory bowel disease

    PubMed Central

    Lee, In-Ah; Kamba, Alan; Low, Daren; Mizoguchi, Emiko

    2014-01-01

    Family 18 chitinases have a binding capacity with chitin, a polymer of N-acetylglucosamine. Recent studies strongly suggested that chitinase 3-like 1 (CHI3L1, also known as YKL-40) and acidic mammalian chitinase, the two major members of family 18 chitinases, play a pivotal role in the pathogenesis of inflammatory bowel disease (IBD), bronchial asthma and several other inflammatory disorders. Based on the data from high-throughput screening, it has been found that three methylxanthine derivatives, caffeine, theophylline, and pentoxifylline, have competitive inhibitory effects against a fungal family 18 chitinase by specifically interacting with conserved tryptophans in the active site of this protein. Methylxanthine derivatives are also known as adenosine receptor antagonists, phosphodiesterase inhibitors and histone deacetylase inducers. Anti-inflammatory effects of methylxanthine derivatives have been well-documented in the literature. For example, a beneficial link between coffee or caffeine consumption and type 2 diabetes as well as liver cirrhosis has been reported. Furthermore, theophylline has a long history of being used as a bronchodilator in asthma therapy, and pentoxifylline has an immuno-modulating effect for peripheral vascular disease. However, it is still largely unknown whether these methylxanthine derivative-mediated anti-inflammatory effects are associated with the inhibition of CHI3L1-induced cytoplasmic signaling cascades in epithelial cells. In this review article we will examine the above possibility and summarize the biological significance of methylxanthine derivatives in intestinal epithelial cells. We hope that this study will provide a rationale for the development of methylxanthine derivatives, in particular caffeine, -based anti-inflammatory therapeutics in the field of IBD and IBD-associated carcinogenesis. PMID:24574789

  1. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview.

    PubMed

    Wu, Qinghua; Liu, Lian; Miron, Anca; Klímová, Blanka; Wan, Dan; Kuča, Kamil

    2016-08-01

    Spirulina is a species of filamentous cyanobacteria that has long been used as a food supplement. In particular, Spirulina platensis and Spirulina maxima are the most important. Thanks to a high protein and vitamin content, Spirulina is used as a nutraceutical food supplement, although its other potential health benefits have attracted much attention. Oxidative stress and dysfunctional immunity cause many diseases in humans, including atherosclerosis, cardiac hypertrophy, heart failure, and hypertension. Thus, the antioxidant, immunomodulatory, and anti-inflammatory activities of these microalgae may play an important role in human health. Here, we discuss the antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina in both animals and humans, along with the underlying mechanisms. In addition, its commercial and regulatory status in different countries is discussed as well. Spirulina activates cellular antioxidant enzymes, inhibits lipid peroxidation and DNA damage, scavenges free radicals, and increases the activity of superoxide dismutase and catalase. Notably, there appears to be a threshold level above which Spirulina will taper off the antioxidant activity. Clinical trials show that Spirulina prevents skeletal muscle damage under conditions of exercise-induced oxidative stress and can stimulate the production of antibodies and up- or downregulate the expression of cytokine-encoding genes to induce immunomodulatory and anti-inflammatory responses. The molecular mechanism(s) by which Spirulina induces these activities is unclear, but phycocyanin and β-carotene are important molecules. Moreover, Spirulina effectively regulates the ERK1/2, JNK, p38, and IκB pathways. This review provides new insight into the potential therapeutic applications of Spirulina and may provide new ideas for future studies. PMID:27259333

  2. Identification of Metabolic Signatures Linked to Anti-Inflammatory Effects of Faecalibacterium prausnitzii

    PubMed Central

    Miquel, Sylvie; Leclerc, Marion; Martin, Rebeca; Chain, Florian; Lenoir, Marion; Raguideau, Sébastien; Hudault, Sylvie; Bridonneau, Chantal; Northen, Trent; Bowen, Benjamin; Bermúdez-Humarán, Luis G.; Sokol, Harry; Thomas, Muriel

    2015-01-01

    ABSTRACT Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified on the basis of human clinical data. The mechanisms underlying its beneficial effects are still unknown. Gnotobiotic mice harboring F. prausnitzii (A2-165) and Escherichia coli (K-12 JM105) were subjected to 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis. The inflammatory colitis scores and a gas chromatography-time of flight (GC/TOF) mass spectrometry-based metabolomic profile were monitored in blood, ileum, cecum, colon, and feces in gnotobiotic mice. The potential anti-inflammatory metabolites were tested in vitro. We obtained stable E. coli and F. prausnitzii-diassociated mice in which E. coli primed the gastrointestinal tract (GIT), allowing a durable and stable establishment of F. prausnitzii. The disease activity index, histological scores, myeloperoxidase (MPO) activity, and serum cytokine levels were significantly lower in the presence of F. prausnitzii after TNBS challenge. The protective effect of F. prausnitzii against colitis was correlated to its implantation level and was linked to overrepresented metabolites along the GIT and in serum. Among 983 metabolites in GIT samples and serum, 279 were assigned to known chemical reactions. Some of them, belonging to the ammonia (α-ketoglutarate), osmoprotective (raffinose), and phenolic (including anti-inflammatory shikimic and salicylic acids) pathways, were associated with a protective effect of F. prausnitzii, and the functional link was established in vitro for salicylic acid. We show for the first time that F. prausnitzii is a highly active commensal bacterium involved in reduction of colitis through in vivo modulation of metabolites along the GIT and in the peripheral blood. PMID:25900655

  3. Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii

    DOE PAGES

    Miquel, Sylvie; Leclerc, Marion; Martin, Rebeca; Chain, Florian; Lenoir, Marion; Raguideau, Sébastien; Hudault, Sylvie; Bridonneau, Chantal; Northen, Trent; Bowen, Benjamin; et al

    2015-04-21

    Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified on the basis of human clinical data. The mechanisms underlying its beneficial effects are still unknown. Gnotobiotic mice harboring F. prausnitzii (A2-165) and Escherichia coli (K-12 JM105) were subjected to 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis. The inflammatory colitis scores and a gas chromatography-time of flight (GC/TOF) mass spectrometry-based metabolomic profile were monitored in blood, ileum, cecum, colon, and feces in gnotobiotic mice. The potential anti-inflammatory metabolites were tested in vitro. We obtained stable E. coli and F. prausnitzii-diassociated mice in which E. coli primed the gastrointestinal tract (GIT), allowing a durable andmore » stable establishment of F. prausnitzii. The disease activity index, histological scores, myeloperoxidase (MPO) activity, and serum cytokine levels were significantly lower in the presence of F. prausnitzii after TNBS challenge. The protective effect of F. prausnitzii against colitis was correlated to its implantation level and was linked to overrepresented metabolites along the GIT and in serum. Among 983 metabolites in GIT samples and serum, 279 were assigned to known chemical reactions. Some of them, belonging to the ammonia (α-ketoglutarate), osmoprotective (raffinose), and phenolic (including anti-inflammatory shikimic and salicylic acids) pathways, were associated with a protective effect of F. prausnitzii, and the functional link was established in vitro for salicylic acid. We show for the first time that F. prausnitzii is a highly active commensal bacterium involved in reduction of colitis through in vivo modulation of metabolites along the GIT and in the peripheral blood.« less

  4. The metabolic effects of inhibitors of 5-lipoxygenase and of cyclooxygenase 1 and 2 are an advancement in the efficacy and safety of anti-inflammatory therapy.

    PubMed

    Celotti, Fabio; Durand, Thierry

    2003-07-01

    Chronic treatment of inflammatory diseases with non-steroidal anti-inflammatory drugs is effective but not always devoid of serious side effects. In particular, the use of traditional non-steroidal aspirin-like drugs has been associated with a high incidence of gastrointestinal bleedings. The development of a new class of drugs, the selective cyclooxygenase type 2 (COX-2) inhibitors, has generated much expectation on the possibility to have safer compounds. After the initial enthusiasm of the scientific community, a re-evaluation of some large, randomized double-blind clinical studies performed with two of these compounds, has disclosed that the late serious gastrointestinal complications are not significantly reduced in comparison with non-selective inhibitors and that cardiovascular concerns might arise particularly if theses drugs are utilized in patients with underlying heart diseases. A new promising class of drugs to control inflammatory diseases is in advanced clinical development. The balanced inhibitors of 5-lipoxygenase (5-LOX) and of cyclooxygenase (both types 1 and 2) block the formation of all the enzymatically arachidonic acid-derived metabolites, both prostaglandins (like COX inhibitors) and leukotrienes (LT); these drugs have been shown to possess a very good anti-inflammatory efficacy without serious side effects. Licofelone, previously known as ML3000, is the molecule in the most advanced phase of clinical development (phase III) among this class of compounds; it is a potent, competitive, and well balanced inhibitor of 5-LOX and COX pathways. The drug has been shown to possess analgesic, anti-inflammatory, antipyretic antibronchocostrictory and antiplatelet properties at doses which are safe for the gastrointestinal tract. Moreover, the newly performed preclinical studies, here briefly reviewed, appear to indicate that the compound seems particularly suitable to protect the articular cartilage and the synovial space in degenerative joint disease

  5. Discovery of a highly potent glucocorticoid for asthma treatment

    PubMed Central

    He, Yuanzheng; Shi, Jingjing; Yi, Wei; Ren, Xin; Gao, Xiang; Li, Jianshuang; Wu, Nanyan; Weaver, Kevin; Xie, Qian; Khoo, Sok Kean; Yang, Tao; Huang, Xiaozhu; Melcher, Karsten; Xu, H Eric

    2015-01-01

    Glucocorticoids are the most effective treatment for asthma. However, their clinical applications are limited by low efficacy in severe asthma and by undesired side effects associated with high dose or prolonged use. The most successful approach to overcome these limitations has been the development of highly potent glucocorticoids that can be delivered to the lungs by inhalation to achieve local efficacy with minimal systemic effects. On the basis of our previous structural studies, we designed and developed a highly potent glucocorticoid, VSGC12, which showed an improved anti-inflammation activity in both cell-based reporter assays and cytokine inhibition experiments, as well as in a gene expression profiling of mouse macrophage RAW264.7 cells. In a mouse asthma model, VSGC12 delivered a higher efficacy than fluticasone furoate, a leading clinical compound, in many categories including histology and the number of differentiated immune cells. VSGC12 also showed a higher potency than fluticasone furoate in repressing most asthma symptoms. Finally, VSGC12 showed a better side effect profile than fluticasone furoate at their respective effective doses, including better insulin response and less bone loss in an animal model. The excellent therapeutic and side effect properties of VSGC12 provide a promising perspective for developing this potent glucocorticoid as a new effective drug for asthma. PMID:27066265

  6. Multitarget fatty acid amide hydrolase/cyclooxygenase blockade suppresses intestinal inflammation and protects against nonsteroidal anti-inflammatory drug-dependent gastrointestinal damage

    PubMed Central

    Sasso, Oscar; Migliore, Marco; Habrant, Damien; Armirotti, Andrea; Albani, Clara; Summa, Maria; Moreno-Sanz, Guillermo; Scarpelli, Rita; Piomelli, Daniele

    2015-01-01

    The ability of nonsteroidal anti-inflammatory drugs (NSAIDs) to inhibit cyclooxygenase (Cox)-1 and Cox-2 underlies the therapeutic efficacy of these drugs, as well as their propensity to damage the gastrointestinal (GI) epithelium. This toxic action greatly limits the use of NSAIDs in inflammatory bowel disease (IBD) and other chronic pathologies. Fatty acid amide hydrolase (FAAH) degrades the endocannabinoid anandamide, which attenuates inflammation and promotes GI healing. Here, we describe the first class of systemically active agents that simultaneously inhibit FAAH, Cox-1, and Cox-2 with high potency and selectivity. The class prototype 4 (ARN2508) is potent at inhibiting FAAH, Cox-1, and Cox-2 (median inhibitory concentration: FAAH, 0.031 ± 0.002 µM; Cox-1, 0.012 ± 0.002 µM; and Cox-2, 0.43 ± 0.025 µM) but does not significantly interact with a panel of >100 off targets. After oral administration in mice, ARN2508 engages its intended targets and exerts profound therapeutic effects in models of intestinal inflammation. Unlike NSAIDs, ARN2508 causes no gastric damage and indeed protects the GI from NSAID-induced damage through a mechanism that requires FAAH inhibition. Multitarget FAAH/Cox blockade may provide a transformative approach to IBD and other pathologies in which FAAH and Cox are overactive.—Sasso, O., Migliore, M., Habrant, D., Armirotti, A., Albani, C., Summa, M., Moreno-Sanz, G., Scarpelli, R., Piomelli, D. Multitarget fatty acid amide hydrolase/cyclooxygenase blockade suppresses intestinal inflammation and protects against nonsteroidal anti-inflammatory drug-dependent gastrointestinal damage. PMID:25757568

  7. Selenium Supplementation of Amaranth Sprouts Influences Betacyanin Content and Improves Anti-Inflammatory Properties via NFκB in Murine RAW 264.7 Macrophages.

    PubMed

    Tyszka-Czochara, Malgorzata; Pasko, Pawel; Zagrodzki, Pawel; Gajdzik, Ewelina; Wietecha-Posluszny, Renata; Gorinstein, Shela

    2016-02-01

    Sprouts contain potent compounds which while influencing crucial transduction pathways in cell reveal anti-inflammatory and anticancer activities. In this study, we report the biological activity for seeds and colourful sprouts of four types of edible amaranth, as amaranth has recently attracted interest due to its appreciable nutritional value. MTT assay conducted for the amaranth seeds and sprouts did not show any adverse effect on the viability of murine RAW 264.7 cells. As amaranth accumulates selenium, the sprouts were supplemented with this trace element (10 mg/L; 15 mg/L Se as sodium selenite) while growing. Selenium concentration in sprouts was observed to be significantly correlated with betacyanins content of the tested species. The amounts of Se and betacyanins in sprouts varied for various Amaranth species. In the present study, Amaranthus cruentus sprouts with the highest betacyanins (19.30 ± 0.57-28.85 ± 2.23 mg of amaranthin/100 g of fresh weight) and high total selenium (22.51 ± 1.57-1044.75 ± 73.08 μg/L in methanol extracts) content prevented NFκB translocation to the cell nucleus and subsequently exerted an anti-inflammatory effect by significant decreasing inflammatory interleukin 6 production (587.3 ± 34.2-710.0 ± 88.1 pg/mL) in the cell culture of activated RAW 264.7 macrophages (vs LPS control 1520 ± 114 pg/mL).

  8. Modulation of Intestinal Inflammation by Yeasts and Cell Wall Extracts: Strain Dependence and Unexpected Anti-Inflammatory Role of Glucan Fractions

    PubMed Central

    Jawhara, Samir; Habib, Khalid; Maggiotto, François; Pignede, Georges; Vandekerckove, Pascal; Maes, Emmanuel; Dubuquoy, Laurent; Fontaine, Thierry; Guerardel, Yann; Poulain, Daniel

    2012-01-01

    Yeasts and their glycan components can have a beneficial or adverse effect on intestinal inflammation. Previous research has shown that the presence of Saccharomyces cerevisiae var. boulardii (Sb) reduces intestinal inflammation and colonization by Candida albicans. The aim of this study was to identify dietary yeasts, which have comparable effects to the anti-C. albicans and anti-inflammatory properties of Sb and to assess the capabilities of yeast cell wall components to modulate intestinal inflammation. Mice received a single oral challenge of C. albicans and were then given 1.5% dextran-sulphate-sodium (DSS) for 2 weeks followed by a 3-day restitution period. S. cerevisiae strains (Sb, Sc1 to Sc4), as well as mannoprotein (MP) and β-glucan crude fractions prepared from Sc2 and highly purified β-glucans prepared from C. albicans were used in this curative model, starting 3 days after C. albicans challenge. Mice were assessed for the clinical, histological and inflammatory responses related to DSS administration. Strain Sc1-1 gave the same level of protection against C. albicans as Sb when assessed by mortality, clinical scores, colonization levels, reduction of TNFα and increase in IL-10 transcription. When Sc1-1 was compared with the other S. cerevisiae strains, the preparation process had a strong influence on biological activity. Interestingly, some S. cerevisiae strains dramatically increased mortality and clinical scores. Strain Sc4 and MP fraction favoured C. albicans colonization and inflammation, whereas β-glucan fraction was protective against both. Surprisingly, purified β-glucans from C. albicans had the same protective effect. Thus, some yeasts appear to be strong modulators of intestinal inflammation. These effects are dependent on the strain, species, preparation process and cell wall fraction. It was striking that β-glucan fractions or pure β-glucans from C. albicans displayed the most potent anti-inflammatory effect in the DSS model. PMID

  9. Selenium Supplementation of Amaranth Sprouts Influences Betacyanin Content and Improves Anti-Inflammatory Properties via NFκB in Murine RAW 264.7 Macrophages.

    PubMed

    Tyszka-Czochara, Malgorzata; Pasko, Pawel; Zagrodzki, Pawel; Gajdzik, Ewelina; Wietecha-Posluszny, Renata; Gorinstein, Shela

    2016-02-01

    Sprouts contain potent compounds which while influencing crucial transduction pathways in cell reveal anti-inflammatory and anticancer activities. In this study, we report the biological activity for seeds and colourful sprouts of four types of edible amaranth, as amaranth has recently attracted interest due to its appreciable nutritional value. MTT assay conducted for the amaranth seeds and sprouts did not show any adverse effect on the viability of murine RAW 264.7 cells. As amaranth accumulates selenium, the sprouts were supplemented with this trace element (10 mg/L; 15 mg/L Se as sodium selenite) while growing. Selenium concentration in sprouts was observed to be significantly correlated with betacyanins content of the tested species. The amounts of Se and betacyanins in sprouts varied for various Amaranth species. In the present study, Amaranthus cruentus sprouts with the highest betacyanins (19.30 ± 0.57-28.85 ± 2.23 mg of amaranthin/100 g of fresh weight) and high total selenium (22.51 ± 1.57-1044.75 ± 73.08 μg/L in methanol extracts) content prevented NFκB translocation to the cell nucleus and subsequently exerted an anti-inflammatory effect by significant decreasing inflammatory interleukin 6 production (587.3 ± 34.2-710.0 ± 88.1 pg/mL) in the cell culture of activated RAW 264.7 macrophages (vs LPS control 1520 ± 114 pg/mL). PMID:26162623

  10. Anti-inflammatory effects of fangchinoline and tetrandrine.

    PubMed

    Choi, H S; Kim, H S; Min, K R; Kim, Y; Lim, H K; Chang, Y K; Chung, M W

    2000-02-01

    Fangchinoline and tetrandrine are the major alkaloids from Stephania tetrandrae S. Moore which has been used traditionally for the treatment of inflammatory diseases in oriental countries including Korea. Both fangchinoline and tetrandrine showed anti-inflammatory effects on mouse ear edema induced by croton oil. In addition, the effects of fangchinoline and tetrandrine on cyclooxygenase, murine interleukin-5 (mIL-5) and human interleukin-6 (hIL-6) were examined in vitro to investigate the anti-inflammatory action mechanisms. One hundred micromolar of fangchinoline showed 35% of inhibition on cyclooxygenase, but the same concentration of tetrandrine did not show any inhibition. On the other hand, 12.5 microM of tetrandrine exhibited 95% of inhibition on mIL-5 activity, while fangchinoline did not show any effects. However, 4 microM of fangchinoline and 6 microM of tetrandrine showed 63 and 86% of inhibitions on hIL-6 activity, respectively. These results suggest that biochemical mechanisms of fangchinoline and tetrandrine on anti-inflammation are significantly different even though they are similar in chemical structure. PMID:10687873

  11. Anti-inflammatory Cerebrosides from Cultivated Cordyceps militaris.

    PubMed

    Chiu, Ching-Peng; Liu, Shan-Chi; Tang, Chih-Hsin; Chan, You; El-Shazly, Mohamed; Lee, Chia-Lin; Du, Ying-Chi; Wu, Tung-Ying; Chang, Fang-Rong; Wu, Yang-Chang

    2016-02-24

    Cordyceps militaris (bei-chong-chaw, northern worm grass) is a precious and edible entomopathogenic fungus, which is widely used in traditional Chinese medicine (TCM) as a general booster for the nervous system, metabolism, and immunity. Saccharides, nucleosides, mannitol, and sterols were isolated from this fungus. The biological activity of C. militaris was attributed to the saccharide and nucleoside contents. In this study, the aqueous methanolic fraction of C. militaris fruiting bodies exhibited a significant anti-inflammatory activity. Bioactivity-guided fractionation of the active fraction led to the isolation of eight compounds, including one new and two known cerebrosides (ceramide derivatives), two nucleosides, and three sterols. Cordycerebroside A (1), the new cerebroside, along with soyacerebroside I (2) and glucocerebroside (3) inhibited the accumulation of pro-inflammatory iNOS protein and reduced the expression of COX-2 protein in LPS-stimulated RAW264.7 macrophages. This is the first study on the isolation of cerebrosides with anti-inflammatory activity from this TCM. PMID:26853111

  12. Immunosuppressive and anti-inflammatory properties of engineered nanomaterials

    PubMed Central

    Ilinskaya, A N; Dobrovolskaia, M A

    2014-01-01

    Nanoparticle interactions with various components of the immune system are determined by their physicochemical properties such as size, charge, hydrophobicity and shape. Nanoparticles can be engineered to either specifically target the immune system or to avoid immune recognition. Nevertheless, identifying their unintended impacts on the immune system and understanding the mechanisms of such accidental effects are essential for establishing a nanoparticle's safety profile. While immunostimulatory properties have been reviewed before, little attention in the literature has been given to immunosuppressive and anti-inflammatory properties. The purpose of this review is to fill this gap. We will discuss intended immunosuppression achieved by either nanoparticle engineering, or the use of nanoparticles to carry immunosuppressive or anti-inflammatory drugs. We will also review unintended immunosuppressive properties of nanoparticles per se and consider how such properties could be either beneficial or adverse. Linked Articles This article is part of a themed section on Nanomedicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-17 PMID:24724793

  13. Anti-inflammatory strategies in the treatment of schizophrenia.

    PubMed

    Andrade, Chittaranjan

    2016-01-01

    Schizophrenia is a major mental illness with a lifetime prevalence of about 1%. Antipsychotic drugs, with a primary mechanism of action that involves dopamine receptor blockade, are the mainstay in the treatment of the disorder. However, despite optimum antipsychotic treatment, few patients return to pre-morbid levels; the treatment deficit includes refractory positive symptoms, negative symptoms, mood impairments, cognitive impairments, social impairments, and/or a variety of medication-related adverse effects, including extrapyramidal symptoms, metabolic disturbances, hyperprolactinemia, and others. To address these, antipsychotic treatment has been augmented with psychosocial interventions, cognitive rehabilitation, different kinds of electrical and magnetic brain stimulation, and a large range of drugs from the neuropsychiatric as well as, surprise, the general medical pharmacopeia. The pleomorphic pathophysiology of schizophrenia includes abnormalities in immunological and inflammatory pathways, and so it is not surprising that anti-inflammatory drugs have also been trialed as augmentation agents in schizophrenia. This article critically examines the outcomes after augmentation with conventional anti-inflammatory interventions; results from randomized controlled trials do not encourage the use of either aspirin (1000 mg/day) or celecoxib (400 mg/day), both of which have been studied for this indication during the past decade and a half.

  14. Anti-inflammatory triterpenoids from the stems of Microtropis fokienensis.

    PubMed

    Chen, I-Hsiao; Du, Ying-Chi; Hwang, Tsong-Long; Chen, I-Fen; Lan, Yu-Hsuan; Yen, Hsin-Fu; Chang, Fang-Rong; Wu, Yang-Chang

    2014-01-01

    Three new ursane- and four new oleanane- type triterpenoids 1-7 were isolated, along with six known compounds 8-13, from the methanolic extract of Microtropis fokienensis. All structures were elucidated by mass and NMR spectroscopic methods. The isolates 4-10 and known compounds 14-17 that were previously isolated from this material were evaluated for anti-inflammatory activity based on effects against superoxide anion generation and elastase release by neutrophils in response to fMLP/CB. 11α,30-Dihydroxy-2,3-seco-olean-12-en-2,3-dioic anhydride (7) was the first triterpene anhydride from the genus of Microtropis to have the ring A expanded to a seven-membered ring; it showed significant anti-inflammatory activity against superoxide anion generation and elastase release. Unexpectedly, 30-hydroxy-2,3-seco-lup-20(29)-ene-2,3-dioic acid (17) showed the best effect against superoxide anion generation and elastase release with IC50 values of 0.06±0.01 and 1.03±0.35 µg/mL, respectively. Compound 17 had a dioic acid function, and compound 7 had an anhydride function modification in ring A; both showed promising activity in the target assays.

  15. Potential anti-inflammatory actions of the elmiric (lipoamino) acids

    PubMed Central

    Burstein, Sumner H.; Adams, Jeffrey K.; Bradshaw, Heather B.; Fraioli, Cristian; Rossetti, Ronald G.; Salmonsen, Rebecca A.; Shaw, John W.; Walker, J. Michael; Zipkin, Robert E.; Zurier, Robert B.

    2007-01-01

    A library of amino acid-fatty acid conjugates (elmiric acids) was synthesized and evaluated for activity as potential anti-inflammatory agents. The compounds were tested in vitro for their effects on cell proliferation and prostaglandin production and compared with their effects on in vivo models of inflammation. LPS stimulated RAW 267.4 mouse macrophage cells was the in vitro model and phorbol ester-induced mouse ear edema served as the principal in vivo model. The prostaglandin responses were found to be strongly dependent on the nature of the fatty acid part of the molecule. Polyunsaturated acid conjugates produced a marked increase in media levels of i15-deoxy-PGJ2 with minimal effects on PGE production. It is reported in the literature that prostaglandin ratios in which the J series predominates over the E series promote the resolution of inflammatory conditions. Several of the elmiric acids tested here produced such favorable ratios suggesting that their potential anti-inflammatory activity occurs via a novel mechanism of action. The ear edema assay results were generally in agreement with the prostaglandin assay findings indicating a connection between them. PMID:17383881

  16. Anti-inflammatory and redox-protective activities of citronellal.

    PubMed

    Melo, Mônica S; Guimarães, Adriana G; Santana, Michele F; Siqueira, Rosana S; De Lima, Amanda Do Carmo B; Dias, Antonio S; Santos, Márcio Roberto V; Onofre, Alexandre S C; Quintans, Jullyana S S; De Sousa, Damião P; Almeida, Jackson R G S; Estevam, Charles S; Araujo, Brancilene S; Quintans-Júnior, Lucindo J

    2011-01-01

    The anti-inflammatory and redox protective effects of the citronellal (CT) were evaluated using in vivo and in vitro tests. Intraperitoneal (i.p.) administration of CT (50, 100, and 200 mg/kg) inhibited (p < 0.05) the carrageenan-induced leukocyte migration to the peritoneal cavity. Additionally, the carrageenan- and arachidonic acid-induced rat hind paw edema was significantly inhibited (p < 0.05) by i.p. administration of 100 and 200 mg/kg of the compound. When the redox activity was evaluated, CT (200 mg/kg) significantly reduced hepatic lipoperoxidation (p < 0.001), as well as oxidation of plasmatic (p < 0.05) and hepatic (p < 0.01) proteins. The results of the present study support the hypothesis that CT possesses anti-inflammatory and redox protective activities. It is suggested that its effects are associated with the inhibition of the enzymes in the arachidonic acid pathway, which prevent cell migration by inhibiting leukotriene production, edema formation and the increase of reactive oxygen species in tissues. Therefore, CT is of potential benefit to manage inflammatory disorders and correlated damages caused by oxidant agents.

  17. Anti-inflammatory, antiapoptotic, and antioxidant activity of fluoxetine.

    PubMed

    Caiaffo, Vitor; Oliveira, Belisa D R; de Sá, Fabrício B; Evêncio Neto, Joaquim

    2016-06-01

    Fluoxetine is a selective serotonin uptake inhibitor that has been widely used to determine the neurotransmission of serotonin in the central nervous system. This substance has emerged as the drug of choice for the treatment of depression due to is safer profile, fewer side effects, and greater tolerability. Studies have found the following important functions of fluoxetine related to the central nervous system: neuroprotection; anti-inflammatory properties similar to standard drugs for the treatment of inflammatory conditions; antioxidant properties, contributing to its therapeutic action and an important intracellular mechanism underlying the protective pharmacological effects seen in clinical practice in the treatment of different stress-related adverse health conditions; and antiapoptotic properties, with greater neuron survival and a reduction in apoptosis mediators as well as oxidative substances, such as superoxide dismutase and hydrogen peroxide. The aim of this study was to perform a review of the literature on the important role of fluoxetine in anti-inflammatory, cell survival, and neuron trophicity mechanisms (antiapoptotic properties) as well as its role regarding enzymes of the antioxidant defense system. PMID:27433341

  18. Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside.

    PubMed

    Sala, Araceli; Recio, M Carmen; Schinella, Guillermo R; Máñez, Salvador; Giner, Rosa M; Cerdá-Nicolás, Miguel; Rosí, José Luis

    2003-02-01

    Three flavonoids, gnaphaliin, pinocembrin and tiliroside, isolated from Helichrysum italicum, were studied in vitro for their antioxidant and/or scavenger properties and in vivo in different models of inflammation. In vitro tests included lipid peroxidation in rat liver microsomes, superoxide radical generation in the xanthine/xanthine oxidase system and the reduction of the stable radical 1,1-diphenyl-2-pycryl-hydrazyl (DPPH). Acute inflammation was induced by application of 12-O-tetradecanoylphorbol 13-acetate (TPA) to the mouse ear or by subcutaneous injection of phospholipase A(2) or serotonin in the mouse paw. Eczema provoked on the mouse ear by repeated administration of TPA was selected as a model of chronic inflammation. The flavonoids were assayed against sheep red blood cell-induced mouse paw oedema as a model of delayed-type hypersensitivity reaction. The most active compound, both in vitro and in vivo, was tiliroside. It significantly inhibited enzymatic and non-enzymatic lipid peroxidation (IC(50)=12.6 and 28 microM, respectively). It had scavenger properties (IC(50)=21.3 microM) and very potent antioxidant activity in the DPPH test (IC(50)=6 microM). In vivo, tiliroside significantly inhibited the mouse paw oedema induced by phospholipase A(2)(ED(50)=35.6 mg/kg) and the mouse ear inflammation induced by TPA (ED(50)=357 microg/ear). Pinocembrin was the only flavonoid that exhibited anti-inflammatory activity in the sheep red blood cell-induced delayed-type hypersensitivity reaction. However, only tiliroside significantly reduced the oedema and leukocyte infiltration induced by TPA. As in the case of other flavonoids, the anti-inflammatory activity of tiliroside could be based on its antioxidant properties, although other mechanisms are probably involved.

  19. Convergence of Nitric Oxide and Lipid Signaling: Anti-Inflammatory Nitro-Fatty Acids

    PubMed Central

    Baker, Paul R.S.; Schopfer, Francisco J.; O’Donnell, Valerie B.; Freeman, Bruce A.

    2009-01-01

    The signaling mediators nitric oxide (·NO) and oxidized lipids, once viewed to transduce metabolic and inflammatory information via discrete and independent pathways, are now appreciated as interdependent regulators of immune response and metabolic homeostasis. The interactions between these two classes of mediators result in reciprocal control of mediator sythesis that is strongly influenced by the local chemical environment. The relationship between the two pathways extends beyond co-regulation of ·NO and eicosanoid formation to converge via the nitration of unsaturated fatty acids to yield nitro derivatives (NO2-FA). These pluripotent signaling molecules are generated in vivo as an adaptive response to oxidative inflammatory conditions and manifest predominantly anti-inflammatory signaling reactions. These actions of NO2-FA are diverse, with these species serving as a potential chemical reserve of ·NO, reacting with cellular nucleophiles to post-translationally modify protein structure, function and localization. In this regard these species act as potent endogenous ligands for peroxisome proliferator activated receptor γ. Functional consequences of these signaling mechanisms have been shown in multiple model systems, including the inhibition of platelet and neutrophil functions, induction of heme oxygenase-1, inhibition of LPS-induced cytokine release in monocytes, increased insulin sensitivity and glucose uptake in adipocytes and relaxation of pre-constricted rat aortic segments. These observations have propelled further in vitro and in vivo studies of mechanisms of NO2-FA signaling and metabolism, highlighting the therapeutic potential of this class of molecules as anti-inflammatory drug candidates. PMID:19200454

  20. Anti-inflammatory activity of orpanoxin administered orally and topically to rodents.

    PubMed

    Brooks, R R; Bonk, K R; Decker, G E; Miller, K E

    1985-07-01

    Orpanoxin, a nonsteroidal anti-inflammatory drug (NSAID) lacking gastric ulcerogenic effects in the therapeutic dose range in rats, was compared with six reference NSAIDs for oral activity in the rat paw carrageenin-induced edema assay. Tested NSAIDs were ranked on the basis of oral mg/kg ED50 values: piroxicam, 0.55; orpanoxin, 35.6; diflunisal, 59.6; benoxaprofen, greater than 300; tolmetin sodium, greater than 300; and sulindac, greater than 300. Zomepirac sodium was inactive. Only the three most potent compounds produced greater than 60% inhibition of edema. Inhibition was generally greater at 4 h than at 6 h post carrageenin for all compounds. Oral activity of orpanoxin was also demonstrated in the guinea-pig u.v.-induced erythema model (ED50 = 24.2 mg/kg p.o. when given 1 h before irradiation) and in the mouse ear croton oil induced edema test (ED50 value = 131 mg/kg p.o.). Topical activity of orpanoxin was assessed in both the guinea-pig and mouse models. In the guinea-pig u.v.-induced erythema model, application (1 h after u.v.) of 1, 5, and 10% (w/v) orpanoxin creams (containing 10% urea) significantly inhibited erythema at 2, 3, and 4 h post-irradiation. Orpanoxin, mefenamic acid, and indomethacin as 1% creams inhibited total erythema scores 70, 92 and 74%, respectively. Evidence for topical activity in the mouse ear assay was also obtained for orpanoxin in diethyl ether or 10% urea cream, but not in dimethylsulfoxide. It was concluded that orpanoxin has anti-inflammatory activity comparable to reference NSAIDs in the rat paw edema test, is active orally in rat, mouse, and guinea-pig models, and shows topical activity in the guinea-pig and the mouse.

  1. Anti-inflammatory effect of curcumin involves downregulation of MMP-9 in blood mononuclear cells.

    PubMed

    Saja, K; Babu, Mani Shankar; Karunagaran, D; Sudhakaran, P R

    2007-12-15

    Curcumin (1, 7-bis (4-hydroxyl-3-methoxyphenyl)-1, 6 heptadiene-3, 5-dione) is a potent natural anti oxidant and anti-inflammatory agent, which mediates its effects mainly by inhibiting the activity of enzymes like cyclooxygenase, lipooxygenases and phospholipase A2. Here we examined the possibility of curcumin affecting the production of matrix metalloproteinases (MMPs) by peripheral blood mononuclear cells (PBMCs), which play an important role in inflammation. Zymographic analysis and ELISA showed that curcumin significantly inhibited the activity and level of MMPs produced by PBMCs isolated from human and inflammation-induced rabbit in a concentration dependent manner. The administration of curcumin to inflammation-induced rabbits also caused downregulation of MMP-9. Kinetic analysis showed that the effect of curcumin was a delayed one indicating inhibition of de novo protein synthesis. RT-PCR and immunoblot analysis showed inhibition of the production of MMP-9 mRNA and protein respectively by human PBMCs, which were activated in vitro by Artocarpus Lakoocha agglutinin (ALA) lectin. EMSA and super shift showed activation of classical NFkappaB in in vitro activated PBMCs and treatment with curcumin inhibited activation of NFkappaB. Immunoblot analysis suggested that ALA-induced activation of NFkappaB leading to the upregulation of MMP-9 was due to the degradation of IkappaB-alpha. Curcumin inhibited the degradation of IkappaB-alpha, which inhibited the ALA mediated activation of NFkappaB and upregulation of MMP-9. These results indicated that anti-inflammatory effect of curcumin also involves inhibition of the production of MMP-9 in PBMCs.

  2. Imbricaric Acid and Perlatolic Acid: Multi-Targeting Anti-Inflammatory Depsides from Cetrelia monachorum

    PubMed Central

    Oettl, Sarah K.; Gerstmeier, Jana; Khan, Shafaat Y.; Wiechmann, Katja; Bauer, Julia; Atanasov, Atanas G.; Malainer, Clemens; Awad, Ezzat M.; Uhrin, Pavel; Heiss, Elke H.; Waltenberger, Birgit; Remias, Daniel; Breuss, Johannes M.; Boustie, Joel; Dirsch, Verena M.; Stuppner, Hermann; Werz, Oliver; Rollinger, Judith M.

    2013-01-01

    In vitro screening of 17 Alpine lichen species for their inhibitory activity against 5-lipoxygenase, microsomal prostaglandin E2 synthase-1 and nuclear factor kappa B revealed Cetrelia monachorum (Zahlbr.) W.L. Culb. & C.F. Culb. As conceivable source for novel anti-inflammatory compounds. Phytochemical investigation of the ethanolic crude extract resulted in the isolation and identification of 11 constituents, belonging to depsides and derivatives of orsellinic acid, olivetolic acid and olivetol. The two depsides imbricaric acid (4) and perlatolic acid (5) approved dual inhibitory activities on microsomal prostaglandin E2 synthase-1 (IC50 = 1.9 and 0.4 µM, resp.) and on 5-lipoxygenase tested in a cell-based assay (IC50 = 5.3 and 1.8 µM, resp.) and on purified enzyme (IC50 = 3.5 and 0.4 µM, resp.). Additionally, these two main constituents quantified in the extract with 15.22% (4) and 9.10% (5) showed significant inhibition of tumor necrosis factor alpha-induced nuclear factor kappa B activation in luciferase reporter cells with IC50 values of 2.0 and 7.0 µM, respectively. In a murine in vivo model of inflammation, 5 impaired the inflammatory, thioglycollate-induced recruitment of leukocytes to the peritoneum. The potent inhibitory effects on the three identified targets attest 4 and 5 a pronounced multi-target anti-inflammatory profile which warrants further investigation on their pharmacokinetics and in vivo efficacy. PMID:24130812

  3. Rat full term amniotic fluid harbors highly potent stem cells.

    PubMed

    Mun-Fun, Hoo; Ferdaos, Nurfarhana; Hamzah, Siti Nurusaadah; Ridzuan, Noridzzaida; Hisham, Nurul Afiqah; Abdullah, Syahril; Ramasamy, Rajesh; Cheah, Pike See; Thilakavathy, Karrupiah; Yazid, Mohd Nazri; Nordin, Norshariza

    2015-10-01

    Amniotic fluid stem cells (AFSCs) are commonly isolated from mid-term amniotic fluid (AF) of animals and human collected via an invasive technique, amniocentesis. Alternatively, AFSCs could be collected at full-term. However, it is unclear whether AFSCs are present in the AF at full term. Here, we aimed to isolate and characterize stem cells isolated from AF of full term pregnant rats. Three stem cell lines have been established following immuno-selection against the stem cell marker, c-kit. Two of the new lines expressed multiple markers of pluripotency until more than passage 90. Further, they spontaneously differentiated into derivatives of the three primary germ layers through the formation of good quality embryoid bodies (EBs), and can be directly differentiated into neural lineage. Their strong stemness and potent neurogenic properties highlight the presence of highly potent stem cells in AF of full-term pregnancies, which could serve as a potential source of stem cells for regenerative medicine.

  4. Hugan Qingzhi Exerts Anti-Inflammatory Effects in a Rat Model of Nonalcoholic Fatty Liver Disease

    PubMed Central

    Tang, WaiJiao; Zeng, Lu; Yin, JinJin; Yao, YuFa; Feng, LiJuan; Yao, XiaoRui; Sun, XiaoMin; Zhou, BenJie

    2015-01-01

    Ethnopharmacological Relevance. The Hugan Qingzhi tablet (HQT) is a traditional Chinese medicine used for treating NAFLD (nonalcoholic fatty liver disease). The present study evaluated the anti-inflammatory effects of HQT in rats with NAFLD. Materials and Methods. HQT was administered daily to the NAFLD experimental groups. Biochemical markers, histopathological data, and oxidative stress/antioxidant biomarkers were determined. Proinflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) were detected by enzyme-linked immunoassay. Expressions of silent information regulator 1 (SIRT1) and acetylated-nuclear-factor kappaB-p65 (Ac-NF-κB-p65) were performed by western blotting. Results. At high and moderate doses, HQT was highly effective in decreasing serum alanine aminotransferase (P < 0.01), aspartate aminotransferase (P < 0.01), hepatic total cholesterol (P < 0.01), triglycerides (P < 0.01), and free fatty acid levels (P < 0.01). Moreover, high and moderate doses of HQT reduced hepatic levels of the proinflammatory cytokines TNF-α (P < 0.01), IL-1β (P < 0.01), and IL-6 (P < 0.01), enhanced SIRT1 expression, and depressed Ac-NF-κB-p65 expression at protein level. Conclusions. In our NAFLD rat model, HQT exerted substantial anti-inflammatory and antioxidant activities, possibly involving the regulation of SIRT1 and Ac-NF-κB-p65 expression. PMID:26146507

  5. Anti-inflammatory and antioxidant activities of cat's claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content.

    PubMed

    Sandoval, M; Okuhama, N N; Zhang, X J; Condezo, L A; Lao, J; Angeles', F M; Musah, R A; Bobrowski, P; Miller, M J S

    2002-05-01

    Cat's claw is an herbal medicine from the Amazon that is used widely to treat inflammatory disorders. The purpose of this study was to characterize the antioxidative and antiinflammatory properties of cat's claw, Uncaria tomentosa (UT) and Uncaria guianensis (UG). Alkaloids and flavanols were determined using reversed-phase HPLC; scavenging of 1,1-diphenyl-2-picrilhydrazyl (DPPH), hydroxyl radicals, and lipid peroxidation by spectrophotometry; and TNFalpha production by ELISA. Anti-inflammatory activity was assessed in vitro by inhibition of TNFalpha and nitrite production from RAW 264.7 cells exposed to LPS (50 ng/ml) and in vivo using the indomethacin-induced gastritis model. Apoptosis was assessed using the TUNEL technique and TNFalpha mRNA by in situ RT-PCR. In each of the antioxidant assays tested, UG was more potent than UT (P < 0.01). The total oxindole and pentacyclic alkaloid content of UT was 35-fold > UG. The IC50 value for inhibition of TNFalpha production was significantly (P < 0.01) higher for UT (14.1 ng/ml) vs UG (9.5 ng/ml), yet at concentrations that were considerable lower than that required for antioxidant activity. Non-alkaloid HPLC fractions from UT decreased LPS-induced TNFalpha and nitrite production in RAW 264.7 cells (P < 0.01) at a concentration range comparable to the parent botanical. Oral pretreatment for 3 d with UT protected against indomethacin-induced gastritis, and prevented TNFalpha mRNA expression and apoptosis. These results indicate that while both species of cat's claw provide effective antioxidant and anti-inflammatory activities, U. guianensis is more potent. In conclusion, the presence of oxindole or pentacyclic alkaloids did not influence the antioxidant and anti-inflammatory properties of cat's claw.

  6. The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling

    PubMed Central

    Fleming, Bryan D.; Chandrasekaran, Prabha; Dillon, Laura A. L.; Dalby, Elizabeth; Suresh, Rahul; Sarkar, Arup; El-Sayed, Najib M.; Mosser, David M.

    2015-01-01

    Macrophages readily change their phenotype in response to exogenous stimuli. In this work, macrophages were stimulated under a variety of experimental conditions, and phenotypic alterations were correlated with changes in gene expression. We identified 3 transcriptionally related populations of macrophages with immunoregulatory activity. They were generated by stimulating cells with TLR ligands in the presence of 3 different "reprogramming" signals: high-density ICs, PGE2, or Ado. All 3 of these cell populations produced high levels of transcripts for IL-10 and growth and angiogenic factors. They also secreted reduced levels of inflammatory cytokines IL-1β, IL-6, and IL-12. All 3 macrophage phenotypes could partially rescue mice from lethal endotoxemia, and therefore, we consider each to have anti-inflammatory activity. This ability to regulate innate-immune responses occurred equally well in macrophages from STAT6-deficient mice. The lack of STAT6 did not affect the ability of macrophages to change cytokine production reciprocally or to rescue mice from lethal endotoxemia. Furthermore, treatment of macrophages with IL-4 failed to induce similar phenotypic or transcriptional alterations. This work demonstrates that there are multiple ways to generate macrophages with immunoregulatory activity. These anti-inflammatory macrophages are transcriptionally and functionally related to each other and are quite distinct from macrophages treated with IL-4. PMID:26048978

  7. Anti-inflammatory and antifibrotic effects of methyl palmitate

    SciTech Connect

    El-Demerdash, Ebtehal

    2011-08-01

    Methyl palmitate (MP) has been shown earlier to inhibit Kupffer cells and rat peritoneal macrophages. To evaluate the potential of MP to inhibit the activation of other macrophages, RAW cells (macrophages of alveolar origin) were treated with varying concentrations of MP (0.25, 0.5, 1 mM). Assessment of cytotoxicity using MTT assay revealed that 0.25 and 0.5 mM are not toxic to RAW cells. MP was able to inhibit the phagocytic function of RAW cells. Treatment of cells with MP 24 hours prior to LPS stimulation significantly decreased nitric oxide release and altered the pattern of cytokines release; there was a significant decrease in TNF-{alpha} and a significant increase in IL-10 compared to the controls. However, there is a non-significant change in IL-6 level. Furthermore, phosphorylation of inhibitory kappa B (I{kappa}B{alpha}) protein was significantly decreased in RAW cells treated with 0.5 mM MP after LPS stimulation. Based upon the in-vitro results, it was examined whether MP treatment will be effective in preventing bleomycin-induced lung inflammation and fibrosis in-vivo. Bleomycin given by itself caused destruction of the lung architecture characterized by pulmonary fibrosis with collapse of air alveoli and emphysematous. Bleomycin induced a significant increase in hydroxyproline level and activated NF-{kappa}B, p65 expression in the lung. MP co-treatment significantly ameliorated bleomycin effects. These results suggest that MP has a potential of inhibiting macrophages in general. The present study demonstrated for the first time that MP has anti-inflammatory and antifibrotic effect that could be through NF-kB inhibition. Thus MP like molecule could be a promising anti-inflammatory and antifibrotic drug. - Research Highlights: >Methyl palmitate is a universal macrophage inhibitor. >It could be a promising nucleus of anti-inflammatory and antifibrotic drugs. >The underlying mechanism of these effects could be through NF-kB inhibition.

  8. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status

    PubMed Central

    Cameron, Amy R.; Morrison, Vicky L.; Levin, Daniel; Mohan, Mohapradeep; Forteath, Calum; Beall, Craig; McNeilly, Alison D.; Balfour, David J.K.; Savinko, Terhi; Wong, Aaron K.F.; Viollet, Benoit; Sakamoto, Kei; Fagerholm, Susanna C.; Foretz, Marc

    2016-01-01

    Rationale: The diabetes mellitus drug metformin is under investigation in cardiovascular disease, but the molecular mechanisms underlying possible benefits are poorly understood. Objective: Here, we have studied anti-inflammatory effects of the drug and their relationship to antihyperglycemic properties. Methods and Results: In primary hepatocytes from healthy animals, metformin and the IKKβ (inhibitor of kappa B kinase) inhibitor BI605906 both inhibited tumor necrosis factor-α–dependent IκB degradation and expression of proinflammatory mediators interleukin-6, interleukin-1β, and CXCL1/2 (C-X-C motif ligand 1/2). Metformin suppressed IKKα/β activation, an effect that could be separated from some metabolic actions, in that BI605906 did not mimic effects of metformin on lipogenic gene expression, glucose production, and AMP-activated protein kinase activation. Equally AMP-activated protein kinase was not required either for mitochondrial suppression of IκB degradation. Consistent with discrete anti-inflammatory actions, in macrophages, metformin specifically blunted secretion of proinflammatory cytokines, without inhibiting M1/M2 differentiation or activation. In a large treatment naive diabetes mellitus population cohort, we observed differences in the systemic inflammation marker, neutrophil to lymphocyte ratio, after incident treatment with either metformin or sulfonylurea monotherapy. Compared with sulfonylurea exposure, metformin reduced the mean log-transformed neutrophil to lymphocyte ratio after 8 to 16 months by 0.09 U (95% confidence interval, 0.02–0.17; P=0.013) and increased the likelihood that neutrophil to lymphocyte ratio would be lower than baseline after 8 to 16 months (odds ratio, 1.83; 95% confidence interval, 1.22–2.75; P=0.00364). Following up these findings in a double-blind placebo controlled trial in nondiabetic heart failure (trial registration: NCT00473876), metformin suppressed plasma cytokines including the aging

  9. Neuroactive and Anti-inflammatory Frankincense Cembranes: A Structure-Activity Study.

    PubMed

    Pollastro, Federica; Golin, Samantha; Chianese, Giuseppina; Putra, Masteria Yunovilsa; Schiano Moriello, Aniello; De Petrocellis, Luciano; García, Victor; Munoz, Eduardo; Taglialatela-Scafati, Orazio; Appendino, Giovanni

    2016-07-22

    An expeditious isolation method for the cembrane diterpene alcohols incensol (1a) and serratol (2) has been developed from respectively African and Indian frankincense. The two native alcohols and a series of semisynthetic derivatives of incensol were evaluated for transient receptor potential vanilloid 3 (TRPV3) activation and the inhibition of NF-κB, the putative molecular targets underlying the psychotropic and anti-inflammatory activities of incensol acetate (IA, 1b). Serratol (2) was the most potent TRPV3 activator, outperforming by 2 orders of magnitude the reference agonist thymol and by 1 order of magnitude incensol acetate (1b). Acylation, epimerization, and oxidation did not significantly improve the affinity of incensol for TRPV3, while NF-κB inhibition, marginal for both natural alcohols, could be improved by esterification of incensol (1a) with lipophilic acids. Interestingly, incensol (1a) but not IA (1b) was a potent inhibitor of STAT3, raising the possibility that hydrolysis to incensol (1a) might be involved in the in vivo biological activity of IA (1b). Serratol was not amenable to chemical modification, but some marine cembranoids related to the frankincense diterpenoids showed a certain degree of TRPV3-activating properties, qualifying the aliphatic macrocyclic cembrane skeleton as a selective chemotype to explore the pharmacology of TRPV3, a thermo-TRP otherwise resistant to modulation by small molecules. PMID:27352042

  10. Tocotrienol-rich fraction of palm oil exhibits anti-inflammatory property by suppressing the expression of inflammatory mediators in human monocytic cells.

    PubMed

    Wu, Shu-Jing; Liu, Po-Len; Ng, Lean-Teik

    2008-08-01

    Tocotrienol-rich fraction (TRF) of palm oil has been shown to possess potent antioxidant, anticancer, and cholesterol lowering activities. In this study, our aim was to examine the effects of TRF on LPS-induced inflammatory response through measuring the production of inflammatory mediators, namely nitric oxide (NO), prostaglandin E(2) (PGE(2)), inducible nitric oxide synthase (iNOS), cytokines (TNF-alpha, IL-4, and IL-8), cyclooxygenase-1 and -2 (COX-1 and COX-2), and nuclear factor-kappaB (NF-kappaB) in human monocytic (THP-1) cells. At concentrations 0.5-5.0 microg/mL, TRF dose-dependently protected against LPS-induced cell death. At same concentrations, TRF also showed potent anti-inflammatory activity as demonstrated by a dose-dependent inhibition of LPS (1 microg/mL)-induced release of NO and PGE(2), and a significant decrease in the transcription of proinflammatory cytokines. TRF at 1.0 microg/mL significantly blocked the LPS induction of iNOS and COX-2 expression, but not COX-1. This anti-inflammatory activity was further supported by the inhibition of NF-kappaB expression. These results conclude that TRF possesses potent anti-inflammatory activity, and its mechanism of action could be through the inhibition of iNOS and COX-2 production, as well as NF-kappaB expression. PMID:18481320

  11. Identification of Novel Anti-inflammatory Agents from Ayurvedic Medicine for Prevention of Chronic Diseases

    PubMed Central

    Aggarwal, Bharat B.; Prasad, Sahdeo; Reuter, Simone; Kannappan, Ramaswamy; Yadev, Vivek R.; Park, Byoungduck; Kim, Ji Hye; Gupta, Subash C.; Phromnoi, Kanokkarn; Sundaram, Chitra; Prasad, Seema; Chaturvedi, Madan M.; Sung, Bokyung

    2011-01-01

    Inflammation, although first characterized by Cornelius Celsus, a physician in first Century Rome, it was Rudolf Virchow, a German physician in nineteenth century who suggested a link between inflammation and cancer, cardiovascular diseases, diabetes, pulmonary diseases, neurological diseases and other chronic diseases. Extensive research within last three decades has confirmed these observations and identified the molecular basis for most chronic diseases and for the associated inflammation. The transcription factor, Nuclear Factor-kappaB (NF-κB) that controls over 500 different gene products, has emerged as major mediator of inflammation. Thus agents that can inhibit NF-κB and diminish chronic inflammation have potential to prevent or delay the onset of the chronic diseases and further even treat them. In an attempt to identify novel anti-inflammatory agents which are safe and effective, in contrast to high throughput screen, we have turned to “reverse pharmacology” or “bed to benchside” approach. We found that Ayurveda, a science of long life, almost 6000 years old, can serve as a “goldmine” for novel anti-inflammatory agents used for centuries to treat chronic diseases. The current review is an attempt to provide description of various Ayurvedic plants currently used for treatment, their active chemical components, and the inflammatory pathways that they inhibit. PMID:21561421

  12. Recent Breakthroughs in the Antioxidant and Anti-Inflammatory Effects of Morella and Myrica Species.

    PubMed

    Silva, Bruno J C; Seca, Ana M L; Barreto, Maria do Carmo; Pinto, Diana C G A

    2015-01-01

    Oxidative stress is one of the risk factors for the development of several chronic diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases. Antioxidants are therefore highly sought and can be seen as a type of preventive medicine against several diseases. Myrica and Morella genus (Myricaceae) are taxonomically very close and their species are trees or shrubs with edible fruits that exhibit relevant uses in traditional medicine, for instance in Chinese or Japanese folk medicine they are used to treat diarrhea, digestive problems, headache, burns and skin diseases. Nearly 36 compounds were isolated from different morphological parts of Myrica and/or Morella species and their antioxidant and anti-inflammatory activities evaluated. Thirteen of these compounds exhibit greater effects than the positive controls used. Adenodimerin A was the most active compound reported (in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay EC50= 7.9 ± 0.3 µM). These results are just one aspect of the antioxidant and anti-inflammatory evaluations reported regarding Myrica and Morella species, so a comprehensive overview on the current status, highlighting the antioxidant health promoting effect of these species, their key antioxidant compounds as well as the compounds with protective effects against oxidative stress related diseases such as inflammation, is relevant. PMID:26308834

  13. Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals.

    PubMed

    Afanas'eva, I B; Ostrakhovitch, E A; Mikhal'chik, E V; Ibragimova, G A; Korkina, L G

    2001-03-15

    The antioxidant and anti-inflammatory activities of two transition metal complexes of bioflavonoid rutin, Fe(rut)Cl(3) and Cu(rut)Cl(2), were studied. It was found that Cu(rut)Cl(2) was a highly efficient in vitro and ex vivo free radical scavenger that sharply decreased (by 2-30 times compared to the parent rutin): oxygen radical production by xanthine oxidase, rat liver microsomes, and rat peritoneal macrophages; the formation of thiobarbituric acid-reactive products in microsomal lipid peroxidation; and the generation of oxygen radicals by broncho-alveolar cells from bleomycin-treated rats. The copper-rutin complex was also a superior inhibitor of inflammatory and fibrotic processes (characterized by such parameters as macrophage/neutrophil ratio, wet lung weight, total protein content, and hydroxyproline concentration) in the bleomycin-treated rats. The antioxidant activity of Fe(rut)Cl(3) was much lower and in some cases approached that of rutin. Fe(rut)Cl(3) also stimulated to some degree spontaneous oxygen radical production by macrophages. We suggested that the superior antioxidant and anti-inflammatory activity of the copper-rutin complex is a consequence of its acquiring the additional superoxide-dismuting copper center. The inhibitory activity of Fe(rut)Cl(3) was lower, probably due to the partial reduction into Fe(rut)Cl(2) in the presence of biological reductants; however, similarly to the copper-rutin complex, this complex efficiently suppressed lung edema. PMID:11266652

  14. Isolation and characterization of anti-inflammatory peptides derived from whey protein.

    PubMed

    Ma, Ye; Liu, Jie; Shi, Haiming; Yu, Liangli Lucy

    2016-09-01

    The present study was conducted to isolate and characterize anti-inflammatory peptides from whey protein hydrolysates using alcalase. Nine subfractions were obtained after sequential purification by ultrafiltration, Sephadex G-25 gel (GE Healthcare, Uppsala, Sweden) filtration chromatography, and preparative HPLC. Among them, subfraction F4e showed the strongest inhibitory activity on interleukin-1β (IL-1β), cyclooxygenase-2, and tumor necrosis factor-α (TNF-α) mRNA expression in lipopolysaccharide-induced RAW 264.7 mouse macrophages. Eight peptides, including 2 new peptides-Asp-Tyr-Lys-Lys-Tyr (DYKKY) and Asp-Gln-Trp-Leu (DQWL)-were identified from subfractions F4c and F4e, respectively, using ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Peptide DQWL showed the strongest inhibitory ability on IL-1β, cyclooxygenase-2, and TNF-α mRNA expression and production of IL-1β and TNF-α proteins at concentrations of 10 and 100μg/mL, respectively. Additionally, DQWL treatment significantly inhibited nuclear factor-κB activation by suppressing nuclear translocation of nuclear factor-κB p65 and blocking inhibitor κB kinase phosphorylation and inhibitor κB degradation together with p38 mitogen-activated protein kinase activation. Our study suggests that peptide DQWL has anti-inflammatory potential; further confirmation using an in vivo model is needed. PMID:27394940

  15. Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials

    NASA Astrophysics Data System (ADS)

    Wu, Duo; Chen, Xingyu; Chen, Tianchan; Ding, Chunmei; Wu, Wei; Li, Jianshu

    2015-06-01

    Implant materials need to be highly biocompatible to avoid inflammation in clinical practice. Although biodegradable polymeric implants can eliminate the need for a second surgical intervention to remove the implant materials, they may produce acidic degradation products in vivo and cause non-bacterial inflammation. Here we show the strategy of “substrate-anchored and degradation-sensitive coatings” for biodegradable implants. Using poly(lactic acid)/hydroxyapatite as an implant material model, we constructed a layer-by-layer coating using pH-sensitive star polymers and dendrimers loaded with an anti-inflammatory drug, which was immobilised through a hydroxyapatite-anchored layer. The multifunctional coating can effectively suppress the local inflammation caused by the degradation of implant materials for at least 8 weeks in vivo. Moreover, the substrate-anchored coating is able to modulate the degradation of the substrate in a more homogeneous manner. The “substrate-anchored and degradation-sensitive coating” strategy therefore exhibits potential for the design of various self-anti-inflammatory biodegradable implant materials.

  16. Recent Breakthroughs in the Antioxidant and Anti-Inflammatory Effects of Morella and Myrica Species

    PubMed Central

    Silva, Bruno J. C.; Seca, Ana M. L.; Barreto, Maria do Carmo; Pinto, Diana C. G. A.

    2015-01-01

    Oxidative stress is one of the risk factors for the development of several chronic diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases. Antioxidants are therefore highly sought and can be seen as a type of preventive medicine against several diseases. Myrica and Morella genus (Myricaceae) are taxonomically very close and their species are trees or shrubs with edible fruits that exhibit relevant uses in traditional medicine, for instance in Chinese or Japanese folk medicine they are used to treat diarrhea, digestive problems, headache, burns and skin diseases. Nearly 36 compounds were isolated from different morphological parts of Myrica and/or Morella species and their antioxidant and anti-inflammatory activities evaluated. Thirteen of these compounds exhibit greater effects than the positive controls used. Adenodimerin A was the most active compound reported (in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay EC50= 7.9 ± 0.3 µM). These results are just one aspect of the antioxidant and anti-inflammatory evaluations reported regarding Myrica and Morella species, so a comprehensive overview on the current status, highlighting the antioxidant health promoting effect of these species, their key antioxidant compounds as well as the compounds with protective effects against oxidative stress related diseases such as inflammation, is relevant.

  17. Recent Breakthroughs in the Antioxidant and Anti-Inflammatory Effects of Morella and Myrica Species

    PubMed Central

    Silva, Bruno J. C.; Seca, Ana M. L.; Barreto, Maria do Carmo; Pinto, Diana C. G. A.

    2015-01-01

    Oxidative stress is one of the risk factors for the development of several chronic diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases. Antioxidants are therefore highly sought and can be seen as a type of preventive medicine against several diseases. Myrica and Morella genus (Myricaceae) are taxonomically very close and their species are trees or shrubs with edible fruits that exhibit relevant uses in traditional medicine, for instance in Chinese or Japanese folk medicine they are used to treat diarrhea, digestive problems, headache, burns and skin diseases. Nearly 36 compounds were isolated from different morphological parts of Myrica and/or Morella species and their antioxidant and anti-inflammatory activities evaluated. Thirteen of these compounds exhibit greater effects than the positive controls used. Adenodimerin A was the most active compound reported (in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay EC50= 7.9 ± 0.3 µM). These results are just one aspect of the antioxidant and anti-inflammatory evaluations reported regarding Myrica and Morella species, so a comprehensive overview on the current status, highlighting the antioxidant health promoting effect of these species, their key antioxidant compounds as well as the compounds with protective effects against oxidative stress related diseases such as inflammation, is relevant. PMID:26225964

  18. Triblock polymeric micelles as carriers for anti-inflammatory drug delivery.

    PubMed

    Yoncheva, Krassimira; Petrov, Petar; Pencheva, Ivanka; Konstantinov, Spiro

    2015-01-01

    This study evaluated the properties of poly(ethylene oxide)-b-poly(n-butyl acrylate)-b-poly(acrylic acid) (PEO-PnBA-PAA) polymeric micelles as carriers for anti-inflammatory drugs (prednisolone and budesonide). The micelles comprising a hydrophobic PnBA core and a PEO/PAA corona showed average diameter less than 40 nm. The size of the drug-loaded micelles did not change during eight hours into media that mimic physiological fluids indicating high colloidal stability. The calculation of Flory-Huggins parameter showed greater compatibility between budesonide and micellar core suggesting its location in the micellar core, whereas prednisolone was located also into the interface layer. This observation correlated further with slower release of budesonide, especially in acid medium (pH = 1.2). The inclusion of budesonide into micelles showed significant protective effect against the cytotoxic damage induced by the co-cultivation of differentiated human EOL-1 and HT-29 cells. This study revealed the capacity of PEO-PnBA-PAA terpolymer as carrier of nanosized micelles suitable for oral delivery of anti-inflammatory drugs.

  19. Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials

    PubMed Central

    Wu, Duo; Chen, Xingyu; Chen, Tianchan; Ding, Chunmei; Wu, Wei; Li, Jianshu

    2015-01-01

    Implant materials need to be highly biocompatible to avoid inflammation in clinical practice. Although biodegradable polymeric implants can eliminate the need for a second surgical intervention to remove the implant materials, they may produce acidic degradation products in vivo and cause non-bacterial inflammation. Here we show the strategy of “substrate-anchored and degradation-sensitive coatings” for biodegradable implants. Using poly(lactic acid)/hydroxyapatite as an implant material model, we constructed a layer-by-layer coating using pH-sensitive star polymers and dendrimers loaded with an anti-inflammatory drug, which was immobilised through a hydroxyapatite-anchored layer. The multifunctional coating can effectively suppress the local inflammation caused by the degradation of implant materials for at least 8 weeks in vivo. Moreover, the substrate-anchored coating is able to modulate the degradation of the substrate in a more homogeneous manner. The “substrate-anchored and degradation-sensitive coating” strategy therefore exhibits potential for the design of various self-anti-inflammatory biodegradable implant materials. PMID:26077243

  20. Design of cissus-alginate microbeads revealing mucoprotection properties in anti-inflammatory therapy.

    PubMed

    Okunlola, Adenike; Odeku, Oluwatoyin A; Lamprecht, Alf; Oyagbemi, Ademola A; Oridupa, Olayinka A; Aina, Oluwasanmi O

    2015-08-01

    Cissus gum has been employed as polymer with sodium alginate in the formulation of diclofenac microbeads and the in vivo mucoprotective properties of the polymer in anti-inflammatory therapy assessed in rats with carrageenan-induced paw edema in comparison to diclofenac powder and commercial diclofenac tablet. A full 2(3) factorial experimental design has been used to investigate the influence of concentration of cissus gum (X1); concentration of calcium acetate (X2) and stirring speed (X3) on properties of the microbeads. Optimized small discrete microbeads with size of 1.22±0.10 mm, entrapment efficiency of 84.6% and t80 of 15.2±3.5 h were obtained at ratio of cissus gum:alginate (1:1), low concentration of calcium acetate (5% w/v) and high stirring speed (400 rpm). In vivo studies showed that the ranking of percent inhibition of inflammation after 3h was diclofenac powder>commercial tablet=cissus>alginate. Histological damage score and parietal cell density were lower while crypt depth and mucosal width were significantly higher (p<0.05) in the groups administered with the diclofenac microbeads than those administered with diclofenac powder and commercial tablet, suggesting the mucoprotective property of the gum. Thus, cissus gum could be suitable as polymer in the formulation of non-steroidal anti-inflammatory drugs ensuring sustained release while reducing gastric side effects.

  1. Heparin-based hydrogels with tunable sulfation & degradation for anti-inflammatory small molecule delivery.

    PubMed

    Peng, Yifeng; Tellier, Liane E; Temenoff, Johnna S

    2016-08-16

    Sustained release of anti-inflammatory agents remains challenging for small molecule drugs due to their low molecular weight and hydrophobicity. Therefore, the goal of this study was to control the release of a small molecule anti-inflammatory agent, crystal violet (CV), from hydrogels fabricated with heparin, a highly sulfated glycosaminoglycan capable of binding positively-charged molecules such as CV. In this system, both electrostatic interactions between heparin and CV and hydrogel degradation were tuned simultaneously by varying the level of heparin sulfation and varying the amount of dithiothreitol within hydrogels, respectively. It was found that heparin sulfation significantly affected CV release, whereby more sulfated heparin hydrogels (Hep and Hep(-N)) released CV with near zero-order release kinetics (R-squared values between 0.96-0.99). Furthermore, CV was released more quickly from fast-degrading hydrogels than slow-degrading hydrogels, providing a method to tune total CV release between 5-15 days while maintaining linear release kinetics. In particular, N-desulfated heparin hydrogels exhibited efficient CV loading (∼90% of originally included CV), near zero-order CV release kinetics, and maintenance of CV bioactivity after release, making this hydrogel formulation a promising CV delivery vehicle for a wide range of inflammatory diseases. PMID:27447003

  2. Anti-inflammatory/anti-pyretic salicylic acid esters with low gastric ulcerogenic activity.

    PubMed

    Rainsford, K D; Whitehouse, M W

    1980-11-01

    The methyl and some other esters of acetylsalicylic and salicylic acids and their derivatives were found to have much lower gastric ulcerogenic activity (when assayed in the stress-sensitized rat) compared with their corresponding acids. There was little or no loss in therapeutic potencies of these salicylate esters as determined by assessment of anti-inflammatory activity (against the carrageenan-induced oedema) and antipyretic activity (against yeast-induced fever in rats. The methyl ester of acetylsalicylic acid (=AME) was almost devoid of gastric irritancy/ulcerogenicity (as observed with acetylsalicylic acid) when given orally to pigs for 10 days. AME had appreciable anti-inflammatory activity in the adjuvant-arthritis model and at high doses (200 mg/kg t.i.d.) was without the lethal effects seen with acetylsalicylic acid. Moreover, no toxic effects were seen after long-term administration of 100-1000 mg/kg/day AME for 3-4 months. The results provide further evidence for the hypothesis that the carboxylic acid moiety of salicylates is a major factor in the gastric ulcerogenic activity of these drugs. The methyl esters of these salicylates may be considered as models for the development of pro-drugs and in some cases may be therapeutic alternatives to acetylsalicylic acid or salicylate. PMID:6971045

  3. 15-Lipoxygenase metabolites of α-linolenic acid, [13-(S)-HPOTrE and 13-(S)-HOTrE], mediate anti-inflammatory effects by inactivating NLRP3 inflammasome

    PubMed Central

    Kumar, Naresh; Gupta, Geetika; Anilkumar, Kotha; Fatima, Naireen; Karnati, Roy; Reddy, Gorla Venkateswara; Giri, Priyanka Voori; Reddanna, Pallu

    2016-01-01

    The ratio of ω-6 to ω-3 polyunsaturated fatty acids (PUFAs) appears to be critical in the regulation of various pathophysiological processes and to maintain cellular homeostasis. While a high proportion of dietary intake of ω-6 PUFAs is associated with various inflammatory disorders, higher intake of ω-3 PUFAs is known to offer protection. It is now well established that beneficial effects of ω-3 PUFAs are mediated in part by their oxygenated metabolites mainly via the lipoxygenase (LOX) and cyclooxygenase (COX) pathways. However, the down-stream signaling pathways that are involved in these anti-inflammatory effects of ω-3 PUFAs have not been elucidated. The present study evaluates the effects of 15-LOX metabolites of α-linolenic acid (ALA, ω-3 PUFA) on lipopolysaccharide (LPS) induced inflammation in RAW 264.7 cells and peritoneal macrophages. Further, the effect of these metabolites on the survival of BALB/c mice in LPS mediated septic shock and also polymicrobial sepsis in Cecal Ligation and Puncture (CLP) mouse model was studied. These studies reveal the anti-inflammatory effects of 13-(S)-hydroperoxyoctadecatrienoic acid [13-(S)-HPOTrE] and 13-(S)-hydroxyoctadecatrienoic acid [13-(S)-HOTrE] by inactivating NLRP3 inflammasome complex through the PPAR-γ pathway. Additionally, both metabolites also deactivated autophagy and induced apoptosis. In mediating all these effects 13-(S)-HPOTrE was more potent than 13-(S)-HOTrE. PMID:27535180

  4. Nonsteroidal Anti-Inflammatory Drugs and the Kidney

    PubMed Central

    Hörl, Walter H.

    2010-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the isoenzymes COX-1 and COX-2 of cyclooxygenase (COX). Renal side effects (e.g., kidney function, fluid and urinary electrolyte excretion) vary with the extent of COX-2-COX-1 selectivity and the administered dose of these compounds. While young healthy subjects will rarely experience adverse renal effects with the use of NSAIDs, elderly patients and those with co-morbibity (e.g., congestive heart failure, liver cirrhosis or chronic kidney disease) and drug combinations (e.g., renin-angiotensin blockers, diuretics plus NSAIDs) may develop acute renal failure. This review summarizes our present knowledge how traditional NSAIDs and selective COX-2 inhibitors may affect the kidney under various experimental and clinical conditions, and how these drugs may influence renal inflammation, water transport, sodium and potassium balance and how renal dysfunction or hypertension may result. PMID:27713354

  5. A Review of Nonsteroidal Anti-inflammatory Drugs.

    PubMed

    Bozimowski, Gregory

    2015-12-01

    It is essential that nurse anesthetists are aware of the potential side effects and interaction of drugs that patients are taking before administering an anesthetic. Among the most commonly taken medications are nonsteroidal anti-inflammatory drugs (NSAIDs). Because these drugs have become almost ubiquitous, there is a risk underestimating potential effects, which may be harmful for the patient undergoing anesthesia and surgery. These effects can range from mild to severe and can be exacerbated by drug interactions with many commonly administered medications. This review of NSAID pharmacology a d interactions is intended to serve as an update and refresher for nurse anesthetists to increase their awareness of the potential untoward effects of postoperative bleeding, gastrointestinal bleeding, asthma, hepatic and renal toxicity and cardiovascular events. PMID:26742337

  6. Anti-inflammatory agents from plants: progress and potential.

    PubMed

    Recio, M C; Andujar, I; Rios, J L

    2012-01-01

    The identification of substances that can promote the resolution of inflammation in a way that is homeostatic, modulatory, efficient, and well-tolerated by the body is of fundamental importance. Traditional medicines have long provided front-line pharmacotherapy for many millions of people worldwide. Medicinal extracts are a rich source of therapeutic leads for the pharmaceutical industry. The use of medicinal plant therapies to treat chronic illness, including rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), is thus widespread and on the rise.The aim of this review is to present recent progress in clinical anti-inflammatory studies of plant extracts and compound leads such as green tea polyphenols, curcumin, resveratrol, boswellic acid, and cucurbitacins, among others, against chronic inflammatory diseases, mainly RA and IBD. In this context, the present paper also highlights the most promising experimental data on those plant extracts and pure compounds active in animal models of the aforementioned diseases.

  7. Anti-inflammatory polyphenol constituents derived from Cissus pteroclada Hayata.

    PubMed

    Li, Yi-Jie; Xu, Cheng-Ting; Lin, Dan-Dan; Qin, Jiang-Ke; Ye, Gao-Jie; Deng, Qing-Hua

    2016-08-01

    A new bergenin derivative, bergenin-11-O-α-d-galactopyranoside (compound 1), together with seven known polyphenolic compounds, were isolated from the stem of Cissus pteroclada Hayata. The structures of the 8 compounds were elucidated by spectroscopic methods, including extensive 1D and 2D NMR techniques. Moreover, the in vitro anti-inflammatory effects of compounds (1-8) in LPS-stimulated murine macrophage RAW 264.7 cells were also investigated. Our results revealed that compound 1 inhibited the production of pro-inflammatory mediators NO and PGE2 and the expression of NF-κB, TNF-α, IL-1β, iNOS and COX-2. PMID:27374242

  8. Peptidoglycan diversity and anti-inflammatory capacity in Lactobacillus strains.

    PubMed

    Wu, Zhen; Pan, Daodong; Guo, Yuxing; Sun, Yangying; Zeng, Xiaoqun

    2015-09-01

    Lactobacillus species are potential probiotic bacteria for humans because of their capacity to improve certain biological functions in the host's immune system. In this study, we focused on three peptidoglycans (PGNs) derived from different Lactobacillus strains and investigated each PGN's anti-inflammatory capacity. Each PGN was analyzed using HPLC, MALDI-TOF/TOF MS and FTIR. All three PGNs displayed a β-1,4-linked N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) structure with some modifications in the polypeptides at the end of the MurNAc residue. In a new insight, we found that PGNs inhibit the release of inflammatory cytokines in LPS-induced RAW 264.7 cells; a capacity that may be related to the TLR-4 pathway. The goal for exploring PGN diversity in Lactobacillus strains is to better understand the potential use of Lactobacillus PGNs in food and pharmaceutical applications.

  9. Anti-inflammatory agents from plants: progress and potential.

    PubMed

    Recio, M C; Andujar, I; Rios, J L

    2012-01-01

    The identification of substances that can promote the resolution of inflammation in a way that is homeostatic, modulatory, efficient, and well-tolerated by the body is of fundamental importance. Traditional medicines have long provided front-line pharmacotherapy for many millions of people worldwide. Medicinal extracts are a rich source of therapeutic leads for the pharmaceutical industry. The use of medicinal plant therapies to treat chronic illness, including rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), is thus widespread and on the rise.The aim of this review is to present recent progress in clinical anti-inflammatory studies of plant extracts and compound leads such as green tea polyphenols, curcumin, resveratrol, boswellic acid, and cucurbitacins, among others, against chronic inflammatory diseases, mainly RA and IBD. In this context, the present paper also highlights the most promising experimental data on those plant extracts and pure compounds active in animal models of the aforementioned diseases. PMID:22414101

  10. [Anti-inflammatory modulators in traumatic brain injury].

    PubMed

    Lescot, T; Marchand-Verrecchia, C; Puybasset, L

    2006-07-01

    Traumatic brain injury leads to primary and secondary brain injuries. Primary brain injury results from mechanical forces applied to the head at the time of impact. Secondary brain injury occurs at some time after the primary impact. Numerous pathophysiological mechanisms have been postulated to explain the progressive tissue damage produced by secondary injuries. The endogenous neuroinflammatory response after traumatic brain injury contributes to the development of blood-brain barrier breakdown, cerebral oedema and neuronal cell death and this has led to various pharmacological therapies to try to limit this type of damage. Studies employing glutamate receptor antagonist for cerebral protection have yielded promising results in laboratory animals but failed to produce clinically significant improvements. The present review will summarize the mechanisms of post traumatic cerebral inflammation with a special focus on the anti-inflammatory drug targets.

  11. A Review of Nonsteroidal Anti-inflammatory Drugs.

    PubMed

    Bozimowski, Gregory

    2015-12-01

    It is essential that nurse anesthetists are aware of the potential side effects and interaction of drugs that patients are taking before administering an anesthetic. Among the most commonly taken medications are nonsteroidal anti-inflammatory drugs (NSAIDs). Because these drugs have become almost ubiquitous, there is a risk underestimating potential effects, which may be harmful for the patient undergoing anesthesia and surgery. These effects can range from mild to severe and can be exacerbated by drug interactions with many commonly administered medications. This review of NSAID pharmacology a d interactions is intended to serve as an update and refresher for nurse anesthetists to increase their awareness of the potential untoward effects of postoperative bleeding, gastrointestinal bleeding, asthma, hepatic and renal toxicity and cardiovascular events.

  12. Anti-inflammatory and antinociceptive activities of azadirachtin in mice.

    PubMed

    Soares, Darly G; Godin, Adriana M; Menezes, Raquel R; Nogueira, Rafaela D; Brito, Ana Mercy S; Melo, Ivo S F; Coura, Giovanna Maria E; Souza, Danielle G; Amaral, Flávio A; Paulino, Tony P; Coelho, Márcio M; Machado, Renes R

    2014-06-01

    Azadirachta indica (Meliaceae) extracts have been reported to exhibit anti-inflammatory and antinociceptive properties. However, the activities of azadirachtin, a limonoid and the major bioactive compound found in the extracts, have been poorly investigated in animal models. In the present study, we investigated the effects induced by azadirachtin in experimental models of pain and inflammation in mice. Carrageenan-induced paw edema and fibrovascular tissue growth induced by subcutaneous cotton pellet implantation were used to investigate the anti-inflammatory activity of azadirachtin in mice. Zymosan-induced writhing and hot plate tests were employed to evaluate the antinociceptive activity. To explore putative mechanisms of action, the level of tumor necrosis factor-α in inflammatory tissue was measured and the effect induced by opioidergic and serotonergic antagonists was evaluated. Previous per os (p. o.) administration of azadirachtin (120 mg/kg) significantly reduced the acute paw edema induced by carrageenan. However, the concomitant increase of the paw concentration of tumor necrosis factor-α induced by this inflammatory stimulus was not reduced by azadirachtin. In addition to inhibiting the acute paw edema induced by carrageenan, azadirachtin (6, 60, and 120 mg/kg) inhibited the proliferative phase of the inflammatory response, as demonstrated by the reduced formation of fibrovascular tissue growth. Azadirachtin (120 mg/kg) also inhibited the nociceptive response in models of nociceptive (hot plate) and inflammatory (writhing induced by zymosan) pain. The activity of azadirachtin (120 mg/kg) in the model of nociceptive pain was attenuated by a nonselective opioid antagonist, naltrexone (10 mg/kg, i. p.), but not by a nonselective serotonergic antagonist, cyproheptadine. In conclusion, this study demonstrates the activity of azadirachtin in experimental models of nociceptive and inflammatory pain, and also in models of acute and chronic inflammation

  13. A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects.

    PubMed

    Dore, Celina Maria P Guerra; das C Faustino Alves, Monique Gabriela; Will, Luiza Sheyla E Pofírio; Costa, Thiago G; Sabry, Diego A; de Souza Rêgo, Leonardo Augusto R; Accardo, Camila M; Rocha, Hugo Alexandre O; Filgueira, Luciana Guimarães A; Leite, Edda Lisboa

    2013-01-01

    Fucan (SV1) sulfated polysaccharides from the brown algae Sargassum vulgare were extracted, fractionated in acetone and examined with respect to chemical composition, anticoagulant, anti-inflammatory, antithrombotic effects and cellular proliferation. These polysaccharides contain low levels of protein, high level of carbohydrate and sulfate. Monosaccharides analysis revealed that SV1 was composed of fucose, galactose, xylose, glucuronic acid and mannose. SV1 polysaccharide prolonged activated partial thromboplastin time (aPTT) and exhibited high antithrombotic action in vivo, with a concentration ten times higher than heparin activity. PSV1, a purified form in gel filtration showed very low biological activities. SV1 stimulated the enzymatic activity of FXa. Its action on DPPH radical scavenging activity was 22%. This polymer has no cytotoxic action (hemolytic) on ABO and Rh blood types in different erythrocyte groups. It displays strong anti-inflammatory action at all concentrations tested in the carrageenan-induced paw edema model, demonstrated by reduced edema and cellular infiltration. PMID:23044157

  14. Urinary PGE-M levels are associated with risk of colorectal adenomas and chemopreventive response to anti-inflammatory drugs.

    PubMed

    Bezawada, Navya; Song, Mingyang; Wu, Kana; Mehta, Raaj S; Milne, Ginger L; Ogino, Shuji; Fuchs, Charles S; Giovannucci, Edward L; Chan, Andrew T

    2014-07-01

    Prostaglandin E2 (PGE2) promotes colorectal carcinogenesis. Overall, systemic PGE2 production can be assessed by measuring its major metabolite, PGE-M, in urine. We examined the potential role of PGE-M as a biomarker for colorectal adenoma risk and chemopreventive response to anti-inflammatory drugs. We conducted a prospective case-control study nested within the Nurses' Health Study. Among women who previously provided a urine sample, we identified 420 cases diagnosed with colorectal adenoma during follow-up and matched them to 420 endoscopy-negative controls. We measured urinary PGE-M using an LC/MS assay. Compared with women in the lowest quartile of urinary PGE-M, women in the highest quartile had a multivariate OR of 1.40 (95% confidence interval (CI), 0.92-2.14) for any adenoma; 0.91 (95% CI, 0.48-1.72) for low-risk adenoma (solitary adenoma <1 cm in greatest diameter with tubular/unspecified histology); and 1.66 (95% CI, 1.04-2.67) for high-risk adenoma (adenoma ≥1 cm in greatest diameter and/or tubulovillous, villous or high-grade dysplasia histology or multiple adenomas of any size or histology). Regular use of anti-inflammatory drugs (≥2 standard tablets of aspirin/NSAIDs per week) was associated with a significant reduction in adenoma risk (multivariate OR, 0.61; 95% CI, 0.43-0.87) in women with high baseline PGE-M (quartiles 2-4), but not low PGE-M (quartile 1).Urinary PGE-M is associated with an increased risk of high-risk adenoma. Anti-inflammatory drugs seem to reduce adenoma risk among women with high, but not low PGE-M. Urinary PGE-M may serve as a biomarker to define subsets of the population who may obtain differential chemopreventive benefit from anti-inflammatory drugs. PMID:24824037

  15. Free radical scavenging, α-glucosidase inhibitory and anti-inflammatory constituents from Indian sedges, Cyperus scariosus R.Br and Cyperus rotundus L.

    PubMed Central

    Kakarla, Lavanya; Katragadda, Suresh Babu; Tiwari, Ashok K; Kotamraju, K Srigiridhar; Madhusudana, K; Kumar, D Anand; Botlagunta, Mahendran

    2016-01-01

    Background: Cyperus scariosus R. Br and Cyperus rotundus L are widely used in ayurvedic preparation for the treatment of diabetes and other diseases. The early literature, so far, does not indicate the presence of any bioactive principle isolated from these plants. Objective: To identify free radical scavenging, anti-diabetic and anti- inflammatory principles from these two species. Materials and Methods: The bioassay guided fractionation and isolation of active constituents was done by chromatographic techniques. They also evaluated their anti-oxidant activity by DPPH and ABTS. The anti-diabetic activity was screened by α- glucosidase and α- amylase assays. Also, the further evaluation of in vitro anti-inflammatory activity using THP-1 monocytic cells and in vivo anti- inflammatory activity, was confirmed by carrageenan induced rat paw edema as model. Results: The activity guided isolation led to isolation of twelve compounds Which are: Stigmasterol[1], β- sitosterol[2], Lupeol[3], Gallic acid[4], Quercetin[5], β- amyrin[6], Oleanolic acid[7], β- amyrin acetate[8], 4- hydroxyl butyl cinnamate[9], 4- hydroxyl cinnamic acid[10], Caffeic acid,[11] and Kaempferol[12] respectively. Among the isolates, the compounds 4 and 5 displayed potent radical scavenging activity with an IC50 values of 0.43 and 0.067 ΅g/ml. The compounds 4, 5 and 10 showed significant anti-diabetic activities. while lupeol[3] showed potent IL-1 β activity inhibition in THP-1 monocytic cells and also displayed significant (p<0.0025) in vivo anti-inflammatory activity. Conclusion: Inbrief, we isolated twelve compounds from both the species. Collectively, our results suggested that aromatic compounds showed good anti-oxidant and anti-diabetic activities. SUMMARY The study investigates the free radical scavenging, α-glucosidase inhibitory and anti-inflammatory effects of constituents isolated from Indian sedges viz. C. scariosus and C. rotundus. The results indicated that phenolic compounds

  16. Glitazones inhibit human monoamine oxidase but their anti-inflammatory actions are not mediated by VAP-1/semicarbazide-sensitive amine oxidase inhibition.

    PubMed

    Carpéné, Christian; Bizou, Mathilde; Tréguer, Karine; Hasnaoui, Mounia; Grès, Sandra

    2015-09-01

    Glitazones are peroxisome proliferator-activated receptor gamma (PPARγ) agonists widely used as antidiabetic drugs also known as thiazolidinediones. Most of them exert other effects such as anti-inflammatory actions via mechanisms supposed to be independent from PPARγ activation (e.g., decreased plasma monocyte chemoattractant protein-1 (MCP-1) levels). Recently, pioglitazone has been shown to inhibit the B form of monoamine oxidase (MAO) in mouse, while rosiglitazone and troglitazone were described as non-covalent inhibitors of both human MAO A and MAO B. Since molecules interacting with MAO might also inhibit semicarbazide-sensitive amine oxidase (SSAO), known as vascular adhesion protein-1 (VAP-1), and since VAP-1/SSAO inhibitors exhibit anti-inflammatory activity, our aim was to elucidate whether VAP-1/SSAO inhibition could be a mechanism involved in the anti-inflammatory behaviour of glitazones. To this aim, MAO and SSAO activities were measured in human subcutaneous adipose tissue biopsies obtained from overweight women undergoing plastic surgery. The production of hydrogen peroxide, an end-product of amine oxidase activity, was determined in tissue homogenates using a fluorometric method. The oxidation of 1 mM tyramine was inhibited by pargyline and almost resistant to semicarbazide, therefore predominantly MAO-dependent. Rosiglitazone was more potent than pioglitazone in inhibiting tyramine oxidation. By contrast, benzylamine oxidation was only abolished by semicarbazide: hence SSAO-mediated. Pioglitazone hampered SSAO activity only when tested at 1 mM while rosiglitazone was inefficient. However, rosiglitazone exhibited anti-inflammatory activity in human adipocytes by limiting MCP-1 expression. Our observations rule out any involvement of VAP-1/SSAO inhibition and subsequent limitation of leukocyte extravasation in the anti-inflammatory action of glitazones.

  17. In-vitro anti- inflammatory activity of aqueous extract of leaves of Plectranthus amboinicus (Lour.) Spreng.

    PubMed

    Ravikumar, V R; Dhanamani, M; Sudhamani, T

    2009-04-01

    Aqueous extract of leaves of Plectranthus amboinicus (lour.) Spreng, which is traditionally used in the treatment of cough and cold was screened for its anti- inflammatory activity by HRBC membrane stabilisation model. Aqueous extract (500 mcg/ml) showed significant anti-inflammatory activity as compared to that of hydrocortisone sodium. PMID:22557324

  18. In-vitro anti- inflammatory activity of aqueous extract of leaves of Plectranthus amboinicus (Lour.) Spreng

    PubMed Central

    Ravikumar, V.R.; Dhanamani, M.; Sudhamani, T.

    2009-01-01

    Aqueous extract of leaves of Plectranthus amboinicus (lour.) Spreng, which is traditionally used in the treatment of cough and cold was screened for its anti- inflammatory activity by HRBC membrane stabilisation model. Aqueous extract (500 mcg/ml) showed significant anti-inflammatory activity as compared to that of hydrocortisone sodium. PMID:22557324

  19. Preventative oral methylthioadenosine is anti-inflammatory and reduces DSS-induced colitis in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylthioadenosine (MTA) is a precursor of the methionine salvage pathway and has been shown to have anti-inflammatory properties in various models of acute and chronic inflammation. However, the anti-inflammatory properties of MTA in models of intestinal inflammation are not defined. We hypothesiz...

  20. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects (Review)

    PubMed Central

    ARMUTCU, FERAH; AKYOL, SUMEYYA; USTUNSOY, SEYFETTIN; TURAN, FATIME FILIZ

    2015-01-01

    Caffeic acid phenethyl ester (CAPE), a naturally occurring compound isolated from propolis extract, has been reported to have a number of biological and pharmacological properties, exerting antioxidant, anti-inflammatory, anticarcinogenic, antibacterial and immunomodulatory effects. Recent in vivo and in vitro study findings have provided novel insights into the molecular mechanisms involved in the anti-inflammatory and immunomodulatory activities of this natural compound. CAPE has been reported to have anti-inflammatory properties involving the inhibition of certain enzyme activities, such as xanthine oxidase, cyclooxygenase and nuclear factor-κB (NF-κB) activation. Since inflammation and immune mechanisms play a crucial role in the onset of several inflammatory diseases, the inhibition of NF-κB represents a rationale for the development of novel and safe anti-inflammatory agents. The primary goal of the present review is to highlight the anti-inflammatory and immunomodulatory activities of CAPE, and critically evaluate its potential therapeutic effects. PMID:26136862

  1. Evidence for anti-inflammatory and antioxidative properties of dried plum polyphenols in macrophage RAW 264.7 cells.

    PubMed

    Hooshmand, Shirin; Kumar, Ajay; Zhang, Ji Yao; Johnson, Sarah A; Chai, Sheau C; Arjmandi, Bahram H

    2015-05-01

    This study presents the anti-inflammatory and antioxidative properties of dried plum (Prunus domestica L.) polyphenols in macrophage RAW 264.7 cells. We hypothesized that dried plum polyphenols have strong anti-inflammatory and antioxidant properties against lipopolysaccharide (LPS)-induced production of the pro-inflammatory markers, nitric oxide (NO) and cyclooxygenase-2 (COX-2), and the lipid peroxidation product, malondialdehyde, in activated macrophage RAW 264.7 cells. To test this hypothesis, macrophage RAW 264.7 cells were stimulated with either 1 μg ml(-1) (for measurement of NO production) or 1 ng ml(-1) (for measurement of COX-2 expression) of LPS to induce inflammation and were treated with different doses of dried plum polyphenols (0.0, 0.1, 1, 10, 100 and 1000 μg ml(-1)). Dried plum polyphenols at a dose of 1000 μg ml(-1) was able to significantly (P < 0.05) reduce NO production by 43%. Additionally, LPS-induced expression of COX-2 was significantly (P < 0.05) reduced by 100 and 1000 μg ml(-1) dried plum polyphenols. To investigate the antioxidant activity of dried plum polyphenols, macrophage RAW 264.7 cells were stimulated with 100 μg ml(-1) of FeSO4 + 1 mM ml(-1) of H2O2 to induce lipid peroxidation. Dried plum polyphenols at a dose of 1000 μg ml(-1) showed a 32% reduction in malondialdehyde production. These findings indicate that dried plum polyphenols are potent anti-inflammatory and antioxidative agents in vitro.

  2. Involvement of proton-sensing receptor TDAG8 in the anti-inflammatory actions of dexamethasone in peritoneal macrophages

    SciTech Connect

    He, Xiao-dong; Tobo, Masayuki; Mogi, Chihiro; Nakakura, Takashi; Komachi, Mayumi; Murata, Naoya; Takano, Mutsumi; Tomura, Hideaki; Sato, Koichi; Okajima, Fumikazu

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Glucocorticoid (GC) induced the expression of proton-sensing TDAG8 in macrophages. Black-Right-Pointing-Pointer GC enhanced acidic pH-induced cAMP accumulation and inhibition of TNF-{alpha} production. Black-Right-Pointing-Pointer The enhancement of the GC-induced actions was lost by TDAG8 deficiency. Black-Right-Pointing-Pointer GC-induced anti-inflammatory actions are partly mediated by TDAG8 expression. -- Abstract: Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophages with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-{alpha}, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-{alpha} production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.

  3. A nicotinic receptor-mediated anti-inflammatory effect of the flavonoid rhamnetin in BV2 microglia

    PubMed Central

    Lutz, Joseph A.; Kulshrestha, Manish; Rogers, Dennis T.; Littleton, John M.

    2014-01-01

    The alpha7 nicotinic acetylcholine receptor (nAChR) is a potential target in neuroinflammation. Screening a plant extract library identified Solidago nemoralis as containing methyl-quercetin derivatives that are relatively selective ligands for the alpha7 nAChR. Flavonoids are not known for this activity, so we screened a small library of pure flavonoids to confirm our findings. Some flavonoids, e.g. rhamnetin, displaced a selective alpha7 nAChR radioligand from rat brain membranes whereas similar structures e.g. sakuranetin, did not. To evaluate the contribution of this putative nAChR activity to the known anti-inflammatory properties of these flavonoids, we compared their effects on lipopolysaccharide induced release of inflammatory mediators from BV2 microglia. Both rhamnetin and sakuranetin reduced mediator release, but differed in potency (rhamnetin>sakuranetin) and the Hill slope of their concentration response curves. For rhamnetin the Hill coefficient was >3.0 whereas for sakuranetin the coefficient was 1.0, suggesting that effects of rhamnetin are mediated through more than one mechanism, whereas sakuranetin has a single mechanism. nACHR antagonists decreased the Hill coefficient for rhamnetin toward unity, which suggests that a nAChR-mediated mechanism contributes cooperatively to its overall anti-inflammatory effect. In contrast nAChR antagonists had no effect on the potency or Hill coefficient for sakuranetin, but a concentration of nicotine (1μM) that had no effect alone, significantly increased the Hill coefficient of this flavonoid. In conclusion, the anti-inflammatory effects of rhamnetin benefit cooperatively from a nAChR-mediated mechanism. This action, together with potent free radical scavenging activity, suggests that flavonoids with alpha7 nAChR activity have therapeutic potential in neuroinflammatory conditions. PMID:24972350

  4. The flavonoid content and antiproliferative, hypoglycaemic, anti-inflammatory and free radical scavenging activities of Annona dioica St. Hill

    PubMed Central

    2013-01-01

    Background Annona dioica St. Hill (Annonacaeae) is a Brazilian plant used in folk medicine for the treatment of several types of rheumatisms and diarrhoea. The focus of this work was to evaluate the in vitro antiproliferative and antioxidant activity and the in vivo hypoglycaemic and anti-inflammatory activity of A. dioica and identify the principal constituents of this plant. Methods The crude methanol extract (EAD) and hexane (HF), chloroform (CF), ethyl acetate (EAF) and hydromethanol fractions (HMF) were evaluated for free radical scavenging activity using the DPPH assay. The EAD and EAF were assayed for hypoglycaemic activity in rats. The EAD was tested in an antiproliferation assay and for anti-inflammatory effects in paw oedema, in addition to myeloperoxidase activity induced by carrageenan (Cg) in mice. The EAF was assayed using chromatographic methods. Results The fractionation of the EAF through chromatographic methods identified derivatives of the flavonoids quercetin and kaempferol. Among all the tested fractions, the ethyl acetate and hydromethanol fractions were the most potent, exhibiting an IC50 of 8.53 and 10.57 μg/mL, respectively, which is comparable to that of the commercial antioxidant butylated hydroxytoluene (BHT). The oral administration of the EAD (100 mg/kg) and EAF (15 mg/kg) inhibited the increase of glucose levels, resulting in a hypoglycaemic effect. The EAD (30 to 300 mg/kg) exhibited an anti-oedematogenic effect in Cg-induced paw oedema in a time- and dose-dependent manner. The results showed a reduction of MPO activity by A. dioica 6 h after the induction of paw oedema at all doses tested with maximal inhibition at 300 mg/kg. Conclusions Our results reveal for the first time that compounds contained in the A. dioica leaves exert anti-inflammatory, hypoglycaemic, antiproliferative, and antioxidant effects. The antioxidant activity may be associated with the presence of flavonoids. PMID:23311341

  5. A nicotinic receptor-mediated anti-inflammatory effect of the flavonoid rhamnetin in BV2 microglia.

    PubMed

    Lutz, Joseph A; Kulshrestha, Manish; Rogers, Dennis T; Littleton, John M

    2014-10-01

    The alpha7 nicotinic acetylcholine receptor (nAChR) is a potential target in neuroinflammation. Screening a plant extract library identified Solidago nemoralis as containing methyl-quercetin derivatives that are relatively selective ligands for the alpha7 nAChR. Flavonoids are not known for this activity, so we screened a small library of pure flavonoids to confirm our findings. Some flavonoids, e.g. rhamnetin, displaced a selective alpha7 nAChR radioligand from rat brain membranes whereas similar structures e.g. sakuranetin, did not. To evaluate the contribution of this putative nAChR activity to the known anti-inflammatory properties of these flavonoids, we compared their effects on lipopolysaccharide induced release of inflammatory mediators from BV2 microglia. Both rhamnetin and sakuranetin reduced mediator release, but differed in potency (rhamnetin>sakuranetin) and the Hill slope of their concentration-response curves. For rhamnetin the Hill coefficient was >3.0 whereas for sakuranetin the coefficient was 1.0, suggesting that effects of rhamnetin are mediated through more than one mechanism, whereas sakuranetin has a single mechanism. nAChR antagonists decreased the Hill coefficient for rhamnetin toward unity, which suggests that a nAChR-mediated mechanism contributes cooperatively to its overall anti-inflammatory effect. In contrast nAChR antagonists had no effect on the potency or Hill coefficient for sakuranetin, but a concentration of nicotine (1μM) that had no effect alone, significantly increased the Hill coefficient of this flavonoid. In conclusion, the anti-inflammatory effects of rhamnetin benefit cooperatively from a nAChR-mediated mechanism. This action, together with potent free radical scavenging activity, suggests that flavonoids with alpha7 nAChR activity have therapeutic potential in neuroinflammatory conditions. PMID:24972350

  6. Association of terpinolene and diclofenac presents antinociceptive and anti-inflammatory synergistic effects in a model of chronic inflammation

    PubMed Central

    Macedo, E.M.A.; Santos, W.C.; Sousa, B.P.; Lopes, E.M.; Piauilino, C.A.; Cunha, F.V.M.; Sousa, D.P.; Oliveira, F.A.; Almeida, F.R.C.

    2016-01-01

    Pharmacological treatment of inflammatory pain is usually done by administration of non-steroidal anti-inflammatory drugs (NSAIDs). These drugs present high efficacy, although side effects are common, especially gastrointestinal lesions. One of the pharmacological strategies to minimize such effects is the combination of drugs and natural products with synergistic analgesic effect. The monoterpene terpinolene (TPL) is a chemical constituent of essential oils present in many plant species, which have pharmacological activities, such as analgesic and anti-inflammatory. The association of ineffective doses of TPL and diclofenac (DCF) (3.125 and 1.25 mg/kg po, respectively) presented antinociceptive and anti-inflammatory effects in the acute (0, 1, 2, 3, 4, 5 and 6 h, after treatment) and chronic (10 days) inflammatory hyperalgesia induced by Freund's complete adjuvant (CFA) in the right hind paw of female Wistar rats (170-230 g, n=6-8). The mechanical hyperalgesia was assessed by the Randall Selitto paw pressure test, which determines the paw withdrawal thresholds. The development of edema was quantified by measuring the volume of the hind paw by plethismography. The TPL/DCF association reduced neutrophils, macrophages and lymphocytes in the histological analysis of the paw, following a standard staining protocol with hematoxylin and eosin and the counts were performed with the aid of optical microscopy after chronic oral administration of these drugs. Moreover, the TPL/DCF association did not induce macroscopic gastric lesions. A possible mechanism of action of the analgesic effect is the involvement of 5-HT2A serotonin receptors, because ketanserin completely reversed the antinociceptive effect of the TPL/DCF association. These results suggest that the TPL/DCF association had a synergistic anti-inflammatory and analgesic effect without causing apparent gastric injury, and that the serotonergic system may be involved in the antinociceptive effect of this association

  7. Association of terpinolene and diclofenac presents antinociceptive and anti-inflammatory synergistic effects in a model of chronic inflammation.

    PubMed

    Macedo, E M A; Santos, W C; Sousa, B P; Lopes, E M; Piauilino, C A; Cunha, F V M; Sousa, D P; Oliveira, F A; Almeida, F R C

    2016-06-20

    Pharmacological treatment of inflammatory pain is usually done by administration of non-steroidal anti-inflammatory drugs (NSAIDs). These drugs present high efficacy, although side effects are common, especially gastrointestinal lesions. One of the pharmacological strategies to minimize such effects is the combination of drugs and natural products with synergistic analgesic effect. The monoterpene terpinolene (TPL) is a chemical constituent of essential oils present in many plant species, which have pharmacological activities, such as analgesic and anti-inflammatory. The association of ineffective doses of TPL and diclofenac (DCF) (3.125 and 1.25 mg/kg po, respectively) presented antinociceptive and anti-inflammatory effects in the acute (0, 1, 2, 3, 4, 5 and 6 h, after treatment) and chronic (10 days) inflammatory hyperalgesia induced by Freund's complete adjuvant (CFA) in the right hind paw of female Wistar rats (170-230 g, n=6-8). The mechanical hyperalgesia was assessed by the Randall Selitto paw pressure test, which determines the paw withdrawal thresholds. The development of edema was quantified by measuring the volume of the hind paw by plethismography. The TPL/DCF association reduced neutrophils, macrophages and lymphocytes in the histological analysis of the paw, following a standard staining protocol with hematoxylin and eosin and the counts were performed with the aid of optical microscopy after chronic oral administration of these drugs. Moreover, the TPL/DCF association did not induce macroscopic gastric lesions. A possible mechanism of action of the analgesic effect is the involvement of 5-HT2A serotonin receptors, because ketanserin completely reversed the antinociceptive effect of the TPL/DCF association. These results suggest that the TPL/DCF association had a synergistic anti-inflammatory and analgesic effect without causing apparent gastric injury, and that the serotonergic system may be involved in the antinociceptive effect of this association

  8. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content

    PubMed Central

    2012-01-01

    Background The main aim of this study is to evaluate the antioxidant and anti-inflammatory properties of forty four traditional Chinese medicinal herbal extracts and to examine these activities in relation to their antioxidant content. Methods The antioxidant activities were investigated using DPPH radical scavenging method and yeast model. The anti-inflammatory properties of the herbal extracts were evaluated by measuring their ability to inhibit the production of nitric oxide and TNF-α in RAW 264.7 macrophages activated by LPS and IFN- γ, respectively. The cytotoxic effects of the herbal extracts were determined by Alomar Blue assay by measuring cell viability. In order to understand the variation of antioxidant activities of herbal extracts with their antioxidant contents, the total phenolics, total flavonoids and trace metal (Mg, Mn, Cu, Zn, Se and Mo) quantities were estimated and a correlation analysis was carried out. Results Results of this study show that significant levels of phenolics, flavonoids and trace metal contents were found in Ligustrum lucidum, Paeonia suffuticosa, Salvia miltiorrhiza, Sanguisorba officinalis, Spatholobus suberectus, Tussilago farfara and Uncaria rhyncophylla, which correlated well with their antioxidant and anti-inflammatory activities. Some of the plants displayed high antioxidant and anti-inflammatory activities but contained low levels of phenolics and flavonoids. Interestingly, these plants contained significant levels of trace metals (such as Zn, Mg and Se) which are likely to be responsible for their activities. Conclusions The results indicate that the phenolics, flavonoids and trace metals play an important role in the antioxidant activities of medicinal plants. Many of the plants studied here have been identified as potential sources of new antioxidant compounds. PMID:23038995

  9. Atypical Activin A and IL-10 Production Impairs Human CD16+ Monocyte Differentiation into Anti-Inflammatory Macrophages.

    PubMed

    González-Domínguez, Érika; Domínguez-Soto, Ángeles; Nieto, Concha; Flores-Sevilla, José Luis; Pacheco-Blanco, Mariana; Campos-Peña, Victoria; Meraz-Ríos, Marco A; Vega, Miguel A; Corbí, Ángel L; Sánchez-Torres, Carmen

    2016-02-01

    Human CD14(++)CD16(-) and CD14(+/lo)CD16(+) monocyte subsets comprise 85 and 15% of blood monocytes, respectively, and are thought to represent distinct stages in the monocyte differentiation pathway. However, the differentiation fates of both monocyte subsets along the macrophage (Mϕ) lineage have not yet been elucidated. We have now evaluated the potential of CD14(++) CD16(-) and CD16(+) monocytes to differentiate and to be primed toward pro- or anti-inflammatory Mϕs upon culture with GM-CSF or M-CSF, respectively (subsequently referred to as GM14, M14, GM16, or M16). Whereas GM16 and GM14 were phenotypic and functionally analogous, M16 displayed a more proinflammatory profile than did M14. Transcriptomic analyses evidenced that genes associated with M-CSF-driven Mϕ differentiation (including FOLR2, IL10, IGF1, and SERPINB2) are underrepresented in M16 with respect to M14. The preferential proinflammatory skewing of M16 relative to M14 was found to be mediated by the secretion of activin A and the low levels of IL-10 produced by M16. In fact, activin A receptor blockade during the M-CSF-driven differentiation of CD16(+) monocytes, or addition of IL-10-containing M14-conditioned medium, significantly enhanced their expression of anti-inflammatory-associated molecules while impairing their acquisition of proinflammatory-related markers. Thus, we propose that M-CSF drives CD14(++)CD16- monocyte differentiation into bona fide anti-inflammatory Mϕs in a self-autonomous manner, whereas M-CSF-treated CD16(+) monocytes generate Mϕs with a skewed proinflammatory profile by virtue of their high activin A expression unless additional anti-inflammatory stimuli such as IL-10 are provided. PMID:26729812

  10. Association of terpinolene and diclofenac presents antinociceptive and anti-inflammatory synergistic effects in a model of chronic inflammation.

    PubMed

    Macedo, E M A; Santos, W C; Sousa, B P; Lopes, E M; Piauilino, C A; Cunha, F V M; Sousa, D P; Oliveira, F A; Almeida, F R C

    2016-06-20

    Pharmacological treatment of inflammatory pain is usually done by administration of non-steroidal anti-inflammatory drugs (NSAIDs). These drugs present high efficacy, although side effects are common, especially gastrointestinal lesions. One of the pharmacological strategies to minimize such effects is the combination of drugs and natural products with synergistic analgesic effect. The monoterpene terpinolene (TPL) is a chemical constituent of essential oils present in many plant species, which have pharmacological activities, such as analgesic and anti-inflammatory. The association of ineffective doses of TPL and diclofenac (DCF) (3.125 and 1.25 mg/kg po, respectively) presented antinociceptive and anti-inflammatory effects in the acute (0, 1, 2, 3, 4, 5 and 6 h, after treatment) and chronic (10 days) inflammatory hyperalgesia induced by Freund's complete adjuvant (CFA) in the right hind paw of female Wistar rats (170-230 g, n=6-8). The mechanical hyperalgesia was assessed by the Randall Selitto paw pressure test, which determines the paw withdrawal thresholds. The development of edema was quantified by measuring the volume of the hind paw by plethismography. The TPL/DCF association reduced neutrophils, macrophages and lymphocytes in the histological analysis of the paw, following a standard staining protocol with hematoxylin and eosin and the counts were performed with the aid of optical microscopy after chronic oral administration of these drugs. Moreover, the TPL/DCF association did not induce macroscopic gastric lesions. A possible mechanism of action of the analgesic effect is the involvement of 5-HT2A serotonin receptors, because ketanserin completely reversed the antinociceptive effect of the TPL/DCF association. These results suggest that the TPL/DCF association had a synergistic anti-inflammatory and analgesic effect without causing apparent gastric injury, and that the serotonergic system may be involved in the antinociceptive effect of this association.

  11. Comparative study on anti-oxidant and anti-inflammatory activities of Caesalpinia crista and Centella asiatica leaf extracts

    PubMed Central

    Ramesh, B. N.; Girish, T. K.; Raghavendra, R. H.; Naidu, K. Akhilender; Rao, U. J. S. Prasada; Rao, K. S.

    2014-01-01

    Background: Amyloidosis, oxidative stress and inflammation have been strongly implicated in neurodegenerative disorders like Alzheimer's disease. Traditionally, Caesalpinia crista and Centella asiatica leaf extracts are used to treat brain related diseases in India. C. crista is used as a mental relaxant drink as well as to treat inflammatory diseases, whereas C. asiatica is reported to be used to enhance memory and to treat dementia. Objective: The present study is aimed to understand the anti-oxidant and anti-inflammatory potential of C. asiatica and C. crista leaf extracts. Materials and Methods: Phenolic acid composition of the aqueous extracts of C. crista and C. asiatica were separated on a reverse phase C18 column (4.6 x 250 mm) using HPLC system. Antioxidant properties of the leaf extracts were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and the reducing potential assay. The anti-inflammatory activities of aqueous extracts of C. crista and C. asiatica were studied using 5-lipoxygenase assay. Polymorphonuclear leukocytes (PMNLs) were isolated from blood by Ficoll-Histopaque density gradient followed by hypotonic lysis of erythrocytes. Results: Gallic, protocatechuic, gentisic, chlorogenic, caffeic, p-coumaric and ferulic acids were the phenolic acids identified in C. crista and C. asiatica leaf aqueous extracts. However, gallic acid and ferulic acid contents were much higher in C. crista compared to C. asiatica. Leaf extracts of C. asiatica and C. crista exhibited antioxidant properties and inhibited 5-lipoxygenase (anti-inflammatory) in a dose dependent manner. However, leaf extracts of C. crista had better antioxidant and anti-inflammatory activity compared to that of C. asiatica. The better activity of C. crista is attributed to high gallic acid and ferulic acid compared to C. asiatica. Conclusions: Thus, the leaf extract of C. crista can be a potential therapeutic role for Alzheimer's disease. PMID:24741275

  12. Anti-inflammatory effects of sucrose-derived oligosaccharides produced by a constitutive mutant L. mesenteroides B-512FMCM dextransucrase in high fat diet-fed mice.

    PubMed

    Kang, Min-Gyung; Lee, Hee Jae; Cho, Jae-Young; Kim, Kanghwa; Yang, Soo Jin; Kim, Doman

    2016-08-26

    Oligosaccharide (OS) is used as a sugar replacement as well as an ingredient in functional foods because of its beneficial effects, mainly on reducing calorie content and promoting intestinal health. By contrast, the effects of OS on inflammation are less well investigated. The purpose of this study was to investigate the effects of sucrose-derived OS on glucose control and inflammation in high fat (HF) diet-fed mice. Male C57BL6 mice were randomly assigned to six treatment groups (n = 10-14 mice per group): 1) lean control (CON), 2) HF control, 3) HF-low sucrose (LS, 100 mg/kg/day), 4) HF-high sucrose (HS, 1000 mg/kg/day), 5) HF-low OS (LOS, 100 mg/kg/day), and 6) HF-high OS (HOS, 1000 mg/kg/day). PBS (vehicle), sucrose, and OS were administered by stomach gavage. Body weight, food intake, and markers of liver function (activities of aspartate aminotransferase and alanine aminotransferase) were not affected by the treatments. HOS treatment decreased levels of serum glucose, insulin, and homeostasis model assessment-insulin resistance compared with sucrose treatment. However, serum adiponectin levels of the HOS group were higher than those of the sucrose groups. Serum levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and fetuin-A were lower in the HOS group than in the sucrose groups. Hepatic gene expression levels of pro-inflammatory cytokines and related factors (fetuin-A, NF-κB, TLR4, TNF-alpha, and IL-6) were decreased and the levels of insulin signaling-related molecules (sirtuin 1, insulin receptor, and Akt) were increased in HOS-treated mice as compared with sucrose-treated mice. These results demonstrate that OS treatment is effective in improving glucose control and inflammation in high fat diet-fed mice. PMID:27342664

  13. A comparative anti-inflammatory activity of raw and processed Kupeelu (Strychnos nux-vomica Linn.) seeds on albino rats.

    PubMed

    Mitra, Swarnendu; Kumar, Vijay; Ashok, Bk; Acharya, R N; Ravishankar, B

    2011-10-01

    Seeds of Kupeelu (Strychnos nux-vomica Linn.), a known poisonous drug, is used extensively in various Ayurvedic formulations with great therapeutic significance. Ayurveda recommends the administration of Kupeelu only after passing through specific purificatory procedures in different media like cow's urine (Go mutra), cow's milk (Go dugdha), cow's ghee (Go ghrita), Kanji (thin gruel) etc. Strychnos nux vomica seeds are extensively advocated for nervous debility, paralysis, and weakness of limbs, sexual weakness, dyspepsia, and dysentery and in rheumatism where it can be assumed that besides other properties, Kupeelu may have some sort of anti-inflammatory activity too. In the present study, the powder of raw and processed Kupeelu seeds (processed / purified with Kanji i.e sour gruel) as test drugs were assessed for anti-inflammatory activity by employing Carrageenan and Formaldehyde induced hind paw oedema in Wistar strain albino rats at a dose of 22.5 mg/kg body weight orally. This study reveals that both raw and purified Kupeelu showed presence of highly significant anti-inflammatory activity against formaldehyde induced hind paw oedema, but did not have similar activity against Carrageenan induced hind paw oedema. PMID:23284209

  14. Anti-Inflammatory and Anticancer Activities of Taiwanese Purple-Fleshed Sweet Potatoes (Ipomoea batatas L. Lam) Extracts.

    PubMed

    Sugata, Marcelia; Lin, Chien-Yih; Shih, Yang-Chia

    2015-01-01

    Purple-fleshed sweet potato (PFSP) (Ipomoea batatas L. Lam) has been known to possess high amount of anthocyanins which contribute to its antioxidant activity. However, a few reports are available concerning its anti-inflammatory and anticancer properties. In this study, PFSP "Tainung 73," which is locally grown in Taiwan, was steamed and extracted using acidified ethanol pH 3.5 under 80°C. Two kinds of crude anthocyanins extracts were obtained, namely, SP (Steamed, Peeled) and SNP (Steamed, No Peeled). Then, anti-inflammatory and anticancer activities of these extracts were investigated. Cell viability assay (MTT) showed that SP and SNP extracts were not toxic to RAW 264.7 cells. They even exhibited anti-inflammatory activities by suppressing the production of NO and proinflammatory cytokines, such as NF-κβ, TNF-α, and IL-6, in LPS-induced macrophage cells. Anticancer activities of these extracts were displayed through their ability to inhibit the growth of cancer cell lines, such as MCF-7 (breast cancer), SNU-1 (gastric cancer), and WiDr (colon adenocarcinoma), in concentration- and time-dependent manner. Further studies also revealed that SP extracts could induce apoptosis in MCF-7 and SNU-1 cancer cells through extrinsic and intrinsic pathway. In the future, PSFP extracts may have potential to be applied in nutraceutical, pharmaceutical, and food industries.

  15. Anti-Inflammatory and Anticancer Activities of Taiwanese Purple-Fleshed Sweet Potatoes (Ipomoea batatas L. Lam) Extracts.

    PubMed

    Sugata, Marcelia; Lin, Chien-Yih; Shih, Yang-Chia

    2015-01-01

    Purple-fleshed sweet potato (PFSP) (Ipomoea batatas L. Lam) has been known to possess high amount of anthocyanins which contribute to its antioxidant activity. However, a few reports are available concerning its anti-inflammatory and anticancer properties. In this study, PFSP "Tainung 73," which is locally grown in Taiwan, was steamed and extracted using acidified ethanol pH 3.5 under 80°C. Two kinds of crude anthocyanins extracts were obtained, namely, SP (Steamed, Peeled) and SNP (Steamed, No Peeled). Then, anti-inflammatory and anticancer activities of these extracts were investigated. Cell viability assay (MTT) showed that SP and SNP extracts were not toxic to RAW 264.7 cells. They even exhibited anti-inflammatory activities by suppressing the production of NO and proinflammatory cytokines, such as NF-κβ, TNF-α, and IL-6, in LPS-induced macrophage cells. Anticancer activities of these extracts were displayed through their ability to inhibit the growth of cancer cell lines, such as MCF-7 (breast cancer), SNU-1 (gastric cancer), and WiDr (colon adenocarcinoma), in concentration- and time-dependent manner. Further studies also revealed that SP extracts could induce apoptosis in MCF-7 and SNU-1 cancer cells through extrinsic and intrinsic pathway. In the future, PSFP extracts may have potential to be applied in nutraceutical, pharmaceutical, and food industries. PMID:26509161

  16. Evaluation of the Anti-Inflammatory Activity of Raisins (Vitis vinifera L.) in Human Gastric Epithelial Cells: A Comparative Study

    PubMed Central

    Di Lorenzo, Chiara; Sangiovanni, Enrico; Fumagalli, Marco; Colombo, Elisa; Frigerio, Gianfranco; Colombo, Francesca; Peres de Sousa, Luis; Altindişli, Ahmet; Restani, Patrizia; Dell’Agli, Mario

    2016-01-01

    Raisins (Vitis vinifera L.) are dried grapes largely consumed as important source of nutrients and polyphenols. Several studies report health benefits of raisins, including anti-inflammatory and antioxidant properties, whereas the anti-inflammatory activity at gastric level of the hydro-alcoholic extracts, which are mostly used for food supplements preparation, was not reported until now. The aim of this study was to compare the anti-inflammatory activity of five raisin extracts focusing on Interleukin (IL)-8 and Nuclear Factor (NF)-κB pathway. Raisin extracts were characterized by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) analysis and screened for their ability to inhibit Tumor necrosis factor (TNF)α-induced IL-8 release and promoter activity in human gastric epithelial cells. Turkish variety significantly inhibited TNFα-induced IL-8 release, and the effect was due to the impairment of the corresponding promoter activity. Macroscopic evaluation showed the presence of seeds, absent in the other varieties; thus, hydro-alcoholic extracts from fruits and seeds were individually tested on IL-8 and NF-κB pathway. Seed extract inhibited IL-8 and NF-κB pathway, showing higher potency with respect to the fruit. Although the main effect was due to the presence of seeds, the fruit showed significant activity as well. Our data suggest that consumption of selected varieties of raisins could confer a beneficial effect against gastric inflammatory diseases. PMID:27447609

  17. Systematic review of herbals as potential anti-inflammatory agents: Recent advances, current clinical status and future perspectives

    PubMed Central

    Beg, Sarwar; Swain, Suryakanta; Hasan, Hameed; Barkat, M Abul; Hussain, Md Sarfaraz

    2011-01-01

    Many synthetic drugs reported to be used for the treatment of inflammatory disorders are of least interest now a days due to their potential side effects and serious adverse effects and as they are found to be highly unsafe for human assistance. Since the last few decades, herbal drugs have regained their popularity in treatment against several human ailments. Herbals containing anti-inflammatory activity (AIA) are topics of immense interest due to the absence of several problems in them, which are associated with synthetic preparations. The primary objective of this review is to provide a deep overview of the recently explored anti-inflammatory agents belonging to various classes of phytoconstituents like alkaloids, glycosides, terpenoids, steroids, polyphenolic compounds, and also the compounds isolated from plants of marine origin, algae and fungi. Also, it enlists a distended view on potential interactions between herbals and synthetic preparations, related adverse effects and clinical trials done on herbals for exploring their AIA. The basic aim of this review is to give updated knowledge regarding plants which will be valuable for the scientists working in the field of anti-inflammatory natural chemistry. PMID:22279370

  18. Anti-Inflammatory and Anticancer Activities of Taiwanese Purple-Fleshed Sweet Potatoes (Ipomoea batatas L. Lam) Extracts

    PubMed Central

    Sugata, Marcelia; Lin, Chien-Yih; Shih, Yang-Chia

    2015-01-01

    Purple-fleshed sweet potato (PFSP) (Ipomoea batatas L. Lam) has been known to possess high amount of anthocyanins which contribute to its antioxidant activity. However, a few reports are available concerning its anti-inflammatory and anticancer properties. In this study, PFSP “Tainung 73,” which is locally grown in Taiwan, was steamed and extracted using acidified ethanol pH 3.5 under 80°C. Two kinds of crude anthocyanins extracts were obtained, namely, SP (Steamed, Peeled) and SNP (Steamed, No Peeled). Then, anti-inflammatory and anticancer activities of these extracts were investigated. Cell viability assay (MTT) showed that SP and SNP extracts were not toxic to RAW 264.7 cells. They even exhibited anti-inflammatory activities by suppressing the production of NO and proinflammatory cytokines, such as NF-κβ, TNF-α, and IL-6, in LPS-induced macrophage cells. Anticancer activities of these extracts were displayed through their ability to inhibit the growth of cancer cell lines, such as MCF-7 (breast cancer), SNU-1 (gastric cancer), and WiDr (colon adenocarcinoma), in concentration- and time-dependent manner. Further studies also revealed that SP extracts could induce apoptosis in MCF-7 and SNU-1 cancer cells through extrinsic and intrinsic pathway. In the future, PSFP extracts may have potential to be applied in nutraceutical, pharmaceutical, and food industries. PMID:26509161

  19. Characterization, Anti-Inflammatory and Antiproliferative Activities of Natural and Sulfonated Exo-Polysaccharides from Streptococcus thermophilus ASCC 1275.

    PubMed

    Li, Siqian; Shah, Nagendra P

    2016-05-01

    Exo-polysaccharides (EPS) isolated from Streptococcus thermophilus ASCC 1275 were sulfated (31%). High-performance liquid chromatography identified that EPS was composed of mannose (30.19%), galactose (20.10%), glucose (18.05%), glucosamine (16.04%), galactosamine (9.06%), glucuronic acid (3.55%), and ribose (3.01%). Pro-/anti-inflammatory cytokine secretion ratios (IL-1β/IL-10, IL-6/IL-10, and TNF-α/IL-10) of lipopolysaccharide stimulated RAW 264.7 macrophages were significantly decreased by EPS and S.EPS treatments in a dose dependent manner. Furthermore, anti-inflammatory activities of S.EPS improved 49.3% and 24.0% than those of EPS before or after LPS treatment. The reactive oxygen species were inhibited by EPS and S.EPS by 49.6% and 55.1% at 50 μg/mL, respectively. Inhibition activities of S.EPS on nitric oxide production were 12.9% and 55.4% higher than those of EPS at 10 and 50 μg/mL. Additionally, S.EPS exhibited stronger antiproliferative activity on Caco-2 and HepG2 cells. Our results indicated that anti-inflammatory and antiproliferative activities of EPS were significantly (P < 0.01) improved by sulfonation. PMID:27010963

  20. Synthesis of modified steroids as a novel class of non-ulcerogenic, anti-inflammatory and anti-nociceptive agents.

    PubMed

    Mohareb, Rafat M; Elmegeed, Gamal A; Abdel-Salam, Omar M E; Doss, Senot H; William, Marian G

    2011-01-01

    The identification of compounds able to treat both pain and inflammation with limited side effects is one of the prominent goals in biomedical research. This study aimed at the synthesis of new modified steroids with structures justifying non-ulcerogenic, anti-inflammatory and anti-nociceptive activities. The steroid derivatives were synthesized via straightforward and efficient methods and their structures were established based on the analytical and spectral data. The in vivo anti-inflammatory, anti-nociceptive and anti-ulcerogenic activities of some of these compounds were studied. The newly synthesized compounds 8b, 19b, 24 and 31a showed anti-inflammatory, anti-nociceptive and anti-ulcerogenic activity with various intensities. Oedema was significantly reduced by either dose 25 or 50 mg/kg of all tested compounds at 3 and 4 h post-carrageenan. Compound 19b was the most effective in alleviating thermal pain. The analgesic activity of either dose of the compounds 8b, 24, 31a as well as the high dose 19b was significantly higher than that for indomethacin (IND). Gastric mucosal lesions caused in the rats by the administration of 96% EtOH and IND were inhibited by all tested compounds administered at (50 mg/kg) dose in the study.

  1. A comparison of the ocular anti-inflammatory activity of steroidal and nonsteroidal compounds in the rat.

    PubMed

    Bhattacherjee, P; Williams, R N; Eakins, K E

    1983-08-01

    The anti-inflammatory activities of steroidal and nonsteroidal compounds have been evaluated in the rat model of ocular inflammation induced by subcutaneous injection of lipopolysaccharides. Dexamethasone sodium phosphate, BW755C, flurbiprofen, indomethacin, and benoxaprofen were administered orally or topically for 24 or 48 hrs. Oral administration of dexamethasone, BW755C, and flurbiprofen inhibited iris-vasodilatation and leukocyte accumulation in the anterior chamber in a dose-dependent manner. Indomethacin and benoxaprofen were active only at high doses. Topical administration of these compounds inhibited the inflammatory responses in a similar manner. The inhibitory effect on leukocyte accumulation by these compounds was greater than their effect on vasodilatation. BW755C, a phenyl pyrazoline derivative, which is an inhibitor of both the cyclooxygenase and lipoxygenase pathways of arachidonic acid metabolism was the most active nonsteroidal compound and had an anti-inflammatory profile similar to dexamethasone. The results of this study also indicate that the model of rat ocular inflammation induced by subcutaneous injection of endotoxin can be used satisfactorily for comparative evaluation of anti-inflammatory agents.

  2. Antioxidant, Antibacterial, Cytotoxic, and Anti-Inflammatory Potential of the Leaves of Solanum lycocarpum A. St. Hil. (Solanaceae)

    PubMed Central

    da Costa, Guilherme Augusto Ferreira; Morais, Melissa Grazielle; Saldanha, Aline Aparecida; Assis Silva, Izabela Caputo; Aleixo, Álan Alex; Ferreira, Jaqueline Maria Siqueira; Soares, Adriana Cristina; Duarte-Almeida, Joaquim Maurício; Lima, Luciana Alves Rodrigues dos Santos

    2015-01-01

    Ethanol extract and fractions obtained from leaves of Solanum lycocarpum were examined in order to determine their phenolic composition, antioxidant, antibacterial, anti-inflammatory, and cytotoxic potential. High performance liquid chromatography coupled with DAD analysis indicated that the flavonoids apigenin and kaempferol were the main phenolic compounds present in dichloromethane and ethyl acetate fractions, respectively. The antioxidant activity was significantly more pronounced for dichloromethane, ethyl acetate, and hydroethanol fractions than that of the commercial antioxidant 2,6-di-tert-butyl-4-methylphenol. The hexane and dichloromethane fractions were more active against the tested bacteria. The hydroethanol fraction exhibited significant anti-inflammatory activity at the dose of 75 and 150 mg/kg in the later phase of inflammation. However, the antiedematogenic effect of the higher dose of the ethyl acetate fraction (150 mg/kg) was more pronounced. The ethyl acetate fraction also presented a less cytotoxic effect than the ethanol extract and other fractions. These activities found in S. lycocarpum leaves can be attributed, at least in part, to the presence of phenolic constituents such as flavonoids. This work provided the knowledge of phenolic composition in the extract and fractions and the antioxidant, antibacterial, anti-inflammatory, and cytotoxic activities of leaves of S. lycocarpum. PMID:26064159

  3. [Active ingredients and its pharmacokinetic behavior and anti-inflammatory effects of ginseng with different steamed times].

    PubMed

    Qian, Jing; Kang, An; Di, Liu-qing; Di, Ya-wei; Li, Jie; Liu, Ting

    2015-10-01

    HPLC analysis was performed to study the changes in chemical composition of ginseng extracts prepared from high quality ginseng with 0, 2, 4, 8 h of steamed times. An UFLC-MS/MS multiple-reaction monitoring (MRM) quantitative analysis was made to investigate the pharmacokinetic behavior differences of ginsenosides in mice ig administered of ginseng extracts with different steamed times in the negative ion mode, with Digoxin as the internal standard substance. The mice were injected with LPS to establish inflammation model after ig administration of ginseng for a week and the contents of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in mice plasma were detected by ELISA, in order to study on anti-inflammatory effects of ginseng with different steamed times. It was determined that levels of TNF-α and IL-1β were significantly decreased in inflammation model group ig administered of ginseng extracts with 8h of steamed time. The results showed that the chemical components in ginseng changed after steaming and the components into the blood changed, correspondingly. Ginseng with steamed 8 h contributes to anti-inflammatory effects. These results provided an experimental basis for revealing the active substance basis and dose-effect relationship of ginseng on anti-inflammatory effect.

  4. Liquid chromatography/tandem mass spectrometry study of anti-inflammatory activity of plantain (Plantago L.) species.

    PubMed

    Beara, Ivana N; Orcić, Dejan Z; Lesjak, Marija M; Mimica-Dukić, Neda M; Peković, Biljana A; Popović, Mira R

    2010-09-01

    To evaluate anti-inflammatory activity of selected Plantago species (P. lanceolata L. and P. major L.) an optimized in vitro test for determination of cyclooxygenase-1 (COX-1) and 12-lipoxygenase (12-LOX) inhibition potency was undertaken. By using intact cell system (platelets) as a source of COX-1 and 12-LOX enzymes and highly sensitive and specific LC-MS/MS technique for detection of main arachidonic acid metabolites formed by COX-1 and 12-LOX, this test provides efficient method for evaluation of anti-inflammatory potential of plant extracts and isolated compounds. Our results validated the well-known COX-1 inhibitory activity of P. lanceolata and P. major methanol extracts (concentration required for 50% inhibition (IC(50)) was 2.00 and 0.65 mg/ml, respectively). Furthermore, 12-LOX inhibitory activity of examined extracts was reported for the first time (IC(50)=0.75 and 1.73 mg/ml for P. lanceolata and P. major, respectively). Although renowned inhibitors, such as acetylsalicylic acid and quercetin showed higher activity, this study verifies P. lanceolata and P. major as considerable anti-inflammatory agents.

  5. Fat redistribution preferentially reflects the anti-inflammatory benefits of pioglitazone treatment.

    PubMed

    Moon, Jae Hoon; Kim, Hae Jin; Kim, Soo Kyung; Kang, Eun Seok; Lee, Byung Wan; Ahn, Chul Woo; Lee, Hyun Chul; Cha, Bong-Soo

    2011-02-01

    Thiazoledinedione is known to have an anti-inflammatory effect besides a hypoglycemic effect. We investigated changes in high-sensitivity C-reactive protein (hsCRP), a proinflammatory marker, after pioglitazone treatment in association with the resulting changes in various metabolic and anthropometric parameters. A total of 93 type 2 diabetes mellitus patients (47 men and 46 women; mean age, 50.0 ± 10.8 years) who were being treated with a stable dose of sulfonylurea or metformin were enrolled in the study. Pioglitazone (15 mg/d) was added to their treatment regimen for 12 weeks, and metabolic and anthropometric measurements were taken before and after pioglitazone treatment. Pioglitazone treatment for 12 weeks decreased serum hsCRP levels (0.83 [1.14] to 0.52 [0.82] mg/L, P < .001) and improved glycemic control (fasting glucose, P < .001; glycosylated hemoglobin, P < .001) and lipid profiles (triglyceride, P = .016; high-density lipoprotein cholesterol, P < .001). Between responders and nonresponders to the hsCRP-lowering effect of pioglitazone, there were significant differences in baseline hsCRP levels and changes in the postprandial glucose and the ratio of visceral fat thickness (VFT) to subcutaneous fat thickness (SFT) (P = .004, .011, and .001, respectively). The percentage change in hsCRP levels after treatment was inversely correlated with baseline hsCRP levels (r = -0.497, P < .001) and directly correlated with the change in postprandial glucose (r = 0.251, P = .021), VFT (r = 0.246, P = .030), and VFT/SFT ratio (r = 0.276, P = .015). Logistic regression analysis revealed that the hsCRP-lowering effect of pioglitazone was affected by baseline hsCRP levels (odds ratio [OR] = 7.929, P = .007) as well as changes in postprandial 2-hour glucose (OR = 0.716, P = .025) and VFT/SFT ratio (OR = 0.055, P = .009). In conclusion, treatment with pioglitazone produced an anti-inflammatory effect, decreasing serum hsCRP levels; and a decrease in the VFT/SFT ratio was

  6. Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and anti-tumour activity

    PubMed Central

    Rahmani, Arshad H; Aly, Salah M; Ali, Habeeb; Babiker, Ali Y; Srikar, Sauda; khan, Amjad A

    2014-01-01

    The current mode of treatment of various diseases based on synthetic drugs is expensive, alters genetic and metabolic pathways and also shows adverse side effects. Thus, safe and effective approach is needed to prevent the diseases development and progression. In this vista, Natural products are good remedy in the treatment/management of diseases and they are affordable and effective without any adverse effects. Dates are main fruit in the Arabian Peninsula and are considered to be one of the most significant commercial crops and also have been documented in Holy Quran and modern scientific literatures. Earlier studies have shown that constituents of dates act as potent antioxidant, anti-tumour as well as anti-inflammatory, provide a suitable alternative therapy in various diseases cure. In this review, dates fruits has medicinal value are summarized in terms of therapeutic implications in the diseases control through anti-oxidant, anti-inflammatory, anti-tumour and ant-diabetic effect. PMID:24753740

  7. Anti-Inflammatory Effects of a Polyphenols-Rich Extract from Tea (Camellia sinensis) Flowers in Acute and Chronic Mice Models

    PubMed Central

    Chen, Bang-Tian; Li, Wei-Xi; He, Rong-Rong; Li, Yi-Fang; Tsoi, Bun; Zhai, Yu-Jia; Kurihara, Hiroshi

    2012-01-01

    While beneficial health properties of tea leaves have been extensively studied, less attention is paid to the flowers of tea. In this study, the anti-inflammatory effects of hot water extract of tea (Camellia sinensis) flowers were investigated. Pharmacological studies found that administration of tea flowers extract (TFE) could effectively inhibit croton oil-induced ear edema and carrageenin-induced paw edema. Furthermore, administration of TFE also protected against Propionibacterium acnes (P. ances) plus lipopolysaccharide-(LPS-) induced liver inflammation by reversing the histologic damage and plasma alanine aminotransferase (ALT) increase. Moreover, the levels of nitric oxide (NO), tumor necrosis factor-(TNF)-α and interleukin-(IL-) 1β mRNA in mouse liver were markedly suppressed after treatment with TFE in mice with immunological liver inflammation. These results indicated that tea flowers had potent anti-inflammatory effects on acute and immunological inflammation in vivo, and may be used as a functional natural food. PMID:22900128

  8. PAFR in adipose tissue macrophages is associated with anti-inflammatory phenotype and metabolic homoeostasis.

    PubMed

    Filgueiras, Luciano Ribeiro; Koga, Marianna Mainardi; Quaresma, Paula G; Ishizuka, Edson Kiyotaka; Montes, Marlise B A; Prada, Patricia O; Saad, Mario J; Jancar, Sonia; Rios, Francisco J

    2016-04-01

    Metabolic dysfunction is associated with adipose tissue inflammation and macrophage infiltration. PAFR (platelet-activating factor receptor) is expressed in several cell types and binds to PAF (platelet-activating factor) and oxidized phospholipids. Engagement of PAFR in macrophages drives them towards the anti-inflammatory phenotype. In the present study, we investigated whether genetic deficiency of PAFR affects the phenotype of ATMs (adipose tissue macrophages) and its effect on glucose and insulin metabolism. PARFKO (PAFR-knockout) and WT (wild-type) mice were fed on an SD (standard diet) or an HFD (high-fat diet). Glucose and insulin tolerance tests were performed by blood monitoring. ATMs were evaluated by FACS for phenotypic markers. Gene and protein expression was investigated by real-time reverse transcription-quantitative PCR and Western blotting respectively. Results showed that the epididymal adipose tissue of PAFRKO mice had increased gene expression of Ccr7, Nos2, Il6 and Il12, associated with pro-inflammatory mediators, and reduced expression of the anti-inflammatory Il10. Moreover, the adipose tissue of PAFRKO mice presented more pro-inflammatory macrophages, characterized by an increased frequency of F4/80(+)CD11c(+) cells. Blood monocytes of PAFRKO mice also exhibited a pro-inflammatory phenotype (increased frequency of Ly6C(+) cells) and PAFR ligands were detected in the serum of both PAFRKO and WT mice. Regarding metabolic parameters, compared with WT, PAFRKO mice had: (i) higher weight gain and serum glucose concentration levels; (ii) decreased insulin-stimulated glucose disappearance; (iii) insulin resistance in the liver; (iv) increased expression of Ldlr in the liver. In mice fed on an HFD, some of these changes were potentiated, particularly in the liver. Thus it seems that endogenous ligands of PAFR are responsible for maintaining the anti-inflammatory profile of blood monocytes and ATMs under physiological conditions. In the absence of

  9. Lipoxins exert antiangiogenic and anti-inflammatory effects on Kaposi's sarcoma cells.

    PubMed

    Marginean, Alexandru; Sharma-Walia, Neelam

    2015-08-01

    Lipoxin A4 (LXA4) is an endogenously produced host molecule with anti-inflammatory resolution effects. Previous studies demonstrated it to be involved in anti-vascular endothelial growth factor (VEGF)-mediated angiogenesis and in a possible anticancer role via interaction with its receptor, lipoxin A 4 receptor (ALXR). Here, we examined the effects of LXA4 and its epimer 15-epi-LXA4 in inhibiting proinflammatory and angiogenic functions in a human Kaposi's sarcoma tumor-derived cell line (KS-IMM). KS-IMM cells expressed increased levels of inflammatory cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LO) pathway enzymes when compared with human microvascular dermal endothelial cells (HMVEC-d). KS-IMM cells secreted high levels of prostaglandin E2 (PGE2) and chemotactic leukotriene B4 (LTB4). Treatment with LXA4 or 15-epi-LXA4 effectively reduced the levels of COX-2, 5-LO proteins, and secretion of PGE2 and LTB4 in KS-IMM cells. LXA4 or 15-epi-LXA4 treatment also decreased secretion of proinflammatory interleukin 6 (IL-6) and IL-8 cytokines but induced the secretion of anti-inflammatory IL-10. LXA4 treatment reduced the phosphorylation of VEGF receptor (VEGFR) and ephrin family receptor tyrosine kinases. LXA4 treatment effectively induced dephosphorylation of multiple cellular kinases such as Focal Adhesion Kinase, Protein kinase B, nuclear factor kappa-light-chain-enhancer of activated B cells, and Extracellular signal-regulated kinases (ERK)1/2, and reduced angiogenic factor VEGF-C secretion in KS cells. LX treatment drastically induced the Src-homology 2 domain-containing phosphatase tyrosine (Y542) phosphatase and reduced VEGFR-2 phosphorylation at sites Y1059, Y1175, and Y1212. Treatment of KS-IMM cells with LXA4 resulted in selective localization of VEGFR-2 in nonlipid raft (non-LR) and ALXR to LR fractions. These results demonstrated that LXA4 or 15-epi-LXA4 induce anti-inflammatory and antiangiogenic effects in KS cells and suggest that treatment with LXs is

  10. Anti-inflammatory iridoids from the stems of Cistanche deserticola cultured in Tarim Desert.

    PubMed

    Nan, Ze-Dong; Zhao, Ming-Bo; Zeng, Ke-Wu; Tian, Shuai-Hua; Wang, Wei-Nan; Jiang, Yong; Tu, Peng-Fei

    2016-01-01

    In order to determine the chemical constituents of Cistanche deserticola cultured in Tarim desert, a systematically phytochemical investigation was carried out. The constituents were isolated by silica gel, Sephadex LH-20, MCI gel, ODS column chromatography, and semi-preparative HPLC. Their structures were determined on the basis of MS and NMR spectroscopic analyses, by chemical methods, and/or comparison with literature data. The anti-inflammatory activities of the isolates were evaluated for their inhibitory effects on the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV-2 mouse microglial cells. Nine iridoids were isolated and identified as cistadesertoside A (1), cistanin (2), cistachlorin (3), 6-deoxycatalpol (4), gluroside (5), kankanoside A (6), ajugol (7), bartsioside (8), and 8-epi-loganic acid (9). Compound 9 exhibited potent inhibition on the NO production with an IC50 value being 5.2 μmol·L(-1), comparable to the positive control quercetin (4.3 μmol·L(-1)). Compound 1 was a new iridoid, and compounds 5, 6, and 8 were isolated from this species for the first time.

  11. Anti-inflammatory effects of Baicalin, Baicalein, and Wogonin in vitro and in vivo.

    PubMed

    Lee, Wonhwa; Ku, Sae-Kwang; Bae, Jong-Sup

    2015-02-01

    Here, three structurally related polyphenols found in the Chinese herb Huang Qui, namely baicalin, baicalein, and wogonin, were examined for its effects on inflammatory responses by monitoring the effects of baicalin, baicalein, and wogonin on lipopolysaccharide (LPS)-mediated vascular inflammatory responses. We found that each compound inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion/transendothelial migration of monocytes to human endothelial cells. Each compound induced potent inhibition of phorbol-12-myristate 13-acetate and LPS-induced endothelial cell protein C receptor shedding. It also suppressed LPS-induced hyperpermeability and leukocytes migration in vivo. Furthermore, each compound suppressed the production of tumor necrosis factor-α or interleukin-6 and the activation of nuclear factor-κB or extracellular regulated kinases 1/2 by LPS. Moreover, treatment with each compound resulted in reduced LPS-induced lethal endotoxemia. These results suggest that baicalin, baicalein, and wogonin posses anti-inflammatory functions by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.

  12. Oxicams, a class of nonsteroidal anti-inflammatory drugs and beyond.

    PubMed

    Xu, Shu; Rouzer, Carol A; Marnett, Lawrence J

    2014-12-01

    Oxicams are a class of nonsteroidal anti-inflammatory drugs (NSAIDs) structurally related to the enolic acid class of 4-hydroxy-1,2-benzothiazine carboxamides. They are used clinically to treat both acute and chronic inflammation by inhibiting the activity of the two cyclooxygenase (COX) isoforms, COX-1 and COX-2. Oxicams are structurally distinct from all other NSAIDs, exhibiting a novel binding pose in the COX active site. The 4-hydroxyl group on the thiazine ring partners with Ser-530 via hydrogen bonding while two coordinated water molecules mediate a polar interaction between the oxicam and COX. The rotation of Leu-531 in the complex opens a new pocket, which is not used for binding other NSAIDs to the enzyme. This structure provides the basis for understanding documented structure-activity relationships within the oxicam class. In addition, from the oxicam template, a series of potent microsomal prostaglandin E synthase-1 (mPGES-1) inhibitors represents a new direction for drug development. Here, we review the major route of oxicam synthesis and structure-activity for COX inhibition, as well as recent advances in oxicam-mediated mPGES-1 inhibition.

  13. Anti-inflammatory activities of cecropin A and its mechanism of action.

    PubMed

    Lee, Eunjung; Shin, Areum; Kim, Yangmee

    2015-01-01

    Cecropin A is a novel 37-residue cecropin-like antimicrobial peptide isolated from the cecropia moth, Hyalophora cecropia. We have demonstrated that cecropin A is an antibacterial agent and have investigated its mode of action. In this study, we show that cecropin A has potent antimicrobial activity against 2 multidrug resistant organisms-Acinetobacter baumanii and-Pseudomonas aeruginosa. Interactions between cecropin A and membrane phospholipids were studied using tryptophan blue shift experiments. Cecropin A has a strong interaction with bacterial cell mimetic membranes. These results imply that cecropin A has selectivity for bacterial cells. To address the potential the rapeutic efficacy of cecropin A, its anti-inflammatory activities and mode of action in mouse macrophage-derived RAW264.7 cells stimulated with lipopolysaccharide (LPS) were examined. Cecropin A suppressed nitrite production, mTNF-α, mIL-1β, mMIP-1, and mMIP-2 cytokine release in LPS-stimulated RAW264.7 cells. Furthermore, cecropin A inhibited intracellular cell signaling via the ERK, JNK, and p38 MAPK pathway, leading to the prevention of COX-2 expression in LPS-stimulated RAW264.7 cells. These results strongly suggest that cecropin A should be investigated as a potential agent for the prevention and treatment of inflammatory diseases.

  14. In vitro anti-inflammatory effects of diterpenoids and sesquiterpenoids from traditional Chinese medicine Siegesbeckia pubescens.

    PubMed

    Wang, Rui; Liu, Ying-Qian; Ha, Wei; Shi, Yan-Ping; Hwang, Tsong-Long; Huang, Guan-Jhong; Wu, Tian-Shung; Lee, Kuo-Hsiung

    2014-08-15

    Oxidative stress imposed by reactive oxygen species plays a crucial role in pathophysiology of inflammatory diseases. In the present study, sesquiterpenoids and diterpenoids isolated from Siegesbeckia pubescens, a Chinese traditional medicine used to treat arthritis, were evaluated for inhibition of NO production in activated RAW 264.7 macrophages and FMLP/CB induced O2(·-) generation and elastase release in human neutrophils. In the former assay, sesquiterpenoids were more potent than diterpenoids. The C-4 carbonyl group in the carabrane-type sesquiterpenoid 3 and the C-9 ether linkage in the germacrane sesquiterpene 7 were associated with the enhanced potency. Also, for the active ent-kaurane type diterpenoids, esterification of 17-OH with isobutyric acid and acetylation of 18-OH affected the inhibition of O2(·-) generation and elastase release. This report is the first to describe the inhibitory effects on oxidative stress of secondary metabolites from S. pubescens. Its findings suggest that active terpenoids from the herb could be used as lead anti-inflammatory agents.

  15. Chemical composition, antioxidant and anti-inflammatory properties of pistachio hull extracts.

    PubMed

    Grace, Mary H; Esposito, Debora; Timmers, Michael A; Xiong, Jia; Yousef, Gad; Komarnytsky, Slavko; Lila, Mary Ann

    2016-11-01

    Phytochemical and bioactivity analyses of pistachio hulls revealed the presence of anacardic acids (3198mg/100g), fatty acids (1500mg/100g), and phytosterols (192mg/100g) as major components. Carotenoids (4.93mg/100g), chlorophylls (10.27mg/100g), tocopherols (8.83mg/100g), and three triterpene acids (mangiferolic, isomangiferolic and mangiferonic acids) were characterized. A polar (P) extract contained quercetin-3-O-glucoside (6.27mg/g), together with smaller concentrations of quercetin, myricetin and luteolin flavonoids, accounting for 5.53mg/g. Gallotannins and other phenolic compounds esterified with a gallic acid moiety characterized the P extract. P extract potently inhibited the release of nitric oxide (NO) and reactive oxygen species (ROS) in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. The mRNA expression levels of the anti-inflammatory cytokine COX-2 were significantly inhibited by fractions P2-P5, while IL-6 was only inhibited by fraction P3. Moreover, the P extract significantly decreased the non-mitochondrial oxidative burst associated with inflammatory response in macrophages. PMID:27211624

  16. Incorporation of anti-inflammatory agent into mesoporous silica

    NASA Astrophysics Data System (ADS)

    Rodrigues Braz, Wilson; Lamec Rocha, Natállia; de Faria, Emerson H.; Silva, Márcio L. A. e.; Ciuffi, Katia J.; Tavares, Denise C.; Furtado, Ricardo Andrade; Rocha, Lucas A.; Nassar, Eduardo J.

    2016-09-01

    The unique properties of macroporous, mesoporous, and microporous systems, including their ability to accommodate molecules of different sizes inside their pores and to act as drug delivery systems, have been the object of extensive studies. In this work, mesoporous silica with hexagonal structure was obtained by template synthesis via the sol-gel process. The resulting material was used as support to accommodate the anti-inflammatory agent indomethacin. The alkaline route was used to prepare the mesoporous silica; cetyltrimethylammonium bromide was employed as porogenic agent. The silica particles were functionalized with 3-aminopropyltriethoxysilane alkoxide (APTES) by the sol-gel post-synthesis method. Indomethacin was incorporated into the silica functionalized with APTES and into non-functionalized silica. The resulting systems were characterized by x-ray diffraction (XRD), specific area, infrared spectroscopy, and thermal analyses (TGA). XRD attested to formation of mesoporous silica with hexagonal structure. This structure remained after silica functionalization with APTES and incorporation of indomethacin. Typical infrared spectroscopy vibrations and organic material decomposition during TGA confirmed silica functionalization and drug incorporation. The specific surface area and pore volume of the functionalized material incorporated with indomethacin decreased as compared with the specific surface area and pore volume of the non-functionalized silica containing no drug, suggesting both the functionalizing agent and the drug were present in the silica. Cytotoxicity tests conducted on normal fibroblasts (GM0479A) cells attested that the silica matrix containing indomethacin was less toxic than the free drug.

  17. Anti-inflammatory phenanthrene derivatives from stems of Dendrobium denneanum.

    PubMed

    Lin, Yuan; Wang, Fei; Yang, Li-Juan; Chun, Ze; Bao, Jin-Ku; Zhang, Guo-Lin

    2013-11-01

    Cultivated Dendrobium denneanum has been substituted for other endangered Dendrobium species in recent years, but there have been few studies regarding either its chemical constituents or pharmacological effects. In this study, three phenanthrene glycosides, three 9,10-dihydrophenanthrenes, two 9,10-dihydrophenanthrenes glycosides, and four known phenanthrene derivatives, were isolated from the stems of D. denneanum. Their structures were elucidated on the basis of MS and NMR spectroscopic data. Ten compounds were found to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-activated mouse macrophage RAW264.7 cells with IC50 values of 0.7-41.5 μM, and exhibited no cytotoxicity in RAW264.7, HeLa, or HepG2 cells. Additionally, it was found that 2,5-dihydroxy-4-methoxy-phenanthrene 2-O-β-d-glucopyranoside, and 5-methoxy-2,4,7,9S-tetrahydroxy-9,10-dihydrophenanthrene suppressed LPS-induced expression of inducible NO synthase (iNOS) inhibited phosphorylation of p38, JNK as well as mitogen-activated protein kinase (MAPK), and inhibitory kappa B-α (IκBα). This indicated that both compounds exert anti-inflammatory effects by inhibiting MAPKs and nuclear factor κB (NF-κB) pathways. PMID:24042064

  18. Anti-inflammatory, Analgesic and Antiulcer properties of Porphyra vietnamensis

    PubMed Central

    Bhatia, Saurabh; Sharma, Kiran; Sharma, Ajay; Nagpal, Kalpana; Bera, Tanmoy

    2015-01-01

    Objectives: Aim of the present work was to investigate the anti-inflammatory, analgesic and antiulcer effects of red seaweed Porphyra vietnamensis (P. vietnamenis). Materials and Methods: Aqueous (POR) and alcoholic (PE) fractions were successfully isolated from P. vietnamenis. Further biological investigations were performed using a classic test of paw edema induced by carrageenan, writhing induced by acetic acid, hot plate method and naproxen induced gastro-duodenal ulcer. Results: Among the fractions POR showed better activity. POR and PE significantly (p < 0.05) reduced carrageenan induced paw edema in a dose dependent manner. In the writhing test POR significantly (p < 0.05) reduced abdominal writhes than PE. In hot plate method POR showed better analgesic activity than PE. POR showed comparable ulcers reducing potential (p<0.01) to that of omeprazole, and has more ulcer reducing potential then PE. Conclusions: The results of this study demonstrated that P. vietnamenis aqueous fraction possesses biological activity that is close to the standards taken for the treatment o