Prediction model of sinoatrial node field potential using high order partial least squares.
Feng, Yu; Cao, Hui; Zhang, Yanbin
2015-01-01
High order partial least squares (HOPLS) is a novel data processing method. It is highly suitable for building prediction model which has tensor input and output. The objective of this study is to build a prediction model of the relationship between sinoatrial node field potential and high glucose using HOPLS. The three sub-signals of the sinoatrial node field potential made up the model's input. The concentration and the actuation duration of high glucose made up the model's output. The results showed that on the premise of predicting two dimensional variables, HOPLS had the same predictive ability and a lower dispersion degree compared with partial least squares (PLS).
Assessment of prediction skill in equatorial Pacific Ocean in high resolution model of CFS
NASA Astrophysics Data System (ADS)
Arora, Anika; Rao, Suryachandra A.; Pillai, Prasanth; Dhakate, Ashish; Salunke, Kiran; Srivastava, Ankur
2018-01-01
The effect of increasing atmospheric resolution on prediction skill of El Niño southern oscillation phenomenon in climate forecast system model is explored in this paper. Improvement in prediction skill for sea surface temperature (SST) and winds at all leads compared to low resolution model in the tropical Indo-Pacific basin is observed. High resolution model is able to capture extreme events reasonably well. As a result, the signal to noise ratio is improved in the high resolution model. However, spring predictability barrier (SPB) for summer months in Nino 3 and Nino 3.4 region is stronger in high resolution model, in spite of improvement in overall prediction skill and dynamics everywhere else. Anomaly correlation coefficient of SST in high resolution model with observations in Nino 3.4 region targeting boreal summer months when predicted at lead times of 3-8 months in advance decreased compared its lower resolution counterpart. It is noted that higher variance of winds predicted in spring season over central equatorial Pacific compared to observed variance of winds results in stronger than normal response on subsurface ocean, hence increases SPB for boreal summer months in high resolution model.
Prediction of high incidence of dengue in the Philippines.
Buczak, Anna L; Baugher, Benjamin; Babin, Steven M; Ramac-Thomas, Liane C; Guven, Erhan; Elbert, Yevgeniy; Koshute, Phillip T; Velasco, John Mark S; Roque, Vito G; Tayag, Enrique A; Yoon, In-Kyu; Lewis, Sheri H
2014-04-01
Accurate prediction of dengue incidence levels weeks in advance of an outbreak may reduce the morbidity and mortality associated with this neglected disease. Therefore, models were developed to predict high and low dengue incidence in order to provide timely forewarnings in the Philippines. Model inputs were chosen based on studies indicating variables that may impact dengue incidence. The method first uses Fuzzy Association Rule Mining techniques to extract association rules from these historical epidemiological, environmental, and socio-economic data, as well as climate data indicating future weather patterns. Selection criteria were used to choose a subset of these rules for a classifier, thereby generating a Prediction Model. The models predicted high or low incidence of dengue in a Philippines province four weeks in advance. The threshold between high and low was determined relative to historical incidence data. Model accuracy is described by Positive Predictive Value (PPV), Negative Predictive Value (NPV), Sensitivity, and Specificity computed on test data not previously used to develop the model. Selecting a model using the F0.5 measure, which gives PPV more importance than Sensitivity, gave these results: PPV = 0.780, NPV = 0.938, Sensitivity = 0.547, Specificity = 0.978. Using the F3 measure, which gives Sensitivity more importance than PPV, the selected model had PPV = 0.778, NPV = 0.948, Sensitivity = 0.627, Specificity = 0.974. The decision as to which model has greater utility depends on how the predictions will be used in a particular situation. This method builds prediction models for future dengue incidence in the Philippines and is capable of being modified for use in different situations; for diseases other than dengue; and for regions beyond the Philippines. The Philippines dengue prediction models predicted high or low incidence of dengue four weeks in advance of an outbreak with high accuracy, as measured by PPV, NPV, Sensitivity, and Specificity.
Prediction of High Incidence of Dengue in the Philippines
Buczak, Anna L.; Baugher, Benjamin; Babin, Steven M.; Ramac-Thomas, Liane C.; Guven, Erhan; Elbert, Yevgeniy; Koshute, Phillip T.; Velasco, John Mark S.; Roque, Vito G.; Tayag, Enrique A.; Yoon, In-Kyu; Lewis, Sheri H.
2014-01-01
Background Accurate prediction of dengue incidence levels weeks in advance of an outbreak may reduce the morbidity and mortality associated with this neglected disease. Therefore, models were developed to predict high and low dengue incidence in order to provide timely forewarnings in the Philippines. Methods Model inputs were chosen based on studies indicating variables that may impact dengue incidence. The method first uses Fuzzy Association Rule Mining techniques to extract association rules from these historical epidemiological, environmental, and socio-economic data, as well as climate data indicating future weather patterns. Selection criteria were used to choose a subset of these rules for a classifier, thereby generating a Prediction Model. The models predicted high or low incidence of dengue in a Philippines province four weeks in advance. The threshold between high and low was determined relative to historical incidence data. Principal Findings Model accuracy is described by Positive Predictive Value (PPV), Negative Predictive Value (NPV), Sensitivity, and Specificity computed on test data not previously used to develop the model. Selecting a model using the F0.5 measure, which gives PPV more importance than Sensitivity, gave these results: PPV = 0.780, NPV = 0.938, Sensitivity = 0.547, Specificity = 0.978. Using the F3 measure, which gives Sensitivity more importance than PPV, the selected model had PPV = 0.778, NPV = 0.948, Sensitivity = 0.627, Specificity = 0.974. The decision as to which model has greater utility depends on how the predictions will be used in a particular situation. Conclusions This method builds prediction models for future dengue incidence in the Philippines and is capable of being modified for use in different situations; for diseases other than dengue; and for regions beyond the Philippines. The Philippines dengue prediction models predicted high or low incidence of dengue four weeks in advance of an outbreak with high accuracy, as measured by PPV, NPV, Sensitivity, and Specificity. PMID:24722434
Roelen, Corné A M; Stapelfeldt, Christina M; Heymans, Martijn W; van Rhenen, Willem; Labriola, Merete; Nielsen, Claus V; Bültmann, Ute; Jensen, Chris
2015-06-01
To validate Dutch prognostic models including age, self-rated health and prior sickness absence (SA) for ability to predict high SA in Danish eldercare. The added value of work environment variables to the models' risk discrimination was also investigated. 2,562 municipal eldercare workers (95% women) participated in the Working in Eldercare Survey. Predictor variables were measured by questionnaire at baseline in 2005. Prognostic models were validated for predictions of high (≥30) SA days and high (≥3) SA episodes retrieved from employer records during 1-year follow-up. The accuracy of predictions was assessed by calibration graphs and the ability of the models to discriminate between high- and low-risk workers was investigated by ROC-analysis. The added value of work environment variables was measured with Integrated Discrimination Improvement (IDI). 1,930 workers had complete data for analysis. The models underestimated the risk of high SA in eldercare workers and the SA episodes model had to be re-calibrated to the Danish data. Discrimination was practically useful for the re-calibrated SA episodes model, but not the SA days model. Physical workload improved the SA days model (IDI = 0.40; 95% CI 0.19-0.60) and psychosocial work factors, particularly the quality of leadership (IDI = 0.70; 95% CI 053-0.86) improved the SA episodes model. The prognostic model predicting high SA days showed poor performance even after physical workload was added. The prognostic model predicting high SA episodes could be used to identify high-risk workers, especially when psychosocial work factors are added as predictor variables.
Hassanpour, Saeed; Langlotz, Curtis P
2016-01-01
Imaging utilization has significantly increased over the last two decades, and is only recently showing signs of moderating. To help healthcare providers identify patients at risk for high imaging utilization, we developed a prediction model to recognize high imaging utilizers based on their initial imaging reports. The prediction model uses a machine learning text classification framework. In this study, we used radiology reports from 18,384 patients with at least one abdomen computed tomography study in their imaging record at Stanford Health Care as the training set. We modeled the radiology reports in a vector space and trained a support vector machine classifier for this prediction task. We evaluated our model on a separate test set of 4791 patients. In addition to high prediction accuracy, in our method, we aimed at achieving high specificity to identify patients at high risk for high imaging utilization. Our results (accuracy: 94.0%, sensitivity: 74.4%, specificity: 97.9%, positive predictive value: 87.3%, negative predictive value: 95.1%) show that a prediction model can enable healthcare providers to identify in advance patients who are likely to be high utilizers of imaging services. Machine learning classifiers developed from narrative radiology reports are feasible methods to predict imaging utilization. Such systems can be used to identify high utilizers, inform future image ordering behavior, and encourage judicious use of imaging. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Prediction of beef carcass and meat traits from rearing factors in young bulls and cull cows.
Soulat, J; Picard, B; Léger, S; Monteils, V
2016-04-01
The aim of this study was to predict the beef carcass and LM (thoracis part) characteristics and the sensory properties of the LM from rearing factors applied during the fattening period. Individual data from 995 animals (688 young bulls and 307 cull cows) in 15 experiments were used to establish prediction models. The data concerned rearing factors (13 variables), carcass characteristics (5 variables), LM characteristics (2 variables), and LM sensory properties (3 variables). In this study, 8 prediction models were established: dressing percentage and the proportions of fat tissue and muscle in the carcass to characterize the beef carcass; cross-sectional area of fibers (mean fiber area) and isocitrate dehydrogenase activity to characterize the LM; and, finally, overall tenderness, juiciness, and flavor intensity scores to characterize the LM sensory properties. A random effect was considered in each model: the breed for the prediction models for the carcass and LM characteristics and the trained taste panel for the prediction of the meat sensory properties. To evaluate the quality of prediction models, 3 criteria were measured: robustness, accuracy, and precision. The model was robust when the root mean square errors of prediction of calibration and validation sub-data sets were near to one another. Except for the mean fiber area model, the obtained predicted models were robust. The prediction models were considered to have a high accuracy when the mean prediction error (MPE) was ≤0.10 and to have a high precision when the was the closest to 1. The prediction of the characteristics of the carcass from the rearing factors had a high precision ( > 0.70) and a high prediction accuracy (MPE < 0.10), except for the fat percentage model ( = 0.67, MPE = 0.16). However, the predictions of the LM characteristics and LM sensory properties from the rearing factors were not sufficiently precise ( < 0.50) and accurate (MPE > 0.10). Only the flavor intensity of the beef score could be satisfactorily predicted from the rearing factors with high precision ( = 0.72) and accuracy (MPE = 0.10). All the prediction models displayed different effects of the rearing factors according to animal categories (young bulls or cull cows). In consequence, these prediction models display the necessary adaption of rearing factors during the fattening period according to animal categories to optimize the carcass traits according to animal categories.
Beck, J D; Weintraub, J A; Disney, J A; Graves, R C; Stamm, J W; Kaste, L M; Bohannan, H M
1992-12-01
The purpose of this analysis is to compare three different statistical models for predicting children likely to be at risk of developing dental caries over a 3-yr period. Data are based on 4117 children who participated in the University of North Carolina Caries Risk Assessment Study, a longitudinal study conducted in the Aiken, South Carolina, and Portland, Maine areas. The three models differed with respect to either the types of variables included or the definition of disease outcome. The two "Prediction" models included both risk factor variables thought to cause dental caries and indicator variables that are associated with dental caries, but are not thought to be causal for the disease. The "Etiologic" model included only etiologic factors as variables. A dichotomous outcome measure--none or any 3-yr increment, was used in the "Any Risk Etiologic model" and the "Any Risk Prediction Model". Another outcome, based on a gradient measure of disease, was used in the "High Risk Prediction Model". The variables that are significant in these models vary across grades and sites, but are more consistent among the Etiologic model than the Predictor models. However, among the three sets of models, the Any Risk Prediction Models have the highest sensitivity and positive predictive values, whereas the High Risk Prediction Models have the highest specificity and negative predictive values. Considerations in determining model preference are discussed.
Gaussian functional regression for output prediction: Model assimilation and experimental design
NASA Astrophysics Data System (ADS)
Nguyen, N. C.; Peraire, J.
2016-03-01
In this paper, we introduce a Gaussian functional regression (GFR) technique that integrates multi-fidelity models with model reduction to efficiently predict the input-output relationship of a high-fidelity model. The GFR method combines the high-fidelity model with a low-fidelity model to provide an estimate of the output of the high-fidelity model in the form of a posterior distribution that can characterize uncertainty in the prediction. A reduced basis approximation is constructed upon the low-fidelity model and incorporated into the GFR method to yield an inexpensive posterior distribution of the output estimate. As this posterior distribution depends crucially on a set of training inputs at which the high-fidelity models are simulated, we develop a greedy sampling algorithm to select the training inputs. Our approach results in an output prediction model that inherits the fidelity of the high-fidelity model and has the computational complexity of the reduced basis approximation. Numerical results are presented to demonstrate the proposed approach.
Spatiotemporal Bayesian networks for malaria prediction.
Haddawy, Peter; Hasan, A H M Imrul; Kasantikul, Rangwan; Lawpoolsri, Saranath; Sa-Angchai, Patiwat; Kaewkungwal, Jaranit; Singhasivanon, Pratap
2018-01-01
Targeted intervention and resource allocation are essential for effective malaria control, particularly in remote areas, with predictive models providing important information for decision making. While a diversity of modeling technique have been used to create predictive models of malaria, no work has made use of Bayesian networks. Bayes nets are attractive due to their ability to represent uncertainty, model time lagged and nonlinear relations, and provide explanations. This paper explores the use of Bayesian networks to model malaria, demonstrating the approach by creating village level models with weekly temporal resolution for Tha Song Yang district in northern Thailand. The networks are learned using data on cases and environmental covariates. Three types of networks are explored: networks for numeric prediction, networks for outbreak prediction, and networks that incorporate spatial autocorrelation. Evaluation of the numeric prediction network shows that the Bayes net has prediction accuracy in terms of mean absolute error of about 1.4 cases for 1 week prediction and 1.7 cases for 6 week prediction. The network for outbreak prediction has an ROC AUC above 0.9 for all prediction horizons. Comparison of prediction accuracy of both Bayes nets against several traditional modeling approaches shows the Bayes nets to outperform the other models for longer time horizon prediction of high incidence transmission. To model spread of malaria over space, we elaborate the models with links between the village networks. This results in some very large models which would be far too laborious to build by hand. So we represent the models as collections of probability logic rules and automatically generate the networks. Evaluation of the models shows that the autocorrelation links significantly improve prediction accuracy for some villages in regions of high incidence. We conclude that spatiotemporal Bayesian networks are a highly promising modeling alternative for prediction of malaria and other vector-borne diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluating Rapid Models for High-Throughput Exposure Forecasting (SOT)
High throughput exposure screening models can provide quantitative predictions for thousands of chemicals; however these predictions must be systematically evaluated for predictive ability. Without the capability to make quantitative, albeit uncertain, forecasts of exposure, the ...
Poisson Mixture Regression Models for Heart Disease Prediction.
Mufudza, Chipo; Erol, Hamza
2016-01-01
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.
Poisson Mixture Regression Models for Heart Disease Prediction
Erol, Hamza
2016-01-01
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611
Li, Jin; Tran, Maggie; Siwabessy, Justy
2016-01-01
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia’s marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to ‘small p and large n’ problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models. PMID:26890307
Li, Jin; Tran, Maggie; Siwabessy, Justy
2016-01-01
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia's marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to 'small p and large n' problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models.
Bommert, Andrea; Rahnenführer, Jörg; Lang, Michel
2017-01-01
Finding a good predictive model for a high-dimensional data set can be challenging. For genetic data, it is not only important to find a model with high predictive accuracy, but it is also important that this model uses only few features and that the selection of these features is stable. This is because, in bioinformatics, the models are used not only for prediction but also for drawing biological conclusions which makes the interpretability and reliability of the model crucial. We suggest using three target criteria when fitting a predictive model to a high-dimensional data set: the classification accuracy, the stability of the feature selection, and the number of chosen features. As it is unclear which measure is best for evaluating the stability, we first compare a variety of stability measures. We conclude that the Pearson correlation has the best theoretical and empirical properties. Also, we find that for the stability assessment behaviour it is most important that a measure contains a correction for chance or large numbers of chosen features. Then, we analyse Pareto fronts and conclude that it is possible to find models with a stable selection of few features without losing much predictive accuracy.
Computation of turbulent rotating channel flow with an algebraic Reynolds stress model
NASA Technical Reports Server (NTRS)
Warfield, M. J.; Lakshminarayana, B.
1986-01-01
An Algebraic Reynolds Stress Model has been implemented to modify the Kolmogorov-Prandtl eddy viscosity relation to produce an anisotropic turbulence model. The eddy viscosity relation becomes a function of the local turbulent production to dissipation ratio and local turbulence/rotation parameters. The model is used to predict fully-developed rotating channel flow over a diverse range of rotation numbers. In addition, predictions are obtained for a developing channel flow with high rotation. The predictions are compared with the experimental data available. Good predictions are achieved for mean velocity and wall shear stress over most of the rotation speeds tested. There is some prediction breakdown at high rotation (rotation number greater than .10) where the effects of the rotation on turbulence become quite complex. At high rotation and low Reynolds number, the laminarization on the trailing side represents a complex effect of rotation which is difficult to predict with the described models.
Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula.
Nowosad, Jakub
2016-06-01
Corylus, Alnus, and Betula trees are among the most important sources of allergic pollen in the temperate zone of the Northern Hemisphere and have a large impact on the quality of life and productivity of allergy sufferers. Therefore, it is important to predict high pollen concentrations, both in time and space. The aim of this study was to create and evaluate spatiotemporal models for predicting high Corylus, Alnus, and Betula pollen concentration levels, based on gridded meteorological data. Aerobiological monitoring was carried out in 11 cities in Poland and gathered, depending on the site, between 2 and 16 years of measurements. According to the first allergy symptoms during exposure, a high pollen count level was established for each taxon. An optimizing probability threshold technique was used for mitigation of the problem of imbalance in the pollen concentration levels. For each taxon, the model was built using a random forest method. The study revealed the possibility of moderately reliable prediction of Corylus and highly reliable prediction of Alnus and Betula high pollen concentration levels, using preprocessed gridded meteorological data. Cumulative growing degree days and potential evaporation proved to be two of the most important predictor variables in the models. The final models predicted not only for single locations but also for continuous areas. Furthermore, the proposed modeling framework could be used to predict high pollen concentrations of Corylus, Alnus, Betula, and other taxa, and in other countries.
Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula
NASA Astrophysics Data System (ADS)
Nowosad, Jakub
2016-06-01
Corylus, Alnus, and Betula trees are among the most important sources of allergic pollen in the temperate zone of the Northern Hemisphere and have a large impact on the quality of life and productivity of allergy sufferers. Therefore, it is important to predict high pollen concentrations, both in time and space. The aim of this study was to create and evaluate spatiotemporal models for predicting high Corylus, Alnus, and Betula pollen concentration levels, based on gridded meteorological data. Aerobiological monitoring was carried out in 11 cities in Poland and gathered, depending on the site, between 2 and 16 years of measurements. According to the first allergy symptoms during exposure, a high pollen count level was established for each taxon. An optimizing probability threshold technique was used for mitigation of the problem of imbalance in the pollen concentration levels. For each taxon, the model was built using a random forest method. The study revealed the possibility of moderately reliable prediction of Corylus and highly reliable prediction of Alnus and Betula high pollen concentration levels, using preprocessed gridded meteorological data. Cumulative growing degree days and potential evaporation proved to be two of the most important predictor variables in the models. The final models predicted not only for single locations but also for continuous areas. Furthermore, the proposed modeling framework could be used to predict high pollen concentrations of Corylus, Alnus, Betula, and other taxa, and in other countries.
Fuzzy association rule mining and classification for the prediction of malaria in South Korea.
Buczak, Anna L; Baugher, Benjamin; Guven, Erhan; Ramac-Thomas, Liane C; Elbert, Yevgeniy; Babin, Steven M; Lewis, Sheri H
2015-06-18
Malaria is the world's most prevalent vector-borne disease. Accurate prediction of malaria outbreaks may lead to public health interventions that mitigate disease morbidity and mortality. We describe an application of a method for creating prediction models utilizing Fuzzy Association Rule Mining to extract relationships between epidemiological, meteorological, climatic, and socio-economic data from Korea. These relationships are in the form of rules, from which the best set of rules is automatically chosen and forms a classifier. Two classifiers have been built and their results fused to become a malaria prediction model. Future malaria cases are predicted as Low, Medium or High, where these classes are defined as a total of 0-2, 3-16, and above 17 cases, respectively, for a region in South Korea during a two-week period. Based on user recommendations, HIGH is considered an outbreak. Model accuracy is described by Positive Predictive Value (PPV), Sensitivity, and F-score for each class, computed on test data not previously used to develop the model. For predictions made 7-8 weeks in advance, model PPV and Sensitivity are 0.842 and 0.681, respectively, for the HIGH classes. The F0.5 and F3 scores (which combine PPV and Sensitivity) are 0.804 and 0.694, respectively, for the HIGH classes. The overall FARM results (as measured by F-scores) are significantly better than those obtained by Decision Tree, Random Forest, Support Vector Machine, and Holt-Winters methods for the HIGH class. For the Medium class, Random Forest and FARM obtain comparable results, with FARM being better at F0.5, and Random Forest obtaining a higher F3. A previously described method for creating disease prediction models has been modified and extended to build models for predicting malaria. In addition, some new input variables were used, including indicators of intervention measures. The South Korea malaria prediction models predict Low, Medium or High cases 7-8 weeks in the future. This paper demonstrates that our data driven approach can be used for the prediction of different diseases.
Emerging approaches in predictive toxicology.
Zhang, Luoping; McHale, Cliona M; Greene, Nigel; Snyder, Ronald D; Rich, Ivan N; Aardema, Marilyn J; Roy, Shambhu; Pfuhler, Stefan; Venkatactahalam, Sundaresan
2014-12-01
Predictive toxicology plays an important role in the assessment of toxicity of chemicals and the drug development process. While there are several well-established in vitro and in vivo assays that are suitable for predictive toxicology, recent advances in high-throughput analytical technologies and model systems are expected to have a major impact on the field of predictive toxicology. This commentary provides an overview of the state of the current science and a brief discussion on future perspectives for the field of predictive toxicology for human toxicity. Computational models for predictive toxicology, needs for further refinement and obstacles to expand computational models to include additional classes of chemical compounds are highlighted. Functional and comparative genomics approaches in predictive toxicology are discussed with an emphasis on successful utilization of recently developed model systems for high-throughput analysis. The advantages of three-dimensional model systems and stem cells and their use in predictive toxicology testing are also described. © 2014 Wiley Periodicals, Inc.
Emerging Approaches in Predictive Toxicology
Zhang, Luoping; McHale, Cliona M.; Greene, Nigel; Snyder, Ronald D.; Rich, Ivan N.; Aardema, Marilyn J.; Roy, Shambhu; Pfuhler, Stefan; Venkatactahalam, Sundaresan
2016-01-01
Predictive toxicology plays an important role in the assessment of toxicity of chemicals and the drug development process. While there are several well-established in vitro and in vivo assays that are suitable for predictive toxicology, recent advances in high-throughput analytical technologies and model systems are expected to have a major impact on the field of predictive toxicology. This commentary provides an overview of the state of the current science and a brief discussion on future perspectives for the field of predictive toxicology for human toxicity. Computational models for predictive toxicology, needs for further refinement and obstacles to expand computational models to include additional classes of chemical compounds are highlighted. Functional and comparative genomics approaches in predictive toxicology are discussed with an emphasis on successful utilization of recently developed model systems for high-throughput analysis. The advantages of three-dimensional model systems and stem cells and their use in predictive toxicology testing are also described. PMID:25044351
High accuracy satellite drag model (HASDM)
NASA Astrophysics Data System (ADS)
Storz, M.; Bowman, B.; Branson, J.
The dominant error source in the force models used to predict low perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying high-resolution density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal, semidiurnal and terdiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index a p to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low perigee satellites.
Compound Structure-Independent Activity Prediction in High-Dimensional Target Space.
Balfer, Jenny; Hu, Ye; Bajorath, Jürgen
2014-08-01
Profiling of compound libraries against arrays of targets has become an important approach in pharmaceutical research. The prediction of multi-target compound activities also represents an attractive task for machine learning with potential for drug discovery applications. Herein, we have explored activity prediction in high-dimensional target space. Different types of models were derived to predict multi-target activities. The models included naïve Bayesian (NB) and support vector machine (SVM) classifiers based upon compound structure information and NB models derived on the basis of activity profiles, without considering compound structure. Because the latter approach can be applied to incomplete training data and principally depends on the feature independence assumption, SVM modeling was not applicable in this case. Furthermore, iterative hybrid NB models making use of both activity profiles and compound structure information were built. In high-dimensional target space, NB models utilizing activity profile data were found to yield more accurate activity predictions than structure-based NB and SVM models or hybrid models. An in-depth analysis of activity profile-based models revealed the presence of correlation effects across different targets and rationalized prediction accuracy. Taken together, the results indicate that activity profile information can be effectively used to predict the activity of test compounds against novel targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Prediction of PM2.5 along urban highway corridor under mixed traffic conditions using CALINE4 model.
Dhyani, Rajni; Sharma, Niraj; Maity, Animesh Kumar
2017-08-01
The present study deals with spatial-temporal distribution of PM 2.5 along a highly trafficked national highway corridor (NH-2) in Delhi, India. Population residing in areas near roads and highways of high vehicular activities are exposed to high levels of PM 2.5 resulting in various health issues. The spatial extent of PM 2.5 has been assessed with the help of CALINE4 model. Various input parameters of the model were estimated and used to predict PM 2.5 concentration along the selected highway corridor. The results indicated that there are many factors involved which affects the prediction of PM 2.5 concentration by CALINE4 model. In fact, these factors either not considered by model or have little influence on model's prediction capabilities. Therefore, in the present study CALINE4 model performance was observed to be unsatisfactory for prediction of PM 2.5 concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ye, Min; Nagar, Swati; Korzekwa, Ken
2015-01-01
Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057
ERIC Educational Resources Information Center
Huang, Shaobo; Fang, Ning
2013-01-01
Predicting student academic performance has long been an important research topic in many academic disciplines. The present study is the first study that develops and compares four types of mathematical models to predict student academic performance in engineering dynamics--a high-enrollment, high-impact, and core course that many engineering…
Machine Learning Predictions of a Multiresolution Climate Model Ensemble
NASA Astrophysics Data System (ADS)
Anderson, Gemma J.; Lucas, Donald D.
2018-05-01
Statistical models of high-resolution climate models are useful for many purposes, including sensitivity and uncertainty analyses, but building them can be computationally prohibitive. We generated a unique multiresolution perturbed parameter ensemble of a global climate model. We use a novel application of a machine learning technique known as random forests to train a statistical model on the ensemble to make high-resolution model predictions of two important quantities: global mean top-of-atmosphere energy flux and precipitation. The random forests leverage cheaper low-resolution simulations, greatly reducing the number of high-resolution simulations required to train the statistical model. We demonstrate that high-resolution predictions of these quantities can be obtained by training on an ensemble that includes only a small number of high-resolution simulations. We also find that global annually averaged precipitation is more sensitive to resolution changes than to any of the model parameters considered.
2011-01-01
Background Genetic risk models could potentially be useful in identifying high-risk groups for the prevention of complex diseases. We investigated the performance of this risk stratification strategy by examining epidemiological parameters that impact the predictive ability of risk models. Methods We assessed sensitivity, specificity, and positive and negative predictive value for all possible risk thresholds that can define high-risk groups and investigated how these measures depend on the frequency of disease in the population, the frequency of the high-risk group, and the discriminative accuracy of the risk model, as assessed by the area under the receiver-operating characteristic curve (AUC). In a simulation study, we modeled genetic risk scores of 50 genes with equal odds ratios and genotype frequencies, and varied the odds ratios and the disease frequency across scenarios. We also performed a simulation of age-related macular degeneration risk prediction based on published odds ratios and frequencies for six genetic risk variants. Results We show that when the frequency of the high-risk group was lower than the disease frequency, positive predictive value increased with the AUC but sensitivity remained low. When the frequency of the high-risk group was higher than the disease frequency, sensitivity was high but positive predictive value remained low. When both frequencies were equal, both positive predictive value and sensitivity increased with increasing AUC, but higher AUC was needed to maximize both measures. Conclusions The performance of risk stratification is strongly determined by the frequency of the high-risk group relative to the frequency of disease in the population. The identification of high-risk groups with appreciable combinations of sensitivity and positive predictive value requires higher AUC. PMID:21797996
Predictive modeling and reducing cyclic variability in autoignition engines
Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob
2016-08-30
Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.
NASA Astrophysics Data System (ADS)
Wang, Haitao; Zhang, Yun; Huang, Zhigao; Tang, Zhongbin; Wang, Yanpei; Zhou, Huamin
2017-10-01
The objective of this paper is to accurately predict the rate/temperature-dependent deformation of a polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) blend at low, moderate, and high strain rates for various temperatures. Four constitutive models have been employed to predict stress-strain responses of PC/ABS under these conditions, including the DSGZ model, the original Mulliken-Boyce (M-B) model, the modified M-B model, and an adiabatic model named the Wang model. To more accurately capture the large deformation of PC/ABS under the high strain rate loading, the original M-B model is modified by allowing for the evolution of the internal shear strength. All of the four constitutive models above have been implemented in the finite element software ABAQUS/Explicit. A comparison of prediction accuracies of the four constitutive models over a wide range of strain rates and temperatures has been presented. The modified M-B model is observed to be more accurate in predicting the deformation of PC/ABS at high strain rates for various temperatures than the original M-B model, and the Wang model is demonstrated to be the most accurate in simulating the deformation of PC/ABS at low, moderate, and high strain rates for various temperatures.
NASA Technical Reports Server (NTRS)
Carlson, L. A.; Horn, W. J.
1981-01-01
A computer model for the prediction of the trajectory and thermal behavior of zero-pressure high altitude balloon was developed. In accord with flight data, the model permits radiative emission and absorption of the lifting gas and daytime gas temperatures above that of the balloon film. It also includes ballasting, venting, and valving. Predictions obtained with the model are compared with flight data from several flights and newly discovered features are discussed.
Quantitative Structure – Property Relationship Modeling of Remote Liposome Loading Of Drugs
Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram
2012-01-01
Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a dataset including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and five-fold external validation. The external prediction accuracy for binary models was as high as 91–96%; for continuous models the mean coefficient R2 for regression between predicted versus observed values was 0.76–0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. PMID:22154932
Ye, Min; Nagar, Swati; Korzekwa, Ken
2016-04-01
Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data were often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding and the blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate the model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for the terminal elimination half-life (t1/2 , 100% of drugs), peak plasma concentration (Cmax , 100%), area under the plasma concentration-time curve (AUC0-t , 95.4%), clearance (CLh , 95.4%), mean residence time (MRT, 95.4%) and steady state volume (Vss , 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Tian, Yingtao; Robson, Joseph D.; Riekehr, Stefan; Kashaev, Nikolai; Wang, Li; Lowe, Tristan; Karanika, Alexandra
2016-07-01
Laser welding of advanced Al-Li alloys has been developed to meet the increasing demand for light-weight and high-strength aerospace structures. However, welding of high-strength Al-Li alloys can be problematic due to the tendency for hot cracking. Finding suitable welding parameters and filler material for this combination currently requires extensive and costly trial and error experimentation. The present work describes a novel coupled model to predict hot crack susceptibility (HCS) in Al-Li welds. Such a model can be used to shortcut the weld development process. The coupled model combines finite element process simulation with a two-level HCS model. The finite element process model predicts thermal field data for the subsequent HCS hot cracking prediction. The model can be used to predict the influences of filler wire composition and welding parameters on HCS. The modeling results have been validated by comparing predictions with results from fully instrumented laser welds performed under a range of process parameters and analyzed using high-resolution X-ray tomography to identify weld defects. It is shown that the model is capable of accurately predicting the thermal field around the weld and the trend of HCS as a function of process parameters.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Moges, Semu; Block, Paul
2018-01-01
Prediction of seasonal precipitation can provide actionable information to guide management of various sectoral activities. For instance, it is often translated into hydrological forecasts for better water resources management. However, many studies assume homogeneity in precipitation across an entire study region, which may prove ineffective for operational and local-level decisions, particularly for locations with high spatial variability. This study proposes advancing local-level seasonal precipitation predictions by first conditioning on regional-level predictions, as defined through objective cluster analysis, for western Ethiopia. To our knowledge, this is the first study predicting seasonal precipitation at high resolution in this region, where lives and livelihoods are vulnerable to precipitation variability given the high reliance on rain-fed agriculture and limited water resources infrastructure. The combination of objective cluster analysis, spatially high-resolution prediction of seasonal precipitation, and a modeling structure spanning statistical and dynamical approaches makes clear advances in prediction skill and resolution, as compared with previous studies. The statistical model improves versus the non-clustered case or dynamical models for a number of specific clusters in northwestern Ethiopia, with clusters having regional average correlation and ranked probability skill score (RPSS) values of up to 0.5 and 33 %, respectively. The general skill (after bias correction) of the two best-performing dynamical models over the entire study region is superior to that of the statistical models, although the dynamical models issue predictions at a lower resolution and the raw predictions require bias correction to guarantee comparable skills.
Bettina Ohse; Falk Huettmann; Stefanie M. Ickert-Bond; Glenn P. Juday
2009-01-01
Most wilderness areas still lack accurate distribution information on tree species. We met this need with a predictive GIS modeling approach, using freely available digital data and computer programs to efficiently obtain high-quality species distribution maps. Here we present a digital map with the predicted distribution of white spruce (Picea glauca...
NASA Astrophysics Data System (ADS)
Keating, Elizabeth H.; Doherty, John; Vrugt, Jasper A.; Kang, Qinjun
2010-10-01
Highly parameterized and CPU-intensive groundwater models are increasingly being used to understand and predict flow and transport through aquifers. Despite their frequent use, these models pose significant challenges for parameter estimation and predictive uncertainty analysis algorithms, particularly global methods which usually require very large numbers of forward runs. Here we present a general methodology for parameter estimation and uncertainty analysis that can be utilized in these situations. Our proposed method includes extraction of a surrogate model that mimics key characteristics of a full process model, followed by testing and implementation of a pragmatic uncertainty analysis technique, called null-space Monte Carlo (NSMC), that merges the strengths of gradient-based search and parameter dimensionality reduction. As part of the surrogate model analysis, the results of NSMC are compared with a formal Bayesian approach using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. Such a comparison has never been accomplished before, especially in the context of high parameter dimensionality. Despite the highly nonlinear nature of the inverse problem, the existence of multiple local minima, and the relatively large parameter dimensionality, both methods performed well and results compare favorably with each other. Experiences gained from the surrogate model analysis are then transferred to calibrate the full highly parameterized and CPU intensive groundwater model and to explore predictive uncertainty of predictions made by that model. The methodology presented here is generally applicable to any highly parameterized and CPU-intensive environmental model, where efficient methods such as NSMC provide the only practical means for conducting predictive uncertainty analysis.
Predictive modelling of JT-60SA high-beta steady-state plasma with impurity accumulation
NASA Astrophysics Data System (ADS)
Hayashi, N.; Hoshino, K.; Honda, M.; Ide, S.
2018-06-01
The integrated modelling code TOPICS has been extended to include core impurity transport, and applied to predictive modelling of JT-60SA high-beta steady-state plasma with the accumulation of impurity seeded to reduce the divertor heat load. In the modelling, models and conditions are selected for a conservative prediction, which considers a lower bound of plasma performance with the maximum accumulation of impurity. The conservative prediction shows the compatibility of impurity seeding with core plasma with high-beta (β N > 3.5) and full current drive conditions, i.e. when Ar seeding reduces the divertor heat load below 10 MW m‑2, its accumulation in the core is so moderate that the core plasma performance can be recovered by additional heating within the machine capability to compensate for Ar radiation. Due to the strong dependence of accumulation on the pedestal density gradient, high separatrix density is important for the low accumulation as well as the low divertor heat load. The conservative prediction also shows that JT-60SA has enough capability to explore the divertor heat load control by impurity seeding in high-beta steady-state plasmas.
Green, Jasmine; Liem, Gregory Arief D; Martin, Andrew J; Colmar, Susan; Marsh, Herbert W; McInerney, Dennis
2012-10-01
The study tested three theoretically/conceptually hypothesized longitudinal models of academic processes leading to academic performance. Based on a longitudinal sample of 1866 high-school students across two consecutive years of high school (Time 1 and Time 2), the model with the most superior heuristic value demonstrated: (a) academic motivation and self-concept positively predicted attitudes toward school; (b) attitudes toward school positively predicted class participation and homework completion and negatively predicted absenteeism; and (c) class participation and homework completion positively predicted test performance whilst absenteeism negatively predicted test performance. Taken together, these findings provide support for the relevance of the self-system model and, particularly, the importance of examining the dynamic relationships amongst engagement factors of the model. The study highlights implications for educational and psychological theory, measurement, and intervention. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Emura, Takeshi; Nakatochi, Masahiro; Matsui, Shigeyuki; Michimae, Hirofumi; Rondeau, Virginie
2017-01-01
Developing a personalized risk prediction model of death is fundamental for improving patient care and touches on the realm of personalized medicine. The increasing availability of genomic information and large-scale meta-analytic data sets for clinicians has motivated the extension of traditional survival prediction based on the Cox proportional hazards model. The aim of our paper is to develop a personalized risk prediction formula for death according to genetic factors and dynamic tumour progression status based on meta-analytic data. To this end, we extend the existing joint frailty-copula model to a model allowing for high-dimensional genetic factors. In addition, we propose a dynamic prediction formula to predict death given tumour progression events possibly occurring after treatment or surgery. For clinical use, we implement the computation software of the prediction formula in the joint.Cox R package. We also develop a tool to validate the performance of the prediction formula by assessing the prediction error. We illustrate the method with the meta-analysis of individual patient data on ovarian cancer patients.
Kerckhoffs, Jules; Hoek, Gerard; Vlaanderen, Jelle; van Nunen, Erik; Messier, Kyle; Brunekreef, Bert; Gulliver, John; Vermeulen, Roel
2017-11-01
Land-use regression (LUR) models for ultrafine particles (UFP) and Black Carbon (BC) in urban areas have been developed using short-term stationary monitoring or mobile platforms in order to capture the high variability of these pollutants. However, little is known about the comparability of predictions of mobile and short-term stationary models and especially the validity of these models for assessing residential exposures and the robustness of model predictions developed in different campaigns. We used an electric car to collect mobile measurements (n = 5236 unique road segments) and short-term stationary measurements (3 × 30min, n = 240) of UFP and BC in three Dutch cities (Amsterdam, Utrecht, Maastricht) in 2014-2015. Predictions of LUR models based on mobile measurements were compared to (i) measured concentrations at the short-term stationary sites, (ii) LUR model predictions based on short-term stationary measurements at 1500 random addresses in the three cities, (iii) externally obtained home outdoor measurements (3 × 24h samples; n = 42) and (iv) predictions of a LUR model developed based upon a 2013 mobile campaign in two cities (Amsterdam, Rotterdam). Despite the poor model R 2 of 15%, the ability of mobile UFP models to predict measurements with longer averaging time increased substantially from 36% for short-term stationary measurements to 57% for home outdoor measurements. In contrast, the mobile BC model only predicted 14% of the variation in the short-term stationary sites and also 14% of the home outdoor sites. Models based upon mobile and short-term stationary monitoring provided fairly high correlated predictions of UFP concentrations at 1500 randomly selected addresses in the three Dutch cities (R 2 = 0.64). We found higher UFP predictions (of about 30%) based on mobile models opposed to short-term model predictions and home outdoor measurements with no clear geospatial patterns. The mobile model for UFP was stable over different settings as the model predicted concentration levels highly correlated to predictions made by a previously developed LUR model with another spatial extent and in a different year at the 1500 random addresses (R 2 = 0.80). In conclusion, mobile monitoring provided robust LUR models for UFP, valid to use in epidemiological studies. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Niedzielski, Tomasz; Mizinski, Bartlomiej
2016-04-01
The HydroProg system has been elaborated in frame of the research project no. 2011/01/D/ST10/04171 of the National Science Centre of Poland and is steadily producing multimodel ensemble predictions of hydrograph in real time. Although there are six ensemble members available at present, the longest record of predictions and their statistics is available for two data-based models (uni- and multivariate autoregressive models). Thus, we consider 3-hour predictions of water levels, with lead times ranging from 15 to 180 minutes, computed every 15 minutes since August 2013 for the Nysa Klodzka basin (SW Poland) using the two approaches and their two-model ensemble. Since the launch of the HydroProg system there have been 12 high flow episodes, and the objective of this work is to present the performance of the two-model ensemble in the process of forecasting these events. For a sake of brevity, we limit our investigation to a single gauge located at the Nysa Klodzka river in the town of Klodzko, which is centrally located in the studied basin. We identified certain regular scenarios of how the models perform in predicting the high flows in Klodzko. At the initial phase of the high flow, well before the rising limb of hydrograph, the two-model ensemble is found to provide the most skilful prognoses of water levels. However, while forecasting the rising limb of hydrograph, either the two-model solution or the vector autoregressive model offers the best predictive performance. In addition, it is hypothesized that along with the development of the rising limb phase, the vector autoregression becomes the most skilful approach amongst the scrutinized ones. Our simple two-model exercise confirms that multimodel hydrologic ensemble predictions cannot be treated as universal solutions suitable for forecasting the entire high flow event, but their superior performance may hold only for certain phases of a high flow.
Romañach, Stephanie; Watling, James I.; Fletcher, Robert J.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.
2014-01-01
Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.
Some predictions of the attached eddy model for a high Reynolds number boundary layer.
Nickels, T B; Marusic, I; Hafez, S; Hutchins, N; Chong, M S
2007-03-15
Many flows of practical interest occur at high Reynolds number, at which the flow in most of the boundary layer is turbulent, showing apparently random fluctuations in velocity across a wide range of scales. The range of scales over which these fluctuations occur increases with the Reynolds number and hence high Reynolds number flows are difficult to compute or predict. In this paper, we discuss the structure of these flows and describe a physical model, based on the attached eddy hypothesis, which makes predictions for the statistical properties of these flows and their variation with Reynolds number. The predictions are shown to compare well with the results from recent experiments in a new purpose-built high Reynolds number facility. The model is also shown to provide a clear physical explanation for the trends in the data. The limits of applicability of the model are also discussed.
Recent advances in hypersonic technology
NASA Technical Reports Server (NTRS)
Dwoyer, Douglas L.
1990-01-01
This paper will focus on recent advances in hypersonic aerodynamic prediction techniques. Current capabilities of existing numerical methods for predicting high Mach number flows will be discussed and shortcomings will be identified. Physical models available for inclusion into modern codes for predicting the effects of transition and turbulence will also be outlined and their limitations identified. Chemical reaction models appropriate to high-speed flows will be addressed, and the impact of their inclusion in computational fluid dynamics codes will be discussed. Finally, the problem of validating predictive techniques for high Mach number flows will be addressed.
In silico modeling to predict drug-induced phospholipidosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Sydney S.; Kim, Jae S.; Valerio, Luis G., E-mail: luis.valerio@fda.hhs.gov
2013-06-01
Drug-induced phospholipidosis (DIPL) is a preclinical finding during pharmaceutical drug development that has implications on the course of drug development and regulatory safety review. A principal characteristic of drugs inducing DIPL is known to be a cationic amphiphilic structure. This provides evidence for a structure-based explanation and opportunity to analyze properties and structures of drugs with the histopathologic findings for DIPL. In previous work from the FDA, in silico quantitative structure–activity relationship (QSAR) modeling using machine learning approaches has shown promise with a large dataset of drugs but included unconfirmed data as well. In this study, we report the constructionmore » and validation of a battery of complementary in silico QSAR models using the FDA's updated database on phospholipidosis, new algorithms and predictive technologies, and in particular, we address high performance with a high-confidence dataset. The results of our modeling for DIPL include rigorous external validation tests showing 80–81% concordance. Furthermore, the predictive performance characteristics include models with high sensitivity and specificity, in most cases above ≥ 80% leading to desired high negative and positive predictivity. These models are intended to be utilized for regulatory toxicology applied science needs in screening new drugs for DIPL. - Highlights: • New in silico models for predicting drug-induced phospholipidosis (DIPL) are described. • The training set data in the models is derived from the FDA's phospholipidosis database. • We find excellent predictivity values of the models based on external validation. • The models can support drug screening and regulatory decision-making on DIPL.« less
Prediction of air temperature for thermal comfort of people using sleeping bags: a review
NASA Astrophysics Data System (ADS)
Huang, Jianhua
2008-11-01
Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.
Prediction of air temperature for thermal comfort of people using sleeping bags: a review.
Huang, Jianhua
2008-11-01
Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.
United3D: a protein model quality assessment program that uses two consensus based methods.
Terashi, Genki; Oosawa, Makoto; Nakamura, Yuuki; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko
2012-01-01
In protein structure prediction, such as template-based modeling and free modeling (ab initio modeling), the step that assesses the quality of protein models is very important. We have developed a model quality assessment (QA) program United3D that uses an optimized clustering method and a simple Cα atom contact-based potential. United3D automatically estimates the quality scores (Qscore) of predicted protein models that are highly correlated with the actual quality (GDT_TS). The performance of United3D was tested in the ninth Critical Assessment of protein Structure Prediction (CASP9) experiment. In CASP9, United3D showed the lowest average loss of GDT_TS (5.3) among the QA methods participated in CASP9. This result indicates that the performance of United3D to identify the high quality models from the models predicted by CASP9 servers on 116 targets was best among the QA methods that were tested in CASP9. United3D also produced high average Pearson correlation coefficients (0.93) and acceptable Kendall rank correlation coefficients (0.68) between the Qscore and GDT_TS. This performance was competitive with the other top ranked QA methods that were tested in CASP9. These results indicate that United3D is a useful tool for selecting high quality models from many candidate model structures provided by various modeling methods. United3D will improve the accuracy of protein structure prediction.
NASA Astrophysics Data System (ADS)
Sanders, B. F.; Gallegos, H. A.; Schubert, J. E.
2011-12-01
The Baldwin Hills dam-break flood and associated structural damage is investigated in this study. The flood caused high velocity flows exceeding 5 m/s which destroyed 41 wood-framed residential structures, 16 of which were completed washed out. Damage is predicted by coupling a calibrated hydrodynamic flood model based on the shallow-water equations to structural damage models. The hydrodynamic and damage models are two-way coupled so building failure is predicted upon exceedance of a hydraulic intensity parameter, which in turn triggers a localized reduction in flow resistance which affects flood intensity predictions. Several established damage models and damage correlations reported in the literature are tested to evaluate the predictive skill for two damage states defined by destruction (Level 2) and washout (Level 3). Results show that high-velocity structural damage can be predicted with a remarkable level of skill using established damage models, but only with two-way coupling of the hydrodynamic and damage models. In contrast, when structural failure predictions have no influence on flow predictions, there is a significant reduction in predictive skill. Force-based damage models compare well with a subset of the damage models which were devised for similar types of structures. Implications for emergency planning and preparedness as well as monetary damage estimation are discussed.
Fine-scale habitat modeling of a top marine predator: do prey data improve predictive capacity?
Torres, Leigh G; Read, Andrew J; Halpin, Patrick
2008-10-01
Predators and prey assort themselves relative to each other, the availability of resources and refuges, and the temporal and spatial scale of their interaction. Predictive models of predator distributions often rely on these relationships by incorporating data on environmental variability and prey availability to determine predator habitat selection patterns. This approach to predictive modeling holds true in marine systems where observations of predators are logistically difficult, emphasizing the need for accurate models. In this paper, we ask whether including prey distribution data in fine-scale predictive models of bottlenose dolphin (Tursiops truncatus) habitat selection in Florida Bay, Florida, U.S.A., improves predictive capacity. Environmental characteristics are often used as predictor variables in habitat models of top marine predators with the assumption that they act as proxies of prey distribution. We examine the validity of this assumption by comparing the response of dolphin distribution and fish catch rates to the same environmental variables. Next, the predictive capacities of four models, with and without prey distribution data, are tested to determine whether dolphin habitat selection can be predicted without recourse to describing the distribution of their prey. The final analysis determines the accuracy of predictive maps of dolphin distribution produced by modeling areas of high fish catch based on significant environmental characteristics. We use spatial analysis and independent data sets to train and test the models. Our results indicate that, due to high habitat heterogeneity and the spatial variability of prey patches, fine-scale models of dolphin habitat selection in coastal habitats will be more successful if environmental variables are used as predictor variables of predator distributions rather than relying on prey data as explanatory variables. However, predictive modeling of prey distribution as the response variable based on environmental variability did produce high predictive performance of dolphin habitat selection, particularly foraging habitat.
Lin, Yai-Tin; Kalhan, Ashish Chetan; Lin, Yng-Tzer Joseph; Kalhan, Tosha Ashish; Chou, Chein-Chin; Gao, Xiao Li; Hsu, Chin-Ying Stephen
2018-05-08
Oral rehabilitation under general anaesthesia (GA), commonly employed to treat high caries-risk children, has been associated with high economic and individual/family burden, besides high post-GA caries recurrence rates. As there is no caries prediction model available for paediatric GA patients, this study was performed to build caries risk assessment/prediction models using pre-GA data and to explore mid-term prognostic factors for early identification of high-risk children prone to caries relapse post-GA oral rehabilitation. Ninety-two children were identified and recruited with parental consent before oral rehabilitation under GA. Biopsychosocial data collection at baseline and the 6-month follow-up were conducted using questionnaire (Q), microbiological assessment (M) and clinical examination (C). The prediction models constructed using data collected from Q, Q + M and Q + M + C demonstrated an accuracy of 72%, 78% and 82%, respectively. Furthermore, of the 83 (90.2%) patients recalled 6 months after GA intervention, recurrent caries was identified in 54.2%, together with reduced bacterial counts, lower plaque index and increased percentage of children toothbrushing for themselves (all P < 0.05). Additionally, meal-time and toothbrushing duration were shown, through bivariate analyses, to be significant prognostic determinants for caries recurrence (both P < 0.05). Risk assessment/prediction models built using pre-GA data may be promising in identifying high-risk children prone to post-GA caries recurrence, although future internal and external validation of predictive models is warranted. © 2018 FDI World Dental Federation.
Whittle, Rebecca; Peat, George; Belcher, John; Collins, Gary S; Riley, Richard D
2018-05-18
Measurement error in predictor variables may threaten the validity of clinical prediction models. We sought to evaluate the possible extent of the problem. A secondary objective was to examine whether predictors are measured at the intended moment of model use. A systematic search of Medline was used to identify a sample of articles reporting the development of a clinical prediction model published in 2015. After screening according to a predefined inclusion criteria, information on predictors, strategies to control for measurement error and intended moment of model use were extracted. Susceptibility to measurement error for each predictor was classified into low and high risk. Thirty-three studies were reviewed, including 151 different predictors in the final prediction models. Fifty-one (33.7%) predictors were categorised as high risk of error, however this was not accounted for in the model development. Only 8 (24.2%) studies explicitly stated the intended moment of model use and when the predictors were measured. Reporting of measurement error and intended moment of model use is poor in prediction model studies. There is a need to identify circumstances where ignoring measurement error in prediction models is consequential and whether accounting for the error will improve the predictions. Copyright © 2018. Published by Elsevier Inc.
Component-based model to predict aerodynamic noise from high-speed train pantographs
NASA Astrophysics Data System (ADS)
Latorre Iglesias, E.; Thompson, D. J.; Smith, M. G.
2017-04-01
At typical speeds of modern high-speed trains the aerodynamic noise produced by the airflow over the pantograph is a significant source of noise. Although numerical models can be used to predict this they are still very computationally intensive. A semi-empirical component-based prediction model is proposed to predict the aerodynamic noise from train pantographs. The pantograph is approximated as an assembly of cylinders and bars with particular cross-sections. An empirical database is used to obtain the coefficients of the model to account for various factors: incident flow speed, diameter, cross-sectional shape, yaw angle, rounded edges, length-to-width ratio, incoming turbulence and directivity. The overall noise from the pantograph is obtained as the incoherent sum of the predicted noise from the different pantograph struts. The model is validated using available wind tunnel noise measurements of two full-size pantographs. The results show the potential of the semi-empirical model to be used as a rapid tool to predict aerodynamic noise from train pantographs.
Schmitt, John; Beller, Justin; Russell, Brian; Quach, Anthony; Hermann, Elizabeth; Lyon, David; Breit, Jeffrey
2017-01-01
As the biopharmaceutical industry evolves to include more diverse protein formats and processes, more robust control of Critical Quality Attributes (CQAs) is needed to maintain processing flexibility without compromising quality. Active control of CQAs has been demonstrated using model predictive control techniques, which allow development of processes which are robust against disturbances associated with raw material variability and other potentially flexible operating conditions. Wide adoption of model predictive control in biopharmaceutical cell culture processes has been hampered, however, in part due to the large amount of data and expertise required to make a predictive model of controlled CQAs, a requirement for model predictive control. Here we developed a highly automated, perfusion apparatus to systematically and efficiently generate predictive models using application of system identification approaches. We successfully created a predictive model of %galactosylation using data obtained by manipulating galactose concentration in the perfusion apparatus in serialized step change experiments. We then demonstrated the use of the model in a model predictive controller in a simulated control scenario to successfully achieve a %galactosylation set point in a simulated fed‐batch culture. The automated model identification approach demonstrated here can potentially be generalized to many CQAs, and could be a more efficient, faster, and highly automated alternative to batch experiments for developing predictive models in cell culture processes, and allow the wider adoption of model predictive control in biopharmaceutical processes. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1647–1661, 2017 PMID:28786215
Wang, Ming; Long, Qi
2016-09-01
Prediction models for disease risk and prognosis play an important role in biomedical research, and evaluating their predictive accuracy in the presence of censored data is of substantial interest. The standard concordance (c) statistic has been extended to provide a summary measure of predictive accuracy for survival models. Motivated by a prostate cancer study, we address several issues associated with evaluating survival prediction models based on c-statistic with a focus on estimators using the technique of inverse probability of censoring weighting (IPCW). Compared to the existing work, we provide complete results on the asymptotic properties of the IPCW estimators under the assumption of coarsening at random (CAR), and propose a sensitivity analysis under the mechanism of noncoarsening at random (NCAR). In addition, we extend the IPCW approach as well as the sensitivity analysis to high-dimensional settings. The predictive accuracy of prediction models for cancer recurrence after prostatectomy is assessed by applying the proposed approaches. We find that the estimated predictive accuracy for the models in consideration is sensitive to NCAR assumption, and thus identify the best predictive model. Finally, we further evaluate the performance of the proposed methods in both settings of low-dimensional and high-dimensional data under CAR and NCAR through simulations. © 2016, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Crosby, S. C.; O'Reilly, W. C.; Guza, R. T.
2016-02-01
Accurate, unbiased, high-resolution (in space and time) nearshore wave predictions are needed to drive models of beach erosion, coastal flooding, and alongshore transport of sediment, biota and pollutants. On highly sheltered shorelines, wave predictions are sensitive to the directions of onshore propagating waves, and nearshore model prediction error is often dominated by uncertainty in offshore boundary conditions. Offshore islands and shoals, and coastline curvature, create complex sheltering patterns over the 250km span of southern California (SC) shoreline. Here, regional wave model skill in SC was compared for different offshore boundary conditions created using offshore buoy observations and global wave model hindcasts (National Oceanographic and Atmospheric Administration Wave Watch 3, WW3). Spectral ray-tracing methods were used to transform incident offshore swell (0.04-0.09Hz) energy at high directional resolution (1-deg). Model skill is assessed for predictions (wave height, direction, and alongshore radiation stress) at 16 nearshore buoy sites between 2000 and 2009. Model skill using buoy-derived boundary conditions is higher than with WW3-derived boundary conditions. Buoy-driven nearshore model results are similar with various assumptions about the true offshore directional distribution (maximum entropy, Bayesian direct, and 2nd derivative smoothness). Two methods combining offshore buoy observations with WW3 predictions in the offshore boundary condition did not improve nearshore skill above buoy-only methods. A case example at Oceanside harbor shows strong sensitivity of alongshore sediment transport predictions to different offshore boundary conditions. Despite this uncertainty in alongshore transport magnitude, alongshore gradients in transport (e.g. the location of model accretion and erosion zones) are determined by the local bathymetry, and are similar for all predictions.
Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation
NASA Astrophysics Data System (ADS)
Peters, A.; Lantermann, U.; el Moctar, O.
2015-12-01
The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.
Modelling for Prediction vs. Modelling for Understanding: Commentary on Musso et al. (2013)
ERIC Educational Resources Information Center
Edelsbrunner, Peter; Schneider, Michael
2013-01-01
Musso et al. (2013) predict students' academic achievement with high accuracy one year in advance from cognitive and demographic variables, using artificial neural networks (ANNs). They conclude that ANNs have high potential for theoretical and practical improvements in learning sciences. ANNs are powerful statistical modelling tools but they can…
Quantitative structure-property relationship modeling of remote liposome loading of drugs.
Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram
2012-06-10
Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a data set including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and 5-fold external validation. The external prediction accuracy for binary models was as high as 91-96%; for continuous models the mean coefficient R(2) for regression between predicted versus observed values was 0.76-0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. Copyright © 2011 Elsevier B.V. All rights reserved.
David R. Weise; Eunmo Koo; Xiangyang Zhou; Shankar Mahalingam; Frédéric Morandini; Jacques-Henri Balbi
2016-01-01
Fire behaviour data from 240 laboratory fires in high-density live chaparral fuel beds were compared with model predictions. Logistic regression was used to develop a model to predict fire spread success in the fuel beds and linear regression was used to predict rate of spread. Predictions from the Rothermel equation and three proposed changes as well as two physically...
Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants
Yu, Zheng-Yong; Liu, Qiang; Liu, Yunhan
2017-01-01
Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi–Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings. PMID:28792487
Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.
Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan
2017-08-09
Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi-Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings.
Predicting nucleic acid binding interfaces from structural models of proteins
Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael
2011-01-01
The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared to patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. PMID:22086767
Nowosad, Jakub; Stach, Alfred; Kasprzyk, Idalia; Weryszko-Chmielewska, Elżbieta; Piotrowska-Weryszko, Krystyna; Puc, Małgorzata; Grewling, Łukasz; Pędziszewska, Anna; Uruska, Agnieszka; Myszkowska, Dorota; Chłopek, Kazimiera; Majkowska-Wojciechowska, Barbara
The aim of the study was to create and evaluate models for predicting high levels of daily pollen concentration of Corylus , Alnus , and Betula using a spatiotemporal correlation of pollen count. For each taxon, a high pollen count level was established according to the first allergy symptoms during exposure. The dataset was divided into a training set and a test set, using a stratified random split. For each taxon and city, the model was built using a random forest method. Corylus models performed poorly. However, the study revealed the possibility of predicting with substantial accuracy the occurrence of days with high pollen concentrations of Alnus and Betula using past pollen count data from monitoring sites. These results can be used for building (1) simpler models, which require data only from aerobiological monitoring sites, and (2) combined meteorological and aerobiological models for predicting high levels of pollen concentration.
High speed turboprop aeroacoustic study (counterrotation). Volume 1: Model development
NASA Technical Reports Server (NTRS)
Whitfield, C. E.; Mani, R.; Gliebe, P. R.
1990-01-01
The isolated counterrotating high speed turboprop noise prediction program was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in NASA-Lewis' 8x6 and 9x15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counterotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attach was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combines into a single prediction program, results of which were compared with data taken during the flight test of the B727/UDF engine demonstrator aircraft. Satisfactory comparisons between prediction and measured data for the demonstrator airplane, together with the identification of a nontraditional radiation mechanism for propellers at angle of attack are achieved.
High speed turboprop aeroacoustic study (counterrotation). Volume 1: Model development
NASA Astrophysics Data System (ADS)
Whitfield, C. E.; Mani, R.; Gliebe, P. R.
1990-07-01
The isolated counterrotating high speed turboprop noise prediction program was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in NASA-Lewis' 8x6 and 9x15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counterotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attach was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combines into a single prediction program, results of which were compared with data taken during the flight test of the B727/UDF engine demonstrator aircraft. Satisfactory comparisons between prediction and measured data for the demonstrator airplane, together with the identification of a nontraditional radiation mechanism for propellers at angle of attack are achieved.
On the effect of acoustic coupling on random and harmonic plate vibrations
NASA Technical Reports Server (NTRS)
Frendi, A.; Robinson, J. H.
1993-01-01
The effect of acoustic coupling on random and harmonic plate vibrations is studied using two numerical models. In the coupled model, the plate response is obtained by integration of the nonlinear plate equation coupled with the nonlinear Euler equations for the surrounding acoustic fluid. In the uncoupled model, the nonlinear plate equation with an equivalent linear viscous damping term is integrated to obtain the response of the plate subject to the same excitation field. For a low-level, narrow-band excitation, the two models predict the same plate response spectra. As the excitation level is increased, the response power spectrum predicted by the uncoupled model becomes broader and more shifted towards the high frequencies than that obtained by the coupled model. In addition, the difference in response between the coupled and uncoupled models at high frequencies becomes larger. When a high intensity harmonic excitation is used, causing a nonlinear plate response, both models predict the same frequency content of the response. However, the level of the harmonics and subharmonics are higher for the uncoupled model. Comparisons to earlier experimental and numerical results show that acoustic coupling has a significant effect on the plate response at high excitation levels. Its absence in previous models may explain the discrepancy between predicted and measured responses.
External validation of EPIWIN biodegradation models.
Posthumus, R; Traas, T P; Peijnenburg, W J G M; Hulzebos, E M
2005-01-01
The BIOWIN biodegradation models were evaluated for their suitability for regulatory purposes. BIOWIN includes the linear and non-linear BIODEG and MITI models for estimating the probability of rapid aerobic biodegradation and an expert survey model for primary and ultimate biodegradation estimation. Experimental biodegradation data for 110 newly notified substances were compared with the estimations of the different models. The models were applied separately and in combinations to determine which model(s) showed the best performance. The results of this study were compared with the results of other validation studies and other biodegradation models. The BIOWIN models predict not-readily biodegradable substances with high accuracy in contrast to ready biodegradability. In view of the high environmental concern of persistent chemicals and in view of the large number of not-readily biodegradable chemicals compared to the readily ones, a model is preferred that gives a minimum of false positives without a corresponding high percentage false negatives. A combination of the BIOWIN models (BIOWIN2 or BIOWIN6) showed the highest predictive value for not-readily biodegradability. However, the highest score for overall predictivity with lowest percentage false predictions was achieved by applying BIOWIN3 (pass level 2.75) and BIOWIN6.
Mining geriatric assessment data for in-patient fall prediction models and high-risk subgroups
2012-01-01
Background Hospital in-patient falls constitute a prominent problem in terms of costs and consequences. Geriatric institutions are most often affected, and common screening tools cannot predict in-patient falls consistently. Our objectives are to derive comprehensible fall risk classification models from a large data set of geriatric in-patients' assessment data and to evaluate their predictive performance (aim#1), and to identify high-risk subgroups from the data (aim#2). Methods A data set of n = 5,176 single in-patient episodes covering 1.5 years of admissions to a geriatric hospital were extracted from the hospital's data base and matched with fall incident reports (n = 493). A classification tree model was induced using the C4.5 algorithm as well as a logistic regression model, and their predictive performance was evaluated. Furthermore, high-risk subgroups were identified from extracted classification rules with a support of more than 100 instances. Results The classification tree model showed an overall classification accuracy of 66%, with a sensitivity of 55.4%, a specificity of 67.1%, positive and negative predictive values of 15% resp. 93.5%. Five high-risk groups were identified, defined by high age, low Barthel index, cognitive impairment, multi-medication and co-morbidity. Conclusions Our results show that a little more than half of the fallers may be identified correctly by our model, but the positive predictive value is too low to be applicable. Non-fallers, on the other hand, may be sorted out with the model quite well. The high-risk subgroups and the risk factors identified (age, low ADL score, cognitive impairment, institutionalization, polypharmacy and co-morbidity) reflect domain knowledge and may be used to screen certain subgroups of patients with a high risk of falling. Classification models derived from a large data set using data mining methods can compete with current dedicated fall risk screening tools, yet lack diagnostic precision. High-risk subgroups may be identified automatically from existing geriatric assessment data, especially when combined with domain knowledge in a hybrid classification model. Further work is necessary to validate our approach in a controlled prospective setting. PMID:22417403
Mining geriatric assessment data for in-patient fall prediction models and high-risk subgroups.
Marschollek, Michael; Gövercin, Mehmet; Rust, Stefan; Gietzelt, Matthias; Schulze, Mareike; Wolf, Klaus-Hendrik; Steinhagen-Thiessen, Elisabeth
2012-03-14
Hospital in-patient falls constitute a prominent problem in terms of costs and consequences. Geriatric institutions are most often affected, and common screening tools cannot predict in-patient falls consistently. Our objectives are to derive comprehensible fall risk classification models from a large data set of geriatric in-patients' assessment data and to evaluate their predictive performance (aim#1), and to identify high-risk subgroups from the data (aim#2). A data set of n = 5,176 single in-patient episodes covering 1.5 years of admissions to a geriatric hospital were extracted from the hospital's data base and matched with fall incident reports (n = 493). A classification tree model was induced using the C4.5 algorithm as well as a logistic regression model, and their predictive performance was evaluated. Furthermore, high-risk subgroups were identified from extracted classification rules with a support of more than 100 instances. The classification tree model showed an overall classification accuracy of 66%, with a sensitivity of 55.4%, a specificity of 67.1%, positive and negative predictive values of 15% resp. 93.5%. Five high-risk groups were identified, defined by high age, low Barthel index, cognitive impairment, multi-medication and co-morbidity. Our results show that a little more than half of the fallers may be identified correctly by our model, but the positive predictive value is too low to be applicable. Non-fallers, on the other hand, may be sorted out with the model quite well. The high-risk subgroups and the risk factors identified (age, low ADL score, cognitive impairment, institutionalization, polypharmacy and co-morbidity) reflect domain knowledge and may be used to screen certain subgroups of patients with a high risk of falling. Classification models derived from a large data set using data mining methods can compete with current dedicated fall risk screening tools, yet lack diagnostic precision. High-risk subgroups may be identified automatically from existing geriatric assessment data, especially when combined with domain knowledge in a hybrid classification model. Further work is necessary to validate our approach in a controlled prospective setting.
Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny
2016-06-01
Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species-specific models is only warranted when gains in accuracy of stand-based predictions are relatively high (e.g. high-value monocultures). © 2015 John Wiley & Sons Ltd.
Pretreatment data is highly predictive of liver chemistry signals in clinical trials.
Cai, Zhaohui; Bresell, Anders; Steinberg, Mark H; Silberg, Debra G; Furlong, Stephen T
2012-01-01
The goal of this retrospective analysis was to assess how well predictive models could determine which patients would develop liver chemistry signals during clinical trials based on their pretreatment (baseline) information. Based on data from 24 late-stage clinical trials, classification models were developed to predict liver chemistry outcomes using baseline information, which included demographics, medical history, concomitant medications, and baseline laboratory results. Predictive models using baseline data predicted which patients would develop liver signals during the trials with average validation accuracy around 80%. Baseline levels of individual liver chemistry tests were most important for predicting their own elevations during the trials. High bilirubin levels at baseline were not uncommon and were associated with a high risk of developing biochemical Hy's law cases. Baseline γ-glutamyltransferase (GGT) level appeared to have some predictive value, but did not increase predictability beyond using established liver chemistry tests. It is possible to predict which patients are at a higher risk of developing liver chemistry signals using pretreatment (baseline) data. Derived knowledge from such predictions may allow proactive and targeted risk management, and the type of analysis described here could help determine whether new biomarkers offer improved performance over established ones.
In silico prediction of potential chemical reactions mediated by human enzymes.
Yu, Myeong-Sang; Lee, Hyang-Mi; Park, Aaron; Park, Chungoo; Ceong, Hyithaek; Rhee, Ki-Hyeong; Na, Dokyun
2018-06-13
Administered drugs are often converted into an ineffective or activated form by enzymes in our body. Conventional in silico prediction approaches focused on therapeutically important enzymes such as CYP450. However, there are more than thousands of different cellular enzymes that potentially convert administered drug into other forms. We developed an in silico model to predict which of human enzymes including metabolic enzymes as well as CYP450 family can catalyze a given chemical compound. The prediction is based on the chemical and physical similarity between known enzyme substrates and a query chemical compound. Our in silico model was developed using multiple linear regression and the model showed high performance (AUC = 0.896) despite of the large number of enzymes. When evaluated on a test dataset, it also showed significantly high performance (AUC = 0.746). Interestingly, evaluation with literature data showed that our model can be used to predict not only enzymatic reactions but also drug conversion and enzyme inhibition. Our model was able to predict enzymatic reactions of a query molecule with a high accuracy. This may foster to discover new metabolic routes and to accelerate the computational development of drug candidates by enabling the prediction of the potential conversion of administered drugs into active or inactive forms.
High accuracy satellite drag model (HASDM)
NASA Astrophysics Data System (ADS)
Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent
The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.
Disentangling the Predictive Validity of High School Grades for Academic Success in University
ERIC Educational Resources Information Center
Vulperhorst, Jonne; Lutz, Christel; de Kleijn, Renske; van Tartwijk, Jan
2018-01-01
To refine selective admission models, we investigate which measure of prior achievement has the best predictive validity for academic success in university. We compare the predictive validity of three core high school subjects to the predictive validity of high school grade point average (GPA) for academic achievement in a liberal arts university…
Paradigm of pretest risk stratification before coronary computed tomography.
Jensen, Jesper Møller; Ovrehus, Kristian A; Nielsen, Lene H; Jensen, Jesper K; Larsen, Henrik M; Nørgaard, Bjarne L
2009-01-01
The optimal method of determining the pretest risk of coronary artery disease as a patient selection tool before coronary multidetector computed tomography (MDCT) is unknown. We investigated the ability of 3 different clinical risk scores to predict the outcome of coronary MDCT. This was a retrospective study of 551 patients consecutively referred for coronary MDCT on a suspicion of coronary artery disease. Diamond-Forrester, Duke, and Morise risk models were used to predict coronary artery stenosis (>50%) as assessed by coronary MDCT. The models were compared by receiver operating characteristic analysis. The distribution of low-, intermediate-, and high-risk persons, respectively, was established and compared for each of the 3 risk models. Overall, all risk prediction models performed equally well. However, the Duke risk model classified the low-risk patients more correctly than did the other models (P < 0.01). In patients without coronary artery calcification (CAC), the predictive value of the Duke risk model was superior to the other risk models (P < 0.05). Currently available risk prediction models seem to perform better in patients without CAC. Between the risk prediction models, there was a significant discrepancy in the distribution of patients at low, intermediate, or high risk (P < 0.01). The 3 risk prediction models perform equally well, although the Duke risk score may have advantages in subsets of patients. The choice of risk prediction model affects the referral pattern to MDCT. Copyright (c) 2009 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Prediction of high airway pressure using a non-linear autoregressive model of pulmonary mechanics.
Langdon, Ruby; Docherty, Paul D; Schranz, Christoph; Chase, J Geoffrey
2017-11-02
For mechanically ventilated patients with acute respiratory distress syndrome (ARDS), suboptimal PEEP levels can cause ventilator induced lung injury (VILI). In particular, high PEEP and high peak inspiratory pressures (PIP) can cause over distension of alveoli that is associated with VILI. However, PEEP must also be sufficient to maintain recruitment in ARDS lungs. A lung model that accurately and precisely predicts the outcome of an increase in PEEP may allow dangerous high PIP to be avoided, and reduce the incidence of VILI. Sixteen pressure-flow data sets were collected from nine mechanically ventilated ARDs patients that underwent one or more recruitment manoeuvres. A nonlinear autoregressive (NARX) model was identified on one or more adjacent PEEP steps, and extrapolated to predict PIP at 2, 4, and 6 cmH 2 O PEEP horizons. The analysis considered whether the predicted and measured PIP exceeded a threshold of 40 cmH 2 O. A direct comparison of the method was made using the first order model of pulmonary mechanics (FOM(I)). Additionally, a further, more clinically appropriate method for the FOM was tested, in which the FOM was trained on a single PEEP prior to prediction (FOM(II)). The NARX model exhibited very high sensitivity (> 0.96) in all cases, and a high specificity (> 0.88). While both FOM methods had a high specificity (> 0.96), the sensitivity was much lower, with a mean of 0.68 for FOM(I), and 0.82 for FOM(II). Clinically, false negatives are more harmful than false positives, as a high PIP may result in distension and VILI. Thus, the NARX model may be more effective than the FOM in allowing clinicians to reduce the risk of applying a PEEP that results in dangerously high airway pressures.
AXAF-1 High Resolution Assembly Image Model and Comparison with X-Ray Ground Test Image
NASA Technical Reports Server (NTRS)
Zissa, David E.
1999-01-01
The x-ray ground test of the AXAF-I High Resolution Mirror Assembly was completed in 1997 at the X-ray Calibration Facility at Marshall Space Flight Center. Mirror surface measurements by HDOS, alignment results from Kodak, and predicted gravity distortion in the horizontal test configuration are being used to model the x-ray test image. The Marshall Space Flight Center (MSFC) image modeling serves as a cross check with Smithsonian Astrophysical observatory modeling. The MSFC image prediction software has evolved from the MSFC model of the x-ray test of the largest AXAF-I mirror pair in 1991. The MSFC image modeling software development is being assisted by the University of Alabama in Huntsville. The modeling process, modeling software, and image prediction will be discussed. The image prediction will be compared with the x-ray test results.
Evaluation of a black-footed ferret resource utilization function model
Eads, D.A.; Millspaugh, J.J.; Biggins, D.E.; Jachowski, D.S.; Livieri, T.M.
2011-01-01
Resource utilization function (RUF) models permit evaluation of potential habitat for endangered species; ideally such models should be evaluated before use in management decision-making. We evaluated the predictive capabilities of a previously developed black-footed ferret (Mustela nigripes) RUF. Using the population-level RUF, generated from ferret observations at an adjacent yet distinct colony, we predicted the distribution of ferrets within a black-tailed prairie dog (Cynomys ludovicianus) colony in the Conata Basin, South Dakota, USA. We evaluated model performance, using data collected during post-breeding spotlight surveys (2007-2008) by assessing model agreement via weighted compositional analysis and count-metrics. Compositional analysis of home range use and colony-level availability, and core area use and home range availability, demonstrated ferret selection of the predicted Very high and High occurrence categories in 2007 and 2008. Simple count-metrics corroborated these findings and suggested selection of the Very high category in 2007 and the Very high and High categories in 2008. Collectively, these results suggested that the RUF was useful in predicting occurrence and intensity of space use of ferrets at our study site, the 2 objectives of the RUF. Application of this validated RUF would increase the resolution of habitat evaluations, permitting prediction of the distribution of ferrets within distinct colonies. Additional model evaluation at other sites, on other black-tailed prairie dog colonies of varying resource configuration and size, would increase understanding of influences upon model performance and the general utility of the RUF. ?? 2011 The Wildlife Society.
NASA Astrophysics Data System (ADS)
Roy, Swagata; Biswas, Srija; Babu, K. Arun; Mandal, Sumantra
2018-05-01
A novel constitutive model has been developed for predicting flow responses of super-austenitic stainless steel over a wide range of strains (0.05-0.6), temperatures (1173-1423 K) and strain rates (0.001-1 s-1). Further, the predictability of this new model has been compared with the existing Johnson-Cook (JC) and modified Zerilli-Armstrong (M-ZA) model. The JC model is not befitted for flow prediction as it is found to be exhibiting very high ( 36%) average absolute error (δ) and low ( 0.92) correlation coefficient (R). On the contrary, the M-ZA model has demonstrated relatively lower δ ( 13%) and higher R ( 0.96) for flow prediction. The incorporation of couplings of processing parameters in M-ZA model has led to exhibit better prediction than JC model. However, the flow analyses of the studied alloy have revealed the additional synergistic influences of strain and strain rate as well as strain, temperature, and strain rate apart from those considered in M-ZA model. Hence, the new phenomenological model has been formulated incorporating all the individual and synergistic effects of processing parameters and a `strain-shifting' parameter. The proposed model predicted the flow behavior of the alloy with much better correlation and generalization than M-ZA model as substantiated by its lower δ ( 7.9%) and higher R ( 0.99) of prediction.
NASA Technical Reports Server (NTRS)
Arnold, Steven M. (Technical Monitor); Bansal, Yogesh; Pindera, Marek-Jerzy
2004-01-01
The High-Fidelity Generalized Method of Cells is a new micromechanics model for unidirectionally reinforced periodic multiphase materials that was developed to overcome the original model's shortcomings. The high-fidelity version predicts the local stress and strain fields with dramatically greater accuracy relative to the original model through the use of a better displacement field representation. Herein, we test the high-fidelity model's predictive capability in estimating the elastic moduli of periodic composites characterized by repeating unit cells obtained by rotation of an infinite square fiber array through an angle about the fiber axis. Such repeating unit cells may contain a few or many fibers, depending on the rotation angle. In order to analyze such multi-inclusion repeating unit cells efficiently, the high-fidelity micromechanics model's framework is reformulated using the local/global stiffness matrix approach. The excellent agreement with the corresponding results obtained from the standard transformation equations confirms the new model's predictive capability for periodic composites characterized by multi-inclusion repeating unit cells lacking planes of material symmetry. Comparison of the effective moduli and local stress fields with the corresponding results obtained from the original Generalized Method of Cells dramatically highlights the original model's shortcomings for certain classes of unidirectional composites.
Predicting High-Power Performance in Professional Cyclists.
Sanders, Dajo; Heijboer, Mathieu; Akubat, Ibrahim; Meijer, Kenneth; Hesselink, Matthijs K
2017-03-01
To assess if short-duration (5 to ~300 s) high-power performance can accurately be predicted using the anaerobic power reserve (APR) model in professional cyclists. Data from 4 professional cyclists from a World Tour cycling team were used. Using the maximal aerobic power, sprint peak power output, and an exponential constant describing the decrement in power over time, a power-duration relationship was established for each participant. To test the predictive accuracy of the model, several all-out field trials of different durations were performed by each cyclist. The power output achieved during the all-out trials was compared with the predicted power output by the APR model. The power output predicted by the model showed very large to nearly perfect correlations to the actual power output obtained during the all-out trials for each cyclist (r = .88 ± .21, .92 ± .17, .95 ± .13, and .97 ± .09). Power output during the all-out trials remained within an average of 6.6% (53 W) of the predicted power output by the model. This preliminary pilot study presents 4 case studies on the applicability of the APR model in professional cyclists using a field-based approach. The decrement in all-out performance during high-intensity exercise seems to conform to a general relationship with a single exponential-decay model describing the decrement in power vs increasing duration. These results are in line with previous studies using the APR model to predict performance during brief all-out trials. Future research should evaluate the APR model with a larger sample size of elite cyclists.
Søreide, K; Thorsen, K; Søreide, J A
2015-02-01
Mortality prediction models for patients with perforated peptic ulcer (PPU) have not yielded consistent or highly accurate results. Given the complex nature of this disease, which has many non-linear associations with outcomes, we explored artificial neural networks (ANNs) to predict the complex interactions between the risk factors of PPU and death among patients with this condition. ANN modelling using a standard feed-forward, back-propagation neural network with three layers (i.e., an input layer, a hidden layer and an output layer) was used to predict the 30-day mortality of consecutive patients from a population-based cohort undergoing surgery for PPU. A receiver-operating characteristic (ROC) analysis was used to assess model accuracy. Of the 172 patients, 168 had their data included in the model; the data of 117 (70%) were used for the training set, and the data of 51 (39%) were used for the test set. The accuracy, as evaluated by area under the ROC curve (AUC), was best for an inclusive, multifactorial ANN model (AUC 0.90, 95% CIs 0.85-0.95; p < 0.001). This model outperformed standard predictive scores, including Boey and PULP. The importance of each variable decreased as the number of factors included in the ANN model increased. The prediction of death was most accurate when using an ANN model with several univariate influences on the outcome. This finding demonstrates that PPU is a highly complex disease for which clinical prognoses are likely difficult. The incorporation of computerised learning systems might enhance clinical judgments to improve decision making and outcome prediction.
Rosenkrantz, Andrew B; Doshi, Ankur M; Ginocchio, Luke A; Aphinyanaphongs, Yindalon
2016-12-01
This study aimed to assess the performance of a text classification machine-learning model in predicting highly cited articles within the recent radiological literature and to identify the model's most influential article features. We downloaded from PubMed the title, abstract, and medical subject heading terms for 10,065 articles published in 25 general radiology journals in 2012 and 2013. Three machine-learning models were applied to predict the top 10% of included articles in terms of the number of citations to the article in 2014 (reflecting the 2-year time window in conventional impact factor calculations). The model having the highest area under the curve was selected to derive a list of article features (words) predicting high citation volume, which was iteratively reduced to identify the smallest possible core feature list maintaining predictive power. Overall themes were qualitatively assigned to the core features. The regularized logistic regression (Bayesian binary regression) model had highest performance, achieving an area under the curve of 0.814 in predicting articles in the top 10% of citation volume. We reduced the initial 14,083 features to 210 features that maintain predictivity. These features corresponded with topics relating to various imaging techniques (eg, diffusion-weighted magnetic resonance imaging, hyperpolarized magnetic resonance imaging, dual-energy computed tomography, computed tomography reconstruction algorithms, tomosynthesis, elastography, and computer-aided diagnosis), particular pathologies (prostate cancer; thyroid nodules; hepatic adenoma, hepatocellular carcinoma, non-alcoholic fatty liver disease), and other topics (radiation dose, electroporation, education, general oncology, gadolinium, statistics). Machine learning can be successfully applied to create specific feature-based models for predicting articles likely to achieve high influence within the radiological literature. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
A microRNA-based prediction model for lymph node metastasis in hepatocellular carcinoma.
Zhang, Li; Xiang, Zuo-Lin; Zeng, Zhao-Chong; Fan, Jia; Tang, Zhao-You; Zhao, Xiao-Mei
2016-01-19
We developed an efficient microRNA (miRNA) model that could predict the risk of lymph node metastasis (LNM) in hepatocellular carcinoma (HCC). We first evaluated a training cohort of 192 HCC patients after hepatectomy and found five LNM associated predictive factors: vascular invasion, Barcelona Clinic Liver Cancer stage, miR-145, miR-31, and miR-92a. The five statistically independent factors were used to develop a predictive model. The predictive value of the miRNA-based model was confirmed in a validation cohort of 209 consecutive HCC patients. The prediction model was scored for LNM risk from 0 to 8. The cutoff value 4 was used to distinguish high-risk and low-risk groups. The model sensitivity and specificity was 69.6 and 80.2%, respectively, during 5 years in the validation cohort. And the area under the curve (AUC) for the miRNA-based prognostic model was 0.860. The 5-year positive and negative predictive values of the model in the validation cohort were 30.3 and 95.5%, respectively. Cox regression analysis revealed that the LNM hazard ratio of the high-risk versus low-risk groups was 11.751 (95% CI, 5.110-27.021; P < 0.001) in the validation cohort. In conclusion, the miRNA-based model is reliable and accurate for the early prediction of LNM in patients with HCC.
Mathematical model for prediction of efficiency indicators of educational activity in high school
NASA Astrophysics Data System (ADS)
Tikhonova, O. M.; Kushnikov, V. A.; Fominykh, D. S.; Rezchikov, A. F.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikov, O. V.; Shulga, T. E.; Tverdokhlebov, V. A.
2018-05-01
The quality of high school is a current problem all over the world. The paper presents the system dedicated to predicting the accreditation indicators of technical universities based on J. Forrester mechanism of system dynamics. The mathematical model is developed for prediction of efficiency indicators of the educational activity and is based on the apparatus of nonlinear differential equations.
Global Weather Prediction and High-End Computing at NASA
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann; Atlas, Robert; Yeh, Kao-San
2003-01-01
We demonstrate current capabilities of the NASA finite-volume General Circulation Model an high-resolution global weather prediction, and discuss its development path in the foreseeable future. This model can be regarded as a prototype of a future NASA Earth modeling system intended to unify development activities cutting across various disciplines within the NASA Earth Science Enterprise.
NASA Astrophysics Data System (ADS)
Wang, Ruzhuan; Li, Xiaobo; Wang, Jing; Jia, Bi; Li, Weiguo
2018-06-01
This work shows a new rational theoretical model for quantitatively predicting fracture strength and critical flaw size of the ZrB2-ZrC composites at different temperatures, which is based on a new proposed temperature dependent fracture surface energy model and the Griffith criterion. The fracture model takes into account the combined effects of temperature and damage terms (surface flaws and internal flaws) with no any fitting parameters. The predictions of fracture strength and critical flaw size of the ZrB2-ZrC composites at high temperatures agree well with experimental data. Then using the theoretical method, the improvement and design of materials are proposed. The proposed model can be used to predict the fracture strength, find the critical flaw and study the effects of microstructures on the fracture mechanism of the ZrB2-ZrC composites at high temperatures, which thus could become a potential convenient, practical and economical technical means for predicting fracture properties and material design.
Downey, Brandon; Schmitt, John; Beller, Justin; Russell, Brian; Quach, Anthony; Hermann, Elizabeth; Lyon, David; Breit, Jeffrey
2017-11-01
As the biopharmaceutical industry evolves to include more diverse protein formats and processes, more robust control of Critical Quality Attributes (CQAs) is needed to maintain processing flexibility without compromising quality. Active control of CQAs has been demonstrated using model predictive control techniques, which allow development of processes which are robust against disturbances associated with raw material variability and other potentially flexible operating conditions. Wide adoption of model predictive control in biopharmaceutical cell culture processes has been hampered, however, in part due to the large amount of data and expertise required to make a predictive model of controlled CQAs, a requirement for model predictive control. Here we developed a highly automated, perfusion apparatus to systematically and efficiently generate predictive models using application of system identification approaches. We successfully created a predictive model of %galactosylation using data obtained by manipulating galactose concentration in the perfusion apparatus in serialized step change experiments. We then demonstrated the use of the model in a model predictive controller in a simulated control scenario to successfully achieve a %galactosylation set point in a simulated fed-batch culture. The automated model identification approach demonstrated here can potentially be generalized to many CQAs, and could be a more efficient, faster, and highly automated alternative to batch experiments for developing predictive models in cell culture processes, and allow the wider adoption of model predictive control in biopharmaceutical processes. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1647-1661, 2017. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.
Sun, Xiangqing; Elston, Robert C; Barnholtz-Sloan, Jill S; Falk, Gary W; Grady, William M; Faulx, Ashley; Mittal, Sumeet K; Canto, Marcia; Shaheen, Nicholas J; Wang, Jean S; Iyer, Prasad G; Abrams, Julian A; Tian, Ye D; Willis, Joseph E; Guda, Kishore; Markowitz, Sanford D; Chandar, Apoorva; Warfe, James M; Brock, Wendy; Chak, Amitabh
2016-05-01
Barrett's esophagus is often asymptomatic and only a small portion of Barrett's esophagus patients are currently diagnosed and under surveillance. Therefore, it is important to develop risk prediction models to identify high-risk individuals with Barrett's esophagus. Familial aggregation of Barrett's esophagus and esophageal adenocarcinoma, and the increased risk of esophageal adenocarcinoma for individuals with a family history, raise the necessity of including genetic factors in the prediction model. Methods to determine risk prediction models using both risk covariates and ascertained family data are not well developed. We developed a Barrett's Esophagus Translational Research Network (BETRNet) risk prediction model from 787 singly ascertained Barrett's esophagus pedigrees and 92 multiplex Barrett's esophagus pedigrees, fitting a multivariate logistic model that incorporates family history and clinical risk factors. The eight risk factors, age, sex, education level, parental status, smoking, heartburn frequency, regurgitation frequency, and use of acid suppressant, were included in the model. The prediction accuracy was evaluated on the training dataset and an independent validation dataset of 643 multiplex Barrett's esophagus pedigrees. Our results indicate family information helps to predict Barrett's esophagus risk, and predicting in families improves both prediction calibration and discrimination accuracy. Our model can predict Barrett's esophagus risk for anyone with family members known to have, or not have, had Barrett's esophagus. It can predict risk for unrelated individuals without knowing any relatives' information. Our prediction model will shed light on effectively identifying high-risk individuals for Barrett's esophagus screening and surveillance, consequently allowing intervention at an early stage, and reducing mortality from esophageal adenocarcinoma. Cancer Epidemiol Biomarkers Prev; 25(5); 727-35. ©2016 AACR. ©2016 American Association for Cancer Research.
NASA Astrophysics Data System (ADS)
Rohman, Muhamad Nur; Hidayat, Mas Irfan P.; Purniawan, Agung
2018-04-01
Neural networks (NN) have been widely used in application of fatigue life prediction. In the use of fatigue life prediction for polymeric-base composite, development of NN model is necessary with respect to the limited fatigue data and applicable to be used to predict the fatigue life under varying stress amplitudes in the different stress ratios. In the present paper, Multilayer-Perceptrons (MLP) model of neural network is developed, and Genetic Algorithm was employed to optimize the respective weights of NN for prediction of polymeric-base composite materials under variable amplitude loading. From the simulation result obtained with two different composite systems, named E-glass fabrics/epoxy (layups [(±45)/(0)2]S), and E-glass/polyester (layups [90/0/±45/0]S), NN model were trained with fatigue data from two different stress ratios, which represent limited fatigue data, can be used to predict another four and seven stress ratios respectively, with high accuracy of fatigue life prediction. The accuracy of NN prediction were quantified with the small value of mean square error (MSE). When using 33% from the total fatigue data for training, the NN model able to produce high accuracy for all stress ratios. When using less fatigue data during training (22% from the total fatigue data), the NN model still able to produce high coefficient of determination between the prediction result compared with obtained by experiment.
FUN3D and CFL3D Computations for the First High Lift Prediction Workshop
NASA Technical Reports Server (NTRS)
Park, Michael A.; Lee-Rausch, Elizabeth M.; Rumsey, Christopher L.
2011-01-01
Two Reynolds-averaged Navier-Stokes codes were used to compute flow over the NASA Trapezoidal Wing at high lift conditions for the 1st AIAA CFD High Lift Prediction Workshop, held in Chicago in June 2010. The unstructured-grid code FUN3D and the structured-grid code CFL3D were applied to several different grid systems. The effects of code, grid system, turbulence model, viscous term treatment, and brackets were studied. The SST model on this configuration predicted lower lift than the Spalart-Allmaras model at high angles of attack; the Spalart-Allmaras model agreed better with experiment. Neglecting viscous cross-derivative terms caused poorer prediction in the wing tip vortex region. Output-based grid adaptation was applied to the unstructured-grid solutions. The adapted grids better resolved wake structures and reduced flap flow separation, which was also observed in uniform grid refinement studies. Limitations of the adaptation method as well as areas for future improvement were identified.
Deep learning for predicting the monsoon over the homogeneous regions of India
NASA Astrophysics Data System (ADS)
Saha, Moumita; Mitra, Pabitra; Nanjundiah, Ravi S.
2017-06-01
Indian monsoon varies in its nature over the geographical regions. Predicting the rainfall not just at the national level, but at the regional level is an important task. In this article, we used a deep neural network, namely, the stacked autoencoder to automatically identify climatic factors that are capable of predicting the rainfall over the homogeneous regions of India. An ensemble regression tree model is used for monsoon prediction using the identified climatic predictors. The proposed model provides forecast of the monsoon at a long lead time which supports the government to implement appropriate policies for the economic growth of the country. The monsoon of the central, north-east, north-west, and south-peninsular India regions are predicted with errors of 4.1%, 5.1%, 5.5%, and 6.4%, respectively. The identified predictors show high skill in predicting the regional monsoon having high variability. The proposed model is observed to be competitive with the state-of-the-art prediction models.
Validating a spatially distributed hydrological model with soil morphology data
NASA Astrophysics Data System (ADS)
Doppler, T.; Honti, M.; Zihlmann, U.; Weisskopf, P.; Stamm, C.
2013-10-01
Spatially distributed hydrological models are popular tools in hydrology and they are claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time-series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for the transport of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography. Around 40% of the catchment area are artificially drained. We measured weather data, discharge and groundwater levels in 11 piezometers for 1.5 yr. For broadening the spatially distributed data sets that can be used for model calibration and validation, we translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. We used redox-morphology signs for these estimates. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to the groundwater levels in the piezometers and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the accuracy of the groundwater level predictions was not high enough to be used for the prediction of saturated areas. The groundwater level dynamics were not adequately reproduced and the predicted spatial patterns of soil saturation did not correspond to the patterns estimated from the soil map. Our results indicate that an accurate prediction of the groundwater level dynamics of the shallow groundwater in our catchment that is subject to artificial drainage would require a more complex model. Especially high spatial resolution and very detailed process representations at the boundary between the unsaturated and the saturated zone are expected to be crucial. The data needed for such a detailed model are not generally available. The high computational demand and the complex model setup would require more resources than the direct identification of saturated areas in the field. This severely hampers the practical use of such models despite their usefulness for scientific purposes.
NASA Astrophysics Data System (ADS)
Wang, Guiling
2005-12-01
This study examines the impact of greenhouse gas warming on soil moisture based on predictions of 15 global climate models by comparing the after-stabilization climate in the SRESA1b experiment with the pre-industrial control climate. The models are consistent in predicting summer dryness and winter wetness in only part of the northern middle and high latitudes. Slightly over half of the models predict year-round wetness in central Eurasia and/or year-round dryness in Siberia and mid-latitude Northeast Asia. One explanation is offered that relates such lack of seasonality to the carryover effect of soil moisture storage from season to season. In the tropics and subtropics, a decrease of soil moisture is the dominant response. The models are especially consistent in predicting drier soil over the southwest North America, Central America, the Mediterranean, Australia, and the South Africa in all seasons, and over much of the Amazon and West Africa in the June July August (JJA) season and the Asian monsoon region in the December January February (DJF) season. Since the only major areas of future wetness predicted with a high level of model consistency are part of the northern middle and high latitudes during the non-growing season, it is suggested that greenhouse gas warming will cause a worldwide agricultural drought. Over regions where there is considerable consistency among the analyzed models in predicting the sign of soil moisture changes, there is a wide range of magnitudes of the soil moisture response, indicating a high degree of model dependency in terrestrial hydrological sensitivity. A major part of the inter-model differences in the sensitivity of soil moisture response are attributable to differences in land surface parameterization.
Prediction of Indian Summer-Monsoon Onset Variability: A Season in Advance.
Pradhan, Maheswar; Rao, A Suryachandra; Srivastava, Ankur; Dakate, Ashish; Salunke, Kiran; Shameera, K S
2017-10-27
Monsoon onset is an inherent transient phenomenon of Indian Summer Monsoon and it was never envisaged that this transience can be predicted at long lead times. Though onset is precipitous, its variability exhibits strong teleconnections with large scale forcing such as ENSO and IOD and hence may be predictable. Despite of the tremendous skill achieved by the state-of-the-art models in predicting such large scale processes, the prediction of monsoon onset variability by the models is still limited to just 2-3 weeks in advance. Using an objective definition of onset in a global coupled ocean-atmosphere model, it is shown that the skillful prediction of onset variability is feasible under seasonal prediction framework. The better representations/simulations of not only the large scale processes but also the synoptic and intraseasonal features during the evolution of monsoon onset are the comprehensions behind skillful simulation of monsoon onset variability. The changes observed in convection, tropospheric circulation and moisture availability prior to and after the onset are evidenced in model simulations, which resulted in high hit rate of early/delay in monsoon onset in the high resolution model.
Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Olama, Mohammed M.; Dong, Jin
The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed tomore » estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.« less
Liu, Jiangang; Jolly, Robert A.; Smith, Aaron T.; Searfoss, George H.; Goldstein, Keith M.; Uversky, Vladimir N.; Dunker, Keith; Li, Shuyu; Thomas, Craig E.; Wei, Tao
2011-01-01
Toxicogenomics promises to aid in predicting adverse effects, understanding the mechanisms of drug action or toxicity, and uncovering unexpected or secondary pharmacology. However, modeling adverse effects using high dimensional and high noise genomic data is prone to over-fitting. Models constructed from such data sets often consist of a large number of genes with no obvious functional relevance to the biological effect the model intends to predict that can make it challenging to interpret the modeling results. To address these issues, we developed a novel algorithm, Predictive Power Estimation Algorithm (PPEA), which estimates the predictive power of each individual transcript through an iterative two-way bootstrapping procedure. By repeatedly enforcing that the sample number is larger than the transcript number, in each iteration of modeling and testing, PPEA reduces the potential risk of overfitting. We show with three different cases studies that: (1) PPEA can quickly derive a reliable rank order of predictive power of individual transcripts in a relatively small number of iterations, (2) the top ranked transcripts tend to be functionally related to the phenotype they are intended to predict, (3) using only the most predictive top ranked transcripts greatly facilitates development of multiplex assay such as qRT-PCR as a biomarker, and (4) more importantly, we were able to demonstrate that a small number of genes identified from the top-ranked transcripts are highly predictive of phenotype as their expression changes distinguished adverse from nonadverse effects of compounds in completely independent tests. Thus, we believe that the PPEA model effectively addresses the over-fitting problem and can be used to facilitate genomic biomarker discovery for predictive toxicology and drug responses. PMID:21935387
Application of General Regression Neural Network to the Prediction of LOD Change
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Hong; Wang, Qi-Jie; Zhu, Jian-Jun; Zhang, Hao
2012-01-01
Traditional methods for predicting the change in length of day (LOD change) are mainly based on some linear models, such as the least square model and autoregression model, etc. However, the LOD change comprises complicated non-linear factors and the prediction effect of the linear models is always not so ideal. Thus, a kind of non-linear neural network — general regression neural network (GRNN) model is tried to make the prediction of the LOD change and the result is compared with the predicted results obtained by taking advantage of the BP (back propagation) neural network model and other models. The comparison result shows that the application of the GRNN to the prediction of the LOD change is highly effective and feasible.
Modeling of electron cyclotron resonance discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyyappan, M.; Govindan, T.R.
The current trend in plasma processing is the development of high density plasma sources to achieve high deposition and etch rates, uniformity over large ares, and low wafer damage. Here, is a simple model to predict the spatially-averaged plasma characteristics of electron cyclotron resonance (ECR) reactors is presented. The model consists of global conservation equations for species concentration, electron density and energy. A gas energy balance is used to predict the neutral temperature self-consistently. The model is demonstrated for an ECR argon discharge. The predicted behavior of the discharge as a function of system variables agrees well with experimental observations.
2014-01-01
Spatial heterogeneity in the incidence of visceral leishmaniasis (VL) is an important aspect to be considered in planning control actions for the disease. The objective of this study was to predict areas at high risk for visceral leishmaniasis (VL) based on socioeconomic indicators and remote sensing data. We applied classification and regression trees to develop and validate prediction models. Performance of the models was assessed by means of sensitivity, specificity and area under the ROC curve. The model developed was able to discriminate 15 subsets of census tracts (CT) with different probabilities of containing CT with high risk of VL occurrence. The model presented, respectively, in the validation and learning samples, sensitivity of 79% and 52%, specificity of 75% and 66%, and area under the ROC curve of 83% and 66%. Considering the complex network of factors involved in the occurrence of VL in urban areas, the results of this study showed that the development of a predictive model for VL might be feasible and useful for guiding interventions against the disease, but it is still a challenge as demonstrated by the unsatisfactory predictive performance of the model developed. PMID:24885128
NASA Astrophysics Data System (ADS)
Zhu, Shun-Peng; Huang, Hong-Zhong; Li, Haiqing; Sun, Rui; Zuo, Ming J.
2011-06-01
Based on ductility exhaustion theory and the generalized energy-based damage parameter, a new viscosity-based life prediction model is introduced to account for the mean strain/stress effects in the low cycle fatigue regime. The loading waveform parameters and cyclic hardening effects are also incorporated within this model. It is assumed that damage accrues by means of viscous flow and ductility consumption is only related to plastic strain and creep strain under high temperature low cycle fatigue conditions. In the developed model, dynamic viscosity is used to describe the flow behavior. This model provides a better prediction of Superalloy GH4133's fatigue behavior when compared to Goswami's ductility model and the generalized damage parameter. Under non-zero mean strain conditions, moreover, the proposed model provides more accurate predictions of Superalloy GH4133's fatigue behavior than that with zero mean strains.
NASA Astrophysics Data System (ADS)
Yao, Bing; Yang, Hui
2016-12-01
This paper presents a novel physics-driven spatiotemporal regularization (STRE) method for high-dimensional predictive modeling in complex healthcare systems. This model not only captures the physics-based interrelationship between time-varying explanatory and response variables that are distributed in the space, but also addresses the spatial and temporal regularizations to improve the prediction performance. The STRE model is implemented to predict the time-varying distribution of electric potentials on the heart surface based on the electrocardiogram (ECG) data from the distributed sensor network placed on the body surface. The model performance is evaluated and validated in both a simulated two-sphere geometry and a realistic torso-heart geometry. Experimental results show that the STRE model significantly outperforms other regularization models that are widely used in current practice such as Tikhonov zero-order, Tikhonov first-order and L1 first-order regularization methods.
Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
2002-01-01
A research program is underway to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Under these types of loading conditions, the material response can be highly strain rate dependent and nonlinear. State variable constitutive equations based on a viscoplasticity approach have been developed to model the deformation of the polymer matrix. The constitutive equations are then combined with a mechanics of materials based micromechanics model which utilizes fiber substructuring to predict the effective mechanical and thermal response of the composite. To verify the analytical model, tensile stress-strain curves are predicted for a representative composite over strain rates ranging from around 1 x 10(exp -5)/sec to approximately 400/sec. The analytical predictions compare favorably to experimentally obtained values both qualitatively and quantitatively. Effective elastic and thermal constants are predicted for another composite, and compared to finite element results.
Sakoda, Lori C; Henderson, Louise M; Caverly, Tanner J; Wernli, Karen J; Katki, Hormuzd A
2017-12-01
Risk prediction models may be useful for facilitating effective and high-quality decision-making at critical steps in the lung cancer screening process. This review provides a current overview of published lung cancer risk prediction models and their applications to lung cancer screening and highlights both challenges and strategies for improving their predictive performance and use in clinical practice. Since the 2011 publication of the National Lung Screening Trial results, numerous prediction models have been proposed to estimate the probability of developing or dying from lung cancer or the probability that a pulmonary nodule is malignant. Respective models appear to exhibit high discriminatory accuracy in identifying individuals at highest risk of lung cancer or differentiating malignant from benign pulmonary nodules. However, validation and critical comparison of the performance of these models in independent populations are limited. Little is also known about the extent to which risk prediction models are being applied in clinical practice and influencing decision-making processes and outcomes related to lung cancer screening. Current evidence is insufficient to determine which lung cancer risk prediction models are most clinically useful and how to best implement their use to optimize screening effectiveness and quality. To address these knowledge gaps, future research should be directed toward validating and enhancing existing risk prediction models for lung cancer and evaluating the application of model-based risk calculators and its corresponding impact on screening processes and outcomes.
Predicting nucleic acid binding interfaces from structural models of proteins.
Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael
2012-02-01
The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.
Prediction of high-energy radiation belt electron fluxes using a combined VERB-NARMAX model
NASA Astrophysics Data System (ADS)
Pakhotin, I. P.; Balikhin, M. A.; Shprits, Y.; Subbotin, D.; Boynton, R.
2013-12-01
This study is concerned with the modelling and forecasting of energetic electron fluxes that endanger satellites in space. By combining data-driven predictions from the NARMAX methodology with the physics-based VERB code, it becomes possible to predict electron fluxes with a high level of accuracy and across a radial distance from inside the local acceleration region to out beyond geosynchronous orbit. The model coupling also makes is possible to avoid accounting for seed electron variations at the outer boundary. Conversely, combining a convection code with the VERB and NARMAX models has the potential to provide even greater accuracy in forecasting that is not limited to geostationary orbit but makes predictions across the entire outer radiation belt region.
Wang, Bin; Xiang, Baoqiang; Lee, June-Yi
2013-02-19
Monsoon rainfall and tropical storms (TSs) impose great impacts on society, yet their seasonal predictions are far from successful. The western Pacific Subtropical High (WPSH) is a prime circulation system affecting East Asian summer monsoon (EASM) and western North Pacific TS activities, but the sources of its variability and predictability have not been established. Here we show that the WPSH variation faithfully represents fluctuations of EASM strength (r = -0.92), the total TS days over the subtropical western North Pacific (r = -0.81), and the total number of TSs impacting East Asian coasts (r = -0.76) during 1979-2009. Our numerical experiment results establish that the WPSH variation is primarily controlled by central Pacific cooling/warming and a positive atmosphere-ocean feedback between the WPSH and the Indo-Pacific warm pool oceans. With a physically based empirical model and the state-of-the-art dynamical models, we demonstrate that the WPSH is highly predictable; this predictability creates a promising way for prediction of monsoon and TS. The predictions using the WPSH predictability not only yields substantially improved skills in prediction of the EASM rainfall, but also enables skillful prediction of the TS activities that the current dynamical models fail. Our findings reveal that positive WPSH-ocean interaction can provide a source of climate predictability and highlight the importance of subtropical dynamics in understanding monsoon and TS predictability.
Wang, Bin; Xiang, Baoqiang; Lee, June-Yi
2013-01-01
Monsoon rainfall and tropical storms (TSs) impose great impacts on society, yet their seasonal predictions are far from successful. The western Pacific Subtropical High (WPSH) is a prime circulation system affecting East Asian summer monsoon (EASM) and western North Pacific TS activities, but the sources of its variability and predictability have not been established. Here we show that the WPSH variation faithfully represents fluctuations of EASM strength (r = –0.92), the total TS days over the subtropical western North Pacific (r = –0.81), and the total number of TSs impacting East Asian coasts (r = –0.76) during 1979–2009. Our numerical experiment results establish that the WPSH variation is primarily controlled by central Pacific cooling/warming and a positive atmosphere-ocean feedback between the WPSH and the Indo-Pacific warm pool oceans. With a physically based empirical model and the state-of-the-art dynamical models, we demonstrate that the WPSH is highly predictable; this predictability creates a promising way for prediction of monsoon and TS. The predictions using the WPSH predictability not only yields substantially improved skills in prediction of the EASM rainfall, but also enables skillful prediction of the TS activities that the current dynamical models fail. Our findings reveal that positive WPSH–ocean interaction can provide a source of climate predictability and highlight the importance of subtropical dynamics in understanding monsoon and TS predictability. PMID:23341624
Experimental and numerical study of physiological responses in hot environments.
Yang, Jie; Weng, Wenguo; Zhang, Baoting
2014-10-01
This paper proposed a multi-node human thermal model to predict human thermal responses in hot environments. The model was extended based on the Tanabe's work by considering the effects of high temperature on heat production, blood flow rate, and heat exchange coefficients. Five healthy men dressed in shorts were exposed in thermal neutral (29 °C) and high temperature (45 °C) environments. The rectal temperatures and skin temperatures of seven human body segments were continuously measured during the experiment. Validation of this model was conducted with experimental data. The results showed that the current model could accurately predict the skin and core temperatures in terms of the tendency and absolute values. In the human body segments expect calf and trunk, the temperature differences between the experimental data and the predicted results in high temperature environment were smaller than those in the thermally neutral environment conditions. The extended model was proved to be capable of predicting accurately human physiological responses in hot environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Prediction Model for Relativistic Electrons at Geostationary Orbit
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Lyatsky, Wladislaw
2008-01-01
We developed a new prediction model for forecasting relativistic (greater than 2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/interplanetary magnetic field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is stable and incredibly high (about 0.9). The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible.
Muratov, Eugene; Lewis, Margaret; Fourches, Denis; Tropsha, Alexander; Cox, Wendy C
2017-04-01
Objective. To develop predictive computational models forecasting the academic performance of students in the didactic-rich portion of a doctor of pharmacy (PharmD) curriculum as admission-assisting tools. Methods. All PharmD candidates over three admission cycles were divided into two groups: those who completed the PharmD program with a GPA ≥ 3; and the remaining candidates. Random Forest machine learning technique was used to develop a binary classification model based on 11 pre-admission parameters. Results. Robust and externally predictive models were developed that had particularly high overall accuracy of 77% for candidates with high or low academic performance. These multivariate models were highly accurate in predicting these groups to those obtained using undergraduate GPA and composite PCAT scores only. Conclusion. The models developed in this study can be used to improve the admission process as preliminary filters and thus quickly identify candidates who are likely to be successful in the PharmD curriculum.
NASA Astrophysics Data System (ADS)
Tiebin, Wu; Yunlian, Liu; Xinjun, Li; Yi, Yu; Bin, Zhang
2018-06-01
Aiming at the difficulty in quality prediction of sintered ores, a hybrid prediction model is established based on mechanism models of sintering and time-weighted error compensation on the basis of the extreme learning machine (ELM). At first, mechanism models of drum index, total iron, and alkalinity are constructed according to the chemical reaction mechanism and conservation of matter in the sintering process. As the process is simplified in the mechanism models, these models are not able to describe high nonlinearity. Therefore, errors are inevitable. For this reason, the time-weighted ELM based error compensation model is established. Simulation results verify that the hybrid model has a high accuracy and can meet the requirement for industrial applications.
Refining metabolic models and accounting for regulatory effects.
Kim, Joonhoon; Reed, Jennifer L
2014-10-01
Advances in genome-scale metabolic modeling allow us to investigate and engineer metabolism at a systems level. Metabolic network reconstructions have been made for many organisms and computational approaches have been developed to convert these reconstructions into predictive models. However, due to incomplete knowledge these reconstructions often have missing or extraneous components and interactions, which can be identified by reconciling model predictions with experimental data. Recent studies have provided methods to further improve metabolic model predictions by incorporating transcriptional regulatory interactions and high-throughput omics data to yield context-specific metabolic models. Here we discuss recent approaches for resolving model-data discrepancies and building context-specific metabolic models. Once developed highly accurate metabolic models can be used in a variety of biotechnology applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tucci, M.; Toffolatti, L.; de Zotti, G.; Martínez-González, E.
2011-09-01
We present models to predict high-frequency counts of extragalactic radio sources using physically grounded recipes to describe the complex spectral behaviour of blazars that dominate the mm-wave counts at bright flux densities. We show that simple power-law spectra are ruled out by high-frequency (ν ≥ 100 GHz) data. These data also strongly constrain models featuring the spectral breaks predicted by classical physical models for the synchrotron emission produced in jets of blazars. A model dealing with blazars as a single population is, at best, only marginally consistent with data coming from current surveys at high radio frequencies. Our most successful model assumes different distributions of break frequencies, νM, for BL Lacs and flat-spectrum radio quasars (FSRQs). The former objects have substantially higher values of νM, implying that the synchrotron emission comes from more compact regions; therefore, a substantial increase of the BL Lac fraction at high radio frequencies and at bright flux densities is predicted. Remarkably, our best model is able to give a very good fit to all the observed data on number counts and on distributions of spectral indices of extragalactic radio sources at frequencies above 5 and up to 220 GHz. Predictions for the forthcoming sub-mm blazar counts from Planck, at the highest HFI frequencies, and from Herschel surveys are also presented. Appendices are available in electronic form at http://www.aanda.org
Predicting cost of care using self-reported health status data.
Boscardin, Christy K; Gonzales, Ralph; Bradley, Kent L; Raven, Maria C
2015-09-23
We examined whether self-reported employee health status data can improve the performance of administrative data-based models for predicting future high health costs, and develop a predictive model for predicting new high cost individuals. This retrospective cohort study used data from 8,917 Safeway employees self-insured by Safeway during 2008 and 2009. We created models using step-wise multivariable logistic regression starting with health services use data, then socio-demographic data, and finally adding the self-reported health status data to the model. Adding self-reported health data to the baseline model that included only administrative data (health services use and demographic variables; c-statistic = 0.63) increased the model" predictive power (c-statistic = 0.70). Risk factors associated with being a new high cost individual in 2009 were: 1) had one or more ED visits in 2008 (adjusted OR: 1.87, 95 % CI: 1.52, 2.30), 2) had one or more hospitalizations in 2008 (adjusted OR: 1.95, 95 % CI: 1.38, 2.77), 3) being female (adjusted OR: 1.34, 95 % CI: 1.16, 1.55), 4) increasing age (compared with age 18-35, adjusted OR for 36-49 years: 1.28; 95 % CI: 1.03, 1.60; adjusted OR for 50-64 years: 1.92, 95 % CI: 1.55, 2.39; adjusted OR for 65+ years: 3.75, 95 % CI: 2.67, 2.23), 5) the presence of self-reported depression (adjusted OR: 1.53, 95 % CI: 1.29, 1.81), 6) chronic pain (adjusted OR: 2.22, 95 % CI: 1.81, 2.72), 7) diabetes (adjusted OR: 1.73, 95 % CI: 1.35, 2.23), 8) high blood pressure (adjusted OR: 1.42, 95 % CI: 1.21, 1.67), and 9) above average BMI (adjusted OR: 1.20, 95 % CI: 1.04, 1.38). The comparison of the models between the full sample and the sample without theprevious high cost members indicated significant differences in the predictors. This has importantimplications for models using only the health service use (administrative data) given that the past high costis significantly correlated with future high cost and often drive the predictive models. Self-reported health data improved the ability of our model to identify individuals at risk for being high cost beyond what was possible with administrative data alone.
Low-high junction theory applied to solar cells
NASA Technical Reports Server (NTRS)
Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.
1974-01-01
Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open-circuit voltage and improved radiation resistance. Several analytical models for open-circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero surface recombination velocity (SRV) case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells.
Sun, Jin; Rutkoski, Jessica E; Poland, Jesse A; Crossa, José; Jannink, Jean-Luc; Sorrells, Mark E
2017-07-01
High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment. Copyright © 2017 Crop Science Society of America.
Flassig, Robert J; Migal, Iryna; der Zalm, Esther van; Rihko-Struckmann, Liisa; Sundmacher, Kai
2015-01-16
Understanding the dynamics of biological processes can substantially be supported by computational models in the form of nonlinear ordinary differential equations (ODE). Typically, this model class contains many unknown parameters, which are estimated from inadequate and noisy data. Depending on the ODE structure, predictions based on unmeasured states and associated parameters are highly uncertain, even undetermined. For given data, profile likelihood analysis has been proven to be one of the most practically relevant approaches for analyzing the identifiability of an ODE structure, and thus model predictions. In case of highly uncertain or non-identifiable parameters, rational experimental design based on various approaches has shown to significantly reduce parameter uncertainties with minimal amount of effort. In this work we illustrate how to use profile likelihood samples for quantifying the individual contribution of parameter uncertainty to prediction uncertainty. For the uncertainty quantification we introduce the profile likelihood sensitivity (PLS) index. Additionally, for the case of several uncertain parameters, we introduce the PLS entropy to quantify individual contributions to the overall prediction uncertainty. We show how to use these two criteria as an experimental design objective for selecting new, informative readouts in combination with intervention site identification. The characteristics of the proposed multi-criterion objective are illustrated with an in silico example. We further illustrate how an existing practically non-identifiable model for the chlorophyll fluorescence induction in a photosynthetic organism, D. salina, can be rendered identifiable by additional experiments with new readouts. Having data and profile likelihood samples at hand, the here proposed uncertainty quantification based on prediction samples from the profile likelihood provides a simple way for determining individual contributions of parameter uncertainties to uncertainties in model predictions. The uncertainty quantification of specific model predictions allows identifying regions, where model predictions have to be considered with care. Such uncertain regions can be used for a rational experimental design to render initially highly uncertain model predictions into certainty. Finally, our uncertainty quantification directly accounts for parameter interdependencies and parameter sensitivities of the specific prediction.
Validation of High Frequency (HF) Propagation Prediction Models in the Arctic region
NASA Astrophysics Data System (ADS)
Athieno, R.; Jayachandran, P. T.
2014-12-01
Despite the emergence of modern techniques for long distance communication, Ionospheric communication in the high frequency (HF) band (3-30 MHz) remains significant to both civilian and military users. However, the efficient use of the ever-varying ionosphere as a propagation medium is dependent on the reliability of ionospheric and HF propagation prediction models. Most available models are empirical implying that data collection has to be sufficiently large to provide good intended results. The models we present were developed with little data from the high latitudes which necessitates their validation. This paper presents the validation of three long term High Frequency (HF) propagation prediction models over a path within the Arctic region. Measurements of the Maximum Usable Frequency for a 3000 km range (MUF (3000) F2) for Resolute, Canada (74.75° N, 265.00° E), are obtained from hand-scaled ionograms generated by the Canadian Advanced Digital Ionosonde (CADI). The observations have been compared with predictions obtained from the Ionospheric Communication Enhanced Profile Analysis Program (ICEPAC), Voice of America Coverage Analysis Program (VOACAP) and International Telecommunication Union Recommendation 533 (ITU-REC533) for 2009, 2011, 2012 and 2013. A statistical analysis shows that the monthly predictions seem to reproduce the general features of the observations throughout the year though it is more evident in the winter and equinox months. Both predictions and observations show a diurnal and seasonal variation. The analysed models did not show large differences in their performances. However, there are noticeable differences across seasons for the entire period analysed: REC533 gives a better performance in winter months while VOACAP has a better performance for both equinox and summer months. VOACAP gives a better performance in the daily predictions compared to ICEPAC though, in general, the monthly predictions seem to agree more with the observations compared to the daily predictions.
Impact of turbulence anisotropy near walls in room airflow.
Schälin, A; Nielsen, P V
2004-06-01
The influence of different turbulence models used in computational fluid dynamics predictions is studied in connection with room air movement. The turbulence models used are the high Re-number kappa-epsilon model and the high Re-number Reynolds stress model (RSM). The three-dimensional wall jet is selected for the work. The growth rate parallel to the wall in a three-dimensional wall jet is large compared with the growth rate perpendicular to the wall, and it is large compared with the growth rate in a free circular jet. It is shown that it is not possible to predict the high growth rate parallel with a surface in a three-dimensional wall jet by the kappa-epsilon turbulence model. Furthermore, it is shown that the growth rate can be predicted to a certain extent by the RSM with wall reflection terms. The flow in a deep room can be strongly influenced by details as the growth rate of a three-dimensional wall jet. Predictions by a kappa-epsilon model and RSM show large deviations in the occupied zone. Measurements and observations of streamline patterns in model experiments indicate that a reasonable solution is obtained by the RSM compared with the solution obtained by the kappa-epsilon model. Computational fluid dynamics (CFD) is often used for the prediction of air distribution in rooms and for the evaluation of thermal comfort and indoor air quality. The most used turbulence model in CFD is the kappa-epsilon model. This model often produces good results; however, some cases require more sophisticated models. The prediction of a three-dimensional wall jet is improved if it is made by a Reynolds stress model (RSM). This model improves the prediction of the velocity level in the jet and in some special cases it may influence the entire flow in the occupied zone.
Pretreatment data is highly predictive of liver chemistry signals in clinical trials
Cai, Zhaohui; Bresell, Anders; Steinberg, Mark H; Silberg, Debra G; Furlong, Stephen T
2012-01-01
Purpose The goal of this retrospective analysis was to assess how well predictive models could determine which patients would develop liver chemistry signals during clinical trials based on their pretreatment (baseline) information. Patients and methods Based on data from 24 late-stage clinical trials, classification models were developed to predict liver chemistry outcomes using baseline information, which included demographics, medical history, concomitant medications, and baseline laboratory results. Results Predictive models using baseline data predicted which patients would develop liver signals during the trials with average validation accuracy around 80%. Baseline levels of individual liver chemistry tests were most important for predicting their own elevations during the trials. High bilirubin levels at baseline were not uncommon and were associated with a high risk of developing biochemical Hy’s law cases. Baseline γ-glutamyltransferase (GGT) level appeared to have some predictive value, but did not increase predictability beyond using established liver chemistry tests. Conclusion It is possible to predict which patients are at a higher risk of developing liver chemistry signals using pretreatment (baseline) data. Derived knowledge from such predictions may allow proactive and targeted risk management, and the type of analysis described here could help determine whether new biomarkers offer improved performance over established ones. PMID:23226004
Tian, Liang; Russell, Alan; Anderson, Iver
2014-01-03
Deformation processed metal–metal composites (DMMCs) are high-strength, high-electrical conductivity composites developed by severe plastic deformation of two ductile metal phases. The extraordinarily high strength of DMMCs is underestimated using the rule of mixture (or volumetric weighted average) of conventionally work-hardened metals. A dislocation-density-based, strain–gradient–plasticity model is proposed to relate the strain-gradient effect with the geometrically necessary dislocations emanating from the interface to better predict the strength of DMMCs. The model prediction was compared with our experimental findings of Cu–Nb, Cu–Ta, and Al–Ti DMMC systems to verify the applicability of the new model. The results show that this model predicts themore » strength of DMMCs better than the rule-of-mixture model. The strain-gradient effect, responsible for the exceptionally high strength of heavily cold worked DMMCs, is dominant at large deformation strain since its characteristic microstructure length is comparable with the intrinsic material length.« less
NASA Astrophysics Data System (ADS)
Chen, Dar-Hsin; Chou, Heng-Chih; Wang, David; Zaabar, Rim
2011-06-01
Most empirical research of the path-dependent, exotic-option credit risk model focuses on developed markets. Taking Taiwan as an example, this study investigates the bankruptcy prediction performance of the path-dependent, barrier option model in the emerging market. We adopt Duan's (1994) [11], (2000) [12] transformed-data maximum likelihood estimation (MLE) method to directly estimate the unobserved model parameters, and compare the predictive ability of the barrier option model to the commonly adopted credit risk model, Merton's model. Our empirical findings show that the barrier option model is more powerful than Merton's model in predicting bankruptcy in the emerging market. Moreover, we find that the barrier option model predicts bankruptcy much better for highly-leveraged firms. Finally, our findings indicate that the prediction accuracy of the credit risk model can be improved by higher asset liquidity and greater financial transparency.
NASA Astrophysics Data System (ADS)
Singh, Savita; Singh, Alok; Sharma, Sudhir Kumar
2017-06-01
In this paper, an analytical modeling and prediction of tensile and flexural strength of three dimensional micro-scaled novel coconut shell powder (CSP) reinforced epoxy polymer composites have been reported. The novel CSP has a specific mixing ratio of different coconut shell particle size. A comparison is made between obtained experimental strength and modified Guth model. The result shows a strong evidence for non-validation of modified Guth model for strength prediction. Consequently, a constitutive modeled equation named Singh model has been developed to predict the tensile and flexural strength of this novel CSP reinforced epoxy composite. Moreover, high resolution Raman spectrum shows that 40 % CSP reinforced epoxy composite has high dielectric constant to become an alternative material for capacitance whereas fractured surface morphology revealed that a strong bonding between novel CSP and epoxy polymer for the application as light weight composite materials in engineering.
Dai, Wenrui; Xiong, Hongkai; Jiang, Xiaoqian; Chen, Chang Wen
2014-01-01
This paper proposes a novel model on intra coding for High Efficiency Video Coding (HEVC), which simultaneously predicts blocks of pixels with optimal rate distortion. It utilizes the spatial statistical correlation for the optimal prediction based on 2-D contexts, in addition to formulating the data-driven structural interdependences to make the prediction error coherent with the probability distribution, which is desirable for successful transform and coding. The structured set prediction model incorporates a max-margin Markov network (M3N) to regulate and optimize multiple block predictions. The model parameters are learned by discriminating the actual pixel value from other possible estimates to maximize the margin (i.e., decision boundary bandwidth). Compared to existing methods that focus on minimizing prediction error, the M3N-based model adaptively maintains the coherence for a set of predictions. Specifically, the proposed model concurrently optimizes a set of predictions by associating the loss for individual blocks to the joint distribution of succeeding discrete cosine transform coefficients. When the sample size grows, the prediction error is asymptotically upper bounded by the training error under the decomposable loss function. As an internal step, we optimize the underlying Markov network structure to find states that achieve the maximal energy using expectation propagation. For validation, we integrate the proposed model into HEVC for optimal mode selection on rate-distortion optimization. The proposed prediction model obtains up to 2.85% bit rate reduction and achieves better visual quality in comparison to the HEVC intra coding. PMID:25505829
Zhao, Lue Ping; Carlsson, Annelie; Larsson, Helena Elding; Forsander, Gun; Ivarsson, Sten A; Kockum, Ingrid; Ludvigsson, Johnny; Marcus, Claude; Persson, Martina; Samuelsson, Ulf; Örtqvist, Eva; Pyo, Chul-Woo; Bolouri, Hamid; Zhao, Michael; Nelson, Wyatt C; Geraghty, Daniel E; Lernmark, Åke
2017-11-01
It is of interest to predict possible lifetime risk of type 1 diabetes (T1D) in young children for recruiting high-risk subjects into longitudinal studies of effective prevention strategies. Utilizing a case-control study in Sweden, we applied a recently developed next generation targeted sequencing technology to genotype class II genes and applied an object-oriented regression to build and validate a prediction model for T1D. In the training set, estimated risk scores were significantly different between patients and controls (P = 8.12 × 10 -92 ), and the area under the curve (AUC) from the receiver operating characteristic (ROC) analysis was 0.917. Using the validation data set, we validated the result with AUC of 0.886. Combining both training and validation data resulted in a predictive model with AUC of 0.903. Further, we performed a "biological validation" by correlating risk scores with 6 islet autoantibodies, and found that the risk score was significantly correlated with IA-2A (Z-score = 3.628, P < 0.001). When applying this prediction model to the Swedish population, where the lifetime T1D risk ranges from 0.5% to 2%, we anticipate identifying approximately 20 000 high-risk subjects after testing all newborns, and this calculation would identify approximately 80% of all patients expected to develop T1D in their lifetime. Through both empirical and biological validation, we have established a prediction model for estimating lifetime T1D risk, using class II HLA. This prediction model should prove useful for future investigations to identify high-risk subjects for prevention research in high-risk populations. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hayati, M.; Rashidi, A. M.; Rezaei, A.
2012-10-01
In this paper, the applicability of ANFIS as an accurate model for the prediction of the mass gain during high temperature oxidation using experimental data obtained for aluminized nanostructured (NS) nickel is presented. For developing the model, exposure time and temperature are taken as input and the mass gain as output. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the network. We have compared the proposed ANFIS model with experimental data. The predicted data are found to be in good agreement with the experimental data with mean relative error less than 1.1%. Therefore, we can use ANFIS model to predict the performances of thermal systems in engineering applications, such as modeling the mass gain for NS materials.
NASA Technical Reports Server (NTRS)
Dhanasekharan, M.; Huang, H.; Kokini, J. L.; Janes, H. W. (Principal Investigator)
1999-01-01
The measured rheological behavior of hard wheat flour dough was predicted using three nonlinear differential viscoelastic models. The Phan-Thien Tanner model gave good zero shear viscosity prediction, but overpredicted the shear viscosity at higher shear rates and the transient and extensional properties. The Giesekus-Leonov model gave similar predictions to the Phan-Thien Tanner model, but the extensional viscosity prediction showed extension thickening. Using high values of the mobility factor, extension thinning behavior was observed but the predictions were not satisfactory. The White-Metzner model gave good predictions of the steady shear viscosity and the first normal stress coefficient but it was unable to predict the uniaxial extensional viscosity as it exhibited asymptotic behavior in the tested extensional rates. It also predicted the transient shear properties with moderate accuracy in the transient phase, but very well at higher times, compared to the Phan-Thien Tanner model and the Giesekus-Leonov model. None of the models predicted all observed data consistently well. Overall the White-Metzner model appeared to make the best predictions of all the observed data.
Origins of the high flux hohlraum model
NASA Astrophysics Data System (ADS)
Rosen, M. D.; Hinkel, D. E.; Williams, E. A.; Callahan, D. A.; Town, R. P. J.; Scott, H. A.; Kruer, W. L.; Suter, L. J.
2010-11-01
We review how the ``high flux model'' (HFM) helped clarify the performance of the Autumn 09 National Ignition Campaign (NIC) gas filled/capsule imploding hohlraum energetics campaign. This campaign showed good laser-hohlraum coupling, reasonably high drive, and implosion symmetry control via cross beam transfer. Mysteries that remained included the level and spectrum of the Stimulated Raman light, the tendency towards pancaked implosions, and drive that exceeded (standard model) predictions early in the campaign, and lagged those predictions late in the campaign. The HFM uses a detailed configuration accounting (DCA) atomic physics and a generous flux limiter (f=0.2) both of which contribute to predicting a hohlraum plasma that is cooler than the standard, XSN average atom, f=0.05 model. This cooler plasma proved to be key in solving all of those mysteries. Despite past successes of the HFM in correctly modeling Omega Laser Au sphere data and NIC empty hohlraum drive, the model lacked some credibility for this energetics campaign, because it predicted too much hohlraum drive. Its credibility was then boosted by a re-evaluation of the initially reported SRS levels.
Beaulieu, Jean; Doerksen, Trevor K; MacKay, John; Rainville, André; Bousquet, Jean
2014-12-02
Genomic selection (GS) may improve selection response over conventional pedigree-based selection if markers capture more detailed information than pedigrees in recently domesticated tree species and/or make it more cost effective. Genomic prediction accuracies using 1748 trees and 6932 SNPs representative of as many distinct gene loci were determined for growth and wood traits in white spruce, within and between environments and breeding groups (BG), each with an effective size of Ne ≈ 20. Marker subsets were also tested. Model fits and/or cross-validation (CV) prediction accuracies for ridge regression (RR) and the least absolute shrinkage and selection operator models approached those of pedigree-based models. With strong relatedness between CV sets, prediction accuracies for RR within environment and BG were high for wood (r = 0.71-0.79) and moderately high for growth (r = 0.52-0.69) traits, in line with trends in heritabilities. For both classes of traits, these accuracies achieved between 83% and 92% of those obtained with phenotypes and pedigree information. Prediction into untested environments remained moderately high for wood (r ≥ 0.61) but dropped significantly for growth (r ≥ 0.24) traits, emphasizing the need to phenotype in all test environments and model genotype-by-environment interactions for growth traits. Removing relatedness between CV sets sharply decreased prediction accuracies for all traits and subpopulations, falling near zero between BGs with no known shared ancestry. For marker subsets, similar patterns were observed but with lower prediction accuracies. Given the need for high relatedness between CV sets to obtain good prediction accuracies, we recommend to build GS models for prediction within the same breeding population only. Breeding groups could be merged to build genomic prediction models as long as the total effective population size does not exceed 50 individuals in order to obtain high prediction accuracy such as that obtained in the present study. A number of markers limited to a few hundred would not negatively impact prediction accuracies, but these could decrease more rapidly over generations. The most promising short-term approach for genomic selection would likely be the selection of superior individuals within large full-sib families vegetatively propagated to implement multiclonal forestry.
NASA Technical Reports Server (NTRS)
Beck, L. R.; Rodriguez, M. H.; Dister, S. W.; Rodriguez, A. D.; Washino, R. K.; Roberts, D. R.; Spanner, M. A.
1997-01-01
A blind test of two remote sensing-based models for predicting adult populations of Anopheles albimanus in villages, an indicator of malaria transmission risk, was conducted in southern Chiapas, Mexico. One model was developed using a discriminant analysis approach, while the other was based on regression analysis. The models were developed in 1992 for an area around Tapachula, Chiapas, using Landsat Thematic Mapper (TM) satellite data and geographic information system functions. Using two remotely sensed landscape elements, the discriminant model was able to successfully distinguish between villages with high and low An. albimanus abundance with an overall accuracy of 90%. To test the predictive capability of the models, multitemporal TM data were used to generate a landscape map of the Huixtla area, northwest of Tapachula, where the models were used to predict risk for 40 villages. The resulting predictions were not disclosed until the end of the test. Independently, An. albimanus abundance data were collected in the 40 randomly selected villages for which the predictions had been made. These data were subsequently used to assess the models' accuracies. The discriminant model accurately predicted 79% of the high-abundance villages and 50% of the low-abundance villages, for an overall accuracy of 70%. The regression model correctly identified seven of the 10 villages with the highest mosquito abundance. This test demonstrated that remote sensing-based models generated for one area can be used successfully in another, comparable area.
Predicting arsenic in drinking water wells of the Central Valley, California
Ayotte, Joseph; Nolan, Bernard T.; Gronberg, JoAnn M.
2016-01-01
Probabilities of arsenic in groundwater at depths used for domestic and public supply in the Central Valley of California are predicted using weak-learner ensemble models (boosted regression trees, BRT) and more traditional linear models (logistic regression, LR). Both methods captured major processes that affect arsenic concentrations, such as the chemical evolution of groundwater, redox differences, and the influence of aquifer geochemistry. Inferred flow-path length was the most important variable but near-surface-aquifer geochemical data also were significant. A unique feature of this study was that previously predicted nitrate concentrations in three dimensions were themselves predictive of arsenic and indicated an important redox effect at >10 μg/L, indicating low arsenic where nitrate was high. Additionally, a variable representing three-dimensional aquifer texture from the Central Valley Hydrologic Model was an important predictor, indicating high arsenic associated with fine-grained aquifer sediment. BRT outperformed LR at the 5 μg/L threshold in all five predictive performance measures and at 10 μg/L in four out of five measures. BRT yielded higher prediction sensitivity (39%) than LR (18%) at the 10 μg/L threshold–a useful outcome because a major objective of the modeling was to improve our ability to predict high arsenic areas.
Predicting plant biomass accumulation from image-derived parameters
Chen, Dijun; Shi, Rongli; Pape, Jean-Michel; Neumann, Kerstin; Graner, Andreas; Chen, Ming; Klukas, Christian
2018-01-01
Abstract Background Image-based high-throughput phenotyping technologies have been rapidly developed in plant science recently, and they provide a great potential to gain more valuable information than traditionally destructive methods. Predicting plant biomass is regarded as a key purpose for plant breeders and ecologists. However, it is a great challenge to find a predictive biomass model across experiments. Results In the present study, we constructed 4 predictive models to examine the quantitative relationship between image-based features and plant biomass accumulation. Our methodology has been applied to 3 consecutive barley (Hordeum vulgare) experiments with control and stress treatments. The results proved that plant biomass can be accurately predicted from image-based parameters using a random forest model. The high prediction accuracy based on this model will contribute to relieving the phenotyping bottleneck in biomass measurement in breeding applications. The prediction performance is still relatively high across experiments under similar conditions. The relative contribution of individual features for predicting biomass was further quantified, revealing new insights into the phenotypic determinants of the plant biomass outcome. Furthermore, methods could also be used to determine the most important image-based features related to plant biomass accumulation, which would be promising for subsequent genetic mapping to uncover the genetic basis of biomass. Conclusions We have developed quantitative models to accurately predict plant biomass accumulation from image data. We anticipate that the analysis results will be useful to advance our views of the phenotypic determinants of plant biomass outcome, and the statistical methods can be broadly used for other plant species. PMID:29346559
Research on light rail electric load forecasting based on ARMA model
NASA Astrophysics Data System (ADS)
Huang, Yifan
2018-04-01
The article compares a variety of time series models and combines the characteristics of power load forecasting. Then, a light load forecasting model based on ARMA model is established. Based on this model, a light rail system is forecasted. The prediction results show that the accuracy of the model prediction is high.
NASA Astrophysics Data System (ADS)
Wu, M. Q.; Pan, C. K.; Chan, V. S.; Li, G. Q.; Garofalo, A. M.; Jian, X.; Liu, L.; Ren, Q. L.; Chen, J. L.; Gao, X.; Gong, X. Z.; Ding, S. Y.; Qian, J. P.; Cfetr Physics Team
2018-04-01
Time-dependent integrated modeling of DIII-D ITER-like and high bootstrap current plasma ramp-up discharges has been performed with the equilibrium code EFIT, and the transport codes TGYRO and ONETWO. Electron and ion temperature profiles are simulated by TGYRO with the TGLF (SAT0 or VX model) turbulent and NEO neoclassical transport models. The VX model is a new empirical extension of the TGLF turbulent model [Jian et al., Nucl. Fusion 58, 016011 (2018)], which captures the physics of multi-scale interaction between low-k and high-k turbulence from nonlinear gyro-kinetic simulation. This model is demonstrated to accurately model low Ip discharges from the EAST tokamak. Time evolution of the plasma current density profile is simulated by ONETWO with the experimental current ramp-up rate. The general trend of the predicted evolution of the current density profile is consistent with that obtained from the equilibrium reconstruction with Motional Stark effect constraints. The predicted evolution of βN , li , and βP also agrees well with the experiments. For the ITER-like cases, the predicted electron and ion temperature profiles using TGLF_Sat0 agree closely with the experimental measured profiles, and are demonstrably better than other proposed transport models. For the high bootstrap current case, the predicted electron and ion temperature profiles perform better in the VX model. It is found that the SAT0 model works well at high IP (>0.76 MA) while the VX model covers a wider range of plasma current ( IP > 0.6 MA). The results reported in this paper suggest that the developed integrated modeling could be a candidate for ITER and CFETR ramp-up engineering design modeling.
A Model for Predicting Student Performance on High-Stakes Assessment
ERIC Educational Resources Information Center
Dammann, Matthew Walter
2010-01-01
This research study examined the use of student achievement on reading and math state assessments to predict success on the science state assessment. Multiple regression analysis was utilized to test the prediction for all students in grades 5 and 8 in a mid-Atlantic state. The prediction model developed from the analysis explored the combined…
Stevenson, Douglass E; Michels, Gerald J; Bible, John B; Jackman, John A; Harris, Marvin K
2008-10-01
Field observations at three locations in the Texas High Plains were used to develop and validate a degree-day phenology model to predict the onset and proportional emergence of adult Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) adults. Climatic data from the Texas High Plains Potential Evapotranspiration network were used with records of cumulative proportional adult emergence to determine the functional lower developmental temperature, optimum starting date, and the sum of degree-days for phenological events from onset to 99% adult emergence. The model base temperature, 10 degrees C (50 degrees F), corresponds closely to known physiological lower limits for development. The model uses a modified Gompertz equation, y = 96.5 x exp (-(exp(6.0 - 0.00404 x (x - 4.0), where x is cumulative heat (degree-days), to predict y, cumulative proportional emergence expressed as a percentage. The model starts degree-day accumulation on the date of corn, Zea mays L., emergence, and predictions correspond closely to corn phenological stages from tasseling to black layer development. Validation shows the model predicts cumulative proportional adult emergence within a satisfactory interval of 4.5 d. The model is flexible enough to accommodate early planting, late emergence, and the effects of drought and heat stress. The model provides corn producers ample lead time to anticipate and implement adult control practices.
Vuong, Kylie; Armstrong, Bruce K; Weiderpass, Elisabete; Lund, Eiliv; Adami, Hans-Olov; Veierod, Marit B; Barrett, Jennifer H; Davies, John R; Bishop, D Timothy; Whiteman, David C; Olsen, Catherine M; Hopper, John L; Mann, Graham J; Cust, Anne E; McGeechan, Kevin
2016-08-01
Identifying individuals at high risk of melanoma can optimize primary and secondary prevention strategies. To develop and externally validate a risk prediction model for incident first-primary cutaneous melanoma using self-assessed risk factors. We used unconditional logistic regression to develop a multivariable risk prediction model. Relative risk estimates from the model were combined with Australian melanoma incidence and competing mortality rates to obtain absolute risk estimates. A risk prediction model was developed using the Australian Melanoma Family Study (629 cases and 535 controls) and externally validated using 4 independent population-based studies: the Western Australia Melanoma Study (511 case-control pairs), Leeds Melanoma Case-Control Study (960 cases and 513 controls), Epigene-QSkin Study (44 544, of which 766 with melanoma), and Swedish Women's Lifestyle and Health Cohort Study (49 259 women, of which 273 had melanoma). We validated model performance internally and externally by assessing discrimination using the area under the receiver operating curve (AUC). Additionally, using the Swedish Women's Lifestyle and Health Cohort Study, we assessed model calibration and clinical usefulness. The risk prediction model included hair color, nevus density, first-degree family history of melanoma, previous nonmelanoma skin cancer, and lifetime sunbed use. On internal validation, the AUC was 0.70 (95% CI, 0.67-0.73). On external validation, the AUC was 0.66 (95% CI, 0.63-0.69) in the Western Australia Melanoma Study, 0.67 (95% CI, 0.65-0.70) in the Leeds Melanoma Case-Control Study, 0.64 (95% CI, 0.62-0.66) in the Epigene-QSkin Study, and 0.63 (95% CI, 0.60-0.67) in the Swedish Women's Lifestyle and Health Cohort Study. Model calibration showed close agreement between predicted and observed numbers of incident melanomas across all deciles of predicted risk. In the external validation setting, there was higher net benefit when using the risk prediction model to classify individuals as high risk compared with classifying all individuals as high risk. The melanoma risk prediction model performs well and may be useful in prevention interventions reliant on a risk assessment using self-assessed risk factors.
Vulnerability of shallow groundwater and drinking-water wells to nitrate in the United States
Nolan, Bernard T.; Hitt, Kerie J.
2006-01-01
Two nonlinear models were developed at the national scale to (1) predict contamination of shallow ground water (typically < 5 m deep) by nitrate from nonpoint sources and (2) to predict ambient nitrate concentration in deeper supplies used for drinking. The new models have several advantages over previous national-scale approaches. First, they predict nitrate concentration (rather than probability of occurrence), which can be directly compared with water-quality criteria. Second, the models share a mechanistic structure that segregates nitrogen (N) sources and physical factors that enhance or restrict nitrate transport and accumulation in ground water. Finally, data were spatially averaged to minimize small-scale variability so that the large-scale influences of N loading, climate, and aquifer characteristics could more readily be identified. Results indicate that areas with high N application, high water input, well-drained soils, fractured rocks or those with high effective porosity, and lack of attenuation processes have the highest predicted nitrate concentration. The shallow groundwater model (mean square error or MSE = 2.96) yielded a coefficient of determination (R2) of 0.801, indicating that much of the variation in nitrate concentration is explained by the model. Moderate to severe nitrate contamination is predicted to occur in the High Plains, northern Midwest, and selected other areas. The drinking-water model performed comparably (MSE = 2.00, R2 = 0.767) and predicts that the number of users on private wells and residing in moderately contaminated areas (>5 to ≤10 mg/L nitrate) decreases by 12% when simulation depth increases from 10 to 50 m.
Vulnerability of shallow groundwater and drinking-water wells to nitrate in the United States.
Nolan, Bernard T; Hitt, Kerie J
2006-12-15
Two nonlinear models were developed at the national scale to (1) predict contamination of shallow ground water (typically < 5 m deep) by nitrate from nonpoint sources and (2) to predict ambient nitrate concentration in deeper supplies used for drinking. The new models have several advantages over previous national-scale approaches. First, they predict nitrate concentration (rather than probability of occurrence), which can be directly compared with water-quality criteria. Second, the models share a mechanistic structure that segregates nitrogen (N) sources and physical factors that enhance or restrict nitrate transport and accumulation in ground water. Finally, data were spatially averaged to minimize small-scale variability so that the large-scale influences of N loading, climate, and aquifer characteristics could more readily be identified. Results indicate that areas with high N application, high water input, well-drained soils, fractured rocks or those with high effective porosity, and lack of attenuation processes have the highest predicted nitrate concentration. The shallow groundwater model (mean square error or MSE = 2.96) yielded a coefficient of determination (R(2)) of 0.801, indicating that much of the variation in nitrate concentration is explained by the model. Moderate to severe nitrate contamination is predicted to occur in the High Plains, northern Midwest, and selected other areas. The drinking-water model performed comparably (MSE = 2.00, R(2) = 0.767) and predicts that the number of users on private wells and residing in moderately contaminated areas (>5 to < or =10 mg/L nitrate) decreases by 12% when simulation depth increases from 10 to 50 m.
NASA Astrophysics Data System (ADS)
Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Hecht, James; Solomon, Stanley; Jahn, Jorg-Micha
2018-01-01
It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth's magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.
NASA Astrophysics Data System (ADS)
Yung, L. Y. Aaron; Somerville, Rachel S.
2017-06-01
The well-established Santa Cruz semi-analytic galaxy formation framework has been shown to be quite successful at explaining observations in the local Universe, as well as making predictions for low-redshift observations. Recently, metallicity-based gas partitioning and H2-based star formation recipes have been implemented in our model, replacing the legacy cold-gas based recipe. We then use our revised model to explore the high-redshift Universe and make predictions up to z = 15. Although our model is only calibrated to observations from the local universe, our predictions seem to match incredibly well with mid- to high-redshift observational constraints available-to-date, including rest-frame UV luminosity functions and the reionization history as constrained by CMB and IGM observations. We provide predictions for individual and statistical galaxy properties at a wide range of redshifts (z = 4 - 15), including objects that are too far or too faint to be detected with current facilities. And using our model predictions, we also provide forecasted luminosity functions and other observables for upcoming studies with JWST.
Regional Scale High Resolution δ18O Prediction in Precipitation Using MODIS EVI
Huang, Cho-Ying; Wang, Chung-Ho; Lin, Shou-De; Lo, Yi-Chen; Huang, Bo-Wen; Hatch, Kent A.; Shiu, Hau-Jie; You, Cheng-Feng; Chang, Yuan-Mou; Shen, Sheng-Feng
2012-01-01
The natural variation in stable water isotope ratio data, also known as water isoscape, is a spatiotemporal fingerprint and a powerful natural tracer that has been widely applied in disciplines as diverse as hydrology, paleoclimatology, ecology and forensic investigation. Although much effort has been devoted to developing a predictive water isoscape model, it remains a central challenge for scientists to generate high accuracy, fine scale spatiotemporal water isoscape prediction. Here we develop a novel approach of using the MODIS-EVI (the Moderate Resolution Imagining Spectroradiometer-Enhanced Vegetation Index), to predict δ18O in precipitation at the regional scale. Using a structural equation model, we show that the EVI and precipitated δ18O are highly correlated and thus the EVI is a good predictor of precipitated δ18O. We then test the predictability of our EVI-δ18O model and demonstrate that our approach can provide high accuracy with fine spatial (250×250 m) and temporal (16 days) scale δ18O predictions (annual and monthly predictabilities [r] are 0.96 and 0.80, respectively). We conclude the merging of the EVI and δ18O in precipitation can greatly extend the spatial and temporal data availability and thus enhance the applicability for both the EVI and water isoscape. PMID:23029053
NASA Astrophysics Data System (ADS)
Tan, C. H.; Matjafri, M. Z.; Lim, H. S.
2015-10-01
This paper presents the prediction models which analyze and compute the CO2 emission in Malaysia. Each prediction model for CO2 emission will be analyzed based on three main groups which is transportation, electricity and heat production as well as residential buildings and commercial and public services. The prediction models were generated using data obtained from World Bank Open Data. Best subset method will be used to remove irrelevant data and followed by multi linear regression to produce the prediction models. From the results, high R-square (prediction) value was obtained and this implies that the models are reliable to predict the CO2 emission by using specific data. In addition, the CO2 emissions from these three groups are forecasted using trend analysis plots for observation purpose.
Sukumaran, Sivakumar; Crossa, Jose; Jarquin, Diego; Lopes, Marta; Reynolds, Matthew P
2017-02-09
Developing genomic selection (GS) models is an important step in applying GS to accelerate the rate of genetic gain in grain yield in plant breeding. In this study, seven genomic prediction models under two cross-validation (CV) scenarios were tested on 287 advanced elite spring wheat lines phenotyped for grain yield (GY), thousand-grain weight (GW), grain number (GN), and thermal time for flowering (TTF) in 18 international environments (year-location combinations) in major wheat-producing countries in 2010 and 2011. Prediction models with genomic and pedigree information included main effects and interaction with environments. Two random CV schemes were applied to predict a subset of lines that were not observed in any of the 18 environments (CV1), and a subset of lines that were not observed in a set of the environments, but were observed in other environments (CV2). Genomic prediction models, including genotype × environment (G×E) interaction, had the highest average prediction ability under the CV1 scenario for GY (0.31), GN (0.32), GW (0.45), and TTF (0.27). For CV2, the average prediction ability of the model including the interaction terms was generally high for GY (0.38), GN (0.43), GW (0.63), and TTF (0.53). Wheat lines in site-year combinations in Mexico and India had relatively high prediction ability for GY and GW. Results indicated that prediction ability of lines not observed in certain environments could be relatively high for genomic selection when predicting G×E interaction in multi-environment trials. Copyright © 2017 Sukumaran et al.
Microarray-based cancer prediction using soft computing approach.
Wang, Xiaosheng; Gotoh, Osamu
2009-05-26
One of the difficulties in using gene expression profiles to predict cancer is how to effectively select a few informative genes to construct accurate prediction models from thousands or ten thousands of genes. We screen highly discriminative genes and gene pairs to create simple prediction models involved in single genes or gene pairs on the basis of soft computing approach and rough set theory. Accurate cancerous prediction is obtained when we apply the simple prediction models for four cancerous gene expression datasets: CNS tumor, colon tumor, lung cancer and DLBCL. Some genes closely correlated with the pathogenesis of specific or general cancers are identified. In contrast with other models, our models are simple, effective and robust. Meanwhile, our models are interpretable for they are based on decision rules. Our results demonstrate that very simple models may perform well on cancerous molecular prediction and important gene markers of cancer can be detected if the gene selection approach is chosen reasonably.
A High Precision Prediction Model Using Hybrid Grey Dynamic Model
ERIC Educational Resources Information Center
Li, Guo-Dong; Yamaguchi, Daisuke; Nagai, Masatake; Masuda, Shiro
2008-01-01
In this paper, we propose a new prediction analysis model which combines the first order one variable Grey differential equation Model (abbreviated as GM(1,1) model) from grey system theory and time series Autoregressive Integrated Moving Average (ARIMA) model from statistics theory. We abbreviate the combined GM(1,1) ARIMA model as ARGM(1,1)…
Murchie, Brent; Tandon, Kanwarpreet; Hakim, Seifeldin; Shah, Kinchit; O'Rourke, Colin; Castro, Fernando J
2017-04-01
Colorectal cancer (CRC) screening guidelines likely over-generalizes CRC risk, 35% of Americans are not up to date with screening, and there is growing incidence of CRC in younger patients. We developed a practical prediction model for high-risk colon adenomas in an average-risk population, including an expanded definition of high-risk polyps (≥3 nonadvanced adenomas), exposing higher than average-risk patients. We also compared results with previously created calculators. Patients aged 40 to 59 years, undergoing first-time average-risk screening or diagnostic colonoscopies were evaluated. Risk calculators for advanced adenomas and high-risk adenomas were created based on age, body mass index, sex, race, and smoking history. Previously established calculators with similar risk factors were selected for comparison of concordance statistic (c-statistic) and external validation. A total of 5063 patients were included. Advanced adenomas, and high-risk adenomas were seen in 5.7% and 7.4% of the patient population, respectively. The c-statistic for our calculator was 0.639 for the prediction of advanced adenomas, and 0.650 for high-risk adenomas. When applied to our population, all previous models had lower c-statistic results although one performed similarly. Our model compares favorably to previously established prediction models. Age and body mass index were used as continuous variables, likely improving the c-statistic. It also reports absolute predictive probabilities of advanced and high-risk polyps, allowing for more individualized risk assessment of CRC.
Predicting through-focus visual acuity with the eye's natural aberrations.
Kingston, Amanda C; Cox, Ian G
2013-10-01
To develop a predictive optical modeling process that utilizes individual computer eye models along with a novel through-focus image quality metric. Individual eye models were implemented in optical design software (Zemax, Bellevue, WA) based on evaluation of ocular aberrations, pupil diameter, visual acuity, and accommodative response of 90 subjects (180 eyes; 24-63 years of age). Monocular high-contrast minimum angle of resolution (logMAR) acuity was assessed at 6 m, 2 m, 1 m, 67 cm, 50 cm, 40 cm, 33 cm, 28 cm, and 25 cm. While the subject fixated on the lowest readable line of acuity, total ocular aberrations and pupil diameter were measured three times each using the Complete Ophthalmic Analysis System (COAS HD VR) at each distance. A subset of 64 mature presbyopic eyes was used to predict the clinical logMAR acuity performance of five novel multifocal contact lens designs. To validate predictability of the design process, designs were manufactured and tested clinically on a population of 24 mature presbyopes (having at least +1.50 D spectacle add at 40 cm). Seven object distances were used in the validation study (6 m, 2 m, 1 m, 67 cm, 50 cm, 40 cm, and 25 cm) to measure monocular high-contrast logMAR acuity. Baseline clinical through-focus logMAR was shown to correlate highly (R² = 0.85) with predicted logMAR from individual eye models. At all object distances, each of the five multifocal lenses showed less than one line difference, on average, between predicted and clinical normalized logMAR acuity. Correlation showed R² between 0.90 and 0.97 for all multifocal designs. Computer-based models that account for patient's aberrations, pupil diameter changes, and accommodative amplitude can be used to predict the performance of contact lens designs. With this high correlation (R² ≥ 0.90) and high level of predictability, more design options can be explored in the computer to optimize performance before a lens is manufactured and tested clinically.
NASA Astrophysics Data System (ADS)
Lee, Soon Hwan; Kim, Ji Sun; Lee, Kang Yeol; Shon, Keon Tae
2017-04-01
Air quality due to increasing Particulate Matter(PM) in Korea in Asia is getting worse. At present, the PM forecast is announced based on the PM concentration predicted from the air quality prediction numerical model. However, forecast accuracy is not as high as expected due to various uncertainties for PM physical and chemical characteristics. The purpose of this study was to develop a numerical-statistically ensemble models to improve the accuracy of prediction of PM10 concentration. Numerical models used in this study are the three dimensional atmospheric model Weather Research and Forecasting(WRF) and the community multiscale air quality model (CMAQ). The target areas for the PM forecast are Seoul, Busan, Daegu, and Daejeon metropolitan areas in Korea. The data used in the model development are PM concentration and CMAQ predictions and the data period is 3 months (March 1 - May 31, 2014). The dynamic-statistical technics for reducing the systematic error of the CMAQ predictions was applied to the dynamic linear model(DLM) based on the Baysian Kalman filter technic. As a result of applying the metrics generated from the dynamic linear model to the forecasting of PM concentrations accuracy was improved. Especially, at the high PM concentration where the damage is relatively large, excellent improvement results are shown.
A test of an interactive model of binge eating among undergraduate men.
Minnich, Allison M; Gordon, Kathryn H; Holm-Denoma, Jill M; Troop-Gordon, Wendy
2014-12-01
Past research has shown that a combination of high perfectionism, high body dissatisfaction, and low self-esteem is predictive of binge eating in college women (Bardone-Cone et al., 2006). In the current study, we examined whether this triple interaction model is applicable to men. Male undergraduate college students from a large Midwestern university (n=302) completed self-report measures online at two different time points, a minimum of eight weeks apart. Analyses revealed a significant interaction between the three risk factors, such that high perfectionism, high body dissatisfaction, and low self-esteem at Time 1 were associated with higher levels of Time 2 binge eating symptoms. The triple interaction model did not predict Time 2 anxiety or depressive symptoms, which suggests model specificity. These findings offer a greater understanding of the interactive nature of risk factors in predicting binge eating symptoms among men. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sadique, Z; Grieve, R; Harrison, D A; Jit, M; Allen, E; Rowan, K M
2013-12-01
This article proposes an integrated approach to the development, validation, and evaluation of new risk prediction models illustrated with the Fungal Infection Risk Evaluation study, which developed risk models to identify non-neutropenic, critically ill adult patients at high risk of invasive fungal disease (IFD). Our decision-analytical model compared alternative strategies for preventing IFD at up to three clinical decision time points (critical care admission, after 24 hours, and end of day 3), followed with antifungal prophylaxis for those judged "high" risk versus "no formal risk assessment." We developed prognostic models to predict the risk of IFD before critical care unit discharge, with data from 35,455 admissions to 70 UK adult, critical care units, and validated the models externally. The decision model was populated with positive predictive values and negative predictive values from the best-fitting risk models. We projected lifetime cost-effectiveness and expected value of partial perfect information for groups of parameters. The risk prediction models performed well in internal and external validation. Risk assessment and prophylaxis at the end of day 3 was the most cost-effective strategy at the 2% and 1% risk threshold. Risk assessment at each time point was the most cost-effective strategy at a 0.5% risk threshold. Expected values of partial perfect information were high for positive predictive values or negative predictive values (£11 million-£13 million) and quality-adjusted life-years (£11 million). It is cost-effective to formally assess the risk of IFD for non-neutropenic, critically ill adult patients. This integrated approach to developing and evaluating risk models is useful for informing clinical practice and future research investment. © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR) Published by International Society for Pharmacoeconomics and Outcomes Research (ISPOR) All rights reserved.
Presence of indicator plant species as a predictor of wetland vegetation integrity
Stapanian, Martin A.; Adams, Jean V.; Gara, Brian
2013-01-01
We fit regression and classification tree models to vegetation data collected from Ohio (USA) wetlands to determine (1) which species best predict Ohio vegetation index of biotic integrity (OVIBI) score and (2) which species best predict high-quality wetlands (OVIBI score >75). The simplest regression tree model predicted OVIBI score based on the occurrence of three plant species: skunk-cabbage (Symplocarpus foetidus), cinnamon fern (Osmunda cinnamomea), and swamp rose (Rosa palustris). The lowest OVIBI scores were best predicted by the absence of the selected plant species rather than by the presence of other species. The simplest classification tree model predicted high-quality wetlands based on the occurrence of two plant species: skunk-cabbage and marsh-fern (Thelypteris palustris). The overall misclassification rate from this tree was 13 %. Again, low-quality wetlands were better predicted than high-quality wetlands by the absence of selected species rather than the presence of other species using the classification tree model. Our results suggest that a species’ wetland status classification and coefficient of conservatism are of little use in predicting wetland quality. A simple, statistically derived species checklist such as the one created in this study could be used by field biologists to quickly and efficiently identify wetland sites likely to be regulated as high-quality, and requiring more intensive field assessments. Alternatively, it can be used for advanced determinations of low-quality wetlands. Agencies can save considerable money by screening wetlands for the presence/absence of such “indicator” species before issuing permits.
Benchmarking test of empirical root water uptake models
NASA Astrophysics Data System (ADS)
dos Santos, Marcos Alex; de Jong van Lier, Quirijn; van Dam, Jos C.; Freire Bezerra, Andre Herman
2017-01-01
Detailed physical models describing root water uptake (RWU) are an important tool for the prediction of RWU and crop transpiration, but the hydraulic parameters involved are hardly ever available, making them less attractive for many studies. Empirical models are more readily used because of their simplicity and the associated lower data requirements. The purpose of this study is to evaluate the capability of some empirical models to mimic the RWU distribution under varying environmental conditions predicted from numerical simulations with a detailed physical model. A review of some empirical models used as sub-models in ecohydrological models is presented, and alternative empirical RWU models are proposed. All these empirical models are analogous to the standard Feddes model, but differ in how RWU is partitioned over depth or how the transpiration reduction function is defined. The parameters of the empirical models are determined by inverse modelling of simulated depth-dependent RWU. The performance of the empirical models and their optimized empirical parameters depends on the scenario. The standard empirical Feddes model only performs well in scenarios with low root length density R, i.e. for scenarios with low RWU compensation
. For medium and high R, the Feddes RWU model cannot mimic properly the root uptake dynamics as predicted by the physical model. The Jarvis RWU model in combination with the Feddes reduction function (JMf) only provides good predictions for low and medium R scenarios. For high R, it cannot mimic the uptake patterns predicted by the physical model. Incorporating a newly proposed reduction function into the Jarvis model improved RWU predictions. Regarding the ability of the models to predict plant transpiration, all models accounting for compensation show good performance. The Akaike information criterion (AIC) indicates that the Jarvis (2010) model (JMII), with no empirical parameters to be estimated, is the best model
. The proposed models are better in predicting RWU patterns similar to the physical model. The statistical indices point to them as the best alternatives for mimicking RWU predictions of the physical model.
A Model for Investigating Predictive Validity at Highly Selective Institutions.
ERIC Educational Resources Information Center
Gross, Alan L.; And Others
A statistical model for investigating predictive validity at highly selective institutions is described. When the selection ratio is small, one must typically deal with a data set containing relatively large amounts of missing data on both criterion and predictor variables. Standard statistical approaches are based on the strong assumption that…
Species-specific predictive models of developmental toxicity using the ToxCast chemical library
EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive models that correlate with observed in vivo toxicity. In vitro profiling methods are based on ToxCast data, consisting of over 600 high-throughput screening (HTS) and high-content sc...
USDA-ARS?s Scientific Manuscript database
High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat (Triticum aestivum L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect s...
Habitat selection of Rocky Mountain elk in a nonforested environment
Sawyer, H.; Nielson, R.M.; Lindzey, F.G.; Keith, L.; Powell, J.H.; Abraham, A.A.
2007-01-01
Recent expansions by Rocky Mountain elk (Cervus elaphus) into nonforested habitats across the Intermountain West have required managers to reconsider the traditional paradigms of forage and cover as they relate to managing elk and their habitats. We examined seasonal habitat selection patterns of a hunted elk population in a nonforested high-desert region of southwestern Wyoming, USA. We used 35,246 global positioning system locations collected from 33 adult female elk to model probability of use as a function of 6 habitat variables: slope, aspect, elevation, habitat diversity, distance to shrub cover, and distance to road. We developed resource selection probability functions for individual elk, and then we averaged the coefficients to estimate population-level models for summer and winter periods. We used the population-level models to generate predictive maps by assigning pixels across the study area to 1 of 4 use categories (i.e., high, medium-high, medium-low, or low), based on quartiles of the predictions. Model coefficients and predictive maps indicated that elk selected for summer habitats characterized by higher elevations in areas of high vegetative diversity, close to shrub cover, northerly aspects, moderate slopes, and away from roads. Winter habitat selection patterns were similar, except elk shifted to areas with lower elevations and southerly aspects. We validated predictive maps by using 528 locations collected from an independent sample of radiomarked elk (n = 55) and calculating the proportion of locations that occurred in each of the 4 use categories. Together, the high- and medium-high use categories of the summer and winter predictive maps contained 92% and 74% of summer and winter elk locations, respectively. Our population-level models and associated predictive maps were successful in predicting winter and summer habitat use by elk in a nonforested environment. In the absence of forest cover, elk seemed to rely on a combination of shrubs, topography, and low human disturbance to meet their thermal and hiding cover requirements.
NASA Technical Reports Server (NTRS)
Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel
2014-01-01
The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter PM(sub 2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data.We developed and cross validated models to predict daily PM(sub 2.5) at a 1X 1 km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1 X 1 km grid predictions. We used mixed models regressing PM(sub 2.5) measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R(sup 2) = 0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R(sup 2) = 0.87, R(sup)2 = 0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemiological studies across this region.
Kloog, Itai; Chudnovsky, Alexandra A; Just, Allan C; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel
2014-10-01
The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter (PM 2.5 ) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data. We developed and cross validated models to predict daily PM 2.5 at a 1×1km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1×1 km grid predictions. We used mixed models regressing PM 2.5 measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R 2 =0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R 2 =0.87, R 2 =0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemiological studies across this region.
Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel
2017-01-01
Background The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter (PM2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. Methods We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data. We developed and cross validated models to predict daily PM2.5 at a 1×1km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003–2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1×1 km grid predictions. We used mixed models regressing PM2.5 measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Results Our model performance was excellent (mean out-of-sample R2=0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R2=0.87, R2=0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Conclusion Our daily model results show high predictive accuracy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemiological studies across this region. PMID:28966552
High speed turboprop aeroacoustic study (counterrotation). Volume 2: Computer programs
NASA Technical Reports Server (NTRS)
Whitfield, C. E.; Mani, R.; Gliebe, P. R.
1990-01-01
The isolated counterrotating high speed turboprop noise prediction program developed and funded by GE Aircraft Engines was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in the NASA-Lewis 8 x 6 and 9 x 15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counter rotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attack was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combined into a single prediction program. The results were compared with data taken during the flight test of the B727/UDF (trademark) engine demonstrator aircraft.
High speed turboprop aeroacoustic study (counterrotation). Volume 2: Computer programs
NASA Astrophysics Data System (ADS)
Whitfield, C. E.; Mani, R.; Gliebe, P. R.
1990-07-01
The isolated counterrotating high speed turboprop noise prediction program developed and funded by GE Aircraft Engines was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in the NASA-Lewis 8 x 6 and 9 x 15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counter rotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attack was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combined into a single prediction program. The results were compared with data taken during the flight test of the B727/UDF (trademark) engine demonstrator aircraft.
Baba, Hiromi; Takahara, Jun-ichi; Yamashita, Fumiyoshi; Hashida, Mitsuru
2015-11-01
The solvent effect on skin permeability is important for assessing the effectiveness and toxicological risk of new dermatological formulations in pharmaceuticals and cosmetics development. The solvent effect occurs by diverse mechanisms, which could be elucidated by efficient and reliable prediction models. However, such prediction models have been hampered by the small variety of permeants and mixture components archived in databases and by low predictive performance. Here, we propose a solution to both problems. We first compiled a novel large database of 412 samples from 261 structurally diverse permeants and 31 solvents reported in the literature. The data were carefully screened to ensure their collection under consistent experimental conditions. To construct a high-performance predictive model, we then applied support vector regression (SVR) and random forest (RF) with greedy stepwise descriptor selection to our database. The models were internally and externally validated. The SVR achieved higher performance statistics than RF. The (externally validated) determination coefficient, root mean square error, and mean absolute error of SVR were 0.899, 0.351, and 0.268, respectively. Moreover, because all descriptors are fully computational, our method can predict as-yet unsynthesized compounds. Our high-performance prediction model offers an attractive alternative to permeability experiments for pharmaceutical and cosmetic candidate screening and optimizing skin-permeable topical formulations.
Khazraee, S Hadi; Johnson, Valen; Lord, Dominique
2018-08-01
The Poisson-gamma (PG) and Poisson-lognormal (PLN) regression models are among the most popular means for motor vehicle crash data analysis. Both models belong to the Poisson-hierarchical family of models. While numerous studies have compared the overall performance of alternative Bayesian Poisson-hierarchical models, little research has addressed the impact of model choice on the expected crash frequency prediction at individual sites. This paper sought to examine whether there are any trends among candidate models predictions e.g., that an alternative model's prediction for sites with certain conditions tends to be higher (or lower) than that from another model. In addition to the PG and PLN models, this research formulated a new member of the Poisson-hierarchical family of models: the Poisson-inverse gamma (PIGam). Three field datasets (from Texas, Michigan and Indiana) covering a wide range of over-dispersion characteristics were selected for analysis. This study demonstrated that the model choice can be critical when the calibrated models are used for prediction at new sites, especially when the data are highly over-dispersed. For all three datasets, the PIGam model would predict higher expected crash frequencies than would the PLN and PG models, in order, indicating a clear link between the models predictions and the shape of their mixing distributions (i.e., gamma, lognormal, and inverse gamma, respectively). The thicker tail of the PIGam and PLN models (in order) may provide an advantage when the data are highly over-dispersed. The analysis results also illustrated a major deficiency of the Deviance Information Criterion (DIC) in comparing the goodness-of-fit of hierarchical models; models with drastically different set of coefficients (and thus predictions for new sites) may yield similar DIC values, because the DIC only accounts for the parameters in the lowest (observation) level of the hierarchy and ignores the higher levels (regression coefficients). Copyright © 2018. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Chengkang; Staebler, Gary M.; Lao, Lang L.
Here, energy transport analyses of DIII-D high-β P EAST-demonstration discharges have been performed using the TGYRO transport package with TGLF turbulent and NEO neoclassical transport models under the OMFIT integrated modeling framework. Ion energy transport is shown to be dominated by neoclassical transport and ion temperature profiles predicted by TGYRO agree closely with the experimental measured profiles for these high-β P discharges. Ion energy transport is largely insensitive to reductions in the E × B flow shear stabilization. The Shafranov shift is shown to play a role in the suppression of the ion turbulent energy transport below the neoclassical level.more » Electron turbulent energy transport is under-predicted by TGLF and a significant shortfall in the electron energy transport over the whole core plasma is found with TGLF predictions for these high-β P discharges. TGYRO can successfully predict the experimental ion and electron temperature profiles by artificially increasing the saturated turbulence level for ETG driven modes used in TGLF.« less
Pan, Chengkang; Staebler, Gary M.; Lao, Lang L.; ...
2017-01-11
Here, energy transport analyses of DIII-D high-β P EAST-demonstration discharges have been performed using the TGYRO transport package with TGLF turbulent and NEO neoclassical transport models under the OMFIT integrated modeling framework. Ion energy transport is shown to be dominated by neoclassical transport and ion temperature profiles predicted by TGYRO agree closely with the experimental measured profiles for these high-β P discharges. Ion energy transport is largely insensitive to reductions in the E × B flow shear stabilization. The Shafranov shift is shown to play a role in the suppression of the ion turbulent energy transport below the neoclassical level.more » Electron turbulent energy transport is under-predicted by TGLF and a significant shortfall in the electron energy transport over the whole core plasma is found with TGLF predictions for these high-β P discharges. TGYRO can successfully predict the experimental ion and electron temperature profiles by artificially increasing the saturated turbulence level for ETG driven modes used in TGLF.« less
Development of estrogen receptor beta binding prediction model using large sets of chemicals.
Sakkiah, Sugunadevi; Selvaraj, Chandrabose; Gong, Ping; Zhang, Chaoyang; Tong, Weida; Hong, Huixiao
2017-11-03
We developed an ER β binding prediction model to facilitate identification of chemicals specifically bind ER β or ER α together with our previously developed ER α binding model. Decision Forest was used to train ER β binding prediction model based on a large set of compounds obtained from EADB. Model performance was estimated through 1000 iterations of 5-fold cross validations. Prediction confidence was analyzed using predictions from the cross validations. Informative chemical features for ER β binding were identified through analysis of the frequency data of chemical descriptors used in the models in the 5-fold cross validations. 1000 permutations were conducted to assess the chance correlation. The average accuracy of 5-fold cross validations was 93.14% with a standard deviation of 0.64%. Prediction confidence analysis indicated that the higher the prediction confidence the more accurate the predictions. Permutation testing results revealed that the prediction model is unlikely generated by chance. Eighteen informative descriptors were identified to be important to ER β binding prediction. Application of the prediction model to the data from ToxCast project yielded very high sensitivity of 90-92%. Our results demonstrated ER β binding of chemicals could be accurately predicted using the developed model. Coupling with our previously developed ER α prediction model, this model could be expected to facilitate drug development through identification of chemicals that specifically bind ER β or ER α .
Salgado, J Cristian; Andrews, Barbara A; Ortuzar, Maria Fernanda; Asenjo, Juan A
2008-01-18
The prediction of the partition behaviour of proteins in aqueous two-phase systems (ATPS) using mathematical models based on their amino acid composition was investigated. The predictive models are based on the average surface hydrophobicity (ASH). The ASH was estimated by means of models that use the three-dimensional structure of proteins and by models that use only the amino acid composition of proteins. These models were evaluated for a set of 11 proteins with known experimental partition coefficient in four-phase systems: polyethylene glycol (PEG) 4000/phosphate, sulfate, citrate and dextran and considering three levels of NaCl concentration (0.0% w/w, 0.6% w/w and 8.8% w/w). The results indicate that such prediction is feasible even though the quality of the prediction depends strongly on the ATPS and its operational conditions such as the NaCl concentration. The ATPS 0 model which use the three-dimensional structure obtains similar results to those given by previous models based on variables measured in the laboratory. In addition it maintains the main characteristics of the hydrophobic resolution and intrinsic hydrophobicity reported before. Three mathematical models, ATPS I-III, based only on the amino acid composition were evaluated. The best results were obtained by the ATPS I model which assumes that all of the amino acids are completely exposed. The performance of the ATPS I model follows the behaviour reported previously, i.e. its correlation coefficients improve as the NaCl concentration increases in the system and, therefore, the effect of the protein hydrophobicity prevails over other effects such as charge or size. Its best predictive performance was obtained for the PEG/dextran system at high NaCl concentration. An increase in the predictive capacity of at least 54.4% with respect to the models which use the three-dimensional structure of the protein was obtained for that system. In addition, the ATPS I model exhibits high correlation coefficients in that system being higher than 0.88 on average. The ATPS I model exhibited correlation coefficients higher than 0.67 for the rest of the ATPS at high NaCl concentration. Finally, we tested our best model, the ATPS I model, on the prediction of the partition coefficient of the protein invertase. We found that the predictive capacities of the ATPS I model are better in PEG/dextran systems, where the relative error of the prediction with respect to the experimental value is 15.6%.
Modeling student success in engineering education
NASA Astrophysics Data System (ADS)
Jin, Qu
In order for the United States to maintain its global competitiveness, the long-term success of our engineering students in specific courses, programs, and colleges is now, more than ever, an extremely high priority. Numerous studies have focused on factors that impact student success, namely academic performance, retention, and/or graduation. However, there are only a limited number of works that have systematically developed models to investigate important factors and to predict student success in engineering. Therefore, this research presents three separate but highly connected investigations to address this gap. The first investigation involves explaining and predicting engineering students' success in Calculus I courses using statistical models. The participants were more than 4000 first-year engineering students (cohort years 2004 - 2008) who enrolled in Calculus I courses during the first semester in a large Midwestern university. Predictions from statistical models were proposed to be used to place engineering students into calculus courses. The success rates were improved by 12% in Calculus IA using predictions from models developed over traditional placement method. The results showed that these statistical models provided a more accurate calculus placement method than traditional placement methods and help improve success rates in those courses. In the second investigation, multi-outcome and single-outcome neural network models were designed to understand and to predict first-year retention and first-year GPA of engineering students. The participants were more than 3000 first year engineering students (cohort years 2004 - 2005) enrolled in a large Midwestern university. The independent variables include both high school academic performance factors and affective factors measured prior to entry. The prediction performances of the multi-outcome and single-outcome models were comparable. The ability to predict cumulative GPA at the end of an engineering student's first year of college was about a half of a grade point for both models. The predictors of retention and cumulative GPA while being similar differ in that high school academic metrics play a more important role in predicting cumulative GPA with the affective measures playing a more important role in predicting retention. In the last investigation, multi-outcome neural network models were used to understand and to predict engineering students' retention, GPA, and graduation from entry to departure. The participants were more than 4000 engineering students (cohort years 2004 - 2006) enrolled in a large Midwestern university. Different patterns of important predictors were identified for GPA, retention, and graduation. Overall, this research explores the feasibility of using modeling to enhance a student's educational experience in engineering. Student success modeling was used to identify the most important cognitive and affective predictors for a student's first calculus course retention, GPA, and graduation. The results suggest that the statistical modeling methods have great potential to assist decision making and help ensure student success in engineering education.
Based on BP Neural Network Stock Prediction
ERIC Educational Resources Information Center
Liu, Xiangwei; Ma, Xin
2012-01-01
The stock market has a high profit and high risk features, on the stock market analysis and prediction research has been paid attention to by people. Stock price trend is a complex nonlinear function, so the price has certain predictability. This article mainly with improved BP neural network (BPNN) to set up the stock market prediction model, and…
Prediction of dynamical systems by symbolic regression
NASA Astrophysics Data System (ADS)
Quade, Markus; Abel, Markus; Shafi, Kamran; Niven, Robert K.; Noack, Bernd R.
2016-07-01
We study the modeling and prediction of dynamical systems based on conventional models derived from measurements. Such algorithms are highly desirable in situations where the underlying dynamics are hard to model from physical principles or simplified models need to be found. We focus on symbolic regression methods as a part of machine learning. These algorithms are capable of learning an analytically tractable model from data, a highly valuable property. Symbolic regression methods can be considered as generalized regression methods. We investigate two particular algorithms, the so-called fast function extraction which is a generalized linear regression algorithm, and genetic programming which is a very general method. Both are able to combine functions in a certain way such that a good model for the prediction of the temporal evolution of a dynamical system can be identified. We illustrate the algorithms by finding a prediction for the evolution of a harmonic oscillator based on measurements, by detecting an arriving front in an excitable system, and as a real-world application, the prediction of solar power production based on energy production observations at a given site together with the weather forecast.
QSAR modeling for predicting mutagenic toxicity of diverse chemicals for regulatory purposes.
Basant, Nikita; Gupta, Shikha
2017-06-01
The safety assessment process of chemicals requires information on their mutagenic potential. The experimental determination of mutagenicity of a large number of chemicals is tedious and time and cost intensive, thus compelling for alternative methods. We have established local and global QSAR models for discriminating low and high mutagenic compounds and predicting their mutagenic activity in a quantitative manner in Salmonella typhimurium (TA) bacterial strains (TA98 and TA100). The decision treeboost (DTB)-based classification QSAR models discriminated among two categories with accuracies of >96% and the regression QSAR models precisely predicted the mutagenic activity of diverse chemicals yielding high correlations (R 2 ) between the experimental and model-predicted values in the respective training (>0.96) and test (>0.94) sets. The test set root mean squared error (RMSE) and mean absolute error (MAE) values emphasized the usefulness of the developed models for predicting new compounds. Relevant structural features of diverse chemicals that were responsible and influence the mutagenic activity were identified. The applicability domains of the developed models were defined. The developed models can be used as tools for screening new chemicals for their mutagenicity assessment for regulatory purpose.
Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Reid, Terry; Schifer, Nicholas; Briggs, Maxwell
2011-01-01
Past methods of predicting net heat input needed to be validated. Validation effort pursued with several paths including improving model inputs, using test hardware to provide validation data, and validating high fidelity models. Validation test hardware provided direct measurement of net heat input for comparison to predicted values. Predicted value of net heat input was 1.7 percent less than measured value and initial calculations of measurement uncertainty were 2.1 percent (under review). Lessons learned during validation effort were incorporated into convertor modeling approach which improved predictions of convertor efficiency.
Advanced Daily Prediction Model for National Suicide Numbers with Social Media Data.
Lee, Kyung Sang; Lee, Hyewon; Myung, Woojae; Song, Gil-Young; Lee, Kihwang; Kim, Ho; Carroll, Bernard J; Kim, Doh Kwan
2018-04-01
Suicide is a significant public health concern worldwide. Social media data have a potential role in identifying high suicide risk individuals and also in predicting suicide rate at the population level. In this study, we report an advanced daily suicide prediction model using social media data combined with economic/meteorological variables along with observed suicide data lagged by 1 week. The social media data were drawn from weblog posts. We examined a total of 10,035 social media keywords for suicide prediction. We made predictions of national suicide numbers 7 days in advance daily for 2 years, based on a daily moving 5-year prediction modeling period. Our model predicted the likely range of daily national suicide numbers with 82.9% accuracy. Among the social media variables, words denoting economic issues and mood status showed high predictive strength. Observed number of suicides one week previously, recent celebrity suicide, and day of week followed by stock index, consumer price index, and sunlight duration 7 days before the target date were notable predictors along with the social media variables. These results strengthen the case for social media data to supplement classical social/economic/climatic data in forecasting national suicide events.
Probabilistic Forecasting of Coastal Morphodynamic Storm Response at Fire Island, New York
NASA Astrophysics Data System (ADS)
Wilson, K.; Adams, P. N.; Hapke, C. J.; Lentz, E. E.; Brenner, O.
2013-12-01
Site-specific probabilistic models of shoreline change are useful because they are derived from direct observations so that local factors, which greatly influence coastal response, are inherently considered by the model. Fire Island, a 50-km barrier island off Long Island, New York, is periodically subject to large storms, whose waves and storm surge dramatically alter beach morphology. Nor'Ida, which impacted the Fire Island coast in 2009, was one of the larger storms to occur in the early 2000s. In this study, we improve upon a Bayesian Network (BN) model informed with historical data to predict shoreline change from Nor'Ida. We present two BN models, referred to as 'original' model (BNo) and 'revised' model (BNr), designed to predict the most probable magnitude of net shoreline movement (NSM), as measured at 934 cross-shore transects, spanning 46 km. Both are informed with observational data (wave impact hours, shoreline and dune toe change rates, pre-storm beach width, and measured NSM) organized within five nodes, but the revised model contains a sixth node to represent the distribution of material added during an April 2009 nourishment project. We evaluate model success by examining the percentage of transects on which the model chooses the correct (observed) bin value of NSM. Comparisons of observed to model-predicted NSM show BNr has slightly higher predictive success over the total study area and significantly higher success at nourished locations. The BNo, which neglects anthropogenic modification history, correctly predicted the most probable NSM in 66.6% of transects, with ambiguous prediction at 12.7% of the locations. BNr, which incorporates anthropogenic modification history, resulted in 69.4% predictive accuracy and 13.9% ambiguity. However, across nourished transects, BNr reported 72.9% predictive success, while BNo reported 61.5% success. Further, at nourished transects, BNr reported higher ambiguity of 23.5% compared to 9.9% in BNo. These results demonstrate that BNr recognizes that nourished transects may behave differently from the expectation derived from historical data and therefore is more 'cautious' in its predictions at these locations. In contrast, BNo is more confident, but less accurate, demonstrating the risk of ignoring the influences of anthropogenic modification in a probabilistic model. Over the entire study region, both models produced greatest predictive accuracy for low retreat observations (BNo: 77.6%; BNr: 76.0%) and least success at predicting low advance observations, although BNr shows considerable improvement over BNo (39.4% vs. 28.6%, respectively). BNr also was significantly more accurate at predicting observations of no shoreline change (BNo: 56.2%; BNr: 68.93%). Both models were accurate for 60% of high advance observations, and reported high predictive success for high retreat observations (BNo: 69.1%; BNr: 67.6%), the scenario of greatest concern to coastal managers.
Kesorn, Kraisak; Ongruk, Phatsavee; Chompoosri, Jakkrawarn; Phumee, Atchara; Thavara, Usavadee; Tawatsin, Apiwat; Siriyasatien, Padet
2015-01-01
Background In the past few decades, several researchers have proposed highly accurate prediction models that have typically relied on climate parameters. However, climate factors can be unreliable and can lower the effectiveness of prediction when they are applied in locations where climate factors do not differ significantly. The purpose of this study was to improve a dengue surveillance system in areas with similar climate by exploiting the infection rate in the Aedes aegypti mosquito and using the support vector machine (SVM) technique for forecasting the dengue morbidity rate. Methods and Findings Areas with high incidence of dengue outbreaks in central Thailand were studied. The proposed framework consisted of the following three major parts: 1) data integration, 2) model construction, and 3) model evaluation. We discovered that the Ae. aegypti female and larvae mosquito infection rates were significantly positively associated with the morbidity rate. Thus, the increasing infection rate of female mosquitoes and larvae led to a higher number of dengue cases, and the prediction performance increased when those predictors were integrated into a predictive model. In this research, we applied the SVM with the radial basis function (RBF) kernel to forecast the high morbidity rate and take precautions to prevent the development of pervasive dengue epidemics. The experimental results showed that the introduced parameters significantly increased the prediction accuracy to 88.37% when used on the test set data, and these parameters led to the highest performance compared to state-of-the-art forecasting models. Conclusions The infection rates of the Ae. aegypti female mosquitoes and larvae improved the morbidity rate forecasting efficiency better than the climate parameters used in classical frameworks. We demonstrated that the SVM-R-based model has high generalization performance and obtained the highest prediction performance compared to classical models as measured by the accuracy, sensitivity, specificity, and mean absolute error (MAE). PMID:25961289
A Semi-Empirical Model for Forecasting Relativistic Electrons at Geostationary Orbit
NASA Technical Reports Server (NTRS)
Lyatsky, Wladislaw; Khazanov, George V.
2008-01-01
We developed a new prediction model for forecasting relativistic (>2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/Interplanetary Magnetic Field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is about 0.9. The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible. The correlation coefficient between predicted and actual electron fluxes is stable and incredibly high.
Pourhoseingholi, Mohamad Amin; Kheirian, Sedigheh; Zali, Mohammad Reza
2017-12-01
Colorectal cancer (CRC) is one of the most common malignancies and cause of cancer mortality worldwide. Given the importance of predicting the survival of CRC patients and the growing use of data mining methods, this study aims to compare the performance of models for predicting 5-year survival of CRC patients using variety of basic and ensemble data mining methods. The CRC dataset from The Shahid Beheshti University of Medical Sciences Research Center for Gastroenterology and Liver Diseases were used for prediction and comparative study of the base and ensemble data mining techniques. Feature selection methods were used to select predictor attributes for classification. The WEKA toolkit and MedCalc software were respectively utilized for creating and comparing the models. The obtained results showed that the predictive performance of developed models was altogether high (all greater than 90%). Overall, the performance of ensemble models was higher than that of basic classifiers and the best result achieved by ensemble voting model in terms of area under the ROC curve (AUC= 0.96). AUC Comparison of models showed that the ensemble voting method significantly outperformed all models except for two methods of Random Forest (RF) and Bayesian Network (BN) considered the overlapping 95% confidence intervals. This result may indicate high predictive power of these two methods along with ensemble voting for predicting 5-year survival of CRC patients.
Effective prediction of biodiversity in tidal flat habitats using an artificial neural network.
Yoo, Jae-Won; Lee, Yong-Woo; Lee, Chang-Gun; Kim, Chang-Soo
2013-02-01
Accurate predictions of benthic macrofaunal biodiversity greatly benefit the efficient planning and management of habitat restoration efforts in tidal flat habitats. Artificial neural network (ANN) prediction models for such biodiversity were developed and tested based on 13 biophysical variables, collected from 50 sites of tidal flats along the coast of Korea during 1991-2006. The developed model showed high predictions during training, cross-validation and testing. Besides the training and testing procedures, an independent dataset from a different time period (2007-2010) was used to test the robustness and practical usage of the model. High prediction on the independent dataset (r = 0.84) validated the networks proper learning of predictive relationship and its generality. Key influential variables identified by follow-up sensitivity analyses were related with topographic dimension, environmental heterogeneity, and water column properties. Study demonstrates the successful application of ANN for the accurate prediction of benthic macrofaunal biodiversity and understanding of dynamics of candidate variables. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhu, Liling; Su, Fengxi; Jia, Weijuan; Deng, Xiaogeng
2014-01-01
Background Predictive models for febrile neutropenia (FN) would be informative for physicians in clinical decision making. This study aims to validate a predictive model (Jenkin’s model) that comprises pretreatment hematological parameters in early-stage breast cancer patients. Patients and Methods A total of 428 breast cancer patients who received neoadjuvant/adjuvant chemotherapy without any prophylactic use of colony-stimulating factor were included. Pretreatment absolute neutrophil counts (ANC) and absolute lymphocyte counts (ALC) were used by the Jenkin’s model to assess the risk of FN. In addition, we modified the threshold of Jenkin’s model and generated Model-A and B. We also developed Model-C by incorporating the absolute monocyte count (AMC) as a predictor into Model-A. The rates of FN in the 1st chemotherapy cycle were calculated. A valid model should be able to significantly identify high-risk subgroup of patients with FN rate >20%. Results Jenkin’s model (Predicted as high-risk when ANC≦3.1*10∧9/L;ALC≦1.5*10∧9/L) did not identify any subgroups with significantly high risk (>20%) of FN in our population, even if we used different thresholds in Model-A(ANC≦4.4*10∧9/L;ALC≦2.1*10∧9/L) or B(ANC≦3.8*10∧9/L;ALC≦1.8*10∧9/L). However, with AMC added as an additional predictor, Model-C(ANC≦4.4*10∧9/L;ALC≦2.1*10∧9/L; AMC≦0.28*10∧9/L) identified a subgroup of patients with a significantly high risk of FN (23.1%). Conclusions In our population, Jenkin’s model, cannot accurately identify patients with a significant risk of FN. The threshold should be changed and the AMC should be incorporated as a predictor, to have excellent predictive ability. PMID:24945817
Doherty, John E.; Hunt, Randall J.; Tonkin, Matthew J.
2010-01-01
Analysis of the uncertainty associated with parameters used by a numerical model, and with predictions that depend on those parameters, is fundamental to the use of modeling in support of decisionmaking. Unfortunately, predictive uncertainty analysis with regard to models can be very computationally demanding, due in part to complex constraints on parameters that arise from expert knowledge of system properties on the one hand (knowledge constraints) and from the necessity for the model parameters to assume values that allow the model to reproduce historical system behavior on the other hand (calibration constraints). Enforcement of knowledge and calibration constraints on parameters used by a model does not eliminate the uncertainty in those parameters. In fact, in many cases, enforcement of calibration constraints simply reduces the uncertainties associated with a number of broad-scale combinations of model parameters that collectively describe spatially averaged system properties. The uncertainties associated with other combinations of parameters, especially those that pertain to small-scale parameter heterogeneity, may not be reduced through the calibration process. To the extent that a prediction depends on system-property detail, its postcalibration variability may be reduced very little, if at all, by applying calibration constraints; knowledge constraints remain the only limits on the variability of predictions that depend on such detail. Regrettably, in many common modeling applications, these constraints are weak. Though the PEST software suite was initially developed as a tool for model calibration, recent developments have focused on the evaluation of model-parameter and predictive uncertainty. As a complement to functionality that it provides for highly parameterized inversion (calibration) by means of formal mathematical regularization techniques, the PEST suite provides utilities for linear and nonlinear error-variance and uncertainty analysis in these highly parameterized modeling contexts. Availability of these utilities is particularly important because, in many cases, a significant proportion of the uncertainty associated with model parameters-and the predictions that depend on them-arises from differences between the complex properties of the real world and the simplified representation of those properties that is expressed by the calibrated model. This report is intended to guide intermediate to advanced modelers in the use of capabilities available with the PEST suite of programs for evaluating model predictive error and uncertainty. A brief theoretical background is presented on sources of parameter and predictive uncertainty and on the means for evaluating this uncertainty. Applications of PEST tools are then discussed for overdetermined and underdetermined problems, both linear and nonlinear. PEST tools for calculating contributions to model predictive uncertainty, as well as optimization of data acquisition for reducing parameter and predictive uncertainty, are presented. The appendixes list the relevant PEST variables, files, and utilities required for the analyses described in the document.
Prediction of frozen food properties during freezing using product composition.
Boonsupthip, W; Heldman, D R
2007-06-01
Frozen water fraction (FWF), as a function of temperature, is an important parameter for use in the design of food freezing processes. An FWF-prediction model, based on concentrations and molecular weights of specific product components, has been developed. Published food composition data were used to determine the identity and composition of key components. The model proposed in this investigation had been verified using published experimental FWF data and initial freezing temperature data, and by comparison to outputs from previously published models. It was found that specific food components with significant influence on freezing temperature depression of food products included low molecular weight water-soluble compounds with molality of 50 micromol per 100 g food or higher. Based on an analysis of 200 high-moisture food products, nearly 45% of the experimental initial freezing temperature data were within an absolute difference (AD) of +/- 0.15 degrees C and standard error (SE) of +/- 0.65 degrees C when compared to values predicted by the proposed model. The predicted relationship between temperature and FWF for all analyzed food products provided close agreements with experimental data (+/- 0.06 SE). The proposed model provided similar prediction capability for high- and intermediate-moisture food products. In addition, the proposed model provided statistically better prediction of initial freezing temperature and FWF than previous published models.
Using risk-adjustment models to identify high-cost risks.
Meenan, Richard T; Goodman, Michael J; Fishman, Paul A; Hornbrook, Mark C; O'Keeffe-Rosetti, Maureen C; Bachman, Donald J
2003-11-01
We examine the ability of various publicly available risk models to identify high-cost individuals and enrollee groups using multi-HMO administrative data. Five risk-adjustment models (the Global Risk-Adjustment Model [GRAM], Diagnostic Cost Groups [DCGs], Adjusted Clinical Groups [ACGs], RxRisk, and Prior-expense) were estimated on a multi-HMO administrative data set of 1.5 million individual-level observations for 1995-1996. Models produced distributions of individual-level annual expense forecasts for comparison to actual values. Prespecified "high-cost" thresholds were set within each distribution. The area under the receiver operating characteristic curve (AUC) for "high-cost" prevalences of 1% and 0.5% was calculated, as was the proportion of "high-cost" dollars correctly identified. Results are based on a separate 106,000-observation validation dataset. For "high-cost" prevalence targets of 1% and 0.5%, ACGs, DCGs, GRAM, and Prior-expense are very comparable in overall discrimination (AUCs, 0.83-0.86). Given a 0.5% prevalence target and a 0.5% prediction threshold, DCGs, GRAM, and Prior-expense captured $963,000 (approximately 3%) more "high-cost" sample dollars than other models. DCGs captured the most "high-cost" dollars among enrollees with asthma, diabetes, and depression; predictive performance among demographic groups (Medicaid members, members over 64, and children under 13) varied across models. Risk models can efficiently identify enrollees who are likely to generate future high costs and who could benefit from case management. The dollar value of improved prediction performance of the most accurate risk models should be meaningful to decision-makers and encourage their broader use for identifying high costs.
High fidelity chemistry and radiation modeling for oxy -- combustion scenarios
NASA Astrophysics Data System (ADS)
Abdul Sater, Hassan A.
To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy Dissipation Concept (EDC) employing a 41-step detailed chemistry mechanism, the non-adiabatic extension of the equilibrium Probability Density Function (PDF) based mixture-fraction model and a two-step global finite rate chemistry model with modified rate constants proposed to work well in oxy-methane flames. Based on the results from this section, the equilibrium PDF model in conjunction with a high-fidelity non-gray model for the radiative properties of the gas-phase may be deemed as accurate to capture the major gas species concentrations, temperatures and flame lengths in oxy-methane flames. The third section examines the variations in radiative transfer predictions due to the choice of chemistry and gas-phase radiative property models. The radiative properties were estimated employing four weighted-sum-of-gray-gases models (WSGGM) that were formulated employing different spectroscopic/model databases. An average variation of 14 -- 17% in the wall incident radiative fluxes was observed between the EDC and equilibrium mixture fraction chemistry models, due to differences in their temperature predictions within the flame. One-dimensional, line-of-sight radiation calculations showed a 15 -- 25 % reduction in the directional radiative fluxes at lower axial locations as a result of ignoring radiation from CO and CH4. Under the constraints of fixed temperature and species distributions, the flame radiant power estimates and average wall incident radiative fluxes varied by nearly 60% and 11% respectively among the different WSGG models.
Ensemble modeling to predict habitat suitability for a large-scale disturbance specialist
Latif, Quresh S; Saab, Victoria A; Dudley, Jonathan G; Hollenbeck, Jeff P
2013-01-01
To conserve habitat for disturbance specialist species, ecologists must identify where individuals will likely settle in newly disturbed areas. Habitat suitability models can predict which sites at new disturbances will most likely attract specialists. Without validation data from newly disturbed areas, however, the best approach for maximizing predictive accuracy can be unclear (Northwestern U.S.A.). We predicted habitat suitability for nesting Black-backed Woodpeckers (Picoides arcticus; a burned-forest specialist) at 20 recently (≤6 years postwildfire) burned locations in Montana using models calibrated with data from three locations in Washington, Oregon, and Idaho. We developed 8 models using three techniques (weighted logistic regression, Maxent, and Mahalanobis D2 models) and various combinations of four environmental variables describing burn severity, the north–south orientation of topographic slope, and prefire canopy cover. After translating model predictions into binary classifications (0 = low suitability to unsuitable, 1 = high to moderate suitability), we compiled “ensemble predictions,” consisting of the number of models (0–8) predicting any given site as highly suitable. The suitability status for 40% of the area burned by eastside Montana wildfires was consistent across models and therefore robust to uncertainty in the relative accuracy of particular models and in alternative ecological hypotheses they described. Ensemble predictions exhibited two desirable properties: (1) a positive relationship with apparent rates of nest occurrence at calibration locations and (2) declining model agreement outside surveyed environments consistent with our reduced confidence in novel (i.e., “no-analogue”) environments. Areas of disagreement among models suggested where future surveys could help validate and refine models for an improved understanding of Black-backed Woodpecker nesting habitat relationships. Ensemble predictions presented here can help guide managers attempting to balance salvage logging with habitat conservation in burned-forest landscapes where black-backed woodpecker nest location data are not immediately available. Ensemble modeling represents a promising tool for guiding conservation of large-scale disturbance specialists. PMID:24340177
Application of a High-Fidelity Icing Analysis Method to a Model-Scale Rotor in Forward Flight
NASA Technical Reports Server (NTRS)
Narducci, Robert; Orr, Stanley; Kreeger, Richard E.
2012-01-01
An icing analysis process involving the loose coupling of OVERFLOW-RCAS for rotor performance prediction and with LEWICE3D for thermal analysis and ice accretion is applied to a model-scale rotor for validation. The process offers high-fidelity rotor analysis for the noniced and iced rotor performance evaluation that accounts for the interaction of nonlinear aerodynamics with blade elastic deformations. Ice accumulation prediction also involves loosely coupled data exchanges between OVERFLOW and LEWICE3D to produce accurate ice shapes. Validation of the process uses data collected in the 1993 icing test involving Sikorsky's Powered Force Model. Non-iced and iced rotor performance predictions are compared to experimental measurements as are predicted ice shapes.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Stouffer, Donald C.
1998-01-01
Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.
Prediction of the interior noise levels of high-speed propeller-driven aircraft
NASA Technical Reports Server (NTRS)
Rennison, D. C.; Wilby, J. F.; Wilby, E. G.
1980-01-01
The theoretical basis for an analytical model developed to predict the interior noise levels of high-speed propeller-driven airplanes is presented. Particular emphasis is given to modeling the transmission of discrete tones through a fuselage element into a cavity, estimates for the mean and standard deviation of the acoustic power flow, the coupling between a non-homogeneous excitation and the fuselage vibration response, and the prediction of maximum interior noise levels. The model allows for convenient examination of the various roles of the excitation and fuselage structural characteristics on the fuselage vibration response and the interior noise levels, as is required for the design of model or prototype noise control validation tests.
Arrhenius equation for modeling feedyard ammonia emissions using temperature and diet crude protein.
Todd, Richard W; Cole, N Andy; Waldrip, Heidi M; Aiken, Robert M
2013-01-01
Temperature controls many processes of NH volatilization. For example, urea hydrolysis is an enzymatically catalyzed reaction described by the Arrhenius equation. Diet crude protein (CP) controls NH emission by affecting N excretion. Our objectives were to use the Arrhenius equation to model NH emissions from beef cattle () feedyards and test predictions against observed emissions. Per capita NH emission rate (PCER), air temperature (), and CP were measured for 2 yr at two Texas Panhandle feedyards. Data were fitted to analogs of the Arrhenius equation: PCER = () and PCER = (,CP). The models were applied at a third feedyard to predict NH emissions and compare predicted to measured emissions. Predicted mean NH emissions were within -9 and 2% of observed emissions for the () and (T,CP) models, respectively. Annual emission factors calculated from models underestimated annual NH emission by 11% [() model] or overestimated emission by 8% [(,CP) model]. When from a regional weather station and three classes of CP drove the models, the () model overpredicted annual NH emission of the low CP class by 14% and underpredicted emissions of the optimum and high CP classes by 1 and 39%, respectively. The (,CP) model underpredicted NH emissions by 15, 4, and 23% for low, optimum, and high CP classes, respectively. Ammonia emission was successfully modeled using only, but including CP improved predictions. The empirical () and (,CP) models can successfully model NH emissions in the Texas Panhandle. Researchers are encouraged to test the models in other regions where high-quality NH emissions data are available. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Yu, Z.; Lin, S.
2011-12-01
Regional heat waves and drought have major economic and societal impacts on regional and even global scales. For example, during and following the 2010-2011 La Nina period, severe droughts have been reported in many places around the world including China, the southern US, and the east Africa, causing severe hardship in China and famine in east Africa. In this study, we investigate the feasibility and predictability of severe spring-summer draught events, 3 to 6 months in advance with the 25-km resolution Geophysical Fluid Dynamics Laboratory High-Resolution Atmosphere Model (HiRAM), which is built as a seamless weather-climate model, capable of long-term climate simulations as well as skillful seasonal predictions (e.g., Chen and Lin 2011, GRL). We adopted a similar methodology and the same (HiRAM) model as in Chen and Lin (2011), which is used successfully for seasonal hurricane predictions. A series of initialized 7-month forecasts starting from Dec 1 are performed each year (5 members each) during the past decade (2000-2010). We will then evaluate the predictability of the severe drought events during this period by comparing model predictions vs. available observations. To evaluate the predictive skill, in this preliminary report, we will focus on the anomalies of precipitation, sea-level-pressure, and 500-mb height. These anomalies will be computed as the individual model prediction minus the mean climatology obtained by an independent AMIP-type "simulation" using observed SSTs (rather than using predictive SSTs in the forecasts) from the same model.
AHPCRC (Army High Performance Computing Rsearch Center) Bulletin. Volume 1, Issue 4
2011-01-01
Computational and Mathematical Engineering, Stanford University esgs@stanford.edu (650) 723-3764 Molecular Dynamics Models of Antimicrobial ...simulations using low-fidelity Reynolds-av- eraged models illustrate the limited predictive capabili- ties of these schemes. The predictions for scalar and...driving force. The AHPCRC group has used their models to predict nonuniform concentra- tion profiles across small channels as a result of variations
Hybrid-PIC Modeling of a High-Voltage, High-Specific-Impulse Hall Thruster
NASA Technical Reports Server (NTRS)
Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani; Huang, Wensheng
2013-01-01
The primary life-limiting mechanism of Hall thrusters is the sputter erosion of the discharge channel walls by high-energy propellant ions. Because of the difficulty involved in characterizing this erosion experimentally, many past efforts have focused on numerical modeling to predict erosion rates and thruster lifespan, but those analyses were limited to Hall thrusters operating in the 200-400V discharge voltage range. Thrusters operating at higher discharge voltages (V(sub d) >= 500 V) present an erosion environment that may differ greatly from that of the lower-voltage thrusters modeled in the past. In this work, HPHall, a well-established hybrid-PIC code, is used to simulate NASA's High-Voltage Hall Accelerator (HiVHAc) at discharge voltages of 300, 400, and 500V as a first step towards modeling the discharge channel erosion. It is found that the model accurately predicts the thruster performance at all operating conditions to within 6%. The model predicts a normalized plasma potential profile that is consistent between all three operating points, with the acceleration zone appearing in the same approximate location. The expected trend of increasing electron temperature with increasing discharge voltage is observed. An analysis of the discharge current oscillations shows that the model predicts oscillations that are much greater in amplitude than those measured experimentally at all operating points, suggesting that the differences in oscillation amplitude are not strongly associated with discharge voltage.
Multiplexed Predictive Control of a Large Commercial Turbofan Engine
NASA Technical Reports Server (NTRS)
Richter, hanz; Singaraju, Anil; Litt, Jonathan S.
2008-01-01
Model predictive control is a strategy well-suited to handle the highly complex, nonlinear, uncertain, and constrained dynamics involved in aircraft engine control problems. However, it has thus far been infeasible to implement model predictive control in engine control applications, because of the combination of model complexity and the time allotted for the control update calculation. In this paper, a multiplexed implementation is proposed that dramatically reduces the computational burden of the quadratic programming optimization that must be solved online as part of the model-predictive-control algorithm. Actuator updates are calculated sequentially and cyclically in a multiplexed implementation, as opposed to the simultaneous optimization taking place in conventional model predictive control. Theoretical aspects are discussed based on a nominal model, and actual computational savings are demonstrated using a realistic commercial engine model.
Zhao, Lue Ping; Bolouri, Hamid
2016-04-01
Maturing omics technologies enable researchers to generate high dimension omics data (HDOD) routinely in translational clinical studies. In the field of oncology, The Cancer Genome Atlas (TCGA) provided funding support to researchers to generate different types of omics data on a common set of biospecimens with accompanying clinical data and has made the data available for the research community to mine. One important application, and the focus of this manuscript, is to build predictive models for prognostic outcomes based on HDOD. To complement prevailing regression-based approaches, we propose to use an object-oriented regression (OOR) methodology to identify exemplars specified by HDOD patterns and to assess their associations with prognostic outcome. Through computing patient's similarities to these exemplars, the OOR-based predictive model produces a risk estimate using a patient's HDOD. The primary advantages of OOR are twofold: reducing the penalty of high dimensionality and retaining the interpretability to clinical practitioners. To illustrate its utility, we apply OOR to gene expression data from non-small cell lung cancer patients in TCGA and build a predictive model for prognostic survivorship among stage I patients, i.e., we stratify these patients by their prognostic survival risks beyond histological classifications. Identification of these high-risk patients helps oncologists to develop effective treatment protocols and post-treatment disease management plans. Using the TCGA data, the total sample is divided into training and validation data sets. After building up a predictive model in the training set, we compute risk scores from the predictive model, and validate associations of risk scores with prognostic outcome in the validation data (P-value=0.015). Copyright © 2016 Elsevier Inc. All rights reserved.
Zhao, Lue Ping; Bolouri, Hamid
2016-01-01
Maturing omics technologies enable researchers to generate high dimension omics data (HDOD) routinely in translational clinical studies. In the field of oncology, The Cancer Genome Atlas (TCGA) provided funding support to researchers to generate different types of omics data on a common set of biospecimens with accompanying clinical data and to make the data available for the research community to mine. One important application, and the focus of this manuscript, is to build predictive models for prognostic outcomes based on HDOD. To complement prevailing regression-based approaches, we propose to use an object-oriented regression (OOR) methodology to identify exemplars specified by HDOD patterns and to assess their associations with prognostic outcome. Through computing patient’s similarities to these exemplars, the OOR-based predictive model produces a risk estimate using a patient’s HDOD. The primary advantages of OOR are twofold: reducing the penalty of high dimensionality and retaining the interpretability to clinical practitioners. To illustrate its utility, we apply OOR to gene expression data from non-small cell lung cancer patients in TCGA and build a predictive model for prognostic survivorship among stage I patients, i.e., we stratify these patients by their prognostic survival risks beyond histological classifications. Identification of these high-risk patients helps oncologists to develop effective treatment protocols and post-treatment disease management plans. Using the TCGA data, the total sample is divided into training and validation data sets. After building up a predictive model in the training set, we compute risk scores from the predictive model, and validate associations of risk scores with prognostic outcome in the validation data (p=0.015). PMID:26972839
Pearce, J; Ferrier, S; Scotts, D
2001-06-01
To use models of species distributions effectively in conservation planning, it is important to determine the predictive accuracy of such models. Extensive modelling of the distribution of vascular plant and vertebrate fauna species within north-east New South Wales has been undertaken by linking field survey data to environmental and geographical predictors using logistic regression. These models have been used in the development of a comprehensive and adequate reserve system within the region. We evaluate the predictive accuracy of models for 153 small reptile, arboreal marsupial, diurnal bird and vascular plant species for which independent evaluation data were available. The predictive performance of each model was evaluated using the relative operating characteristic curve to measure discrimination capacity. Good discrimination ability implies that a model's predictions provide an acceptable index of species occurrence. The discrimination capacity of 89% of the models was significantly better than random, with 70% of the models providing high levels of discrimination. Predictions generated by this type of modelling therefore provide a reasonably sound basis for regional conservation planning. The discrimination ability of models was highest for the less mobile biological groups, particularly the vascular plants and small reptiles. In the case of diurnal birds, poor performing models tended to be for species which occur mainly within specific habitats not well sampled by either the model development or evaluation data, highly mobile species, species that are locally nomadic or those that display very broad habitat requirements. Particular care needs to be exercised when employing models for these types of species in conservation planning.
Bernecker, Samantha L; Rosellini, Anthony J; Nock, Matthew K; Chiu, Wai Tat; Gutierrez, Peter M; Hwang, Irving; Joiner, Thomas E; Naifeh, James A; Sampson, Nancy A; Zaslavsky, Alan M; Stein, Murray B; Ursano, Robert J; Kessler, Ronald C
2018-04-03
High rates of mental disorders, suicidality, and interpersonal violence early in the military career have raised interest in implementing preventive interventions with high-risk new enlistees. The Army Study to Assess Risk and Resilience in Servicemembers (STARRS) developed risk-targeting systems for these outcomes based on machine learning methods using administrative data predictors. However, administrative data omit many risk factors, raising the question whether risk targeting could be improved by adding self-report survey data to prediction models. If so, the Army may gain from routinely administering surveys that assess additional risk factors. The STARRS New Soldier Survey was administered to 21,790 Regular Army soldiers who agreed to have survey data linked to administrative records. As reported previously, machine learning models using administrative data as predictors found that small proportions of high-risk soldiers accounted for high proportions of negative outcomes. Other machine learning models using self-report survey data as predictors were developed previously for three of these outcomes: major physical violence and sexual violence perpetration among men and sexual violence victimization among women. Here we examined the extent to which this survey information increases prediction accuracy, over models based solely on administrative data, for those three outcomes. We used discrete-time survival analysis to estimate a series of models predicting first occurrence, assessing how model fit improved and concentration of risk increased when adding the predicted risk score based on survey data to the predicted risk score based on administrative data. The addition of survey data improved prediction significantly for all outcomes. In the most extreme case, the percentage of reported sexual violence victimization among the 5% of female soldiers with highest predicted risk increased from 17.5% using only administrative predictors to 29.4% adding survey predictors, a 67.9% proportional increase in prediction accuracy. Other proportional increases in concentration of risk ranged from 4.8% to 49.5% (median = 26.0%). Data from an ongoing New Soldier Survey could substantially improve accuracy of risk models compared to models based exclusively on administrative predictors. Depending upon the characteristics of interventions used, the increase in targeting accuracy from survey data might offset survey administration costs.
Bakal, Gokhan; Talari, Preetham; Kakani, Elijah V; Kavuluru, Ramakanth
2018-06-01
Identifying new potential treatment options for medical conditions that cause human disease burden is a central task of biomedical research. Since all candidate drugs cannot be tested with animal and clinical trials, in vitro approaches are first attempted to identify promising candidates. Likewise, identifying different causal relations between biomedical entities is also critical to understand biomedical processes. Generally, natural language processing (NLP) and machine learning are used to predict specific relations between any given pair of entities using the distant supervision approach. To build high accuracy supervised predictive models to predict previously unknown treatment and causative relations between biomedical entities based only on semantic graph pattern features extracted from biomedical knowledge graphs. We used 7000 treats and 2918 causes hand-curated relations from the UMLS Metathesaurus to train and test our models. Our graph pattern features are extracted from simple paths connecting biomedical entities in the SemMedDB graph (based on the well-known SemMedDB database made available by the U.S. National Library of Medicine). Using these graph patterns connecting biomedical entities as features of logistic regression and decision tree models, we computed mean performance measures (precision, recall, F-score) over 100 distinct 80-20% train-test splits of the datasets. For all experiments, we used a positive:negative class imbalance of 1:10 in the test set to model relatively more realistic scenarios. Our models predict treats and causes relations with high F-scores of 99% and 90% respectively. Logistic regression model coefficients also help us identify highly discriminative patterns that have an intuitive interpretation. We are also able to predict some new plausible relations based on false positives that our models scored highly based on our collaborations with two physician co-authors. Finally, our decision tree models are able to retrieve over 50% of treatment relations from a recently created external dataset. We employed semantic graph patterns connecting pairs of candidate biomedical entities in a knowledge graph as features to predict treatment/causative relations between them. We provide what we believe is the first evidence in direct prediction of biomedical relations based on graph features. Our work complements lexical pattern based approaches in that the graph patterns can be used as additional features for weakly supervised relation prediction. Copyright © 2018 Elsevier Inc. All rights reserved.
Predictability of short-range forecasting: a multimodel approach
NASA Astrophysics Data System (ADS)
García-Moya, Jose-Antonio; Callado, Alfons; Escribà, Pau; Santos, Carlos; Santos-Muñoz, Daniel; Simarro, Juan
2011-05-01
Numerical weather prediction (NWP) models (including mesoscale) have limitations when it comes to dealing with severe weather events because extreme weather is highly unpredictable, even in the short range. A probabilistic forecast based on an ensemble of slightly different model runs may help to address this issue. Among other ensemble techniques, Multimodel ensemble prediction systems (EPSs) are proving to be useful for adding probabilistic value to mesoscale deterministic models. A Multimodel Short Range Ensemble Prediction System (SREPS) focused on forecasting the weather up to 72 h has been developed at the Spanish Meteorological Service (AEMET). The system uses five different limited area models (LAMs), namely HIRLAM (HIRLAM Consortium), HRM (DWD), the UM (UKMO), MM5 (PSU/NCAR) and COSMO (COSMO Consortium). These models run with initial and boundary conditions provided by five different global deterministic models, namely IFS (ECMWF), UM (UKMO), GME (DWD), GFS (NCEP) and CMC (MSC). AEMET-SREPS (AE) validation on the large-scale flow, using ECMWF analysis, shows a consistent and slightly underdispersive system. For surface parameters, the system shows high skill forecasting binary events. 24-h precipitation probabilistic forecasts are verified using an up-scaling grid of observations from European high-resolution precipitation networks, and compared with ECMWF-EPS (EC).
Boomer, Kathleen B; Weller, Donald E; Jordan, Thomas E
2008-01-01
The Universal Soil Loss Equation (USLE) and its derivatives are widely used for identifying watersheds with a high potential for degrading stream water quality. We compared sediment yields estimated from regional application of the USLE, the automated revised RUSLE2, and five sediment delivery ratio algorithms to measured annual average sediment delivery in 78 catchments of the Chesapeake Bay watershed. We did the same comparisons for another 23 catchments monitored by the USGS. Predictions exceeded observed sediment yields by more than 100% and were highly correlated with USLE erosion predictions (Pearson r range, 0.73-0.92; p < 0.001). RUSLE2-erosion estimates were highly correlated with USLE estimates (r = 0.87; p < 001), so the method of implementing the USLE model did not change the results. In ranked comparisons between observed and predicted sediment yields, the models failed to identify catchments with higher yields (r range, -0.28-0.00; p > 0.14). In a multiple regression analysis, soil erodibility, log (stream flow), basin shape (topographic relief ratio), the square-root transformed proportion of forest, and occurrence in the Appalachian Plateau province explained 55% of the observed variance in measured suspended sediment loads, but the model performed poorly (r(2) = 0.06) at predicting loads in the 23 USGS watersheds not used in fitting the model. The use of USLE or multiple regression models to predict sediment yields is not advisable despite their present widespread application. Integrated watershed models based on the USLE may also be unsuitable for making management decisions.
Application of a predictive Bayesian model to environmental accounting.
Anex, R P; Englehardt, J D
2001-03-30
Environmental accounting techniques are intended to capture important environmental costs and benefits that are often overlooked in standard accounting practices. Environmental accounting methods themselves often ignore or inadequately represent large but highly uncertain environmental costs and costs conditioned by specific prior events. Use of a predictive Bayesian model is demonstrated for the assessment of such highly uncertain environmental and contingent costs. The predictive Bayesian approach presented generates probability distributions for the quantity of interest (rather than parameters thereof). A spreadsheet implementation of a previously proposed predictive Bayesian model, extended to represent contingent costs, is described and used to evaluate whether a firm should undertake an accelerated phase-out of its PCB containing transformers. Variability and uncertainty (due to lack of information) in transformer accident frequency and severity are assessed simultaneously using a combination of historical accident data, engineering model-based cost estimates, and subjective judgement. Model results are compared using several different risk measures. Use of the model for incorporation of environmental risk management into a company's overall risk management strategy is discussed.
2013-01-01
Background The present study aimed to develop an artificial neural network (ANN) based prediction model for cardiovascular autonomic (CA) dysfunction in the general population. Methods We analyzed a previous dataset based on a population sample consisted of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN analysis. Performances of these prediction models were evaluated in the validation set. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with CA dysfunction (P < 0.05). The mean area under the receiver-operating curve was 0.762 (95% CI 0.732–0.793) for prediction model developed using ANN analysis. The mean sensitivity, specificity, positive and negative predictive values were similar in the prediction models was 0.751, 0.665, 0.330 and 0.924, respectively. All HL statistics were less than 15.0. Conclusion ANN is an effective tool for developing prediction models with high value for predicting CA dysfunction among the general population. PMID:23902963
Marini, C; Fossa, F; Paoli, C; Bellingeri, M; Gnone, G; Vassallo, P
2015-03-01
Habitat modeling is an important tool to investigate the quality of the habitat for a species within a certain area, to predict species distribution and to understand the ecological processes behind it. Many species have been investigated by means of habitat modeling techniques mainly to address effective management and protection policies and cetaceans play an important role in this context. The bottlenose dolphin (Tursiops truncatus) has been investigated with habitat modeling techniques since 1997. The objectives of this work were to predict the distribution of bottlenose dolphin in a coastal area through the use of static morphological features and to compare the prediction performances of three different modeling techniques: Generalized Linear Model (GLM), Generalized Additive Model (GAM) and Random Forest (RF). Four static variables were tested: depth, bottom slope, distance from 100 m bathymetric contour and distance from coast. RF revealed itself both the most accurate and the most precise modeling technique with very high distribution probabilities predicted in presence cells (90.4% of mean predicted probabilities) and with 66.7% of presence cells with a predicted probability comprised between 90% and 100%. The bottlenose distribution obtained with RF allowed the identification of specific areas with particularly high presence probability along the coastal zone; the recognition of these core areas may be the starting point to develop effective management practices to improve T. truncatus protection. Copyright © 2014 Elsevier Ltd. All rights reserved.
Carbon and energy fluxes in cropland ecosystems: a model-data comparison
Lokupitiya, E.; Denning, A. Scott; Schaefer, K.; Ricciuto, D.; Anderson, R.; Arain, M. A.; Baker, I.; Barr, A. G.; Chen, G.; Chen, J.M.; Ciais, P.; Cook, D.R.; Dietze, M.C.; El Maayar, M.; Fischer, M.; Grant, R.; Hollinger, D.; Izaurralde, C.; Jain, A.; Kucharik, C.J.; Li, Z.; Liu, S.; Li, L.; Matamala, R.; Peylin, P.; Price, D.; Running, S. W.; Sahoo, A.; Sprintsin, M.; Suyker, A.E.; Tian, H.; Tonitto, Christina; Torn, M.S.; Verbeeck, Hans; Verma, S.B.; Xue, Y.
2016-01-01
Croplands are highly productive ecosystems that contribute to land–atmosphere exchange of carbon, energy, and water during their short growing seasons. We evaluated and compared net ecosystem exchange (NEE), latent heat flux (LE), and sensible heat flux (H) simulated by a suite of ecosystem models at five agricultural eddy covariance flux tower sites in the central United States as part of the North American Carbon Program Site Synthesis project. Most of the models overestimated H and underestimated LE during the growing season, leading to overall higher Bowen ratios compared to the observations. Most models systematically under predicted NEE, especially at rain-fed sites. Certain crop-specific models that were developed considering the high productivity and associated physiological changes in specific crops better predicted the NEE and LE at both rain-fed and irrigated sites. Models with specific parameterization for different crops better simulated the inter-annual variability of NEE for maize-soybean rotation compared to those models with a single generic crop type. Stratification according to basic model formulation and phenological methodology did not explain significant variation in model performance across these sites and crops. The under prediction of NEE and LE and over prediction of H by most of the models suggests that models developed and parameterized for natural ecosystems cannot accurately predict the more robust physiology of highly bred and intensively managed crop ecosystems. When coupled in Earth System Models, it is likely that the excessive physiological stress simulated in many land surface component models leads to overestimation of temperature and atmospheric boundary layer depth, and underestimation of humidity and CO2 seasonal uptake over agricultural regions.
Carbon and energy fluxes in cropland ecosystems: a model-data comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lokupitiya, E.; Denning, A. S.; Schaefer, K.
2016-06-03
Croplands are highly productive ecosystems that contribute to land–atmosphere exchange of carbon, energy, and water during their short growing seasons. We evaluated and compared net ecosystem exchange (NEE), latent heat flux (LE), and sensible heat flux (H) simulated by a suite of ecosystem models at five agricultural eddy covariance flux tower sites in the central United States as part of the North American Carbon Program Site Synthesis project. Most of the models overestimated H and underestimated LE during the growing season, leading to overall higher Bowen ratios compared to the observations. Most models systematically under predicted NEE, especially at rain-fedmore » sites. Certain crop-specific models that were developed considering the high productivity and associated physiological changes in specific crops better predicted the NEE and LE at both rain-fed and irrigated sites. Models with specific parameterization for different crops better simulated the inter-annual variability of NEE for maize-soybean rotation compared to those models with a single generic crop type. Stratification according to basic model formulation and phenological methodology did not explain significant variation in model performance across these sites and crops. The under prediction of NEE and LE and over prediction of H by most of the models suggests that models developed and parameterized for natural ecosystems cannot accurately predict the more robust physiology of highly bred and intensively managed crop ecosystems. When coupled in Earth System Models, it is likely that the excessive physiological stress simulated in many land surface component models leads to overestimation of temperature and atmospheric boundary layer depth, and underestimation of humidity and CO 2 seasonal uptake over agricultural regions.« less
A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades
Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan
2017-01-01
Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors. PMID:28773064
A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.
Zhu, Shun-Peng; Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan
2017-06-26
Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner's rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.
Worldwide multi-model intercomparison of clear-sky solar irradiance predictions
NASA Astrophysics Data System (ADS)
Ruiz-Arias, Jose A.; Gueymard, Christian A.; Cebecauer, Tomas
2017-06-01
Accurate modeling of solar radiation in the absence of clouds is highly important because solar power production peaks during cloud-free situations. The conventional validation approach of clear-sky solar radiation models relies on the comparison between model predictions and ground observations. Therefore, this approach is limited to locations with availability of high-quality ground observations, which are scarce worldwide. As a consequence, many areas of in-terest for, e.g., solar energy development, still remain sub-validated. Here, a worldwide inter-comparison of the global horizontal irradiance (GHI) and direct normal irradiance (DNI) calculated by a number of appropriate clear-sky solar ra-diation models is proposed, without direct intervention of any weather or solar radiation ground-based observations. The model inputs are all gathered from atmospheric reanalyses covering the globe. The model predictions are compared to each other and only their relative disagreements are quantified. The largest differences between model predictions are found over central and northern Africa, the Middle East, and all over Asia. This coincides with areas of high aerosol optical depth and highly varying aerosol distribution size. Overall, the differences in modeled DNI are found about twice larger than for GHI. It is argued that the prevailing weather regimes (most importantly, aerosol conditions) over regions exhibiting substantial divergences are not adequately parameterized by all models. Further validation and scrutiny using conventional methods based on ground observations should be pursued in priority over those specific regions to correctly evaluate the performance of clear-sky models, and select those that can be recommended for solar concentrating applications in particular.
Outcome Prediction in Mathematical Models of Immune Response to Infection.
Mai, Manuel; Wang, Kun; Huber, Greg; Kirby, Michael; Shattuck, Mark D; O'Hern, Corey S
2015-01-01
Clinicians need to predict patient outcomes with high accuracy as early as possible after disease inception. In this manuscript, we show that patient-to-patient variability sets a fundamental limit on outcome prediction accuracy for a general class of mathematical models for the immune response to infection. However, accuracy can be increased at the expense of delayed prognosis. We investigate several systems of ordinary differential equations (ODEs) that model the host immune response to a pathogen load. Advantages of systems of ODEs for investigating the immune response to infection include the ability to collect data on large numbers of 'virtual patients', each with a given set of model parameters, and obtain many time points during the course of the infection. We implement patient-to-patient variability v in the ODE models by randomly selecting the model parameters from distributions with coefficients of variation v that are centered on physiological values. We use logistic regression with one-versus-all classification to predict the discrete steady-state outcomes of the system. We find that the prediction algorithm achieves near 100% accuracy for v = 0, and the accuracy decreases with increasing v for all ODE models studied. The fact that multiple steady-state outcomes can be obtained for a given initial condition, i.e. the basins of attraction overlap in the space of initial conditions, limits the prediction accuracy for v > 0. Increasing the elapsed time of the variables used to train and test the classifier, increases the prediction accuracy, while adding explicit external noise to the ODE models decreases the prediction accuracy. Our results quantify the competition between early prognosis and high prediction accuracy that is frequently encountered by clinicians.
NASA Astrophysics Data System (ADS)
Javernick, Luke; Redolfi, Marco; Bertoldi, Walter
2018-05-01
New data collection techniques offer numerical modelers the ability to gather and utilize high quality data sets with high spatial and temporal resolution. Such data sets are currently needed for calibration, verification, and to fuel future model development, particularly morphological simulations. This study explores the use of high quality spatial and temporal data sets of observed bed load transport in braided river flume experiments to evaluate the ability of a two-dimensional model, Delft3D, to predict bed load transport. This study uses a fixed bed model configuration and examines the model's shear stress calculations, which are the foundation to predict the sediment fluxes necessary for morphological simulations. The evaluation is conducted for three flow rates, and model setup used highly accurate Structure-from-Motion (SfM) topography and discharge boundary conditions. The model was hydraulically calibrated using bed roughness, and performance was evaluated based on depth and inundation agreement. Model bed load performance was evaluated in terms of critical shear stress exceedance area compared to maps of observed bed mobility in a flume. Following the standard hydraulic calibration, bed load performance was tested for sensitivity to horizontal eddy viscosity parameterization and bed morphology updating. Simulations produced depth errors equal to the SfM inherent errors, inundation agreement of 77-85%, and critical shear stress exceedance in agreement with 49-68% of the observed active area. This study provides insight into the ability of physically based, two-dimensional simulations to accurately predict bed load as well as the effects of horizontal eddy viscosity and bed updating. Further, this study highlights how using high spatial and temporal data to capture the physical processes at work during flume experiments can help to improve morphological modeling.
Energy-confinement scaling for high-beta plasmas in the W7-AS stellarator.
Preuss, R; Dinklage, A; Weller, A
2007-12-14
High-beta energy-confinement data are subjected to comparisons of scaling invariant, first-principles physical models. The models differ in the inclusion of basic equations indicating the nature of transport. The result for high-beta data of the W7-AS stellarator is that global transport is described best with a collisional high-beta model, which is different from previous outcomes for low-beta data. Model predictive calculations indicate the validation of energy-confinement prediction with respect to plasma beta and collisionality nu*. The finding of different transport behaviors in distinct beta regimes is important for the development of fusion energy based on magnetic confinement and for the assessment of different confinement concepts.
Evaluating Air-Quality Models: Review and Outlook.
NASA Astrophysics Data System (ADS)
Weil, J. C.; Sykes, R. I.; Venkatram, A.
1992-10-01
Over the past decade, much attention has been devoted to the evaluation of air-quality models with emphasis on model performance in predicting the high concentrations that are important in air-quality regulations. This paper stems from our belief that this practice needs to be expanded to 1) evaluate model physics and 2) deal with the large natural or stochastic variability in concentration. The variability is represented by the root-mean- square fluctuating concentration (c about the mean concentration (C) over an ensemble-a given set of meteorological, source, etc. conditions. Most air-quality models used in applications predict C, whereas observations are individual realizations drawn from an ensemble. For cC large residuals exist between predicted and observed concentrations, which confuse model evaluations.This paper addresses ways of evaluating model physics in light of the large c the focus is on elevated point-source models. Evaluation of model physics requires the separation of the mean model error-the difference between the predicted and observed C-from the natural variability. A residual analysis is shown to be an elective way of doing this. Several examples demonstrate the usefulness of residuals as well as correlation analyses and laboratory data in judging model physics.In general, c models and predictions of the probability distribution of the fluctuating concentration (c), (c, are in the developmental stage, with laboratory data playing an important role. Laboratory data from point-source plumes in a convection tank show that (c approximates a self-similar distribution along the plume center plane, a useful result in a residual analysis. At pmsent,there is one model-ARAP-that predicts C, c, and (c for point-source plumes. This model is more computationally demanding than other dispersion models (for C only) and must be demonstrated as a practical tool. However, it predicts an important quantity for applications- the uncertainty in the very high and infrequent concentrations. The uncertainty is large and is needed in evaluating operational performance and in predicting the attainment of air-quality standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valencia, Antoni; Prous, Josep; Mora, Oscar
As indicated in ICH M7 draft guidance, in silico predictive tools including statistically-based QSARs and expert analysis may be used as a computational assessment for bacterial mutagenicity for the qualification of impurities in pharmaceuticals. To address this need, we developed and validated a QSAR model to predict Salmonella t. mutagenicity (Ames assay outcome) of pharmaceutical impurities using Prous Institute's Symmetry℠, a new in silico solution for drug discovery and toxicity screening, and the Mold2 molecular descriptor package (FDA/NCTR). Data was sourced from public benchmark databases with known Ames assay mutagenicity outcomes for 7300 chemicals (57% mutagens). Of these data, 90%more » was used to train the model and the remaining 10% was set aside as a holdout set for validation. The model's applicability to drug impurities was tested using a FDA/CDER database of 951 structures, of which 94% were found within the model's applicability domain. The predictive performance of the model is acceptable for supporting regulatory decision-making with 84 ± 1% sensitivity, 81 ± 1% specificity, 83 ± 1% concordance and 79 ± 1% negative predictivity based on internal cross-validation, while the holdout dataset yielded 83% sensitivity, 77% specificity, 80% concordance and 78% negative predictivity. Given the importance of having confidence in negative predictions, an additional external validation of the model was also carried out, using marketed drugs known to be Ames-negative, and obtained 98% coverage and 81% specificity. Additionally, Ames mutagenicity data from FDA/CFSAN was used to create another data set of 1535 chemicals for external validation of the model, yielding 98% coverage, 73% sensitivity, 86% specificity, 81% concordance and 84% negative predictivity. - Highlights: • A new in silico QSAR model to predict Ames mutagenicity is described. • The model is extensively validated with chemicals from the FDA and the public domain. • Validation tests show desirable high sensitivity and high negative predictivity. • The model predicted 14 reportedly difficult to predict drug impurities with accuracy. • The model is suitable to support risk evaluation of potentially mutagenic compounds.« less
Dynamics and control of quadcopter using linear model predictive control approach
NASA Astrophysics Data System (ADS)
Islam, M.; Okasha, M.; Idres, M. M.
2017-12-01
This paper investigates the dynamics and control of a quadcopter using the Model Predictive Control (MPC) approach. The dynamic model is of high fidelity and nonlinear, with six degrees of freedom that include disturbances and model uncertainties. The control approach is developed based on MPC to track different reference trajectories ranging from simple ones such as circular to complex helical trajectories. In this control technique, a linearized model is derived and the receding horizon method is applied to generate the optimal control sequence. Although MPC is computer expensive, it is highly effective to deal with the different types of nonlinearities and constraints such as actuators’ saturation and model uncertainties. The MPC parameters (control and prediction horizons) are selected by trial-and-error approach. Several simulation scenarios are performed to examine and evaluate the performance of the proposed control approach using MATLAB and Simulink environment. Simulation results show that this control approach is highly effective to track a given reference trajectory.
Predicting the dynamics of bacterial growth inhibition by ribosome-targeting antibiotics
NASA Astrophysics Data System (ADS)
Greulich, Philip; Doležal, Jakub; Scott, Matthew; Evans, Martin R.; Allen, Rosalind J.
2017-12-01
Understanding how antibiotics inhibit bacteria can help to reduce antibiotic use and hence avoid antimicrobial resistance—yet few theoretical models exist for bacterial growth inhibition by a clinically relevant antibiotic treatment regimen. In particular, in the clinic, antibiotic treatment is time-dependent. Here, we use a theoretical model, previously applied to steady-state bacterial growth, to predict the dynamical response of a bacterial cell to a time-dependent dose of ribosome-targeting antibiotic. Our results depend strongly on whether the antibiotic shows reversible transport and/or low-affinity ribosome binding (‘low-affinity antibiotic’) or, in contrast, irreversible transport and/or high affinity ribosome binding (‘high-affinity antibiotic’). For low-affinity antibiotics, our model predicts that growth inhibition depends on the duration of the antibiotic pulse, and can show a transient period of very fast growth following removal of the antibiotic. For high-affinity antibiotics, growth inhibition depends on peak dosage rather than dose duration, and the model predicts a pronounced post-antibiotic effect, due to hysteresis, in which growth can be suppressed for long times after the antibiotic dose has ended. These predictions are experimentally testable and may be of clinical significance.
Predicting the dynamics of bacterial growth inhibition by ribosome-targeting antibiotics
Greulich, Philip; Doležal, Jakub; Scott, Matthew; Evans, Martin R; Allen, Rosalind J
2017-01-01
Understanding how antibiotics inhibit bacteria can help to reduce antibiotic use and hence avoid antimicrobial resistance—yet few theoretical models exist for bacterial growth inhibition by a clinically relevant antibiotic treatment regimen. In particular, in the clinic, antibiotic treatment is time-dependent. Here, we use a theoretical model, previously applied to steady-state bacterial growth, to predict the dynamical response of a bacterial cell to a time-dependent dose of ribosome-targeting antibiotic. Our results depend strongly on whether the antibiotic shows reversible transport and/or low-affinity ribosome binding (‘low-affinity antibiotic’) or, in contrast, irreversible transport and/or high affinity ribosome binding (‘high-affinity antibiotic’). For low-affinity antibiotics, our model predicts that growth inhibition depends on the duration of the antibiotic pulse, and can show a transient period of very fast growth following removal of the antibiotic. For high-affinity antibiotics, growth inhibition depends on peak dosage rather than dose duration, and the model predicts a pronounced post-antibiotic effect, due to hysteresis, in which growth can be suppressed for long times after the antibiotic dose has ended. These predictions are experimentally testable and may be of clinical significance. PMID:28714461
Risk Prediction Models for Acute Kidney Injury in Critically Ill Patients: Opus in Progressu.
Neyra, Javier A; Leaf, David E
2018-05-31
Acute kidney injury (AKI) is a complex systemic syndrome associated with high morbidity and mortality. Among critically ill patients admitted to intensive care units (ICUs), the incidence of AKI is as high as 50% and is associated with dismal outcomes. Thus, the development and validation of clinical risk prediction tools that accurately identify patients at high risk for AKI in the ICU is of paramount importance. We provide a comprehensive review of 3 clinical risk prediction tools that have been developed for incident AKI occurring in the first few hours or days following admission to the ICU. We found substantial heterogeneity among the clinical variables that were examined and included as significant predictors of AKI in the final models. The area under the receiver operating characteristic curves was ∼0.8 for all 3 models, indicating satisfactory model performance, though positive predictive values ranged from only 23 to 38%. Hence, further research is needed to develop more accurate and reproducible clinical risk prediction tools. Strategies for improved assessment of AKI susceptibility in the ICU include the incorporation of dynamic (time-varying) clinical parameters, as well as biomarker, functional, imaging, and genomic data. © 2018 S. Karger AG, Basel.
lazar: a modular predictive toxicology framework
Maunz, Andreas; Gütlein, Martin; Rautenberg, Micha; Vorgrimmler, David; Gebele, Denis; Helma, Christoph
2013-01-01
lazar (lazy structure–activity relationships) is a modular framework for predictive toxicology. Similar to the read across procedure in toxicological risk assessment, lazar creates local QSAR (quantitative structure–activity relationship) models for each compound to be predicted. Model developers can choose between a large variety of algorithms for descriptor calculation and selection, chemical similarity indices, and model building. This paper presents a high level description of the lazar framework and discusses the performance of example classification and regression models. PMID:23761761
Identification of informative features for predicting proinflammatory potentials of engine exhausts.
Wang, Chia-Chi; Lin, Ying-Chi; Lin, Yuan-Chung; Jhang, Syu-Ruei; Tung, Chun-Wei
2017-08-18
The immunotoxicity of engine exhausts is of high concern to human health due to the increasing prevalence of immune-related diseases. However, the evaluation of immunotoxicity of engine exhausts is currently based on expensive and time-consuming experiments. It is desirable to develop efficient methods for immunotoxicity assessment. To accelerate the development of safe alternative fuels, this study proposed a computational method for identifying informative features for predicting proinflammatory potentials of engine exhausts. A principal component regression (PCR) algorithm was applied to develop prediction models. The informative features were identified by a sequential backward feature elimination (SBFE) algorithm. A total of 19 informative chemical and biological features were successfully identified by SBFE algorithm. The informative features were utilized to develop a computational method named FS-CBM for predicting proinflammatory potentials of engine exhausts. FS-CBM model achieved a high performance with correlation coefficient values of 0.997 and 0.943 obtained from training and independent test sets, respectively. The FS-CBM model was developed for predicting proinflammatory potentials of engine exhausts with a large improvement on prediction performance compared with our previous CBM model. The proposed method could be further applied to construct models for bioactivities of mixtures.
Point-Mass Aircraft Trajectory Prediction Using a Hierarchical, Highly-Adaptable Software Design
NASA Technical Reports Server (NTRS)
Karr, David A.; Vivona, Robert A.; Woods, Sharon E.; Wing, David J.
2017-01-01
A highly adaptable and extensible method for predicting four-dimensional trajectories of civil aircraft has been developed. This method, Behavior-Based Trajectory Prediction, is based on taxonomic concepts developed for the description and comparison of trajectory prediction software. A hierarchical approach to the "behavioral" layer of a point-mass model of aircraft flight, a clear separation between the "behavioral" and "mathematical" layers of the model, and an abstraction of the methods of integrating differential equations in the "mathematical" layer have been demonstrated to support aircraft models of different types (in particular, turbojet vs. turboprop aircraft) using performance models at different levels of detail and in different formats, and promise to be easily extensible to other aircraft types and sources of data. The resulting trajectories predict location, altitude, lateral and vertical speeds, and fuel consumption along the flight path of the subject aircraft accurately and quickly, accounting for local conditions of wind and outside air temperature. The Behavior-Based Trajectory Prediction concept was implemented in NASA's Traffic Aware Planner (TAP) flight-optimizing cockpit software application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Pooja Nitin; Shin, Yung C.; Sun, Tao
Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ tracking of the grain refinement mechanism operating during the dynamic deformation of metals. Copper with an initial average grain size of 36 μm is refined to 6.3 μm when loaded at a constant high strain rate of 1200 s -1. The synchrotron measurements revealed the temporal evolution of the grain refinement mechanism in terms of the initiation and rate of refinement throughout the loading test. A multiscale coupled probabilistic cellular automata based recrystallization model has been developed to predict the microstructural evolution occurring during dynamic deformationmore » processes. The model accurately predicts the initiation of the grain refinement mechanism with a predicted final average grain size of 2.4 μm. As a result, the model also accurately predicts the temporal evolution in terms of the initiation and extent of refinement when compared with the experimental results.« less
Shah, Pooja Nitin; Shin, Yung C.; Sun, Tao
2017-10-03
Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ tracking of the grain refinement mechanism operating during the dynamic deformation of metals. Copper with an initial average grain size of 36 μm is refined to 6.3 μm when loaded at a constant high strain rate of 1200 s -1. The synchrotron measurements revealed the temporal evolution of the grain refinement mechanism in terms of the initiation and rate of refinement throughout the loading test. A multiscale coupled probabilistic cellular automata based recrystallization model has been developed to predict the microstructural evolution occurring during dynamic deformationmore » processes. The model accurately predicts the initiation of the grain refinement mechanism with a predicted final average grain size of 2.4 μm. As a result, the model also accurately predicts the temporal evolution in terms of the initiation and extent of refinement when compared with the experimental results.« less
Liu, Chen; Liu, Teli; Zhang, Ning; Liu, Yiqiang; Li, Nan; Du, Peng; Yang, Yong; Liu, Ming; Gong, Kan; Yang, Xing; Zhu, Hua; Yan, Kun; Yang, Zhi
2018-05-02
The purpose of this study was to investigate the performance of 68 Ga-PSMA-617 PET/CT in predicting risk stratification and metastatic risk of prostate cancer. Fifty newly diagnosed patients with prostate cancer as confirmed by needle biopsy were continuously included, 40 in a train set and ten in a test set. 68 Ga-PSMA-617 PET/CT and clinical data of all patients were retrospectively analyzed. Semi-quantitative analysis of PET images provided maximum standardized uptake (SUVmax) of primary prostate cancer and volumetric parameters including intraprostatic PSMA-derived tumor volume (iPSMA-TV) and intraprostatic total lesion PSMA (iTL-PSMA). According to prostate cancer risk stratification criteria of the NCCN Guideline, all patients were simplified into a low-intermediate risk group or a high-risk group. The semi-quantitative parameters of 68 Ga-PSMA-617 PET/CT were used to establish a univariate logistic regression model for high-risk prostate cancer and its metastatic risk, and to evaluate the diagnostic efficacy of the predictive model. In the train set, 30/40 (75%) patients had high-risk prostate cancer and 10/40 (25%) patients had low-to-moderate-risk prostate cancer; in the test set, 8/10 (80%) patients had high-risk prostate cancer while 2/10 (20%) had low-intermediate risk prostate cancer. The univariate logistic regression model established with SUVmax, iPSMA-TV and iTL-PSMA could all effectively predict high-risk prostate cancer; the AUC of ROC were 0.843, 0.802 and 0.900, respectively. Based on the test set, the sensitivity and specificity of each model were 87.5% and 50% for SUVmax, 62.5% and 100% for iPSMA-TV, and 87.5% and 100% for iTL-PSMA, respectively. The iPSMA-TV and iTL-PSMA-based predictive model could predict the metastatic risk of prostate cancer, the AUC of ROC was 0.863 and 0.848, respectively, but the SUVmax-based prediction model could not predict metastatic risk. Semi-quantitative analysis indexes of 68 Ga-PSMA-617 PET/CT imaging can be used as "imaging biomarkers" to predict risk stratification and metastatic risk of prostate cancer.
Are V1 Simple Cells Optimized for Visual Occlusions? A Comparative Study
Bornschein, Jörg; Henniges, Marc; Lücke, Jörg
2013-01-01
Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex. PMID:23754938
Prediction of adolescent and adult adiposity outcomes from early life anthropometrics.
Graversen, Lise; Sørensen, Thorkild I A; Gerds, Thomas A; Petersen, Liselotte; Sovio, Ulla; Kaakinen, Marika; Sandbaek, Annelli; Laitinen, Jaana; Taanila, Anja; Pouta, Anneli; Järvelin, Marjo-Riitta; Obel, Carsten
2015-01-01
Maternal body mass index (BMI), birth weight, and preschool BMI may help identify children at high risk of overweight as they are (1) similarly linked to adolescent overweight at different stages of the obesity epidemic, (2) linked to adult obesity and metabolic alterations, and (3) easily obtainable in health examinations in young children. The aim was to develop early childhood prediction models of adolescent overweight, adult overweight, and adult obesity. Prediction models at various ages in the Northern Finland Birth Cohort born in 1966 (NFBC1966) were developed. Internal validation was tested using a bootstrap design, and external validation was tested for the model predicting adolescent overweight using the Northern Finland Birth Cohort born in 1986 (NFBC1986). A prediction model developed in the NFBC1966 to predict adolescent overweight, applied to the NFBC1986, and aimed at labelling 10% as "at risk" on the basis of anthropometric information collected until 5 years of age showed that half of those at risk in fact did become overweight. This group constituted one-third of all who became overweight. Our prediction model identified a subgroup of children at very high risk of becoming overweight, which may be valuable in public health settings dealing with obesity prevention. © 2014 The Obesity Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraishi, Satomi; Moore, Kevin L., E-mail: kevinmoore@ucsd.edu
Purpose: To demonstrate knowledge-based 3D dose prediction for external beam radiotherapy. Methods: Using previously treated plans as training data, an artificial neural network (ANN) was trained to predict a dose matrix based on patient-specific geometric and planning parameters, such as the closest distance (r) to planning target volume (PTV) and organ-at-risks (OARs). Twenty-three prostate and 43 stereotactic radiosurgery/radiotherapy (SRS/SRT) cases with at least one nearby OAR were studied. All were planned with volumetric-modulated arc therapy to prescription doses of 81 Gy for prostate and 12–30 Gy for SRS. Using these clinically approved plans, ANNs were trained to predict dose matrixmore » and the predictive accuracy was evaluated using the dose difference between the clinical plan and prediction, δD = D{sub clin} − D{sub pred}. The mean (〈δD{sub r}〉), standard deviation (σ{sub δD{sub r}}), and their interquartile range (IQR) for the training plans were evaluated at a 2–3 mm interval from the PTV boundary (r{sub PTV}) to assess prediction bias and precision. Initially, unfiltered models which were trained using all plans in the cohorts were created for each treatment site. The models predict approximately the average quality of OAR sparing. Emphasizing a subset of plans that exhibited superior to the average OAR sparing during training, refined models were created to predict high-quality rectum sparing for prostate and brainstem sparing for SRS. Using the refined model, potentially suboptimal plans were identified where the model predicted further sparing of the OARs was achievable. Replans were performed to test if the OAR sparing could be improved as predicted by the model. Results: The refined models demonstrated highly accurate dose distribution prediction. For prostate cases, the average prediction bias for all voxels irrespective of organ delineation ranged from −1% to 0% with maximum IQR of 3% over r{sub PTV} ∈ [ − 6, 30] mm. The average prediction error was less than 10% for the same r{sub PTV} range. For SRS cases, the average prediction bias ranged from −0.7% to 1.5% with maximum IQR of 5% over r{sub PTV} ∈ [ − 4, 32] mm. The average prediction error was less than 8%. Four potentially suboptimal plans were identified for each site and subsequent replanning demonstrated improved sparing of rectum and brainstem. Conclusions: The study demonstrates highly accurate knowledge-based 3D dose predictions for radiotherapy plans.« less
Rose, Rachel H; Turner, David B; Neuhoff, Sibylle; Jamei, Masoud
2017-07-01
Following a meal, a transient increase in splanchnic blood flow occurs that can result in increased exposure to orally administered high-extraction drugs. Typically, physiologically based pharmacokinetic (PBPK) models have incorporated this increase in blood flow as a time-invariant fed/fasted ratio, but this approach is unable to explain the extent of increased drug exposure. A model for the time-varying increase in splanchnic blood flow following a moderate- to high-calorie meal (TV-Q Splanch ) was developed to describe the observed data for healthy individuals. This was integrated within a PBPK model and used to predict the contribution of increased splanchnic blood flow to the observed food effect for two orally administered high-extraction drugs, propranolol and ibrutinib. The model predicted geometric mean fed/fasted AUC and C max ratios of 1.24 and 1.29 for propranolol, which were within the range of published values (within 1.0-1.8-fold of values from eight clinical studies). For ibrutinib, the predicted geometric mean fed/fasted AUC and C max ratios were 2.0 and 1.84, respectively, which was within 1.1-fold of the reported fed/fasted AUC ratio but underestimated the reported C max ratio by up to 1.9-fold. For both drugs, the interindividual variability in fed/fasted AUC and C max ratios was underpredicted. This suggests that the postprandial change in splanchnic blood flow is a major mechanism of the food effect for propranolol and ibrutinib but is insufficient to fully explain the observations. The proposed model is anticipated to improve the prediction of food effect for high-extraction drugs, but should be considered with other mechanisms.
Large-scale optimization-based classification models in medicine and biology.
Lee, Eva K
2007-06-01
We present novel optimization-based classification models that are general purpose and suitable for developing predictive rules for large heterogeneous biological and medical data sets. Our predictive model simultaneously incorporates (1) the ability to classify any number of distinct groups; (2) the ability to incorporate heterogeneous types of attributes as input; (3) a high-dimensional data transformation that eliminates noise and errors in biological data; (4) the ability to incorporate constraints to limit the rate of misclassification, and a reserved-judgment region that provides a safeguard against over-training (which tends to lead to high misclassification rates from the resulting predictive rule); and (5) successive multi-stage classification capability to handle data points placed in the reserved-judgment region. To illustrate the power and flexibility of the classification model and solution engine, and its multi-group prediction capability, application of the predictive model to a broad class of biological and medical problems is described. Applications include: the differential diagnosis of the type of erythemato-squamous diseases; predicting presence/absence of heart disease; genomic analysis and prediction of aberrant CpG island meythlation in human cancer; discriminant analysis of motility and morphology data in human lung carcinoma; prediction of ultrasonic cell disruption for drug delivery; identification of tumor shape and volume in treatment of sarcoma; discriminant analysis of biomarkers for prediction of early atherosclerois; fingerprinting of native and angiogenic microvascular networks for early diagnosis of diabetes, aging, macular degeneracy and tumor metastasis; prediction of protein localization sites; and pattern recognition of satellite images in classification of soil types. In all these applications, the predictive model yields correct classification rates ranging from 80 to 100%. This provides motivation for pursuing its use as a medical diagnostic, monitoring and decision-making tool.
Highly predictive and interpretable models for PAMPA permeability.
Sun, Hongmao; Nguyen, Kimloan; Kerns, Edward; Yan, Zhengyin; Yu, Kyeong Ri; Shah, Pranav; Jadhav, Ajit; Xu, Xin
2017-02-01
Cell membrane permeability is an important determinant for oral absorption and bioavailability of a drug molecule. An in silico model predicting drug permeability is described, which is built based on a large permeability dataset of 7488 compound entries or 5435 structurally unique molecules measured by the same lab using parallel artificial membrane permeability assay (PAMPA). On the basis of customized molecular descriptors, the support vector regression (SVR) model trained with 4071 compounds with quantitative data is able to predict the remaining 1364 compounds with the qualitative data with an area under the curve of receiver operating characteristic (AUC-ROC) of 0.90. The support vector classification (SVC) model trained with half of the whole dataset comprised of both the quantitative and the qualitative data produced accurate predictions to the remaining data with the AUC-ROC of 0.88. The results suggest that the developed SVR model is highly predictive and provides medicinal chemists a useful in silico tool to facilitate design and synthesis of novel compounds with optimal drug-like properties, and thus accelerate the lead optimization in drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
gCUP: rapid GPU-based HIV-1 co-receptor usage prediction for next-generation sequencing.
Olejnik, Michael; Steuwer, Michel; Gorlatch, Sergei; Heider, Dominik
2014-11-15
Next-generation sequencing (NGS) has a large potential in HIV diagnostics, and genotypic prediction models have been developed and successfully tested in the recent years. However, albeit being highly accurate, these computational models lack computational efficiency to reach their full potential. In this study, we demonstrate the use of graphics processing units (GPUs) in combination with a computational prediction model for HIV tropism. Our new model named gCUP, parallelized and optimized for GPU, is highly accurate and can classify >175 000 sequences per second on an NVIDIA GeForce GTX 460. The computational efficiency of our new model is the next step to enable NGS technologies to reach clinical significance in HIV diagnostics. Moreover, our approach is not limited to HIV tropism prediction, but can also be easily adapted to other settings, e.g. drug resistance prediction. The source code can be downloaded at http://www.heiderlab.de d.heider@wz-straubing.de. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sisa, Ivan
2018-02-09
Cardiovascular disease (CVD) mortality is predicted to increase in Latin America countries due to their rapidly aging population. However, there is very little information about CVD risk assessment as a primary preventive measure in this high-risk population. We predicted the national risk of developing CVD in Ecuadorian elderly population using the Systematic COronary Risk Evaluation in Older Persons (SCORE OP) High and Low models by risk categories/CVD risk region in 2009. Data on national cardiovascular risk factors were obtained from the Encuesta sobre Salud, Bienestar y Envejecimiento. We computed the predicted 5-year risk of CVD risk and compared the extent of agreement and reclassification in stratifying high-risk individuals between SCORE OP High and Low models. Analyses were done by risk categories, CVD risk region, and sex. In 2009, based on SCORE OP Low model almost 42% of elderly adults living in Ecuador were at high risk of suffering CVD over a 5-year period. The extent of agreement between SCORE OP High and Low risk prediction models was moderate (Cohen's kappa test of 0.5), 34% of individuals approximately were reclassified into different risk categories and a third of the population would benefit from a pharmacologic intervention to reduce the CVD risk. Forty-two percent of elderly Ecuadorians were at high risk of suffering CVD over a 5-year period, indicating an urgent need to tailor primary preventive measures for this vulnerable and high-risk population. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Jayakumar, A.; Sethunadh, Jisesh; Rakhi, R.; Arulalan, T.; Mohandas, Saji; Iyengar, Gopal R.; Rajagopal, E. N.
2017-05-01
National Centre for Medium Range Weather Forecasting high-resolution regional convective-scale Unified Model with latest tropical science settings is used to evaluate vertical structure of cloud and precipitation over two prominent monsoon regions: Western Ghats (WG) and Monsoon Core Zone (MCZ). Model radar reflectivity generated using Cloud Feedback Model Intercomparison Project Observation Simulator Package along with CloudSat profiling radar reflectivity is sampled for an active synoptic situation based on a new method using Budyko's index of turbulence (BT). Regime classification based on BT-precipitation relationship is more predominant during the active monsoon period when convective-scale model's resolution increases from 4 km to 1.5 km. Model predicted precipitation and vertical distribution of hydrometeors are found to be generally in agreement with Global Precipitation Measurement products and BT-based CloudSat observation, respectively. Frequency of occurrence of radar reflectivity from model implies that the low-level clouds below freezing level is underestimated compared to the observations over both regions. In addition, high-level clouds in the model predictions are much lesser over WG than MCZ.
[Predicting individual risk of high healthcare cost to identify complex chronic patients].
Coderch, Jordi; Sánchez-Pérez, Inma; Ibern, Pere; Carreras, Marc; Pérez-Berruezo, Xavier; Inoriza, José M
2014-01-01
To develop a predictive model for the risk of high consumption of healthcare resources, and assess the ability of the model to identify complex chronic patients. A cross-sectional study was performed within a healthcare management organization by using individual data from 2 consecutive years (88,795 people). The dependent variable consisted of healthcare costs above the 95th percentile (P95), including all services provided by the organization and pharmaceutical consumption outside of the institution. The predictive variables were age, sex, morbidity-based on clinical risk groups (CRG)-and selected data from previous utilization (use of hospitalization, use of high-cost drugs in ambulatory care, pharmaceutical expenditure). A univariate descriptive analysis was performed. We constructed a logistic regression model with a 95% confidence level and analyzed sensitivity, specificity, positive predictive values (PPV), and the area under the ROC curve (AUC). Individuals incurring costs >P95 accumulated 44% of total healthcare costs and were concentrated in ACRG3 (aggregated CRG level 3) categories related to multiple chronic diseases. All variables were statistically significant except for sex. The model had a sensitivity of 48.4% (CI: 46.9%-49.8%), specificity of 97.2% (CI: 97.0%-97.3%), PPV of 46.5% (CI: 45.0%-47.9%), and an AUC of 0.897 (CI: 0.892 to 0.902). High consumption of healthcare resources is associated with complex chronic morbidity. A model based on age, morbidity, and prior utilization is able to predict high-cost risk and identify a target population requiring proactive care. Copyright © 2013 SESPAS. Published by Elsevier Espana. All rights reserved.
Liang, Ja-Der; Ping, Xiao-Ou; Tseng, Yi-Ju; Huang, Guan-Tarn; Lai, Feipei; Yang, Pei-Ming
2014-12-01
Recurrence of hepatocellular carcinoma (HCC) is an important issue despite effective treatments with tumor eradication. Identification of patients who are at high risk for recurrence may provide more efficacious screening and detection of tumor recurrence. The aim of this study was to develop recurrence predictive models for HCC patients who received radiofrequency ablation (RFA) treatment. From January 2007 to December 2009, 83 newly diagnosed HCC patients receiving RFA as their first treatment were enrolled. Five feature selection methods including genetic algorithm (GA), simulated annealing (SA) algorithm, random forests (RF) and hybrid methods (GA+RF and SA+RF) were utilized for selecting an important subset of features from a total of 16 clinical features. These feature selection methods were combined with support vector machine (SVM) for developing predictive models with better performance. Five-fold cross-validation was used to train and test SVM models. The developed SVM-based predictive models with hybrid feature selection methods and 5-fold cross-validation had averages of the sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and area under the ROC curve as 67%, 86%, 82%, 69%, 90%, and 0.69, respectively. The SVM derived predictive model can provide suggestive high-risk recurrent patients, who should be closely followed up after complete RFA treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Chaochao; Vachtsevanos, George; Orchard, Marcos E.
2012-04-01
Machine prognosis can be considered as the generation of long-term predictions that describe the evolution in time of a fault indicator, with the purpose of estimating the remaining useful life (RUL) of a failing component/subsystem so that timely maintenance can be performed to avoid catastrophic failures. This paper proposes an integrated RUL prediction method using adaptive neuro-fuzzy inference systems (ANFIS) and high-order particle filtering, which forecasts the time evolution of the fault indicator and estimates the probability density function (pdf) of RUL. The ANFIS is trained and integrated in a high-order particle filter as a model describing the fault progression. The high-order particle filter is used to estimate the current state and carry out p-step-ahead predictions via a set of particles. These predictions are used to estimate the RUL pdf. The performance of the proposed method is evaluated via the real-world data from a seeded fault test for a UH-60 helicopter planetary gear plate. The results demonstrate that it outperforms both the conventional ANFIS predictor and the particle-filter-based predictor where the fault growth model is a first-order model that is trained via the ANFIS.
NASA Astrophysics Data System (ADS)
Qiao, C.; Huang, Q.; Chen, T.; Zhang, X.
2017-12-01
In the context of global warming, the snowmelt flood events in the mountainous area of the middle and high latitudes are increasingly frequent and create severe casualties and property damages. Carrying out the prediction and risk assessment of the snowmelt flood is of great importance in the water resources management, the flood warning and prevention. Based on the remote sensing and GIS techniques, the relationships of the variables influencing the snowmelt flood such as the snow area, the snow depth, the air temperature, the precipitation, the land topography and land covers are analyzed and a prediction and damage assessment model for snowmelt floods is developed. This model analyzes and predicts the flood submerging area, flood depth, flood grade, and the damages of different underlying surfaces in the study area in a given time period based on the estimation of snowmelt amount, the snowmelt runoff, the direction and velocity of the flood. Then it was used to predict a snowmelt flood event in the Ertis River Basin in northern Xinjiang, China, during March and June, 2005 and to assess its damages including the damages of roads, transmission lines, settlements caused by the floods and the possible landslides using the hydrological and meteorological data, snow parameter data, DEM data and land use data. A comparison was made between the prediction results from this model and observation data including the flood measurement and its disaster loss data, which suggests that this model performs well in predicting the strength and impact area of snowmelt flood and its damage assessment. This model will be helpful for the prediction and damage assessment of snowmelt flood events in the mountainous area in the middle and high latitudes in spring, which has great social and economic significance because it provides a relatively reliable method for snowmelt flood prediction and reduces the possible damages caused by snowmelt floods.
Ravikumar, Balaguru; Parri, Elina; Timonen, Sanna; Airola, Antti; Wennerberg, Krister
2017-01-01
Due to relatively high costs and labor required for experimental profiling of the full target space of chemical compounds, various machine learning models have been proposed as cost-effective means to advance this process in terms of predicting the most potent compound-target interactions for subsequent verification. However, most of the model predictions lack direct experimental validation in the laboratory, making their practical benefits for drug discovery or repurposing applications largely unknown. Here, we therefore introduce and carefully test a systematic computational-experimental framework for the prediction and pre-clinical verification of drug-target interactions using a well-established kernel-based regression algorithm as the prediction model. To evaluate its performance, we first predicted unmeasured binding affinities in a large-scale kinase inhibitor profiling study, and then experimentally tested 100 compound-kinase pairs. The relatively high correlation of 0.77 (p < 0.0001) between the predicted and measured bioactivities supports the potential of the model for filling the experimental gaps in existing compound-target interaction maps. Further, we subjected the model to a more challenging task of predicting target interactions for such a new candidate drug compound that lacks prior binding profile information. As a specific case study, we used tivozanib, an investigational VEGF receptor inhibitor with currently unknown off-target profile. Among 7 kinases with high predicted affinity, we experimentally validated 4 new off-targets of tivozanib, namely the Src-family kinases FRK and FYN A, the non-receptor tyrosine kinase ABL1, and the serine/threonine kinase SLK. Our sub-sequent experimental validation protocol effectively avoids any possible information leakage between the training and validation data, and therefore enables rigorous model validation for practical applications. These results demonstrate that the kernel-based modeling approach offers practical benefits for probing novel insights into the mode of action of investigational compounds, and for the identification of new target selectivities for drug repurposing applications. PMID:28787438
Stone, Wesley W.; Gilliom, Robert J.
2011-01-01
The 95-percent prediction intervals are well within a factor of 10 above and below the predicted concentration statistic. WARP-CB model predictions were within a factor of 5 of the observed concentration statistic for over 90 percent of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. The WARP-CB models provide improved predictions of the probability of exceeding a specified criterion or benchmark for Corn Belt streams draining watersheds with high atrazine use intensities; however, National WARP models should be used for Corn Belt streams where atrazine use intensities are less than 17 kg/km2 of watershed area.
Analysis of Highly-Resolved Simulations of 2-D Humps Toward Improvement of Second-Moment Closures
NASA Technical Reports Server (NTRS)
Jeyapaul, Elbert; Rumsey Christopher
2013-01-01
Fully resolved simulation data of flow separation over 2-D humps has been used to analyze the modeling terms in second-moment closures of the Reynolds-averaged Navier- Stokes equations. Existing models for the pressure-strain and dissipation terms have been analyzed using a priori calculations. All pressure-strain models are incorrect in the high-strain region near separation, although a better match is observed downstream, well into the separated-flow region. Near-wall inhomogeneity causes pressure-strain models to predict incorrect signs for the normal components close to the wall. In a posteriori computations, full Reynolds stress and explicit algebraic Reynolds stress models predict the separation point with varying degrees of success. However, as with one- and two-equation models, the separation bubble size is invariably over-predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Philip B.; Solomon, Wayne M.; Burrell, Keith H.
2015-07-21
A new “Super H-mode” regime is predicted, which enables pedestal height and predicted fusion performance substantially higher than for H-mode operation. This new regime is predicted to exist by the EPED pedestal model, which calculates criticality constraints for peeling-ballooning and kinetic ballooning modes, and combines them to predict the pedestal height and width. EPED usually predicts a single (“H-mode”) pedestal solution for each set of input parameters, however, in strongly shaped plasmas above a critical density, multiple pedestal solutions are found, including the standard “Hmode” solution, and a “Super H-Mode” solution at substantially larger pedestal height and width. The Supermore » H-mode regime is predicted to be accessible by controlling the trajectory of the density, and to increase fusion performance for ITER, as well as for DEMO designs with strong shaping. A set of experiments on DIII-D has identified the predicted Super H-mode regime, and finds pedestal height and width, and their variation with density, in good agreement with theoretical predictions from the EPED model. Finally, the very high pedestal enables operation at high global beta and high confinement, including the highest normalized beta achieved on DIII-D with a quiescent edge.« less
Low-high junction theory applied to solar cells
NASA Technical Reports Server (NTRS)
Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.
1973-01-01
Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open circuit voltage and improved radiation resistance. Several analytical models for open circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero SRV case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells. Detailed descriptions and derivations for the models are included. The correspondences between them are discussed. This modeling suggests that the meaning of minority carrier diffusion length measured in BSF cells be reexamined.
Prediction of Chemical Function: Model Development and Application
The United States Environmental Protection Agency’s Exposure Forecaster (ExpoCast) project is developing both statistical and mechanism-based computational models for predicting exposures to thousands of chemicals, including those in consumer products. The high-throughput (...
Eslami, Mohammad H; Rybin, Denis V; Doros, Gheorghe; Siracuse, Jeffrey J; Farber, Alik
2018-01-01
The purpose of this study is to externally validate a recently reported Vascular Study Group of New England (VSGNE) risk predictive model of postoperative mortality after elective abdominal aortic aneurysm (AAA) repair and to compare its predictive ability across different patients' risk categories and against the established risk predictive models using the Vascular Quality Initiative (VQI) AAA sample. The VQI AAA database (2010-2015) was queried for patients who underwent elective AAA repair. The VSGNE cases were excluded from the VQI sample. The external validation of a recently published VSGNE AAA risk predictive model, which includes only preoperative variables (age, gender, history of coronary artery disease, chronic obstructive pulmonary disease, cerebrovascular disease, creatinine levels, and aneurysm size) and planned type of repair, was performed using the VQI elective AAA repair sample. The predictive value of the model was assessed via the C-statistic. Hosmer-Lemeshow method was used to assess calibration and goodness of fit. This model was then compared with the Medicare, Vascular Governance Northwest model, and Glasgow Aneurysm Score for predicting mortality in VQI sample. The Vuong test was performed to compare the model fit between the models. Model discrimination was assessed in different risk group VQI quintiles. Data from 4431 cases from the VSGNE sample with the overall mortality rate of 1.4% was used to develop the model. The internally validated VSGNE model showed a very high discriminating ability in predicting mortality (C = 0.822) and good model fit (Hosmer-Lemeshow P = .309) among the VSGNE elective AAA repair sample. External validation on 16,989 VQI cases with an overall 0.9% mortality rate showed very robust predictive ability of mortality (C = 0.802). Vuong tests yielded a significant fit difference favoring the VSGNE over then Medicare model (C = 0.780), Vascular Governance Northwest (0.774), and Glasgow Aneurysm Score (0.639). Across the 5 risk quintiles, the VSGNE model predicted observed mortality significantly with great accuracy. This simple VSGNE AAA risk predictive model showed very high discriminative ability in predicting mortality after elective AAA repair among a large external independent sample of AAA cases performed by a diverse array of physicians nationwide. The risk score based on this simple VSGNE model can reliably stratify patients according to their risk of mortality after elective AAA repair better than other established models. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Putnam, WilliamM.
2011-01-01
In 2008 the World Modeling Summit for Climate Prediction concluded that "climate modeling will need-and is ready-to move to fundamentally new high-resolution approaches to capitalize on the seamlessness of the weather-climate continuum." Following from this, experimentation with very high-resolution global climate modeling has gained enhanced priority within many modeling groups and agencies. The NASA Goddard Earth Observing System model (GEOS-5) has been enhanced to provide a capability for the execution at the finest horizontal resolutions POS,SIOle with a global climate model today. Using this high-resolution, non-hydrostatic version of GEOS-5, we have developed a unique capability to explore the intersection of weather and climate within a seamless prediction system. Week-long weather experiments, to mUltiyear climate simulations at global resolutions ranging from 3.5- to 14-km have demonstrated the predictability of extreme events including severe storms along frontal systems, extra-tropical storms, and tropical cyclones. The primary benefits of high resolution global models will likely be in the tropics, with better predictions of the genesis stages of tropical cyclones and of the internal structure of their mature stages. Using satellite data we assess the accuracy of GEOS-5 in representing extreme weather phenomena, and their interaction within the global climate on seasonal time-scales. The impacts of convective parameterization and the frequency of coupling between the moist physics and dynamics are explored in terms of precipitation intensity and the representation of deep convection. We will also describe the seasonal variability of global tropical cyclone activity within a global climate model capable of representing the most intense category 5 hurricanes.
Extending the cost-benefit model of thermoregulation: high-temperature environments.
Vickers, Mathew; Manicom, Carryn; Schwarzkopf, Lin
2011-04-01
The classic cost-benefit model of ectothermic thermoregulation compares energetic costs and benefits, providing a critical framework for understanding this process (Huey and Slatkin 1976 ). It considers the case where environmental temperature (T(e)) is less than the selected temperature of the organism (T(sel)), and it predicts that, to minimize increasing energetic costs of thermoregulation as habitat thermal quality declines, thermoregulatory effort should decrease until the lizard thermoconforms. We extended this model to include the case where T(e) exceeds T(sel), and we redefine costs and benefits in terms of fitness to include effects of body temperature (T(b)) on performance and survival. Our extended model predicts that lizards will increase thermoregulatory effort as habitat thermal quality declines, gaining the fitness benefits of optimal T(b) and maximizing the net benefit of activity. Further, to offset the disproportionately high fitness costs of high T(e) compared with low T(e), we predicted that lizards would thermoregulate more effectively at high values of T(e) than at low ones. We tested our predictions on three sympatric skink species (Carlia rostralis, Carlia rubrigularis, and Carlia storri) in hot savanna woodlands and found that thermoregulatory effort increased as thermal quality declined and that lizards thermoregulated most effectively at high values of T(e).
NASA Astrophysics Data System (ADS)
Ockenden, Mary C.; Tych, Wlodek; Beven, Keith J.; Collins, Adrian L.; Evans, Robert; Falloon, Peter D.; Forber, Kirsty J.; Hiscock, Kevin M.; Hollaway, Michael J.; Kahana, Ron; Macleod, Christopher J. A.; Villamizar, Martha L.; Wearing, Catherine; Withers, Paul J. A.; Zhou, Jian G.; Benskin, Clare McW. H.; Burke, Sean; Cooper, Richard J.; Freer, Jim E.; Haygarth, Philip M.
2017-12-01
Excess nutrients in surface waters, such as phosphorus (P) from agriculture, result in poor water quality, with adverse effects on ecological health and costs for remediation. However, understanding and prediction of P transfers in catchments have been limited by inadequate data and over-parameterised models with high uncertainty. We show that, with high temporal resolution data, we are able to identify simple dynamic models that capture the P load dynamics in three contrasting agricultural catchments in the UK. For a flashy catchment, a linear, second-order (two pathways) model for discharge gave high simulation efficiencies for short-term storm sequences and was useful in highlighting uncertainties in out-of-bank flows. A model with non-linear rainfall input was appropriate for predicting seasonal or annual cumulative P loads where antecedent conditions affected the catchment response. For second-order models, the time constant for the fast pathway varied between 2 and 15 h for all three catchments and for both discharge and P, confirming that high temporal resolution data are necessary to capture the dynamic responses in small catchments (10-50 km2). The models led to a better understanding of the dominant nutrient transfer modes, which will be helpful in determining phosphorus transfers following changes in precipitation patterns in the future.
Xu, Yifang; Collins, Leslie M
2007-08-01
Two approaches have been proposed to reduce the synchrony of the neural response to electrical stimuli in cochlear implants. One approach involves adding noise to the pulse-train stimulus, and the other is based on using a high-rate pulse-train carrier. Hypotheses regarding the efficacy of the two approaches can be tested using computational models of neural responsiveness prior to time-intensive psychophysical studies. In our previous work, we have used such models to examine the effects of noise on several psychophysical measures important to speech recognition. However, to date there has been no parallel analytic solution investigating the neural response to the high-rate pulse-train stimuli and their effect on psychophysical measures. This work investigates the properties of the neural response to high-rate pulse-train stimuli with amplitude modulated envelopes using a stochastic auditory nerve model. The statistics governing the neural response to each pulse are derived using a recursive method. The agreement between the theoretical predictions and model simulations is demonstrated for sinusoidal amplitude modulated (SAM) high rate pulse-train stimuli. With our approach, predicting the neural response in modern implant devices becomes tractable. Psychophysical measurements are also predicted using the stochastic auditory nerve model for SAM high-rate pulse-train stimuli. Changes in dynamic range (DR) and intensity discrimination are compared with that observed for noise-modulated pulse-train stimuli. Modulation frequency discrimination is also studied as a function of stimulus level and pulse rate. Results suggest that high rate carriers may positively impact such psychophysical measures.
Prediction of Coronary Artery Disease Risk Based on Multiple Longitudinal Biomarkers
Yang, Lili; Yu, Menggang; Gao, Sujuan
2016-01-01
In the last decade, few topics in the area of cardiovascular disease (CVD) research have received as much attention as risk prediction. One of the well documented risk factors for CVD is high blood pressure (BP). Traditional CVD risk prediction models consider BP levels measured at a single time and such models form the basis for current clinical guidelines for CVD prevention. However, in clinical practice, BP levels are often observed and recorded in a longitudinal fashion. Information on BP trajectories can be powerful predictors for CVD events. We consider joint modeling of time to coronary artery disease and individual longitudinal measures of systolic and diastolic BPs in a primary care cohort with up to 20 years of follow-up. We applied novel prediction metrics to assess the predictive performance of joint models. Predictive performances of proposed joint models and other models were assessed via simulations and illustrated using the primary care cohort. PMID:26439685
Houston, Simon; Lithgow, Karen Vivien; Osbak, Kara Krista; Kenyon, Chris Richard; Cameron, Caroline E
2018-05-16
Syphilis continues to be a major global health threat with 11 million new infections each year, and a global burden of 36 million cases. The causative agent of syphilis, Treponema pallidum subspecies pallidum, is a highly virulent bacterium, however the molecular mechanisms underlying T. pallidum pathogenesis remain to be definitively identified. This is due to the fact that T. pallidum is currently uncultivatable, inherently fragile and thus difficult to work with, and phylogenetically distinct with no conventional virulence factor homologs found in other pathogens. In fact, approximately 30% of its predicted protein-coding genes have no known orthologs or assigned functions. Here we employed a structural bioinformatics approach using Phyre2-based tertiary structure modeling to improve our understanding of T. pallidum protein function on a proteome-wide scale. Phyre2-based tertiary structure modeling generated high-confidence predictions for 80% of the T. pallidum proteome (780/978 predicted proteins). Tertiary structure modeling also inferred the same function as primary structure-based annotations from genome sequencing pipelines for 525/605 proteins (87%), which represents 54% (525/978) of all T. pallidum proteins. Of the 175 T. pallidum proteins modeled with high confidence that were not assigned functions in the previously annotated published proteome, 167 (95%) were able to be assigned predicted functions. Twenty-one of the 175 hypothetical proteins modeled with high confidence were also predicted to exhibit significant structural similarity with proteins experimentally confirmed to be required for virulence in other pathogens. Phyre2-based structural modeling is a powerful bioinformatics tool that has provided insight into the potential structure and function of the majority of T. pallidum proteins and helped validate the primary structure-based annotation of more than 50% of all T. pallidum proteins with high confidence. This work represents the first T. pallidum proteome-wide structural modeling study and is one of few studies to apply this approach for the functional annotation of a whole proteome.
Takahashi, Paul Y; Heien, Herbert C; Sangaralingham, Lindsey R; Shah, Nilay D; Naessens, James M
2016-07-01
With the advent of healthcare payment reform, identifying high-risk populations has become more important to providers. Existing risk-prediction models often focus on chronic conditions. This study sought to better understand other factors to improve identification of the highest risk population. A retrospective cohort study of a paneled primary care population utilizing 2010 data to calibrate a risk prediction model of hospital and emergency department (ED) use in 2011. Data were randomly split into development and validation data sets. We compared the enhanced model containing the additional risk predictors with the Minnesota medical tiering model. The study was conducted in the primary care practice of an integrated delivery system at an academic medical center in Rochester, Minnesota. The study focus was primary care medical home patients in 2010 and 2011 (n = 84,752), with the primary outcome of subsequent hospitalization or ED visit. A total of 42,384 individuals derived the enhanced risk-prediction model and 42,368 individuals validated the model. Predictors included Adjusted Clinical Groups-based Minnesota medical tiering, patient demographics, insurance status, and prior year healthcare utilization. Additional variables included specific mental and medical conditions, use of high-risk medications, and body mass index. The area under the curve in the enhanced model was 0.705 (95% CI, 0.698-0.712) compared with 0.662 (95% CI, 0.656-0.669) in the Minnesota medical tiering-only model. New high-risk patients in the enhanced model were more likely to have lack of health insurance, presence of Medicaid, diagnosed depression, and prior ED utilization. An enhanced model including additional healthcare-related factors improved the prediction of risk of hospitalization or ED visit.
Mental workload prediction based on attentional resource allocation and information processing.
Xiao, Xu; Wanyan, Xiaoru; Zhuang, Damin
2015-01-01
Mental workload is an important component in complex human-machine systems. The limited applicability of empirical workload measures produces the need for workload modeling and prediction methods. In the present study, a mental workload prediction model is built on the basis of attentional resource allocation and information processing to ensure pilots' accuracy and speed in understanding large amounts of flight information on the cockpit display interface. Validation with an empirical study of an abnormal attitude recovery task showed that this model's prediction of mental workload highly correlated with experimental results. This mental workload prediction model provides a new tool for optimizing human factors interface design and reducing human errors.
Advanced Daily Prediction Model for National Suicide Numbers with Social Media Data
Lee, Kyung Sang; Lee, Hyewon; Myung, Woojae; Song, Gil-Young; Lee, Kihwang; Kim, Ho; Carroll, Bernard J.; Kim, Doh Kwan
2018-01-01
Objective Suicide is a significant public health concern worldwide. Social media data have a potential role in identifying high suicide risk individuals and also in predicting suicide rate at the population level. In this study, we report an advanced daily suicide prediction model using social media data combined with economic/meteorological variables along with observed suicide data lagged by 1 week. Methods The social media data were drawn from weblog posts. We examined a total of 10,035 social media keywords for suicide prediction. We made predictions of national suicide numbers 7 days in advance daily for 2 years, based on a daily moving 5-year prediction modeling period. Results Our model predicted the likely range of daily national suicide numbers with 82.9% accuracy. Among the social media variables, words denoting economic issues and mood status showed high predictive strength. Observed number of suicides one week previously, recent celebrity suicide, and day of week followed by stock index, consumer price index, and sunlight duration 7 days before the target date were notable predictors along with the social media variables. Conclusion These results strengthen the case for social media data to supplement classical social/economic/climatic data in forecasting national suicide events. PMID:29614852
Liang, Yong; Chai, Hua; Liu, Xiao-Ying; Xu, Zong-Ben; Zhang, Hai; Leung, Kwong-Sak
2016-03-01
One of the most important objectives of the clinical cancer research is to diagnose cancer more accurately based on the patients' gene expression profiles. Both Cox proportional hazards model (Cox) and accelerated failure time model (AFT) have been widely adopted to the high risk and low risk classification or survival time prediction for the patients' clinical treatment. Nevertheless, two main dilemmas limit the accuracy of these prediction methods. One is that the small sample size and censored data remain a bottleneck for training robust and accurate Cox classification model. In addition to that, similar phenotype tumours and prognoses are actually completely different diseases at the genotype and molecular level. Thus, the utility of the AFT model for the survival time prediction is limited when such biological differences of the diseases have not been previously identified. To try to overcome these two main dilemmas, we proposed a novel semi-supervised learning method based on the Cox and AFT models to accurately predict the treatment risk and the survival time of the patients. Moreover, we adopted the efficient L1/2 regularization approach in the semi-supervised learning method to select the relevant genes, which are significantly associated with the disease. The results of the simulation experiments show that the semi-supervised learning model can significant improve the predictive performance of Cox and AFT models in survival analysis. The proposed procedures have been successfully applied to four real microarray gene expression and artificial evaluation datasets. The advantages of our proposed semi-supervised learning method include: 1) significantly increase the available training samples from censored data; 2) high capability for identifying the survival risk classes of patient in Cox model; 3) high predictive accuracy for patients' survival time in AFT model; 4) strong capability of the relevant biomarker selection. Consequently, our proposed semi-supervised learning model is one more appropriate tool for survival analysis in clinical cancer research.
Drach, Andrew; Khalighi, Amir H; Sacks, Michael S
2018-02-01
Multiple studies have demonstrated that the pathological geometries unique to each patient can affect the durability of mitral valve (MV) repairs. While computational modeling of the MV is a promising approach to improve the surgical outcomes, the complex MV geometry precludes use of simplified models. Moreover, the lack of complete in vivo geometric information presents significant challenges in the development of patient-specific computational models. There is thus a need to determine the level of detail necessary for predictive MV models. To address this issue, we have developed a novel pipeline for building attribute-rich computational models of MV with varying fidelity directly from the in vitro imaging data. The approach combines high-resolution geometric information from loaded and unloaded states to achieve a high level of anatomic detail, followed by mapping and parametric embedding of tissue attributes to build a high-resolution, attribute-rich computational models. Subsequent lower resolution models were then developed and evaluated by comparing the displacements and surface strains to those extracted from the imaging data. We then identified the critical levels of fidelity for building predictive MV models in the dilated and repaired states. We demonstrated that a model with a feature size of about 5 mm and mesh size of about 1 mm was sufficient to predict the overall MV shape, stress, and strain distributions with high accuracy. However, we also noted that more detailed models were found to be needed to simulate microstructural events. We conclude that the developed pipeline enables sufficiently complex models for biomechanical simulations of MV in normal, dilated, repaired states. Copyright © 2017 John Wiley & Sons, Ltd.
Development of a Risk Prediction Model and Clinical Risk Score for Isolated Tricuspid Valve Surgery.
LaPar, Damien J; Likosky, Donald S; Zhang, Min; Theurer, Patty; Fonner, C Edwin; Kern, John A; Bolling, Stephen F; Drake, Daniel H; Speir, Alan M; Rich, Jeffrey B; Kron, Irving L; Prager, Richard L; Ailawadi, Gorav
2018-02-01
While tricuspid valve (TV) operations remain associated with high mortality (∼8-10%), no robust prediction models exist to support clinical decision-making. We developed a preoperative clinical risk model with an easily calculable clinical risk score (CRS) to predict mortality and major morbidity after isolated TV surgery. Multi-state Society of Thoracic Surgeons database records were evaluated for 2,050 isolated TV repair and replacement operations for any etiology performed at 50 hospitals (2002-2014). Parsimonious preoperative risk prediction models were developed using multi-level mixed effects regression to estimate mortality and composite major morbidity risk. Model results were utilized to establish a novel CRS for patients undergoing TV operations. Models were evaluated for discrimination and calibration. Operative mortality and composite major morbidity rates were 9% and 42%, respectively. Final regression models performed well (both P<0.001, AUC = 0.74 and 0.76) and included preoperative factors: age, gender, stroke, hemodialysis, ejection fraction, lung disease, NYHA class, reoperation and urgent or emergency status (all P<0.05). A simple CRS from 0-10+ was highly associated (P<0.001) with incremental increases in predicted mortality and major morbidity. Predicted mortality risk ranged from 2%-34% across CRS categories, while predicted major morbidity risk ranged from 13%-71%. Mortality and major morbidity after isolated TV surgery can be predicted using preoperative patient data from the STS Adult Cardiac Database. A simple clinical risk score predicts mortality and major morbidity after isolated TV surgery. This score may facilitate perioperative counseling and identification of suitable patients for TV surgery. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Meertens, Linda J E; van Montfort, Pim; Scheepers, Hubertina C J; van Kuijk, Sander M J; Aardenburg, Robert; Langenveld, Josje; van Dooren, Ivo M A; Zwaan, Iris M; Spaanderman, Marc E A; Smits, Luc J M
2018-04-17
Prediction models may contribute to personalized risk-based management of women at high risk of spontaneous preterm delivery. Although prediction models are published frequently, often with promising results, external validation generally is lacking. We performed a systematic review of prediction models for the risk of spontaneous preterm birth based on routine clinical parameters. Additionally, we externally validated and evaluated the clinical potential of the models. Prediction models based on routinely collected maternal parameters obtainable during first 16 weeks of gestation were eligible for selection. Risk of bias was assessed according to the CHARMS guidelines. We validated the selected models in a Dutch multicenter prospective cohort study comprising 2614 unselected pregnant women. Information on predictors was obtained by a web-based questionnaire. Predictive performance of the models was quantified by the area under the receiver operating characteristic curve (AUC) and calibration plots for the outcomes spontaneous preterm birth <37 weeks and <34 weeks of gestation. Clinical value was evaluated by means of decision curve analysis and calculating classification accuracy for different risk thresholds. Four studies describing five prediction models fulfilled the eligibility criteria. Risk of bias assessment revealed a moderate to high risk of bias in three studies. The AUC of the models ranged from 0.54 to 0.67 and from 0.56 to 0.70 for the outcomes spontaneous preterm birth <37 weeks and <34 weeks of gestation, respectively. A subanalysis showed that the models discriminated poorly (AUC 0.51-0.56) for nulliparous women. Although we recalibrated the models, two models retained evidence of overfitting. The decision curve analysis showed low clinical benefit for the best performing models. This review revealed several reporting and methodological shortcomings of published prediction models for spontaneous preterm birth. Our external validation study indicated that none of the models had the ability to predict spontaneous preterm birth adequately in our population. Further improvement of prediction models, using recent knowledge about both model development and potential risk factors, is necessary to provide an added value in personalized risk assessment of spontaneous preterm birth. © 2018 The Authors Acta Obstetricia et Gynecologica Scandinavica published by John Wiley & Sons Ltd on behalf of Nordic Federation of Societies of Obstetrics and Gynecology (NFOG).
An information maximization model of eye movements
NASA Technical Reports Server (NTRS)
Renninger, Laura Walker; Coughlan, James; Verghese, Preeti; Malik, Jitendra
2005-01-01
We propose a sequential information maximization model as a general strategy for programming eye movements. The model reconstructs high-resolution visual information from a sequence of fixations, taking into account the fall-off in resolution from the fovea to the periphery. From this framework we get a simple rule for predicting fixation sequences: after each fixation, fixate next at the location that minimizes uncertainty (maximizes information) about the stimulus. By comparing our model performance to human eye movement data and to predictions from a saliency and random model, we demonstrate that our model is best at predicting fixation locations. Modeling additional biological constraints will improve the prediction of fixation sequences. Our results suggest that information maximization is a useful principle for programming eye movements.
Integrated Wind Power Planning Tool
NASA Astrophysics Data System (ADS)
Rosgaard, Martin; Giebel, Gregor; Skov Nielsen, Torben; Hahmann, Andrea; Sørensen, Poul; Madsen, Henrik
2013-04-01
This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the title "Integrated Wind Power Planning Tool". The goal is to integrate a mesoscale numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. Using the state-of-the-art mesoscale NWP model Weather Research & Forecasting model (WRF) the forecast error is sought quantified in dependence of the time scale involved. This task constitutes a preparative study for later implementation of features accounting for NWP forecast errors in the DTU Wind Energy maintained Corwind code - a long term wind power planning tool. Within the framework of PSO 10464 research related to operational short term wind power prediction will be carried out, including a comparison of forecast quality at different mesoscale NWP model resolutions and development of a statistical wind power prediction tool taking input from WRF. The short term prediction part of the project is carried out in collaboration with ENFOR A/S; a Danish company that specialises in forecasting and optimisation for the energy sector. The integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated short term prediction tool constitutes scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator. The need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2025 from the current 20%.
Chen, Yingyi; Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang
2018-01-01
A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies.
Dynamic Models of Learning That Characterize Parent-Child Exchanges Predict Vocabulary Growth
ERIC Educational Resources Information Center
Ober, David R.; Beekman, John A.
2016-01-01
Cumulative vocabulary models for infants and toddlers were developed from models of learning that predict trajectories associated with low, average, and high vocabulary growth rates (14 to 46 months). It was hypothesized that models derived from rates of learning mirror the type of exchanges provided to infants and toddlers by parents and…
Explicit Pore Pressure Material Model in Carbon-Cloth Phenolic
NASA Technical Reports Server (NTRS)
Gutierrez-Lemini, Danton; Ehle, Curt
2003-01-01
An explicit material model that uses predicted pressure in the pores of a carbon-cloth phenolic (CCP) composite has been developed. This model is intended to be used within a finite-element model to predict phenomena specific to CCP components of solid-fuel-rocket nozzles subjected to high operating temperatures and to mechanical stresses that can be great enough to cause structural failures. Phenomena that can be predicted with the help of this model include failures of specimens in restrained-thermal-growth (RTG) tests, pocketing erosion, and ply lifting
Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum Manipulator
Moses, Matthew S.; Murphy, Ryan J.; Kutzer, Michael D. M.; Armand, Mehran
2016-01-01
This paper presents several mechanical models of a high-strength cable-driven dexterous manipulator designed for surgical procedures. A stiffness model is presented that distinguishes between contributions from the cables and the backbone. A physics-based model incorporating cable friction is developed and its predictions are compared with experimental data. The data show that under high tension and high curvature, the shape of the manipulator deviates significantly from a circular arc. However, simple parametric models can fit the shape with good accuracy. The motivating application for this study is to develop a model so that shape can be predicted using easily measured quantities such as tension, so that real-time navigation may be performed, especially in minimally-invasive surgical procedures, while reducing the need for hazardous imaging methods such as fluoroscopy. PMID:27818607
Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum Manipulator.
Moses, Matthew S; Murphy, Ryan J; Kutzer, Michael D M; Armand, Mehran
2015-12-01
This paper presents several mechanical models of a high-strength cable-driven dexterous manipulator designed for surgical procedures. A stiffness model is presented that distinguishes between contributions from the cables and the backbone. A physics-based model incorporating cable friction is developed and its predictions are compared with experimental data. The data show that under high tension and high curvature, the shape of the manipulator deviates significantly from a circular arc. However, simple parametric models can fit the shape with good accuracy. The motivating application for this study is to develop a model so that shape can be predicted using easily measured quantities such as tension, so that real-time navigation may be performed, especially in minimally-invasive surgical procedures, while reducing the need for hazardous imaging methods such as fluoroscopy.
Time Dependent Predictive Modeling of DIII-D ITER Baseline Scenario using Predictive TRANSP
NASA Astrophysics Data System (ADS)
Grierson, B. A.; Andre, R. G.; Budny, R. V.; Solomon, W. M.; Yuan, X.; Candy, J.; Pinsker, R. I.; Staebler, G. M.; Holland, C.; Rafiq, T.
2015-11-01
ITER baseline scenario discharges on DIII-D are modeled with TGLF and MMM transitioning from combined ECH (3.3MW) +NBI(2.8MW) heating to NBI only (3.0 MW) heating maintaining βN = 2.0 on DIII-D predicting temperature, density and rotation for comparison to experimental measurements. These models capture the reduction of confinement associated with direct electron heating H98y2 = 0.89 vs. 1.0) consistent with stiff electron transport. Reasonable agreement between experimental and modeled temperature profiles is achieved for both heating methods, whereas density and momentum predictions differ significantly. Transport fluxes from TGLF indicate that on DIII-D the electron energy flux has reached a transition from low-k to high-k turbulence with more stiff high-k transport that inhibits an increase in core electron stored energy with additional electron heating. Projections to ITER also indicate high electron stiffness. Supported by US DOE DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-07ER54917, DE-FG02-92-ER54141.
Does a better model yield a better argument? An info-gap analysis
NASA Astrophysics Data System (ADS)
Ben-Haim, Yakov
2017-04-01
Theories, models and computations underlie reasoned argumentation in many areas. The possibility of error in these arguments, though of low probability, may be highly significant when the argument is used in predicting the probability of rare high-consequence events. This implies that the choice of a theory, model or computational method for predicting rare high-consequence events must account for the probability of error in these components. However, error may result from lack of knowledge or surprises of various sorts, and predicting the probability of error is highly uncertain. We show that the putatively best, most innovative and sophisticated argument may not actually have the lowest probability of error. Innovative arguments may entail greater uncertainty than more standard but less sophisticated methods, creating an innovation dilemma in formulating the argument. We employ info-gap decision theory to characterize and support the resolution of this problem and present several examples.
NASA Astrophysics Data System (ADS)
Jiang, L.; Wang, H.; Liaw, P. K.; Brooks, C. R.; Klarstrom, D. L.
2001-09-01
High-speed, high-resolution infrared thermography, as a noncontact, full-field, and nondestructive technique, was used to study the temperature variations of a cobalt-based ULTIMET alloy subjected to high-cycle fatigue. During each fatigue cycle, the temperature oscillations, which were due to the thermal-elastic-plastic effects, were observed and related to stress-strain analyses. A constitutive model was developed for predicting the thermal and mechanical responses of the ULTIMET alloy subjected to cyclic deformation. The model was constructed in light of internal-state variables, which were developed to characterize the inelastic strain of the material during cyclic loading. The predicted stress-strain and temperature responses were found to be in good agreement with the experimental results. In addition, the change of temperature during fatigue was employed to reveal the accumulation of fatigue damage, and the measured temperature was utilized as an index for fatigue-life prediction.
Criteria for predicting the formation of single-phase high-entropy alloys
Troparevsky, M Claudia; Morris, James R..; Kent, Paul R.; ...
2015-03-15
High entropy alloys constitute a new class of materials whose very existence poses fundamental questions. Originally thought to be stabilized by the large entropy of mixing, these alloys have attracted attention due to their potential applications, yet no model capable of robustly predicting which combinations of elements will form a single-phase currently exists. Here we propose a model that, through the use of high-throughput computation of the enthalpies of formation of binary compounds, is able to confirm all known high-entropy alloys while rejecting similar alloys that are known to form multiple phases. Despite the increasing entropy, our model predicts thatmore » the number of potential single-phase multicomponent alloys decreases with an increasing number of components: out of more than two million possible 7-component alloys considered, fewer than twenty single-phase alloys are likely.« less
Xiaoyong, Wu; Xuzhao, Li; Deliang, Yu; Pengfei, Yu; Zhenning, Hang; Bin, Bai; zhengyan, Li; Fangning, Pang; Shiqi, Wang; Qingchuan, Zhao
2017-01-01
Identifying patients at high risk of tube feeding intolerance (TFI) after gastric cancer surgery may prevent the occurrence of TFI; however, a predictive model is lacking. We therefore analyzed the incidence of TFI and its associated risk factors after gastric cancer surgery in 225 gastric cancer patients divided into without-TFI (n = 114) and with-TFI (n = 111) groups. A total of 49.3% of patients experienced TFI after gastric cancer. Multivariate analysis identified a history of functional constipation (FC), a preoperative American Society of Anesthesiologists (ASA) score of III, a high pain score at 6-hour postoperation, and a high white blood cell (WBC) count on the first day after surgery as independent risk factors for TFI. The area under the curve (AUC) was 0.756, with an optimal cut-off value of 0.5410. In order to identify patients at high risk of TFI after gastric cancer surgery, we constructed a predictive nomogram model based on the selected independent risk factors to indicate the probability of developing TFI. Use of our predictive nomogram model in screening, if a probability > 0.5410, indicated a high-risk patients would with a 70.1% likelihood of developing TFI. These high-risk individuals should take measures to prevent TFI before feeding with enteral nutrition. PMID:29245951
Predictive modeling of dynamic fracture growth in brittle materials with machine learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Bryan A.; Rougier, Esteban; O’Malley, Daniel
We use simulation data from a high delity Finite-Discrete Element Model to build an e cient Machine Learning (ML) approach to predict fracture growth and coalescence. Our goal is for the ML approach to be used as an emulator in place of the computationally intensive high delity models in an uncertainty quanti cation framework where thousands of forward runs are required. The failure of materials with various fracture con gurations (size, orientation and the number of initial cracks) are explored and used as data to train our ML model. This novel approach has shown promise in predicting spatial (path tomore » failure) and temporal (time to failure) aspects of brittle material failure. Predictions of where dominant fracture paths formed within a material were ~85% accurate and the time of material failure deviated from the actual failure time by an average of ~16%. Additionally, the ML model achieves a reduction in computational cost by multiple orders of magnitude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majumdar, S.
1997-02-01
Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating, accident, and severe accident conditions are reviewed. Tests conducted in the past, though limited, tended to show that the earlier flow-stress model for part-through-wall axial cracks overestimated the damaging influence of deep cracks. This observation was confirmed by further tests at high temperatures, as well as by finite-element analysis. A modified correlation for deep cracks can correct this shortcoming of the model. Recent tests have shown that lateral restraint can significantly increase the failure pressure of tubes with unsymmetrical circumferential cracks. This observation was confirmedmore » by finite-element analysis. The rate-independent flow stress models that are successful at low temperatures cannot predict the rate-sensitive failure behavior of steam generator tubes at high temperatures. Therefore, a creep rupture model for predicting failure was developed and validated by tests under various temperature and pressure loadings that can occur during postulated severe accidents.« less
Predictive modeling of dynamic fracture growth in brittle materials with machine learning
Moore, Bryan A.; Rougier, Esteban; O’Malley, Daniel; ...
2018-02-22
We use simulation data from a high delity Finite-Discrete Element Model to build an e cient Machine Learning (ML) approach to predict fracture growth and coalescence. Our goal is for the ML approach to be used as an emulator in place of the computationally intensive high delity models in an uncertainty quanti cation framework where thousands of forward runs are required. The failure of materials with various fracture con gurations (size, orientation and the number of initial cracks) are explored and used as data to train our ML model. This novel approach has shown promise in predicting spatial (path tomore » failure) and temporal (time to failure) aspects of brittle material failure. Predictions of where dominant fracture paths formed within a material were ~85% accurate and the time of material failure deviated from the actual failure time by an average of ~16%. Additionally, the ML model achieves a reduction in computational cost by multiple orders of magnitude.« less
Bucklin, David N.; Watling, James I.; Speroterra, Carolina; Brandt, Laura A.; Mazzotti, Frank J.; Romañach, Stephanie S.
2013-01-01
High-resolution (downscaled) projections of future climate conditions are critical inputs to a wide variety of ecological and socioeconomic models and are created using numerous different approaches. Here, we conduct a sensitivity analysis of spatial predictions from climate envelope models for threatened and endangered vertebrates in the southeastern United States to determine whether two different downscaling approaches (with and without the use of a regional climate model) affect climate envelope model predictions when all other sources of variation are held constant. We found that prediction maps differed spatially between downscaling approaches and that the variation attributable to downscaling technique was comparable to variation between maps generated using different general circulation models (GCMs). Precipitation variables tended to show greater discrepancies between downscaling techniques than temperature variables, and for one GCM, there was evidence that more poorly resolved precipitation variables contributed relatively more to model uncertainty than more well-resolved variables. Our work suggests that ecological modelers requiring high-resolution climate projections should carefully consider the type of downscaling applied to the climate projections prior to their use in predictive ecological modeling. The uncertainty associated with alternative downscaling methods may rival that of other, more widely appreciated sources of variation, such as the general circulation model or emissions scenario with which future climate projections are created.
Prediction using patient comparison vs. modeling: a case study for mortality prediction.
Hoogendoorn, Mark; El Hassouni, Ali; Mok, Kwongyen; Ghassemi, Marzyeh; Szolovits, Peter
2016-08-01
Information in Electronic Medical Records (EMRs) can be used to generate accurate predictions for the occurrence of a variety of health states, which can contribute to more pro-active interventions. The very nature of EMRs does make the application of off-the-shelf machine learning techniques difficult. In this paper, we study two approaches to making predictions that have hardly been compared in the past: (1) extracting high-level (temporal) features from EMRs and building a predictive model, and (2) defining a patient similarity metric and predicting based on the outcome observed for similar patients. We analyze and compare both approaches on the MIMIC-II ICU dataset to predict patient mortality and find that the patient similarity approach does not scale well and results in a less accurate model (AUC of 0.68) compared to the modeling approach (0.84). We also show that mortality can be predicted within a median of 72 hours.
Fatigue life prediction modeling for turbine hot section materials
NASA Technical Reports Server (NTRS)
Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.
1989-01-01
A major objective of the fatigue and fracture efforts under the NASA Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.
Fatigue life prediction modeling for turbine hot section materials
NASA Technical Reports Server (NTRS)
Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.
1988-01-01
A major objective of the fatigue and fracture efforts under the Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.
Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction.
Pires, J C M; Souza, A; Pavão, H G; Martins, F G
2014-09-01
The effect of meteorological variables on surface ozone (O3) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies were applied using GAs, two of them considering threshold models. In these models, the variables selected to define different regimes were daily average O3 concentration, relative humidity and solar radiation. The threshold model that considers two O3 regimes was the one that correctly describes the effect of important meteorological variables in O3 behaviour, presenting also a good predictive performance. Solar radiation, relative humidity and rainfall were considered significant for both O3 regimes; however, wind speed (dispersion effect) was only significant for high concentrations. According to this model, high O3 concentrations corresponded to high solar radiation, low relative humidity and wind speed. This model showed to be a powerful tool to interpret the O3 behaviour, being useful to define policy strategies for human health protection regarding air pollution.
NASA Astrophysics Data System (ADS)
Xu, Yiming; Smith, Scot E.; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P.
2017-01-01
Soil prediction models based on spectral indices from some multispectral images are too coarse to characterize spatial pattern of soil properties in small and heterogeneous agricultural lands. Image pan-sharpening has seldom been utilized in Digital Soil Mapping research before. This research aimed to analyze the effects of pan-sharpened (PAN) remote sensing spectral indices on soil prediction models in smallholder farm settings. This research fused the panchromatic band and multispectral (MS) bands of WorldView-2, GeoEye-1, and Landsat 8 images in a village in Southern India by Brovey, Gram-Schmidt and Intensity-Hue-Saturation methods. Random Forest was utilized to develop soil total nitrogen (TN) and soil exchangeable potassium (Kex) prediction models by incorporating multiple spectral indices from the PAN and MS images. Overall, our results showed that PAN remote sensing spectral indices have similar spectral characteristics with soil TN and Kex as MS remote sensing spectral indices. There is no soil prediction model incorporating the specific type of pan-sharpened spectral indices always had the strongest prediction capability of soil TN and Kex. The incorporation of pan-sharpened remote sensing spectral data not only increased the spatial resolution of the soil prediction maps, but also enhanced the prediction accuracy of soil prediction models. Small farms with limited footprint, fragmented ownership and diverse crop cycle should benefit greatly from the pan-sharpened high spatial resolution imagery for soil property mapping. Our results show that multiple high and medium resolution images can be used to map soil properties suggesting the possibility of an improvement in the maps' update frequency. Additionally, the results should benefit the large agricultural community through the reduction of routine soil sampling cost and improved prediction accuracy.
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Fassin, Marek; Bednarcyk, Brett A.; Reese, Stefanie; Simon, Jaan-Willem
2017-01-01
Three different multiscale models, based on the method of cells (generalized and high fidelity) micromechanics models were developed and used to predict the elastic properties of C/C-SiC composites. In particular, the following multiscale modeling strategies were employed: Concurrent multiscale modeling of all phases using the generalized method of cells, synergistic (two-way coupling in space) multiscale modeling with the generalized method of cells, and hierarchical (one-way coupling in space) multiscale modeling with the high fidelity generalized method of cells. The three models are validated against data from a hierarchical multiscale finite element model in the literature for a repeating unit cell of C/C-SiC. Furthermore, the multiscale models are used in conjunction with classical lamination theory to predict the stiffness of C/C-SiC plates manufactured via a wet filament winding and liquid silicon infiltration process recently developed by the German Aerospace Institute.
NASA Technical Reports Server (NTRS)
Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo
2015-01-01
Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.
Crowd computing: using competitive dynamics to develop and refine highly predictive models.
Bentzien, Jörg; Muegge, Ingo; Hamner, Ben; Thompson, David C
2013-05-01
A recent application of a crowd computing platform to develop highly predictive in silico models for use in the drug discovery process is described. The platform, Kaggle™, exploits a competitive dynamic that results in model optimization as the competition unfolds. Here, this dynamic is described in detail and compared with more-conventional modeling strategies. The complete and full structure of the underlying dataset is disclosed and some thoughts as to the broader utility of such 'gamification' approaches to the field of modeling are offered. Copyright © 2013 Elsevier Ltd. All rights reserved.
Developing and testing a decision model for predicting influenza vaccination compliance.
Carter, W B; Beach, L R; Inui, T S; Kirscht, J P; Prodzinski, J C
1986-01-01
Influenza vaccination has long been recommended for elderly high-risk patients, yet national surveys indicate that vaccination compliance rates are remarkably low (20 percent). We conducted a study to model prospectively the flu shot decisions and subsequent behavior of an elderly and/or chronically diseased (at high risk for complications of influenza) ambulatory care population at the Seattle VA Medical Center. Prior to the 1980-81 flu shot season, a random (stratified by disease) sample of 63 patients, drawn from the total population of high-risk patients in the general medicine clinic, was interviewed to identify patient-defined concerns regarding flu shots. Six potential consequences of influenza and nine of vaccination were emphasized by patients and provided the content for a weighted hierarchical utility model questionnaire. The utility model provides an operational framework for (1) obtaining subjective value and relative importance judgments from patients; (2) combining these judgments to obtain a prediction of behavioral intention and behavior for each patient; and, if the model is valid (predictive of behavior), (3) identifying those factors which are most salient to patient's decisions and subsequent behavior. Prior to the 1981-82 flu season, the decision model questionnaire was administered to 350 other high-risk patients from the same general medicine clinic population. The decision model correctly predicted behavioral intention for 87 percent and vaccination behavior for 82 percent of this population and, more importantly, differentiated shot "takers" and "nontakers" along several attitudinal dimensions that suggest specific content areas for clinical compliance intervention strategies. PMID:3949541
Geomorphically based predictive mapping of soil thickness in upland watersheds
NASA Astrophysics Data System (ADS)
Pelletier, Jon D.; Rasmussen, Craig
2009-09-01
The hydrologic response of upland watersheds is strongly controlled by soil (regolith) thickness. Despite the need to quantify soil thickness for input into hydrologic models, there is currently no widely used, geomorphically based method for doing so. In this paper we describe and illustrate a new method for predictive mapping of soil thicknesses using high-resolution topographic data, numerical modeling, and field-based calibration. The model framework works directly with input digital elevation model data to predict soil thicknesses assuming a long-term balance between soil production and erosion. Erosion rates in the model are quantified using one of three geomorphically based sediment transport models: nonlinear slope-dependent transport, nonlinear area- and slope-dependent transport, and nonlinear depth- and slope-dependent transport. The model balances soil production and erosion locally to predict a family of solutions corresponding to a range of values of two unconstrained model parameters. A small number of field-based soil thickness measurements can then be used to calibrate the local value of those unconstrained parameters, thereby constraining which solution is applicable at a particular study site. As an illustration, the model is used to predictively map soil thicknesses in two small, ˜0.1 km2, drainage basins in the Marshall Gulch watershed, a semiarid drainage basin in the Santa Catalina Mountains of Pima County, Arizona. Field observations and calibration data indicate that the nonlinear depth- and slope-dependent sediment transport model is the most appropriate transport model for this site. The resulting framework provides a generally applicable, geomorphically based tool for predictive mapping of soil thickness using high-resolution topographic data sets.
Attallah, Omneya; Karthikesalingam, Alan; Holt, Peter J E; Thompson, Matthew M; Sayers, Rob; Bown, Matthew J; Choke, Eddie C; Ma, Xianghong
2017-08-03
Feature selection (FS) process is essential in the medical area as it reduces the effort and time needed for physicians to measure unnecessary features. Choosing useful variables is a difficult task with the presence of censoring which is the unique characteristic in survival analysis. Most survival FS methods depend on Cox's proportional hazard model; however, machine learning techniques (MLT) are preferred but not commonly used due to censoring. Techniques that have been proposed to adopt MLT to perform FS with survival data cannot be used with the high level of censoring. The researcher's previous publications proposed a technique to deal with the high level of censoring. It also used existing FS techniques to reduce dataset dimension. However, in this paper a new FS technique was proposed and combined with feature transformation and the proposed uncensoring approaches to select a reduced set of features and produce a stable predictive model. In this paper, a FS technique based on artificial neural network (ANN) MLT is proposed to deal with highly censored Endovascular Aortic Repair (EVAR). Survival data EVAR datasets were collected during 2004 to 2010 from two vascular centers in order to produce a final stable model. They contain almost 91% of censored patients. The proposed approach used a wrapper FS method with ANN to select a reduced subset of features that predict the risk of EVAR re-intervention after 5 years to patients from two different centers located in the United Kingdom, to allow it to be potentially applied to cross-centers predictions. The proposed model is compared with the two popular FS techniques; Akaike and Bayesian information criteria (AIC, BIC) that are used with Cox's model. The final model outperforms other methods in distinguishing the high and low risk groups; as they both have concordance index and estimated AUC better than the Cox's model based on AIC, BIC, Lasso, and SCAD approaches. These models have p-values lower than 0.05, meaning that patients with different risk groups can be separated significantly and those who would need re-intervention can be correctly predicted. The proposed approach will save time and effort made by physicians to collect unnecessary variables. The final reduced model was able to predict the long-term risk of aortic complications after EVAR. This predictive model can help clinicians decide patients' future observation plan.
Colas, Jaron T; Pauli, Wolfgang M; Larsen, Tobias; Tyszka, J Michael; O'Doherty, John P
2017-10-01
Prediction-error signals consistent with formal models of "reinforcement learning" (RL) have repeatedly been found within dopaminergic nuclei of the midbrain and dopaminoceptive areas of the striatum. However, the precise form of the RL algorithms implemented in the human brain is not yet well determined. Here, we created a novel paradigm optimized to dissociate the subtypes of reward-prediction errors that function as the key computational signatures of two distinct classes of RL models-namely, "actor/critic" models and action-value-learning models (e.g., the Q-learning model). The state-value-prediction error (SVPE), which is independent of actions, is a hallmark of the actor/critic architecture, whereas the action-value-prediction error (AVPE) is the distinguishing feature of action-value-learning algorithms. To test for the presence of these prediction-error signals in the brain, we scanned human participants with a high-resolution functional magnetic-resonance imaging (fMRI) protocol optimized to enable measurement of neural activity in the dopaminergic midbrain as well as the striatal areas to which it projects. In keeping with the actor/critic model, the SVPE signal was detected in the substantia nigra. The SVPE was also clearly present in both the ventral striatum and the dorsal striatum. However, alongside these purely state-value-based computations we also found evidence for AVPE signals throughout the striatum. These high-resolution fMRI findings suggest that model-free aspects of reward learning in humans can be explained algorithmically with RL in terms of an actor/critic mechanism operating in parallel with a system for more direct action-value learning.
Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin
2016-01-01
Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520
Safiuddin, Md; Raman, Sudharshan N; Abdus Salam, Md; Jumaat, Mohd Zamin
2016-05-20
Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination ( R ²) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.
Soviet Economic Policy Towards Eastern Europe
1988-11-01
high. Without specifying the determinants of Soviet demand for "allegiance" in more detail, the model is not testable; we cannot predict how subsidy...trade inside (Czechoslovakia, Bulgaria). These countries are behaving as predicted by the model . If this hypothesis is true, the pattern of subsidies...also compares the sum of per capita subsidies by country between 1970 and 1982 with the sum of subsidies predicted by the model . Because of the poor
1992-01-09
Crystal Polymers Tracy Reed Geophysics Laboratory (GEO) 9 Analysis of Model Output Statistics Thunderstorm Prediction Model Frank Lasley 10...four hours to twenty-four hours. It was predicted that the dogbones would turn brown once they reached the approximate annealing temperature. This was...LYS Hanscom AFB Frank A. Lasley Abstracft. Model Output Statistics (MOS) Thunderstorm prediction information and Service A weather observations
Relativistic Electrons at Geostationary Orbit: Modeling Results
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Lyatsky, Wladislaw
2008-01-01
We developed a new prediction model for forecasting relativistic (greater than 2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/interplanetary magnetic field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is stable and incredibly high (about 0.9). The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible.
Gentry, Amanda Elswick; Jackson-Cook, Colleen K; Lyon, Debra E; Archer, Kellie J
2015-01-01
The pathological description of the stage of a tumor is an important clinical designation and is considered, like many other forms of biomedical data, an ordinal outcome. Currently, statistical methods for predicting an ordinal outcome using clinical, demographic, and high-dimensional correlated features are lacking. In this paper, we propose a method that fits an ordinal response model to predict an ordinal outcome for high-dimensional covariate spaces. Our method penalizes some covariates (high-throughput genomic features) without penalizing others (such as demographic and/or clinical covariates). We demonstrate the application of our method to predict the stage of breast cancer. In our model, breast cancer subtype is a nonpenalized predictor, and CpG site methylation values from the Illumina Human Methylation 450K assay are penalized predictors. The method has been made available in the ordinalgmifs package in the R programming environment.
NASA Astrophysics Data System (ADS)
Wright, David; Thyer, Mark; Westra, Seth
2015-04-01
Highly influential data points are those that have a disproportionately large impact on model performance, parameters and predictions. However, in current hydrological modelling practice the relative influence of individual data points on hydrological model calibration is not commonly evaluated. This presentation illustrates and evaluates several influence diagnostics tools that hydrological modellers can use to assess the relative influence of data. The feasibility and importance of including influence detection diagnostics as a standard tool in hydrological model calibration is discussed. Two classes of influence diagnostics are evaluated: (1) computationally demanding numerical "case deletion" diagnostics; and (2) computationally efficient analytical diagnostics, based on Cook's distance. These diagnostics are compared against hydrologically orientated diagnostics that describe changes in the model parameters (measured through the Mahalanobis distance), performance (objective function displacement) and predictions (mean and maximum streamflow). These influence diagnostics are applied to two case studies: a stage/discharge rating curve model, and a conceptual rainfall-runoff model (GR4J). Removing a single data point from the calibration resulted in differences to mean flow predictions of up to 6% for the rating curve model, and differences to mean and maximum flow predictions of up to 10% and 17%, respectively, for the hydrological model. When using the Nash-Sutcliffe efficiency in calibration, the computationally cheaper Cook's distance metrics produce similar results to the case-deletion metrics at a fraction of the computational cost. However, Cooks distance is adapted from linear regression with inherit assumptions on the data and is therefore less flexible than case deletion. Influential point detection diagnostics show great potential to improve current hydrological modelling practices by identifying highly influential data points. The findings of this study establish the feasibility and importance of including influential point detection diagnostics as a standard tool in hydrological model calibration. They provide the hydrologist with important information on whether model calibration is susceptible to a small number of highly influent data points. This enables the hydrologist to make a more informed decision of whether to (1) remove/retain the calibration data; (2) adjust the calibration strategy and/or hydrological model to reduce the susceptibility of model predictions to a small number of influential observations.
Barrera, Ernesto L; Spanjers, Henri; Solon, Kimberly; Amerlinck, Youri; Nopens, Ingmar; Dewulf, Jo
2015-03-15
This research presents the modeling of the anaerobic digestion of cane-molasses vinasse, hereby extending the Anaerobic Digestion Model No. 1 with sulfate reduction for a very high strength and sulfate rich wastewater. Based on a sensitivity analysis, four parameters of the original ADM1 and all sulfate reduction parameters were calibrated. Although some deviations were observed between model predictions and experimental values, it was shown that sulfates, total aqueous sulfide, free sulfides, methane, carbon dioxide and sulfide in the gas phase, gas flow, propionic and acetic acids, chemical oxygen demand (COD), and pH were accurately predicted during model validation. The model showed high (±10%) to medium (10%-30%) accuracy predictions with a mean absolute relative error ranging from 1% to 26%, and was able to predict failure of methanogenesis and sulfidogenesis when the sulfate loading rate increased. Therefore, the kinetic parameters and the model structure proposed in this work can be considered as valid for the sulfate reduction process in the anaerobic digestion of cane-molasses vinasse when sulfate and organic loading rates range from 0.36 to 1.57 kg [Formula: see text] m(-3) d(-1) and from 7.66 to 12 kg COD m(-3) d(-1), respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Seasonal Drought Prediction: Advances, Challenges, and Future Prospects
NASA Astrophysics Data System (ADS)
Hao, Zengchao; Singh, Vijay P.; Xia, Youlong
2018-03-01
Drought prediction is of critical importance to early warning for drought managements. This review provides a synthesis of drought prediction based on statistical, dynamical, and hybrid methods. Statistical drought prediction is achieved by modeling the relationship between drought indices of interest and a suite of potential predictors, including large-scale climate indices, local climate variables, and land initial conditions. Dynamical meteorological drought prediction relies on seasonal climate forecast from general circulation models (GCMs), which can be employed to drive hydrological models for agricultural and hydrological drought prediction with the predictability determined by both climate forcings and initial conditions. Challenges still exist in drought prediction at long lead time and under a changing environment resulting from natural and anthropogenic factors. Future research prospects to improve drought prediction include, but are not limited to, high-quality data assimilation, improved model development with key processes related to drought occurrence, optimal ensemble forecast to select or weight ensembles, and hybrid drought prediction to merge statistical and dynamical forecasts.
Enhancing Flood Prediction Reliability Using Bayesian Model Averaging
NASA Astrophysics Data System (ADS)
Liu, Z.; Merwade, V.
2017-12-01
Uncertainty analysis is an indispensable part of modeling the hydrology and hydrodynamics of non-idealized environmental systems. Compared to reliance on prediction from one model simulation, using on ensemble of predictions that consider uncertainty from different sources is more reliable. In this study, Bayesian model averaging (BMA) is applied to Black River watershed in Arkansas and Missouri by combining multi-model simulations to get reliable deterministic water stage and probabilistic inundation extent predictions. The simulation ensemble is generated from 81 LISFLOOD-FP subgrid model configurations that include uncertainty from channel shape, channel width, channel roughness and discharge. Model simulation outputs are trained with observed water stage data during one flood event, and BMA prediction ability is validated for another flood event. Results from this study indicate that BMA does not always outperform all members in the ensemble, but it provides relatively robust deterministic flood stage predictions across the basin. Station based BMA (BMA_S) water stage prediction has better performance than global based BMA (BMA_G) prediction which is superior to the ensemble mean prediction. Additionally, high-frequency flood inundation extent (probability greater than 60%) in BMA_G probabilistic map is more accurate than the probabilistic flood inundation extent based on equal weights.
Rubinstein, Justin L.; Ellsworth, William L.; Chen, Kate Huihsuan; Uchida, Naoki
2012-01-01
The behavior of individual events in repeating earthquake sequences in California, Taiwan and Japan is better predicted by a model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. Given that repeating earthquakes are highly regular in both inter-event time and seismic moment, the time- and slip-predictable models seem ideally suited to explain their behavior. Taken together with evidence from the companion manuscript that shows similar results for laboratory experiments we conclude that the short-term predictions of the time- and slip-predictable models should be rejected in favor of earthquake models that assume either fixed slip or fixed recurrence interval. This implies that the elastic rebound model underlying the time- and slip-predictable models offers no additional value in describing earthquake behavior in an event-to-event sense, but its value in a long-term sense cannot be determined. These models likely fail because they rely on assumptions that oversimplify the earthquake cycle. We note that the time and slip of these events is predicted quite well by fixed slip and fixed recurrence models, so in some sense they are time- and slip-predictable. While fixed recurrence and slip models better predict repeating earthquake behavior than the time- and slip-predictable models, we observe a correlation between slip and the preceding recurrence time for many repeating earthquake sequences in Parkfield, California. This correlation is not found in other regions, and the sequences with the correlative slip-predictable behavior are not distinguishable from nearby earthquake sequences that do not exhibit this behavior.
NASA Astrophysics Data System (ADS)
Mogaji, Kehinde Anthony; Lim, Hwee San
2018-06-01
The application of a GIS - based Dempster - Shafer data driven model named as evidential belief function EBF- methodology to groundwater potential conditioning factors (GPCFs) derived from geophysical and hydrogeological data sets for assessing groundwater potentiality was presented in this study. The proposed method's efficacy in managing degree of uncertainty in spatial predictive models motivated this research. The method procedural approaches entail firstly, the database containing groundwater data records (bore wells location inventory, hydrogeological data record, etc.) and geophysical measurement data construction. From the database, different influencing groundwater occurrence factors, namely aquifer layer thickness, aquifer layer resistivity, overburden material resistivity, overburden material thickness, aquifer hydraulic conductivity and aquifer transmissivity were extracted and prepared. Further, the bore well location inventories were partitioned randomly into a ratio of 70% (19 wells) for model training and 30% (9 wells) for model testing. The synthesized of the GPCFs via applying the DS - EBF model algorithms produced the groundwater productivity potential index (GPPI) map which demarcated the area into low - medium, medium, medium - high and high potential zones. The analyzed percentage degree of uncertainty for the predicted lows potential zones classes and mediums/highs potential zones classes are >10% and <10%, respectively. The DS theory model-based GPPI map's validation through ROC approach established prediction rate accuracy of 88.8%. Successively, the determined transverse resistance (TR) values in the range of 1280 and 30,000 Ω my for the area geoelectrically delineated aquifer units of the predicted potential zones through Dar - Zarrouk Parameter analysis quantitatively confirm the DS theory modeling prediction results. This research results have expand the capability of DS - EBF model in predictive modeling by effective uncertainty management. Thus, the produced map could form part of decision support system reliable to be used by local authorities for groundwater exploitation and management in the area.
NASA Astrophysics Data System (ADS)
Kourafalou, V.; Kang, H.; Perlin, N.; Le Henaff, M.; Lamkin, J. T.
2016-02-01
Connectivity around the South Florida coastal regions and between South Florida and Cuba are largely influenced by a) local coastal processes and b) circulation in the Florida Straits, which is controlled by the larger scale Florida Current variability. Prediction of the physical connectivity is a necessary component for several activities that require ocean forecasts, such as oil spills, fisheries research, search and rescue. This requires a predictive system that can accommodate the intense coastal to offshore interactions and the linkages to the complex regional circulation. The Florida Straits, South Florida and Florida Keys Hybrid Coordinate Ocean Model is such a regional ocean predictive system, covering a large area over the Florida Straits and the adjacent land areas, representing both coastal and oceanic processes. The real-time ocean forecast system is high resolution ( 900m), embedded in larger scale predictive models. It includes detailed coastal bathymetry, high resolution/high frequency atmospheric forcing and provides 7-day forecasts, updated daily (see: http://coastalmodeling.rsmas.miami.edu/). The unprecedented high resolution and coastal details of this system provide value added on global forecasts through downscaling and allow a variety of applications. Examples will be presented, focusing on the period of a 2015 fisheries cruise around the coastal areas of Cuba, where model predictions helped guide the measurements on biophysical connectivity, under intense variability of the mesoscale eddy field and subsequent Florida Current meandering.
Validating a spatially distributed hydrological model with soil morphology data
NASA Astrophysics Data System (ADS)
Doppler, T.; Honti, M.; Zihlmann, U.; Weisskopf, P.; Stamm, C.
2014-09-01
Spatially distributed models are popular tools in hydrology claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for inputs of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography and artificial drainage. We translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to observed groundwater levels and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the the groundwater level predictions were not accurate enough to be used for the prediction of saturated areas. Groundwater level dynamics were not adequately reproduced and the predicted spatial saturation patterns did not correspond to those estimated from the soil map. Our results indicate that an accurate prediction of the groundwater level dynamics of the shallow groundwater in our catchment that is subject to artificial drainage would require a model that better represents processes at the boundary between the unsaturated and the saturated zone. However, data needed for such a more detailed model are not generally available. This severely hampers the practical use of such models despite their usefulness for scientific purposes.
Dolton, Michael J; Perera, Vidya; Pont, Lisa G; McLachlan, Andrew J
2014-01-01
Terbinafine is increasingly used in combination with other antifungal agents to treat resistant or refractory mycoses due to synergistic in vitro antifungal activity; high doses are commonly used, but limited data are available on systemic exposure, and no assessment of pharmacodynamic target attainment has been made. Using a physiologically based pharmacokinetic (PBPK) model for terbinafine, this study aimed to predict total and unbound terbinafine concentrations in plasma with a range of high-dose regimens and also calculate predicted pharmacodynamic parameters for terbinafine. Predicted terbinafine concentrations accumulated significantly during the first 28 days of treatment; the area under the concentration-time curve (AUC)/MIC ratios and AUC for the free, unbound fraction (fAUC)/MIC ratios increased by 54 to 62% on day 7 of treatment and by 80 to 92% on day 28 compared to day 1, depending on the dose regimen. Of the high-dose regimens investigated, 500 mg of terbinafine taken every 12 h provided the highest systemic exposure; on day 7 of treatment, the predicted AUC, maximum concentration (Cmax), and minimum concentration (Cmin) were approximately 4-fold, 1.9-fold, and 4.4-fold higher than with a standard-dose regimen of 250 mg once daily. Close agreement was seen between the concentrations predicted by the PBPK model and the observed concentrations, indicating good predictive performance. This study provides the first report of predicted terbinafine exposure in plasma with a range of high-dose regimens.
NASA Astrophysics Data System (ADS)
Ogden, F. L.
2017-12-01
HIgh performance computing and the widespread availabilities of geospatial physiographic and forcing datasets have enabled consideration of flood impact predictions with longer lead times and more detailed spatial descriptions. We are now considering multi-hour flash flood forecast lead times at the subdivision level in so-called hydroblind regions away from the National Hydrography network. However, the computational demands of such models are high, necessitating a nested simulation approach. Research on hyper-resolution hydrologic modeling over the past three decades have illustrated some fundamental limits on predictability that are simultaneously related to runoff generation mechanism(s), antecedent conditions, rates and total amounts of precipitation, discretization of the model domain, and complexity or completeness of the model formulation. This latter point is an acknowledgement that in some ways hydrologic understanding in key areas related to land use, land cover, tillage practices, seasonality, and biological effects has some glaring deficiencies. This presentation represents a review of what is known related to the interacting effects of precipitation amount, model spatial discretization, antecedent conditions, physiographic characteristics and model formulation completeness for runoff predictions. These interactions define a region in multidimensional forcing, parameter and process space where there are in some cases clear limits on predictability, and in other cases diminished uncertainty.
Comparison of in silico models for prediction of mutagenicity.
Bakhtyari, Nazanin G; Raitano, Giuseppa; Benfenati, Emilio; Martin, Todd; Young, Douglas
2013-01-01
Using a dataset with more than 6000 compounds, the performance of eight quantitative structure activity relationships (QSAR) models was evaluated: ACD/Tox Suite, Absorption, Distribution, Metabolism, Elimination, and Toxicity of chemical substances (ADMET) predictor, Derek, Toxicity Estimation Software Tool (T.E.S.T.), TOxicity Prediction by Komputer Assisted Technology (TOPKAT), Toxtree, CEASAR, and SARpy (SAR in python). In general, the results showed a high level of performance. To have a realistic estimate of the predictive ability, the results for chemicals inside and outside the training set for each model were considered. The effect of applicability domain tools (when available) on the prediction accuracy was also evaluated. The predictive tools included QSAR models, knowledge-based systems, and a combination of both methods. Models based on statistical QSAR methods gave better results.
Weiler, Gabriele; Schwarz, Ulf; Rauch, Jochen; Rohm, Kerstin; Lehr, Thorsten; Theobald, Stefan; Kiefer, Stephan; Götz, Katharina; Och, Katharina; Pfeifer, Nico; Handl, Lisa; Smola, Sigrun; Ihle, Matthias; Turki, Amin T; Beelen, Dietrich W; Rissland, Jürgen; Bittenbring, Jörg; Graf, Norbert
2018-01-01
Predictive models can support physicians to tailor interventions and treatments to their individual patients based on their predicted response and risk of disease and help in this way to put personalized medicine into practice. In allogeneic stem cell transplantation risk assessment is to be enhanced in order to respond to emerging viral infections and transplantation reactions. However, to develop predictive models it is necessary to harmonize and integrate high amounts of heterogeneous medical data that is stored in different health information systems. Driven by the demand for predictive instruments in allogeneic stem cell transplantation we present in this paper an ontology-based platform that supports data owners and model developers to share and harmonize their data for model development respecting data privacy.
The Prediction of Length-of-day Variations Based on Gaussian Processes
NASA Astrophysics Data System (ADS)
Lei, Y.; Zhao, D. N.; Gao, Y. P.; Cai, H. B.
2015-01-01
Due to the complicated time-varying characteristics of the length-of-day (LOD) variations, the accuracies of traditional strategies for the prediction of the LOD variations such as the least squares extrapolation model, the time-series analysis model, and so on, have not met the requirements for real-time and high-precision applications. In this paper, a new machine learning algorithm --- the Gaussian process (GP) model is employed to forecast the LOD variations. Its prediction precisions are analyzed and compared with those of the back propagation neural networks (BPNN), general regression neural networks (GRNN) models, and the Earth Orientation Parameters Prediction Comparison Campaign (EOP PCC). The results demonstrate that the application of the GP model to the prediction of the LOD variations is efficient and feasible.
Can arsenic occurrence rate in bedrock aquifers be predicted?
Yang, Qiang; Jung, Hun Bok; Marvinney, Robert G.; Culbertson, Charles W.; Zheng, Yan
2012-01-01
A high percentage (31%) of groundwater samples from bedrock aquifers in the greater Augusta area, Maine was found to contain greater than 10 μg L–1 of arsenic. Elevated arsenic concentrations are associated with bedrock geology, and more frequently observed in samples with high pH, low dissolved oxygen, and low nitrate. These associations were quantitatively compared by statistical analysis. Stepwise logistic regression models using bedrock geology and/or water chemistry parameters are developed and tested with external data sets to explore the feasibility of predicting groundwater arsenic occurrence rates (the percentages of arsenic concentrations higher than 10 μg L–1) in bedrock aquifers. Despite the under-prediction of high arsenic occurrence rates, models including groundwater geochemistry parameters predict arsenic occurrence rates better than those with bedrock geology only. Such simple models with very few parameters can be applied to obtain a preliminary arsenic risk assessment in bedrock aquifers at local to intermediate scales at other localities with similar geology.
Highly ionized atoms in cooling gas. [in model for cooling of hot Galactic corona
NASA Technical Reports Server (NTRS)
Edgar, Richard J.; Chevalier, Roger A.
1986-01-01
The ionization of low density gas cooling from a high temperature was calculated. The evolution during the cooling is assumed to be isochoric, isobaric, or a combination of these cases. The calculations are used to predict the column densities and ultraviolet line luminosities of highly ionized atoms in cooling gas. In a model for cooling of a hot galactic corona, it is shown that the observed value of N(N V) can be produced in the cooling gas, while the predicted value of N(Si IV) falls short of the observed value by a factor of about 5. The same model predicts fluxes of ultraviolet emission lines that are a factor of 10 lower than the claimed detections of Feldman, Bruna, and Henry. Predictions are made for ultraviolet lines in cooling flows in early-type galaxies and clusters of galaxies. It is shown that the column densities of interest vary over a fairly narrow range, while the emission line luminosities are simply proportional to the mass inflow rate.
Can arsenic occurrence rates in bedrock aquifers be predicted?
Yang, Qiang; Jung, Hun Bok; Marvinney, Robert G.; Culbertson, Charles W.; Zheng, Yan
2012-01-01
A high percentage (31%) of groundwater samples from bedrock aquifers in the greater Augusta area, Maine was found to contain greater than 10 µg L−1 of arsenic. Elevated arsenic concentrations are associated with bedrock geology, and more frequently observed in samples with high pH, low dissolved oxygen, and low nitrate. These associations were quantitatively compared by statistical analysis. Stepwise logistic regression models using bedrock geology and/or water chemistry parameters are developed and tested with external data sets to explore the feasibility of predicting groundwater arsenic occurrence rates (the percentages of arsenic concentrations higher than 10 µg L−1) in bedrock aquifers. Despite the under-prediction of high arsenic occurrence rates, models including groundwater geochemistry parameters predict arsenic occurrence rates better than those with bedrock geology only. Such simple models with very few parameters can be applied to obtain a preliminary arsenic risk assessment in bedrock aquifers at local to intermediate scales at other localities with similar geology. PMID:22260208
Scaling predictive modeling in drug development with cloud computing.
Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola
2015-01-26
Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.
Taslimitehrani, Vahid; Dong, Guozhu; Pereira, Naveen L; Panahiazar, Maryam; Pathak, Jyotishman
2016-04-01
Computerized survival prediction in healthcare identifying the risk of disease mortality, helps healthcare providers to effectively manage their patients by providing appropriate treatment options. In this study, we propose to apply a classification algorithm, Contrast Pattern Aided Logistic Regression (CPXR(Log)) with the probabilistic loss function, to develop and validate prognostic risk models to predict 1, 2, and 5year survival in heart failure (HF) using data from electronic health records (EHRs) at Mayo Clinic. The CPXR(Log) constructs a pattern aided logistic regression model defined by several patterns and corresponding local logistic regression models. One of the models generated by CPXR(Log) achieved an AUC and accuracy of 0.94 and 0.91, respectively, and significantly outperformed prognostic models reported in prior studies. Data extracted from EHRs allowed incorporation of patient co-morbidities into our models which helped improve the performance of the CPXR(Log) models (15.9% AUC improvement), although did not improve the accuracy of the models built by other classifiers. We also propose a probabilistic loss function to determine the large error and small error instances. The new loss function used in the algorithm outperforms other functions used in the previous studies by 1% improvement in the AUC. This study revealed that using EHR data to build prediction models can be very challenging using existing classification methods due to the high dimensionality and complexity of EHR data. The risk models developed by CPXR(Log) also reveal that HF is a highly heterogeneous disease, i.e., different subgroups of HF patients require different types of considerations with their diagnosis and treatment. Our risk models provided two valuable insights for application of predictive modeling techniques in biomedicine: Logistic risk models often make systematic prediction errors, and it is prudent to use subgroup based prediction models such as those given by CPXR(Log) when investigating heterogeneous diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Roelen, Corné A M; Bültmann, Ute; Groothoff, Johan W; Twisk, Jos W R; Heymans, Martijn W
2015-11-01
Prognostic models including age, self-rated health and prior sickness absence (SA) have been found to predict high (≥ 30) SA days and high (≥ 3) SA episodes during 1-year follow-up. More predictors of high SA are needed to improve these SA prognostic models. The purpose of this study was to investigate fatigue as new predictor in SA prognostic models by using risk reclassification methods and measures. This was a prospective cohort study with 1-year follow-up of 1,137 office workers. Fatigue was measured at baseline with the 20-item checklist individual strength and added to the existing SA prognostic models. SA days and episodes during 1-year follow-up were retrieved from an occupational health service register. The added value of fatigue was investigated with Net Reclassification Index (NRI) and integrated discrimination improvement (IDI) measures. In total, 579 (51 %) office workers had complete data for analysis. Fatigue was prospectively associated with both high SA days and episodes. The NRI revealed that adding fatigue to the SA days model correctly reclassified workers with high SA days, but incorrectly reclassified workers without high SA days. The IDI indicated no improvement in risk discrimination by the SA days model. Both NRI and IDI showed that the prognostic model predicting high SA episodes did not improve when fatigue was added as predictor variable. In the present study, fatigue increased false-positive rates which may reduce the cost-effectiveness of interventions for preventing SA.
Predicting ecological responses in a changing ocean: the effects of future climate uncertainty.
Freer, Jennifer J; Partridge, Julian C; Tarling, Geraint A; Collins, Martin A; Genner, Martin J
2018-01-01
Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed. Despite a high awareness of climate uncertainty, articles favoured the most severe emission scenario, and only a subset of climate models were used as input into ecological analyses. In the case of sea surface temperature, these models can have projections unrepresentative against a larger ensemble mean. Moreover, 91% of studies failed to incorporate the internal variability of a climate model into results. We explored the influence that the choice of emission scenario, climate model, and model realisation can have when predicting the future distribution of the pelagic fish, Electrona antarctica . Future distributions were highly influenced by the choice of climate model, and in some cases, internal variability was important in determining the direction and severity of the distribution change. Increased clarity and availability of processed climate data would facilitate more comprehensive explorations of climate uncertainty, and increase in the quality and standard of marine prediction studies.
The VSGB 2.0 Model: A Next Generation Energy Model for High Resolution Protein Structure Modeling
Li, Jianing; Abel, Robert; Zhu, Kai; Cao, Yixiang; Zhao, Suwen; Friesner, Richard A.
2011-01-01
A novel energy model (VSGB 2.0) for high resolution protein structure modeling is described, which features an optimized implicit solvent model as well as physics-based corrections for hydrogen bonding, π-π interactions, self-contact interactions and hydrophobic interactions. Parameters of the VSGB 2.0 model were fit to a crystallographic database of 2239 single side chain and 100 11–13 residue loop predictions. Combined with an advanced method of sampling and a robust algorithm for protonation state assignment, the VSGB 2.0 model was validated by predicting 115 super long loops up to 20 residues. Despite the dramatically increasing difficulty in reconstructing longer loops, a high accuracy was achieved: all of the lowest energy conformations have global backbone RMSDs better than 2.0 Å from the native conformations. Average global backbone RMSDs of the predictions are 0.51, 0.63, 0.70, 0.62, 0.80, 1.41, and 1.59 Å for 14, 15, 16, 17, 18, 19, and 20 residue loop predictions, respectively. When these results are corrected for possible statistical bias as explained in the text, the average global backbone RMSDs are 0.61, 0.71, 0.86, 0.62, 1.06, 1.67, and 1.59 Å. Given the precision and robustness of the calculations, we believe that the VSGB 2.0 model is suitable to tackle “real” problems, such as biological function modeling and structure-based drug discovery. PMID:21905107
Using Pareto points for model identification in predictive toxicology
2013-01-01
Predictive toxicology is concerned with the development of models that are able to predict the toxicity of chemicals. A reliable prediction of toxic effects of chemicals in living systems is highly desirable in cosmetics, drug design or food protection to speed up the process of chemical compound discovery while reducing the need for lab tests. There is an extensive literature associated with the best practice of model generation and data integration but management and automated identification of relevant models from available collections of models is still an open problem. Currently, the decision on which model should be used for a new chemical compound is left to users. This paper intends to initiate the discussion on automated model identification. We present an algorithm, based on Pareto optimality, which mines model collections and identifies a model that offers a reliable prediction for a new chemical compound. The performance of this new approach is verified for two endpoints: IGC50 and LogP. The results show a great potential for automated model identification methods in predictive toxicology. PMID:23517649
Utility of the PRE-DELIRIC delirium prediction model in a Scottish ICU cohort.
Paton, Lia; Elliott, Sara; Chohan, Sanjiv
2016-08-01
The PREdiction of DELIRium for Intensive Care (PRE-DELIRIC) model reliably predicts at 24 h the development of delirium during intensive care admission. However, the model does not take account of alcohol misuse, which has a high prevalence in Scottish intensive care patients. We used the PRE-DELIRIC model to calculate the risk of delirium for patients in our ICU from May to July 2013. These patients were screened for delirium on each day of their ICU stay using the Confusion Assessment Method for ICU (CAM-ICU). Outcomes were ascertained from the national ICU database. In the 39 patients screened daily, the risk of delirium given by the PRE-DELIRIC model was positively associated with prevalence of delirium, length of ICU stay and mortality. The PRE-DELIRIC model can therefore be usefully applied to a Scottish cohort with a high prevalence of substance misuse, allowing preventive measures to be targeted.
Lee, Jason; Morishima, Toshitaka; Kunisawa, Susumu; Sasaki, Noriko; Otsubo, Tetsuya; Ikai, Hiroshi; Imanaka, Yuichi
2013-01-01
Stroke and other cerebrovascular diseases are a major cause of death and disability. Predicting in-hospital mortality in ischaemic stroke patients can help to identify high-risk patients and guide treatment approaches. Chart reviews provide important clinical information for mortality prediction, but are laborious and limiting in sample sizes. Administrative data allow for large-scale multi-institutional analyses but lack the necessary clinical information for outcome research. However, administrative claims data in Japan has seen the recent inclusion of patient consciousness and disability information, which may allow more accurate mortality prediction using administrative data alone. The aim of this study was to derive and validate models to predict in-hospital mortality in patients admitted for ischaemic stroke using administrative data. The sample consisted of 21,445 patients from 176 Japanese hospitals, who were randomly divided into derivation and validation subgroups. Multivariable logistic regression models were developed using 7- and 30-day and overall in-hospital mortality as dependent variables. Independent variables included patient age, sex, comorbidities upon admission, Japan Coma Scale (JCS) score, Barthel Index score, modified Rankin Scale (mRS) score, and admissions after hours and on weekends/public holidays. Models were developed in the derivation subgroup, and coefficients from these models were applied to the validation subgroup. Predictive ability was analysed using C-statistics; calibration was evaluated with Hosmer-Lemeshow χ(2) tests. All three models showed predictive abilities similar or surpassing that of chart review-based models. The C-statistics were highest in the 7-day in-hospital mortality prediction model, at 0.906 and 0.901 in the derivation and validation subgroups, respectively. For the 30-day in-hospital mortality prediction models, the C-statistics for the derivation and validation subgroups were 0.893 and 0.872, respectively; in overall in-hospital mortality prediction these values were 0.883 and 0.876. In this study, we have derived and validated in-hospital mortality prediction models for three different time spans using a large population of ischaemic stroke patients in a multi-institutional analysis. The recent inclusion of JCS, Barthel Index, and mRS scores in Japanese administrative data has allowed the prediction of in-hospital mortality with accuracy comparable to that of chart review analyses. The models developed using administrative data had consistently high predictive abilities for all models in both the derivation and validation subgroups. These results have implications in the role of administrative data in future mortality prediction analyses. Copyright © 2013 S. Karger AG, Basel.
Formability prediction for AHSS materials using damage models
NASA Astrophysics Data System (ADS)
Amaral, R.; Santos, Abel D.; José, César de Sá; Miranda, Sara
2017-05-01
Advanced high strength steels (AHSS) are seeing an increased use, mostly due to lightweight design in automobile industry and strict regulations on safety and greenhouse gases emissions. However, the use of these materials, characterized by a high strength to weight ratio, stiffness and high work hardening at early stages of plastic deformation, have imposed many challenges in sheet metal industry, mainly their low formability and different behaviour, when compared to traditional steels, which may represent a defying task, both to obtain a successful component and also when using numerical simulation to predict material behaviour and its fracture limits. Although numerical prediction of critical strains in sheet metal forming processes is still very often based on the classic forming limit diagrams, alternative approaches can use damage models, which are based on stress states to predict failure during the forming process and they can be classified as empirical, physics based and phenomenological models. In the present paper a comparative analysis of different ductile damage models is carried out, in order numerically evaluate two isotropic coupled damage models proposed by Johnson-Cook and Gurson-Tvergaard-Needleman (GTN), each of them corresponding to the first two previous group classification. Finite element analysis is used considering these damage mechanics approaches and the obtained results are compared with experimental Nakajima tests, thus being possible to evaluate and validate the ability to predict damage and formability limits for previous defined approaches.
Evangelista, P.; Kumar, S.; Stohlgren, T.J.; Crall, A.W.; Newman, G.J.
2007-01-01
Predictive models of aboveground biomass of nonnative Tamarix ramosissima of various sizes were developed using destructive sampling techniques on 50 individuals and four 100-m2 plots. Each sample was measured for average height (m) of stems and canopy area (m2) prior to cutting, drying, and weighing. Five competing regression models (P < 0.05) were developed to estimate aboveground biomass of T. ramosissima using average height and/or canopy area measurements and were evaluated using Akaike's Information Criterion corrected for small sample size (AICc). Our best model (AICc = -148.69, ??AICc = 0) successfully predicted T. ramosissima aboveground biomass (R2 = 0.97) and used average height and canopy area as predictors. Our 2nd-best model, using the same predictors, was also successful in predicting aboveground biomass (R2 = 0.97, AICc = -131.71, ??AICc = 16.98). A 3rd model demonstrated high correlation between only aboveground biomass and canopy area (R2 = 0.95), while 2 additional models found high correlations between aboveground biomass and average height measurements only (R2 = 0.90 and 0.70, respectively). These models illustrate how simple field measurements, such as height and canopy area, can be used in allometric relationships to accurately predict aboveground biomass of T. ramosissima. Although a correction factor may be necessary for predictions at larger scales, the models presented will prove useful for many research and management initiatives.
NASA Astrophysics Data System (ADS)
Souza, Paul M.; Beladi, Hossein; Singh, Rajkumar P.; Hodgson, Peter D.; Rolfe, Bernard
2018-05-01
This paper developed high-temperature deformation constitutive models for a Ti6Al4V alloy using an empirical-based Arrhenius equation and an enhanced version of the authors' physical-based EM + Avrami equations. The initial microstructure was a partially equiaxed α + β grain structure. A wide range of experimental data was obtained from hot compression of the Ti6Al4 V alloy at deformation temperatures ranging from 720 to 970 °C, and at strain rates varying from 0.01 to 10 s-1. The friction- and adiabatic-corrected flow curves were used to identify the parameter values of the constitutive models. Both models provided good overall accuracy of the flow stress. The generalized modified Arrhenius model was better at predicting the flow stress at lower strain rates. However, the model was inaccurate in predicting the peak strain. In contrast, the enhanced physical-based EM + Avrami model revealed very good accuracy at intermediate and high strain rates, but it was also better at predicting the peak strain. Blind sample tests revealed that the EM + Avrami maintained good predictions on new (unseen) data. Thus, the enhanced EM + Avrami model may be preferred over the Arrhenius model to predict the flow behavior of Ti6Al4V alloy during industrial forgings, when the initial microstructure is partially equiaxed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valerio, Luis G., E-mail: luis.valerio@fda.hhs.gov; Cross, Kevin P.
Control and minimization of human exposure to potential genotoxic impurities found in drug substances and products is an important part of preclinical safety assessments of new drug products. The FDA's 2008 draft guidance on genotoxic and carcinogenic impurities in drug substances and products allows use of computational quantitative structure–activity relationships (QSAR) to identify structural alerts for known and expected impurities present at levels below qualified thresholds. This study provides the information necessary to establish the practical use of a new in silico toxicology model for predicting Salmonella t. mutagenicity (Ames assay outcome) of drug impurities and other chemicals. We describemore » the model's chemical content and toxicity fingerprint in terms of compound space, molecular and structural toxicophores, and have rigorously tested its predictive power using both cross-validation and external validation experiments, as well as case studies. Consistent with desired regulatory use, the model performs with high sensitivity (81%) and high negative predictivity (81%) based on external validation with 2368 compounds foreign to the model and having known mutagenicity. A database of drug impurities was created from proprietary FDA submissions and the public literature which found significant overlap between the structural features of drug impurities and training set chemicals in the QSAR model. Overall, the model's predictive performance was found to be acceptable for screening drug impurities for Salmonella mutagenicity. -- Highlights: ► We characterize a new in silico model to predict mutagenicity of drug impurities. ► The model predicts Salmonella mutagenicity and will be useful for safety assessment. ► We examine toxicity fingerprints and toxicophores of this Ames assay model. ► We compare these attributes to those found in drug impurities known to FDA/CDER. ► We validate the model and find it has a desired predictive performance.« less
Rubikowska, Barbara; Bratkowski, Jakub; Ustrnul, Zbigniew; Vanwambeke, Sophie O.
2018-01-01
During 1999–2012, 77% of the cases of tick-borne encephalitis (TBE) were recorded in two out of 16 Polish provinces. However, historical data, mostly from national serosurveys, suggest that the disease could be undetected in many areas. The aim of this study was to identify which routinely-measured meteorological, environmental, and socio-economic factors are associated to TBE human risk across Poland, with a particular focus on areas reporting few cases, but where serosurveys suggest higher incidence. We fitted a zero-inflated Poisson model using data on TBE incidence recorded in 108 NUTS-5 administrative units in high-risk areas over the period 1999–2012. Subsequently we applied the best fitting model to all Polish municipalities. Keeping the remaining variables constant, the predicted rate increased with the increase of air temperature over the previous 10–20 days, precipitation over the previous 20–30 days, in forestation, forest edge density, forest road density, and unemployment. The predicted rate decreased with increasing distance from forests. The map of predicted rates was consistent with the established risk areas. It predicted, however, high rates in provinces considered TBE-free. We recommend raising awareness among physicians working in the predicted high-risk areas and considering routine use of household animal surveys for risk mapping. PMID:29617333
Stefanoff, Pawel; Rubikowska, Barbara; Bratkowski, Jakub; Ustrnul, Zbigniew; Vanwambeke, Sophie O; Rosinska, Magdalena
2018-04-04
During 1999–2012, 77% of the cases of tick-borne encephalitis (TBE) were recorded in two out of 16 Polish provinces. However, historical data, mostly from national serosurveys, suggest that the disease could be undetected in many areas. The aim of this study was to identify which routinely-measured meteorological, environmental, and socio-economic factors are associated to TBE human risk across Poland, with a particular focus on areas reporting few cases, but where serosurveys suggest higher incidence. We fitted a zero-inflated Poisson model using data on TBE incidence recorded in 108 NUTS-5 administrative units in high-risk areas over the period 1999–2012. Subsequently we applied the best fitting model to all Polish municipalities. Keeping the remaining variables constant, the predicted rate increased with the increase of air temperature over the previous 10–20 days, precipitation over the previous 20–30 days, in forestation, forest edge density, forest road density, and unemployment. The predicted rate decreased with increasing distance from forests. The map of predicted rates was consistent with the established risk areas. It predicted, however, high rates in provinces considered TBE-free. We recommend raising awareness among physicians working in the predicted high-risk areas and considering routine use of household animal surveys for risk mapping.
Uncertainty aggregation and reduction in structure-material performance prediction
NASA Astrophysics Data System (ADS)
Hu, Zhen; Mahadevan, Sankaran; Ao, Dan
2018-02-01
An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.
Wogan, Guinevere O. U.
2016-01-01
A primary assumption of environmental niche models (ENMs) is that models are both accurate and transferable across geography or time; however, recent work has shown that models may be accurate but not highly transferable. While some of this is due to modeling technique, individual species ecologies may also underlie this phenomenon. Life history traits certainly influence the accuracy of predictive ENMs, but their impact on model transferability is less understood. This study investigated how life history traits influence the predictive accuracy and transferability of ENMs using historically calibrated models for birds. In this study I used historical occurrence and climate data (1950-1990s) to build models for a sample of birds, and then projected them forward to the ‘future’ (1960-1990s). The models were then validated against models generated from occurrence data at that ‘future’ time. Internal and external validation metrics, as well as metrics assessing transferability, and Generalized Linear Models were used to identify life history traits that were significant predictors of accuracy and transferability. This study found that the predictive ability of ENMs differs with regard to life history characteristics such as range, migration, and habitat, and that the rarity versus commonness of a species affects the predicted stability and overlap and hence the transferability of projected models. Projected ENMs with both high accuracy and transferability scores, still sometimes suffered from over- or under- predicted species ranges. Life history traits certainly influenced the accuracy of predictive ENMs for birds, but while aspects of geographic range impact model transferability, the mechanisms underlying this are less understood. PMID:26959979
O'Connell, Allan F.; Gardner, Beth; Oppel, Steffen; Meirinho, Ana; Ramírez, Iván; Miller, Peter I.; Louzao, Maite
2012-01-01
Knowledge about the spatial distribution of seabirds at sea is important for conservation. During marine conservation planning, logistical constraints preclude seabird surveys covering the complete area of interest and spatial distribution of seabirds is frequently inferred from predictive statistical models. Increasingly complex models are available to relate the distribution and abundance of pelagic seabirds to environmental variables, but a comparison of their usefulness for delineating protected areas for seabirds is lacking. Here we compare the performance of five modelling techniques (generalised linear models, generalised additive models, Random Forest, boosted regression trees, and maximum entropy) to predict the distribution of Balearic Shearwaters (Puffinus mauretanicus) along the coast of the western Iberian Peninsula. We used ship transect data from 2004 to 2009 and 13 environmental variables to predict occurrence and density, and evaluated predictive performance of all models using spatially segregated test data. Predicted distribution varied among the different models, although predictive performance varied little. An ensemble prediction that combined results from all five techniques was robust and confirmed the existence of marine important bird areas for Balearic Shearwaters in Portugal and Spain. Our predictions suggested additional areas that would be of high priority for conservation and could be proposed as protected areas. Abundance data were extremely difficult to predict, and none of five modelling techniques provided a reliable prediction of spatial patterns. We advocate the use of ensemble modelling that combines the output of several methods to predict the spatial distribution of seabirds, and use these predictions to target separate surveys assessing the abundance of seabirds in areas of regular use.
ERIC Educational Resources Information Center
Fü rst, Guillaume; Ghisletta, Paolo; Lubart, Todd
2016-01-01
The present work proposes an integrative model of creativity that includes personality traits and cognitive processes. This model hypothesizes that three high-order personality factors predict two main process factors, which in turn predict intensity and achievement of creative activities. The personality factors are: "Plasticity" (high…
Development of a multi-ensemble Prediction Model for China
NASA Astrophysics Data System (ADS)
Brasseur, G. P.; Bouarar, I.; Petersen, A. K.
2016-12-01
As part of the EU-sponsored Panda and MarcoPolo Projects, a multi-model prediction system including 7 models has been developed. Most regional models use global air quality predictions provided by the Copernicus Atmospheric Monitoring Service and downscale the forecast at relatively high spatial resolution in eastern China. The paper will describe the forecast system and show examples of forecasts produced for several Chinese urban areas and displayed on a web site developed by the Dutch Meteorological service. A discussion on the accuracy of the predictions based on a detailed validation process using surface measurements from the Chinese monitoring network will be presented.
Predicting the stability of nanodevices
NASA Astrophysics Data System (ADS)
Lin, Z. Z.; Yu, W. F.; Wang, Y.; Ning, X. J.
2011-05-01
A simple model based on the statistics of single atoms is developed to predict the stability or lifetime of nanodevices without empirical parameters. Under certain conditions, the model produces the Arrhenius law and the Meyer-Neldel compensation rule. Compared with the classical molecular-dynamics simulations for predicting the stability of monatomic carbon chain at high temperature, the model is proved to be much more accurate than the transition state theory. Based on the ab initio calculation of the static potential, the model can give out a corrected lifetime of monatomic carbon and gold chains at higher temperature, and predict that the monatomic chains are very stable at room temperature.
NASA Technical Reports Server (NTRS)
Foster, John V.; Hartman, David C.
2017-01-01
The NASA Unmanned Aircraft System (UAS) Traffic Management (UTM) project is conducting research to enable civilian low-altitude airspace and UAS operations. A goal of this project is to develop probabilistic methods to quantify risk during failures and off nominal flight conditions. An important part of this effort is the reliable prediction of feasible trajectories during off-nominal events such as control failure, atmospheric upsets, or navigation anomalies that can cause large deviations from the intended flight path or extreme vehicle upsets beyond the normal flight envelope. Few examples of high-fidelity modeling and prediction of off-nominal behavior for small UAS (sUAS) vehicles exist, and modeling requirements for accurately predicting flight dynamics for out-of-envelope or failure conditions are essentially undefined. In addition, the broad range of sUAS aircraft configurations already being fielded presents a significant modeling challenge, as these vehicles are often very different from one another and are likely to possess dramatically different flight dynamics and resultant trajectories and may require different modeling approaches to capture off-nominal behavior. NASA has undertaken an extensive research effort to define sUAS flight dynamics modeling requirements and develop preliminary high fidelity six degree-of-freedom (6-DOF) simulations capable of more closely predicting off-nominal flight dynamics and trajectories. This research has included a literature review of existing sUAS modeling and simulation work as well as development of experimental testing methods to measure and model key components of propulsion, airframe and control characteristics. The ultimate objective of these efforts is to develop tools to support UTM risk analyses and for the real-time prediction of off-nominal trajectories for use in the UTM Risk Assessment Framework (URAF). This paper focuses on modeling and simulation efforts for a generic quad-rotor configuration typical of many commercial vehicles in use today. An overview of relevant off-nominal multi-rotor behaviors will be presented to define modeling goals and to identify the prediction capability lacking in simplified models of multi-rotor performance. A description of recent NASA wind tunnel testing of multi-rotor propulsion and airframe components will be presented illustrating important experimental and data acquisition methods, and a description of preliminary propulsion and airframe models will be presented. Lastly, examples of predicted off-nominal flight dynamics and trajectories from the simulation will be presented.
Jet Noise Modeling for Supersonic Business Jet Application
NASA Technical Reports Server (NTRS)
Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.
2004-01-01
This document describes the development of an improved predictive model for coannular jet noise, including noise suppression modifications applicable to small supersonic-cruise aircraft such as the Supersonic Business Jet (SBJ), for NASA Langley Research Center (LaRC). For such aircraft a wide range of propulsion and integration options are under consideration. Thus there is a need for very versatile design tools, including a noise prediction model. The approach used is similar to that used with great success by the Modern Technologies Corporation (MTC) in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research Program and in developing a more recent model for coannular nozzles over a wide range of conditions. If highly suppressed configurations are ultimately required, the 2DME model is expected to provide reasonable prediction for these smaller scales, although this has not been demonstrated. It is considered likely that more modest suppression approaches, such as dual stream nozzles featuring chevron or chute suppressors, perhaps in conjunction with inverted velocity profiles (IVP), will be sufficient for the SBJ.
NASA Technical Reports Server (NTRS)
Garcia-Espada, Susana; Haas, Rudiger; Colomer, Francisco
2010-01-01
An important limitation for the precision in the results obtained by space geodetic techniques like VLBI and GPS are tropospheric delays caused by the neutral atmosphere, see e.g. [1]. In recent years numerical weather models (NWM) have been applied to improve mapping functions which are used for tropospheric delay modeling in VLBI and GPS data analyses. In this manuscript we use raytracing to calculate slant delays and apply these to the analysis of Europe VLBI data. The raytracing is performed through the limited area numerical weather prediction (NWP) model HIRLAM. The advantages of this model are high spatial (0.2 deg. x 0.2 deg.) and high temporal resolution (in prediction mode three hours).
NASA Astrophysics Data System (ADS)
Winder, Anthony J.; Siemonsen, Susanne; Flottmann, Fabian; Fiehler, Jens; Forkert, Nils D.
2017-03-01
Voxel-based tissue outcome prediction in acute ischemic stroke patients is highly relevant for both clinical routine and research. Previous research has shown that features extracted from baseline multi-parametric MRI datasets have a high predictive value and can be used for the training of classifiers, which can generate tissue outcome predictions for both intravenous and conservative treatments. However, with the recent advent and popularization of intra-arterial thrombectomy treatment, novel research specifically addressing the utility of predictive classi- fiers for thrombectomy intervention is necessary for a holistic understanding of current stroke treatment options. The aim of this work was to develop three clinically viable tissue outcome prediction models using approximate nearest-neighbor, generalized linear model, and random decision forest approaches and to evaluate the accuracy of predicting tissue outcome after intra-arterial treatment. Therefore, the three machine learning models were trained, evaluated, and compared using datasets of 42 acute ischemic stroke patients treated with intra-arterial thrombectomy. Classifier training utilized eight voxel-based features extracted from baseline MRI datasets and five global features. Evaluation of classifier-based predictions was performed via comparison to the known tissue outcome, which was determined in follow-up imaging, using the Dice coefficient and leave-on-patient-out cross validation. The random decision forest prediction model led to the best tissue outcome predictions with a mean Dice coefficient of 0.37. The approximate nearest-neighbor and generalized linear model performed equally suboptimally with average Dice coefficients of 0.28 and 0.27 respectively, suggesting that both non-linearity and machine learning are desirable properties of a classifier well-suited to the intra-arterial tissue outcome prediction problem.
Schrodi, Steven J.; Mukherjee, Shubhabrata; Shan, Ying; Tromp, Gerard; Sninsky, John J.; Callear, Amy P.; Carter, Tonia C.; Ye, Zhan; Haines, Jonathan L.; Brilliant, Murray H.; Crane, Paul K.; Smelser, Diane T.; Elston, Robert C.; Weeks, Daniel E.
2014-01-01
Translation of results from genetic findings to inform medical practice is a highly anticipated goal of human genetics. The aim of this paper is to review and discuss the role of genetics in medically-relevant prediction. Germline genetics presages disease onset and therefore can contribute prognostic signals that augment laboratory tests and clinical features. As such, the impact of genetic-based predictive models on clinical decisions and therapy choice could be profound. However, given that (i) medical traits result from a complex interplay between genetic and environmental factors, (ii) the underlying genetic architectures for susceptibility to common diseases are not well-understood, and (iii) replicable susceptibility alleles, in combination, account for only a moderate amount of disease heritability, there are substantial challenges to constructing and implementing genetic risk prediction models with high utility. In spite of these challenges, concerted progress has continued in this area with an ongoing accumulation of studies that identify disease predisposing genotypes. Several statistical approaches with the aim of predicting disease have been published. Here we summarize the current state of disease susceptibility mapping and pharmacogenetics efforts for risk prediction, describe methods used to construct and evaluate genetic-based predictive models, and discuss applications. PMID:24917882
Model-based influences on humans’ choices and striatal prediction errors
Daw, Nathaniel D.; Gershman, Samuel J.; Seymour, Ben; Dayan, Peter; Dolan, Raymond J.
2011-01-01
Summary The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making. PMID:21435563
Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng
2016-05-01
Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com .
NASA Astrophysics Data System (ADS)
Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng
2016-05-01
Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.
Robust human body model injury prediction in simulated side impact crashes.
Golman, Adam J; Danelson, Kerry A; Stitzel, Joel D
2016-01-01
This study developed a parametric methodology to robustly predict occupant injuries sustained in real-world crashes using a finite element (FE) human body model (HBM). One hundred and twenty near-side impact motor vehicle crashes were simulated over a range of parameters using a Toyota RAV4 (bullet vehicle), Ford Taurus (struck vehicle) FE models and a validated human body model (HBM) Total HUman Model for Safety (THUMS). Three bullet vehicle crash parameters (speed, location and angle) and two occupant parameters (seat position and age) were varied using a Latin hypercube design of Experiments. Four injury metrics (head injury criterion, half deflection, thoracic trauma index and pelvic force) were used to calculate injury risk. Rib fracture prediction and lung strain metrics were also analysed. As hypothesized, bullet speed had the greatest effect on each injury measure. Injury risk was reduced when bullet location was further from the B-pillar or when the bullet angle was more oblique. Age had strong correlation to rib fractures frequency and lung strain severity. The injuries from a real-world crash were predicted using two different methods by (1) subsampling the injury predictors from the 12 best crush profile matching simulations and (2) using regression models. Both injury prediction methods successfully predicted the case occupant's low risk for pelvic injury, high risk for thoracic injury, rib fractures and high lung strains with tight confidence intervals. This parametric methodology was successfully used to explore crash parameter interactions and to robustly predict real-world injuries.
NASA Technical Reports Server (NTRS)
Rebbechi, Brian; Forrester, B. David; Oswald, Fred B.; Townsend, Dennis P.
1992-01-01
A comparison was made between computer model predictions of gear dynamics behavior and experimental results. The experimental data were derived from the NASA gear noise rig, which was used to record dynamic tooth loads and vibration. The experimental results were compared with predictions from the DSTO Aeronautical Research Laboratory's gear dynamics code for a matrix of 28 load speed points. At high torque the peak dynamic load predictions agree with the experimental results with an average error of 5 percent in the speed range 800 to 6000 rpm. Tooth separation (or bounce), which was observed in the experimental data for light torque, high speed conditions, was simulated by the computer model. The model was also successful in simulating the degree of load sharing between gear teeth in the multiple tooth contact region.
Lv, Shao-Wa; Liu, Dong; Hu, Pan-Pan; Ye, Xu-Yan; Xiao, Hong-Bin; Kuang, Hai-Xue
2010-03-01
To optimize the process of extracting effective constituents from Aralia elata by response surface methodology. The independent variables were ethanol concentration, reflux time and solvent fold, the dependent variable was extraction rate of total saponins in Aralia elata. Linear or no-linear mathematic models were used to estimate the relationship between independent and dependent variables. Response surface methodology was used to optimize the process of extraction. The prediction was carried out through comparing the observed and predicted values. Regression coefficient of binomial fitting complex model was as high as 0.9617, the optimum conditions of extraction process were 70% ethanol, 2.5 hours for reflux, 20-fold solvent and 3 times for extraction. The bias between observed and predicted values was -2.41%. It shows the optimum model is highly predictive.
Shuttle TPS thermal performance and analysis methodology
NASA Technical Reports Server (NTRS)
Neuenschwander, W. E.; Mcbride, D. U.; Armour, G. A.
1983-01-01
Thermal performance of the thermal protection system was approximately as predicted. The only extensive anomalies were filler bar scorching and over-predictions in the high Delta p gap heating regions of the orbiter. A technique to predict filler bar scorching has been developed that can aid in defining a solution. Improvement in high Delta p gap heating methodology is still under study. Minor anomalies were also examined for improvements in modeling techniques and prediction capabilities. These include improved definition of low Delta p gap heating, an analytical model for inner mode line convection heat transfer, better modeling of structure, and inclusion of sneak heating. The limited number of problems related to penetration items that presented themselves during orbital flight tests were resolved expeditiously, and designs were changed and proved successful within the time frame of that program.
Modelling and prediction for chaotic fir laser attractor using rational function neural network.
Cho, S
2001-02-01
Many real-world systems such as irregular ECG signal, volatility of currency exchange rate and heated fluid reaction exhibit highly complex nonlinear characteristic known as chaos. These chaotic systems cannot be retreated satisfactorily using linear system theory due to its high dimensionality and irregularity. This research focuses on prediction and modelling of chaotic FIR (Far InfraRed) laser system for which the underlying equations are not given. This paper proposed a method for prediction and modelling a chaotic FIR laser time series using rational function neural network. Three network architectures, TDNN (Time Delayed Neural Network), RBF (radial basis function) network and the RF (rational function) network, are also presented. Comparisons between these networks performance show the improvements introduced by the RF network in terms of a decrement in network complexity and better ability of predictability.
CFD validation experiments at McDonnell Aircraft Company
NASA Technical Reports Server (NTRS)
Verhoff, August
1987-01-01
Information is given in viewgraph form on computational fluid dynamics (CFD) validation experiments at McDonnell Aircraft Company. Topics covered include a high speed research model, a supersonic persistence fighter model, a generic fighter wing model, surface grids, force and moment predictions, surface pressure predictions, forebody models with 65 degree clipped delta wings, and the low aspect ratio wing/body experiment.
Computational Study of Anomalous Transport in High Beta DIII-D Discharges with ITBs
NASA Astrophysics Data System (ADS)
Pankin, Alexei; Garofalo, Andrea; Grierson, Brian; Kritz, Arnold; Rafiq, Tariq
2015-11-01
The advanced tokamak scenarios require a large bootstrap current fraction and high β. These large values are often outside the range that occurs in ``conventional'' tokamak discharges. The GLF23, TGLF, and MMM transport models have been previously validated for discharges with parameters associated with ``conventional'' tokamak discharges. It has been demonstrated that the TGLF model under-predicts anomalous transport in high β DIII-D discharges [A.M. Garofalo et al. 2015 TTF Workshop]. In this research, the validity of MMM7.1 model [T. Rafiq et al. Phys. Plasmas 20 032506 (2013)] is tested for high β DIII-D discharges with low and high torque. In addition, the sensitivity of the anomalous transport to β is examined. It is shown that the MMM7.1 model over-predicts the anomalous transport in the DIII-D discharge 154406. In particular, a significant level of anomalous transport is found just outside the internal transport barrier. Differences in the anomalous transport predicted using TGLF and MMM7.1 are reviewed. Mechanisms for quenching of anomalous transport in the ITB regions of high-beta discharges are investigated. This research is supported by US Department of Energy.
Hu, Chen; Steingrimsson, Jon Arni
2018-01-01
A crucial component of making individualized treatment decisions is to accurately predict each patient's disease risk. In clinical oncology, disease risks are often measured through time-to-event data, such as overall survival and progression/recurrence-free survival, and are often subject to censoring. Risk prediction models based on recursive partitioning methods are becoming increasingly popular largely due to their ability to handle nonlinear relationships, higher-order interactions, and/or high-dimensional covariates. The most popular recursive partitioning methods are versions of the Classification and Regression Tree (CART) algorithm, which builds a simple interpretable tree structured model. With the aim of increasing prediction accuracy, the random forest algorithm averages multiple CART trees, creating a flexible risk prediction model. Risk prediction models used in clinical oncology commonly use both traditional demographic and tumor pathological factors as well as high-dimensional genetic markers and treatment parameters from multimodality treatments. In this article, we describe the most commonly used extensions of the CART and random forest algorithms to right-censored outcomes. We focus on how they differ from the methods for noncensored outcomes, and how the different splitting rules and methods for cost-complexity pruning impact these algorithms. We demonstrate these algorithms by analyzing a randomized Phase III clinical trial of breast cancer. We also conduct Monte Carlo simulations to compare the prediction accuracy of survival forests with more commonly used regression models under various scenarios. These simulation studies aim to evaluate how sensitive the prediction accuracy is to the underlying model specifications, the choice of tuning parameters, and the degrees of missing covariates.
NASA Astrophysics Data System (ADS)
Hakim, Layal; Lacaze, Guilhem; Khalil, Mohammad; Sargsyan, Khachik; Najm, Habib; Oefelein, Joseph
2018-05-01
This paper demonstrates the development of a simple chemical kinetics model designed for autoignition of n-dodecane in air using Bayesian inference with a model-error representation. The model error, i.e. intrinsic discrepancy from a high-fidelity benchmark model, is represented by allowing additional variability in selected parameters. Subsequently, we quantify predictive uncertainties in the results of autoignition simulations of homogeneous reactors at realistic diesel engine conditions. We demonstrate that these predictive error bars capture model error as well. The uncertainty propagation is performed using non-intrusive spectral projection that can also be used in principle with larger scale computations, such as large eddy simulation. While the present calibration is performed to match a skeletal mechanism, it can be done with equal success using experimental data only (e.g. shock-tube measurements). Since our method captures the error associated with structural model simplifications, we believe that the optimised model could then lead to better qualified predictions of autoignition delay time in high-fidelity large eddy simulations than the existing detailed mechanisms. This methodology provides a way to reduce the cost of reaction kinetics in simulations systematically, while quantifying the accuracy of predictions of important target quantities.
ERIC Educational Resources Information Center
Bekele, Rahel; McPherson, Maggie
2011-01-01
This research work presents a Bayesian Performance Prediction Model that was created in order to determine the strength of personality traits in predicting the level of mathematics performance of high school students in Addis Ababa. It is an automated tool that can be used to collect information from students for the purpose of effective group…
Modeling and Prediction of Fan Noise
NASA Technical Reports Server (NTRS)
Envia, Ed
2008-01-01
Fan noise is a significant contributor to the total noise signature of a modern high bypass ratio aircraft engine and with the advent of ultra high bypass ratio engines like the geared turbofan, it is likely to remain so in the future. As such, accurate modeling and prediction of the basic characteristics of fan noise are necessary ingredients in designing quieter aircraft engines in order to ensure compliance with ever more stringent aviation noise regulations. In this paper, results from a comprehensive study aimed at establishing the utility of current tools for modeling and predicting fan noise will be summarized. It should be emphasized that these tools exemplify present state of the practice and embody what is currently used at NASA and Industry for predicting fan noise. The ability of these tools to model and predict fan noise is assessed against a set of benchmark fan noise databases obtained for a range of representative fan cycles and operating conditions. Detailed comparisons between the predicted and measured narrowband spectral and directivity characteristics of fan nose will be presented in the full paper. General conclusions regarding the utility of current tools and recommendations for future improvements will also be given.
NASA Astrophysics Data System (ADS)
Steger, Stefan; Brenning, Alexander; Bell, Rainer; Petschko, Helene; Glade, Thomas
2016-06-01
Empirical models are frequently applied to produce landslide susceptibility maps for large areas. Subsequent quantitative validation results are routinely used as the primary criteria to infer the validity and applicability of the final maps or to select one of several models. This study hypothesizes that such direct deductions can be misleading. The main objective was to explore discrepancies between the predictive performance of a landslide susceptibility model and the geomorphic plausibility of subsequent landslide susceptibility maps while a particular emphasis was placed on the influence of incomplete landslide inventories on modelling and validation results. The study was conducted within the Flysch Zone of Lower Austria (1,354 km2) which is known to be highly susceptible to landslides of the slide-type movement. Sixteen susceptibility models were generated by applying two statistical classifiers (logistic regression and generalized additive model) and two machine learning techniques (random forest and support vector machine) separately for two landslide inventories of differing completeness and two predictor sets. The results were validated quantitatively by estimating the area under the receiver operating characteristic curve (AUROC) with single holdout and spatial cross-validation technique. The heuristic evaluation of the geomorphic plausibility of the final results was supported by findings of an exploratory data analysis, an estimation of odds ratios and an evaluation of the spatial structure of the final maps. The results showed that maps generated by different inventories, classifiers and predictors appeared differently while holdout validation revealed similar high predictive performances. Spatial cross-validation proved useful to expose spatially varying inconsistencies of the modelling results while additionally providing evidence for slightly overfitted machine learning-based models. However, the highest predictive performances were obtained for maps that explicitly expressed geomorphically implausible relationships indicating that the predictive performance of a model might be misleading in the case a predictor systematically relates to a spatially consistent bias of the inventory. Furthermore, we observed that random forest-based maps displayed spatial artifacts. The most plausible susceptibility map of the study area showed smooth prediction surfaces while the underlying model revealed a high predictive capability and was generated with an accurate landslide inventory and predictors that did not directly describe a bias. However, none of the presented models was found to be completely unbiased. This study showed that high predictive performances cannot be equated with a high plausibility and applicability of subsequent landslide susceptibility maps. We suggest that greater emphasis should be placed on identifying confounding factors and biases in landslide inventories. A joint discussion between modelers and decision makers of the spatial pattern of the final susceptibility maps in the field might increase their acceptance and applicability.
NASA Technical Reports Server (NTRS)
Murch, Austin M.; Foster, John V.
2007-01-01
A simulation study was conducted to investigate aerodynamic modeling methods for prediction of post-stall flight dynamics of large transport airplanes. The research approach involved integrating dynamic wind tunnel data from rotary balance and forced oscillation testing with static wind tunnel data to predict aerodynamic forces and moments during highly dynamic departure and spin motions. Several state-of-the-art aerodynamic modeling methods were evaluated and predicted flight dynamics using these various approaches were compared. Results showed the different modeling methods had varying effects on the predicted flight dynamics and the differences were most significant during uncoordinated maneuvers. Preliminary wind tunnel validation data indicated the potential of the various methods for predicting steady spin motions.
Musite, a tool for global prediction of general and kinase-specific phosphorylation sites.
Gao, Jianjiong; Thelen, Jay J; Dunker, A Keith; Xu, Dong
2010-12-01
Reversible protein phosphorylation is one of the most pervasive post-translational modifications, regulating diverse cellular processes in various organisms. High throughput experimental studies using mass spectrometry have identified many phosphorylation sites, primarily from eukaryotes. However, the vast majority of phosphorylation sites remain undiscovered, even in well studied systems. Because mass spectrometry-based experimental approaches for identifying phosphorylation events are costly, time-consuming, and biased toward abundant proteins and proteotypic peptides, in silico prediction of phosphorylation sites is potentially a useful alternative strategy for whole proteome annotation. Because of various limitations, current phosphorylation site prediction tools were not well designed for comprehensive assessment of proteomes. Here, we present a novel software tool, Musite, specifically designed for large scale predictions of both general and kinase-specific phosphorylation sites. We collected phosphoproteomics data in multiple organisms from several reliable sources and used them to train prediction models by a comprehensive machine-learning approach that integrates local sequence similarities to known phosphorylation sites, protein disorder scores, and amino acid frequencies. Application of Musite on several proteomes yielded tens of thousands of phosphorylation site predictions at a high stringency level. Cross-validation tests show that Musite achieves some improvement over existing tools in predicting general phosphorylation sites, and it is at least comparable with those for predicting kinase-specific phosphorylation sites. In Musite V1.0, we have trained general prediction models for six organisms and kinase-specific prediction models for 13 kinases or kinase families. Although the current pretrained models were not correlated with any particular cellular conditions, Musite provides a unique functionality for training customized prediction models (including condition-specific models) from users' own data. In addition, with its easily extensible open source application programming interface, Musite is aimed at being an open platform for community-based development of machine learning-based phosphorylation site prediction applications. Musite is available at http://musite.sourceforge.net/.
Classification and disease prediction via mathematical programming
NASA Astrophysics Data System (ADS)
Lee, Eva K.; Wu, Tsung-Lin
2007-11-01
In this chapter, we present classification models based on mathematical programming approaches. We first provide an overview on various mathematical programming approaches, including linear programming, mixed integer programming, nonlinear programming and support vector machines. Next, we present our effort of novel optimization-based classification models that are general purpose and suitable for developing predictive rules for large heterogeneous biological and medical data sets. Our predictive model simultaneously incorporates (1) the ability to classify any number of distinct groups; (2) the ability to incorporate heterogeneous types of attributes as input; (3) a high-dimensional data transformation that eliminates noise and errors in biological data; (4) the ability to incorporate constraints to limit the rate of misclassification, and a reserved-judgment region that provides a safeguard against over-training (which tends to lead to high misclassification rates from the resulting predictive rule) and (5) successive multi-stage classification capability to handle data points placed in the reserved judgment region. To illustrate the power and flexibility of the classification model and solution engine, and its multigroup prediction capability, application of the predictive model to a broad class of biological and medical problems is described. Applications include: the differential diagnosis of the type of erythemato-squamous diseases; predicting presence/absence of heart disease; genomic analysis and prediction of aberrant CpG island meythlation in human cancer; discriminant analysis of motility and morphology data in human lung carcinoma; prediction of ultrasonic cell disruption for drug delivery; identification of tumor shape and volume in treatment of sarcoma; multistage discriminant analysis of biomarkers for prediction of early atherosclerois; fingerprinting of native and angiogenic microvascular networks for early diagnosis of diabetes, aging, macular degeneracy and tumor metastasis; prediction of protein localization sites; and pattern recognition of satellite images in classification of soil types. In all these applications, the predictive model yields correct classification rates ranging from 80% to 100%. This provides motivation for pursuing its use as a medical diagnostic, monitoring and decision-making tool.
Huysmans, Maaike A; Eijckelhof, Belinda H W; Garza, Jennifer L Bruno; Coenen, Pieter; Blatter, Birgitte M; Johnson, Peter W; van Dieën, Jaap H; van der Beek, Allard J; Dennerlein, Jack T
2017-12-15
Alternative techniques to assess physical exposures, such as prediction models, could facilitate more efficient epidemiological assessments in future large cohort studies examining physical exposures in relation to work-related musculoskeletal symptoms. The aim of this study was to evaluate two types of models that predict arm-wrist-hand physical exposures (i.e. muscle activity, wrist postures and kinematics, and keyboard and mouse forces) during computer use, which only differed with respect to the candidate predicting variables; (i) a full set of predicting variables, including self-reported factors, software-recorded computer usage patterns, and worksite measurements of anthropometrics and workstation set-up (full models); and (ii) a practical set of predicting variables, only including the self-reported factors and software-recorded computer usage patterns, that are relatively easy to assess (practical models). Prediction models were build using data from a field study among 117 office workers who were symptom-free at the time of measurement. Arm-wrist-hand physical exposures were measured for approximately two hours while workers performed their own computer work. Each worker's anthropometry and workstation set-up were measured by an experimenter, computer usage patterns were recorded using software and self-reported factors (including individual factors, job characteristics, computer work behaviours, psychosocial factors, workstation set-up characteristics, and leisure-time activities) were collected by an online questionnaire. We determined the predictive quality of the models in terms of R2 and root mean squared (RMS) values and exposure classification agreement to low-, medium-, and high-exposure categories (in the practical model only). The full models had R2 values that ranged from 0.16 to 0.80, whereas for the practical models values ranged from 0.05 to 0.43. Interquartile ranges were not that different for the two models, indicating that only for some physical exposures the full models performed better. Relative RMS errors ranged between 5% and 19% for the full models, and between 10% and 19% for the practical model. When the predicted physical exposures were classified into low, medium, and high, classification agreement ranged from 26% to 71%. The full prediction models, based on self-reported factors, software-recorded computer usage patterns, and additional measurements of anthropometrics and workstation set-up, show a better predictive quality as compared to the practical models based on self-reported factors and recorded computer usage patterns only. However, predictive quality varied largely across different arm-wrist-hand exposure parameters. Future exploration of the relation between predicted physical exposure and symptoms is therefore only recommended for physical exposures that can be reasonably well predicted. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Reverberant acoustic energy in auditoria that comprise systems of coupled rooms
NASA Astrophysics Data System (ADS)
Summers, Jason E.
2003-11-01
A frequency-dependent model for reverberant energy in coupled rooms is developed and compared with measurements for a 1:10 scale model and for Bass Hall, Ft. Worth, TX. At high frequencies, prior statistical-acoustics models are improved by geometrical-acoustics corrections for decay within sub-rooms and for energy transfer between sub-rooms. Comparisons of computational geometrical acoustics predictions based on beam-axis tracing with scale model measurements indicate errors resulting from tail-correction assuming constant quadratic growth of reflection density. Using ray tracing in the late part corrects this error. For mid-frequencies, the models are modified to account for wave effects at coupling apertures by including power transmission coefficients. Similarly, statical-acoustics models are improved through more accurate estimates of power transmission measurements. Scale model measurements are in accord with the predicted behavior. The edge-diffraction model is adapted to study transmission through apertures. Multiple-order scattering is theoretically and experimentally shown inaccurate due to neglect of slope diffraction. At low frequencies, perturbation models qualitatively explain scale model measurements. Measurements confirm relation of coupling strength to unperturbed pressure distribution on coupling surfaces. Measurements in Bass Hall exhibit effects of the coupled stage house. High frequency predictions of statistical acoustics and geometrical acoustics models and predictions of coupling apertures all agree with measurements.
Testa, Alison C; Hane, James K; Ellwood, Simon R; Oliver, Richard P
2015-03-11
The impact of gene annotation quality on functional and comparative genomics makes gene prediction an important process, particularly in non-model species, including many fungi. Sets of homologous protein sequences are rarely complete with respect to the fungal species of interest and are often small or unreliable, especially when closely related species have not been sequenced or annotated in detail. In these cases, protein homology-based evidence fails to correctly annotate many genes, or significantly improve ab initio predictions. Generalised hidden Markov models (GHMM) have proven to be invaluable tools in gene annotation and, recently, RNA-seq has emerged as a cost-effective means to significantly improve the quality of automated gene annotation. As these methods do not require sets of homologous proteins, improving gene prediction from these resources is of benefit to fungal researchers. While many pipelines now incorporate RNA-seq data in training GHMMs, there has been relatively little investigation into additionally combining RNA-seq data at the point of prediction, and room for improvement in this area motivates this study. CodingQuarry is a highly accurate, self-training GHMM fungal gene predictor designed to work with assembled, aligned RNA-seq transcripts. RNA-seq data informs annotations both during gene-model training and in prediction. Our approach capitalises on the high quality of fungal transcript assemblies by incorporating predictions made directly from transcript sequences. Correct predictions are made despite transcript assembly problems, including those caused by overlap between the transcripts of adjacent gene loci. Stringent benchmarking against high-confidence annotation subsets showed CodingQuarry predicted 91.3% of Schizosaccharomyces pombe genes and 90.4% of Saccharomyces cerevisiae genes perfectly. These results are 4-5% better than those of AUGUSTUS, the next best performing RNA-seq driven gene predictor tested. Comparisons against whole genome Sc. pombe and S. cerevisiae annotations further substantiate a 4-5% improvement in the number of correctly predicted genes. We demonstrate the success of a novel method of incorporating RNA-seq data into GHMM fungal gene prediction. This shows that a high quality annotation can be achieved without relying on protein homology or a training set of genes. CodingQuarry is freely available ( https://sourceforge.net/projects/codingquarry/ ), and suitable for incorporation into genome annotation pipelines.
Thorndahl, Søren; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer
2016-12-01
Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events - especially in the future climate - it is valuable to be able to simulate these events numerically, both historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper, radar data observations with different spatial and temporal resolution, radar nowcasts of 0-2 h leadtime, and numerical weather models with leadtimes up to 24 h are used as inputs to an integrated flood and drainage systems model in order to investigate the relative difference between different inputs in predicting future floods. The system is tested on the small town of Lystrup in Denmark, which was flooded in 2012 and 2014. Results show it is possible to generate detailed flood maps in real-time with high resolution radar rainfall data, but rather limited forecast performance in predicting floods with leadtimes more than half an hour.
Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali
2013-09-01
The research aims to develop global modeling tools capable of categorizing structurally diverse chemicals in various toxicity classes according to the EEC and European Community directives, and to predict their acute toxicity in fathead minnow using set of selected molecular descriptors. Accordingly, artificial intelligence approach based classification and regression models, such as probabilistic neural networks (PNN), generalized regression neural networks (GRNN), multilayer perceptron neural network (MLPN), radial basis function neural network (RBFN), support vector machines (SVM), gene expression programming (GEP), and decision tree (DT) were constructed using the experimental toxicity data. Diversity and non-linearity in the chemicals' data were tested using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. Predictive and generalization abilities of various models constructed here were compared using several statistical parameters. PNN and GRNN models performed relatively better than MLPN, RBFN, SVM, GEP, and DT. Both in two and four category classifications, PNN yielded a considerably high accuracy of classification in training (95.85 percent and 90.07 percent) and validation data (91.30 percent and 86.96 percent), respectively. GRNN rendered a high correlation between the measured and model predicted -log LC50 values both for the training (0.929) and validation (0.910) data and low prediction errors (RMSE) of 0.52 and 0.49 for two sets. Efficiency of the selected PNN and GRNN models in predicting acute toxicity of new chemicals was adequately validated using external datasets of different fish species (fathead minnow, bluegill, trout, and guppy). The PNN and GRNN models showed good predictive and generalization abilities and can be used as tools for predicting toxicities of structurally diverse chemical compounds. Copyright © 2013 Elsevier Inc. All rights reserved.
Veronesi, G; Maisonneuve, P; Rampinelli, C; Bertolotti, R; Petrella, F; Spaggiari, L; Bellomi, M
2013-12-01
It is unclear how long low-dose computed tomographic (LDCT) screening should continue in populations at high risk of lung cancer. We assessed outcomes and the predictive ability of the COSMOS prediction model in volunteers screened for 10 years. Smokers and former smokers (>20 pack-years), >50 years, were enrolled over one year (2000-2001), receiving annual LDCT for 10 years. The frequency of screening-detected lung cancers was compared with COSMOS and Bach risk model estimates. Among 1035 recruited volunteers (71% men, mean age 58 years) compliance was 65% at study end. Seventy-one (6.95%) lung cancers were diagnosed, 12 at baseline. Disease stage was: IA in 48 (66.6%); IB in 6; IIA in 5; IIB in 2; IIIA in 5; IIIB in 1; IV in 5; and limited small cell cancer in 3. Five- and ten-year survival were 64% and 57%, respectively, 84% and 65% for stage I. Ten (12.1%) received surgery for a benign lesion. The number of lung cancers detected during the first two screening rounds was close to that predicted by the COSMOS model, while the Bach model accurately predicted frequency from the third year on. Neither cancer frequency nor proportion at stage I decreased over 10 years, indicating that screening should not be discontinued. Most cancers were early stage, and overall survival was high. Only a limited number of invasive procedures for benign disease were performed. The Bach model - designed to predict symptomatic cancers - accurately predicted cancer frequency from the third year, suggesting that overdiagnosis is a minor problem in lung cancer screening. The COSMOS model - designed to estimate screening-detected lung cancers - accurately predicted cancer frequency at baseline and second screening round. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
On the Conditioning of Machine-Learning-Assisted Turbulence Modeling
NASA Astrophysics Data System (ADS)
Wu, Jinlong; Sun, Rui; Wang, Qiqi; Xiao, Heng
2017-11-01
Recently, several researchers have demonstrated that machine learning techniques can be used to improve the RANS modeled Reynolds stress by training on available database of high fidelity simulations. However, obtaining improved mean velocity field remains an unsolved challenge, restricting the predictive capability of current machine-learning-assisted turbulence modeling approaches. In this work we define a condition number to evaluate the model conditioning of data-driven turbulence modeling approaches, and propose a stability-oriented machine learning framework to model Reynolds stress. Two canonical flows, the flow in a square duct and the flow over periodic hills, are investigated to demonstrate the predictive capability of the proposed framework. The satisfactory prediction performance of mean velocity field for both flows demonstrates the predictive capability of the proposed framework for machine-learning-assisted turbulence modeling. With showing the capability of improving the prediction of mean flow field, the proposed stability-oriented machine learning framework bridges the gap between the existing machine-learning-assisted turbulence modeling approaches and the demand of predictive capability of turbulence models in real applications.
High capacity demonstration of honeycomb panel heat pipes
NASA Technical Reports Server (NTRS)
Tanzer, H. J.
1989-01-01
The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.
Dong, Wen; Yang, Kun; Xu, Quan-Li; Yang, Yu-Lian
2015-01-01
This study investigated the spatial distribution, spatial autocorrelation, temporal cluster, spatial-temporal autocorrelation and probable risk factors of H7N9 outbreaks in humans from March 2013 to December 2014 in China. The results showed that the epidemic spread with significant spatial-temporal autocorrelation. In order to describe the spatial-temporal autocorrelation of H7N9, an improved model was developed by introducing a spatial-temporal factor in this paper. Logistic regression analyses were utilized to investigate the risk factors associated with their distribution, and nine risk factors were significantly associated with the occurrence of A(H7N9) human infections: the spatial-temporal factor φ (OR = 2546669.382, p < 0.001), migration route (OR = 0.993, p < 0.01), river (OR = 0.861, p < 0.001), lake(OR = 0.992, p < 0.001), road (OR = 0.906, p < 0.001), railway (OR = 0.980, p < 0.001), temperature (OR = 1.170, p < 0.01), precipitation (OR = 0.615, p < 0.001) and relative humidity (OR = 1.337, p < 0.001). The improved model obtained a better prediction performance and a higher fitting accuracy than the traditional model: in the improved model 90.1% (91/101) of the cases during February 2014 occurred in the high risk areas (the predictive risk > 0.70) of the predictive risk map, whereas 44.6% (45/101) of which overlaid on the high risk areas (the predictive risk > 0.70) for the traditional model, and the fitting accuracy of the improved model was 91.6% which was superior to the traditional model (86.1%). The predictive risk map generated based on the improved model revealed that the east and southeast of China were the high risk areas of A(H7N9) human infections in February 2014. These results provided baseline data for the control and prevention of future human infections. PMID:26633446
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; Rakovec, Oldrich; Kumar, Rohini; Samaniego, Luis
2016-04-01
There have been tremendous improvements in distributed hydrologic modeling (DHM) which made a process-based simulation with a high spatiotemporal resolution applicable on a large spatial scale. Despite of increasing information on heterogeneous property of a catchment, DHM is still subject to uncertainties inherently coming from model structure, parameters and input forcing. Sequential data assimilation (DA) may facilitate improved streamflow prediction via DHM using real-time observations to correct internal model states. In conventional DA methods such as state updating, parametric uncertainty is, however, often ignored mainly due to practical limitations of methodology to specify modeling uncertainty with limited ensemble members. If parametric uncertainty related with routing and runoff components is not incorporated properly, predictive uncertainty by DHM may be insufficient to capture dynamics of observations, which may deteriorate predictability. Recently, a multi-scale parameter regionalization (MPR) method was proposed to make hydrologic predictions at different scales using a same set of model parameters without losing much of the model performance. The MPR method incorporated within the mesoscale hydrologic model (mHM, http://www.ufz.de/mhm) could effectively represent and control uncertainty of high-dimensional parameters in a distributed model using global parameters. In this study, we present a global multi-parametric ensemble approach to incorporate parametric uncertainty of DHM in DA to improve streamflow predictions. To effectively represent and control uncertainty of high-dimensional parameters with limited number of ensemble, MPR method is incorporated with DA. Lagged particle filtering is utilized to consider the response times and non-Gaussian characteristics of internal hydrologic processes. The hindcasting experiments are implemented to evaluate impacts of the proposed DA method on streamflow predictions in multiple European river basins having different climate and catchment characteristics. Because augmentation of parameters is not required within an assimilation window, the approach could be stable with limited ensemble members and viable for practical uses.
Prediction of Incident Diabetes in the Jackson Heart Study Using High-Dimensional Machine Learning
Casanova, Ramon; Saldana, Santiago; Simpson, Sean L.; Lacy, Mary E.; Subauste, Angela R.; Blackshear, Chad; Wagenknecht, Lynne; Bertoni, Alain G.
2016-01-01
Statistical models to predict incident diabetes are often based on limited variables. Here we pursued two main goals: 1) investigate the relative performance of a machine learning method such as Random Forests (RF) for detecting incident diabetes in a high-dimensional setting defined by a large set of observational data, and 2) uncover potential predictors of diabetes. The Jackson Heart Study collected data at baseline and in two follow-up visits from 5,301 African Americans. We excluded those with baseline diabetes and no follow-up, leaving 3,633 individuals for analyses. Over a mean 8-year follow-up, 584 participants developed diabetes. The full RF model evaluated 93 variables including demographic, anthropometric, blood biomarker, medical history, and echocardiogram data. We also used RF metrics of variable importance to rank variables according to their contribution to diabetes prediction. We implemented other models based on logistic regression and RF where features were preselected. The RF full model performance was similar (AUC = 0.82) to those more parsimonious models. The top-ranked variables according to RF included hemoglobin A1C, fasting plasma glucose, waist circumference, adiponectin, c-reactive protein, triglycerides, leptin, left ventricular mass, high-density lipoprotein cholesterol, and aldosterone. This work shows the potential of RF for incident diabetes prediction while dealing with high-dimensional data. PMID:27727289
Zhao, Yingming; Jones, Michael L.; Shuter, Brian J.; Roseman, Edward F.
2009-01-01
We used a three-dimensional coupled hydrodynamic-ecological model to investigate how lake currents can affect walleye (Sander vitreus) recruitment in western Lake Erie. Four years were selected based on a fall recruitment index: two high recruitment years (i.e., 1996 and 1999) and two low recruitment years (i.e., 1995 and 1998). During the low recruitment years, the model predicted that (i) walleye spawning grounds experienced destructive bottom currents capable of dislodging eggs from suitable habitats (reefs) to unsuitable habitats (i.e., muddy bottom), and (ii) the majority of newly hatched larvae were transported away from the known suitable nursery grounds at the start of their first feeding. Conversely, during two high recruitment years, predicted bottom currents at the spawning grounds were relatively weak, and the predicted movement of newly hatched larvae was toward suitable nursery grounds. Thus, low disturbance-based egg mortality and a temporal and spatial match between walleye first feeding larvae and their food resources were predicted for the two high recruitment years, and high egg mortality plus a mismatch of larvae with their food resources was predicted for the two low recruitment years. In general, mild westerly or southwesterly winds during the spawning-nursery period should favour walleye recruitment in the lake.
Bubble generation during transformer overload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oommen, T.V.
1990-03-01
Bubble generation in transformers has been demonstrated under certain overload conditions. The release of large quantities of bubbles would pose a dielectric breakdown hazard. A bubble prediction model developed under EPRI Project 1289-4 attempts to predict the bubble evolution temperature under different overload conditions. This report details a verification study undertaken to confirm the validity of the above model using coil structures subjected to overload conditions. The test variables included moisture in paper insulation, gas content in oil, and the type of oil preservation system. Two aged coils were also tested. The results indicated that the observed bubble temperatures weremore » close to the predicted temperatures for models with low initial gas content in the oil. The predicted temperatures were significantly lower than the observed temperatures for models with high gas content. Some explanations are provided for the anomalous behavior at high gas levels in oil. It is suggested that the dissolved gas content is not a significant factor in bubble evolution. The dominant factor in bubble evolution appears to be the water vapor pressure which must reach critical levels before bubbles can be released. Further study is needed to make a meaningful revision of the bubble prediction model. 8 refs., 13 figs., 11 tabs.« less
Whetsell, M S; Rayburn, E B; Osborne, P I
2006-05-01
This study was conducted to evaluate the accuracy of the National Research Council's (2000) Nutrient Requirements of Beef Cattle computer model when used to predict calf performance during on-farm pasture or dry-lot weaning and backgrounding. Calf performance was measured on 22 farms in 2002 and 8 farms in 2003 that participated in West Virginia Beef Quality Assurance Sale marketing pools. Calves were weaned on pasture (25 farms) or dry-lot (5 farms) and fed supplemental hay, haylage, ground shell corn, soybean hulls, or a commercial concentrate. Concentrates were fed at a rate of 0.0 to 1.5% of BW. The National Research Council (2000) model was used to predict ADG of each group of calves observed on each farm. The model error was measured by calculating residuals (the difference between predicted ADG minus observed ADG). Predicted animal performance was determined using level 1 of the model. Results show that, when using normal on-farm pasture sampling and forage analysis methods, the model error for ADG is high and did not accurately predict the performance of steers or heifers fed high-forage pasture-based diets; the predicted ADG was lower (P < 0.05) than the observed ADG. The estimated intake of low-producing animals was similar to the expected DMI, but for the greater-producing animals it was not. The NRC (2000) beef model may more accurately predict on-farm animal performance in pastured situations if feed analysis values reflect the energy value of the feed, account for selective grazing, and relate empty BW and shrunk BW to NDF.
Isma’eel, Hussain A.; Sakr, George E.; Almedawar, Mohamad M.; Fathallah, Jihan; Garabedian, Torkom; Eddine, Savo Bou Zein
2015-01-01
Background High dietary salt intake is directly linked to hypertension and cardiovascular diseases (CVDs). Predicting behaviors regarding salt intake habits is vital to guide interventions and increase their effectiveness. We aim to compare the accuracy of an artificial neural network (ANN) based tool that predicts behavior from key knowledge questions along with clinical data in a high cardiovascular risk cohort relative to the least square models (LSM) method. Methods We collected knowledge, attitude and behavior data on 115 patients. A behavior score was calculated to classify patients’ behavior towards reducing salt intake. Accuracy comparison between ANN and regression analysis was calculated using the bootstrap technique with 200 iterations. Results Starting from a 69-item questionnaire, a reduced model was developed and included eight knowledge items found to result in the highest accuracy of 62% CI (58-67%). The best prediction accuracy in the full and reduced models was attained by ANN at 66% and 62%, respectively, compared to full and reduced LSM at 40% and 34%, respectively. The average relative increase in accuracy over all in the full and reduced models is 82% and 102%, respectively. Conclusions Using ANN modeling, we can predict salt reduction behaviors with 66% accuracy. The statistical model has been implemented in an online calculator and can be used in clinics to estimate the patient’s behavior. This will help implementation in future research to further prove clinical utility of this tool to guide therapeutic salt reduction interventions in high cardiovascular risk individuals. PMID:26090333
A predictive model of hospitalization risk among disabled medicaid enrollees.
McAna, John F; Crawford, Albert G; Novinger, Benjamin W; Sidorov, Jaan; Din, Franklin M; Maio, Vittorio; Louis, Daniel Z; Goldfarb, Neil I
2013-05-01
To identify Medicaid patients, based on 1 year of administrative data, who were at high risk of admission to a hospital in the next year, and who were most likely to benefit from outreach and targeted interventions. Observational cohort study for predictive modeling. Claims, enrollment, and eligibility data for 2007 from a state Medicaid program were used to provide the independent variables for a logistic regression model to predict inpatient stays in 2008 for fully covered, continuously enrolled, disabled members. The model was developed using a 50% random sample from the state and was validated against the other 50%. Further validation was carried out by applying the parameters from the model to data from a second state's disabled Medicaid population. The strongest predictors in the model developed from the first 50% sample were over age 65 years, inpatient stay(s) in 2007, and higher Charlson Comorbidity Index scores. The areas under the receiver operating characteristic curve for the model based on the 50% state sample and its application to the 2 other samples ranged from 0.79 to 0.81. Models developed independently for all 3 samples were as high as 0.86. The results show a consistent trend of more accurate prediction of hospitalization with increasing risk score. This is a fairly robust method for targeting Medicaid members with a high probability of future avoidable hospitalizations for possible case management or other interventions. Comparison with a second state's Medicaid program provides additional evidence for the usefulness of the model.
Estimates of the ionization association and dissociation constant (pKa) are vital to modeling the pharmacokinetic behavior of chemicals in vivo. Methodologies for the prediction of compound sequestration in specific tissues using partition coefficients require a parameter that ch...
NASA Technical Reports Server (NTRS)
Halford, Gary R.
1993-01-01
The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940's. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches were identified as being combinations of thirteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made. The need for high-temperature, fatigue-life prediction methods followed immediately on the heels of the development of large, costly, high-technology industrial and aerospace equipment immediately following the second world war. Major advances were made in the design and manufacture of high-temperature, high-pressure boilers and steam turbines, nuclear reactors, high-temperature forming dies, high-performance poppet valves, aeronautical gas turbine engines, reusable rocket engines, etc. These advances could no longer be accomplished simply by trial and error using the 'build-em and bust-em' approach. Development lead times were too great and costs too prohibitive to retain such an approach. Analytic assessments of anticipated performance, cost, and durability were introduced to cut costs and shorten lead times. The analytic tools were quite primitive at first and out of necessity evolved in parallel with hardware development. After forty years more descriptive, more accurate, and more efficient analytic tools are being developed. These include thermal-structural finite element and boundary element analyses, advanced constitutive stress-strain-temperature-time relations, and creep-fatigue-environmental models for crack initiation and propagation. The high-temperature durability methods that have evolved for calculating high-temperature fatigue crack initiation lives of structural engineering materials are addressed. Only a few of the methods were refined to the point of being directly useable in design. Recently, two of the methods were transcribed into computer software for use with personal computers.
NASA Astrophysics Data System (ADS)
Halford, Gary R.
1993-10-01
The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940's. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches were identified as being combinations of thirteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made. The need for high-temperature, fatigue-life prediction methods followed immediately on the heels of the development of large, costly, high-technology industrial and aerospace equipment immediately following the second world war. Major advances were made in the design and manufacture of high-temperature, high-pressure boilers and steam turbines, nuclear reactors, high-temperature forming dies, high-performance poppet valves, aeronautical gas turbine engines, reusable rocket engines, etc. These advances could no longer be accomplished simply by trial and error using the 'build-em and bust-em' approach. Development lead times were too great and costs too prohibitive to retain such an approach. Analytic assessments of anticipated performance, cost, and durability were introduced to cut costs and shorten lead times. The analytic tools were quite primitive at first and out of necessity evolved in parallel with hardware development. After forty years more descriptive, more accurate, and more efficient analytic tools are being developed. These include thermal-structural finite element and boundary element analyses, advanced constitutive stress-strain-temperature-time relations, and creep-fatigue-environmental models for crack initiation and propagation. The high-temperature durability methods that have evolved for calculating high-temperature fatigue crack initiation lives of structural engineering materials are addressed. Only a few of the methods were refined to the point of being directly useable in design.
NASA Astrophysics Data System (ADS)
Afzal, Mohammad Atif Faiz; Cheng, Chong; Hachmann, Johannes
Organic materials with refractive index (RI) values higher than 1.7 have attracted considerable interest in recent years due to the tremendous potential for their application in optical, optometric, and optoelectronic devices, and thus for shaping technological innovation in numerous related areas. Our work is concerned with creating predictive models for the optical properties of organic polymers, which will guide our experimentalist partners and allow them to target the most promising candidates. The RI model is developed based on a synergistic combination of first-principles electronic structure theory and machine learning techniques. The RI values predicted for common polymers using this model are in very good agreement with the experimental values. We also benchmark different DFT approximations along with various basis sets for their predictive performance in this model. We demonstrate that this combination of first-principles and data modeling is both successful and highly economical in determining the RI values of a wide range of organic polymers. To accelerate the development process, we cast this modeling approach into the high-throughput screening, materials informatics, and rational design framework that is developed in the group. This framework is a powerful tool and has shown to be highly promising for rapidly identifying polymer candidates with exceptional RI values as well as discovering design rules for advanced materials.
Polymer Brushes under High Load
Balko, Suzanne M.; Kreer, Torsten; Costanzo, Philip J.; Patten, Tim E.; Johner, Albert; Kuhl, Tonya L.; Marques, Carlos M.
2013-01-01
Polymer coatings are frequently used to provide repulsive forces between surfaces in solution. After 25 years of design and study, a quantitative model to explain and predict repulsion under strong compression is still lacking. Here, we combine experiments, simulations, and theory to study polymer coatings under high loads and demonstrate a validated model for the repulsive forces, proposing that this universal behavior can be predicted from the polymer solution properties. PMID:23516470
Liu, Zitao; Hauskrecht, Milos
2017-11-01
Building of an accurate predictive model of clinical time series for a patient is critical for understanding of the patient condition, its dynamics, and optimal patient management. Unfortunately, this process is not straightforward. First, patient-specific variations are typically large and population-based models derived or learned from many different patients are often unable to support accurate predictions for each individual patient. Moreover, time series observed for one patient at any point in time may be too short and insufficient to learn a high-quality patient-specific model just from the patient's own data. To address these problems we propose, develop and experiment with a new adaptive forecasting framework for building multivariate clinical time series models for a patient and for supporting patient-specific predictions. The framework relies on the adaptive model switching approach that at any point in time selects the most promising time series model out of the pool of many possible models, and consequently, combines advantages of the population, patient-specific and short-term individualized predictive models. We demonstrate that the adaptive model switching framework is very promising approach to support personalized time series prediction, and that it is able to outperform predictions based on pure population and patient-specific models, as well as, other patient-specific model adaptation strategies.
Predicting stillbirth in a low resource setting.
Kayode, Gbenga A; Grobbee, Diederick E; Amoakoh-Coleman, Mary; Adeleke, Ibrahim Taiwo; Ansah, Evelyn; de Groot, Joris A H; Klipstein-Grobusch, Kerstin
2016-09-20
Stillbirth is a major contributor to perinatal mortality and it is particularly common in low- and middle-income countries, where annually about three million stillbirths occur in the third trimester. This study aims to develop a prediction model for early detection of pregnancies at high risk of stillbirth. This retrospective cohort study examined 6,573 pregnant women who delivered at Federal Medical Centre Bida, a tertiary level of healthcare in Nigeria from January 2010 to December 2013. Descriptive statistics were performed and missing data imputed. Multivariable logistic regression was applied to examine the associations between selected candidate predictors and stillbirth. Discrimination and calibration were used to assess the model's performance. The prediction model was validated internally and over-optimism was corrected. We developed a prediction model for stillbirth that comprised maternal comorbidity, place of residence, maternal occupation, parity, bleeding in pregnancy, and fetal presentation. As a secondary analysis, we extended the model by including fetal growth rate as a predictor, to examine how beneficial ultrasound parameters would be for the predictive performance of the model. After internal validation, both calibration and discriminative performance of both the basic and extended model were excellent (i.e. C-statistic basic model = 0.80 (95 % CI 0.78-0.83) and extended model = 0.82 (95 % CI 0.80-0.83)). We developed a simple but informative prediction model for early detection of pregnancies with a high risk of stillbirth for early intervention in a low resource setting. Future research should focus on external validation of the performance of this promising model.
Pauli, Wolfgang M.; Larsen, Tobias; Tyszka, J. Michael; O’Doherty, John P.
2017-01-01
Prediction-error signals consistent with formal models of “reinforcement learning” (RL) have repeatedly been found within dopaminergic nuclei of the midbrain and dopaminoceptive areas of the striatum. However, the precise form of the RL algorithms implemented in the human brain is not yet well determined. Here, we created a novel paradigm optimized to dissociate the subtypes of reward-prediction errors that function as the key computational signatures of two distinct classes of RL models—namely, “actor/critic” models and action-value-learning models (e.g., the Q-learning model). The state-value-prediction error (SVPE), which is independent of actions, is a hallmark of the actor/critic architecture, whereas the action-value-prediction error (AVPE) is the distinguishing feature of action-value-learning algorithms. To test for the presence of these prediction-error signals in the brain, we scanned human participants with a high-resolution functional magnetic-resonance imaging (fMRI) protocol optimized to enable measurement of neural activity in the dopaminergic midbrain as well as the striatal areas to which it projects. In keeping with the actor/critic model, the SVPE signal was detected in the substantia nigra. The SVPE was also clearly present in both the ventral striatum and the dorsal striatum. However, alongside these purely state-value-based computations we also found evidence for AVPE signals throughout the striatum. These high-resolution fMRI findings suggest that model-free aspects of reward learning in humans can be explained algorithmically with RL in terms of an actor/critic mechanism operating in parallel with a system for more direct action-value learning. PMID:29049406
Jovanovic, Milos; Radovanovic, Sandro; Vukicevic, Milan; Van Poucke, Sven; Delibasic, Boris
2016-09-01
Quantification and early identification of unplanned readmission risk have the potential to improve the quality of care during hospitalization and after discharge. However, high dimensionality, sparsity, and class imbalance of electronic health data and the complexity of risk quantification, challenge the development of accurate predictive models. Predictive models require a certain level of interpretability in order to be applicable in real settings and create actionable insights. This paper aims to develop accurate and interpretable predictive models for readmission in a general pediatric patient population, by integrating a data-driven model (sparse logistic regression) and domain knowledge based on the international classification of diseases 9th-revision clinical modification (ICD-9-CM) hierarchy of diseases. Additionally, we propose a way to quantify the interpretability of a model and inspect the stability of alternative solutions. The analysis was conducted on >66,000 pediatric hospital discharge records from California, State Inpatient Databases, Healthcare Cost and Utilization Project between 2009 and 2011. We incorporated domain knowledge based on the ICD-9-CM hierarchy in a data driven, Tree-Lasso regularized logistic regression model, providing the framework for model interpretation. This approach was compared with traditional Lasso logistic regression resulting in models that are easier to interpret by fewer high-level diagnoses, with comparable prediction accuracy. The results revealed that the use of a Tree-Lasso model was as competitive in terms of accuracy (measured by area under the receiver operating characteristic curve-AUC) as the traditional Lasso logistic regression, but integration with the ICD-9-CM hierarchy of diseases provided more interpretable models in terms of high-level diagnoses. Additionally, interpretations of models are in accordance with existing medical understanding of pediatric readmission. Best performing models have similar performances reaching AUC values 0.783 and 0.779 for traditional Lasso and Tree-Lasso, respectfully. However, information loss of Lasso models is 0.35 bits higher compared to Tree-Lasso model. We propose a method for building predictive models applicable for the detection of readmission risk based on Electronic Health records. Integration of domain knowledge (in the form of ICD-9-CM taxonomy) and a data-driven, sparse predictive algorithm (Tree-Lasso Logistic Regression) resulted in an increase of interpretability of the resulting model. The models are interpreted for the readmission prediction problem in general pediatric population in California, as well as several important subpopulations, and the interpretations of models comply with existing medical understanding of pediatric readmission. Finally, quantitative assessment of the interpretability of the models is given, that is beyond simple counts of selected low-level features. Copyright © 2016 Elsevier B.V. All rights reserved.
Hadano, Mayumi; Nasahara, Kenlo Nishida; Motohka, Takeshi; Noda, Hibiki Muraoka; Murakami, Kazutaka; Hosaka, Masahiro
2013-06-01
Reports indicate that leaf onset (leaf flush) of deciduous trees in cool-temperate ecosystems is occurring earlier in the spring in response to global warming. In this study, we created two types of phenology models, one driven only by warmth (spring warming [SW] model) and another driven by both warmth and winter chilling (parallel chill [PC] model), to predict such phenomena in the Japanese Islands at high spatial resolution (500 m). We calibrated these models using leaf onset dates derived from satellite data (Terra/MODIS) and in situ temperature data derived from a dense network of ground stations Automated Meteorological Data Acquisition System. We ran the model using future climate predictions created by the Japanese Meteorological Agency's MRI-AGCM3.1S model. In comparison to the first decade of the 2000s, our results predict that the date of leaf onset in the 2030s will advance by an average of 12 days under the SW model and 7 days under the PC model throughout the study area. The date of onset in the 2090s will advance by 26 days under the SW model and by 15 days under the PC model. The greatest impact will occur on Hokkaido (the northernmost island) and in the central mountains.
Gram Quist, Helle; Christensen, Ulla; Christensen, Karl Bang; Aust, Birgit; Borg, Vilhelm; Bjorner, Jakob B
2013-01-17
Lifestyle variables may serve as important intermediate factors between psychosocial work environment and health outcomes. Previous studies, focussing on work stress models have shown mixed and weak results in relation to weight change. This study aims to investigate psychosocial factors outside the classical work stress models as potential predictors of change in body mass index (BMI) in a population of health care workers. A cohort study, with three years follow-up, was conducted among Danish health care workers (3982 women and 152 men). Logistic regression analyses examined change in BMI (more than +/- 2 kg/m(2)) as predicted by baseline psychosocial work factors (work pace, workload, quality of leadership, influence at work, meaning of work, predictability, commitment, role clarity, and role conflicts) and five covariates (age, cohabitation, physical work demands, type of work position and seniority). Among women, high role conflicts predicted weight gain, while high role clarity predicted both weight gain and weight loss. Living alone also predicted weight gain among women, while older age decreased the odds of weight gain. High leadership quality predicted weight loss among men. Associations were generally weak, with the exception of quality of leadership, age, and cohabitation. This study of a single occupational group suggested a few new risk factors for weight change outside the traditional work stress models.
Predicting human olfactory perception from chemical features of odor molecules.
Keller, Andreas; Gerkin, Richard C; Guan, Yuanfang; Dhurandhar, Amit; Turu, Gabor; Szalai, Bence; Mainland, Joel D; Ihara, Yusuke; Yu, Chung Wen; Wolfinger, Russ; Vens, Celine; Schietgat, Leander; De Grave, Kurt; Norel, Raquel; Stolovitzky, Gustavo; Cecchi, Guillermo A; Vosshall, Leslie B; Meyer, Pablo
2017-02-24
It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory percept it will produce. We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict sensory attributes of molecules based on their chemoinformatic features. The resulting models accurately predicted odor intensity and pleasantness and also successfully predicted 8 among 19 rated semantic descriptors ("garlic," "fish," "sweet," "fruit," "burnt," "spices," "flower," and "sour"). Regularized linear models performed nearly as well as random forest-based ones, with a predictive accuracy that closely approaches a key theoretical limit. These models help to predict the perceptual qualities of virtually any molecule with high accuracy and also reverse-engineer the smell of a molecule. Copyright © 2017, American Association for the Advancement of Science.
Lee, Jaebeom; Lee, Young-Joo
2018-01-01
Management of the vertical long-term deflection of a high-speed railway bridge is a crucial factor to guarantee traffic safety and passenger comfort. Therefore, there have been efforts to predict the vertical deflection of a railway bridge based on physics-based models representing various influential factors to vertical deflection such as concrete creep and shrinkage. However, it is not an easy task because the vertical deflection of a railway bridge generally involves several sources of uncertainty. This paper proposes a probabilistic method that employs a Gaussian process to construct a model to predict the vertical deflection of a railway bridge based on actual vision-based measurement and temperature. To deal with the sources of uncertainty which may cause prediction errors, a Gaussian process is modeled with multiple kernels and hyperparameters. Once the hyperparameters are identified through the Gaussian process regression using training data, the proposed method provides a 95% prediction interval as well as a predictive mean about the vertical deflection of the bridge. The proposed method is applied to an arch bridge under operation for high-speed trains in South Korea. The analysis results obtained from the proposed method show good agreement with the actual measurement data on the vertical deflection of the example bridge, and the prediction results can be utilized for decision-making on railway bridge maintenance. PMID:29747421
Lee, Jaebeom; Lee, Kyoung-Chan; Lee, Young-Joo
2018-05-09
Management of the vertical long-term deflection of a high-speed railway bridge is a crucial factor to guarantee traffic safety and passenger comfort. Therefore, there have been efforts to predict the vertical deflection of a railway bridge based on physics-based models representing various influential factors to vertical deflection such as concrete creep and shrinkage. However, it is not an easy task because the vertical deflection of a railway bridge generally involves several sources of uncertainty. This paper proposes a probabilistic method that employs a Gaussian process to construct a model to predict the vertical deflection of a railway bridge based on actual vision-based measurement and temperature. To deal with the sources of uncertainty which may cause prediction errors, a Gaussian process is modeled with multiple kernels and hyperparameters. Once the hyperparameters are identified through the Gaussian process regression using training data, the proposed method provides a 95% prediction interval as well as a predictive mean about the vertical deflection of the bridge. The proposed method is applied to an arch bridge under operation for high-speed trains in South Korea. The analysis results obtained from the proposed method show good agreement with the actual measurement data on the vertical deflection of the example bridge, and the prediction results can be utilized for decision-making on railway bridge maintenance.
A Global Model for Bankruptcy Prediction
Alaminos, David; del Castillo, Agustín; Fernández, Manuel Ángel
2016-01-01
The recent world financial crisis has increased the number of bankruptcies in numerous countries and has resulted in a new area of research which responds to the need to predict this phenomenon, not only at the level of individual countries, but also at a global level, offering explanations of the common characteristics shared by the affected companies. Nevertheless, few studies focus on the prediction of bankruptcies globally. In order to compensate for this lack of empirical literature, this study has used a methodological framework of logistic regression to construct predictive bankruptcy models for Asia, Europe and America, and other global models for the whole world. The objective is to construct a global model with a high capacity for predicting bankruptcy in any region of the world. The results obtained have allowed us to confirm the superiority of the global model in comparison to regional models over periods of up to three years prior to bankruptcy. PMID:27880810
Prediction of High-Lift Flows using Turbulent Closure Models
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.; Ying, Susan X.; Bertelrud, Arild
1997-01-01
The flow over two different multi-element airfoil configurations is computed using linear eddy viscosity turbulence models and a nonlinear explicit algebraic stress model. A subset of recently-measured transition locations using hot film on a McDonnell Douglas configuration is presented, and the effect of transition location on the computed solutions is explored. Deficiencies in wake profile computations are found to be attributable in large part to poor boundary layer prediction on the generating element, and not necessarily inadequate turbulence modeling in the wake. Using measured transition locations for the main element improves the prediction of its boundary layer thickness, skin friction, and wake profile shape. However, using measured transition locations on the slat still yields poor slat wake predictions. The computation of the slat flow field represents a key roadblock to successful predictions of multi-element flows. In general, the nonlinear explicit algebraic stress turbulence model gives very similar results to the linear eddy viscosity models.
Modeling of exposure to carbon monoxide in fires
NASA Technical Reports Server (NTRS)
Cagliostro, D. E.
1980-01-01
A mathematical model is developed to predict carboxyhemoglobin concentrations in regions of the body for short exposures to carbon monoxide levels expected during escape from aircraft fires. The model includes the respiratory and circulatory dynamics of absorption and distribution of carbon monoxide and carboxyhemoglobin. Predictions of carboxyhemoglobin concentrations are compared to experimental values obtained for human exposures to constant high carbon monoxide levels. Predictions are within 20% of experimental values. For short exposure times, transient concentration effects are predicted. The effect of stress is studied and found to increase carboxyhemoglobin levels substantially compared to a rest state.
Population-Level Prediction of Type 2 Diabetes From Claims Data and Analysis of Risk Factors.
Razavian, Narges; Blecker, Saul; Schmidt, Ann Marie; Smith-McLallen, Aaron; Nigam, Somesh; Sontag, David
2015-12-01
We present a new approach to population health, in which data-driven predictive models are learned for outcomes such as type 2 diabetes. Our approach enables risk assessment from readily available electronic claims data on large populations, without additional screening cost. Proposed model uncovers early and late-stage risk factors. Using administrative claims, pharmacy records, healthcare utilization, and laboratory results of 4.1 million individuals between 2005 and 2009, an initial set of 42,000 variables were derived that together describe the full health status and history of every individual. Machine learning was then used to methodically enhance predictive variable set and fit models predicting onset of type 2 diabetes in 2009-2011, 2010-2012, and 2011-2013. We compared the enhanced model with a parsimonious model consisting of known diabetes risk factors in a real-world environment, where missing values are common and prevalent. Furthermore, we analyzed novel and known risk factors emerging from the model at different age groups at different stages before the onset. Parsimonious model using 21 classic diabetes risk factors resulted in area under ROC curve (AUC) of 0.75 for diabetes prediction within a 2-year window following the baseline. The enhanced model increased the AUC to 0.80, with about 900 variables selected as predictive (p < 0.0001 for differences between AUCs). Similar improvements were observed for models predicting diabetes onset 1-3 years and 2-4 years after baseline. The enhanced model improved positive predictive value by at least 50% and identified novel surrogate risk factors for type 2 diabetes, such as chronic liver disease (odds ratio [OR] 3.71), high alanine aminotransferase (OR 2.26), esophageal reflux (OR 1.85), and history of acute bronchitis (OR 1.45). Liver risk factors emerge later in the process of diabetes development compared with obesity-related factors such as hypertension and high hemoglobin A1c. In conclusion, population-level risk prediction for type 2 diabetes using readily available administrative data is feasible and has better prediction performance than classical diabetes risk prediction algorithms on very large populations with missing data. The new model enables intervention allocation at national scale quickly and accurately and recovers potentially novel risk factors at different stages before the disease onset.
Can current models of accommodation and vergence predict accommodative behavior in myopic children?
Sreenivasan, Vidhyapriya; Irving, Elizabeth L; Bobier, William R
2014-08-01
Investigations into the progression of myopia in children have long considered the role of accommodation as a cause and solution. Myopic children show high levels of accommodative adaptation, coupled with accommodative lag and high response AC/A (accommodative convergence per diopter of accommodation). This pattern differs from that predicted by current models of interaction between accommodation and vergence, where weakened reflex responses and a high AC/A would be associated with a low not high levels of accommodative adaptation. However, studies of young myopes were limited to only part of the accommodative vergence synkinesis and the reciprocal components of vergence adaptation and convergence accommodation were not studied in tandem. Accordingly, we test the hypothesis that the accommodative behavior of myopic children is not predicted by current models and whether that departure is explained by differences in the accommodative plant of the myopic child. Responses to incongruent stimuli (-2D, +2D adds, 10 prism diopter base-out prism) were investigated in 28 myopic and 25 non-myopic children aged 7-15 years. Subjects were divided into phoria groups - exo, ortho and eso based upon their near phoria. The school aged myopes showed high levels of accommodative adaptation but with reduced accommodation and high AC/A. This pattern is not explained by current adult models and could reflect a sluggish gain of the accommodative plant (ciliary muscle and lens), changes in near triad innervation or both. Further, vergence adaptation showed a predictable reciprocal relationship with the high accommodative adaptation, suggesting that departures from adult models were limited to accommodation not vergence behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
de Montera, L.; Mallet, C.; Barthès, L.; Golé, P.
2008-08-01
This paper shows how nonlinear models originally developed in the finance field can be used to predict rain attenuation level and volatility in Earth-to-Satellite links operating at the Extremely High Frequencies band (EHF, 20 50 GHz). A common approach to solving this problem is to consider that the prediction error corresponds only to scintillations, whose variance is assumed to be constant. Nevertheless, this assumption does not seem to be realistic because of the heteroscedasticity of error time series: the variance of the prediction error is found to be time-varying and has to be modeled. Since rain attenuation time series behave similarly to certain stocks or foreign exchange rates, a switching ARIMA/GARCH model was implemented. The originality of this model is that not only the attenuation level, but also the error conditional distribution are predicted. It allows an accurate upper-bound of the future attenuation to be estimated in real time that minimizes the cost of Fade Mitigation Techniques (FMT) and therefore enables the communication system to reach a high percentage of availability. The performance of the switching ARIMA/GARCH model was estimated using a measurement database of the Olympus satellite 20/30 GHz beacons and this model is shown to outperform significantly other existing models. The model also includes frequency scaling from the downlink frequency to the uplink frequency. The attenuation effects (gases, clouds and rain) are first separated with a neural network and then scaled using specific scaling factors. As to the resulting uplink prediction error, the error contribution of the frequency scaling step is shown to be larger than that of the downlink prediction, indicating that further study should focus on improving the accuracy of the scaling factor.
NASA Astrophysics Data System (ADS)
Park, Jeong-Gyun; Jee, Joon-Bum
2017-04-01
Dangerous weather such as severe rain, heavy snow, drought and heat wave caused by climate change make more damage in the urban area that dense populated and industry areas. Urban areas, unlike the rural area, have big population and transportation, dense the buildings and fuel consumption. Anthropogenic factors such as road energy balance, the flow of air in the urban is unique meteorological phenomena. However several researches are in process about prediction of urban meteorology. ASAPS (Advanced Storm-scale Analysis and Prediction System) predicts a severe weather with very short range (prediction with 6 hour) and high resolution (every hour with time and 1 km with space) on Seoul metropolitan area based on KLAPS (Korea Local Analysis and Prediction System) from KMA (Korea Meteorological Administration). This system configured three parts that make a background field (SUF5), analysis field (SU01) with observation and forecast field with high resolution (SUF1). In this study, we improve a high-resolution ASAPS model and perform a sensitivity test for the rainfall case. The improvement of ASAPS include model domain configuration, high resolution topographic data and data assimilation with WISE observation data.
Turnell, Adrienne; Rasmussen, Victoria; Butow, Phyllis; Juraskova, Ilona; Kirsten, Laura; Wiener, Lori; Patenaude, Andrea; Hoekstra-Weebers, Josette; Grassi, Luigi
2016-02-01
Burnout is reportedly high among oncology healthcare workers. Psychosocial oncologists may be particularly vulnerable to burnout. However, their work engagement may also be high, counteracting stress in the workplace. This study aimed to document the prevalence of both burnout and work engagement, and the predictors of both, utilizing the job demands-resources (JD-R) model, within a sample of psychosocial oncologists. Psychosocial-oncologist (N = 417) clinicians, recruited through 10 international and national psychosocial-oncology societies, completed an online questionnaire. Measures included demographic and work characteristics, burnout (the MBI-HSS Emotional Exhaustion (EE) and Depersonalization (DP) subscales), the Utrecht Work Engagement Scale, and measures of job demands and resources. High EE and DP was reported by 20.2 and 6.6% of participants, respectively, while 95.3% reported average to high work engagement. Lower levels of job resources and higher levels of job demands predicted greater burnout, as predicted by the JD-R model, but the predicted interaction between these characteristics and burnout was not significant. Higher levels of job resources predicted higher levels of work engagement. Burnout was surprisingly low and work engagement high in this sample. Nonetheless, one in five psychosocial oncologists have high EE. Our results suggest that both the positive (resources) and negative (demands) aspects of this work environment have an on impact burnout and engagement, offering opportunities for intervention. Theories such as the JD-R model can be useful in guiding research in this area.
NASA Astrophysics Data System (ADS)
Cai, Y.
2017-12-01
Accurately forecasting crop yields has broad implications for economic trading, food production monitoring, and global food security. However, the variation of environmental variables presents challenges to model yields accurately, especially when the lack of highly accurate measurements creates difficulties in creating models that can succeed across space and time. In 2016, we developed a sequence of machine-learning based models forecasting end-of-season corn yields for the US at both the county and national levels. We combined machine learning algorithms in a hierarchical way, and used an understanding of physiological processes in temporal feature selection, to achieve high precision in our intra-season forecasts, including in very anomalous seasons. During the live run, we predicted the national corn yield within 1.40% of the final USDA number as early as August. In the backtesting of the 2000-2015 period, our model predicts national yield within 2.69% of the actual yield on average already by mid-August. At the county level, our model predicts 77% of the variation in final yield using data through the beginning of August and improves to 80% by the beginning of October, with the percentage of counties predicted within 10% of the average yield increasing from 68% to 73%. Further, the lowest errors are in the most significant producing regions, resulting in very high precision national-level forecasts. In addition, we identify the changes of important variables throughout the season, specifically early-season land surface temperature, and mid-season land surface temperature and vegetation index. For the 2017 season, we feed 2016 data to the training set, together with additional geospatial data sources, aiming to make the current model even more precise. We will show how our 2017 US corn yield forecasts converges in time, which factors affect the yield the most, as well as present our plans for 2018 model adjustments.
Miranian, A; Abdollahzade, M
2013-02-01
Local modeling approaches, owing to their ability to model different operating regimes of nonlinear systems and processes by independent local models, seem appealing for modeling, identification, and prediction applications. In this paper, we propose a local neuro-fuzzy (LNF) approach based on the least-squares support vector machines (LSSVMs). The proposed LNF approach employs LSSVMs, which are powerful in modeling and predicting time series, as local models and uses hierarchical binary tree (HBT) learning algorithm for fast and efficient estimation of its parameters. The HBT algorithm heuristically partitions the input space into smaller subdomains by axis-orthogonal splits. In each partitioning, the validity functions automatically form a unity partition and therefore normalization side effects, e.g., reactivation, are prevented. Integration of LSSVMs into the LNF network as local models, along with the HBT learning algorithm, yield a high-performance approach for modeling and prediction of complex nonlinear time series. The proposed approach is applied to modeling and predictions of different nonlinear and chaotic real-world and hand-designed systems and time series. Analysis of the prediction results and comparisons with recent and old studies demonstrate the promising performance of the proposed LNF approach with the HBT learning algorithm for modeling and prediction of nonlinear and chaotic systems and time series.
Esbenshade, Adam J; Zhao, Zhiguo; Aftandilian, Catherine; Saab, Raya; Wattier, Rachel L; Beauchemin, Melissa; Miller, Tamara P; Wilkes, Jennifer J; Kelly, Michael J; Fernbach, Alison; Jeng, Michael; Schwartz, Cindy L; Dvorak, Christopher C; Shyr, Yu; Moons, Karl G M; Sulis, Maria-Luisa; Friedman, Debra L
2017-10-01
Pediatric oncology patients are at an increased risk of invasive bacterial infection due to immunosuppression. The risk of such infection in the absence of severe neutropenia (absolute neutrophil count ≥ 500/μL) is not well established and a validated prediction model for blood stream infection (BSI) risk offers clinical usefulness. A 6-site retrospective external validation was conducted using a previously published risk prediction model for BSI in febrile pediatric oncology patients without severe neutropenia: the Esbenshade/Vanderbilt (EsVan) model. A reduced model (EsVan2) excluding 2 less clinically reliable variables also was created using the initial EsVan model derivative cohort, and was validated using all 5 external validation cohorts. One data set was used only in sensitivity analyses due to missing some variables. From the 5 primary data sets, there were a total of 1197 febrile episodes and 76 episodes of bacteremia. The overall C statistic for predicting bacteremia was 0.695, with a calibration slope of 0.50 for the original model and a calibration slope of 1.0 when recalibration was applied to the model. The model performed better in predicting high-risk bacteremia (gram-negative or Staphylococcus aureus infection) versus BSI alone, with a C statistic of 0.801 and a calibration slope of 0.65. The EsVan2 model outperformed the EsVan model across data sets with a C statistic of 0.733 for predicting BSI and a C statistic of 0.841 for high-risk BSI. The results of this external validation demonstrated that the EsVan and EsVan2 models are able to predict BSI across multiple performance sites and, once validated and implemented prospectively, could assist in decision making in clinical practice. Cancer 2017;123:3781-3790. © 2017 American Cancer Society. © 2017 American Cancer Society.
Maximum spreading of liquid drop on various substrates with different wettabilities
NASA Astrophysics Data System (ADS)
Choudhury, Raihan; Choi, Junho; Yang, Sangsun; Kim, Yong-Jin; Lee, Donggeun
2017-09-01
This paper describes a novel model developed for a priori prediction of the maximal spread of a liquid drop on a surface. As a first step, a series of experiments were conducted under precise control of the initial drop diameter, its falling height, roughness, and wettability of dry surfaces. The transient liquid spreading was recorded by a high-speed camera to obtain its maximum spreading under various conditions. Eight preexisting models were tested for accurate prediction of the maximum spread; however, most of the model predictions were not satisfactory except one, in comparison with our experimental data. A comparative scaling analysis of the literature models was conducted to elucidate the condition-dependent prediction characteristics of the models. The conditioned bias in the predictions was mainly attributed to the inappropriate formulations of viscous dissipation or interfacial energy of liquid on the surface. Hence, a novel model based on energy balance during liquid impact was developed to overcome the limitations of the previous models. As a result, the present model was quite successful in predicting the liquid spread in all the conditions.
Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang
2018-01-01
A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies. PMID:29466394
Prediction of high temperature metal matrix composite ply properties
NASA Technical Reports Server (NTRS)
Caruso, J. J.; Chamis, C. C.
1988-01-01
The application of the finite element method (superelement technique) in conjunction with basic concepts from mechanics of materials theory is demonstrated to predict the thermomechanical behavior of high temperature metal matrix composites (HTMMC). The simulated behavior is used as a basis to establish characteristic properties of a unidirectional composite idealized an as equivalent homogeneous material. The ply properties predicted include: thermal properties (thermal conductivities and thermal expansion coefficients) and mechanical properties (moduli and Poisson's ratio). These properties are compared with those predicted by a simplified, analytical composite micromechanics model. The predictive capabilities of the finite element method and the simplified model are illustrated through the simulation of the thermomechanical behavior of a P100-graphite/copper unidirectional composite at room temperature and near matrix melting temperature. The advantage of the finite element analysis approach is its ability to more precisely represent the composite local geometry and hence capture the subtle effects that are dependent on this. The closed form micromechanics model does a good job at representing the average behavior of the constituents to predict composite behavior.
Mining data from CFD simulation for aneurysm and carotid bifurcation models.
Miloš, Radović; Dejan, Petrović; Nenad, Filipović
2011-01-01
Arterial geometry variability is present both within and across individuals. To analyze the influence of geometric parameters, blood density, dynamic viscosity and blood velocity on wall shear stress (WSS) distribution in the human carotid artery bifurcation and aneurysm, the computer simulations were run to generate the data pertaining to this phenomenon. In our work we evaluate two prediction models for modeling these relationships: neural network model and k-nearest neighbor model. The results revealed that both models have high prediction ability for this prediction task. The achieved results represent progress in assessment of stroke risk for a given patient data in real time.
A Particle Swarm Optimization-Based Approach with Local Search for Predicting Protein Folding.
Yang, Cheng-Hong; Lin, Yu-Shiun; Chuang, Li-Yeh; Chang, Hsueh-Wei
2017-10-01
The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the high exploration PSO (HEPSO) algorithm (which can execute global search processes) was combined with three local search algorithms (hill-climbing algorithm, greedy algorithm, and Tabu table), yielding the proposed HE-L-PSO algorithm. By using 20 known protein structures, we evaluated the performance of the HE-L-PSO algorithm in predicting protein folding in the HP model. The proposed HE-L-PSO algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with seven reported algorithms. The HE-L-PSO algorithm yielded optimal solutions for all predicted protein folding structures. All HE-L-PSO-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.
A Continuum Model for the Effect of Dynamic Recrystallization on the Stress⁻Strain Response.
Kooiker, H; Perdahcıoğlu, E S; van den Boogaard, A H
2018-05-22
Austenitic Stainless Steels and High-Strength Low-Alloy (HSLA) steels show significant dynamic recovery and dynamic recrystallization (DRX) during hot forming. In order to design optimal and safe hot-formed products, a good understanding and constitutive description of the material behavior is vital. A new continuum model is presented and validated on a wide range of deformation conditions including high strain rate deformation. The model is presented in rate form to allow for the prediction of material behavior in transient process conditions. The proposed model is capable of accurately describing the stress⁻strain behavior of AISI 316LN in hot forming conditions, also the high strain rate DRX-induced softening observed during hot torsion of HSLA is accurately predicted. It is shown that the increase in recrystallization rate at high strain rates observed in experiments can be captured by including the elastic energy due to the dynamic stress in the driving pressure for recrystallization. Furthermore, the predicted resulting grain sizes follow the power-law dependence with steady state stress that is often reported in literature and the evolution during hot deformation shows the expected trend.
Predictability of the Indian Ocean Dipole in the coupled models
NASA Astrophysics Data System (ADS)
Liu, Huafeng; Tang, Youmin; Chen, Dake; Lian, Tao
2017-03-01
In this study, the Indian Ocean Dipole (IOD) predictability, measured by the Indian Dipole Mode Index (DMI), is comprehensively examined at the seasonal time scale, including its actual prediction skill and potential predictability, using the ENSEMBLES multiple model ensembles and the recently developed information-based theoretical framework of predictability. It was found that all model predictions have useful skill, which is normally defined by the anomaly correlation coefficient larger than 0.5, only at around 2-3 month leads. This is mainly because there are more false alarms in predictions as leading time increases. The DMI predictability has significant seasonal variation, and the predictions whose target seasons are boreal summer (JJA) and autumn (SON) are more reliable than that for other seasons. All of models fail to predict the IOD onset before May and suffer from the winter (DJF) predictability barrier. The potential predictability study indicates that, with the model development and initialization improvement, the prediction of IOD onset is likely to be improved but the winter barrier cannot be overcome. The IOD predictability also has decadal variation, with a high skill during the 1960s and the early 1990s, and a low skill during the early 1970s and early 1980s, which is very consistent with the potential predictability. The main factors controlling the IOD predictability, including its seasonal and decadal variations, are also analyzed in this study.
Computation of turbulent high speed mixing layers using a two-equation turbulence model
NASA Technical Reports Server (NTRS)
Narayan, J. R.; Sekar, B.
1991-01-01
A two-equation turbulence model was extended to be applicable for compressible flows. A compressibility correction based on modelling the dilational terms in the Reynolds stress equations were included in the model. The model is used in conjunction with the SPARK code for the computation of high speed mixing layers. The observed trend of decreasing growth rate with increasing convective Mach number in compressible mixing layers is well predicted by the model. The predictions agree well with the experimental data and the results from a compressible Reynolds stress model. The present model appears to be well suited for the study of compressible free shear flows. Preliminary results obtained for the reacting mixing layers are included.
TOPEX/POSEIDON orbit maintenance maneuver design
NASA Technical Reports Server (NTRS)
Bhat, R. S.; Frauenholz, R. B.; Cannell, Patrick E.
1990-01-01
The Ocean Topography Experiment (TOPEX/POSEIDON) mission orbit requirements are outlined, as well as its control and maneuver spacing requirements including longitude and time targeting. A ground-track prediction model dealing with geopotential, luni-solar gravity, and atmospheric-drag perturbations is considered. Targeting with all modeled perturbations is discussed, and such ground-track prediction errors as initial semimajor axis, orbit-determination, maneuver-execution, and atmospheric-density modeling errors are assessed. A longitude targeting strategy for two extreme situations is investigated employing all modeled perturbations and prediction errors. It is concluded that atmospheric-drag modeling errors are the prevailing ground-track prediction error source early in the mission during high solar flux, and that low solar-flux levels expected late in the experiment stipulate smaller maneuver magnitudes.
Effects of DTM resolution on slope steepness and soil loss prediction on hillslope profiles
Eder Paulo Moreira; William J. Elliot; Andrew T. Hudak
2011-01-01
Topographic attributes play a critical role in predicting erosion in models such as the Water Erosion Prediction Project (WEPP). The effects of four different high resolution hillslope profiles were studied using four different DTM resolutions: 1-m, 3-m, 5-m and 10-m. The WEPP model used a common scenario encountered in the forest environment and the selected hillslope...
2016-05-11
new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric data...of new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric...the medium behavior at these frequency bands from both a physical and a statistical point of view (e.g., [5]-[7]). However, these campaigns are
Predicting birth weight with conditionally linear transformation models.
Möst, Lisa; Schmid, Matthias; Faschingbauer, Florian; Hothorn, Torsten
2016-12-01
Low and high birth weight (BW) are important risk factors for neonatal morbidity and mortality. Gynecologists must therefore accurately predict BW before delivery. Most prediction formulas for BW are based on prenatal ultrasound measurements carried out within one week prior to birth. Although successfully used in clinical practice, these formulas focus on point predictions of BW but do not systematically quantify uncertainty of the predictions, i.e. they result in estimates of the conditional mean of BW but do not deliver prediction intervals. To overcome this problem, we introduce conditionally linear transformation models (CLTMs) to predict BW. Instead of focusing only on the conditional mean, CLTMs model the whole conditional distribution function of BW given prenatal ultrasound parameters. Consequently, the CLTM approach delivers both point predictions of BW and fetus-specific prediction intervals. Prediction intervals constitute an easy-to-interpret measure of prediction accuracy and allow identification of fetuses subject to high prediction uncertainty. Using a data set of 8712 deliveries at the Perinatal Centre at the University Clinic Erlangen (Germany), we analyzed variants of CLTMs and compared them to standard linear regression estimation techniques used in the past and to quantile regression approaches. The best-performing CLTM variant was competitive with quantile regression and linear regression approaches in terms of conditional coverage and average length of the prediction intervals. We propose that CLTMs be used because they are able to account for possible heteroscedasticity, kurtosis, and skewness of the distribution of BWs. © The Author(s) 2014.
Gamma-ray Pulsars: Models and Predictions
NASA Technical Reports Server (NTRS)
Harding Alice K.; White, Nicholas E. (Technical Monitor)
2000-01-01
Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is, dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10(exp 12) - 10(exp 13) G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers of the primary curvature emission around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.
Numerical Calculations of 3-D High-Lift Flows and Comparison with Experiment
NASA Technical Reports Server (NTRS)
Compton, William B, III
2015-01-01
Solutions were obtained with the Navier-Stokes CFD code TLNS3D to predict the flow about the NASA Trapezoidal Wing, a high-lift wing composed of three elements: the main-wing element, a deployed leading-edge slat, and a deployed trailing-edge flap. Turbulence was modeled by the Spalart-Allmaras one-equation turbulence model. One case with massive separation was repeated using Menter's two-equation SST (Menter's Shear Stress Transport) k-omega turbulence model in an attempt to improve the agreement with experiment. The investigation was conducted at a free stream Mach number of 0.2, and at angles of attack ranging from 10.004 degrees to 34.858 degrees. The Reynolds number based on the mean aerodynamic chord of the wing was 4.3 x 10 (sup 6). Compared to experiment, the numerical procedure predicted the surface pressures very well at angles of attack in the linear range of the lift. However, computed maximum lift was 5% low. Drag was mainly under predicted. The procedure correctly predicted several well-known trends and features of high-lift flows, such as off-body separation. The two turbulence models yielded significantly different solutions for the repeated case.
Compound activity prediction using models of binding pockets or ligand properties in 3D
Kufareva, Irina; Chen, Yu-Chen; Ilatovskiy, Andrey V.; Abagyan, Ruben
2014-01-01
Transient interactions of endogenous and exogenous small molecules with flexible binding sites in proteins or macromolecular assemblies play a critical role in all biological processes. Current advances in high-resolution protein structure determination, database development, and docking methodology make it possible to design three-dimensional models for prediction of such interactions with increasing accuracy and specificity. Using the data collected in the Pocketome encyclopedia, we here provide an overview of two types of the three-dimensional ligand activity models, pocket-based and ligand property-based, for two important classes of proteins, nuclear and G-protein coupled receptors. For half the targets, the pocket models discriminate actives from property matched decoys with acceptable accuracy (the area under ROC curve, AUC, exceeding 84%) and for about one fifth of the targets with high accuracy (AUC > 95%). The 3D ligand property field models performed better than 95% in half of the cases. The high performance models can already become a basis of activity predictions for new chemicals. Family-wide benchmarking of the models highlights strengths of both approaches and helps identify their inherent bottlenecks and challenges. PMID:23116466
Winchell, Michael F; Peranginangin, Natalia; Srinivasan, Raghavan; Chen, Wenlin
2018-05-01
Recent national regulatory assessments of potential pesticide exposure of threatened and endangered species in aquatic habitats have led to increased need for watershed-scale predictions of pesticide concentrations in flowing water bodies. This study was conducted to assess the ability of the uncalibrated Soil and Water Assessment Tool (SWAT) to predict annual maximum pesticide concentrations in the flowing water bodies of highly vulnerable small- to medium-sized watersheds. The SWAT was applied to 27 watersheds, largely within the midwest corn belt of the United States, ranging from 20 to 386 km 2 , and evaluated using consistent input data sets and an uncalibrated parameterization approach. The watersheds were selected from the Atrazine Ecological Exposure Monitoring Program and the Heidelberg Tributary Loading Program, both of which contain high temporal resolution atrazine sampling data from watersheds with exceptionally high vulnerability to atrazine exposure. The model performance was assessed based upon predictions of annual maximum atrazine concentrations in 1-d and 60-d durations, predictions critical in pesticide-threatened and endangered species risk assessments when evaluating potential acute and chronic exposure to aquatic organisms. The simulation results showed that for nearly half of the watersheds simulated, the uncalibrated SWAT model was able to predict annual maximum pesticide concentrations within a narrow range of uncertainty resulting from atrazine application timing patterns. An uncalibrated model's predictive performance is essential for the assessment of pesticide exposure in flowing water bodies, the majority of which have insufficient monitoring data for direct calibration, even in data-rich countries. In situations in which SWAT over- or underpredicted the annual maximum concentrations, the magnitude of the over- or underprediction was commonly less than a factor of 2, indicating that the model and uncalibrated parameterization approach provide a capable method for predicting the aquatic exposure required to support pesticide regulatory decision making. Integr Environ Assess Manag 2018;14:358-368. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Stock price prediction using geometric Brownian motion
NASA Astrophysics Data System (ADS)
Farida Agustini, W.; Restu Affianti, Ika; Putri, Endah RM
2018-03-01
Geometric Brownian motion is a mathematical model for predicting the future price of stock. The phase that done before stock price prediction is determine stock expected price formulation and determine the confidence level of 95%. On stock price prediction using geometric Brownian Motion model, the algorithm starts from calculating the value of return, followed by estimating value of volatility and drift, obtain the stock price forecast, calculating the forecast MAPE, calculating the stock expected price and calculating the confidence level of 95%. Based on the research, the output analysis shows that geometric Brownian motion model is the prediction technique with high rate of accuracy. It is proven with forecast MAPE value ≤ 20%.
NASA Astrophysics Data System (ADS)
Shi, Ming F.; Zhang, Li; Zhu, Xinhai
2016-08-01
The Yoshida nonlinear isotropic/kinematic hardening material model is often selected in forming simulations where an accurate springback prediction is required. Many successful application cases in the industrial scale automotive components using advanced high strength steels (AHSS) have been reported to give better springback predictions. Several issues have been raised recently in the use of the model for higher strength AHSS including the use of two C vs. one C material parameters in the Armstrong and Frederick model (AF model), the original Yoshida model vs. Original Yoshida model with modified hardening law, and constant Young's Modulus vs. decayed Young's Modulus as a function of plastic strain. In this paper, an industrial scale automotive component using 980 MPa strength materials is selected to study the effect of two C and one C material parameters in the AF model on both forming and springback prediction using the Yoshida model with and without the modified hardening law. The effect of decayed Young's Modulus on the springback prediction for AHSS is also evaluated. In addition, the limitations of the material parameters determined from tension and compression tests without multiple cycle tests are also discussed for components undergoing several bending and unbending deformations.
1994-01-01
Limulus ventral photoreceptors generate highly variable responses to the absorption of single photons. We have obtained data on the size distribution of these responses, derived the distribution predicted from simple transduction cascade models and compared the theory and data. In the simplest of models, the active state of the visual pigment (defined by its ability to activate G protein) is turned off in a single reaction. The output of such a cascade is predicted to be highly variable, largely because of stochastic variation in the number of G proteins activated. The exact distribution predicted is exponential, but we find that an exponential does not adequately account for the data. The data agree much better with the predictions of a cascade model in which the active state of the visual pigment is turned off by a multi-step process. PMID:8057085
Dolton, Michael J.; Perera, Vidya; Pont, Lisa G.
2014-01-01
Terbinafine is increasingly used in combination with other antifungal agents to treat resistant or refractory mycoses due to synergistic in vitro antifungal activity; high doses are commonly used, but limited data are available on systemic exposure, and no assessment of pharmacodynamic target attainment has been made. Using a physiologically based pharmacokinetic (PBPK) model for terbinafine, this study aimed to predict total and unbound terbinafine concentrations in plasma with a range of high-dose regimens and also calculate predicted pharmacodynamic parameters for terbinafine. Predicted terbinafine concentrations accumulated significantly during the first 28 days of treatment; the area under the concentration-time curve (AUC)/MIC ratios and AUC for the free, unbound fraction (fAUC)/MIC ratios increased by 54 to 62% on day 7 of treatment and by 80 to 92% on day 28 compared to day 1, depending on the dose regimen. Of the high-dose regimens investigated, 500 mg of terbinafine taken every 12 h provided the highest systemic exposure; on day 7 of treatment, the predicted AUC, maximum concentration (Cmax), and minimum concentration (Cmin) were approximately 4-fold, 1.9-fold, and 4.4-fold higher than with a standard-dose regimen of 250 mg once daily. Close agreement was seen between the concentrations predicted by the PBPK model and the observed concentrations, indicating good predictive performance. This study provides the first report of predicted terbinafine exposure in plasma with a range of high-dose regimens. PMID:24126579
Lian, Jijian; Zhang, Wenjiao; Guo, Qizhong; Liu, Fang
2016-01-01
As flood water is discharged from a high dam, low frequency (i.e., lower than 10 Hz) noise (LFN) associated with air pulsation is generated and propagated in the surrounding areas, causing environmental problems such as vibrations of windows and doors and discomfort of residents and construction workers. To study the generation mechanisms and key influencing factors of LFN induced by energy dissipation through submerged jets at a high dam, detailed prototype observations and analyses of LFN are conducted. The discharge flow field is simulated using a gas-liquid turbulent flow model, and the vorticity fluctuation characteristics are then analyzed. The mathematical model for the LFN intensity is developed based on vortex sound theory and a turbulent flow model, verified by prototype observations. The model results reveal that the vorticity fluctuation in strong shear layers around the high-velocity submerged jets is highly correlated with the on-site LFN, and the strong shear layers are the main regions of acoustic source for the LFN. In addition, the predicted and observed magnitudes of LFN intensity agree quite well. This is the first time that the LFN intensity has been shown to be able to be predicted quantitatively. PMID:27314374
Prediction of hot deformation behavior of high phosphorus steel using artificial neural network
NASA Astrophysics Data System (ADS)
Singh, Kanchan; Rajput, S. K.; Soota, T.; Verma, Vijay; Singh, Dharmendra
2018-03-01
To predict the hot deformation behavior of high phosphorus steel, the hot compression experiments were performed with the help of thermo-mechanical simulator Gleeble® 3800 in the temperatures ranging from 750 °C to 1050 °C and strain rates of 0.001 s-1, 0.01 s-1, 0.1 s-1, 0.5 s-1, 1.0 s-1 and 10 s-1. The experimental stress-strain data are employed to develop artificial neural network (ANN) model and their predictability. Using different combination of temperature, strain and strain rate as a input parameter and obtained experimental stress as a target, a multi-layer ANN model based on feed-forward back-propagation algorithm is trained, to predict the flow stress for a given processing condition. The relative error between predicted and experimental stress are in the range of ±3.5%, whereas the correlation coefficient (R2) of training and testing data are 0.99986 and 0.99999 respectively. This shows that a well-trained ANN model has excellent capability to predict the hot deformation behavior of materials. Comparative study shows quite good agreement of predicted and experimental values.
Bagchi, Torit Baran; Sharma, Srigopal; Chattopadhyay, Krishnendu
2016-01-15
With the escalating persuasion of economic and nutritional importance of rice grain protein and nutritional components of rice bran (RB), NIRS can be an effective tool for high throughput screening in rice breeding programme. Optimization of NIRS is prerequisite for accurate prediction of grain quality parameters. In the present study, 173 brown rice (BR) and 86 RB samples with a wide range of values were used to compare the calibration models generated by different chemometrics for grain protein (GPC) and amylose content (AC) of BR and proximate compositions (protein, crude oil, moisture, ash and fiber content) of RB. Various modified partial least square (mPLSs) models corresponding with the best mathematical treatments were identified for all components. Another set of 29 genotypes derived from the breeding programme were employed for the external validation of these calibration models. High accuracy of all these calibration and prediction models was ensured through pair t-test and correlation regression analysis between reference and predicted values. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modeling the risk of water pollution by pesticides from imbalanced data.
Trajanov, Aneta; Kuzmanovski, Vladimir; Real, Benoit; Perreau, Jonathan Marks; Džeroski, Sašo; Debeljak, Marko
2018-04-30
The pollution of ground and surface waters with pesticides is a serious ecological issue that requires adequate treatment. Most of the existing water pollution models are mechanistic mathematical models. While they have made a significant contribution to understanding the transfer processes, they face the problem of validation because of their complexity, the user subjectivity in their parameterization, and the lack of empirical data for validation. In addition, the data describing water pollution with pesticides are, in most cases, very imbalanced. This is due to strict regulations for pesticide applications, which lead to only a few pollution events. In this study, we propose the use of data mining to build models for assessing the risk of water pollution by pesticides in field-drained outflow water. Unlike the mechanistic models, the models generated by data mining are based on easily obtainable empirical data, while the parameterization of the models is not influenced by the subjectivity of ecological modelers. We used empirical data from field trials at the La Jaillière experimental site in France and applied the random forests algorithm to build predictive models that predict "risky" and "not-risky" pesticide application events. To address the problems of the imbalanced classes in the data, cost-sensitive learning and different measures of predictive performance were used. Despite the high imbalance between risky and not-risky application events, we managed to build predictive models that make reliable predictions. The proposed modeling approach can be easily applied to other ecological modeling problems where we encounter empirical data with highly imbalanced classes.
Tropospheric biennial oscillation and south Asian summer monsoon rainfall in a coupled model
NASA Astrophysics Data System (ADS)
Konda, Gopinadh; Chowdary, J. S.; Srinivas, G.; Gnanaseelan, C.; Parekh, Anant; Attada, Raju; Rama Krishna, S. S. V. S.
2018-06-01
In this study Tropospheric Biennial Oscillation (TBO) and south Asian summer monsoon rainfall are examined in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. High correlation between the observations and model TBO index suggests that the model is able to capture most of the TBO years. Spatial patterns of rainfall anomalies associated with positive TBO over the south Asian region are better represented in the model as in the observations. However, the model predicted rainfall anomaly patterns associated with negative TBO years are improper and magnitudes are underestimated compared to the observations. It is noted that positive (negative) TBO is associated with La Niña (El Niño) like Sea surface temperature (SST) anomalies in the model. This leads to the fact that model TBO is El Niño-Southern Oscillation (ENSO) driven, while in the observations Indian Ocean Dipole (IOD) also plays a role in the negative TBO phase. Detailed analysis suggests that the negative TBO rainfall anomaly pattern in the model is highly influenced by improper teleconnections allied to IOD. Unlike in the observations, rainfall anomalies over the south Asian region are anti-correlated with IOD index in CFSv2. Further, summer monsoon rainfall over south Asian region is highly correlated with IOD western pole than eastern pole in CFSv2 in contrast to the observations. Altogether, the present study highlights the importance of improving Indian Ocean SST teleconnections to south Asian summer rainfall in the model by enhancing the predictability of TBO. This in turn would improve monsoon rainfall prediction skill of the model.
Tiltrotor Aeroacoustic Code (TRAC) Prediction Assessment and Initial Comparisons with Tram Test Data
NASA Technical Reports Server (NTRS)
Burley, Casey L.; Brooks, Thomas F.; Charles, Bruce D.; McCluer, Megan
1999-01-01
A prediction sensitivity assessment to inputs and blade modeling is presented for the TiltRotor Aeroacoustic Code (TRAC). For this study, the non-CFD prediction system option in TRAC is used. Here, the comprehensive rotorcraft code, CAMRAD.Mod1, coupled with the high-resolution sectional loads code HIRES, predicts unsteady blade loads to be used in the noise prediction code WOPWOP. The sensitivity of the predicted blade motions, blade airloads, wake geometry, and acoustics is examined with respect to rotor rpm, blade twist and chord, and to blade dynamic modeling. To accomplish this assessment, an interim input-deck for the TRAM test model and an input-deck for a reference test model are utilized in both rigid and elastic modes. Both of these test models are regarded as near scale models of the V-22 proprotor (tiltrotor). With basic TRAC sensitivities established, initial TRAC predictions are compared to results of an extensive test of an isolated model proprotor. The test was that of the TiltRotor Aeroacoustic Model (TRAM) conducted in the Duits-Nederlandse Windtunnel (DNW). Predictions are compared to measured noise for the proprotor operating over an extensive range of conditions. The variation of predictions demonstrates the great care that must be taken in defining the blade motion. However, even with this variability, the predictions using the different blade modeling successfully capture (bracket) the levels and trends of the noise for conditions ranging from descent to ascent.
Tiltrotor Aeroacoustic Code (TRAC) Prediction Assessment and Initial Comparisons With TRAM Test Data
NASA Technical Reports Server (NTRS)
Burley, Casey L.; Brooks, Thomas F.; Charles, Bruce D.; McCluer, Megan
1999-01-01
A prediction sensitivity assessment to inputs and blade modeling is presented for the TiltRotor Aeroacoustic Code (TRAC). For this study, the non-CFD prediction system option in TRAC is used. Here, the comprehensive rotorcraft code, CAMRAD.Mod 1, coupled with the high-resolution sectional loads code HIRES, predicts unsteady blade loads to be used in the noise prediction code WOPWOP. The sensitivity of the predicted blade motions, blade airloads, wake geometry, and acoustics is examined with respect to rotor rpm, blade twist and chord, and to blade dynamic modeling. To accomplish this assessment. an interim input-deck for the TRAM test model and an input-deck for a reference test model are utilized in both rigid and elastic modes. Both of these test models are regarded as near scale models of the V-22 proprotor (tiltrotor). With basic TRAC sensitivities established, initial TRAC predictions are compared to results of an extensive test of an isolated model proprotor. The test was that of the TiltRotor Aeroacoustic Model (TRAM) conducted in the Duits-Nederlandse Windtunnel (DNW). Predictions are compared to measured noise for the proprotor operating over an extensive range of conditions. The variation of predictions demonstrates the great care that must be taken in defining the blade motion. However, even with this variability, the predictions using the different blade modeling successfully capture (bracket) the levels and trends of the noise for conditions ranging from descent to ascent.
A Predictive Model for Readmissions Among Medicare Patients in a California Hospital.
Duncan, Ian; Huynh, Nhan
2017-11-17
Predictive models for hospital readmission rates are in high demand because of the Centers for Medicare & Medicaid Services (CMS) Hospital Readmission Reduction Program (HRRP). The LACE index is one of the most popular predictive tools among hospitals in the United States. The LACE index is a simple tool with 4 parameters: Length of stay, Acuity of admission, Comorbidity, and Emergency visits in the previous 6 months. The authors applied logistic regression to develop a predictive model for a medium-sized not-for-profit community hospital in California using patient-level data with more specific patient information (including 13 explanatory variables). Specifically, the logistic regression is applied to 2 populations: a general population including all patients and the specific group of patients targeted by the CMS penalty (characterized as ages 65 or older with select conditions). The 2 resulting logistic regression models have a higher sensitivity rate compared to the sensitivity of the LACE index. The C statistic values of the model applied to both populations demonstrate moderate levels of predictive power. The authors also build an economic model to demonstrate the potential financial impact of the use of the model for targeting high-risk patients in a sample hospital and demonstrate that, on balance, whether the hospital gains or loses from reducing readmissions depends on its margin and the extent of its readmission penalties.
Fan, X-J; Wan, X-B; Huang, Y; Cai, H-M; Fu, X-H; Yang, Z-L; Chen, D-K; Song, S-X; Wu, P-H; Liu, Q; Wang, L; Wang, J-P
2012-01-01
Background: Current imaging modalities are inadequate in preoperatively predicting regional lymph node metastasis (RLNM) status in rectal cancer (RC). Here, we designed support vector machine (SVM) model to address this issue by integrating epithelial–mesenchymal-transition (EMT)-related biomarkers along with clinicopathological variables. Methods: Using tissue microarrays and immunohistochemistry, the EMT-related biomarkers expression was measured in 193 RC patients. Of which, 74 patients were assigned to the training set to select the robust variables for designing SVM model. The SVM model predictive value was validated in the testing set (119 patients). Results: In training set, eight variables, including six EMT-related biomarkers and two clinicopathological variables, were selected to devise SVM model. In testing set, we identified 63 patients with high risk to RLNM and 56 patients with low risk. The sensitivity, specificity and overall accuracy of SVM in predicting RLNM were 68.3%, 81.1% and 72.3%, respectively. Importantly, multivariate logistic regression analysis showed that SVM model was indeed an independent predictor of RLNM status (odds ratio, 11.536; 95% confidence interval, 4.113–32.361; P<0.0001). Conclusion: Our SVM-based model displayed moderately strong predictive power in defining the RLNM status in RC patients, providing an important approach to select RLNM high-risk subgroup for neoadjuvant chemoradiotherapy. PMID:22538975
Prediction of Flows about Forebodies at High-Angle-of-Attack Dynamic Conditions
NASA Technical Reports Server (NTRS)
Fremaux, C. M.; vanDam, C. P.; Saephan, S.; DalBello, T.
2003-01-01
A Reynolds-average Navier Stokes method developed for rotorcraft type of flow problems is applied for predicting the forces and moments of forebody models at high-angle-of-attack dynamic conditions and for providing insight into the flow characteristics at these conditions. Wind-tunnel results from rotary testing on generic forebody models conducted by NASA Langley and DERA are used for comparison. This paper focuses on the steady-state flow problem.
Perception of differences in naturalistic dynamic scenes, and a V1-based model.
To, Michelle P S; Gilchrist, Iain D; Tolhurst, David J
2015-01-16
We investigate whether a computational model of V1 can predict how observers rate perceptual differences between paired movie clips of natural scenes. Observers viewed 198 pairs of movies clips, rating how different the two clips appeared to them on a magnitude scale. Sixty-six of the movie pairs were naturalistic and those remaining were low-pass or high-pass spatially filtered versions of those originals. We examined three ways of comparing a movie pair. The Spatial Model compared corresponding frames between each movie pairwise, combining those differences using Minkowski summation. The Temporal Model compared successive frames within each movie, summed those differences for each movie, and then compared the overall differences between the paired movies. The Ordered-Temporal Model combined elements from both models, and yielded the single strongest predictions of observers' ratings. We modeled naturalistic sustained and transient impulse functions and compared frames directly with no temporal filtering. Overall, modeling naturalistic temporal filtering improved the models' performance; in particular, the predictions of the ratings for low-pass spatially filtered movies were much improved by employing a transient impulse function. The correlations between model predictions and observers' ratings rose from 0.507 without temporal filtering to 0.759 (p = 0.01%) when realistic impulses were included. The sustained impulse function and the Spatial Model carried more weight in ratings for normal and high-pass movies, whereas the transient impulse function with the Ordered-Temporal Model was most important for spatially low-pass movies. This is consistent with models in which high spatial frequency channels with sustained responses primarily code for spatial details in movies, while low spatial frequency channels with transient responses code for dynamic events. © 2015 ARVO.
NASA Astrophysics Data System (ADS)
Wang, Ruzhuan; Li, Weiguo; Ji, Baohua; Fang, Daining
2017-10-01
The particulate-reinforced ultra-high temperature ceramics (pUHTCs) have been particularly developed for fabricating the leading edge and nose cap of hypersonic vehicles. They have drawn intensive attention of scientific community for their superior fracture strength at high temperatures. However, there is no proper model for predicting the fracture strength of the ceramic composites and its dependency on temperature. In order to account for the effect of temperature on the fracture strength, we proposed a concept called energy storage capacity, by which we derived a new model for depicting the temperature dependent fracture toughness of the composites. This model gives a quantitative relationship between the fracture toughness and temperature. Based on this temperature dependent fracture toughness model and Griffith criterion, we developed a new fracture strength model for predicting the temperature dependent fracture strength of pUHTCs at different temperatures. The model takes into account the effects of temperature, flaw size and residual stress without any fitting parameters. The predictions of the fracture strength of pUHTCs in argon or air agreed well with the experimental measurements. Additionally, our model offers a mechanism of monitoring the strength of materials at different temperatures by testing the change of flaw size. This study provides a quantitative tool for design, evaluation and monitoring of the fracture properties of pUHTCs at high temperatures.
Improving Gastric Cancer Outcome Prediction Using Single Time-Point Artificial Neural Network Models
Nilsaz-Dezfouli, Hamid; Abu-Bakar, Mohd Rizam; Arasan, Jayanthi; Adam, Mohd Bakri; Pourhoseingholi, Mohamad Amin
2017-01-01
In cancer studies, the prediction of cancer outcome based on a set of prognostic variables has been a long-standing topic of interest. Current statistical methods for survival analysis offer the possibility of modelling cancer survivability but require unrealistic assumptions about the survival time distribution or proportionality of hazard. Therefore, attention must be paid in developing nonlinear models with less restrictive assumptions. Artificial neural network (ANN) models are primarily useful in prediction when nonlinear approaches are required to sift through the plethora of available information. The applications of ANN models for prognostic and diagnostic classification in medicine have attracted a lot of interest. The applications of ANN models in modelling the survival of patients with gastric cancer have been discussed in some studies without completely considering the censored data. This study proposes an ANN model for predicting gastric cancer survivability, considering the censored data. Five separate single time-point ANN models were developed to predict the outcome of patients after 1, 2, 3, 4, and 5 years. The performance of ANN model in predicting the probabilities of death is consistently high for all time points according to the accuracy and the area under the receiver operating characteristic curve. PMID:28469384
Meso-Scale Modelling of Deformation, Damage and Failure in Dual Phase Steels
NASA Astrophysics Data System (ADS)
Sari Sarraf, Iman
Advanced high strength steels (AHSS), such as dual phase (DP) and transformation induced plasticity (TRIP) steels, offer high ductility, formability, and strength, as well as high strength-to-weight ratio and improved crash resistance. Dual phase steels belong to a family of high strength grades which consist of martensite, responsible for strengthening, distributed in a ductile ferrite matrix which accommodates the deformation throughout the forming process. It has been shown that the predominant damage mechanism and failure in DP steels depends on the ferrite and martensite grain sizes and their morphology, and can range from a mixture of brittle and ductile rupture to completely ductile rupture in a quasi-static uniaxial tension test. In this study, a hybrid finite element cellular automata model, initially proposed by Anton Shterenlikht (2003), was developed to evaluate the forming behaviour and predict the onset of instability and damage evolution in a dual phase steel. In this model, the finite element constitutive model is used to represent macro-level strain gradients and a damage variable, and two different cell arrays are designed to represent the ductile and brittle fracture modes in meso-scale. In the FE part of the model, a modified Rousselier ductile damage model is developed to account for nucleation, growth and coalescence of voids. Also, several rate-dependent hardening models were developed and evaluated to describe the work hardening flow curve of DP600. Based on statistical analysis and simulation results, a modified Johnson-Cook (JC) model and a multiplicative combination of the Voce-modified JC functions were found to be the most accurate hardening models. The developed models were then implemented in a user-defined material subroutine (VUMAT) for ABAQUS/Explicit finite element simulation software to simulate uniaxial tension tests at strain rates ranging from 0.001 1/s to 1000 1/s, Marciniak tests, and electrohydraulic free-forming (EHFF). The modified Rousselier model could successfully predict the dynamic behaviour, the onset of instability and damage progress in DP600 tensile test specimens. Also, the forming limit curve (FLC) as well as the final damage geometry in DP600 Marciniak specimens was successfully predicted and compared with experiments. A hybrid FE+CA model was utilized to predict the major fracture mode of DP600 and DP780 sheet specimens under different deformation conditions. This hybrid model is able to predict quasi-cleavage fracture in ultra-fine and coarse-grained DP600 and DP780 at low and high strain rates. The numerical results showed the capabilities of the proposed model to predict that higher martensite volume fraction, greater ferrite grain sizes and higher strain rates promote the brittle fracture mechanism whereas finer grain sizes and higher temperature alter the dominant fracture mechanism to ductile mode.
Predictive Structure-Based Toxicology Approaches To Assess the Androgenic Potential of Chemicals.
Trisciuzzi, Daniela; Alberga, Domenico; Mansouri, Kamel; Judson, Richard; Novellino, Ettore; Mangiatordi, Giuseppe Felice; Nicolotti, Orazio
2017-11-27
We present a practical and easy-to-run in silico workflow exploiting a structure-based strategy making use of docking simulations to derive highly predictive classification models of the androgenic potential of chemicals. Models were trained on a high-quality chemical collection comprising 1689 curated compounds made available within the CoMPARA consortium from the US Environmental Protection Agency and were integrated with a two-step applicability domain whose implementation had the effect of improving both the confidence in prediction and statistics by reducing the number of false negatives. Among the nine androgen receptor X-ray solved structures, the crystal 2PNU (entry code from the Protein Data Bank) was associated with the best performing structure-based classification model. Three validation sets comprising each 2590 compounds extracted by the DUD-E collection were used to challenge model performance and the effectiveness of Applicability Domain implementation. Next, the 2PNU model was applied to screen and prioritize two collections of chemicals. The first is a small pool of 12 representative androgenic compounds that were accurately classified based on outstanding rationale at the molecular level. The second is a large external blind set of 55450 chemicals with potential for human exposure. We show how the use of molecular docking provides highly interpretable models and can represent a real-life option as an alternative nontesting method for predictive toxicology.
What Matters from Admissions? Identifying Success and Risk Among Canadian Dental Students.
Plouffe, Rachel A; Hammond, Robert; Goldberg, Harvey A; Chahine, Saad
2018-05-01
The aims of this study were to determine whether different student profiles would emerge in terms of high and low GPA performance in each year of dental school and to investigate the utility of preadmissions variables in predicting performance and performance stability throughout each year of dental school. Data from 11 graduating cohorts (2004-14) at the Schulich School of Medicine & Dentistry, University of Western Ontario, Canada, were collected and analyzed using bivariate correlations, latent profile analysis, and hierarchical generalized linear models (HGLMs). The data analyzed were for 616 students in total (332 males and 284 females). Four models were developed to predict adequate and poor performance throughout each of four dental school years. An additional model was developed to predict student performance stability across time. Two separate student profiles reflecting high and low GPA performance across each year of dental school were identified, and scores on cognitive preadmissions variables differentially predicted the probability of grouping into high and low performance profiles. Students with higher pre-dental GPAs and DAT chemistry were most likely to remain stable in a high-performance group across each year of dental school. Overall, the findings suggest that selection committees should consider pre-dental GPA and DAT chemistry scores as important tools for predicting dental school performance and stability across time. This research is important in determining how to better predict success and failure in various areas of preclinical dentistry courses and to provide low-performing students with adequate academic assistance.
Yavuzkurt, S; Iyer, G R
2001-05-01
A review of the past work done on free stream turbulence (FST) as applied to gas turbine heat transfer and its implications for future studies are presented. It is a comprehensive approach to the results of many individual studies in order to derive the general conclusions that could be inferred from all rather than discussing the results of each individual study. Three experimental and four modeling studies are reviewed. The first study was on prediction of heat transfer for film cooled gas turbine blades. An injection model was devised and used along with a 2-D low Reynolds number k-epsilon model of turbulence for the calculations. Reasonable predictions of heat transfer coefficients were obtained for turbulence intensity levels up to 7%. Following this modeling study a series of experimental studies were undertaken. The objective of these studies was to gain a fundamental understanding of mechanisms through which FST augments the surface heat transfer. Experiments were carried out in the boundary layer and in the free stream downstream of a gas turbine combustor simulator, which produced initial FST levels of 25.7% and large length scales (About 5-10 cm for a boundary layer 4-5 cm thick). This result showed that one possible mechanism through which FST caused an increase in heat transfer is by increasing the number of ejection events. In a number of modeling studies several well-known k-epsilon models were compared for their predictive capability of heat transfer and skin friction coefficients under moderate and high FST. Two data sets, one with moderate levels of FST (about 7%) and one with high levels of FST (about 25%) were used for this purpose. Although the models did fine in their predictions of cases with no FST (baseline cases) they failed one by one as FST levels were increased. Under high FST (25.7% initial intensity) predictions of Stanton number were between 35-100% in error compared to the measured values. Later a new additional production term indicating the interaction between the turbulent kinetic energy (TKE) and mean velocity gradients was introduced into the TKE equation. The predicted results of skin friction coefficient and Stanton number were excellent both in moderate and high FST cases. In fact these model also gave good predictions of TKE profiles whereas earlier unmodified models did not predict the correct TKE profiles even under moderate turbulence intensities. Although this new production term seems to achieve the purpose, it is the authors' belief that it is diffusion term of the TKE equation, which needs to be modified in order to fit the physical events in high FST boundary layer flows. The results of these studies are currently being used to come up with new diffusion model for the TKE equation.
Denys, S; Van Loey, A M; Hendrickx, M E
2000-01-01
A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.
2014-01-01
Background Locating the protein-coding genes in novel genomes is essential to understanding and exploiting the genomic information but it is still difficult to accurately predict all the genes. The recent availability of detailed information about transcript structure from high-throughput sequencing of messenger RNA (RNA-Seq) delineates many expressed genes and promises increased accuracy in gene prediction. Computational gene predictors have been intensively developed for and tested in well-studied animal genomes. Hundreds of fungal genomes are now or will soon be sequenced. The differences of fungal genomes from animal genomes and the phylogenetic sparsity of well-studied fungi call for gene-prediction tools tailored to them. Results SnowyOwl is a new gene prediction pipeline that uses RNA-Seq data to train and provide hints for the generation of Hidden Markov Model (HMM)-based gene predictions and to evaluate the resulting models. The pipeline has been developed and streamlined by comparing its predictions to manually curated gene models in three fungal genomes and validated against the high-quality gene annotation of Neurospora crassa; SnowyOwl predicted N. crassa genes with 83% sensitivity and 65% specificity. SnowyOwl gains sensitivity by repeatedly running the HMM gene predictor Augustus with varied input parameters and selectivity by choosing the models with best homology to known proteins and best agreement with the RNA-Seq data. Conclusions SnowyOwl efficiently uses RNA-Seq data to produce accurate gene models in both well-studied and novel fungal genomes. The source code for the SnowyOwl pipeline (in Python) and a web interface (in PHP) is freely available from http://sourceforge.net/projects/snowyowl/. PMID:24980894
Hilkens, N A; Algra, A; Greving, J P
2016-01-01
ESSENTIALS: Prediction models may help to identify patients at high risk of bleeding on antiplatelet therapy. We identified existing prediction models for bleeding and validated them in patients with cerebral ischemia. Five prediction models were identified, all of which had some methodological shortcomings. Performance in patients with cerebral ischemia was poor. Background Antiplatelet therapy is widely used in secondary prevention after a transient ischemic attack (TIA) or ischemic stroke. Bleeding is the main adverse effect of antiplatelet therapy and is potentially life threatening. Identification of patients at increased risk of bleeding may help target antiplatelet therapy. This study sought to identify existing prediction models for intracranial hemorrhage or major bleeding in patients on antiplatelet therapy and evaluate their performance in patients with cerebral ischemia. We systematically searched PubMed and Embase for existing prediction models up to December 2014. The methodological quality of the included studies was assessed with the CHARMS checklist. Prediction models were externally validated in the European Stroke Prevention Study 2, comprising 6602 patients with a TIA or ischemic stroke. We assessed discrimination and calibration of included prediction models. Five prediction models were identified, of which two were developed in patients with previous cerebral ischemia. Three studies assessed major bleeding, one studied intracerebral hemorrhage and one gastrointestinal bleeding. None of the studies met all criteria of good quality. External validation showed poor discriminative performance, with c-statistics ranging from 0.53 to 0.64 and poor calibration. A limited number of prediction models is available that predict intracranial hemorrhage or major bleeding in patients on antiplatelet therapy. The methodological quality of the models varied, but was generally low. Predictive performance in patients with cerebral ischemia was poor. In order to reliably predict the risk of bleeding in patients with cerebral ischemia, development of a prediction model according to current methodological standards is needed. © 2015 International Society on Thrombosis and Haemostasis.
NASA Astrophysics Data System (ADS)
Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi
2016-08-01
Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.
Rutkoski, Jessica; Poland, Jesse; Mondal, Suchismita; Autrique, Enrique; Pérez, Lorena González; Crossa, José; Reynolds, Matthew; Singh, Ravi
2016-01-01
Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial measurements of canopy temperature, and green and red normalized difference vegetation index as secondary traits in pedigree and genomic best linear unbiased prediction models could increase accuracy for grain yield in wheat, Triticum aestivum L., using 557 lines in five environments. Secondary traits on training and test sets, and grain yield on the training set were modeled as multivariate, and compared to univariate models with grain yield on the training set only. Cross validation accuracies were estimated within and across-environment, with and without replication, and with and without correcting for days to heading. We observed that, within environment, with unreplicated secondary trait data, and without correcting for days to heading, secondary traits increased accuracies for grain yield by 56% in pedigree, and 70% in genomic prediction models, on average. Secondary traits increased accuracy slightly more when replicated, and considerably less when models corrected for days to heading. In across-environment prediction, trends were similar but less consistent. These results show that secondary traits measured in high-throughput could be used in pedigree and genomic prediction to improve accuracy. This approach could improve selection in wheat during early stages if validated in early-generation breeding plots. PMID:27402362
Constitutive modelling of lubricants in concentrated contacts at high slide to roll ratios
NASA Technical Reports Server (NTRS)
Tevaarwerk, J. L.
1985-01-01
A constitutive lubricant friction model for rolling/sliding concentrated contacts such as gears and cams was developed, based upon the Johnson and Tevaarwerk fluid rheology model developed earlier. The friction model reported herein differs from the earlier rheological models in that very large slide to roll ratios can now be accommodated by modifying the thermal response of the model. Also the elastic response of the fluid has been omitted from the model, thereby making it much simpler for use in the high slide to roll contacts. The effects of this simplification are very minimal on the outcome of the predicted friction losses (less than 1%). In essence then the lubricant friction model developed for the high slide to roll ratios treats the fluid in the concentrated contact as consisting of a nonlinear viscous element that is pressure, temperature, and strain rate dependent in its shear response. The fluid rheological constants required for the prediction of the friction losses at different contact conditions are obtained by traction measurements on several of the currently used gear lubricants. An example calculation, using this model and the fluid parameters obtained from the experiments, shows that it correctly predicts trends and magnitude of gear mesh losses measured elsewhere for the same fluids tested here.
Rai, Praveen Kumar; Nathawat, Mahendra Singh; Rai, Shalini
2013-01-01
This paper explores the scope of malaria-susceptibility modelling to predict malaria occurrence in an area. An attempt has been made in Varanasi district, India, to evaluate the status of malaria disease and to develop a model by which malaria-prone zones could be predicted using five classes of relative malaria susceptibility, i.e.very low, low, moderate, high and very high categories. The information value (Info Val) method was used to assess malaria occurrence and various time-were used as the independent variables. A geographical information system (GIS) is employed to investigate associations between such variables and distribution of different mosquitoes responsible for malaria transmission. Accurate prediction of risk depends on a number of variables, such as land use, NDVI, climatic factors, population, distance to health centres, ponds, streams and roads etc., all of which have an influence on malaria transmission or reporting. Climatic factors, particularly rainfall, temperature and relative humidity, are known to have a major influence on the biology of mosquitoes. To produce a malaria-susceptibility map using this method, weightings are calculated for various classes in each group. The groups are then superimposed to prepare a Malaria Susceptibility Index (MSI) map. We found that 3.87% of the malaria cases were found in areas with a low malaria-susceptibility level predicted from the model, whereas 39.86% and 26.29% of malaria cases were found in predicted high and very high susceptibility level areas, respectively. Malaria susceptibility modelled using a GIS may have a role in predicting the risks of malaria and enable public health interventions to be better targeted.
Crevillén-García, D
2018-04-01
Time-consuming numerical simulators for solving groundwater flow and dissolution models of physico-chemical processes in deep aquifers normally require some of the model inputs to be defined in high-dimensional spaces in order to return realistic results. Sometimes, the outputs of interest are spatial fields leading to high-dimensional output spaces. Although Gaussian process emulation has been satisfactorily used for computing faithful and inexpensive approximations of complex simulators, these have been mostly applied to problems defined in low-dimensional input spaces. In this paper, we propose a method for simultaneously reducing the dimensionality of very high-dimensional input and output spaces in Gaussian process emulators for stochastic partial differential equation models while retaining the qualitative features of the original models. This allows us to build a surrogate model for the prediction of spatial fields in such time-consuming simulators. We apply the methodology to a model of convection and dissolution processes occurring during carbon capture and storage.
NASA Astrophysics Data System (ADS)
Day, Jonathan J.; Tietsche, Steffen; Collins, Mat; Goessling, Helge F.; Guemas, Virginie; Guillory, Anabelle; Hurlin, William J.; Ishii, Masayoshi; Keeley, Sarah P. E.; Matei, Daniela; Msadek, Rym; Sigmond, Michael; Tatebe, Hiroaki; Hawkins, Ed
2016-06-01
Recent decades have seen significant developments in climate prediction capabilities at seasonal-to-interannual timescales. However, until recently the potential of such systems to predict Arctic climate had rarely been assessed. This paper describes a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Interannual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable. In order to achieve this, a coordinated set of idealised initial-value predictability experiments, with seven general circulation models, was conducted. This was the first model intercomparison project designed to quantify the predictability of Arctic climate on seasonal to interannual timescales. Here we present a description of the archived data set (which is available at the British Atmospheric Data Centre), an assessment of Arctic sea ice extent and volume predictability estimates in these models, and an investigation into to what extent predictability is dependent on the initial state. The inclusion of additional models expands the range of sea ice volume and extent predictability estimates, demonstrating that there is model diversity in the potential to make seasonal-to-interannual timescale predictions. We also investigate whether sea ice forecasts started from extreme high and low sea ice initial states exhibit higher levels of potential predictability than forecasts started from close to the models' mean state, and find that the result depends on the metric. Although designed to address Arctic predictability, we describe the archived data here so that others can use this data set to assess the predictability of other regions and modes of climate variability on these timescales, such as the El Niño-Southern Oscillation.
Multi-scale predictions of massive conifer mortality due to chronic temperature rise
NASA Astrophysics Data System (ADS)
McDowell, N. G.; Williams, A. P.; Xu, C.; Pockman, W. T.; Dickman, L. T.; Sevanto, S.; Pangle, R.; Limousin, J.; Plaut, J.; Mackay, D. S.; Ogee, J.; Domec, J. C.; Allen, C. D.; Fisher, R. A.; Jiang, X.; Muss, J. D.; Breshears, D. D.; Rauscher, S. A.; Koven, C.
2016-03-01
Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our ability to accurately simulate drought-induced forest impacts remains highly uncertain in part owing to our failure to integrate physiological measurements, regional-scale models, and dynamic global vegetation models (DGVMs). Here we show consistent predictions of widespread mortality of needleleaf evergreen trees (NET) within Southwest USA by 2100 using state-of-the-art models evaluated against empirical data sets. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ψpd) thresholds (April-August mean) beyond which photosynthesis, hydraulic and stomatal conductance, and carbohydrate availability approached zero. The evaluated regional models accurately predicted NET Ψpd, and 91% of predictions (10 out of 11) exceeded mortality thresholds within the twenty-first century due to temperature rise. The independent DGVMs predicted >=50% loss of Northern Hemisphere NET by 2100, consistent with the NET findings for Southwest USA. Notably, the global models underestimated future mortality within Southwest USA, highlighting that predictions of future mortality within global models may be underestimates. Taken together, the validated regional predictions and the global simulations predict widespread conifer loss in coming decades under projected global warming.
Multi-scale predictions of massive conifer mortality due to chronic temperature rise
McDowell, Nathan G.; Williams, A.P.; Xu, C.; Pockman, W. T.; Dickman, L. T.; Sevanto, Sanna; Pangle, R.; Limousin, J.; Plaut, J.J.; Mackay, D.S.; Ogee, J.; Domec, Jean-Christophe; Allen, Craig D.; Fisher, Rosie A.; Jiang, X.; Muss, J.D.; Breshears, D.D.; Rauscher, Sara A.; Koven, C.
2016-01-01
Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our ability to accurately simulate drought-induced forest impacts remains highly uncertain in part owing to our failure to integrate physiological measurements, regional-scale models, and dynamic global vegetation models (DGVMs). Here we show consistent predictions of widespread mortality of needleleaf evergreen trees (NET) within Southwest USA by 2100 using state-of-the-art models evaluated against empirical data sets. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ψpd) thresholds (April–August mean) beyond which photosynthesis, hydraulic and stomatal conductance, and carbohydrate availability approached zero. The evaluated regional models accurately predicted NET Ψpd, and 91% of predictions (10 out of 11) exceeded mortality thresholds within the twenty-first century due to temperature rise. The independent DGVMs predicted ≥50% loss of Northern Hemisphere NET by 2100, consistent with the NET findings for Southwest USA. Notably, the global models underestimated future mortality within Southwest USA, highlighting that predictions of future mortality within global models may be underestimates. Taken together, the validated regional predictions and the global simulations predict widespread conifer loss in coming decades under projected global warming.
An accurate model for predicting high frequency noise of nanoscale NMOS SOI transistors
NASA Astrophysics Data System (ADS)
Shen, Yanfei; Cui, Jie; Mohammadi, Saeed
2017-05-01
A nonlinear and scalable model suitable for predicting high frequency noise of N-type Metal Oxide Semiconductor (NMOS) transistors is presented. The model is developed for a commercial 45 nm CMOS SOI technology and its accuracy is validated through comparison with measured performance of a microwave low noise amplifier. The model employs the virtual source nonlinear core and adds parasitic elements to accurately simulate the RF behavior of multi-finger NMOS transistors up to 40 GHz. For the first time, the traditional long-channel thermal noise model is supplemented with an injection noise model to accurately represent the noise behavior of these short-channel transistors up to 26 GHz. The developed model is simple and easy to extract, yet very accurate.
Ranjbar, Mansour; Shoghli, Alireza; Kolifarhood, Goodarz; Tabatabaei, Seyed Mehdi; Amlashi, Morteza; Mohammadi, Mahdi
2016-03-02
Malaria re-introduction is a challenge in elimination settings. To prevent re-introduction, receptivity, vulnerability, and health system capacity of foci should be monitored using appropriate tools. This study aimed to design an applicable model to monitor predicting factors of re-introduction of malaria in highly prone areas. This exploratory, descriptive study was conducted in a pre-elimination setting with a high-risk of malaria transmission re-introduction. By using nominal group technique and literature review, a list of predicting indicators for malaria re-introduction and outbreak was defined. Accordingly, a checklist was developed and completed in the field for foci affected by re-introduction and for cleared-up foci as a control group, for a period of 12 weeks before re-introduction and for the same period in the previous year. Using field data and analytic hierarchical process (AHP), each variable and its sub-categories were weighted, and by calculating geometric means for each sub-category, score of corresponding cells of interaction matrices, lower and upper threshold of different risks strata, including low and mild risk of re-introduction and moderate and high risk of malaria outbreaks, were determined. The developed predictive model was calibrated through resampling with different sets of explanatory variables using R software. Sensitivity and specificity of the model were calculated based on new samples. Twenty explanatory predictive variables of malaria re-introduction were identified and a predictive model was developed. Unpermitted immigrants from endemic neighbouring countries were determined as a pivotal factor (AHP score: 0.181). Moreover, quality of population movement (0.114), following malaria transmission season (0.088), average daily minimum temperature in the previous 8 weeks (0.062), an outdoor resting shelter for vectors (0.045), and rainfall (0.042) were determined. Positive and negative predictive values of the model were 81.8 and 100 %, respectively. This study introduced a new, simple, yet reliable model to forecast malaria re-introduction and outbreaks eight weeks in advance in pre-elimination and elimination settings. The model incorporates comprehensive deterministic factors that can easily be measured in the field, thereby facilitating preventive measures.
Approximating high-dimensional dynamics by barycentric coordinates with linear programming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirata, Yoshito, E-mail: yoshito@sat.t.u-tokyo.ac.jp; Aihara, Kazuyuki; Suzuki, Hideyuki
The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics ofmore » the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.« less
Approximating high-dimensional dynamics by barycentric coordinates with linear programming.
Hirata, Yoshito; Shiro, Masanori; Takahashi, Nozomu; Aihara, Kazuyuki; Suzuki, Hideyuki; Mas, Paloma
2015-01-01
The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.
Weaver, Brian Thomas; Fitzsimons, Kathleen; Braman, Jerrod; Haut, Roger
2016-09-01
The goal of the current study was to expand on previous work to validate the use of pressure insole technology in conjunction with linear regression models to predict the free torque at the shoe-surface interface that is generated while wearing different athletic shoes. Three distinctly different shoe designs were utilised. The stiffness of each shoe was determined with a material's testing machine. Six participants wore each shoe that was fitted with an insole pressure measurement device and performed rotation trials on an embedded force plate. A pressure sensor mask was constructed from those sensors having a high linear correlation with free torque values. Linear regression models were developed to predict free torques from these pressure sensor data. The models were able to accurately predict their own free torque well (RMS error 3.72 ± 0.74 Nm), but not that of the other shoes (RMS error 10.43 ± 3.79 Nm). Models performing self-prediction were also able to measure differences in shoe stiffness. The results of the current study showed the need for participant-shoe specific linear regression models to insure high prediction accuracy of free torques from pressure sensor data during isolated internal and external rotations of the body with respect to a planted foot.
A dual-process account of auditory change detection.
McAnally, Ken I; Martin, Russell L; Eramudugolla, Ranmalee; Stuart, Geoffrey W; Irvine, Dexter R F; Mattingley, Jason B
2010-08-01
Listeners can be "deaf" to a substantial change in a scene comprising multiple auditory objects unless their attention has been directed to the changed object. It is unclear whether auditory change detection relies on identification of the objects in pre- and post-change scenes. We compared the rates at which listeners correctly identify changed objects with those predicted by change-detection models based on signal detection theory (SDT) and high-threshold theory (HTT). Detected changes were not identified as accurately as predicted by models based on either theory, suggesting that some changes are detected by a process that does not support change identification. Undetected changes were identified as accurately as predicted by the HTT model but much less accurately than predicted by the SDT models. The process underlying change detection was investigated further by determining receiver-operating characteristics (ROCs). ROCs did not conform to those predicted by either a SDT or a HTT model but were well modeled by a dual-process that incorporated HTT and SDT components. The dual-process model also accurately predicted the rates at which detected and undetected changes were correctly identified.
Advances in modeling sorption and diffusion of moisture in porous reactive materials.
Harley, Stephen J; Glascoe, Elizabeth A; Lewicki, James P; Maxwell, Robert S
2014-06-23
Water-vapor-uptake experiments were performed on a silica-filled poly(dimethylsiloxane) (PDMS) network and modeled by using two different approaches. The data was modeled by using established methods and the model parameters were used to predict moisture uptake in a sample. The predictions are reasonably good, but not outstanding; many of the shortcomings of the modeling are discussed. A high-fidelity modeling approach is derived and used to improve the modeling of moisture uptake and diffusion. Our modeling approach captures the physics and kinetics of diffusion and adsorption/desorption, simultaneously. It predicts uptake better than the established method; more importantly, it is also able to predict outgassing. The material used for these studies is a filled-PDMS network; physical interpretations concerning the sorption and diffusion of moisture in this network are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Stauch, V. J.; Gwerder, M.; Gyalistras, D.; Oldewurtel, F.; Schubiger, F.; Steiner, P.
2010-09-01
The high proportion of the total primary energy consumption by buildings has increased the public interest in the optimisation of buildings' operation and is also driving the development of novel control approaches for the indoor climate. In this context, the use of weather forecasts presents an interesting and - thanks to advances in information and predictive control technologies and the continuous improvement of numerical weather prediction (NWP) models - an increasingly attractive option for improved building control. Within the research project OptiControl (www.opticontrol.ethz.ch) predictive control strategies for a wide range of buildings, heating, ventilation and air conditioning (HVAC) systems, and representative locations in Europe are being investigated with the aid of newly developed modelling and simulation tools. Grid point predictions for radiation, temperature and humidity of the high-resolution limited area NWP model COSMO-7 (see www.cosmo-model.org) and local measurements are used as disturbances and inputs into the building system. The control task considered consists in minimizing energy consumption whilst maintaining occupant comfort. In this presentation, we use the simulation-based OptiControl methodology to investigate the impact of COSMO-7 forecasts on the performance of predictive building control and the resulting energy savings. For this, we have selected building cases that were shown to benefit from a prediction horizon of up to 3 days and therefore, are particularly suitable for the use of numerical weather forecasts. We show that the controller performance is sensitive to the quality of the weather predictions, most importantly of the incident radiation on differently oriented façades. However, radiation is characterised by a high temporal and spatial variability in part caused by small scale and fast changing cloud formation and dissolution processes being only partially represented in the COSMO-7 grid point predictions. On the other hand, buildings are affected by particularly local weather conditions at the building site. To overcome this discrepancy, we make use of local measurements to statistically adapt the COSMO-7 model output to the meteorological conditions at the building. For this, we have developed a general correction algorithm that exploits systematic properties of the COSMO-7 prediction error and explicitly estimates the degree of temporal autocorrelation using online recursive estimation. The resulting corrected predictions are improved especially for the first few hours being the most crucial for the predictive controller and, ultimately for the reduction of primary energy consumption using predictive control. The use of numerical weather forecasts in predictive building automation is one example in a wide field of weather dependent advanced energy saving technologies. Our work particularly highlights the need for the development of specifically tailored weather forecast products by (statistical) postprocessing in order to meet the requirements of specific applications.
NASA Astrophysics Data System (ADS)
Wu, Yenan; Zhong, Ping-an; Xu, Bin; Zhu, Feilin; Fu, Jisi
2017-06-01
Using climate models with high performance to predict the future climate changes can increase the reliability of results. In this paper, six kinds of global climate models that selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under Representative Concentration Path (RCP) 4.5 scenarios were compared to the measured data during baseline period (1960-2000) and evaluate the simulation performance on precipitation. Since the results of single climate models are often biased and highly uncertain, we examine the back propagation (BP) neural network and arithmetic mean method in assembling the precipitation of multi models. The delta method was used to calibrate the result of single model and multimodel ensembles by arithmetic mean method (MME-AM) during the validation period (2001-2010) and the predicting period (2011-2100). We then use the single models and multimodel ensembles to predict the future precipitation process and spatial distribution. The result shows that BNU-ESM model has the highest simulation effect among all the single models. The multimodel assembled by BP neural network (MME-BP) has a good simulation performance on the annual average precipitation process and the deterministic coefficient during the validation period is 0.814. The simulation capability on spatial distribution of precipitation is: calibrated MME-AM > MME-BP > calibrated BNU-ESM. The future precipitation predicted by all models tends to increase as the time period increases. The order of average increase amplitude of each season is: winter > spring > summer > autumn. These findings can provide useful information for decision makers to make climate-related disaster mitigation plans.
Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Manh, Cuong Do
2015-01-01
The Mekong Delta is highly vulnerable to climate change and a dengue endemic area in Vietnam. This study aims to examine the association between climate factors and dengue incidence and to identify the best climate prediction model for dengue incidence in Can Tho city, the Mekong Delta area in Vietnam. We used three different regression models comprising: standard multiple regression model (SMR), seasonal autoregressive integrated moving average model (SARIMA), and Poisson distributed lag model (PDLM) to examine the association between climate factors and dengue incidence over the period 2003-2010. We validated the models by forecasting dengue cases for the period of January-December, 2011 using the mean absolute percentage error (MAPE). Receiver operating characteristics curves were used to analyze the sensitivity of the forecast of a dengue outbreak. The results indicate that temperature and relative humidity are significantly associated with changes in dengue incidence consistently across the model methods used, but not cumulative rainfall. The Poisson distributed lag model (PDLM) performs the best prediction of dengue incidence for a 6, 9, and 12-month period and diagnosis of an outbreak however the SARIMA model performs a better prediction of dengue incidence for a 3-month period. The simple or standard multiple regression performed highly imprecise prediction of dengue incidence. We recommend a follow-up study to validate the model on a larger scale in the Mekong Delta region and to analyze the possibility of incorporating a climate-based dengue early warning method into the national dengue surveillance system. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Anderson, O. F.; Guinotte, J. M.; Clark, M. R.; Rowden, A. A.; Mormede, S.; Davies, A. J.; Bowden, D.
2016-02-01
Spatial management of vulnerable marine ecosystems requires accurate knowledge of their distribution. Predictive habitat suitability modelling, using species presence data and a suite of environmental predictor variables, has emerged as a useful tool for inferring distributions outside of known areas. However, validation of model predictions is typically performed with non-independent data. In this study, we describe the results of habitat suitability models constructed for four deep-sea reef-forming coral species across a large region of the South Pacific Ocean using MaxEnt and Boosted Regression Tree modelling approaches. In order to validate model predictions we conducted a photographic survey on a set of seamounts in an un-sampled area east of New Zealand. The likelihood of habitat suitable for reef forming corals on these seamounts was predicted to be variable, but very high in some regions, particularly where levels of aragonite saturation, dissolved oxygen, and particulate organic carbon were optimal. However, the observed frequency of coral occurrence in analyses of survey photographic data was much lower than expected, and patterns of observed versus predicted coral distribution were not highly correlated. The poor performance of these broad-scale models is attributed to lack of recorded species absences to inform the models, low precision of global bathymetry models, and lack of data on the geomorphology and substrate of the seamounts at scales appropriate to the modelled taxa. This demonstrates the need to use caution when interpreting and applying broad-scale, presence-only model results for fisheries management and conservation planning in data poor areas of the deep sea. Future improvements in the predictive performance of broad-scale models will rely on the continued advancement in modelling of environmental predictor variables, refinements in modelling approaches to deal with missing or biased inputs, and incorporation of true absence data.
Groenendijk, Piet; Heinen, Marius; Klammler, Gernot; Fank, Johann; Kupfersberger, Hans; Pisinaras, Vassilios; Gemitzi, Alexandra; Peña-Haro, Salvador; García-Prats, Alberto; Pulido-Velazquez, Manuel; Perego, Alessia; Acutis, Marco; Trevisan, Marco
2014-11-15
The agricultural sector faces the challenge of ensuring food security without an excessive burden on the environment. Simulation models provide excellent instruments for researchers to gain more insight into relevant processes and best agricultural practices and provide tools for planners for decision making support. The extent to which models are capable of reliable extrapolation and prediction is important for exploring new farming systems or assessing the impacts of future land and climate changes. A performance assessment was conducted by testing six detailed state-of-the-art models for simulation of nitrate leaching (ARMOSA, COUPMODEL, DAISY, EPIC, SIMWASER/STOTRASIM, SWAP/ANIMO) for lysimeter data of the Wagna experimental field station in Eastern Austria, where the soil is highly vulnerable to nitrate leaching. Three consecutive phases were distinguished to gain insight in the predictive power of the models: 1) a blind test for 2005-2008 in which only soil hydraulic characteristics, meteorological data and information about the agricultural management were accessible; 2) a calibration for the same period in which essential information on field observations was additionally available to the modellers; and 3) a validation for 2009-2011 with the corresponding type of data available as for the blind test. A set of statistical metrics (mean absolute error, root mean squared error, index of agreement, model efficiency, root relative squared error, Pearson's linear correlation coefficient) was applied for testing the results and comparing the models. None of the models performed good for all of the statistical metrics. Models designed for nitrate leaching in high-input farming systems had difficulties in accurately predicting leaching in low-input farming systems that are strongly influenced by the retention of nitrogen in catch crops and nitrogen fixation by legumes. An accurate calibration does not guarantee a good predictive power of the model. Nevertheless all models were able to identify years and crops with high- and low-leaching rates. Copyright © 2014 Elsevier B.V. All rights reserved.
Moreira, Paulo A; Oliveira, João Tiago; Cloninger, Kevin M; Azevedo, Carla; Sousa, Alexandra; Castro, Jorge; Cloninger, C Robert
2012-11-01
Personality traits related to persistence and self-regulation of long-term goals can predict academic performance as well or better than measures of intelligence. The 5-factor model has been suggested to outperform some other personality tests in predicting academic performance, but it has not been compared to Cloninger's psychobiological model for this purpose. The aims of this study were, first, to evaluate the psychometric properties of the Junior Temperament and Character Inventory (JTCI) in adolescents in Portugal, and second, to evaluate the comparative validity of age-appropriate versions of Cloninger's 7-factor psychobiological model, Costa and McCrae's five-factor NEO-Personality Inventory-Revised, and Cattell's 16-personality-factor inventory in predicting academic achievement. All dimensions of the Portuguese JTCI had moderate to strong internal consistency. The Cattell's sixteen-personality-factor and NEO inventories provided strong construct validity for the JTCI in students younger than 17 years and for the revised adult version (TCI-Revised) in those 17 years and older. High TCI Persistence predicted school grades regardless of age as much or more than intelligence. High TCI Harm Avoidance, high Self-Transcendence, and low TCI Novelty Seeking were additional predictors in students older than 17. The psychobiological model, as measured by the JTCI and TCI-Revised, performed as well or better than other measures of personality or intelligence in predicting academic achievement. Copyright © 2012 Elsevier Inc. All rights reserved.
Evaluation of procedures for prediction of unconventional gas in the presence of geologic trends
Attanasi, E.D.; Coburn, T.C.
2009-01-01
This study extends the application of local spatial nonparametric prediction models to the estimation of recoverable gas volumes in continuous-type gas plays to regimes where there is a single geologic trend. A transformation is presented, originally proposed by Tomczak, that offsets the distortions caused by the trend. This article reports on numerical experiments that compare predictive and classification performance of the local nonparametric prediction models based on the transformation with models based on Euclidean distance. The transformation offers improvement in average root mean square error when the trend is not severely misspecified. Because of the local nature of the models, even those based on Euclidean distance in the presence of trends are reasonably robust. The tests based on other model performance metrics such as prediction error associated with the high-grade tracts and the ability of the models to identify sites with the largest gas volumes also demonstrate the robustness of both local modeling approaches. ?? International Association for Mathematical Geology 2009.
Dissolved oxygen content prediction in crab culture using a hybrid intelligent method
Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang
2016-01-01
A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds. PMID:27270206
Dissolved oxygen content prediction in crab culture using a hybrid intelligent method.
Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang
2016-06-08
A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds.
Rinnan, Asmund; Bruun, Sander; Lindedam, Jane; ...
2017-02-07
Here, the combination of NIR spectroscopy and chemometrics is a powerful correlation method for predicting the chemical constituents in biological matrices, such as the glucose and xylose content of straw. However, difficulties arise when it comes to predicting enzymatic glucose and xylose release potential, which is matrix dependent. Further complications are caused by xylose and glucose release potential being highly intercorrelated. This study emphasizes the importance of understanding the causal relationship between the model and the constituent of interest. It investigates the possibility of using near-infrared spectroscopy to evaluate the ethanol potential of wheat straw by analyzing more than 1000more » samples from different wheat varieties and growth conditions. During the calibration model development, the prime emphasis was to investigate the correlation structure between the two major quality traits for saccharification of wheat straw: glucose and xylose release. The large sample set enabled a versatile and robust calibration model to be developed, showing that the prediction model for xylose release is based on a causal relationship with the NIR spectral data. In contrast, the prediction of glucose release was found to be highly dependent on the intercorrelation with xylose release. If this correlation is broken, the model performance breaks down. A simple method was devised for avoiding this breakdown and can be applied to any large dataset for investigating the causality or lack of causality of a prediction model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinnan, Asmund; Bruun, Sander; Lindedam, Jane
Here, the combination of NIR spectroscopy and chemometrics is a powerful correlation method for predicting the chemical constituents in biological matrices, such as the glucose and xylose content of straw. However, difficulties arise when it comes to predicting enzymatic glucose and xylose release potential, which is matrix dependent. Further complications are caused by xylose and glucose release potential being highly intercorrelated. This study emphasizes the importance of understanding the causal relationship between the model and the constituent of interest. It investigates the possibility of using near-infrared spectroscopy to evaluate the ethanol potential of wheat straw by analyzing more than 1000more » samples from different wheat varieties and growth conditions. During the calibration model development, the prime emphasis was to investigate the correlation structure between the two major quality traits for saccharification of wheat straw: glucose and xylose release. The large sample set enabled a versatile and robust calibration model to be developed, showing that the prediction model for xylose release is based on a causal relationship with the NIR spectral data. In contrast, the prediction of glucose release was found to be highly dependent on the intercorrelation with xylose release. If this correlation is broken, the model performance breaks down. A simple method was devised for avoiding this breakdown and can be applied to any large dataset for investigating the causality or lack of causality of a prediction model.« less
NASA Astrophysics Data System (ADS)
Judt, Falko
2017-04-01
A tremendous increase in computing power has facilitated the advent of global convection-resolving numerical weather prediction (NWP) models. Although this technological breakthrough allows for the seamless prediction of weather from local to global scales, the predictability of multiscale weather phenomena in these models is not very well known. To address this issue, we conducted a global high-resolution (4-km) predictability experiment using the Model for Prediction Across Scales (MPAS), a state-of-the-art global NWP model developed at the National Center for Atmospheric Research. The goals of this experiment are to investigate error growth from convective to planetary scales and to quantify the intrinsic, scale-dependent predictability limits of atmospheric motions. The globally uniform resolution of 4 km allows for the explicit treatment of organized deep moist convection, alleviating grave limitations of previous predictability studies that either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. Error growth is analyzed within the context of an "identical twin" experiment setup: the error is defined as the difference between a 20-day long "nature run" and a simulation that was perturbed with small-amplitude noise, but is otherwise identical. It is found that in convectively active regions, errors grow by several orders of magnitude within the first 24 h ("super-exponential growth"). The errors then spread to larger scales and begin a phase of exponential growth after 2-3 days when contaminating the baroclinic zones. After 16 days, the globally averaged error saturates—suggesting that the intrinsic limit of atmospheric predictability (in a general sense) is about two weeks, which is in line with earlier estimates. However, error growth rates differ between the tropics and mid-latitudes as well as between the troposphere and stratosphere, highlighting that atmospheric predictability is a complex problem. The comparatively slower error growth in the tropics and in the stratosphere indicates that certain weather phenomena could potentially have longer predictability than currently thought.
NASA Astrophysics Data System (ADS)
Hazza, Muataz Hazza F. Al; Adesta, Erry Y. T.; Riza, Muhammad
2013-12-01
High speed milling has many advantages such as higher removal rate and high productivity. However, higher cutting speed increase the flank wear rate and thus reducing the cutting tool life. Therefore estimating and predicting the flank wear length in early stages reduces the risk of unaccepted tooling cost. This research presents a neural network model for predicting and simulating the flank wear in the CNC end milling process. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the flank wear length. Then the measured data have been used to train the developed neural network model. Artificial neural network (ANN) was applied to predict the flank wear length. The neural network contains twenty hidden layer with feed forward back propagation hierarchical. The neural network has been designed with MATLAB Neural Network Toolbox. The results show a high correlation between the predicted and the observed flank wear which indicates the validity of the models.
EXTREMELY METAL-POOR STARS AND A HIERARCHICAL CHEMICAL EVOLUTION MODEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komiya, Yutaka
2011-07-20
Early phases of the chemical evolution of the Galaxy and formation history of extremely metal-poor (EMP) stars are investigated using hierarchical galaxy formation models. We build a merger tree of the Galaxy according to the extended Press-Schechter theory. We follow the chemical evolution along the tree and compare the model results to the metallicity distribution function and abundance ratio distribution of the Milky Way halo. We adopt three different initial mass functions (IMFs). In a previous study, we argued that the typical mass, M{sub md}, of EMP stars should be high, M{sub md} {approx} 10 M{sub sun}, based on studiesmore » of binary origin carbon-rich EMP stars. In this study, we show that only the high-mass IMF can explain an observed small number of EMP stars. For relative element abundances, the high-mass IMF and the Salpeter IMF predict similar distributions. We also investigate dependence on nucleosynthetic yields of supernovae (SNe). The theoretical SN yields by Kobayashi et al. and Chieffi and Limongi show reasonable agreement with observations for {alpha}-elements. Our model predicts a significant scatter of element abundances at [Fe/H] < -3. We adopted the stellar yields derived in the work of Francois et al., which produce the best agreement between the observational data and the one-zone chemical evolution model. Their yields well reproduce a trend of the averaged abundances of EMP stars but predict much larger scatter than do the observations. The model with hypernovae predicts Zn abundance, in agreement with the observations, but other models predict lower [Zn/Fe]. Ejecta from the hypernovae with large explosion energy is mixed in large mass and decreases the scatter of the element abundances.« less
Potts, Richard; Faith, J Tyler
2015-10-01
Interaction of orbital insolation cycles defines a predictive model of alternating phases of high- and low-climate variability for tropical East Africa over the past 5 million years. This model, which is described in terms of climate variability stages, implies repeated increases in landscape/resource instability and intervening periods of stability in East Africa. It predicts eight prolonged (>192 kyr) eras of intensified habitat instability (high variability stages) in which hominin evolutionary innovations are likely to have occurred, potentially by variability selection. The prediction that repeated shifts toward high climate variability affected paleoenvironments and evolution is tested in three ways. In the first test, deep-sea records of northeast African terrigenous dust flux (Sites 721/722) and eastern Mediterranean sapropels (Site 967A) show increased and decreased variability in concert with predicted shifts in climate variability. These regional measurements of climate dynamics are complemented by stratigraphic observations in five basins with lengthy stratigraphic and paleoenvironmental records: the mid-Pleistocene Olorgesailie Basin, the Plio-Pleistocene Turkana and Olduvai Basins, and the Pliocene Tugen Hills sequence and Hadar Basin--all of which show that highly variable landscapes inhabited by hominin populations were indeed concentrated in predicted stages of prolonged high climate variability. Second, stringent null-model tests demonstrate a significant association of currently known first and last appearance datums (FADs and LADs) of the major hominin lineages, suites of technological behaviors, and dispersal events with the predicted intervals of prolonged high climate variability. Palynological study in the Nihewan Basin, China, provides a third test, which shows the occupation of highly diverse habitats in eastern Asia, consistent with the predicted increase in adaptability in dispersing Oldowan hominins. Integration of fossil, archeological, sedimentary, and paleolandscape evidence illustrates the potential influence of prolonged high variability on the origin and spread of critical adaptations and lineages in the evolution of Homo. The growing body of data concerning environmental dynamics supports the idea that the evolution of adaptability in response to climate and overall ecological instability represents a unifying theme in hominin evolutionary history. Published by Elsevier Ltd.
Otsuka, Yuta; Yamamoto, Masahiro; Tanaka, Hideji; Otsuka, Makoto
2015-01-01
Theophylline anhydrate (TA) in tablet formulation is transformed into monohydrate (TH) at high humidity and the phase transformation affected dissolution behavior. Near-infrared spectroscopic (NIR) method is applied to predict the change of pharmaceutical properties of TA tablets during storage at high humidity. The tablet formulation containing TA, lactose, crystalline cellulose and magnesium stearate was compressed at 4.8 kN. Pharmaceutical properties of TA tables were measured by NIR, X-ray diffraction analysis, dissolution test and tablet hardness. TA tablet was almost 100% transformed into TH after 24 hours at RH 96%. The pharmaceutical properties of TA tablets, such as tablet hardness, 20 min dissolution amount (D20) and increase of tablet weight (TW), changed with the degree of hydration. Calibration models for TW, tablet hardness and D20 to predict the pharmaceutical properties at high-humidity conditions were developed on the basis of the NIR spectra by partial least squares regression analysis. The relationships between predicted and actual measured values for TW, tablet hardness and D20 had straight lines, respectively. From the results of NIR-chemometrics, it was confirmed that these predicted models had high accuracy to monitor the tablet properties during storage at high humidity.
NASA Technical Reports Server (NTRS)
Quattrochi, D. A.; Lapenta, W. M.; Crosson, W. L.; Estes, M. G., Jr.; Limaye, A.; Kahn, M.
2006-01-01
Local and state agencies are responsible for developing state implementation plans to meet National Ambient Air Quality Standards. Numerical models used for this purpose simulate the transport and transformation of criteria pollutants and their precursors. The specification of land use/land cover (LULC) plays an important role in controlling modeled surface meteorology and emissions. NASA researchers have worked with partners and Atlanta stakeholders to incorporate an improved high-resolution LULC dataset for the Atlanta area within their modeling system and to assess meteorological and air quality impacts of Urban Heat Island (UHI) mitigation strategies. The new LULC dataset provides a more accurate representation of land use, has the potential to improve model accuracy, and facilitates prediction of LULC changes. Use of the new LULC dataset for two summertime episodes improved meteorological forecasts, with an existing daytime cold bias of approx. equal to 3 C reduced by 30%. Model performance for ozone prediction did not show improvement. In addition, LULC changes due to Atlanta area urbanization were predicted through 2030, for which model simulations predict higher urban air temperatures. The incorporation of UHI mitigation strategies partially offset this warming trend. The data and modeling methods used are generally applicable to other U.S. cities.
Predicting U.S. Army Reserve Unit Manning Using Market Demographics
2015-06-01
develops linear regression , classification tree, and logistic regression models to determine the ability of the location to support manning requirements... logistic regression model delivers predictive results that allow decision-makers to identify locations with a high probability of meeting unit...manning requirements. The recommendation of this thesis is that the USAR implement the logistic regression model. 14. SUBJECT TERMS U.S
Badgett, Majors J; Boyes, Barry; Orlando, Ron
2018-02-16
A model that predicts retention for peptides using a HALO ® penta-HILIC column and gradient elution was created. Coefficients for each amino acid were derived using linear regression analysis and these coefficients can be summed to predict the retention of peptides. This model has a high correlation between experimental and predicted retention times (0.946), which is on par with previous RP and HILIC models. External validation of the model was performed using a set of H. pylori samples on the same LC-MS system used to create the model, and the deviation from actual to predicted times was low. Apart from amino acid composition, length and location of amino acid residues on a peptide were examined and two site-specific corrections for hydrophobic residues at the N-terminus as well as hydrophobic residues one spot over from the N-terminus were created. Copyright © 2017 Elsevier B.V. All rights reserved.
Predicting outcome of Morris water maze test in vascular dementia mouse model with deep learning
Mogi, Masaki; Iwanami, Jun; Min, Li-Juan; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Kan-no, Harumi; Ikeda, Shuntaro; Higaki, Jitsuo; Horiuchi, Masatsugu
2018-01-01
The Morris water maze test (MWM) is one of the most popular and established behavioral tests to evaluate rodents’ spatial learning ability. The conventional training period is around 5 days, but there is no clear evidence or guidelines about the appropriate duration. In many cases, the final outcome of the MWM seems predicable from previous data and their trend. So, we assumed that if we can predict the final result with high accuracy, the experimental period could be shortened and the burden on testers reduced. An artificial neural network (ANN) is a useful modeling method for datasets that enables us to obtain an accurate mathematical model. Therefore, we constructed an ANN system to estimate the final outcome in MWM from the previously obtained 4 days of data in both normal mice and vascular dementia model mice. Ten-week-old male C57B1/6 mice (wild type, WT) were subjected to bilateral common carotid artery stenosis (WT-BCAS) or sham-operation (WT-sham). At 6 weeks after surgery, we evaluated their cognitive function with MWM. Mean escape latency was significantly longer in WT-BCAS than in WT-sham. All data were collected and used as training data and test data for the ANN system. We defined a multiple layer perceptron (MLP) as a prediction model using an open source framework for deep learning, Chainer. After a certain number of updates, we compared the predicted values and actual measured values with test data. A significant correlation coefficient was derived form the updated ANN model in both WT-sham and WT-BCAS. Next, we analyzed the predictive capability of human testers with the same datasets. There was no significant difference in the prediction accuracy between human testers and ANN models in both WT-sham and WT-BCAS. In conclusion, deep learning method with ANN could predict the final outcome in MWM from 4 days of data with high predictive accuracy in a vascular dementia model. PMID:29415035
Predicting outcome of Morris water maze test in vascular dementia mouse model with deep learning.
Higaki, Akinori; Mogi, Masaki; Iwanami, Jun; Min, Li-Juan; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Kan-No, Harumi; Ikeda, Shuntaro; Higaki, Jitsuo; Horiuchi, Masatsugu
2018-01-01
The Morris water maze test (MWM) is one of the most popular and established behavioral tests to evaluate rodents' spatial learning ability. The conventional training period is around 5 days, but there is no clear evidence or guidelines about the appropriate duration. In many cases, the final outcome of the MWM seems predicable from previous data and their trend. So, we assumed that if we can predict the final result with high accuracy, the experimental period could be shortened and the burden on testers reduced. An artificial neural network (ANN) is a useful modeling method for datasets that enables us to obtain an accurate mathematical model. Therefore, we constructed an ANN system to estimate the final outcome in MWM from the previously obtained 4 days of data in both normal mice and vascular dementia model mice. Ten-week-old male C57B1/6 mice (wild type, WT) were subjected to bilateral common carotid artery stenosis (WT-BCAS) or sham-operation (WT-sham). At 6 weeks after surgery, we evaluated their cognitive function with MWM. Mean escape latency was significantly longer in WT-BCAS than in WT-sham. All data were collected and used as training data and test data for the ANN system. We defined a multiple layer perceptron (MLP) as a prediction model using an open source framework for deep learning, Chainer. After a certain number of updates, we compared the predicted values and actual measured values with test data. A significant correlation coefficient was derived form the updated ANN model in both WT-sham and WT-BCAS. Next, we analyzed the predictive capability of human testers with the same datasets. There was no significant difference in the prediction accuracy between human testers and ANN models in both WT-sham and WT-BCAS. In conclusion, deep learning method with ANN could predict the final outcome in MWM from 4 days of data with high predictive accuracy in a vascular dementia model.
Genetic risk prediction using a spatial autoregressive model with adaptive lasso.
Wen, Yalu; Shen, Xiaoxi; Lu, Qing
2018-05-31
With rapidly evolving high-throughput technologies, studies are being initiated to accelerate the process toward precision medicine. The collection of the vast amounts of sequencing data provides us with great opportunities to systematically study the role of a deep catalog of sequencing variants in risk prediction. Nevertheless, the massive amount of noise signals and low frequencies of rare variants in sequencing data pose great analytical challenges on risk prediction modeling. Motivated by the development in spatial statistics, we propose a spatial autoregressive model with adaptive lasso (SARAL) for risk prediction modeling using high-dimensional sequencing data. The SARAL is a set-based approach, and thus, it reduces the data dimension and accumulates genetic effects within a single-nucleotide variant (SNV) set. Moreover, it allows different SNV sets having various magnitudes and directions of effect sizes, which reflects the nature of complex diseases. With the adaptive lasso implemented, SARAL can shrink the effects of noise SNV sets to be zero and, thus, further improve prediction accuracy. Through simulation studies, we demonstrate that, overall, SARAL is comparable to, if not better than, the genomic best linear unbiased prediction method. The method is further illustrated by an application to the sequencing data from the Alzheimer's Disease Neuroimaging Initiative. Copyright © 2018 John Wiley & Sons, Ltd.
An Overview of Numerical Weather Prediction on Various Scales
NASA Astrophysics Data System (ADS)
Bao, J.-W.
2009-04-01
The increasing public need for detailed weather forecasts, along with the advances in computer technology, has motivated many research institutes and national weather forecasting centers to develop and run global as well as regional numerical weather prediction (NWP) models at high resolutions (i.e., with horizontal resolutions of ~10 km or higher for global models and 1 km or higher for regional models, and with ~60 vertical levels or higher). The need for running NWP models at high horizontal and vertical resolutions requires the implementation of non-hydrostatic dynamic core with a choice of horizontal grid configurations and vertical coordinates that are appropriate for high resolutions. Development of advanced numerics will also be needed for high resolution global and regional models, in particular, when the models are applied to transport problems and air quality applications. In addition to the challenges in numerics, the NWP community is also facing the challenges of developing physics parameterizations that are well suited for high-resolution NWP models. For example, when NWP models are run at resolutions of ~5 km or higher, the use of much more detailed microphysics parameterizations than those currently used in NWP model will become important. Another example is that regional NWP models at ~1 km or higher only partially resolve convective energy containing eddies in the lower troposphere. Parameterizations to account for the subgrid diffusion associated with unresolved turbulence still need to be developed. Further, physically sound parameterizations for air-sea interaction will be a critical component for tropical NWP models, particularly for hurricane predictions models. In this review presentation, the above issues will be elaborated on and the approaches to address them will be discussed.
Kessler, R C; van Loo, H M; Wardenaar, K J; Bossarte, R M; Brenner, L A; Cai, T; Ebert, D D; Hwang, I; Li, J; de Jonge, P; Nierenberg, A A; Petukhova, M V; Rosellini, A J; Sampson, N A; Schoevers, R A; Wilcox, M A; Zaslavsky, A M
2016-10-01
Heterogeneity of major depressive disorder (MDD) illness course complicates clinical decision-making. Although efforts to use symptom profiles or biomarkers to develop clinically useful prognostic subtypes have had limited success, a recent report showed that machine-learning (ML) models developed from self-reports about incident episode characteristics and comorbidities among respondents with lifetime MDD in the World Health Organization World Mental Health (WMH) Surveys predicted MDD persistence, chronicity and severity with good accuracy. We report results of model validation in an independent prospective national household sample of 1056 respondents with lifetime MDD at baseline. The WMH ML models were applied to these baseline data to generate predicted outcome scores that were compared with observed scores assessed 10-12 years after baseline. ML model prediction accuracy was also compared with that of conventional logistic regression models. Area under the receiver operating characteristic curve based on ML (0.63 for high chronicity and 0.71-0.76 for the other prospective outcomes) was consistently higher than for the logistic models (0.62-0.70) despite the latter models including more predictors. A total of 34.6-38.1% of respondents with subsequent high persistence chronicity and 40.8-55.8% with the severity indicators were in the top 20% of the baseline ML-predicted risk distribution, while only 0.9% of respondents with subsequent hospitalizations and 1.5% with suicide attempts were in the lowest 20% of the ML-predicted risk distribution. These results confirm that clinically useful MDD risk-stratification models can be generated from baseline patient self-reports and that ML methods improve on conventional methods in developing such models.
Kessler, Ronald C.; van Loo, Hanna M.; Wardenaar, Klaas J.; Bossarte, Robert M.; Brenner, Lisa A.; Cai, Tianxi; Ebert, David Daniel; Hwang, Irving; Li, Junlong; de Jonge, Peter; Nierenberg, Andrew A.; Petukhova, Maria V.; Rosellini, Anthony J.; Sampson, Nancy A.; Schoevers, Robert A.; Wilcox, Marsha A.; Zaslavsky, Alan M.
2015-01-01
Heterogeneity of major depressive disorder (MDD) illness course complicates clinical decision-making. While efforts to use symptom profiles or biomarkers to develop clinically useful prognostic subtypes have had limited success, a recent report showed that machine learning (ML) models developed from self-reports about incident episode characteristics and comorbidities among respondents with lifetime MDD in the World Health Organization World Mental Health (WMH) Surveys predicted MDD persistence, chronicity, and severity with good accuracy. We report results of model validation in an independent prospective national household sample of 1,056 respondents with lifetime MDD at baseline. The WMH ML models were applied to these baseline data to generate predicted outcome scores that were compared to observed scores assessed 10–12 years after baseline. ML model prediction accuracy was also compared to that of conventional logistic regression models. Area under the receiver operating characteristic curve (AUC) based on ML (.63 for high chronicity and .71–.76 for the other prospective outcomes) was consistently higher than for the logistic models (.62–.70) despite the latter models including more predictors. 34.6–38.1% of respondents with subsequent high persistence-chronicity and 40.8–55.8% with the severity indicators were in the top 20% of the baseline ML predicted risk distribution, while only 0.9% of respondents with subsequent hospitalizations and 1.5% with suicide attempts were in the lowest 20% of the ML predicted risk distribution. These results confirm that clinically useful MDD risk stratification models can be generated from baseline patient self-reports and that ML methods improve on conventional methods in developing such models. PMID:26728563
Model-based prediction of myelosuppression and recovery based on frequent neutrophil monitoring.
Netterberg, Ida; Nielsen, Elisabet I; Friberg, Lena E; Karlsson, Mats O
2017-08-01
To investigate whether a more frequent monitoring of the absolute neutrophil counts (ANC) during myelosuppressive chemotherapy, together with model-based predictions, can improve therapy management, compared to the limited clinical monitoring typically applied today. Daily ANC in chemotherapy-treated cancer patients were simulated from a previously published population model describing docetaxel-induced myelosuppression. The simulated values were used to generate predictions of the individual ANC time-courses, given the myelosuppression model. The accuracy of the predicted ANC was evaluated under a range of conditions with reduced amount of ANC measurements. The predictions were most accurate when more data were available for generating the predictions and when making short forecasts. The inaccuracy of ANC predictions was highest around nadir, although a high sensitivity (≥90%) was demonstrated to forecast Grade 4 neutropenia before it occurred. The time for a patient to recover to baseline could be well forecasted 6 days (±1 day) before the typical value occurred on day 17. Daily monitoring of the ANC, together with model-based predictions, could improve anticancer drug treatment by identifying patients at risk for severe neutropenia and predicting when the next cycle could be initiated.
Observational breakthroughs lead the way to improved hydrological predictions
NASA Astrophysics Data System (ADS)
Lettenmaier, Dennis P.
2017-04-01
New data sources are revolutionizing the hydrological sciences. The capabilities of hydrological models have advanced greatly over the last several decades, but until recently model capabilities have outstripped the spatial resolution and accuracy of model forcings (atmospheric variables at the land surface) and the hydrologic state variables (e.g., soil moisture; snow water equivalent) that the models predict. This has begun to change, as shown in two examples here: soil moisture and drought evolution over Africa as predicted by a hydrology model forced with satellite-derived precipitation, and observations of snow water equivalent at very high resolution over a river basin in California's Sierra Nevada.
Model-based influences on humans' choices and striatal prediction errors.
Daw, Nathaniel D; Gershman, Samuel J; Seymour, Ben; Dayan, Peter; Dolan, Raymond J
2011-03-24
The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors, and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making. Copyright © 2011 Elsevier Inc. All rights reserved.
Mapping the Transmission Risk of Zika Virus using Machine Learning Models.
Jiang, Dong; Hao, Mengmeng; Ding, Fangyu; Fu, Jingying; Li, Meng
2018-06-19
Zika virus, which has been linked to severe congenital abnormalities, is exacerbating global public health problems with its rapid transnational expansion fueled by increased global travel and trade. Suitability mapping of the transmission risk of Zika virus is essential for drafting public health plans and disease control strategies, which are especially important in areas where medical resources are relatively scarce. Predicting the risk of Zika virus outbreak has been studied in recent years, but the published literature rarely includes multiple model comparisons or predictive uncertainty analysis. Here, three relatively popular machine learning models including backward propagation neural network (BPNN), gradient boosting machine (GBM) and random forest (RF) were adopted to map the probability of Zika epidemic outbreak at the global level, pairing high-dimensional multidisciplinary covariate layers with comprehensive location data on recorded Zika virus infection in humans. The results show that the predicted high-risk areas for Zika transmission are concentrated in four regions: Southeastern North America, Eastern South America, Central Africa and Eastern Asia. To evaluate the performance of machine learning models, the 50 modeling processes were conducted based on a training dataset. The BPNN model obtained the highest predictive accuracy with a 10-fold cross-validation area under the curve (AUC) of 0.966 [95% confidence interval (CI) 0.965-0.967], followed by the GBM model (10-fold cross-validation AUC = 0.964[0.963-0.965]) and the RF model (10-fold cross-validation AUC = 0.963[0.962-0.964]). Based on training samples, compared with the BPNN-based model, we find that significant differences (p = 0.0258* and p = 0.0001***, respectively) are observed for prediction accuracies achieved by the GBM and RF models. Importantly, the prediction uncertainty introduced by the selection of absence data was quantified and could provide more accurate fundamental and scientific information for further study on disease transmission prediction and risk assessment. Copyright © 2018. Published by Elsevier B.V.
Validity of Models for Predicting BRCA1 and BRCA2 Mutations
Parmigiani, Giovanni; Chen, Sining; Iversen, Edwin S.; Friebel, Tara M.; Finkelstein, Dianne M.; Anton-Culver, Hoda; Ziogas, Argyrios; Weber, Barbara L.; Eisen, Andrea; Malone, Kathleen E.; Daling, Janet R.; Hsu, Li; Ostrander, Elaine A.; Peterson, Leif E.; Schildkraut, Joellen M.; Isaacs, Claudine; Corio, Camille; Leondaridis, Leoni; Tomlinson, Gail; Amos, Christopher I.; Strong, Louise C.; Berry, Donald A.; Weitzel, Jeffrey N.; Sand, Sharon; Dutson, Debra; Kerber, Rich; Peshkin, Beth N.; Euhus, David M.
2008-01-01
Background Deleterious mutations of the BRCA1 and BRCA2 genes confer susceptibility to breast and ovarian cancer. At least 7 models for estimating the probabilities of having a mutation are used widely in clinical and scientific activities; however, the merits and limitations of these models are not fully understood. Objective To systematically quantify the accuracy of the following publicly available models to predict mutation carrier status: BRCAPRO, family history assessment tool, Finnish, Myriad, National Cancer Institute, University of Pennsylvania, and Yale University. Design Cross-sectional validation study, using model predictions and BRCA1 or BRCA2 mutation status of patients different from those used to develop the models. Setting Multicenter study across Cancer Genetics Network participating centers. Patients 3 population-based samples of participants in research studies and 8 samples from genetic counseling clinics. Measurements Discrimination between individuals testing positive for a mutation in BRCA1 or BRCA2 from those testing negative, as measured by the c-statistic, and sensitivity and specificity of model predictions. Results The 7 models differ in their predictions. The better-performing models have a c-statistic around 80%. BRCAPRO has the largest c-statistic overall and in all but 2 patient subgroups, although the margin over other models is narrow in many strata. Outside of high-risk populations, all models have high false-negative and false-positive rates across a range of probability thresholds used to refer for mutation testing. Limitation Three recently published models were not included. Conclusions All models identify women who probably carry a deleterious mutation of BRCA1 or BRCA2 with adequate discrimination to support individualized genetic counseling, although discrimination varies across models and populations. PMID:17909205
Guiding Conformation Space Search with an All-Atom Energy Potential
Brunette, TJ; Brock, Oliver
2009-01-01
The most significant impediment for protein structure prediction is the inadequacy of conformation space search. Conformation space is too large and the energy landscape too rugged for existing search methods to consistently find near-optimal minima. To alleviate this problem, we present model-based search, a novel conformation space search method. Model-based search uses highly accurate information obtained during search to build an approximate, partial model of the energy landscape. Model-based search aggregates information in the model as it progresses, and in turn uses this information to guide exploration towards regions most likely to contain a near-optimal minimum. We validate our method by predicting the structure of 32 proteins, ranging in length from 49 to 213 amino acids. Our results demonstrate that model-based search is more effective at finding low-energy conformations in high-dimensional conformation spaces than existing search methods. The reduction in energy translates into structure predictions of increased accuracy. PMID:18536015
HIGH TIME-RESOLVED COMPARISONS FOR IN-DEPTH PROBING OF CMAQ FINE-PARTICLES AND GAS PREDICTIONS
Model evaluation is important to develop confidence in models and develop an understanding of their predictions. Most comparisons in the U.S. involve time-integrated measurements of 24-hours or longer. Comparisons against continuous or semi-continuous particle and gaseous measur...
Predicting agricultural impacts of large-scale drought: 2012 and the case for better modeling
USDA-ARS?s Scientific Manuscript database
We present an example of a simulation-based forecast for the 2012 U.S. maize growing season produced as part of a high-resolution, multi-scale, predictive mechanistic modeling study designed for decision support, risk management, and counterfactual analysis. The simulations undertaken for this analy...
Interpreting Disruption Prediction Models to Improve Plasma Control
NASA Astrophysics Data System (ADS)
Parsons, Matthew
2017-10-01
In order for the tokamak to be a feasible design for a fusion reactor, it is necessary to minimize damage to the machine caused by plasma disruptions. Accurately predicting disruptions is a critical capability for triggering any mitigative actions, and a modest amount of attention has been given to efforts that employ machine learning techniques to make these predictions. By monitoring diagnostic signals during a discharge, such predictive models look for signs that the plasma is about to disrupt. Typically these predictive models are interpreted simply to give a `yes' or `no' response as to whether a disruption is approaching. However, it is possible to extract further information from these models to indicate which input signals are more strongly correlated with the plasma approaching a disruption. If highly accurate predictive models can be developed, this information could be used in plasma control schemes to make better decisions about disruption avoidance. This work was supported by a Grant from the 2016-2017 Fulbright U.S. Student Program, administered by the Franco-American Fulbright Commission in France.
A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis
Noren, David P.; Long, Byron L.; Norel, Raquel; Rrhissorrakrai, Kahn; Hess, Kenneth; Hu, Chenyue Wendy; Bisberg, Alex J.; Schultz, Andre; Engquist, Erik; Liu, Li; Lin, Xihui; Chen, Gregory M.; Xie, Honglei; Hunter, Geoffrey A. M.; Norman, Thea; Friend, Stephen H.; Stolovitzky, Gustavo; Kornblau, Steven; Qutub, Amina A.
2016-01-01
Acute Myeloid Leukemia (AML) is a fatal hematological cancer. The genetic abnormalities underlying AML are extremely heterogeneous among patients, making prognosis and treatment selection very difficult. While clinical proteomics data has the potential to improve prognosis accuracy, thus far, the quantitative means to do so have yet to be developed. Here we report the results and insights gained from the DREAM 9 Acute Myeloid Prediction Outcome Prediction Challenge (AML-OPC), a crowdsourcing effort designed to promote the development of quantitative methods for AML prognosis prediction. We identify the most accurate and robust models in predicting patient response to therapy, remission duration, and overall survival. We further investigate patient response to therapy, a clinically actionable prediction, and find that patients that are classified as resistant to therapy are harder to predict than responsive patients across the 31 models submitted to the challenge. The top two performing models, which held a high sensitivity to these patients, substantially utilized the proteomics data to make predictions. Using these models, we also identify which signaling proteins were useful in predicting patient therapeutic response. PMID:27351836
NASA Astrophysics Data System (ADS)
Zwerschke, Nadescha; Bollen, Merle; Molis, Markus; Scrosati, Ricardo A.
2013-12-01
Environmental stress is a major factor structuring communities. An environmental stress model (ESM) predicts that overall species richness and diversity should follow a unimodal trend along the full stress gradient along which assemblages from a regional biota can occur (not to be confused with the intermediate disturbance hypothesis, which makes predictions only for basal species along an intermediate-to-high stress range). Past studies could only provide partial support for ESM predictions because of the limited stress range surveyed or a low sampling resolution. In this study, we measured overall species richness and diversity (considering all seaweeds and invertebrates) along the intertidal elevation gradient on two wave-sheltered rocky shores from Helgoland Island, on the NE Atlantic coast. In intertidal habitats, tides cause a pronounced gradient of increasing stress from low to high elevations. We surveyed up to nine contiguous elevation zones between the lowest intertidal elevation (low stress) and the high intertidal boundary (high stress). Nonlinear regression analyses revealed that overall species richness and diversity followed unimodal trends across elevations on the two studied shores. Therefore, our study suggests that the ESM might constitute a useful tool to predict local richness and diversity as a function of environmental stress. Performing tests on other systems (marine as well as terrestrial) should help to refine the model.
NASA Astrophysics Data System (ADS)
Counillon, Francois; Kimmritz, Madlen; Keenlyside, Noel; Wang, Yiguo; Bethke, Ingo
2017-04-01
The Norwegian Climate Prediction Model combines the Norwegian Earth System Model and the Ensemble Kalman Filter data assimilation method. The prediction skills of different versions of the system (with 30 members) are tested in the Nordic Seas and the Arctic region. Comparing the hindcasts branched from a SST-only assimilation run with a free ensemble run of 30 members, we are able to dissociate the predictability rooted in the external forcing from the predictability harvest from SST derived initial conditions. The latter adds predictability in the North Atlantic subpolar gyre and the Nordic Seas regions and overall there is very little degradation or forecast drift. Combined assimilation of SST and T-S profiles further improves the prediction skill in the Nordic Seas and into the Arctic. These lead to multi-year predictability in the high-latitudes. Ongoing developments of strongly coupled assimilation (ocean and sea ice) of ice concentration in idealized twin experiment will be shown, as way to further enhance prediction skill in the Arctic.
An individual risk prediction model for lung cancer based on a study in a Chinese population.
Wang, Xu; Ma, Kewei; Cui, Jiuwei; Chen, Xiao; Jin, Lina; Li, Wei
2015-01-01
Early detection and diagnosis remains an effective yet challenging approach to improve the clinical outcome of patients with cancer. Low-dose computed tomography screening has been suggested to improve the diagnosis of lung cancer in high-risk individuals. To make screening more efficient, it is necessary to identify individuals who are at high risk. We conducted a case-control study to develop a predictive model for identification of such high-risk individuals. Clinical data from 705 lung cancer patients and 988 population-based controls were used for the development and evaluation of the model. Associations between environmental variants and lung cancer risk were analyzed with a logistic regression model. The predictive accuracy of the model was determined by calculating the area under the receiver operating characteristic curve and the optimal operating point. Our results indicate that lung cancer risk factors included older age, male gender, lower education level, family history of cancer, history of chronic obstructive pulmonary disease, lower body mass index, smoking cigarettes, a diet with less seafood, vegetables, fruits, dairy products, soybean products and nuts, a diet rich in meat, and exposure to pesticides and cooking emissions. The area under the curve was 0.8851 and the optimal operating point was obtained. With a cutoff of 0.35, the false positive rate, true positive rate, and Youden index were 0.21, 0.87, and 0.66, respectively. The risk prediction model for lung cancer developed in this study could discriminate high-risk from low-risk individuals.
Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes.
Kamcev, Jovan; Paul, Donald R; Manning, Gerald S; Freeman, Benny D
2017-02-01
This study presents a framework for predicting salt permeability coefficients in ion exchange membranes in contact with an aqueous salt solution. The model, based on the solution-diffusion mechanism, was tested using experimental salt permeability data for a series of commercial ion exchange membranes. Equilibrium salt partition coefficients were calculated using a thermodynamic framework (i.e., Donnan theory), incorporating Manning's counterion condensation theory to calculate ion activity coefficients in the membrane phase and the Pitzer model to calculate ion activity coefficients in the solution phase. The model predicted NaCl partition coefficients in a cation exchange membrane and two anion exchange membranes, as well as MgCl 2 partition coefficients in a cation exchange membrane, remarkably well at higher external salt concentrations (>0.1 M) and reasonably well at lower external salt concentrations (<0.1 M) with no adjustable parameters. Membrane ion diffusion coefficients were calculated using a combination of the Mackie and Meares model, which assumes ion diffusion in water-swollen polymers is affected by a tortuosity factor, and a model developed by Manning to account for electrostatic effects. Agreement between experimental and predicted salt diffusion coefficients was good with no adjustable parameters. Calculated salt partition and diffusion coefficients were combined within the framework of the solution-diffusion model to predict salt permeability coefficients. Agreement between model and experimental data was remarkably good. Additionally, a simplified version of the model was used to elucidate connections between membrane structure (e.g., fixed charge group concentration) and salt transport properties.
Integrated Wind Power Planning Tool
NASA Astrophysics Data System (ADS)
Rosgaard, M. H.; Giebel, G.; Nielsen, T. S.; Hahmann, A.; Sørensen, P.; Madsen, H.
2012-04-01
This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the working title "Integrated Wind Power Planning Tool". The project commenced October 1, 2011, and the goal is to integrate a numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. With regard to the latter, one such simulation tool has been developed at the Wind Energy Division, Risø DTU, intended for long term power system planning. As part of the PSO project the inferior NWP model used at present will be replaced by the state-of-the-art Weather Research & Forecasting (WRF) model. Furthermore, the integrated simulation tool will be improved so it can handle simultaneously 10-50 times more turbines than the present ~ 300, as well as additional atmospheric parameters will be included in the model. The WRF data will also be input for a statistical short term prediction model to be developed in collaboration with ENFOR A/S; a danish company that specialises in forecasting and optimisation for the energy sector. This integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated prediction tool constitute scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator, and the need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2020, from the current 20%.
Prediction of long-term transverse creep compliance in high-temperature IM7/LaRC-RP46 composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, F.G.; Potter, B.D.
1994-12-31
An experimental study is performed which predicts long-term tensile transverse creep compliance of high-temperature IM7/LaRC-RP46 composites from short-term creep and recovery tests. The short-term tests were conducted for various stress levels at various fixed temperatures. Predictive nonlinear viscoelastic model developed by Schapery and experimental procedure were used to predict the long-term results in terms of master curve extrapolated from short-term tests.
Validating a Predictive Model of Acute Advanced Imaging Biomarkers in Ischemic Stroke.
Bivard, Andrew; Levi, Christopher; Lin, Longting; Cheng, Xin; Aviv, Richard; Spratt, Neil J; Lou, Min; Kleinig, Tim; O'Brien, Billy; Butcher, Kenneth; Zhang, Jingfen; Jannes, Jim; Dong, Qiang; Parsons, Mark
2017-03-01
Advanced imaging to identify tissue pathophysiology may provide more accurate prognostication than the clinical measures used currently in stroke. This study aimed to derive and validate a predictive model for functional outcome based on acute clinical and advanced imaging measures. A database of prospectively collected sub-4.5 hour patients with ischemic stroke being assessed for thrombolysis from 5 centers who had computed tomographic perfusion and computed tomographic angiography before a treatment decision was assessed. Individual variable cut points were derived from a classification and regression tree analysis. The optimal cut points for each assessment variable were then used in a backward logic regression to predict modified Rankin scale (mRS) score of 0 to 1 and 5 to 6. The variables remaining in the models were then assessed using a receiver operating characteristic curve analysis. Overall, 1519 patients were included in the study, 635 in the derivation cohort and 884 in the validation cohort. The model was highly accurate at predicting mRS score of 0 to 1 in all patients considered for thrombolysis therapy (area under the curve [AUC] 0.91), those who were treated (AUC 0.88) and those with recanalization (AUC 0.89). Next, the model was highly accurate at predicting mRS score of 5 to 6 in all patients considered for thrombolysis therapy (AUC 0.91), those who were treated (0.89) and those with recanalization (AUC 0.91). The odds ratio of thrombolysed patients who met the model criteria achieving mRS score of 0 to 1 was 17.89 (4.59-36.35, P <0.001) and for mRS score of 5 to 6 was 8.23 (2.57-26.97, P <0.001). This study has derived and validated a highly accurate model at predicting patient outcome after ischemic stroke. © 2017 American Heart Association, Inc.
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Riha, David S.
2013-01-01
Physics-based models are routinely used to predict the performance of engineered systems to make decisions such as when to retire system components, how to extend the life of an aging system, or if a new design will be safe or available. Model verification and validation (V&V) is a process to establish credibility in model predictions. Ideally, carefully controlled validation experiments will be designed and performed to validate models or submodels. In reality, time and cost constraints limit experiments and even model development. This paper describes elements of model V&V during the development and application of a probabilistic fracture assessment model to predict cracking in space shuttle main engine high-pressure oxidizer turbopump knife-edge seals. The objective of this effort was to assess the probability of initiating and growing a crack to a specified failure length in specific flight units for different usage and inspection scenarios. The probabilistic fracture assessment model developed in this investigation combined a series of submodels describing the usage, temperature history, flutter tendencies, tooth stresses and numbers of cycles, fatigue cracking, nondestructive inspection, and finally the probability of failure. The analysis accounted for unit-to-unit variations in temperature, flutter limit state, flutter stress magnitude, and fatigue life properties. The investigation focused on the calculation of relative risk rather than absolute risk between the usage scenarios. Verification predictions were first performed for three units with known usage and cracking histories to establish credibility in the model predictions. Then, numerous predictions were performed for an assortment of operating units that had flown recently or that were projected for future flights. Calculations were performed using two NASA-developed software tools: NESSUS(Registered Trademark) for the probabilistic analysis, and NASGRO(Registered Trademark) for the fracture mechanics analysis. The goal of these predictions was to provide additional information to guide decisions on the potential of reusing existing and installed units prior to the new design certification.
Hong, Wandong; Lin, Suhan; Zippi, Maddalena; Geng, Wujun; Stock, Simon; Zimmer, Vincent; Xu, Chunfang; Zhou, Mengtao
2017-01-01
Early prediction of disease severity of acute pancreatitis (AP) would be helpful for triaging patients to the appropriate level of care and intervention. The aim of the study was to develop a model able to predict Severe Acute Pancreatitis (SAP). A total of 647 patients with AP were enrolled. The demographic data, hematocrit, High-Density Lipoprotein Cholesterol (HDL-C) determinant at time of admission, Blood Urea Nitrogen (BUN), and serum creatinine (Scr) determinant at time of admission and 24 hrs after hospitalization were collected and analyzed statistically. Multivariate logistic regression indicated that HDL-C at admission and BUN and Scr at 24 hours (hrs) were independently associated with SAP. A logistic regression function (LR model) was developed to predict SAP as follows: -2.25-0.06 HDL-C (mg/dl) at admission + 0.06 BUN (mg/dl) at 24 hours + 0.66 Scr (mg/dl) at 24 hours. The optimism-corrected c-index for LR model was 0.832 after bootstrap validation. The area under the receiver operating characteristic curve for LR model for the prediction of SAP was 0.84. The LR model consists of HDL-C at admission and BUN and Scr at 24 hours, representing an additional tool to stratify patients at risk of SAP.
Abdel-Dayem, M S; Annajar, B B; Hanafi, H A; Obenauer, P J
2012-05-01
The increased cases of cutaneous leishmaniasis vectored by Phlebotomus papatasi (Scopoli) in Libya have driven considerable effort to develop a predictive model for the potential geographical distribution of this disease. We collected adult P. papatasi from 17 sites in Musrata and Yefern regions of Libya using four different attraction traps. Our trap results and literature records describing the distribution of P. papatasi were incorporated into a MaxEnt algorithm prediction model that used 22 environmental variables. The model showed a high performance (AUC = 0.992 and 0.990 for training and test data, respectively). High suitability for P. papatasi was predicted to be largely confined to the coast at altitudes <600 m. Regions south of 300 degrees N latitude were calculated as unsuitable for this species. Jackknife analysis identified precipitation as having the most significant predictive power, while temperature and elevation variables were less influential. The National Leishmaniasis Control Program in Libya may find this information useful in their efforts to control zoonotic cutaneous leishmaniasis. Existing records are strongly biased toward a few geographical regions, and therefore, further sand fly collections are warranted that should include documentation of such factors as soil texture and humidity, land cover, and normalized difference vegetation index (NDVI) data to increase the model's predictive power.
NASA Astrophysics Data System (ADS)
MacDonald, D. D.; Saleh, A.; Lee, S. K.; Azizi, O.; Rosas-Camacho, O.; Al-Marzooqi, A.; Taylor, M.
2011-04-01
The prediction of corrosion damage of canisters to experimentally inaccessible times is vitally important in assessing various concepts for the disposal of High Level Nuclear Waste. Such prediction can only be made using deterministic models, whose predictions are constrained by the time-invariant natural laws. In this paper, we describe the measurement of experimental electrochemical data that will allow the prediction of damage to the carbon steel overpack of the super container in Belgium's proposed Boom Clay repository by using the Point Defect Model (PDM). PDM parameter values are obtained by optimizing the model on experimental, wide-band electrochemical impedance spectroscopy data.
Development of Multi-Layered Floating Floor for Cabin Noise Reduction
NASA Astrophysics Data System (ADS)
Song, Jee-Hun; Hong, Suk-Yoon; Kwon, Hyun-Wung
2017-12-01
Recently, regulations pertaining to the noise and vibration environment of ship cabins have been strengthened. In this paper, a numerical model is developed for multi-layered floating floor to predict the structure-borne noise in ship cabins. The theoretical model consists of multi-panel structures lined with high-density mineral wool. The predicted results for structure-borne noise when multi-layered floating floor is used are compared to the measure-ments made of a mock-up. A comparison of the predicted results and the experimental one shows that the developed model could be an effective tool for predicting structure-borne noise in ship cabins.
Use of model calibration to achieve high accuracy in analysis of computer networks
Frogner, Bjorn; Guarro, Sergio; Scharf, Guy
2004-05-11
A system and method are provided for creating a network performance prediction model, and calibrating the prediction model, through application of network load statistical analyses. The method includes characterizing the measured load on the network, which may include background load data obtained over time, and may further include directed load data representative of a transaction-level event. Probabilistic representations of load data are derived to characterize the statistical persistence of the network performance variability and to determine delays throughout the network. The probabilistic representations are applied to the network performance prediction model to adapt the model for accurate prediction of network performance. Certain embodiments of the method and system may be used for analysis of the performance of a distributed application characterized as data packet streams.
Techniques for predicting high-risk drivers for alcohol countermeasures. Volume 1, Technical report
DOT National Transportation Integrated Search
1979-05-01
This technical report, a companion to the Volume II User Manual by the same name describes the development and testing of predictive models for identifying individual with a high risk of alcohol/related (A/R) crash involvement. From a literature revi...
Snitkin, Evan S; Dudley, Aimée M; Janse, Daniel M; Wong, Kaisheen; Church, George M; Segrè, Daniel
2008-01-01
Background Understanding the response of complex biochemical networks to genetic perturbations and environmental variability is a fundamental challenge in biology. Integration of high-throughput experimental assays and genome-scale computational methods is likely to produce insight otherwise unreachable, but specific examples of such integration have only begun to be explored. Results In this study, we measured growth phenotypes of 465 Saccharomyces cerevisiae gene deletion mutants under 16 metabolically relevant conditions and integrated them with the corresponding flux balance model predictions. We first used discordance between experimental results and model predictions to guide a stage of experimental refinement, which resulted in a significant improvement in the quality of the experimental data. Next, we used discordance still present in the refined experimental data to assess the reliability of yeast metabolism models under different conditions. In addition to estimating predictive capacity based on growth phenotypes, we sought to explain these discordances by examining predicted flux distributions visualized through a new, freely available platform. This analysis led to insight into the glycerol utilization pathway and the potential effects of metabolic shortcuts on model results. Finally, we used model predictions and experimental data to discriminate between alternative raffinose catabolism routes. Conclusions Our study demonstrates how a new level of integration between high throughput measurements and flux balance model predictions can improve understanding of both experimental and computational results. The added value of a joint analysis is a more reliable platform for specific testing of biological hypotheses, such as the catabolic routes of different carbon sources. PMID:18808699
Male dominance rank and reproductive success in chimpanzees, Pan troglodytes schweinfurthii.
Wroblewski, Emily E; Murray, Carson M; Keele, Brandon F; Schumacher-Stankey, Joann C; Hahn, Beatrice H; Pusey, Anne E
2009-01-01
Competition for fertile females determines male reproductive success in many species. The priority of access model predicts that male dominance rank determines access to females, but this model has been difficult to test in wild populations, particularly in promiscuous mating systems. Tests of the model have produced variable results, probably because of the differing socioecological circumstances of individual species and populations. We tested the predictions of the priority of access model in the chimpanzees of Gombe National Park, Tanzania. Chimpanzees are an interesting species in which to test the model because of their fission-fusion grouping patterns, promiscuous mating system and alternative male mating strategies. We determined paternity for 34 offspring over a 22-year period and found that the priority of access model was generally predictive of male reproductive success. However, we found that younger males had higher success per male than older males, and low-ranking males sired more offspring than predicted. Low-ranking males sired offspring with younger, less desirable females and by engaging in consortships more often than high-ranking fathers. Although alpha males never sired offspring with related females, inbreeding avoidance of high-ranking male relatives did not completely explain the success of low-ranking males. While our work confirms that male rank typically predicts male chimpanzee reproductive success, other factors are also important; mate choice and alternative male strategies can give low-ranking males access to females more often than would be predicted by the model. Furthermore, the success of younger males suggests that they are more successful in sperm competition.